mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 23:04:52 +08:00
Compare commits
8 Commits
fixes
...
varlen_api
Author | SHA1 | Date | |
---|---|---|---|
5e251c0f80 | |||
66ada1ff3f | |||
55f4669a74 | |||
56c4eb80d3 | |||
e73a602b7a | |||
dc170d027d | |||
d7475a346a | |||
4712ec7f0b |
@ -241,7 +241,7 @@ def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
|
||||
try:
|
||||
with socket.create_connection((addr, port), timeout=timeout):
|
||||
return
|
||||
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
|
||||
except (ConnectionRefusedError, socket.timeout): # noqa: PERF203
|
||||
if i == attempt_cnt - 1:
|
||||
raise
|
||||
time.sleep(timeout)
|
||||
@ -1004,7 +1004,7 @@ if __name__ == "__main__":
|
||||
install_condaforge_python(host, args.python_version)
|
||||
sys.exit(0)
|
||||
|
||||
python_version = args.python_version if args.python_version is not None else "3.10"
|
||||
python_version = args.python_version if args.python_version is not None else "3.9"
|
||||
|
||||
if args.use_torch_from_pypi:
|
||||
configure_system(host, compiler=args.compiler, python_version=python_version)
|
||||
|
@ -69,8 +69,7 @@ RUN bash ./install_cuda.sh 13.0
|
||||
ENV DESIRED_CUDA=13.0
|
||||
|
||||
FROM ${ROCM_IMAGE} as rocm
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
|
||||
ENV PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
ADD ./common/install_mkl.sh install_mkl.sh
|
||||
RUN bash ./install_mkl.sh && rm install_mkl.sh
|
||||
ENV MKLROOT /opt/intel
|
||||
|
@ -36,12 +36,6 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
;;
|
||||
rocm*)
|
||||
BASE_TARGET=rocm
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
|
||||
;;
|
||||
*)
|
||||
echo "ERROR: Unknown docker tag ${DOCKER_TAG_PREFIX}"
|
||||
|
@ -262,10 +262,13 @@ case "$tag" in
|
||||
TRITON_CPU=yes
|
||||
;;
|
||||
pytorch-linux-jammy-linter)
|
||||
PYTHON_VERSION=3.10
|
||||
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
|
||||
# We will need to update mypy version eventually, but that's for another day. The task
|
||||
# would be to upgrade mypy to 1.0.0 with Python 3.11
|
||||
PYTHON_VERSION=3.9
|
||||
;;
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter)
|
||||
PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
|
||||
PYTHON_VERSION=3.9
|
||||
CUDA_VERSION=12.8.1
|
||||
;;
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc11)
|
||||
|
@ -1 +1 @@
|
||||
v2.28.3-1
|
||||
v2.27.5-1
|
||||
|
@ -1 +1 @@
|
||||
v2.28.3-1
|
||||
v2.27.7-1
|
||||
|
@ -1 +1 @@
|
||||
bbb06c0334a6772b92d24bde54956e675c8c6604
|
||||
5ae38bdb0dc066c5823e34dc9797afb9de42c866
|
||||
|
@ -12,8 +12,8 @@ function do_install() {
|
||||
|
||||
rocm_version_nodot=${rocm_version//./}
|
||||
|
||||
# https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
|
||||
# Version 2.7.2 + ROCm related updates
|
||||
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
|
||||
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
|
||||
|
||||
rocm_dir="/opt/rocm"
|
||||
|
@ -40,16 +40,12 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
;;
|
||||
rocm*)
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
|
||||
;;
|
||||
*)
|
||||
|
@ -82,7 +82,7 @@ case ${image} in
|
||||
;;
|
||||
manylinux2_28-builder:rocm*)
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
TARGET=rocm_final
|
||||
@ -90,10 +90,6 @@ case ${image} in
|
||||
DEVTOOLSET_VERSION="11"
|
||||
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
|
||||
;;
|
||||
manylinux2_28-builder:xpu)
|
||||
|
@ -112,6 +112,8 @@ ninja==1.11.1.3
|
||||
#Pinned versions: 1.11.1.3
|
||||
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
|
||||
|
||||
numba==0.49.0 ; python_version < "3.9" and platform_machine != "s390x"
|
||||
numba==0.55.2 ; python_version == "3.9" and platform_machine != "s390x"
|
||||
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
|
||||
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
|
||||
#Description: Just-In-Time Compiler for Numerical Functions
|
||||
@ -132,7 +134,7 @@ numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
|
||||
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
|
||||
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
|
||||
#test_binary_ufuncs.py
|
||||
numpy==1.22.4; python_version == "3.10"
|
||||
numpy==1.22.4; python_version == "3.9" or python_version == "3.10"
|
||||
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
|
||||
numpy==2.1.2; python_version >= "3.13"
|
||||
|
||||
@ -324,6 +326,8 @@ pywavelets==1.7.0 ; python_version >= "3.12"
|
||||
lxml==5.3.0
|
||||
#Description: This is a requirement of unittest-xml-reporting
|
||||
|
||||
# Python-3.9 binaries
|
||||
|
||||
PyGithub==2.3.0
|
||||
|
||||
sympy==1.13.3
|
||||
|
@ -1,15 +1,8 @@
|
||||
sphinx==5.3.0
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 5.3.0
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@1657ad2fc1acdc98aa719eebecbb0128a7c13ce4#egg=pytorch_sphinx_theme2
|
||||
|
||||
standard-imghdr==3.13.0; python_version >= "3.13"
|
||||
#Description: This is needed by Sphinx, so it needs to be added here.
|
||||
# The reasons are as follows:
|
||||
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
|
||||
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
|
||||
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
|
||||
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@d53b0ffb9b1cda68260693ea98f3483823c88d8e#egg=pytorch_sphinx_theme2
|
||||
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
|
||||
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
|
||||
# something related to Docker setup. We can investigate this later.
|
||||
|
@ -72,7 +72,7 @@ def sample_vllm_test_library():
|
||||
]
|
||||
),
|
||||
"pytest -v -s entrypoints/llm/test_generate.py",
|
||||
"pytest -v -s entrypoints/offline_mode",
|
||||
"VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode",
|
||||
],
|
||||
},
|
||||
"vllm_regression_test": {
|
||||
|
@ -1,11 +1,11 @@
|
||||
SHELL=/usr/bin/env bash
|
||||
|
||||
DOCKER_CMD ?= docker
|
||||
DESIRED_ROCM ?= 7.0
|
||||
DESIRED_ROCM ?= 6.4
|
||||
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
|
||||
PACKAGE_NAME = magma-rocm
|
||||
# inherit this from underlying docker image, do not pass this env var to docker
|
||||
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
|
||||
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
|
||||
|
||||
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
|
||||
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
magma-rocm/build_magma.sh
|
||||
|
||||
.PHONY: all
|
||||
all: magma-rocm70
|
||||
all: magma-rocm64
|
||||
all: magma-rocm63
|
||||
|
||||
@ -25,11 +24,6 @@ clean:
|
||||
$(RM) -r magma-*
|
||||
$(RM) -r output
|
||||
|
||||
.PHONY: magma-rocm70
|
||||
magma-rocm70: DESIRED_ROCM := 7.0
|
||||
magma-rocm70:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-rocm64
|
||||
magma-rocm64: DESIRED_ROCM := 6.4
|
||||
magma-rocm64:
|
||||
|
@ -6,8 +6,8 @@ set -eou pipefail
|
||||
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
|
||||
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
|
||||
|
||||
# https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
|
||||
# Version 2.7.2 + ROCm related updates
|
||||
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
|
||||
|
||||
# Folders for the build
|
||||
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
|
||||
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
|
||||
|
||||
# Fetch magma sources and verify checksum
|
||||
pushd ${PACKAGE_DIR}
|
||||
git clone https://github.com/jeffdaily/magma
|
||||
git clone https://bitbucket.org/icl/magma.git
|
||||
pushd magma
|
||||
git checkout ${MAGMA_VERSION}
|
||||
popd
|
||||
|
@ -104,7 +104,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
|
||||
fi
|
||||
|
||||
echo "Calling -m pip install . -v --no-build-isolation at $(date)"
|
||||
echo "Calling 'python -m pip install .' at $(date)"
|
||||
|
||||
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
|
||||
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
|
||||
|
@ -58,7 +58,7 @@ time python tools/setup_helpers/generate_code.py \
|
||||
|
||||
# Build the docs
|
||||
pushd docs/cpp
|
||||
time make VERBOSE=1 html
|
||||
time make VERBOSE=1 html -j
|
||||
|
||||
popd
|
||||
popd
|
||||
|
@ -35,11 +35,10 @@ fi
|
||||
|
||||
print_cmake_info
|
||||
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
|
||||
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
|
||||
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
|
||||
USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
|
||||
else
|
||||
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
|
||||
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
|
||||
# NB: we always build with distributed; USE_DISTRIBUTED turns off all
|
||||
# backends (specifically the gloo backend), so test that this case works too
|
||||
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
|
||||
fi
|
||||
if which sccache > /dev/null; then
|
||||
|
@ -13,9 +13,13 @@ if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available(
|
||||
fi
|
||||
popd
|
||||
|
||||
python -mpip install -r requirements.txt
|
||||
|
||||
# enable debug asserts in serialization
|
||||
export TORCH_SERIALIZATION_DEBUG=1
|
||||
|
||||
python -mpip install --no-input -r requirements.txt
|
||||
|
||||
setup_test_python() {
|
||||
# The CircleCI worker hostname doesn't resolve to an address.
|
||||
# This environment variable makes ProcessGroupGloo default to
|
||||
@ -55,7 +59,7 @@ test_python_shard() {
|
||||
|
||||
setup_test_python
|
||||
|
||||
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "$1" "$NUM_TEST_SHARDS"
|
||||
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --shard "$1" "$NUM_TEST_SHARDS"
|
||||
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
@ -322,29 +322,23 @@ test_python_shard() {
|
||||
|
||||
# modify LD_LIBRARY_PATH to ensure it has the conda env.
|
||||
# This set of tests has been shown to be buggy without it for the split-build
|
||||
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_python() {
|
||||
# shellcheck disable=SC2086
|
||||
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
|
||||
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_python_smoke() {
|
||||
# Smoke tests for H100/B200
|
||||
# Smoke tests for H100
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_python_smoke_b200() {
|
||||
# Targeted smoke tests for B200 - staged approach to avoid too many failures
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_h100_distributed() {
|
||||
# Distributed tests at H100
|
||||
time python test/run_test.py --include distributed/_composable/test_composability/test_pp_composability.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
@ -390,7 +384,6 @@ test_dynamo_wrapped_shard() {
|
||||
--exclude-distributed-tests \
|
||||
--exclude-torch-export-tests \
|
||||
--exclude-aot-dispatch-tests \
|
||||
--exclude-quantization-tests \
|
||||
--shard "$1" "$NUM_TEST_SHARDS" \
|
||||
--verbose \
|
||||
--upload-artifacts-while-running
|
||||
@ -1163,12 +1156,6 @@ test_distributed() {
|
||||
fi
|
||||
}
|
||||
|
||||
test_quantization() {
|
||||
echo "Testing quantization"
|
||||
|
||||
python test/test_quantization.py
|
||||
}
|
||||
|
||||
test_rpc() {
|
||||
echo "Testing RPC C++ tests"
|
||||
# NB: the ending test_rpc must match the current function name for the current
|
||||
@ -1586,7 +1573,7 @@ test_executorch() {
|
||||
test_linux_aarch64() {
|
||||
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
|
||||
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
|
||||
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops profiler/test_memory_profiler \
|
||||
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops \
|
||||
distributed/elastic/timer/api_test distributed/elastic/timer/local_timer_example distributed/elastic/timer/local_timer_test \
|
||||
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
|
||||
|
||||
@ -1617,7 +1604,7 @@ test_operator_benchmark() {
|
||||
test_inductor_set_cpu_affinity
|
||||
|
||||
cd benchmarks/operator_benchmark/pt_extension
|
||||
python -m pip install . -v --no-build-isolation
|
||||
python -m pip install .
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/operator_benchmark
|
||||
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
|
||||
@ -1630,25 +1617,6 @@ test_operator_benchmark() {
|
||||
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
}
|
||||
|
||||
test_operator_microbenchmark() {
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
TEST_DIR=$(pwd)
|
||||
|
||||
cd benchmarks/operator_benchmark/pt_extension
|
||||
python -m pip install .
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/operator_benchmark
|
||||
|
||||
for OP_BENCHMARK_TESTS in matmul mm addmm bmm; do
|
||||
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
|
||||
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
|
||||
--benchmark-name "PyTorch operator microbenchmark" --use-compile
|
||||
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
|
||||
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}.json" \
|
||||
--benchmark-name "PyTorch operator microbenchmark"
|
||||
done
|
||||
}
|
||||
|
||||
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
|
||||
(cd test && python -c "import torch; print(torch.__config__.show())")
|
||||
@ -1681,8 +1649,6 @@ elif [[ "${TEST_CONFIG}" == *executorch* ]]; then
|
||||
test_executorch
|
||||
elif [[ "$TEST_CONFIG" == 'jit_legacy' ]]; then
|
||||
test_python_legacy_jit
|
||||
elif [[ "$TEST_CONFIG" == 'quantization' ]]; then
|
||||
test_quantization
|
||||
elif [[ "${BUILD_ENVIRONMENT}" == *libtorch* ]]; then
|
||||
# TODO: run some C++ tests
|
||||
echo "no-op at the moment"
|
||||
@ -1705,8 +1671,6 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
|
||||
test_operator_benchmark cpu ${TEST_MODE}
|
||||
|
||||
fi
|
||||
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
|
||||
test_operator_microbenchmark
|
||||
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
|
||||
test_inductor_distributed
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
|
||||
@ -1809,14 +1773,10 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
|
||||
test_xpu_bin
|
||||
elif [[ "${TEST_CONFIG}" == smoke ]]; then
|
||||
test_python_smoke
|
||||
elif [[ "${TEST_CONFIG}" == smoke_b200 ]]; then
|
||||
test_python_smoke_b200
|
||||
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
|
||||
test_h100_distributed
|
||||
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
|
||||
test_h100_symm_mem
|
||||
elif [[ "${TEST_CONFIG}" == "b200-symm-mem" ]]; then
|
||||
test_h100_symm_mem
|
||||
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
|
||||
test_h100_cutlass_backend
|
||||
else
|
||||
|
@ -25,7 +25,7 @@ echo Copying over test times file
|
||||
robocopy /E "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.additional_ci_files" "%PROJECT_DIR_WIN%\.additional_ci_files"
|
||||
|
||||
echo Run nn tests
|
||||
python run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
|
||||
python run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
|
||||
if ERRORLEVEL 1 goto fail
|
||||
|
||||
popd
|
||||
|
@ -63,7 +63,7 @@ if errorlevel 1 exit /b 1
|
||||
call %CONDA_HOME%\condabin\activate.bat testenv
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
call conda install -y -q -c conda-forge libuv=1.51
|
||||
call conda install -y -q -c conda-forge libuv=1.39
|
||||
call conda install -y -q intel-openmp
|
||||
|
||||
echo "install and test libtorch"
|
||||
|
@ -177,7 +177,8 @@ source ~/${desired_python}-build/bin/activate
|
||||
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements.txt"
|
||||
retry brew install libomp
|
||||
|
||||
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
|
||||
# For USE_DISTRIBUTED=1 on macOS, this enables gloo, which needs libuv, which
|
||||
# is build as part of tensorpipe submodule
|
||||
export USE_DISTRIBUTED=1
|
||||
|
||||
export USE_MKLDNN=OFF
|
||||
|
47
.circleci/scripts/functorch_doc_push_script.sh
Executable file
47
.circleci/scripts/functorch_doc_push_script.sh
Executable file
@ -0,0 +1,47 @@
|
||||
#!/bin/bash
|
||||
# =================== The following code **should** be executed inside Docker container ===================
|
||||
|
||||
# Install dependencies
|
||||
sudo apt-get -y update
|
||||
sudo apt-get -y install expect-dev
|
||||
|
||||
# This is where the local pytorch install in the docker image is located
|
||||
pt_checkout="/var/lib/jenkins/workspace"
|
||||
source "$pt_checkout/.ci/pytorch/common_utils.sh"
|
||||
echo "functorch_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
set -ex
|
||||
|
||||
version=${DOCS_VERSION:-nightly}
|
||||
echo "version: $version"
|
||||
|
||||
# Build functorch docs
|
||||
pushd $pt_checkout/functorch/docs
|
||||
pip -q install -r requirements.txt
|
||||
make html
|
||||
popd
|
||||
|
||||
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
|
||||
pushd functorch_ghpages
|
||||
|
||||
if [ $version == "main" ]; then
|
||||
version=nightly
|
||||
fi
|
||||
|
||||
git rm -rf "$version" || true
|
||||
mv "$pt_checkout/functorch/docs/build/html" "$version"
|
||||
|
||||
git add "$version" || true
|
||||
git status
|
||||
git config user.email "soumith+bot@pytorch.org"
|
||||
git config user.name "pytorchbot"
|
||||
# If there aren't changes, don't make a commit; push is no-op
|
||||
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
|
||||
git status
|
||||
|
||||
if [[ "${WITH_PUSH:-}" == true ]]; then
|
||||
git push -u origin gh-pages
|
||||
fi
|
||||
|
||||
popd
|
||||
# =================== The above code **should** be executed inside Docker container ===================
|
@ -69,8 +69,6 @@ readability-string-compare,
|
||||
'
|
||||
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
|
||||
WarningsAsErrors: '*'
|
||||
LineFilter:
|
||||
- name: '/usr/include/.*'
|
||||
CheckOptions:
|
||||
cppcoreguidelines-special-member-functions.AllowSoleDefaultDtor: true
|
||||
cppcoreguidelines-special-member-functions.AllowImplicitlyDeletedCopyOrMove: true
|
||||
|
4
.github/ISSUE_TEMPLATE/ci-sev.md
vendored
4
.github/ISSUE_TEMPLATE/ci-sev.md
vendored
@ -1,10 +1,6 @@
|
||||
---
|
||||
name: "⚠️ CI SEV"
|
||||
about: Tracking incidents for PyTorch's CI infra.
