Compare commits

..

1 Commits

Author SHA1 Message Date
19602e64df compile_kernel remove cp from graph test 2025-09-26 13:09:39 -07:00
367 changed files with 3547 additions and 8086 deletions

View File

@ -1 +1 @@
v2.28.3-1
v2.27.5-1

View File

@ -1 +1 @@
v2.28.3-1
v2.27.7-1

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -1,15 +1,8 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
standard-imghdr==3.13.0; python_version >= "3.13"
#Description: This is needed by Sphinx, so it needs to be added here.
# The reasons are as follows:
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@d53b0ffb9b1cda68260693ea98f3483823c88d8e#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.

View File

@ -104,7 +104,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling -m pip install . -v --no-build-isolation at $(date)"
echo "Calling 'python -m pip install .' at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"

View File

@ -1617,7 +1617,7 @@ test_operator_benchmark() {
test_inductor_set_cpu_affinity
cd benchmarks/operator_benchmark/pt_extension
python -m pip install . -v --no-build-isolation
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
@ -1630,25 +1630,6 @@ test_operator_benchmark() {
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
cd benchmarks/operator_benchmark/pt_extension
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
for OP_BENCHMARK_TESTS in matmul mm addmm bmm; do
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
--benchmark-name "PyTorch operator microbenchmark" --use-compile
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}.json" \
--benchmark-name "PyTorch operator microbenchmark"
done
}
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
(cd test && python -c "import torch; print(torch.__config__.show())")
@ -1705,8 +1686,6 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
test_operator_benchmark cpu ${TEST_MODE}
fi
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
test_operator_microbenchmark
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
@ -1815,8 +1794,6 @@ elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == "b200-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else

View File

@ -63,7 +63,7 @@ if errorlevel 1 exit /b 1
call %CONDA_HOME%\condabin\activate.bat testenv
if errorlevel 1 exit /b 1
call conda install -y -q -c conda-forge libuv=1.51
call conda install -y -q -c conda-forge libuv=1.39
call conda install -y -q intel-openmp
echo "install and test libtorch"

View File

@ -0,0 +1,47 @@
#!/bin/bash
# =================== The following code **should** be executed inside Docker container ===================
# Install dependencies
sudo apt-get -y update
sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.ci/pytorch/common_utils.sh"
echo "functorch_doc_push_script.sh: Invoked with $*"
set -ex
version=${DOCS_VERSION:-nightly}
echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
pip -q install -r requirements.txt
make html
popd
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
pushd functorch_ghpages
if [ $version == "main" ]; then
version=nightly
fi
git rm -rf "$version" || true
mv "$pt_checkout/functorch/docs/build/html" "$version"
git add "$version" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin gh-pages
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -69,8 +69,6 @@ readability-string-compare,
'
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
WarningsAsErrors: '*'
LineFilter:
- name: '/usr/include/.*'
CheckOptions:
cppcoreguidelines-special-member-functions.AllowSoleDefaultDtor: true
cppcoreguidelines-special-member-functions.AllowImplicitlyDeletedCopyOrMove: true

View File

@ -1,10 +1,6 @@
---
name: "⚠️ CI SEV"
about: Tracking incidents for PyTorch's CI infra.
title: ''
labels: ''
assignees: ''
---
> NOTE: Remember to label this issue with "`ci: sev`"

View File

@ -1,18 +0,0 @@
---
name: DISABLE AUTOREVERT
about: Disables autorevert when open
title: "❌​\U0001F519 [DISABLE AUTOREVERT]"
labels: 'ci: disable-autorevert'
assignees: ''
---
This issue, while open, disables the autorevert functionality.
More details can be found [here](https://github.com/pytorch/test-infra/blob/main/aws/lambda/pytorch-auto-revert/README.md)
## Why are you disabling autorevert?
## Links to any issues/commits/errors that shows the source of problem

View File

@ -1,10 +1,8 @@
---
name: Disable CI jobs (PyTorch Dev Infra only)
about: Use this template to disable CI jobs
title: DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]
labels: 'module: ci'
assignees: ''
title: "DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]"
labels: "module: ci"
---
> For example, DISABLED pull / win-vs2022-cpu-py3 / test (default). Once

View File

@ -1 +1 @@
0307428d65acf5cf1a73a70a7722e076bbb83f22
9fe4c2bdb9859c14ad7f7479e1db7e01083bada3

View File

@ -1 +1 @@
0fc62aa26a30ed7ca419d285f285cb5ba02c4394
c77852e117bdf056c8e9a087e51d6f65cf6ba53d

View File

@ -1,44 +1,43 @@
tracking_issue: 24422
ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-symm-mem
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
- ciflow/h100
- ciflow/h100-cutlass-backend
- ciflow/h100-distributed
- ciflow/h100-symm-mem
- ciflow/triton_binaries
- ciflow/inductor
- ciflow/inductor-cu126
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-compare
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-compare
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-cu126
- ciflow/linux-aarch64
- ciflow/mps
- ciflow/nightly
- ciflow/op-benchmark
- ciflow/periodic
- ciflow/periodic-rocm-mi300
- ciflow/pull
- ciflow/quantization-periodic
- ciflow/riscv64
- ciflow/rocm
- ciflow/rocm-mi300
- ciflow/s390
- ciflow/riscv64
- ciflow/slow
- ciflow/torchbench
- ciflow/triton_binaries
- ciflow/trunk
- ciflow/unstable
- ciflow/vllm
- ciflow/win-arm64
- ciflow/xpu
- ciflow/vllm
- ciflow/torchbench
- ciflow/op-benchmark
- ciflow/pull
- ciflow/h100
- ciflow/h100-distributed
- ciflow/win-arm64
- ciflow/h100-symm-mem
- ciflow/h100-cutlass-backend
- ciflow/b200
retryable_workflows:
- pull
- trunk
@ -47,4 +46,4 @@ retryable_workflows:
- inductor-A100-perf-nightly
labeler_config: labeler.yml
label_to_label_config: label_to_label.yml
mergebot: true
mergebot: True

View File

@ -30,7 +30,7 @@ CUDA_ARCHES_CUDNN_VERSION = {
}
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
ROCM_ARCHES = ["6.4", "7.0"]
ROCM_ARCHES = ["6.3", "6.4"]
XPU_ARCHES = ["xpu"]
@ -53,7 +53,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
@ -70,7 +70,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
@ -87,7 +87,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "

View File

@ -273,8 +273,6 @@ jobs:
TEST_CONFIG: ${{ matrix.config }}
SHARD_NUMBER: ${{ matrix.shard }}
NUM_TEST_SHARDS: ${{ matrix.num_shards }}
EXTRA_FLAGS: ${{ matrix.extra_flags || '' }}
OP_BENCHMARK_TESTS: ${{ matrix.op_benchmark_tests }}
REENABLED_ISSUES: ${{ steps.keep-going.outputs.reenabled-issues }}
CONTINUE_THROUGH_ERROR: ${{ steps.keep-going.outputs.keep-going }}
VERBOSE_TEST_LOGS: ${{ steps.keep-going.outputs.ci-verbose-test-logs }}

View File

@ -1,60 +0,0 @@
name: Limited CI for symmetric memory tests on B200
on:
pull_request:
paths:
- .github/workflows/b200-symm-mem.yml
workflow_dispatch:
push:
tags:
- ciflow/b200-symm-mem/*
schedule:
- cron: 22 8 * * * # about 1:22am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "b200-symm-mem", shard: 1, num_shards: 1, runner: "linux.dgx.b200.8" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -52,6 +52,7 @@ jobs:
{ tag: "cuda12.9" },
{ tag: "cuda12.8" },
{ tag: "cuda12.6" },
{ tag: "rocm6.3" },
{ tag: "rocm6.4" },
{ tag: "rocm7.0" },
{ tag: "cpu" },

View File

@ -34,7 +34,7 @@ jobs:
id-token: write
strategy:
matrix:
rocm_version: ["70", "64"]
rocm_version: ["70", "64", "63"]
steps:
- name: Checkout PyTorch
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -52,6 +52,7 @@ jobs:
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.3", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },

View File

@ -55,7 +55,7 @@ jobs:
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
include:
- device: "rocm"
rocm_version: "7.0"
rocm_version: "6.4"
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
- device: "cuda"
rocm_version: ""

View File

@ -132,7 +132,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -178,7 +178,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -224,7 +224,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -335,7 +335,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -381,7 +381,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -427,7 +427,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -538,7 +538,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -584,7 +584,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -630,7 +630,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -741,7 +741,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -787,7 +787,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -833,7 +833,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -944,7 +944,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -990,7 +990,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1036,7 +1036,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1147,7 +1147,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1193,7 +1193,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1239,7 +1239,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1350,7 +1350,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1396,7 +1396,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1442,7 +1442,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -316,6 +316,121 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_3-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm6_3-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm6_3-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm6_3-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm6_3-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm6.3
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm6_3-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm6_3-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm6_3-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_4-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -430,118 +545,3 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm7_0-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm7_0-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm7_0-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm7_0-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm7.0
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm7_0-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm7_0-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm7_0-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

View File

@ -60,7 +60,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda13_0-test: # Testing