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
> NOTE: Remember to label this issue with "`ci: sev`"
|
||||
|
18
.github/ISSUE_TEMPLATE/disable-autorevert.md
vendored
18
.github/ISSUE_TEMPLATE/disable-autorevert.md
vendored
@ -1,18 +0,0 @@
|
||||
---
|
||||
name: DISABLE AUTOREVERT
|
||||
about: Disables autorevert when open
|
||||
title: "❌\U0001F519 [DISABLE AUTOREVERT]"
|
||||
labels: 'ci: disable-autorevert'
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
This issue, while open, disables the autorevert functionality.
|
||||
|
||||
More details can be found [here](https://github.com/pytorch/test-infra/blob/main/aws/lambda/pytorch-auto-revert/README.md)
|
||||
|
||||
|
||||
## Why are you disabling autorevert?
|
||||
|
||||
|
||||
## Links to any issues/commits/errors that shows the source of problem
|
6
.github/ISSUE_TEMPLATE/disable-ci-jobs.md
vendored
6
.github/ISSUE_TEMPLATE/disable-ci-jobs.md
vendored
@ -1,10 +1,8 @@
|
||||
---
|
||||
name: Disable CI jobs (PyTorch Dev Infra only)
|
||||
about: Use this template to disable CI jobs
|
||||
title: DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]
|
||||
labels: 'module: ci'
|
||||
assignees: ''
|
||||
|
||||
title: "DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]"
|
||||
labels: "module: ci"
|
||||
---
|
||||
|
||||
> For example, DISABLED pull / win-vs2022-cpu-py3 / test (default). Once
|
||||
|
3
.github/actionlint.yaml
vendored
3
.github/actionlint.yaml
vendored
@ -22,9 +22,6 @@ self-hosted-runner:
|
||||
- linux.arm64.m7g.4xlarge
|
||||
- linux.arm64.m7g.4xlarge.ephemeral
|
||||
- linux.arm64.r7g.12xlarge.memory
|
||||
- linux.aws.h100
|
||||
- linux.aws.h100.4
|
||||
- linux.aws.h100.8
|
||||
- linux.4xlarge.nvidia.gpu
|
||||
- linux.8xlarge.nvidia.gpu
|
||||
- linux.16xlarge.nvidia.gpu
|
||||
|
2
.github/actions/setup-win/action.yml
vendored
2
.github/actions/setup-win/action.yml
vendored
@ -59,7 +59,7 @@ runs:
|
||||
set -x
|
||||
|
||||
# Create new py_tmp env with python-version
|
||||
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp libuv
|
||||
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp
|
||||
|
||||
PYTHON3=$(${CONDA_RUN} -n py_tmp which python3)
|
||||
EXIT_CODE=$?
|
||||
|
2
.github/ci_commit_pins/vllm.txt
vendored
2
.github/ci_commit_pins/vllm.txt
vendored
@ -1 +1 @@
|
||||
0307428d65acf5cf1a73a70a7722e076bbb83f22
|
||||
9d1c50a5ac8726f4af0d4a4e85ad4d26a674ad26
|
||||
|
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
0fc62aa26a30ed7ca419d285f285cb5ba02c4394
|
||||
c77852e117bdf056c8e9a087e51d6f65cf6ba53d
|
||||
|
15
.github/merge_rules.yaml
vendored
15
.github/merge_rules.yaml
vendored
@ -525,21 +525,6 @@
|
||||
- Lint
|
||||
- pull
|
||||
|
||||
- name: typechecking
|
||||
patterns:
|
||||
- 'pyrefly.toml'
|
||||
- 'mypy.ini'
|
||||
- 'mypy-strict.ini'
|
||||
approved_by:
|
||||
- lolpack
|
||||
- maggiemoss
|
||||
- ndmitchell
|
||||
- kinto0
|
||||
mandatory_checks_name:
|
||||
- EasyCLA
|
||||
- Lint
|
||||
- pull
|
||||
|
||||
- name: superuser
|
||||
patterns:
|
||||
- '*'
|
||||
|
39
.github/pytorch-probot.yml
vendored
39
.github/pytorch-probot.yml
vendored
@ -1,44 +1,41 @@
|
||||
tracking_issue: 24422
|
||||
ciflow_tracking_issue: 64124
|
||||
ciflow_push_tags:
|
||||
- ciflow/b200
|
||||
- ciflow/b200-symm-mem
|
||||
- ciflow/binaries
|
||||
- ciflow/binaries_libtorch
|
||||
- ciflow/binaries_wheel
|
||||
- ciflow/h100
|
||||
- ciflow/h100-cutlass-backend
|
||||
- ciflow/h100-distributed
|
||||
- ciflow/h100-symm-mem
|
||||
- ciflow/triton_binaries
|
||||
- ciflow/inductor
|
||||
- ciflow/inductor-cu126
|
||||
- ciflow/inductor-micro-benchmark
|
||||
- ciflow/inductor-micro-benchmark-cpu-x86
|
||||
- ciflow/inductor-perf-compare
|
||||
- ciflow/inductor-perf-test-nightly-rocm
|
||||
- ciflow/inductor-perf-test-nightly-x86-zen
|
||||
- ciflow/inductor-periodic
|
||||
- ciflow/inductor-rocm
|
||||
- ciflow/inductor-perf-test-nightly-rocm
|
||||
- ciflow/inductor-perf-compare
|
||||
- ciflow/inductor-micro-benchmark
|
||||
- ciflow/inductor-micro-benchmark-cpu-x86
|
||||
- ciflow/inductor-perf-test-nightly-x86-zen
|
||||
- ciflow/inductor-cu126
|
||||
- ciflow/linux-aarch64
|
||||
- ciflow/mps
|
||||
- ciflow/nightly
|
||||
- ciflow/op-benchmark
|
||||
- ciflow/periodic
|
||||
- ciflow/periodic-rocm-mi300
|
||||
- ciflow/pull
|
||||
- ciflow/quantization-periodic
|
||||
- ciflow/riscv64
|
||||
- ciflow/rocm
|
||||
- ciflow/rocm-mi300
|
||||
- ciflow/s390
|
||||
- ciflow/riscv64
|
||||
- ciflow/slow
|
||||
- ciflow/torchbench
|
||||
- ciflow/triton_binaries
|
||||
- ciflow/trunk
|
||||
- ciflow/unstable
|
||||
- ciflow/vllm
|
||||
- ciflow/win-arm64
|
||||
- ciflow/xpu
|
||||
- ciflow/vllm
|
||||
- ciflow/torchbench
|
||||
- ciflow/op-benchmark
|
||||
- ciflow/pull
|
||||
- ciflow/h100
|
||||
- ciflow/h100-distributed
|
||||
- ciflow/win-arm64
|
||||
- ciflow/h100-symm-mem
|
||||
- ciflow/h100-cutlass-backend
|
||||
retryable_workflows:
|
||||
- pull
|
||||
- trunk
|
||||
@ -47,4 +44,4 @@ retryable_workflows:
|
||||
- inductor-A100-perf-nightly
|
||||
labeler_config: labeler.yml
|
||||
label_to_label_config: label_to_label.yml
|
||||
mergebot: true
|
||||
mergebot: True
|
||||
|
@ -30,7 +30,7 @@ CUDA_ARCHES_CUDNN_VERSION = {
|
||||
}
|
||||
|
||||
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
ROCM_ARCHES = ["6.4", "7.0"]
|
||||
ROCM_ARCHES = ["6.3", "6.4"]
|
||||
|
||||
XPU_ARCHES = ["xpu"]
|
||||
|
||||
@ -53,7 +53,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
|
||||
@ -70,7 +70,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
|
||||
@ -87,7 +87,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "
|
||||
|
2
.github/scripts/generate_ci_workflows.py
vendored
2
.github/scripts/generate_ci_workflows.py
vendored
@ -155,7 +155,7 @@ LINUX_BINARY_SMOKE_WORKFLOWS = [
|
||||
package_type="manywheel",
|
||||
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
|
||||
OperatingSystem.LINUX,
|
||||
arches=["13.0"],
|
||||
arches=["12.8"],
|
||||
python_versions=["3.12"],
|
||||
),
|
||||
branches="main",
|
||||
|
@ -71,15 +71,12 @@ jobs:
|
||||
with:!{{ upload.binary_env_as_input(config) }}
|
||||
{%- if "aarch64" in build_environment %}
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
{%- elif "s390x" in build_environment %}
|
||||
runs_on: linux.s390x
|
||||
ALPINE_IMAGE: "docker.io/s390x/alpine"
|
||||
timeout-minutes: 420
|
||||
{%- elif config["gpu_arch_type"] == "rocm" %}
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
{%- elif "conda" in build_environment and config["gpu_arch_type"] == "cuda" %}
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.24xlarge.ephemeral
|
||||
|
2
.github/workflows/_docs.yml
vendored
2
.github/workflows/_docs.yml
vendored
@ -67,7 +67,7 @@ jobs:
|
||||
# an OOM issue when running the job, so this upgrades the runner from 4xlarge
|
||||
# to the next available tier of 12xlarge. So much memory just to generate cpp
|
||||
# doc
|
||||
runner: ${{ inputs.runner_prefix }}linux.12xlarge.memory
|
||||
runner: ${{ inputs.runner_prefix }}linux.12xlarge
|
||||
# TODO: Nightly cpp docs take longer and longer to finish (more than 3h now)
|
||||
# Let's try to figure out how this can be improved
|
||||
timeout-minutes: 360
|
||||
|
28
.github/workflows/_get-changed-files.yml
vendored
28
.github/workflows/_get-changed-files.yml
vendored
@ -2,12 +2,6 @@ name: Get Changed Files
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
all_files:
|
||||
description: "Whether to return all files instead of just changed files"
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
outputs:
|
||||
changed-files:
|
||||
description: "List of changed files (space-separated) or '*' if not in a PR"
|
||||
@ -32,23 +26,17 @@ jobs:
|
||||
# Get the PR number from the github context
|
||||
PR_NUMBER="${{ github.event.number }}"
|
||||
|
||||
# Check if all_files is requested
|
||||
if [ "${{ inputs.all_files }}" = "true" ]; then
|
||||
echo "all_files input is true, returning all files"
|
||||
echo "changed-files=*" >> "$GITHUB_OUTPUT"
|
||||
else
|
||||
# Use gh CLI to get changed files in the PR with explicit repo
|
||||
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
|
||||
# Use gh CLI to get changed files in the PR with explicit repo
|
||||
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
|
||||
|
||||
if [ -z "$CHANGED_FILES" ]; then
|
||||
echo "No changed files found, setting to '*'"
|
||||
CHANGED_FILES="*"
|
||||
fi
|
||||
|
||||
echo "Changed files: $CHANGED_FILES"
|
||||
echo "changed-files=$CHANGED_FILES" >> "$GITHUB_OUTPUT"
|
||||
if [ -z "$CHANGED_FILES" ]; then
|
||||
echo "No changed files found, setting to '*'"
|
||||
CHANGED_FILES="*"
|
||||
fi
|
||||
|
||||
echo "Changed files: $CHANGED_FILES"
|
||||
echo "changed-files=$CHANGED_FILES" >> "$GITHUB_OUTPUT"
|
||||
|
||||
else
|
||||
echo "Not in PR context, setting changed files to '*'"
|
||||
echo "changed-files=*" >> "$GITHUB_OUTPUT"
|
||||
|
2
.github/workflows/_linux-test.yml
vendored
2
.github/workflows/_linux-test.yml
vendored
@ -273,8 +273,6 @@ jobs:
|
||||
TEST_CONFIG: ${{ matrix.config }}
|
||||
SHARD_NUMBER: ${{ matrix.shard }}
|
||||
NUM_TEST_SHARDS: ${{ matrix.num_shards }}
|
||||
EXTRA_FLAGS: ${{ matrix.extra_flags || '' }}
|
||||
OP_BENCHMARK_TESTS: ${{ matrix.op_benchmark_tests }}
|
||||
REENABLED_ISSUES: ${{ steps.keep-going.outputs.reenabled-issues }}
|
||||
CONTINUE_THROUGH_ERROR: ${{ steps.keep-going.outputs.keep-going }}
|
||||
VERBOSE_TEST_LOGS: ${{ steps.keep-going.outputs.ci-verbose-test-logs }}
|
||||
|
60
.github/workflows/b200-symm-mem.yml
vendored
60
.github/workflows/b200-symm-mem.yml
vendored
@ -1,60 +0,0 @@
|
||||
name: Limited CI for symmetric memory tests on B200
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- .github/workflows/b200-symm-mem.yml
|
||||
workflow_dispatch:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/b200-symm-mem/*
|
||||
schedule:
|
||||
- cron: 22 8 * * * # about 1:22am PDT
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '10.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "b200-symm-mem", shard: 1, num_shards: 1, runner: "linux.dgx.b200.8" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs:
|
||||
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.test-matrix }}
|
||||
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
secrets: inherit
|
2
.github/workflows/build-almalinux-images.yml
vendored
2
.github/workflows/build-almalinux-images.yml
vendored
@ -36,7 +36,7 @@ jobs:
|
||||
runs-on: linux.9xlarge.ephemeral
|
||||
strategy:
|
||||
matrix:
|
||||
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.3", "rocm6.4", "rocm7.0", "cpu"]
|
||||
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.3", "rocm6.4", "cpu"]
|
||||
steps:
|
||||
- name: Build docker image
|
||||
uses: pytorch/pytorch/.github/actions/binary-docker-build@main
|
||||
|
2
.github/workflows/build-libtorch-images.yml
vendored
2
.github/workflows/build-libtorch-images.yml
vendored
@ -52,8 +52,8 @@ jobs:
|
||||
{ tag: "cuda12.9" },
|
||||
{ tag: "cuda12.8" },
|
||||
{ tag: "cuda12.6" },
|
||||
{ tag: "rocm6.3" },
|
||||
{ tag: "rocm6.4" },
|
||||
{ tag: "rocm7.0" },
|
||||
{ tag: "cpu" },
|
||||
]
|
||||
steps:
|
||||
|
2
.github/workflows/build-magma-rocm-linux.yml
vendored
2
.github/workflows/build-magma-rocm-linux.yml
vendored
@ -34,7 +34,7 @@ jobs:
|
||||
id-token: write
|
||||
strategy:
|
||||
matrix:
|
||||
rocm_version: ["70", "64"]
|
||||
rocm_version: ["64", "63"]
|
||||
steps:
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
2
.github/workflows/build-manywheel-images.yml
vendored
2
.github/workflows/build-manywheel-images.yml
vendored
@ -52,8 +52,8 @@ jobs:
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm6.3", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxcxx11-abi-builder", tag: "cpu-cxx11-abi", runner: "linux.9xlarge.ephemeral" },
|
||||
|
9
.github/workflows/build-triton-wheel.yml
vendored
9
.github/workflows/build-triton-wheel.yml
vendored
@ -50,12 +50,12 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
py_vers: [ "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
|
||||
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
|
||||
device: ["cuda", "rocm", "xpu", "aarch64"]
|
||||
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
|
||||
include:
|
||||
- device: "rocm"
|
||||
rocm_version: "7.0"
|
||||
rocm_version: "6.4"
|
||||
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
|
||||
- device: "cuda"
|
||||
rocm_version: ""
|
||||
@ -108,6 +108,9 @@ jobs:
|
||||
|
||||
# Determine python executable for given version
|
||||
case $PY_VERS in
|
||||
3.9)
|
||||
PYTHON_EXECUTABLE=/opt/python/cp39-cp39/bin/python
|
||||
;;
|
||||
3.10)
|
||||
PYTHON_EXECUTABLE=/opt/python/cp310-cp310/bin/python
|
||||
;;
|
||||
@ -191,7 +194,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
py_vers: [ "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
|
||||
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
|
||||
device: ["xpu"]
|
||||
timeout-minutes: 40
|
||||
env:
|
||||
|
59
.github/workflows/create_release.yml
vendored
59
.github/workflows/create_release.yml
vendored
@ -35,7 +35,6 @@ jobs:
|
||||
contents: write
|
||||
outputs:
|
||||
pt_release_name: ${{ steps.release_name.outputs.pt_release_name }}
|
||||
pt_pep517_release_name: ${{ steps.release_name.outputs.pt_pep517_release_name }}
|
||||
steps:
|
||||
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
with:
|
||||
@ -54,12 +53,8 @@ jobs:
|
||||
tag_or_branch="${tag_or_branch#refs/heads/}"
|
||||
# replace directory separators with _ in branch name
|
||||
tag_or_branch="${tag_or_branch//\//_}"
|
||||
torch_version="$(python -c 'from tools.generate_torch_version import get_torch_version; print(get_torch_version())')"
|
||||
{
|
||||
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch";
|
||||
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz";
|
||||
echo "PT_PEP517_RELEASE_FILE=torch-${torch_version}.tar.gz";
|
||||
} >> "$GITHUB_ENV"
|
||||
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch" >> "$GITHUB_ENV"
|
||||
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz" >> "$GITHUB_ENV"
|
||||
- name: Checkout optional submodules
|
||||
run: python3 tools/optional_submodules.py
|
||||
- name: Copy docs requirements for inclusion
|
||||
@ -69,47 +64,30 @@ jobs:
|
||||
cp .ci/docker/requirements-docs.txt docs/requirements.txt
|
||||
- name: Create source distribution
|
||||
run: |
|
||||
# Create new folder with specified name so extracting the archive yields that
|
||||
rm -rf "/tmp/$PT_RELEASE_NAME"
|
||||
cp -r "$PWD" "/tmp/$PT_RELEASE_NAME"
|
||||
mv "/tmp/$PT_RELEASE_NAME" .