File diff suppressed because it is too large Load Diff

View File

@ -1,46 +0,0 @@
name: operator_microbenchmark
on:
push:
tags:
- ciflow/op-benchmark/*
workflow_dispatch:
schedule:
# Run at 06:00 UTC everyday
- cron: 0 6 * * *
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
opmicrobenchmark-build:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '8.0 9.0'
test-matrix: |
{ include: [
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.h100" },
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
]}
secrets: inherit
opmicrobenchmark-test:
name: opmicrobenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: opmicrobenchmark-build
with:
timeout-minutes: 500
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -59,14 +59,13 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.4-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11
cuda-arch-list: 7.5
test-matrix: |
{ include: [
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
]}
secrets: inherit
@ -113,13 +112,13 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-build:
name: linux-jammy-cuda12.8-py3.10-gcc9
linux-jammy-cuda12_8-py3_9-gcc9-build:
name: linux-jammy-cuda12.8-py3.9-gcc9
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
cuda-arch-list: 8.6
test-matrix: |
@ -129,14 +128,14 @@ jobs:
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-test:
name: linux-jammy-cuda12.8-py3.10-gcc9
linux-jammy-cuda12_8-py3_9-gcc9-test:
name: linux-jammy-cuda12.8-py3.9-gcc9
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-cuda12_8-py3_10-gcc9-build
needs: linux-jammy-cuda12_8-py3_9-gcc9-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.test-matrix }}
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-debug-build:

View File

@ -343,14 +343,14 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
linux-jammy-xpu-n-py3_9-build:
name: linux-jammy-xpu-n-py3.9
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-jammy-xpu-n-py3.10
build-environment: linux-jammy-xpu-n-py3.9
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
test-matrix: |
{ include: [

View File

@ -442,7 +442,7 @@ if(WIN32)
message(
WARNING
"Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.51' to install libuv."
"Please run command 'conda install -c conda-forge libuv=1.39' to install libuv."
)
else()
set(ENV{libuv_ROOT} ${libuv_tmp_LIBRARY}/../../)