|
||||
# Cleanup
|
||||
rm -rf "$PT_RELEASE_NAME"/{.circleci,.ci}
|
||||
find "$PT_RELEASE_NAME" -name '.git*' -exec rm -rv {} \; || true
|
||||
# Create archive
|
||||
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
|
||||
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
|
||||
- name: Create PEP 517 compatible source distribution
|
||||
run: |
|
||||
pip install build==1.2.2.post1 || exit 1
|
||||
python -m build --sdist || exit 1
|
||||
cd dist || exit 1
|
||||
# Create new folder with specified name so extracting the archive yields that
|
||||
rm -rf "/tmp/$PT_RELEASE_NAME"
|
||||
cp -r "$PWD" "/tmp/$PT_RELEASE_NAME"
|
||||
mv "/tmp/$PT_RELEASE_NAME" .
|
||||
# Cleanup
|
||||
rm -rf "$PT_RELEASE_NAME"/{.circleci,.ci}
|
||||
find "$PT_RELEASE_NAME" -name '.git*' -exec rm -rv {} \; || true
|
||||
# Create archive
|
||||
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
|
||||
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
|
||||
- name: Upload source distribution for release
|
||||
if: ${{ github.event_name == 'release' }}
|
||||
uses: softprops/action-gh-release@da05d552573ad5aba039eaac05058a918a7bf631 # v2.2.2
|
||||
with:
|
||||
files: |
|
||||
${{ env.PT_RELEASE_FILE }}
|
||||
${{ env.PT_PEP517_RELEASE_FILE }}
|
||||
- name: Upload source distribution to GHA artifacts # for release tags
|
||||
files: ${{env.PT_RELEASE_FILE}}
|
||||
- name: Upload source distribution to GHA artifacts for release tags
|
||||
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
|
||||
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
|
||||
with:
|
||||
name: ${{ env.PT_RELEASE_FILE }}
|
||||
path: ${{ env.PT_RELEASE_FILE }}
|
||||
- name: Upload PEP 517 source distribution to GHA artifacts # for release tags
|
||||
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
|
||||
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
|
||||
with:
|
||||
name: ${{ env.PT_PEP517_RELEASE_FILE }}
|
||||
path: dist/${{ env.PT_PEP517_RELEASE_FILE }}
|
||||
- name: Set output
|
||||
id: release_name
|
||||
run: |
|
||||
{
|
||||
echo "pt_release_name=${{ env.PT_RELEASE_FILE }}";
|
||||
echo "pt_pep517_release_name=${{ env.PT_PEP517_RELEASE_FILE }}";
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
run: echo "pt_release_name=${{ env.PT_RELEASE_NAME }}.tar.gz" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
upload_source_code_to_s3:
|
||||
if: ${{ github.repository == 'pytorch/pytorch' && github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
|
||||
@ -125,9 +103,6 @@ jobs:
|
||||
- uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
|
||||
with:
|
||||
name: ${{ needs.release.outputs.pt_release_name }}
|
||||
- uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
|
||||
with:
|
||||
name: ${{ needs.release.outputs.pt_pep517_release_name }}
|
||||
- name: Configure AWS credentials(PyTorch account)
|
||||
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
|
||||
with:
|
||||
@ -138,9 +113,7 @@ jobs:
|
||||
s3-bucket: pytorch
|
||||
s3-prefix: source_code/test
|
||||
if-no-files-found: warn
|
||||
path: |
|
||||
${{ needs.release.outputs.pt_release_name }}
|
||||
${{ needs.release.outputs.pt_pep517_release_name }}
|
||||
path: ${{ needs.release.outputs.pt_release_name }}
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name }}
|
||||
|
2
.github/workflows/docker-builds.yml
vendored
2
.github/workflows/docker-builds.yml
vendored
@ -70,7 +70,7 @@ jobs:
|
||||
pytorch-linux-jammy-py3-clang18-asan,
|
||||
pytorch-linux-jammy-py3-clang12-onnx,
|
||||
pytorch-linux-jammy-linter,
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter,
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter,
|
||||
pytorch-linux-jammy-py3-clang12-executorch,
|
||||
pytorch-linux-jammy-py3.12-triton-cpu,
|
||||
pytorch-linux-noble-riscv64-py3.12-gcc14
|
||||
|
98
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
98
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -62,7 +62,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -128,11 +128,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -174,11 +174,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -220,11 +220,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -265,7 +265,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -331,11 +331,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -377,11 +377,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -423,11 +423,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -468,7 +468,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -534,11 +534,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -580,11 +580,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -626,11 +626,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -671,7 +671,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -737,11 +737,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -783,11 +783,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -829,11 +829,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -874,7 +874,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -940,11 +940,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -986,11 +986,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1032,11 +1032,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1077,7 +1077,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -1143,11 +1143,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1189,11 +1189,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1235,11 +1235,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1280,7 +1280,7 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cpu-aarch64
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
@ -1346,11 +1346,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1392,11 +1392,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1438,11 +1438,11 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
runs_on: linux.arm64.m7g.4xlarge.ephemeral
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
230
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
230
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
@ -316,6 +316,120 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-rocm6_3-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.3
|
||||
GPU_ARCH_VERSION: "6.3"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: libtorch-rocm6_3-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-rocm6_3-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-rocm6_3-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: 240
|
||||
env:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.3
|
||||
GPU_ARCH_VERSION: "6.3"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
SKIP_ALL_TESTS: 1
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-rocm6_3-shared-with-deps-release
|
||||
path: "${{ runner.temp }}/artifacts/"
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: ROCm set GPU_FLAG
|
||||
run: |
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
with:
|
||||
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
|
||||
docker-image-name: libtorch-cxx11-builder
|
||||
custom-tag-prefix: rocm6.3
|
||||
docker-build-dir: .ci/docker
|
||||
working-directory: pytorch
|
||||
- name: Pull Docker image
|
||||
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
|
||||
with:
|
||||
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Test Pytorch binary
|
||||
uses: ./pytorch/.github/actions/test-pytorch-binary
|
||||
env:
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Teardown ROCm
|
||||
uses: ./.github/actions/teardown-rocm
|
||||
libtorch-rocm6_3-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-rocm6_3-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.3
|
||||
GPU_ARCH_VERSION: "6.3"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-rocm6_3-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-rocm6_4-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -333,7 +447,6 @@ jobs:
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
build_name: libtorch-rocm6_4-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
@ -430,118 +543,3 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-rocm7_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm7.0
|
||||
GPU_ARCH_VERSION: "7.0"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
build_name: libtorch-rocm7_0-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-rocm7_0-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-rocm7_0-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: 240
|
||||
env:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm7.0
|
||||
GPU_ARCH_VERSION: "7.0"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
SKIP_ALL_TESTS: 1
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-rocm7_0-shared-with-deps-release
|
||||
path: "${{ runner.temp }}/artifacts/"
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: ROCm set GPU_FLAG
|
||||
run: |
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
with:
|
||||
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
|
||||
docker-image-name: libtorch-cxx11-builder
|
||||
custom-tag-prefix: rocm7.0
|
||||
docker-build-dir: .ci/docker
|
||||
working-directory: pytorch
|
||||
- name: Pull Docker image
|
||||
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
|
||||
with:
|
||||
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Test Pytorch binary
|
||||
uses: ./pytorch/.github/actions/test-pytorch-binary
|
||||
env:
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Teardown ROCm
|
||||
uses: ./.github/actions/teardown-rocm
|
||||
libtorch-rocm7_0-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-rocm7_0-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm7.0
|
||||
GPU_ARCH_VERSION: "7.0"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-rocm7_0-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
24
.github/workflows/generated-linux-binary-manywheel-main.yml
generated
vendored
24
.github/workflows/generated-linux-binary-manywheel-main.yml
generated
vendored
@ -42,7 +42,7 @@ jobs:
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
manywheel-py3_12-cuda13_0-build:
|
||||
manywheel-py3_12-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
@ -51,22 +51,22 @@ jobs:
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu130
|
||||
GPU_ARCH_VERSION: "13.0"
|
||||
DESIRED_CUDA: cu128
|
||||
GPU_ARCH_VERSION: "12.8"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda13_0
|
||||
build_name: manywheel-py3_12-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda13_0-test: # Testing
|
||||
manywheel-py3_12-cuda12_8-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_12-cuda13_0-build
|
||||
- manywheel-py3_12-cuda12_8-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
@ -74,13 +74,13 @@ jobs:
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu130
|
||||
GPU_ARCH_VERSION: "13.0"
|
||||
DESIRED_CUDA: cu128
|
||||
GPU_ARCH_VERSION: "12.8"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda13_0
|
||||
build_name: manywheel-py3_12-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
|
1610
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
1610
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
File diff suppressed because it is too large
Load Diff
1
.github/workflows/generated-linux-binary-manywheel-rocm-main.yml
generated
vendored
1
.github/workflows/generated-linux-binary-manywheel-rocm-main.yml
generated
vendored
@ -60,7 +60,6 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
build_name: manywheel-py3_10-rocm6_4
|
||||
build_environment: linux-binary-manywheel-rocm
|
||||
secrets:
|
||||
|
8
.github/workflows/lint.yml
vendored
8
.github/workflows/lint.yml
vendored
@ -31,8 +31,6 @@ jobs:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: Get changed files
|
||||
uses: ./.github/workflows/_get-changed-files.yml
|
||||
with:
|
||||
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') }}
|
||||
|
||||
lintrunner-clang:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
@ -55,7 +53,7 @@ jobs:
|
||||
with:
|
||||
timeout: 120
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
|
||||
docker-image: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter
|
||||
docker-image: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter
|
||||
# NB: A shallow checkout won't work here because calculate-docker-image requires a full checkout
|
||||
# to run git rev-parse HEAD~:.ci/docker when a new image is needed
|
||||
fetch-depth: 0
|
||||
@ -266,10 +264,10 @@ jobs:
|
||||
with:
|
||||
submodules: false
|
||||
fetch-depth: 1
|
||||
- name: Setup Python 3.10
|
||||
- name: Setup Python 3.9
|
||||
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: '3.9'
|
||||
architecture: x64
|
||||
cache: pip
|
||||
- name: Install dependencies
|
||||
|
46
.github/workflows/operator_microbenchmark.yml
vendored
46
.github/workflows/operator_microbenchmark.yml
vendored
@ -1,46 +0,0 @@
|
||||
name: operator_microbenchmark
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/op-benchmark/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
# Run at 06:00 UTC everyday
|
||||
- cron: 0 6 * * *
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
opmicrobenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '8.0 9.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.h100" },
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opmicrobenchmark-test:
|
||||
name: opmicrobenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: opmicrobenchmark-build
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
|
||||
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
29
.github/workflows/periodic.yml
vendored
29
.github/workflows/periodic.yml
vendored
@ -59,14 +59,13 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.4-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11
|
||||
cuda-arch-list: 7.5
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
@ -113,13 +112,13 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc9-build:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
linux-jammy-cuda12_8-py3_9-gcc9-build:
|
||||
name: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
|
||||
cuda-arch-list: 8.6
|
||||
test-matrix: |
|
||||
@ -129,14 +128,14 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc9-test:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
linux-jammy-cuda12_8-py3_9-gcc9-test:
|
||||
name: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: linux-jammy-cuda12_8-py3_10-gcc9-build
|
||||
needs: linux-jammy-cuda12_8-py3_9-gcc9-build
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.test-matrix }}
|
||||
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc9-debug-build:
|
||||
|
6
.github/workflows/pull.yml
vendored
6
.github/workflows/pull.yml
vendored
@ -343,14 +343,14 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-build:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-jammy-xpu-n-py3_9-build:
|
||||
name: linux-jammy-xpu-n-py3.9
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
build-environment: linux-jammy-xpu-n-py3.9
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
|
54
.github/workflows/quantization-periodic.yml
vendored
54
.github/workflows/quantization-periodic.yml
vendored
@ -1,54 +0,0 @@
|
||||
name: quantization-periodic
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/quantization-periodic/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
# run weekly
|
||||
- cron: "45 0 * * 0"
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
get-default-label-prefix:
|
||||
name: get-default-label-prefix
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
opt_out_experiments: lf
|
||||
|
||||
periodic-quantization-build:
|
||||
name: periodic-quantization-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-default-label-prefix
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-default-label-prefix.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '8.9'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "quantization", shard: 1, num_shards: 1, runner: "${{ needs.get-default-label-prefix.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