View File

@ -275,7 +275,7 @@ conda install pkg-config libuv
pip install mkl-static mkl-include
# Add these packages if torch.distributed is needed.
# Distributed package support on Windows is a prototype feature and is subject to changes.
conda install -c conda-forge libuv=1.51
conda install -c conda-forge libuv
```
#### Install PyTorch

View File

@ -45,39 +45,7 @@ inline void infer_size_impl(
}
}
if (infer_dim) {
// numel is the product of known sizes, it has to be divisible by newsize.
// and newsize should be positive unless newsize == numel (we throw
// different) error message in that case.
if constexpr (std::is_same_v<NumelType, c10::SymInt>) {
auto v = newsize.maybe_as_int();
if (v and *v == 0) {
// Avoid div by 0 when sym_eq(numel % newsize, 0) is constructed!
// which may happen when newsize is not a symbol! if its a symbol
// division won't happen anyway during compile.
TORCH_MAYBE_SYM_CHECK(
numel == newsize,
"shape '",
shape,
"' is invalid for input of size ",
numel);
} else {
auto cond = sym_gt(newsize, 0)
.sym_and(sym_eq(numel % newsize, 0))
.sym_or(sym_eq(numel, newsize));
TORCH_MAYBE_SYM_CHECK(
cond, "shape '", shape, "' is invalid for input of size ", numel);
}
} else {
TORCH_CHECK(
(newsize > 0 && (numel % newsize == 0)) || numel == newsize,
"shape '",
shape,
"' is invalid for input of size ",
numel);
}
auto set_infer_dim = [&]() {
// We have a degree of freedom here to select the dimension size; follow
// NumPy semantics and just bail. However, a nice error message is needed
// because users often use `view` as a way to flatten & unflatten
@ -86,15 +54,19 @@ inline void infer_size_impl(
// works yet
// empty_tensor.view(-1, 0)
// doesn't.
TORCH_MAYBE_SYM_CHECK(
TORCH_CHECK(
newsize != 0,
"cannot reshape tensor of 0 elements into shape ",
shape,
" because the unspecified dimension size -1 can be any "
"value and is ambiguous");
res[*infer_dim] = numel / newsize;
return;
};
if (infer_dim && newsize > 0 && numel % newsize == 0) {
set_infer_dim();
return;
}
TORCH_MAYBE_SYM_CHECK(
@ -103,6 +75,9 @@ inline void infer_size_impl(
shape,
"' is invalid for input of size ",
numel);
if (infer_dim) {
set_infer_dim();
}
}
inline std::vector<int64_t> infer_size(IntArrayRef shape, int64_t numel) {

View File

@ -103,9 +103,7 @@ std::string get_cpu_capability() {
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
case native::CPUCapability::ZVECTOR:
return "Z VECTOR";
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
case native::CPUCapability::SVE128:
return "SVE128";
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
case native::CPUCapability::SVE256:
return "SVE256";
#else

View File

@ -1234,7 +1234,7 @@ struct TORCH_API TupleType : public NamedType {
std::shared_ptr<FunctionSchema> schema_;
};
// the common supertype of all Enums, only used in operator registration.
// the common supertype of all Enums, only used in operator registraion.
// EnumType <: AnyEnumType for all Enums
struct AnyEnumType;
using AnyEnumTypePtr = SingletonTypePtr<AnyEnumType>;

View File

@ -102,31 +102,8 @@ struct VecReduceAllSIMD<float, Op> {
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) &&
// !defined(C10_MOBILE)
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
#if defined(CPU_CAPABILITY_SVE256)
template <typename Op>
struct VecReduceAllSIMD<float, Op> {
static inline float apply(
const Op& vec_fun,
const Vectorized<float>& acc_vec) {
using Vec = Vectorized<float>;
Vec v = acc_vec;
// 128-bit shuffle
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
Vec v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 64-bit shuffle
ind = svdupq_n_u32(2, 3, 0, 1);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 32-bit shuffle
ind = svdupq_n_u32(1, 0, 2, 3);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
return svlasta(svpfalse(), v);
}
};
#else
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
!defined(CPU_CAPABILITY_SVE)
template <typename Op>
struct VecReduceAllSIMD<float, Op> {
static inline float apply(
@ -163,8 +140,35 @@ struct VecReduceAllSIMD<float, std::plus<Vectorized<float>>> {
return vaddvq_f32(acc_vec);
}
};
#endif // defined(CPU_CAPABILITY_SVE256)
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
// && !defined(CPU_CAPABILITY_SVE)
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
defined(CPU_CAPABILITY_SVE256)
template <typename Op>
struct VecReduceAllSIMD<float, Op> {
static inline float apply(
const Op& vec_fun,
const Vectorized<float>& acc_vec) {
using Vec = Vectorized<float>;
Vec v = acc_vec;
// 128-bit shuffle
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
Vec v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 64-bit shuffle
ind = svdupq_n_u32(2, 3, 0, 1);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 32-bit shuffle
ind = svdupq_n_u32(1, 0, 2, 3);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
return svlasta(svpfalse(), v);
}
};
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
// && defined(CPU_CAPABILITY_SVE256)
template <typename scalar_t, typename Op>
inline scalar_t vec_reduce_all(

View File

@ -1,21 +1,9 @@
#pragma once
#include <ATen/cpu/vec/intrinsics.h>
#include <c10/macros/Macros.h>
#include <cstdint>
#include <ATen/cpu/vec/vec_base.h>
#if defined(__aarch64__) && \
(defined(AT_BUILD_ARM_VEC256_WITH_SLEEF) || \
defined(AT_BUILD_ARM_VECSVE_WITH_SLEEF))
#define SLEEF_STATIC_LIBS
#include <sleef.h>
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
#else
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
#endif
#if defined(CPU_CAPABILITY_SVE)
// Define the data type of VLS(vector-length specific).

View File

@ -2,6 +2,7 @@