periodic-test-quantization:
|
||||
name: periodic-test-quantization
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: periodic-quantization-build
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
docker-image: ${{ needs.periodic-quantization-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.periodic-quantization-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
76
.github/workflows/test-b200.yml
vendored
76
.github/workflows/test-b200.yml
vendored
@ -1,76 +0,0 @@
|
||||
# B200 Smoke Tests CI Workflow
|
||||
#
|
||||
# This workflow runs smoke tests on B200 hardware
|
||||
#
|
||||
# Flow:
|
||||
# 1. Builds PyTorch with CUDA 12.8+ and sm100 architecture for B200
|
||||
# 2. Runs smoke tests on linux.dgx.b200 runner
|
||||
# 3. Tests executed are defined in .ci/pytorch/test.sh -> test_python_smoke() function
|
||||
#
|
||||
# Triggered by:
|
||||
# - Pull requests modifying this workflow file
|
||||
# - Manual dispatch
|
||||
# - Schedule (every 6 hours)
|
||||
# - Adding ciflow/b200 label to a PR (creates ciflow/b200/* tag)
|
||||
|
||||
name: B200 Smoke Tests
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- .github/workflows/test-b200.yml
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: 0 4,10,16,22 * * * # every 6 hours
|
||||
push:
|
||||
tags:
|
||||
- ciflow/b200/*
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-sm100-build:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '10.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "smoke_b200", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
|
||||
]}
|
||||
# config: "smoke_b200" maps to test_python_smoke_b200() in .ci/pytorch/test.sh
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs:
|
||||
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
|
||||
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
secrets: inherit
|
24
.github/workflows/unstable.yml
vendored
24
.github/workflows/unstable.yml
vendored
@ -53,3 +53,27 @@ jobs:
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-py3_9-clang9-xla-build:
|
||||
name: linux-jammy-py3_9-clang9-xla
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.9-clang9-xla
|
||||
docker-image-name: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/xla_base:v1.3-lite
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "xla", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.12xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-py3_9-clang9-xla-test:
|
||||
name: linux-jammy-py3_9-clang9-xla
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: linux-jammy-py3_9-clang9-xla-build
|
||||
with:
|
||||
build-environment: linux-jammy-py3.9-clang9-xla
|
||||
docker-image: ${{ needs.linux-jammy-py3_9-clang9-xla-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-py3_9-clang9-xla-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -82,7 +82,6 @@ torch/return_types.pyi
|
||||
torch/nn/functional.pyi
|
||||
torch/utils/data/datapipes/datapipe.pyi
|
||||
torch/csrc/autograd/generated/*
|
||||
torch/csrc/functionalization/generated/*
|
||||
torch/csrc/lazy/generated/*.[!m]*
|
||||
torch_compile_debug/
|
||||
# Listed manually because some files in this directory are not generated
|
||||
|
@ -49,7 +49,7 @@ init_command = [
|
||||
'mccabe==0.7.0',
|
||||
'pycodestyle==2.14.0',
|
||||
'pyflakes==3.4.0',
|
||||
'torchfix==0.4.0 ; python_version >= "3.10" and python_version < "3.13"',
|
||||
'torchfix==0.4.0 ; python_version >= "3.9" and python_version < "3.13"',
|
||||
]
|
||||
|
||||
|
||||
@ -123,7 +123,6 @@ is_formatter = true
|
||||
code = 'MYPY'
|
||||
include_patterns = [
|
||||
'setup.py',
|
||||
'functorch/dim/**/*.py',
|
||||
'torch/**/*.py',
|
||||
'torch/**/*.pyi',
|
||||
'caffe2/**/*.py',
|
||||
@ -153,7 +152,7 @@ init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
|
||||
'numpy==1.26.4 ; python_version >= "3.9" and python_version <= "3.11"',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'mypy==1.16.0',
|
||||
@ -196,7 +195,6 @@ exclude_patterns = [
|
||||
'tools/test/gen_operators_yaml_test.py',
|
||||
'tools/test/gen_oplist_test.py',
|
||||
'tools/test/test_selective_build.py',
|
||||
'tools/experimental/dynamic_shapes/torchfuzz/**',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
@ -1453,7 +1451,7 @@ init_command = [
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'usort==1.0.8.post1',
|
||||
'isort==6.0.1',
|
||||
'ruff==0.13.1', # sync with RUFF
|
||||
'ruff==0.12.9', # sync with RUFF
|
||||
]
|
||||
is_formatter = true
|
||||
|
||||
@ -1587,7 +1585,7 @@ init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'ruff==0.13.1', # sync with PYFMT
|
||||
'ruff==0.12.9', # sync with PYFMT
|
||||
]
|
||||
is_formatter = true
|
||||
|
||||
|
37
BUILD.bazel
37
BUILD.bazel
@ -22,7 +22,6 @@ COMMON_COPTS = [
|
||||
"-DHAVE_SHM_UNLINK=1",
|
||||
"-D_FILE_OFFSET_BITS=64",
|
||||
"-DUSE_FBGEMM",
|
||||
"-DUSE_DISTRIBUTED",
|
||||
"-DAT_PER_OPERATOR_HEADERS",
|
||||
"-DATEN_THREADING=NATIVE",
|
||||
"-DNO_CUDNN_DESTROY_HANDLE",
|
||||
@ -91,8 +90,6 @@ generated_cpu_cpp = [
|
||||
"aten/src/ATen/NativeMetaFunctions.h",
|
||||
"aten/src/ATen/RegistrationDeclarations.h",
|
||||
"aten/src/ATen/VmapGeneratedPlumbing.h",
|
||||
"aten/src/ATen/ViewMetaClasses.h",
|
||||
"aten/src/ATen/ViewMetaClasses.cpp",
|
||||
"aten/src/ATen/core/aten_interned_strings.h",
|
||||
"aten/src/ATen/core/enum_tag.h",
|
||||
"aten/src/ATen/core/TensorBody.h",
|
||||
@ -813,7 +810,7 @@ cc_library(
|
||||
name = "torch_python",
|
||||
srcs = libtorch_python_core_sources
|
||||
+ if_cuda(libtorch_python_cuda_sources)
|
||||
+ if_cuda(libtorch_python_distributed_sources)
|
||||
+ libtorch_python_distributed_sources
|
||||
+ GENERATED_AUTOGRAD_PYTHON,
|
||||
hdrs = glob([
|
||||
"torch/csrc/generic/*.cpp",
|
||||
@ -835,6 +832,36 @@ pybind_extension(
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "functorch",
|
||||
hdrs = glob([
|
||||
"functorch/csrc/dim/*.h",
|
||||
]),
|
||||
srcs = glob([
|
||||
"functorch/csrc/dim/*.cpp",
|
||||
]),
|
||||
deps = [
|
||||
":aten_nvrtc",
|
||||
":torch_python",
|
||||
"@pybind11",
|
||||
],
|
||||
)
|
||||
|
||||
pybind_extension(
|
||||
name = "functorch/_C",
|
||||
copts=[
|
||||
"-DTORCH_EXTENSION_NAME=_C"
|
||||
],
|
||||
srcs = [
|
||||
"functorch/csrc/init_dim_only.cpp",
|
||||
],
|
||||
deps = [
|
||||
":functorch",
|
||||
":torch_python",
|
||||
":aten_nvrtc",
|
||||
],
|
||||
)
|
||||
|
||||
cc_binary(
|
||||
name = "torch/bin/torch_shm_manager",
|
||||
srcs = [
|
||||
@ -875,6 +902,7 @@ py_library(
|
||||
],
|
||||
data = [
|
||||
":torch/_C.so",
|
||||
":functorch/_C.so",
|
||||
":torch/bin/torch_shm_manager",
|
||||
],
|
||||
)
|
||||
@ -1077,7 +1105,6 @@ test_suite(
|
||||
"aten/src/ATen/templates/LazyNonNativeIr.h",
|
||||
"aten/src/ATen/templates/RegisterDispatchKey.cpp",
|
||||
"aten/src/ATen/templates/RegisterDispatchDefinitions.ini",
|
||||
"aten/src/ATen/templates/ViewMetaClassesPythonBinding.cpp",
|
||||
"aten/src/ATen/native/native_functions.yaml",
|
||||
"aten/src/ATen/native/tags.yaml",
|
||||
"aten/src/ATen/native/ts_native_functions.yaml",
|
||||
|
@ -1,4 +1,5 @@
|
||||
cmake_minimum_required(VERSION 3.27 FATAL_ERROR)
|
||||
# cmake_policy(SET CMP0022 NEW) cmake_policy(SET CMP0023 NEW)
|
||||
|
||||
# Use compiler ID "AppleClang" instead of "Clang" for XCode. Not setting this
|
||||
# sometimes makes XCode C compiler gets detected as "Clang", even when the C++
|
||||
@ -180,8 +181,9 @@ elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(ppc64le)")
|
||||
set(CPU_POWER ON)
|
||||
endif()
|
||||
|
||||
# For non-supported platforms, turn USE_DISTRIBUTED off by default. It is not
|
||||
# tested and likely won't work without additional changes.
|
||||
# For non-supported platforms, turn USE_DISTRIBUTED off by default.
|
||||
# NB: USE_DISTRIBUTED simply disables the backend; distributed code
|
||||
# still gets built
|
||||
if(NOT LINUX AND NOT WIN32)
|
||||
set(USE_DISTRIBUTED
|
||||
OFF
|
||||
@ -261,11 +263,11 @@ option(USE_PYTORCH_METAL "Use Metal for PyTorch iOS build" OFF)
|
||||
option(USE_PYTORCH_METAL_EXPORT "Export Metal models on MacOSX desktop" OFF)
|
||||
option(USE_NATIVE_ARCH "Use -march=native" OFF)
|
||||
cmake_dependent_option(USE_MPS "Use MPS for macOS build" ON "MPS_FOUND" OFF)
|
||||
option(USE_DISTRIBUTED "Use distributed" ON)
|
||||
option(USE_DISTRIBUTED "Enable default distributed backends" ON)
|
||||
cmake_dependent_option(USE_NCCL "Use NCCL" ON
|
||||
"USE_DISTRIBUTED;USE_CUDA OR USE_ROCM;UNIX;NOT APPLE" OFF)
|
||||
cmake_dependent_option(USE_XCCL "Use XCCL" ON
|
||||
"USE_XPU;UNIX;NOT APPLE" OFF)
|
||||
"USE_DISTRIBUTED;USE_XPU;UNIX;NOT APPLE" OFF)
|
||||
cmake_dependent_option(USE_RCCL "Use RCCL" ON USE_NCCL OFF)
|
||||
cmake_dependent_option(USE_RCCL "Use RCCL" ON "USE_NCCL;NOT WIN32" OFF)
|
||||
cmake_dependent_option(USE_STATIC_NCCL "Use static NCCL" OFF "USE_NCCL" OFF)
|
||||
@ -437,12 +439,11 @@ if(WIN32)
|
||||
PATH_SUFFIXES lib
|
||||
NO_DEFAULT_PATH)
|
||||
if(NOT libuv_tmp_LIBRARY)
|
||||
set(USE_DISTRIBUTED OFF)
|
||||
set(USE_GLOO OFF)
|
||||
message(
|
||||
WARNING
|
||||
"Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. "
|
||||
"Please run command 'conda install -c conda-forge libuv=1.51' to install libuv."
|
||||
"Libuv is not installed in current conda env. Set USE_GLOO to OFF. "
|
||||
"Please run command 'conda install -c conda-forge libuv=1.39' to install libuv."
|
||||
)
|
||||
else()
|
||||
set(ENV{libuv_ROOT} ${libuv_tmp_LIBRARY}/../../)
|
||||
@ -1390,6 +1391,10 @@ endif()
|
||||
include(cmake/Summary.cmake)
|
||||
caffe2_print_configuration_summary()
|
||||
|
||||
if(BUILD_FUNCTORCH)
|
||||
add_subdirectory(functorch)
|
||||
endif()
|
||||
|
||||
# Parse custom debug info
|
||||
if(DEFINED USE_CUSTOM_DEBINFO)
|
||||
string(REPLACE ";" " " SOURCE_FILES "${USE_CUSTOM_DEBINFO}")
|
||||
@ -1481,4 +1486,4 @@ else()
|
||||
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
|
||||
]])
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
105
MANIFEST.in
105
MANIFEST.in
@ -1,61 +1,20 @@
|
||||
# Reference: https://setuptools.pypa.io/en/latest/userguide/miscellaneous.html
|
||||
|
||||
# Include individual top-level files
|
||||
include CITATION.cff
|
||||
include CODEOWNERS
|
||||
include Dockerfile
|
||||
include LICENSE
|
||||
include MANIFEST.in
|
||||
include Makefile
|
||||
include NOTICE
|
||||
include .bc-linter.yml
|
||||
include .clang-format .clang-tidy
|
||||
include .cmakelintrc
|
||||
include .coveragerc
|
||||
include .dockerignore
|
||||
include .editorconfig
|
||||
include .flake8
|
||||
include .gdbinit
|
||||
include .lintrunner.toml
|
||||
include .lldbinit
|
||||
include codex_setup.sh
|
||||
include docker.Makefile
|
||||
include pyrefly.toml
|
||||
include ubsan.supp
|
||||
|
||||
# Include bazel and BUCK related files
|
||||
include BUILD.bazel BUCK.oss
|
||||
include WORKSPACE
|
||||
include *.bzl
|
||||
include .bazelignore .bazelrc .bazelversion
|
||||
|
||||
# Include general configuration files
|
||||
include *.ini
|
||||
# Include important top-level information
|
||||
include *.md
|
||||
# Include technical text files at the moment, comprises
|
||||
# version.txt, CMakeLists.txt, requirements.txt
|
||||
include *.txt
|
||||
|
||||
# Include ctags configuration
|
||||
include .ctags.d/*.ctags
|
||||
|
||||
# Include subfolders completely
|
||||
graft .devcontainer
|
||||
graft .vscode
|
||||
# Include source files in SDist
|
||||
include CMakeLists.txt
|
||||
include *.bzl *.bazel .bazel* BUILD *.BUILD BUILD.* WORKSPACE
|
||||
include BUCK BUCK.*
|
||||
include requirements*.txt
|
||||
include version.txt
|
||||
include [Mm]akefile *.[Mm]akefile [Mm]akefile.*
|
||||
include [Dd]ockerfile *.[Dd]ockerfile [Dd]ockerfile.* .dockerignore
|
||||
graft android
|
||||
graft aten
|
||||
graft benchmarks
|
||||
graft binaries
|
||||
graft c10
|
||||
graft caffe2
|
||||
graft cmake
|
||||
graft docs
|
||||
graft functorch
|
||||
graft ios
|
||||
graft mypy_plugins
|
||||
graft scripts
|
||||
graft test
|
||||
graft third_party
|
||||
graft tools
|
||||
graft torch
|
||||
@ -63,37 +22,29 @@ graft torchgen
|
||||
# FIXME: torch-xla build during codegen will fail if include this file in wheel
|
||||
exclude torchgen/BUILD.bazel
|
||||
|
||||
# The following exclusions omit parts from third-party dependencies that
|
||||
# contain invalid symlinks[1] and that are not needed for pytorch, such as
|
||||
# bindings for unused languages
|
||||
prune third_party/flatbuffers/java
|
||||
prune third_party/flatbuffers/kotlin
|
||||
prune third_party/ittapi/rust
|
||||
prune third_party/nccl/pkg/debian
|
||||
prune third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-*
|
||||
|
||||
# The following document is also an invalid symlink[1] and superfluous
|
||||
exclude third_party/flatbuffers/docs/source/CONTRIBUTING.md
|
||||
|
||||
# Omit autogenerated code
|
||||
prune torchgen/packaged
|
||||
|
||||
# Omit caches, compiled, and scm related content
|
||||
prune */__pycache__
|
||||
prune **/.github
|
||||
prune **/.gitlab
|
||||
global-exclude *.o *.obj *.so *.dylib *.a *.pxd *.dll *.lib
|
||||
global-exclude *.py[cod] *.swp *~
|
||||
global-exclude .git .git-blame-ignore-revs .gitattributes .gitignore .gitmodules
|
||||
global-exclude .gitlab-ci.yml
|
||||
# Misc files and directories in SDist
|
||||
include *.md
|
||||
include CITATION.cff
|
||||
include LICENSE NOTICE
|
||||
include mypy*.ini
|
||||
graft benchmarks
|
||||
graft docs
|
||||
graft mypy_plugins
|
||||
graft scripts
|
||||
|
||||
# Misc files needed for custom setuptools command
|
||||
include .gitignore
|
||||
include .gitmodules
|
||||
|
||||
# [1] Invalid symlinks for the purposes of Python source distributions are,
|
||||
# according to the source distribution format[2] links pointing outside the
|
||||
# destination directory or links with a `..` component, which is those of
|
||||
# concern here.
|
||||
# Include test suites in SDist
|
||||
graft test
|
||||
include pytest.ini
|
||||
include .coveragerc
|
||||
|
||||
# [2] https://packaging.python.org/en/latest/specifications/source-distribution-format/#source-distribution-archive-features
|
||||
# Prune generated/compiled files
|
||||
prune torchgen/packaged
|
||||
prune */__pycache__
|
||||
global-exclude *.o *.obj *.so *.a *.dylib *.pxd *.dll *.lib *.py[cod]
|
||||
|
||||
prune */.git
|
||||
global-exclude .git *~ *.swp
|
||||
|
@ -161,7 +161,7 @@ They require JetPack 4.2 and above, and [@dusty-nv](https://github.com/dusty-nv)
|
||||
|
||||
#### Prerequisites
|
||||
If you are installing from source, you will need:
|
||||
- Python 3.10 or later
|
||||
- Python 3.9 or later
|
||||
- A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required, on Linux)
|
||||
- Visual Studio or Visual Studio Build Tool (Windows only)
|
||||
|
||||
@ -275,7 +275,7 @@ conda install pkg-config libuv
|
||||
pip install mkl-static mkl-include
|
||||
# Add these packages if torch.distributed is needed.
|
||||
# Distributed package support on Windows is a prototype feature and is subject to changes.
|
||||
conda install -c conda-forge libuv=1.51
|
||||
conda install -c conda-forge libuv
|
||||
```
|
||||
|
||||
#### Install PyTorch
|
||||
|
@ -317,20 +317,10 @@ IF(USE_FBGEMM_GENAI)
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
|
||||
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
|
||||
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
|
||||
endif()
|
||||
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
|
||||
|
||||
hip_add_library(
|
||||
fbgemm_genai STATIC
|
||||
${fbgemm_genai_native_rocm_hip}
|
||||
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
|
||||
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
|
||||
|
||||
|
@ -401,13 +401,30 @@ T* toDLPackImpl(const Tensor& src) {
|
||||
// The following code detects whether the src follows
|
||||
// a continuous pattern. If the src follows such pattern (common-case)
|
||||
// then we do not need to normalize the strides.
|
||||
bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1;
|
||||
bool need_normalize_strides = false;
|
||||
int64_t expected_stride = 1;
|
||||
for (int i = src.dim() - 1; i >= 0; i--) {
|
||||
// detect if we do not meet continuous pattern
|
||||
// and the size is 1, so there is opportunity to normalize
|
||||
if (src.stride(i) != expected_stride && src.size(i) == 1) {
|
||||
need_normalize_strides = true;
|
||||
break;
|
||||
}
|
||||
expected_stride *= src.size(i);
|
||||
}
|
||||
|
||||
// less common case, try normalizing the strides
|
||||
if (need_normalize_strides) {
|
||||
// create a new tensor with possibly normalized strides
|
||||
// gh-83069
|
||||
auto shape = src.sizes();
|
||||
view = src.as_strided(shape, {1}, src.storage_offset());
|
||||
auto strides = src.strides().vec();
|
||||
for (int i = 0; i < src.dim(); i++) {
|
||||
if (shape[i] < 2) {
|
||||
strides[i] = 1;
|
||||
}
|
||||
}
|
||||
view = src.as_strided(shape, strides, src.storage_offset());
|
||||
}
|
||||
|
||||
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);
|
||||
|
@ -468,7 +468,7 @@ inline Tensor _sum_to(
|
||||
// if we assume no reduction due to unbacked we ensure that at runtime.
|
||||
TORCH_MAYBE_SYM_CHECK(
|
||||
sym_eq(shape[i - leading_dims], sizes[i]),
|
||||
"non-reduction path was assumed due to unbacked symbols expected those two sizes to be the same:",
|
||||
"non-reduction path was assumed due to unabcked symbols expected those two sizes to be the same:",
|
||||
shape[i - leading_dims],
|
||||
", ",
|
||||
sizes[i])
|
||||
|
@ -9,6 +9,11 @@
|
||||
|
||||
namespace at::functionalization {
|
||||
|
||||
ViewMeta ViewMeta::to_out_idx(int64_t out_idx) {
|
||||
if (out_idx == this->out_index) return *this;
|
||||
return ViewMeta(forward_fn, reverse_fn, has_symbolic_inputs, is_multi_output, is_as_strided, out_idx);
|
||||
}
|
||||
|
||||
// Note [Functionalization: Alias Removal Part 2]
|
||||
// See Note [Functionalization: Alias Removal] for more details.
|
||||
// This function applies a single update from one of the views to the StorageImpl.
|
||||
@ -37,12 +42,12 @@ namespace at::functionalization {
|
||||
static const Tensor apply_update(const FunctionalStorageImpl::Update& update, const Tensor& base) {
|
||||
at::Tensor t = update.new_val;
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
|
||||
if (update.view_metas.empty()) { return t; }
|
||||
if (update.view_metas.empty()) return t;
|
||||
|
||||
std::vector<at::Tensor> tmp_values({base});
|
||||
tmp_values.reserve(update.view_metas.size());
|
||||
for (size_t i = 0; i < update.view_metas.size() - 1; ++i) {
|
||||
at::Tensor next_view = update.view_metas[i]->forward(tmp_values.back());
|
||||
at::Tensor next_view = update.view_metas[i].forward_fn(tmp_values.back(), update.view_metas[i].out_index);
|
||||
// NB: We only actually need tmp_values for ops like select/slice/diagonal/squeeze/as_strided
|
||||
// All of these ops require additional information to recover the sizes of the original tensor.
|
||||
// If need to, we could probably apply this optimization and only bother computing tmp_values
|
||||
@ -50,8 +55,9 @@ static const Tensor apply_update(const FunctionalStorageImpl::Update& update, co
|
||||
tmp_values.push_back(std::move(next_view));
|
||||
}
|
||||
for(int64_t i = static_cast<int64_t>(update.view_metas.size()) - 1; i >= 0; --i) {
|
||||
int64_t out_idx = update.view_metas[i].out_index;
|
||||
// Each view inverse is implemented in ViewInverses.cpp.
|
||||
t = update.view_metas[i]->reverse(tmp_values[i], t);
|
||||
t = update.view_metas[i].reverse_fn(tmp_values[i], t, out_idx);
|
||||
}
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
|
||||
return t;
|
||||
@ -105,13 +111,13 @@ FunctionalStorageImpl::FunctionalStorageImpl(const Tensor& base)
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(base_));
|
||||
}
|
||||
|
||||
void FunctionalStorageImpl::add_update(const Tensor& updated_val, const std::vector<std::shared_ptr<ViewMeta>>& metas) {
|
||||
void FunctionalStorageImpl::add_update(const Tensor& updated_val, const std::vector<ViewMeta>& metas) {
|
||||
TORCH_CHECK(!frozen_, "cannot mutate tensors with frozen storage");
|
||||
|
||||
if (metas.size() > 1) {
|
||||
for (size_t i = 1; i < metas.size(); ++i) {
|
||||
// Skipping this check for XLA. Would be good to add it back, but it is failing XLA CI
|
||||
TORCH_CHECK(updated_val.device().type() == c10::DeviceType::XLA || !metas[i]->is_as_strided,
|
||||
TORCH_CHECK(updated_val.device().type() == c10::DeviceType::XLA || !metas[i].is_as_strided,
|
||||
"During torch.compile, encountered a mutation on a view chain of length ", metas.size(), ", where view ", i,
|
||||
" was an as_strided() call. as_strided() is non-compositional, and therefore is not possible to functionalize properly today,"
|
||||
"so this behavior is banned in compile. As a workaround, you can either remove the mutation from the model code, or you "
|
||||
|
@ -8,89 +8,44 @@ namespace at::functionalization {
|
||||
|
||||
// See Note [Functionalization Pass In Core]
|
||||
|
||||
enum class InverseReturnMode {
|
||||
/// Specifies that functional inverses should always return a view.
|
||||
AlwaysView,
|
||||
/// Specifies that functional inverses should always return a non-view / copy.
|
||||
NeverView,
|
||||
/// Specifies that functional inverses should return a view unless a (copying)
|
||||
/// scatter
|
||||
/// inverse exists, in which case that will be used instead.
|
||||
/// This avoids as_strided() calls that can be difficult for subclasses to
|
||||
/// handle.
|
||||
ViewOrScatterInverse,
|
||||
};
|
||||
|
||||
#define FUNCTIONALIZATION_VIEWMETA_NAME(TYPE) \
|
||||
static const char* name() { \
|
||||
return #TYPE; \
|
||||
}
|
||||
|
||||
#define FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(...) \
|
||||
using SerializableTuple = std::tuple<__VA_ARGS__>
|
||||
|
||||
// ViewMeta is a class used by the functionalization pass to navigate between
|
||||
// a base tensor and a view tensor.
|
||||
// For example, if I call `b = a.view1(...)`
|
||||
// the functionalization pass will generate and store a ViewMeta specialization
|
||||
// for `view1` operation on b that looks like:
|
||||
// the functionalization pass will generate and store a ViewMeta on b that looks
|
||||
// like:
|
||||
//
|
||||
// struct TORCH_API view1_ViewMeta : public ViewMeta {
|
||||
// FUNCTIONALIZATION_VIEWMETA_NAME(view1_ViewMeta);
|
||||
// FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
|
||||
// bool /* reapply_views */,
|
||||
// const std::vector<int64_t>&);
|
||||
//
|
||||
// view1_ViewMeta(const SerializableTuple& tpl)
|
||||
// : view1_ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
|
||||
//
|
||||
// view1_ViewMeta(bool reapply_views, const std::vector<int64_t>& size)
|
||||
// : ViewMeta(/*has_symbolic_inputs=*/false),
|
||||
// reapply_views(reapply_views),
|
||||
// size(size) {}
|
||||
//
|
||||
// Tensor forward(const Tensor& base) override {
|
||||
// return base.view1(...);
|
||||
// ViewMeta(
|
||||
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
|
||||
// return base.view1(...);
|
||||
// },
|
||||
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
|
||||
// int64_t mutated_view_idx) -> at::Tensor {
|
||||
// return at::functionalization::impl::view1_inverse(base, mutated_view,
|
||||
// ...);
|
||||
// }
|
||||
//
|
||||
// Tensor reverse(const Tensor& base, const Tensor& mutated_view) override {
|
||||
// return at::functionalization::impl::view1_inverse(base, mutated_view,
|
||||
// ...);
|
||||
// }
|
||||
// The forward_fn lambda describes how to replay view1 on a tensor.
|
||||
//
|
||||
// SerializableTuple to_serializable_tuple() {
|
||||
// return std::make_tuple(reapply_views, size);
|
||||
// }
|
||||
//
|
||||
// bool reapply_views;
|
||||
// std::vector<int64_t> size;
|
||||
// };
|
||||
//
|
||||
// The forward function describes how to replay view1 on a tensor.
|
||||
//
|
||||
// The reverse function describes how, given a tensor that is already a view,
|
||||
// The reverse_fn lambda describes how, given a tensor that is already a view,
|
||||
// how to get the corresponding base tensor. See Note [Functionalization Pass:
|
||||
// View Inverses] for details.
|
||||
//
|
||||
// `SerializedTuple` is a typedef that defines an `std::tuple<...>` type
|
||||
// representing the `ViewMeta` instance state. Methods that take in/return such
|
||||
// a type are used for supporting pickle serialization.
|
||||
struct ViewMeta {
|
||||
ViewMeta(
|
||||
std::function<Tensor(const Tensor&, int64_t)> forward,
|
||||
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
|
||||
bool has_symbolic_inputs,
|
||||
bool is_multi_output = false,
|
||||
bool is_as_strided = false,
|
||||
int64_t out_idx = 0)
|
||||
: out_index(out_idx),
|
||||
: forward_fn(std::move(forward)),
|
||||
reverse_fn(std::move(reverse)),
|
||||
out_index(out_idx),
|
||||
is_multi_output(is_multi_output),
|
||||
is_as_strided(is_as_strided),
|
||||
has_symbolic_inputs(has_symbolic_inputs) {}
|
||||
|
||||
virtual ~ViewMeta() = default;
|
||||
|
||||
virtual Tensor forward(const Tensor& base) = 0;
|
||||
virtual Tensor reverse(const Tensor& base, const Tensor& mutated_view) = 0;
|
||||
|
||||
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
|
||||
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
|
||||
// See Note [out_idx in ViewMeta]
|
||||
int64_t out_index;
|
||||
|
||||
@ -102,17 +57,10 @@ struct ViewMeta {
|
||||
// Tells us if this view operation has any symbolic inputs
|
||||
bool has_symbolic_inputs;
|
||||
|
||||
// Returns a new ViewMeta with the same forward/reverse
|
||||
// Returns a copy of the current ViewMeta, if out_idx matches the current
|
||||
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
|
||||
// functions, but a new out index.
|
||||
//
|
||||
// This method should be implemented by those `ViewMeta` that have more than
|
||||
// one output.
|
||||
virtual std::shared_ptr<ViewMeta> to_out_index(int64_t out_index) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"ViewMeta::to_out_index not implemented. ",
|
||||
"Likely because there's only one output.");
|
||||
}
|
||||
ViewMeta to_out_idx(int64_t out_idx);
|
||||
};
|
||||
|
||||
// FunctionalStorageImpl is a subclass of StorageImpl used by the
|
||||
@ -145,14 +93,14 @@ struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
||||
const at::Tensor new_val;
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
||||
const std::vector<std::shared_ptr<ViewMeta>> view_metas;
|
||||
const std::vector<ViewMeta> view_metas;
|
||||
};
|
||||
|
||||
explicit FunctionalStorageImpl(const Tensor& value);
|
||||
|
||||
void add_update(
|
||||
const Tensor& updated_val,
|
||||
const std::vector<std::shared_ptr<ViewMeta>>& view_metas);
|
||||
const std::vector<ViewMeta>& view_metas);
|
||||
bool apply_updates();
|
||||
const Tensor& base() {
|
||||
return base_;
|
||||
|
@ -129,19 +129,17 @@ void FunctionalTensorWrapper::freeze_storage() const {
|
||||
// - view_value: The output tensor that we need to wrap.
|
||||
// - base: The "base" of the view that `view_value` was generated from.
|
||||
// See Note [Functionalization: Alias Removal Part 2] for more details on the mutation replay logic.
|
||||
FunctionalTensorWrapper::FunctionalTensorWrapper(
|
||||
const Tensor& view_value,
|
||||
const FunctionalTensorWrapper* base,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta)
|
||||
: c10::TensorImpl(
|
||||
c10::DispatchKeySet(DispatchKey::Functionalize),
|
||||
view_value.dtype(),
|
||||
base->storage().data_ptr().device()),
|
||||
value_(view_value),
|
||||
is_multi_output_view_(
|
||||
base->is_multi_output_view_ || meta->is_multi_output),
|
||||
was_storage_changed_(base->was_storage_changed_),
|
||||
is_symbolic_(base->is_symbolic_) {
|
||||
FunctionalTensorWrapper::FunctionalTensorWrapper(const Tensor& view_value, const FunctionalTensorWrapper* base, const functionalization::ViewMeta& meta)
|
||||
: c10::TensorImpl(
|
||||
c10::DispatchKeySet(DispatchKey::Functionalize),
|
||||
view_value.dtype(),
|
||||
base->storage().data_ptr().device()
|
||||
),
|
||||
value_(view_value),
|
||||
is_multi_output_view_(base->is_multi_output_view_ || meta.is_multi_output),
|
||||
was_storage_changed_(base->was_storage_changed_),
|
||||
is_symbolic_(base->is_symbolic_)
|
||||
{
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(value_));
|
||||
TORCH_INTERNAL_ASSERT(!value_.key_set().has(c10::DispatchKey::Functionalize));
|
||||
set_constructor_metadata();
|
||||
@ -150,10 +148,11 @@ FunctionalTensorWrapper::FunctionalTensorWrapper(
|
||||
view_metas_ = base->view_metas_; // copy
|
||||
}
|
||||
view_metas_.push_back(meta);
|
||||
maybe_mark_symbolic(meta.get());
|
||||
maybe_mark_symbolic(meta);
|
||||
storage_ = base->storage_; // alias this tensor's storage with the base tensor's
|
||||
}
|
||||
|
||||
|
||||
functionalization::FunctionalStorageImpl* FunctionalTensorWrapper::functional_storage_impl() const {
|
||||
return static_cast<functionalization::FunctionalStorageImpl*>(storage_.unsafeGetStorageImpl());
|
||||
}
|
||||
@ -177,18 +176,18 @@ bool FunctionalTensorWrapper::is_up_to_date() const {
|
||||
}
|
||||
|
||||
// See Note [Functionalization Pass - Inplace View Ops]
|
||||
void FunctionalTensorWrapper::mutate_view_meta(const std::shared_ptr<at::functionalization::ViewMeta>& meta) {
|
||||
void FunctionalTensorWrapper::mutate_view_meta(const at::functionalization::ViewMeta& meta) {
|
||||
view_metas_.push_back(meta);
|
||||
// Manually track the fact that this tensor received a metadata mutation!
|
||||
has_metadata_mutation_ = true;
|
||||
// Mark this tensor as being symbolic if there are any symbolic inputs used by the view operation.
|
||||
maybe_mark_symbolic(meta.get());
|
||||
maybe_mark_symbolic(meta);
|
||||
// Note [Functionalization Pass - Inplace View Ops]
|
||||
// So, these ops are special - they're mutation AND view ops. They get special codegen.
|
||||
// An example is transpose_, e.g. `a.transpose_()`
|
||||
// Calling transpose_() should ensure that a gets an alias, and append the new ViewMeta to a's current list of ViewMetas.