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/sve/vec_common_sve.h>
#include <ATen/cpu/vec/sve/vec_float.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/util/bit_cast.h>

View File

@ -8,48 +8,13 @@
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/vec_base.h>
#ifdef CPU_CAPABILITY_SVE128
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_convert.h>
#include <ATen/cpu/vec/sve/vec_qint.h>
#elif defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/sve/vec_float.h>
#if defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
#include <ATen/cpu/vec/sve/vec_double.h>
#include <ATen/cpu/vec/sve/vec_float.h>
#include <ATen/cpu/vec/sve/vec_int.h>
#include <ATen/cpu/vec/sve/vec_qint.h>
#include <ATen/cpu/vec/vec256/vec256_half.h>
#include <ATen/cpu/vec/vec256/vec256_convert.h>
#else // NEON
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_convert.h>
#include <ATen/cpu/vec/vec256/vec256_qint.h>
#endif // defined(CPU_CAPABILITY_SVE128)
#include <ATen/cpu/vec/functional.h>
#endif
namespace at::vec {
// Note [CPU_CAPABILITY namespace]
@ -83,6 +48,12 @@ DEFINE_SVE_CAST(int32_t, s32, float, f32)
DEFINE_SVE_CAST(int16_t, s16, float, f32)
DEFINE_SVE_CAST(float, f32, double, f64)
#ifdef __ARM_FEATURE_BF16
DEFINE_SVE_CAST(int64_t, s64, c10::BFloat16, bf16)
DEFINE_SVE_CAST(int32_t, s32, c10::BFloat16, bf16)
DEFINE_SVE_CAST(int16_t, s16, c10::BFloat16, bf16)
#endif // __ARM_FEATURE_BF16
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <int64_t scale = 1>
@ -202,11 +173,9 @@ std::pair<
// group cols crossing lanes:
// return {a0, b0, a1, b1, a2, b2, a3, b3}
// {a4, b4, a5, b5, a6, b6, a7, b7}
svbfloat16_t aReg = a;
svbfloat16_t bReg = b;
Vectorized<c10::BFloat16> c = svzip1_bf16(aReg, bReg);
Vectorized<c10::BFloat16> d = svzip2_bf16(aReg, bReg);
return std::make_pair(c, d);
return std::make_pair(
Vectorized<c10::BFloat16>(svzip1_bf16(a, b)),
Vectorized<c10::BFloat16>(svzip2_bf16(a, b)));
}
#endif // __ARM_FEATURE_BF16
@ -255,27 +224,12 @@ std::pair<
// swap lanes:
// return {a0, a1, a2, a3, a4, a5, a6, a7}
// {b0, b1, b2, b3, b4, b5, b6, b7}
svbfloat16_t aReg = a;
svbfloat16_t bReg = b;
Vectorized<c10::BFloat16> c = svuzp1_bf16(aReg, bReg);
Vectorized<c10::BFloat16> d = svuzp2_bf16(aReg, bReg);
return std::make_pair(c, d);
return std::make_pair(
Vectorized<c10::BFloat16>(svuzp1_bf16((svbfloat16_t)a, (svbfloat16_t)b)),
Vectorized<c10::BFloat16>(svuzp2_bf16((svbfloat16_t)a, (svbfloat16_t)b)));
}
#endif // __ARM_FEATURE_BF16
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#define DEFINE_FLIP_FUNC(type, sve_func) \
inline Vectorized<type> flip(const Vectorized<type>& v) { \
return Vectorized<type>(sve_func(v)); \
}
// Use the macro to define the flip functions
DEFINE_FLIP_FUNC(float, svrev_f32)
DEFINE_FLIP_FUNC(double, svrev_f64)
DEFINE_FLIP_FUNC(int64_t, svrev_s64)
DEFINE_FLIP_FUNC(int32_t, svrev_s32)
DEFINE_FLIP_FUNC(int16_t, svrev_s16)
DEFINE_FLIP_FUNC(int8_t, svrev_s8)
#endif // defined(CPU_CAPABILITY_SVE)
} // namespace CPU_CAPABILITY

View File

@ -1,8 +1,6 @@
#pragma once
#if defined(__aarch64__)
#include <ATen/cpu/vec/vec_common_aarch64.h>
#elif defined(CPU_CAPABILITY_AVX512)
#if defined(CPU_CAPABILITY_AVX512)
#include <ATen/cpu/vec/vec512/vec512.h>
#else
#include <ATen/cpu/vec/vec128/vec128.h>
@ -13,34 +11,6 @@ namespace at::vec {
// See Note [CPU_CAPABILITY namespace]
inline namespace CPU_CAPABILITY {
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
stream << val.val_;
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
stream << static_cast<int>(val.val_);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
stream << static_cast<unsigned int>(val.val_);
return stream;
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
T buf[Vectorized<T>::size()];
vec.store(buf);
stream << "vec[";
for (int i = 0; i != Vectorized<T>::size(); i++) {
if (i != 0) {
stream << ", ";
}
stream << buf[i];
}
stream << "]";
return stream;
}
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
__at_align__ bool buffer[x.size()];
x.ne(Vectorized<int8_t>(0)).store(buffer);

View File

@ -2,7 +2,6 @@
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
#include <ATen/cpu/vec/vec_base.h>
@ -263,13 +262,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
c10::bit_cast<at_bfloat16_t>(val6.x),
c10::bit_cast<at_bfloat16_t>(val7.x)}) {}
#ifdef CPU_CAPABILITY_SVE128
Vectorized(svbfloat16_t v) : Vectorized16(svget_neonq(v)) {}
operator svbfloat16_t() const {
return svset_neonq(svundef_bf16(), values);
}
#endif
static Vectorized<c10::BFloat16> blendv(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
@ -382,23 +374,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
Vectorized ge(const Vectorized& other) const;
Vectorized lt(const Vectorized& other) const;
Vectorized le(const Vectorized& other) const;
#ifdef CPU_CAPABILITY_SVE128
template <typename step_t>
static Vectorized<BFloat16> arange(
BFloat16 base = 0.f,
step_t step = static_cast<step_t>(1)) {
__at_align__ BFloat16 buffer[size()];
for (int64_t i = 0; i < size(); i++) {
buffer[i] = base + i * step;
}
return svget_neonq(
svld1_bf16(ptrue, reinterpret_cast<bfloat16_t*>(buffer)));
}
#endif // CPU_CAPABILITY_SVE128
}; // Vectorized<c10::BFloat16>
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
@ -422,24 +397,6 @@ inline Vectorized<c10::BFloat16> convert_float_bfloat16(
return Vectorized<c10::BFloat16>(at_vcombine_bf16(x1, x2));
}
inline void load_fp32_from_bf16(const BFloat16* data, Vectorized<float>& out) {
__at_align__ float values[Vectorized<float>::size()];
for (const auto k : c10::irange(Vectorized<float>::size())) {
values[k] = data[k];
}
out = Vectorized<float>::loadu(values);
}
inline void load_fp32_from_bf16(
const BFloat16* data,
Vectorized<float>& out1,
Vectorized<float>& out2) {
Vectorized<BFloat16> bf16_vec = Vectorized<BFloat16>::loadu(data);
auto floats = convert_bfloat16_float(bf16_vec);
out1 = std::get<0>(floats);
out2 = std::get<1>(floats);
}
template <typename Op>
Vectorized<c10::BFloat16> binary_operator_via_float(
Op op,
@ -622,12 +579,6 @@ Vectorized<c10::BFloat16> inline fnmsub(
return -a * b - c;
}
#else //
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16)
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
} // namespace CPU_CAPABILITY

View File

@ -4,7 +4,7 @@
namespace at::vec {
inline namespace CPU_CAPABILITY {
#if defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
template <typename src_t>
struct VecConvert<
float,
@ -60,7 +60,6 @@ struct VecConvert<float, 1, BFloat16, 1> {
}
};
#endif // defined(__aarch64__) && (!defined(CPU_CAPABILITY_SVE) ||
// defined(CPU_CAPABILITY_SVE128))
#endif // defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -4,10 +4,13 @@
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/util/irange.h>
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
#include <sleef.h>
#endif
// Sleef offers vectorized versions of some transcedentals
// such as sin, cos, tan etc..
// However for now opting for STL, since we are not building
@ -32,6 +35,12 @@ inline namespace CPU_CAPABILITY {
#error "Big endian is not supported."
#endif
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
#else
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
#endif
template <int index, bool mask_val>
struct BlendRegs {
static float32x4_t impl(
@ -85,12 +94,6 @@ class Vectorized<float> {
operator float32x4_t() const {
return values;
}
#ifdef CPU_CAPABILITY_SVE128
Vectorized(svfloat32_t v) : values(svget_neonq(v)) {}
operator svfloat32_t() const {
return svset_neonq(svundef_f32(), values);
}
#endif
template <int64_t mask>
static Vectorized<float> blend(
const Vectorized<float>& a,

View File

@ -4,6 +4,7 @@
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec128/vec128_convert.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
#include <ATen/cpu/vec/vec_base.h>
@ -24,6 +25,7 @@ inline namespace CPU_CAPABILITY {
// https://bugs.llvm.org/show_bug.cgi?id=45824
// Most likely we will do aarch32 support with inline asm.
#if !defined(C10_MOBILE) && defined(__aarch64__)
#ifdef __BIG_ENDIAN__
#error "Big endian is not supported."
#endif
@ -419,24 +421,6 @@ Vectorized<c10::Half> inline operator+(
#endif
}
inline void load_fp32_from_fp16(const c10::Half* data, Vectorized<float>& out) {
__at_align__ float values[Vectorized<float>::size()];
for (const auto k : c10::irange(Vectorized<float>::size())) {
values[k] = data[k];
}
out = Vectorized<float>::loadu(values);
}
inline void load_fp32_from_fp16(
const c10::Half* data,
Vectorized<float>& out1,
Vectorized<float>& out2) {
Vectorized<c10::Half> f16_vec = Vectorized<c10::Half>::loadu(data);
auto floats = convert_half_float(f16_vec);
out1 = std::get<0>(floats);
out2 = std::get<1>(floats);
}
template <>
Vectorized<c10::Half> inline operator-(
const Vectorized<c10::Half>& a,
@ -672,53 +656,6 @@ Vectorized<c10::Half> inline fnmsub(
return -a * b - c;
#endif
}
#else
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
inline std::tuple<Vectorized<float>, Vectorized<float>> \
convert_##name##_float(const Vectorized<type>& a) { \
constexpr int64_t K = Vectorized<type>::size(); \
__at_align__ float arr[K]; \
__at_align__ type arr2[K]; \
a.store(arr2); \
convert(arr2, arr, K); \
return std::make_tuple( \
Vectorized<float>::loadu(arr), \
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
} \
inline Vectorized<type> convert_float_##name( \
const Vectorized<float>& a, const Vectorized<float>& b) { \
constexpr int64_t K = Vectorized<type>::size(); \
__at_align__ float arr[K]; \
__at_align__ type arr2[K]; \
a.store(arr); \
b.store(arr + Vectorized<float>::size()); \
convert(arr, arr2, K); \
return Vectorized<type>::loadu(arr2); \
}
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
inline void load_fp32_from_##name( \
const type* data, Vectorized<float>& out) { \
__at_align__ float values[Vectorized<float>::size()]; \
for (const auto k : c10::irange(Vectorized<float>::size())) { \
values[k] = data[k]; \
} \
out = Vectorized<float>::loadu(values); \
} \
\
inline void load_fp32_from_##name( \
const type* data, Vectorized<float>& out1, Vectorized<float>& out2) { \
load_fp32_from_##name(data, out1); \
data += Vectorized<float>::size(); \
load_fp32_from_##name(data, out2); \
}
CONVERT_NON_VECTORIZED_INIT(Half, half)
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16)
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
} // namespace CPU_CAPABILITY

View File

@ -9,16 +9,21 @@
#if !( \
defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || \
defined(CPU_CAPABILITY_ZVECTOR))
#include <ATen/cpu/vec/vec256/vec256_double.h>
#if defined(CPU_CAPABILITY_SVE256)
#include <ATen/cpu/vec/sve/vec_common_sve.h>
#else
// clang-format off
#include <ATen/cpu/vec/vec256/vec256_float.h>
#include <ATen/cpu/vec/vec256/vec256_double.h>
#include <ATen/cpu/vec/vec256/vec256_int.h>
#include <ATen/cpu/vec/vec256/vec256_qint.h>
#endif
#if !defined(CPU_CAPABILITY_SVE256) || !defined(__ARM_FEATURE_BF16)
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
#endif
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
#include <ATen/cpu/vec/vec256/vec256_half.h>
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
// clang-format on
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
@ -51,6 +56,34 @@ namespace at::vec {
// accessed as `at::vec`.