|
||||
at::AutoDispatchSkipFunctionalize guard;
|
||||
value_ = meta->forward(value_);
|
||||
value_ = meta.forward_fn(value_, meta.out_index);
|
||||
TORCH_INTERNAL_ASSERT(!value_.key_set().has(c10::DispatchKey::Functionalize));
|
||||
}
|
||||
|
||||
@ -369,8 +368,15 @@ void FunctionalTensorWrapper::sync_() {
|
||||
regenerate_from_base();
|
||||
}
|
||||
|
||||
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& FunctionalTensorWrapper::view_metas() const {
|
||||
return view_metas_;
|
||||
Tensor FunctionalTensorWrapper::apply_view_metas(const Tensor& base) {
|
||||
auto t = base;
|
||||
|
||||
// Reapply views to get the viewed tensor from the base in alias_
|
||||
for (auto& view_meta: view_metas_) {
|
||||
t = view_meta.forward_fn(t, view_meta.out_index);
|
||||
}
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
void FunctionalTensorWrapper::regenerate_from_base() {
|
||||
@ -379,7 +385,7 @@ void FunctionalTensorWrapper::regenerate_from_base() {
|
||||
auto t = storage_impl->base();
|
||||
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
|
||||
t = at::functionalization::impl::apply_view_meta_sequence(t, view_metas_);
|
||||
t = apply_view_metas(t);
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
|
||||
|
||||
replace_(t, /*from_lazy_regenerate=*/true);
|
||||
@ -721,11 +727,11 @@ bool isFunctionalTensor(const std::optional<Tensor>& t) {
|
||||
}
|
||||
|
||||
bool isFunctionalTensor(const c10::List<::std::optional<Tensor>>& t_list) {
|
||||
if (t_list.empty()) { return false; }
|
||||
if (t_list.empty()) return false;
|
||||
auto functional_count = 0;
|
||||
for (const auto i : c10::irange(t_list.size())) {
|
||||
auto const & e= t_list[i];
|
||||
if (!e.has_value() || !e->defined()) { continue; }
|
||||
if (!e.has_value() || !e->defined()) continue;
|
||||
if (isFunctionalTensor(e)) {
|
||||
++functional_count;
|
||||
}
|
||||
@ -735,10 +741,10 @@ bool isFunctionalTensor(const c10::List<::std::optional<Tensor>>& t_list) {
|
||||
|
||||
template <typename T>
|
||||
static bool isFunctionalTensorIListRef(c10::IListRef<T> list) {
|
||||
if (list.size() == 0) { return false; }
|
||||
if (list.size() == 0) return false;
|
||||
auto functional_count = 0;
|
||||
for (const auto& tensor : list) {
|
||||
if (!tensor.defined()) { continue; }
|
||||
if (!tensor.defined()) continue;
|
||||
if (isFunctionalTensor(tensor)) {
|
||||
++functional_count;
|
||||
}
|
||||
@ -756,28 +762,20 @@ void freeze_functional_tensor(const Tensor& tensor) {
|
||||
functional_base_impl->freeze_storage();
|
||||
}
|
||||
|
||||
Tensor create_functional_tensor_with_view_meta(
|
||||
const at::Tensor& view_to_wrap,
|
||||
const at::Tensor& base,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta,
|
||||
int64_t out_idx) {
|
||||
Tensor create_functional_tensor_with_view_meta(const at::Tensor& view_to_wrap, const at::Tensor& base, functionalization::ViewMeta meta, int64_t out_idx) {
|
||||
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(view_to_wrap));
|
||||
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(base));
|
||||
auto functional_base_impl = at::functionalization::impl::unsafeGetFunctionalWrapper(base);
|
||||
auto meta_ = meta;
|
||||
if (out_idx != 0) {
|
||||
// Note [out_idx in ViewMeta]
|
||||
// When a view op outputs multiple tensors, each output needs its own separate ViewMeta.
|
||||
// Each ViewMeta also tracks the index of the particular output tensor, which is needed in the reverse function.
|
||||
meta_ = meta->to_out_index(out_idx);
|
||||
meta = meta.to_out_idx(out_idx);
|
||||
}
|
||||
return at::detail::make_tensor<FunctionalTensorWrapper>(view_to_wrap, functional_base_impl, meta_);
|
||||
return at::detail::make_tensor<FunctionalTensorWrapper>(view_to_wrap, functional_base_impl, meta);
|
||||
}
|
||||
|
||||
std::vector<Tensor> create_functional_tensor_with_view_meta(
|
||||
ITensorListRef view_to_wrap,
|
||||
const at::Tensor& base,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta) {
|
||||
std::vector<Tensor> create_functional_tensor_with_view_meta(ITensorListRef view_to_wrap, const at::Tensor& base, const functionalization::ViewMeta& meta) {
|
||||
std::vector<Tensor> outputs(view_to_wrap.size());
|
||||
int64_t i = 0;
|
||||
for (const auto& tensor : view_to_wrap) {
|
||||
@ -787,22 +785,12 @@ std::vector<Tensor> create_functional_tensor_with_view_meta(
|
||||
return outputs;
|
||||
}
|
||||
|
||||
void mutate_view_meta(const at::Tensor& self, const std::shared_ptr<functionalization::ViewMeta>& meta) {
|
||||
void mutate_view_meta(const at::Tensor& self, const functionalization::ViewMeta& meta) {
|
||||
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(self));
|
||||
auto self_impl = at::functionalization::impl::unsafeGetFunctionalWrapper(self);
|
||||
self_impl->mutate_view_meta(meta);
|
||||
}
|
||||
|
||||
Tensor apply_view_meta_sequence(
|
||||
const Tensor& base,
|
||||
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& sequence) {
|
||||
Tensor r = base;
|
||||
for (auto& vm : sequence) {
|
||||
r = vm->forward(r);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
// Note [Propagating strides in the functionalization pass]
|
||||
// In order to properly compute stride information, the functionalization pass
|
||||
// calls each {view} reference implementations with meta tensors.
|
||||
@ -896,7 +884,7 @@ void functionalize_op_helper(const c10::OperatorHandle& op, torch::jit::Stack* s
|
||||
const auto& ivalue = returns[idx];
|
||||
if (ivalue.isTensor()) {
|
||||
const auto& t = ivalue.toTensor();
|
||||
if (!t.defined()) { continue; }
|
||||
if (!t.defined()) continue;
|
||||
at::functionalization::impl::sync(t);
|
||||
auto t_new = c10::IValue(at::functionalization::impl::from_functional_tensor(t));
|
||||
(*stack)[returns_begin + idx] = t_new;
|
||||
|
@ -56,7 +56,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
|
||||
explicit FunctionalTensorWrapper(
|
||||
const Tensor& view_value,
|
||||
const FunctionalTensorWrapper* base,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta);
|
||||
const functionalization::ViewMeta& meta);
|
||||
|
||||
// Get the underlying, actual tensor, that doesn't know anything about
|
||||
// functionalization.
|
||||
@ -99,17 +99,17 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
|
||||
->are_all_mutations_under_no_grad_or_inference_mode();
|
||||
}
|
||||
|
||||
void maybe_mark_symbolic(functionalization::ViewMeta* meta) {
|
||||
is_symbolic_ = is_symbolic_ | meta->has_symbolic_inputs;
|
||||
void maybe_mark_symbolic(const functionalization::ViewMeta& meta) {
|
||||
is_symbolic_ = is_symbolic_ | meta.has_symbolic_inputs;
|
||||
}
|
||||
|
||||
bool is_symbolic() const {
|
||||
return is_symbolic_;
|
||||
}
|
||||
|
||||
// Retrieves the ViewMeta sequence of this tensor.
|
||||
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& view_metas()
|
||||
const;
|
||||
// Runs the forward_fn of every ViewMeta collected in the current instance
|
||||
// to some other base.
|
||||
Tensor apply_view_metas(const Tensor& base);
|
||||
|
||||
// Sync's the underlying tensor with its alias, if it's out of date. This
|
||||
// involves two steps: 1) Apply any pending updates/mutations to the alias 2)
|
||||
@ -146,8 +146,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
|
||||
// from the base tensor. This method is used by inplace-view ops like
|
||||
// transpose_. It appends a ViewMeta to the existing stack, and refreshes the
|
||||
// tensor by replaying the views off of the alias.
|
||||
void mutate_view_meta(
|
||||
const std::shared_ptr<at::functionalization::ViewMeta>& meta);
|
||||
void mutate_view_meta(const at::functionalization::ViewMeta& meta);
|
||||
|
||||
// Custom implementation of self.set_(src)
|
||||
void set__impl(const FunctionalTensorWrapper* other);
|
||||
@ -286,7 +285,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
|
||||
bool is_symbolic_ = false;
|
||||
|
||||
size_t generation_ = 0;
|
||||
std::vector<std::shared_ptr<at::functionalization::ViewMeta>> view_metas_;
|
||||
std::vector<at::functionalization::ViewMeta> view_metas_;
|
||||
|
||||
protected:
|
||||
static void copy_tensor_metadata(
|
||||
@ -378,20 +377,16 @@ TORCH_API void propagate_xla_data_direct(
|
||||
Tensor create_functional_tensor_with_view_meta(
|
||||
const Tensor& view_to_wrap,
|
||||
const Tensor& base,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta,
|
||||
functionalization::ViewMeta meta,
|
||||
int64_t out_idx = 0);
|
||||
std::vector<Tensor> create_functional_tensor_with_view_meta(
|
||||
ITensorListRef view_to_wrap,
|
||||
const Tensor& base,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta);
|
||||
const functionalization::ViewMeta& meta);
|
||||
|
||||
void mutate_view_meta(
|
||||
const Tensor& self,
|
||||
const std::shared_ptr<functionalization::ViewMeta>& meta);
|
||||
|
||||
TORCH_API Tensor apply_view_meta_sequence(
|
||||
const Tensor& base,
|
||||
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& sequence);
|
||||
const functionalization::ViewMeta& meta);
|
||||
|
||||
void set_sizes_strides_offset(const Tensor& out, const Tensor& meta_out);
|
||||
void set_sizes_strides_offset(
|
||||
|
@ -1,5 +1,3 @@
|
||||
#include <ATen/FunctionalizeFallbackKernel.h>
|
||||
|
||||
#include <ATen/core/dispatch/Dispatcher.h>
|
||||
#include <ATen/core/LegacyTypeDispatch.h>
|
||||
#include <ATen/EmptyTensor.h>
|
||||
@ -9,6 +7,7 @@
|
||||
#include <torch/library.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <c10/util/strides.h>
|
||||
#include <ATen/EmptyTensor.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/ATen.h>
|
||||
@ -29,31 +28,6 @@
|
||||
#include <utility>
|
||||
#endif
|
||||
|
||||
namespace at::functionalization {
|
||||
|
||||
Tensor resize__ViewMeta::forward(const Tensor& base) {
|
||||
if (reapply_views) {
|
||||
return base.as_strided(size, c10::contiguous_strides(size));
|
||||
} else {
|
||||
return at::as_strided_copy(base, size, c10::contiguous_strides(size));
|
||||
}
|
||||
}
|
||||
|
||||
Tensor resize__ViewMeta::reverse(const Tensor& base, const Tensor& mutated_view) {
|
||||
return base.as_strided_scatter(
|
||||
mutated_view, size, c10::contiguous_strides(size));
|
||||
}
|
||||
|
||||
Tensor _unsafe_view_ViewMeta::forward(const Tensor& base) {
|
||||
return at::_unsafe_view_symint(base, size);
|
||||
}
|
||||
|
||||
Tensor _unsafe_view_ViewMeta::reverse(const Tensor& base, const Tensor& mutated_view) {
|
||||
return at::_unsafe_view_symint(mutated_view, base.sym_sizes());
|
||||
}
|
||||
|
||||
} // namespace at::functionalization
|
||||
|
||||
namespace {
|
||||
void functionalizeFallback(const c10::OperatorHandle& op, c10::DispatchKeySet dispatchKeySet [[maybe_unused]], torch::jit::Stack* stack) {
|
||||
const auto& schema = op.schema();
|
||||
@ -132,9 +106,7 @@ namespace {
|
||||
const auto& ivalue = returns[idx];
|
||||
if (ivalue.isTensor() && should_wrap_outputs) {
|
||||
const auto& t = ivalue.toTensor();
|
||||
if (!t.defined()) {
|
||||
continue;
|
||||
}
|
||||
if (!t.defined()) continue;
|
||||
auto t_new = c10::IValue(at::functionalization::impl::to_functional_tensor(t));
|
||||
(*stack)[returns_begin + idx] = t_new;
|
||||
} else if (ivalue.isTensorList() && should_wrap_outputs) {
|
||||
@ -197,8 +169,19 @@ static const at::Tensor & resize__functionalization(c10::DispatchKeySet dispatch
|
||||
// The output of resizing is equivalent to taking a slice of a larger tensor.
|
||||
// We have to emulate this "slicing" with an as_strided call.
|
||||
auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS();
|
||||
auto view_meta = std::make_shared<at::functionalization::resize__ViewMeta>(
|
||||
reapply_views, size.vec());
|
||||
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
|
||||
[reapply_views = reapply_views, size = size.vec()](const at::Tensor & base, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
|
||||
if (reapply_views) {
|
||||
return base.as_strided(size, c10::contiguous_strides(size));
|
||||
} else {
|
||||
return at::as_strided_copy(base, size, c10::contiguous_strides(size));
|
||||
}
|
||||
},
|
||||
[size = size.vec()](const at::Tensor & base, const at::Tensor & mutated_view, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
|
||||
return base.as_strided_scatter(mutated_view, size, c10::contiguous_strides(size));
|
||||
},
|
||||
/*has_symbolic_inputs=*/false
|
||||
);
|
||||
at::functionalization::impl::mutate_view_meta(self, view_meta);
|
||||
return self;
|
||||
}
|
||||
@ -317,11 +300,17 @@ static at::Tensor _unsafe_view_functionalize(const at::Tensor & self, at::SymInt
|
||||
tmp_output = at::_unsafe_view_symint(self_, size);
|
||||
}
|
||||
|
||||
bool has_symbolic_inputs = std::any_of(
|
||||
size.begin(), size.end(), [=](auto& s) { return s.is_symbolic(); });
|
||||
auto view_meta =
|
||||
std::make_shared<at::functionalization::_unsafe_view_ViewMeta>(
|
||||
has_symbolic_inputs, size.vec());
|
||||
bool has_symbolic_inputs = std::any_of(size.begin(), size.end(), [=](auto& s) { return s.is_symbolic(); });
|
||||
|
||||
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
|
||||
[size = size.vec()](const at::Tensor & base, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
|
||||
return at::_unsafe_view_symint(base, size);
|
||||
},
|
||||
[size = size.vec()](const at::Tensor & base, const at::Tensor & mutated_view, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
|
||||
return at::_unsafe_view_symint(mutated_view, base.sym_sizes());
|
||||
},
|
||||
/*has_symbolic_inputs=*/has_symbolic_inputs
|
||||
);
|
||||
|
||||
auto out = at::functionalization::impl::create_functional_tensor_with_view_meta(tmp_output, self, std::move(view_meta));
|
||||
// See Note [Propagating strides in the functionalization pass]
|
||||
|
@ -1,58 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/FunctionalStorageImpl.h>
|
||||
|
||||
namespace at::functionalization {
|
||||
|
||||
// `ViewMeta` implementation for `resize_` operation.
|
||||
struct TORCH_API resize__ViewMeta : public ViewMeta {
|
||||
FUNCTIONALIZATION_VIEWMETA_NAME(resize__ViewMeta)
|
||||
FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
|
||||
bool /* reapply_views */,
|
||||
const std::vector<int64_t>&);
|
||||
|
||||
resize__ViewMeta(const SerializableTuple& tpl)
|
||||
: resize__ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
|
||||
|
||||
resize__ViewMeta(bool reapply_views, const std::vector<int64_t>& size)
|
||||
: ViewMeta(/*has_symbolic_inputs=*/false),
|
||||
reapply_views(reapply_views),
|
||||
size(size) {}
|
||||
|
||||
Tensor forward(const Tensor& base) override;
|
||||
Tensor reverse(const Tensor& base, const Tensor& mutated_view) override;
|
||||
|
||||
SerializableTuple to_serializable_tuple() {
|
||||
return std::make_tuple(reapply_views, size);
|
||||
}
|
||||
|
||||
bool reapply_views;
|
||||
std::vector<int64_t> size;
|
||||
};
|
||||
|
||||
// `ViewMeta` implementation for `_unsafe_view` operation.
|
||||
struct TORCH_API _unsafe_view_ViewMeta : public ViewMeta {
|
||||
FUNCTIONALIZATION_VIEWMETA_NAME(_unsafe_view_ViewMeta)
|
||||
FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
|
||||
bool /* has_symbolic_inputs */,
|
||||
const std::vector<c10::SymInt>&);
|
||||
|
||||
_unsafe_view_ViewMeta(const SerializableTuple& tpl)
|
||||
: _unsafe_view_ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
|
||||
|
||||
_unsafe_view_ViewMeta(
|
||||
bool has_symbolic_inputs,
|
||||
const std::vector<c10::SymInt>& size)
|
||||
: ViewMeta(has_symbolic_inputs), size(size) {}
|
||||
|
||||
Tensor forward(const Tensor& base) override;
|
||||
Tensor reverse(const Tensor& base, const Tensor& mutated_view) override;
|
||||
|
||||
SerializableTuple to_serializable_tuple() {
|
||||
return std::make_tuple(has_symbolic_inputs, size);
|
||||
}
|
||||
|
||||
std::vector<c10::SymInt> size;
|
||||
};
|
||||
|
||||
} // namespace at::functionalization
|
@ -45,39 +45,7 @@ inline void infer_size_impl(
|
||||
}
|
||||
}
|
||||
|
||||
if (infer_dim) {
|
||||
// numel is the product of known sizes, it has to be divisible by newsize.
|
||||
// and newsize should be positive unless newsize == numel (we throw
|
||||
// different) error message in that case.
|
||||
if constexpr (std::is_same_v<NumelType, c10::SymInt>) {
|
||||
auto v = newsize.maybe_as_int();
|
||||
if (v and *v == 0) {
|
||||
// Avoid div by 0 when sym_eq(numel % newsize, 0) is constructed!
|
||||
// which may happen when newsize is not a symbol! if its a symbol
|
||||
// division won't happen anyway during compile.
|
||||
TORCH_MAYBE_SYM_CHECK(
|
||||
numel == newsize,
|
||||
"shape '",
|
||||
shape,
|
||||
"' is invalid for input of size ",
|
||||
numel);
|
||||
} else {
|
||||
auto cond = sym_gt(newsize, 0)
|
||||
.sym_and(sym_eq(numel % newsize, 0))
|
||||
.sym_or(sym_eq(numel, newsize));
|
||||
TORCH_MAYBE_SYM_CHECK(
|
||||
cond, "shape '", shape, "' is invalid for input of size ", numel);
|
||||
}
|
||||
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
(newsize > 0 && (numel % newsize == 0)) || numel == newsize,
|
||||
"shape '",
|
||||
shape,
|
||||
"' is invalid for input of size ",
|
||||
numel);
|
||||
}
|
||||
|
||||
auto set_infer_dim = [&]() {
|
||||
// We have a degree of freedom here to select the dimension size; follow
|
||||
// NumPy semantics and just bail. However, a nice error message is needed
|
||||
// because users often use `view` as a way to flatten & unflatten
|
||||
@ -86,15 +54,19 @@ inline void infer_size_impl(
|
||||
// works yet
|
||||
// empty_tensor.view(-1, 0)
|
||||
// doesn't.
|
||||
TORCH_MAYBE_SYM_CHECK(
|
||||
TORCH_CHECK(
|
||||
newsize != 0,
|
||||
"cannot reshape tensor of 0 elements into shape ",
|
||||
shape,
|
||||
" because the unspecified dimension size -1 can be any "
|
||||
"value and is ambiguous");
|
||||
|
||||
res[*infer_dim] = numel / newsize;
|
||||
return;
|
||||
};
|
||||
|
||||
if (infer_dim && newsize > 0 && numel % newsize == 0) {
|
||||
set_infer_dim();
|
||||
return;
|
||||
}
|
||||
|
||||
TORCH_MAYBE_SYM_CHECK(
|
||||
@ -103,6 +75,9 @@ inline void infer_size_impl(
|
||||
shape,
|
||||
"' is invalid for input of size ",
|
||||
numel);
|
||||
if (infer_dim) {
|
||||
set_infer_dim();
|
||||
}
|
||||
}
|
||||
|
||||
inline std::vector<int64_t> infer_size(IntArrayRef shape, int64_t numel) {
|
||||
|
@ -103,9 +103,7 @@ std::string get_cpu_capability() {
|
||||
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
|
||||
case native::CPUCapability::ZVECTOR:
|
||||
return "Z VECTOR";
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
case native::CPUCapability::SVE128:
|
||||
return "SVE128";
|
||||
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
case native::CPUCapability::SVE256:
|
||||
return "SVE256";
|
||||
#else
|
||||
|
@ -1,22 +1,32 @@
|
||||
#include <ATen/core/PythonOpRegistrationTrampoline.h>
|
||||
#include <c10/core/impl/PyInterpreterHooks.h>
|
||||
|
||||
// TODO: delete this
|
||||
namespace at::impl {
|
||||
|
||||
c10::impl::PyInterpreter* PythonOpRegistrationTrampoline::interpreter_ = nullptr;
|
||||
// The strategy is that all python interpreters attempt to register themselves
|
||||
// as the main interpreter, but only one wins. Only that interpreter is
|
||||
// allowed to interact with the C++ dispatcher. Furthermore, when we execute
|
||||
// logic on that interpreter, we do so hermetically, never setting pyobj field
|
||||
// on Tensor.
|
||||
|
||||
std::atomic<c10::impl::PyInterpreter*>
|
||||
PythonOpRegistrationTrampoline::interpreter_{nullptr};
|
||||
|
||||
c10::impl::PyInterpreter* PythonOpRegistrationTrampoline::getInterpreter() {
|
||||
return c10::impl::getGlobalPyInterpreter();
|
||||
return PythonOpRegistrationTrampoline::interpreter_.load();
|
||||
}
|
||||
|
||||
bool PythonOpRegistrationTrampoline::registerInterpreter(
|
||||
c10::impl::PyInterpreter* interp) {
|
||||
if (interpreter_ != nullptr) {
|
||||
c10::impl::PyInterpreter* expected = nullptr;
|
||||
interpreter_.compare_exchange_strong(expected, interp);
|
||||
if (expected != nullptr) {
|
||||
// This is the second (or later) Python interpreter, which means we need
|
||||
// non-trivial hermetic PyObject TLS
|
||||
c10::impl::HermeticPyObjectTLS::init_state();
|
||||
return false;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
interpreter_ = interp;
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace at::impl
|
||||
|
@ -2,21 +2,19 @@
|
||||
|
||||
#include <ATen/core/dispatch/Dispatcher.h>
|
||||
|
||||
// TODO: We can get rid of this
|
||||
// TODO: this can probably live in c10
|
||||
|
||||
|
||||
namespace at::impl {
|
||||
|
||||
// Manages the single Python interpreter instance for PyTorch.
|
||||
class TORCH_API PythonOpRegistrationTrampoline final {
|
||||
static c10::impl::PyInterpreter* interpreter_;
|
||||
static std::atomic<c10::impl::PyInterpreter*> interpreter_;
|
||||
|
||||
public:
|
||||
// Register the Python interpreter. Returns true on first registration,
|
||||
// false if an interpreter was already registered.
|
||||
// Returns true if you successfully registered yourself (that means
|
||||
// you are in the hot seat for doing the operator registrations!)
|
||||
static bool registerInterpreter(c10::impl::PyInterpreter*);
|
||||
|
||||
// Returns the registered interpreter via the global PyInterpreter hooks.
|
||||
// Returns nullptr if no interpreter has been registered yet.
|
||||
static c10::impl::PyInterpreter* getInterpreter();
|
||||
};
|
||||
|
@ -1234,7 +1234,7 @@ struct TORCH_API TupleType : public NamedType {
|
||||
std::shared_ptr<FunctionSchema> schema_;
|
||||
};
|
||||
|
||||
// the common supertype of all Enums, only used in operator registration.
|
||||
// the common supertype of all Enums, only used in operator registraion.
|
||||
// EnumType <: AnyEnumType for all Enums
|
||||
struct AnyEnumType;
|
||||
using AnyEnumTypePtr = SingletonTypePtr<AnyEnumType>;
|
||||
|
@ -102,31 +102,8 @@ struct VecReduceAllSIMD<float, Op> {
|
||||
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) &&
|
||||
// !defined(C10_MOBILE)
|
||||
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
#if defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
const Op& vec_fun,
|
||||
const Vectorized<float>& acc_vec) {
|
||||
using Vec = Vectorized<float>;
|
||||
Vec v = acc_vec;
|
||||
// 128-bit shuffle
|
||||
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
|
||||
Vec v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 64-bit shuffle
|
||||
ind = svdupq_n_u32(2, 3, 0, 1);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 32-bit shuffle
|
||||
ind = svdupq_n_u32(1, 0, 2, 3);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
return svlasta(svpfalse(), v);
|
||||
}
|
||||
};
|
||||
#else
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
@ -163,8 +140,35 @@ struct VecReduceAllSIMD<float, std::plus<Vectorized<float>>> {
|
||||
return vaddvq_f32(acc_vec);
|
||||
}
|
||||
};
|
||||
#endif // defined(CPU_CAPABILITY_SVE256)
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
// && !defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
const Op& vec_fun,
|
||||
const Vectorized<float>& acc_vec) {
|
||||
using Vec = Vectorized<float>;
|
||||
Vec v = acc_vec;
|
||||
// 128-bit shuffle
|
||||
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
|
||||
Vec v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 64-bit shuffle
|
||||
ind = svdupq_n_u32(2, 3, 0, 1);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 32-bit shuffle
|
||||
ind = svdupq_n_u32(1, 0, 2, 3);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
return svlasta(svpfalse(), v);
|
||||
}
|
||||
};
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
// && defined(CPU_CAPABILITY_SVE256)
|
||||
|
||||
template <typename scalar_t, typename Op>
|
||||
inline scalar_t vec_reduce_all(
|
||||
|
@ -1,21 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <cstdint>
|
||||
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#if defined(__aarch64__) && \
|
||||
(defined(AT_BUILD_ARM_VEC256_WITH_SLEEF) || \
|
||||
defined(AT_BUILD_ARM_VECSVE_WITH_SLEEF))
|
||||
#define SLEEF_STATIC_LIBS
|
||||
#include <sleef.h>
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
||||
#else
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
||||
#endif
|
||||
|
||||
#if defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
// Define the data type of VLS(vector-length specific).
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/sve/vec_common_sve.h>
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/util/bit_cast.h>
|
||||
|
@ -8,48 +8,13 @@
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_qint.h>
|
||||
|
||||
#elif defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
|
||||
#if defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_double.h>
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
#include <ATen/cpu/vec/sve/vec_int.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_qint.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_convert.h>
|
||||
|
||||
#else // NEON
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
||||
|
||||
#endif // defined(CPU_CAPABILITY_SVE128)
|
||||
|
||||
#include <ATen/cpu/vec/functional.h>
|
||||
#endif
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
@ -83,6 +48,12 @@ DEFINE_SVE_CAST(int32_t, s32, float, f32)
|
||||
DEFINE_SVE_CAST(int16_t, s16, float, f32)
|
||||
DEFINE_SVE_CAST(float, f32, double, f64)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
DEFINE_SVE_CAST(int64_t, s64, c10::BFloat16, bf16)
|
||||
DEFINE_SVE_CAST(int32_t, s32, c10::BFloat16, bf16)
|
||||
DEFINE_SVE_CAST(int16_t, s16, c10::BFloat16, bf16)
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
template <int64_t scale = 1>
|
||||
@ -202,11 +173,9 @@ std::pair<
|
||||
// group cols crossing lanes:
|
||||
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
||||
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
||||
svbfloat16_t aReg = a;
|
||||
svbfloat16_t bReg = b;
|
||||
Vectorized<c10::BFloat16> c = svzip1_bf16(aReg, bReg);
|
||||
Vectorized<c10::BFloat16> d = svzip2_bf16(aReg, bReg);
|
||||
return std::make_pair(c, d);
|
||||
return std::make_pair(
|
||||
Vectorized<c10::BFloat16>(svzip1_bf16(a, b)),
|
||||
Vectorized<c10::BFloat16>(svzip2_bf16(a, b)));
|
||||
}
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
@ -255,27 +224,12 @@ std::pair<
|
||||
// swap lanes:
|
||||
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
||||
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
||||
svbfloat16_t aReg = a;
|
||||
svbfloat16_t bReg = b;
|
||||
Vectorized<c10::BFloat16> c = svuzp1_bf16(aReg, bReg);
|
||||
Vectorized<c10::BFloat16> d = svuzp2_bf16(aReg, bReg);
|
||||
return std::make_pair(c, d);
|
||||
return std::make_pair(
|
||||
Vectorized<c10::BFloat16>(svuzp1_bf16((svbfloat16_t)a, (svbfloat16_t)b)),
|
||||
Vectorized<c10::BFloat16>(svuzp2_bf16((svbfloat16_t)a, (svbfloat16_t)b)));
|
||||
}
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
#define DEFINE_FLIP_FUNC(type, sve_func) \
|
||||
inline Vectorized<type> flip(const Vectorized<type>& v) { \
|
||||
return Vectorized<type>(sve_func(v)); \
|
||||
}
|
||||
// Use the macro to define the flip functions
|
||||
DEFINE_FLIP_FUNC(float, svrev_f32)
|
||||
DEFINE_FLIP_FUNC(double, svrev_f64)
|
||||
DEFINE_FLIP_FUNC(int64_t, svrev_s64)
|
||||
DEFINE_FLIP_FUNC(int32_t, svrev_s32)
|
||||
DEFINE_FLIP_FUNC(int16_t, svrev_s16)
|
||||
DEFINE_FLIP_FUNC(int8_t, svrev_s8)
|
||||
|
||||
#endif // defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
@ -1,8 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#if defined(__aarch64__)
|
||||
#include <ATen/cpu/vec/vec_common_aarch64.h>
|
||||
#elif defined(CPU_CAPABILITY_AVX512)
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
#include <ATen/cpu/vec/vec512/vec512.h>
|
||||
#else
|
||||
#include <ATen/cpu/vec/vec128/vec128.h>
|
||||
@ -13,34 +11,6 @@ namespace at::vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
|
||||
__at_align__ bool buffer[x.size()];
|
||||
x.ne(Vectorized<int8_t>(0)).store(buffer);
|
||||
|
@ -2,7 +2,6 @@
|
||||
|
||||
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
@ -263,13 +262,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
c10::bit_cast<at_bfloat16_t>(val6.x),
|
||||
c10::bit_cast<at_bfloat16_t>(val7.x)}) {}
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
Vectorized(svbfloat16_t v) : Vectorized16(svget_neonq(v)) {}
|
||||
operator svbfloat16_t() const {
|
||||
return svset_neonq(svundef_bf16(), values);
|
||||
}
|
||||
#endif
|
||||
|
||||
static Vectorized<c10::BFloat16> blendv(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
@ -382,23 +374,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
Vectorized ge(const Vectorized& other) const;
|
||||
Vectorized lt(const Vectorized& other) const;
|
||||
Vectorized le(const Vectorized& other) const;
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
|
||||
template <typename step_t>
|
||||
static Vectorized<BFloat16> arange(
|
||||
BFloat16 base = 0.f,
|
||||
step_t step = static_cast<step_t>(1)) {
|
||||
__at_align__ BFloat16 buffer[size()];
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
buffer[i] = base + i * step;
|
||||
}
|
||||
return svget_neonq(
|
||||
svld1_bf16(ptrue, reinterpret_cast<bfloat16_t*>(buffer)));
|
||||
}
|
||||
|
||||
#endif // CPU_CAPABILITY_SVE128
|
||||
|
||||
}; // Vectorized<c10::BFloat16>
|
||||
|
||||
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
|
||||
@ -422,24 +397,6 @@ inline Vectorized<c10::BFloat16> convert_float_bfloat16(
|
||||
return Vectorized<c10::BFloat16>(at_vcombine_bf16(x1, x2));
|
||||
}
|
||||
|
||||
inline void load_fp32_from_bf16(const BFloat16* data, Vectorized<float>& out) {
|
||||
__at_align__ float values[Vectorized<float>::size()];
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
||||
values[k] = data[k];
|
||||
}
|
||||
out = Vectorized<float>::loadu(values);
|
||||
}
|
||||
|
||||
inline void load_fp32_from_bf16(
|
||||
const BFloat16* data,
|
||||
Vectorized<float>& out1,
|
||||
Vectorized<float>& out2) {
|
||||
Vectorized<BFloat16> bf16_vec = Vectorized<BFloat16>::loadu(data);
|
||||
auto floats = convert_bfloat16_float(bf16_vec);
|
||||
out1 = std::get<0>(floats);
|
||||
out2 = std::get<1>(floats);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
Vectorized<c10::BFloat16> binary_operator_via_float(
|
||||
Op op,
|
||||
@ -622,12 +579,6 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
return -a * b - c;
|
||||
}
|
||||
|
||||
#else //
|
||||
|
||||
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
|
||||
|
||||
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16)
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
@ -60,7 +60,6 @@ struct VecConvert<float, 1, BFloat16, 1> {
|
||||
}
|
||||
};
|
||||
|
||||
#endif // defined(__aarch64__) && (!defined(CPU_CAPABILITY_SVE) ||
|
||||
// defined(CPU_CAPABILITY_SVE128))
|
||||
#endif // defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
@ -4,10 +4,13 @@
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
||||
#include <sleef.h>
|
||||
#endif
|
||||
|
||||
// Sleef offers vectorized versions of some transcedentals
|
||||
// such as sin, cos, tan etc..
|
||||
// However for now opting for STL, since we are not building
|
||||
@ -32,6 +35,12 @@ inline namespace CPU_CAPABILITY {
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
|
||||
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
||||
#else
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
||||
#endif
|
||||
|
||||
template <int index, bool mask_val>
|
||||
struct BlendRegs {
|
||||
static float32x4_t impl(
|
||||
@ -85,12 +94,6 @@ class Vectorized<float> {
|
||||
operator float32x4_t() const {
|
||||
return values;
|
||||
}
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
Vectorized(svfloat32_t v) : values(svget_neonq(v)) {}
|
||||
operator svfloat32_t() const {
|
||||
return svset_neonq(svundef_f32(), values);
|
||||
}
|
||||
#endif
|
||||
template <int64_t mask>
|
||||
static Vectorized<float> blend(
|
||||
const Vectorized<float>& a,
|
||||
|
@ -4,6 +4,7 @@
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
@ -24,6 +25,7 @@ inline namespace CPU_CAPABILITY {
|
||||
// https://bugs.llvm.org/show_bug.cgi?id=45824
|
||||
// Most likely we will do aarch32 support with inline asm.