inline namespace CPU_CAPABILITY {
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
stream << val.val_;
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
stream << static_cast<int>(val.val_);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
stream << static_cast<unsigned int>(val.val_);
return stream;
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
T buf[Vectorized<T>::size()];
vec.store(buf);
stream << "vec[";
for (int i = 0; i != Vectorized<T>::size(); i++) {
if (i != 0) {
stream << ", ";
}
stream << buf[i];
}
stream << "]";
return stream;
}
#if defined(CPU_CAPABILITY_AVX2)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -268,7 +268,9 @@ LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16)
#else // defined(CPU_CAPABILITY_AVX2)
#if !(defined(__aarch64__))
#if !( \
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
!defined(CPU_CAPABILITY_SVE256))
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
#endif

View File

@ -268,7 +268,9 @@ LOAD_FP32_VECTORIZED_INIT(Half, fp16)
#else // defined(CPU_CAPABILITY_AVX2)
#if !defined(__aarch64__) || defined(CPU_CAPABILITY_SVE256)
#if !( \
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
!defined(CPU_CAPABILITY_SVE256))
CONVERT_NON_VECTORIZED_INIT(Half, half)
#endif

View File

@ -5,13 +5,6 @@
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#ifdef __aarch64__
#if defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#endif
#endif
#include <ATen/native/quantized/AffineQuantizerBase.h>
#include <c10/util/irange.h>
@ -922,7 +915,7 @@ Vectorized<c10::quint8> inline maximum(
return a.maximum(b);
}
#else
#elif !defined(CPU_CAPABILITY_SVE256)
// NOTE: These are low-performance implementations that we fall back on
// if we are not building with AVX2. This may not be an issue, because
@ -1379,18 +1372,12 @@ Vectorized<c10::quint8> inline maximum(
return a.maximum(b);
}
#if defined(__aarch64__) && \
(defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE))
#endif // if defined(CPU_CAPABILITY_AVX2)
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<int8_t> src) {
#ifdef CPU_CAPABILITY_SVE
svint8_t x = src;
auto s8x8 = vget_low_s8(svget_neonq(x));
#else
auto s8x8 = vld1_s8(src.operator const int8_t*());
#endif
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
@ -1415,14 +1402,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<int8_t> src) {
#ifdef CPU_CAPABILITY_SVE
svint8_t x = src;
auto s8x8 = vget_low_s8(svget_neonq(x));
#else
auto s8x8 = vld1_s8(src.operator const int8_t*());
#endif
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
@ -1440,8 +1420,5 @@ Vectorized<float> inline convert_int8_half_register_to_float(
}
#endif
#endif // if defined(CPU_CAPABILITY_AVX2)
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -31,6 +31,34 @@ namespace vec {
// See Note [CPU_CAPABILITY namespace]
inline namespace CPU_CAPABILITY {
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
stream << val.val_;
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
stream << static_cast<int>(val.val_);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
stream << static_cast<unsigned int>(val.val_);
return stream;
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
T buf[Vectorized<T>::size()];
vec.store(buf);
stream << "vec[";
for (int i = 0; i != Vectorized<T>::size(); i++) {
if (i != 0) {
stream << ", ";
}
stream << buf[i];
}
stream << "]";
return stream;
}
#if defined(CPU_CAPABILITY_AVX512)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX512)

View File

@ -67,7 +67,18 @@ Windows llvm will not have this definition.
#endif
#define VECTOR_WIDTH 64
#define int_vector __m512i
#elif defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_SVE256)
#elif defined(__aarch64__) && \
!defined(CPU_CAPABILITY_SVE) // CPU_CAPABILITY_AVX512
// SVE code expects 256-vectors; leave that set for SVE?
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(16)))
#elif defined(_WIN32)
#define __at_align__ __declspec(align(16))
#else
#define __at_align__
#endif
#define VECTOR_WIDTH 16
#else // CPU_CAPABILITY_AVX512
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(32)))
#elif defined(_WIN32)
@ -77,27 +88,7 @@ Windows llvm will not have this definition.
#endif
#define VECTOR_WIDTH 32
#define int_vector __m256i
#elif defined(__aarch64__)
// Define alignment and vector width for SVE128/Default (e.g., NEON)
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(16)))
#elif defined(_WIN32)
#define __at_align__ __declspec(align(16))
#else
#define __at_align__
#endif
#define VECTOR_WIDTH 16
#else
// Fallback: define default alignment and vector width
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(32)))
#elif defined(_WIN32)
#define __at_align__ __declspec(align(32))
#else
#define __at_align__
#endif
#define VECTOR_WIDTH 32
#endif
#endif // CPU_CAPABILITY_AVX512
namespace at::vec {
// See Note [CPU_CAPABILITY namespace]

View File

@ -70,10 +70,7 @@ void MPSHooks::commitStream() const {
}
void* MPSHooks::getCommandBuffer() const {
auto stream = at::mps::getDefaultMPSStream();
// Release pending computeCommandEncoder, as extensions is likely to allocate new one
stream->endKernelCoalescing();
return stream->commandBuffer();
return at::mps::getDefaultMPSStream()->commandBuffer();
}
void* MPSHooks::getDispatchQueue() const {

View File

@ -158,18 +158,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
endKernelCoalescing();
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
// For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26
// See https://github.com/pytorch/pytorch/issues/163962
// Workaround by batching copy commands into 4Gb chunks