|
||||
#if !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
#ifdef __BIG_ENDIAN__
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
@ -419,24 +421,6 @@ Vectorized<c10::Half> inline operator+(
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void load_fp32_from_fp16(const c10::Half* data, Vectorized<float>& out) {
|
||||
__at_align__ float values[Vectorized<float>::size()];
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
||||
values[k] = data[k];
|
||||
}
|
||||
out = Vectorized<float>::loadu(values);
|
||||
}
|
||||
|
||||
inline void load_fp32_from_fp16(
|
||||
const c10::Half* data,
|
||||
Vectorized<float>& out1,
|
||||
Vectorized<float>& out2) {
|
||||
Vectorized<c10::Half> f16_vec = Vectorized<c10::Half>::loadu(data);
|
||||
auto floats = convert_half_float(f16_vec);
|
||||
out1 = std::get<0>(floats);
|
||||
out2 = std::get<1>(floats);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::Half> inline operator-(
|
||||
const Vectorized<c10::Half>& a,
|
||||
@ -672,53 +656,6 @@ Vectorized<c10::Half> inline fnmsub(
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
|
||||
inline std::tuple<Vectorized<float>, Vectorized<float>> \
|
||||
convert_##name##_float(const Vectorized<type>& a) { \
|
||||
constexpr int64_t K = Vectorized<type>::size(); \
|
||||
__at_align__ float arr[K]; \
|
||||
__at_align__ type arr2[K]; \
|
||||
a.store(arr2); \
|
||||
convert(arr2, arr, K); \
|
||||
return std::make_tuple( \
|
||||
Vectorized<float>::loadu(arr), \
|
||||
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
|
||||
} \
|
||||
inline Vectorized<type> convert_float_##name( \
|
||||
const Vectorized<float>& a, const Vectorized<float>& b) { \
|
||||
constexpr int64_t K = Vectorized<type>::size(); \
|
||||
__at_align__ float arr[K]; \
|
||||
__at_align__ type arr2[K]; \
|
||||
a.store(arr); \
|
||||
b.store(arr + Vectorized<float>::size()); \
|
||||
convert(arr, arr2, K); \
|
||||
return Vectorized<type>::loadu(arr2); \
|
||||
}
|
||||
|
||||
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
|
||||
inline void load_fp32_from_##name( \
|
||||
const type* data, Vectorized<float>& out) { \
|
||||
__at_align__ float values[Vectorized<float>::size()]; \
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) { \
|
||||
values[k] = data[k]; \
|
||||
} \
|
||||
out = Vectorized<float>::loadu(values); \
|
||||
} \
|
||||
\
|
||||
inline void load_fp32_from_##name( \
|
||||
const type* data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
||||
load_fp32_from_##name(data, out1); \
|
||||
data += Vectorized<float>::size(); \
|
||||
load_fp32_from_##name(data, out2); \
|
||||
}
|
||||
|
||||
CONVERT_NON_VECTORIZED_INIT(Half, half)
|
||||
|
||||
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16)
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
|
@ -9,16 +9,21 @@
|
||||
#if !( \
|
||||
defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || \
|
||||
defined(CPU_CAPABILITY_ZVECTOR))
|
||||
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
||||
#if defined(CPU_CAPABILITY_SVE256)
|
||||
#include <ATen/cpu/vec/sve/vec_common_sve.h>
|
||||
#else
|
||||
// clang-format off
|
||||
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_int.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
||||
#endif
|
||||
#if !defined(CPU_CAPABILITY_SVE256) || !defined(__ARM_FEATURE_BF16)
|
||||
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
||||
#endif
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
||||
// clang-format on
|
||||
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
|
||||
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
|
||||
@ -51,6 +56,34 @@ namespace at::vec {
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -268,7 +268,9 @@ LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16)
|
||||
|
||||
#else // defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if !(defined(__aarch64__))
|
||||
#if !( \
|
||||
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE256))
|
||||
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
|
||||
#endif
|
||||
|
||||
|
@ -268,7 +268,9 @@ LOAD_FP32_VECTORIZED_INIT(Half, fp16)
|
||||
|
||||
#else // defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if !defined(__aarch64__) || defined(CPU_CAPABILITY_SVE256)
|
||||
#if !( \
|
||||
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE256))
|
||||
CONVERT_NON_VECTORIZED_INIT(Half, half)
|
||||
#endif
|
||||
|
||||
|
@ -5,13 +5,6 @@
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#ifdef __aarch64__
|
||||
#if defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
||||
|
||||
#include <c10/util/irange.h>
|
||||
@ -922,7 +915,7 @@ Vectorized<c10::quint8> inline maximum(
|
||||
return a.maximum(b);
|
||||
}
|
||||
|
||||
#else
|
||||
#elif !defined(CPU_CAPABILITY_SVE256)
|
||||
|
||||
// NOTE: These are low-performance implementations that we fall back on
|
||||
// if we are not building with AVX2. This may not be an issue, because
|
||||
@ -1379,18 +1372,12 @@ Vectorized<c10::quint8> inline maximum(
|
||||
return a.maximum(b);
|
||||
}
|
||||
|
||||
#if defined(__aarch64__) && \
|
||||
(defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE))
|
||||
#endif // if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE
|
||||
svint8_t x = src;
|
||||
auto s8x8 = vget_low_s8(svget_neonq(x));
|
||||
#else
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
#endif
|
||||
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
|
||||
@ -1415,14 +1402,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE
|
||||
svint8_t x = src;
|
||||
auto s8x8 = vget_low_s8(svget_neonq(x));
|
||||
#else
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
#endif
|
||||
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
|
||||
@ -1440,8 +1420,5 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
@ -31,6 +31,34 @@ namespace vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX512)
|
||||
|
@ -67,7 +67,18 @@ Windows llvm will not have this definition.
|
||||
#endif
|
||||
#define VECTOR_WIDTH 64
|
||||
#define int_vector __m512i
|
||||
#elif defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_SVE256)
|
||||
#elif defined(__aarch64__) && \
|
||||
!defined(CPU_CAPABILITY_SVE) // CPU_CAPABILITY_AVX512
|
||||
// SVE code expects 256-vectors; leave that set for SVE?
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(16)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(16))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 16
|
||||
#else // CPU_CAPABILITY_AVX512
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(32)))
|
||||
#elif defined(_WIN32)
|
||||
@ -77,27 +88,7 @@ Windows llvm will not have this definition.
|
||||
#endif
|
||||
#define VECTOR_WIDTH 32
|
||||
#define int_vector __m256i
|
||||
#elif defined(__aarch64__)
|
||||
// Define alignment and vector width for SVE128/Default (e.g., NEON)
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(16)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(16))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 16
|
||||
#else
|
||||
// Fallback: define default alignment and vector width
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(32)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(32))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 32
|
||||
#endif
|
||||
#endif // CPU_CAPABILITY_AVX512
|
||||
|
||||
namespace at::vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
|
@ -149,105 +149,5 @@ static inline void pack_vnni4(
|
||||
#endif
|
||||
}
|
||||
|
||||
// This is a helper function for transpose_pack_vnni4
|
||||
// Transform a [4, 16] block (with incontiguous output)
|
||||
// Src:
|
||||
// a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
|
||||
// b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
|
||||
// c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
|
||||
// d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16
|
||||
// Dst:
|
||||
// a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4
|
||||
// a5 a6 a7 a8 b5 b6 b7 b8 c5 c6 c7 c8 d5 d6 d7 d8
|
||||
// a9 a10 a11 a12 b9 b10 b11 b12 c9 c10 c11 c12 d9 d10 d11 d12
|
||||
// a13 a14 a15 a16 b13 b14 b15 b16 c13 c14 c15 c16 d13 d14 d15 d16
|
||||
template <typename scalar_t, typename = std::enable_if_t<sizeof(scalar_t) == 1>>
|
||||
static inline void transpose_vnni4_pad_4x16_block(
|
||||
const scalar_t* src,
|
||||
scalar_t* dst,
|
||||
int64_t ld_src,
|
||||
int64_t ld_dst,
|
||||
int krem = 4) {
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
__m128i r[4];
|
||||
for (int i = 0; i < krem; ++i) {
|
||||
r[i] = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + i * ld_src));
|
||||
}
|
||||
for (int i = krem; i < 4; ++i) {
|
||||
r[i] = _mm_setzero_si128();
|
||||
}
|
||||
|
||||
// Transpose 4x16 bytes using unpack and shuffle
|
||||
__m128i t0 = _mm_unpacklo_epi32(r[0], r[1]);
|
||||
__m128i t1 = _mm_unpackhi_epi32(r[0], r[1]);
|
||||
__m128i t2 = _mm_unpacklo_epi32(r[2], r[3]);
|
||||
__m128i t3 = _mm_unpackhi_epi32(r[2], r[3]);
|
||||
|
||||
__m128i r0 = _mm_unpacklo_epi64(t0, t2);
|
||||
__m128i r1 = _mm_unpackhi_epi64(t0, t2);
|
||||
__m128i r2 = _mm_unpacklo_epi64(t1, t3);
|
||||
__m128i r3 = _mm_unpackhi_epi64(t1, t3);
|
||||
|
||||
// Store output
|
||||
if (krem == 4) {
|
||||
// normal case
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), r0);
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + ld_dst), r1);
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + ld_dst * 2), r2);
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + ld_dst * 3), r3);
|
||||
} else {
|
||||
// masked case
|
||||
__mmask16 mask = (1ULL << (krem * 4)) - 1;
|
||||
_mm_mask_storeu_epi8(dst, mask, r0);
|
||||
_mm_mask_storeu_epi8(reinterpret_cast<__m128i*>(dst + ld_dst), mask, r1);
|
||||
_mm_mask_storeu_epi8(
|
||||
reinterpret_cast<__m128i*>(dst + ld_dst * 2), mask, r2);
|
||||
_mm_mask_storeu_epi8(
|
||||
reinterpret_cast<__m128i*>(dst + ld_dst * 3), mask, r3);
|
||||
}
|
||||
#else
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"transpose_vnni4_pad_4x16_block is only supported when AVX-512 is supported")
|
||||
#endif
|
||||
}
|
||||
|
||||
// Do the transpose packing fusion with VNNI4
|
||||
// Reorder [K, N] → [N/4, K, 4] (VNNI4-style layout for bit8)
|
||||
template <typename scalar_t, typename = std::enable_if_t<sizeof(scalar_t) == 1>>
|
||||
static inline void transpose_pack_vnni4(
|
||||
const scalar_t* src,
|
||||
scalar_t* dst,
|
||||
int64_t ld_src,
|
||||
int64_t K,
|
||||
int64_t N) {
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
TORCH_CHECK(
|
||||
N % 16 == 0, "N needs to be multiple of 16 for transpose_pack_vnni4");
|
||||
int64_t bk = 0;
|
||||
int64_t _K = K / 4 * 4;
|
||||
for (; bk < _K; bk += 4) {
|
||||
int64_t bn = 0;
|
||||
for (; bn < N; bn += 16) {
|
||||
transpose_vnni4_pad_4x16_block(
|
||||
src + bk * ld_src + bn, dst + bn * K + bk * 4, ld_src, K * 4);
|
||||
}
|
||||
}
|
||||
|
||||
// Handle leftover K rows (< 4)
|
||||
if (K % 4 != 0) {
|
||||
int krem = K - bk;
|
||||
int64_t bn = 0;
|
||||
for (; bn < N; bn += 16) {
|
||||
transpose_vnni4_pad_4x16_block(
|
||||
src + bk * ld_src + bn, dst + bn * K + bk * 4, ld_src, K * 4, krem);
|
||||
}
|
||||
}
|
||||
#else
|
||||
TORCH_CHECK(
|
||||
false, "transpose_pack_vnni4 is only supported when AVX-512 is supported")
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
@ -1637,7 +1637,9 @@ bool gemm_and_bias(
|
||||
if (activation == GEMMAndBiasActivationEpilogue::RELU) {
|
||||
epilogue = CUBLASLT_EPILOGUE_RELU_BIAS;
|
||||
} else if (activation == GEMMAndBiasActivationEpilogue::GELU) {
|
||||
#if CUDA_VERSION >= 11040 || defined(USE_ROCM)
|
||||
epilogue = CUBLASLT_EPILOGUE_GELU_BIAS;
|
||||
#endif
|
||||
}
|
||||
|
||||
if (bias != nullptr) {
|
||||
@ -1929,6 +1931,7 @@ void scaled_gemm(
|
||||
bool use_fast_accum) {
|
||||
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
|
||||
// of input arguments to this function.
|
||||
#if CUDA_VERSION >= 11080 || defined(USE_ROCM)
|
||||
const auto computeType = CUBLAS_COMPUTE_32F;
|
||||
const auto scaleType = CUDA_R_32F;
|
||||
const float alpha_val = 1.0;
|
||||
@ -2130,6 +2133,8 @@ void scaled_gemm(
|
||||
" scaleType ",
|
||||
scaleType);
|
||||
return;
|
||||
#endif // if CUDA_VERSION >= 11080 || defined(USE_ROCM)
|
||||
TORCH_CHECK(false, "scaled_gemm is only supported for CUDA 11.8 and above");
|
||||
}
|
||||
|
||||
void int8_gemm(
|
||||
|
@ -281,9 +281,6 @@ bool CUDAHooks::compiledWithMIOpen() const {
|
||||
|
||||
bool CUDAHooks::supportsDilatedConvolutionWithCuDNN() const {
|
||||
#if AT_CUDNN_ENABLED()
|
||||
if (!hasCUDA()) {
|
||||
return false;
|
||||
}
|
||||
// NOTE: extra parenthesis around numbers disable clang warnings about
|
||||
// dead code
|
||||
return true;
|
||||
@ -294,9 +291,6 @@ bool CUDAHooks::supportsDilatedConvolutionWithCuDNN() const {
|
||||
|
||||
bool CUDAHooks::supportsDepthwiseConvolutionWithCuDNN() const {
|
||||
#if AT_CUDNN_ENABLED()
|
||||
if (!hasCUDA()) {
|
||||
return false;
|
||||
}
|
||||
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
||||
// Check for Volta cores
|
||||
if (prop->major >= 7) {
|
||||
@ -311,9 +305,6 @@ bool CUDAHooks::supportsDepthwiseConvolutionWithCuDNN() const {
|
||||
|
||||
bool CUDAHooks::supportsBFloat16ConvolutionWithCuDNNv8() const {
|
||||
#if AT_CUDNN_ENABLED()
|
||||
if (!hasCUDA()) {
|
||||
return false;
|
||||
}
|
||||
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
||||
// Check for Volta cores
|
||||
if (prop->major >= 8) {
|
||||
|
@ -70,10 +70,7 @@ void MPSHooks::commitStream() const {
|
||||
}
|
||||
|
||||
void* MPSHooks::getCommandBuffer() const {
|
||||
auto stream = at::mps::getDefaultMPSStream();
|
||||
// Release pending computeCommandEncoder, as extensions is likely to allocate new one
|
||||
stream->endKernelCoalescing();
|
||||
return stream->commandBuffer();
|
||||
return at::mps::getDefaultMPSStream()->commandBuffer();
|
||||
}
|
||||
|
||||
void* MPSHooks::getDispatchQueue() const {
|
||||
|
@ -158,18 +158,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
|
||||
endKernelCoalescing();
|
||||
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
|
||||
|
||||
// For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26
|
||||
// See https://github.com/pytorch/pytorch/issues/163962
|
||||
// Workaround by batching copy commands into 4Gb chunks
|
||||
constexpr size_t max_copy_size = 0x100000000; // 4GB
|
||||
size_t bytes_filled = 0;
|
||||
size_t bytes_remains = length;
|
||||
while (bytes_remains > 0) {
|
||||
NSUInteger bytes_to_copy = std::min(max_copy_size, bytes_remains);
|
||||
[blitEncoder fillBuffer:buffer range:NSMakeRange(offset + bytes_filled, bytes_to_copy) value:value];
|
||||
bytes_filled += bytes_to_copy;
|
||||
bytes_remains -= bytes_to_copy;
|
||||
}
|
||||
[blitEncoder fillBuffer:buffer range:NSMakeRange(offset, length) value:value];
|
||||
[blitEncoder endEncoding];
|
||||
synchronize(syncType);
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user