constexpr size_t max_copy_size = 0x100000000; // 4GB
size_t bytes_filled = 0;
size_t bytes_remains = length;
while (bytes_remains > 0) {
NSUInteger bytes_to_copy = std::min(max_copy_size, bytes_remains);
[blitEncoder fillBuffer:buffer range:NSMakeRange(offset + bytes_filled, bytes_to_copy) value:value];
bytes_filled += bytes_to_copy;
bytes_remains -= bytes_to_copy;
}
[blitEncoder fillBuffer:buffer range:NSMakeRange(offset, length) value:value];
[blitEncoder endEncoding];
synchronize(syncType);
}

View File

@ -1157,103 +1157,103 @@ REGISTER_AVX512_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_AVX2_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_VSX_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_ZVECTOR_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_SVE_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_SVE256_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl)
REGISTER_AVX512_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_AVX2_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_VSX_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_ZVECTOR_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_SVE_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_SVE256_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_ARCH_DISPATCH(linalg_eig_stub, DEFAULT, &linalg_eig_kernel)
REGISTER_AVX512_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_AVX2_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_VSX_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_ZVECTOR_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_SVE_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_SVE256_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_ARCH_DISPATCH(linalg_eigh_stub, DEFAULT, &linalg_eigh_kernel)
REGISTER_AVX512_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_AVX2_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_VSX_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_ZVECTOR_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_SVE_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_SVE256_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_ARCH_DISPATCH(geqrf_stub, DEFAULT, &geqrf_kernel)
REGISTER_AVX512_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_AVX2_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_VSX_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_ZVECTOR_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_SVE_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_SVE256_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_ARCH_DISPATCH(orgqr_stub, DEFAULT, &orgqr_kernel_impl)
REGISTER_AVX512_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_AVX2_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_VSX_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_ZVECTOR_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_SVE_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_SVE256_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_ARCH_DISPATCH(ormqr_stub, DEFAULT, &ormqr_kernel)
REGISTER_AVX512_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_AVX2_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_VSX_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_ZVECTOR_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_SVE_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_SVE256_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_ARCH_DISPATCH(lstsq_stub, DEFAULT, &lstsq_kernel)
REGISTER_AVX512_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_AVX2_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_VSX_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_ZVECTOR_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_SVE_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_SVE256_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_ARCH_DISPATCH(triangular_solve_stub, DEFAULT, &triangular_solve_kernel)
REGISTER_AVX512_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_AVX2_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_VSX_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_ZVECTOR_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_SVE_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_SVE256_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_ARCH_DISPATCH(lu_factor_stub, DEFAULT, &lu_factor_kernel)
REGISTER_AVX512_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_AVX2_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_VSX_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_ZVECTOR_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_SVE_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_SVE256_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_ARCH_DISPATCH(ldl_factor_stub, DEFAULT, &ldl_factor_kernel)
REGISTER_AVX512_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_AVX2_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_VSX_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_ZVECTOR_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_SVE_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_SVE256_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_ARCH_DISPATCH(ldl_solve_stub, DEFAULT, &ldl_solve_kernel)
REGISTER_AVX512_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_AVX2_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_VSX_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_ZVECTOR_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_SVE_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_SVE256_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_ARCH_DISPATCH(lu_solve_stub, DEFAULT, &lu_solve_kernel)
REGISTER_AVX512_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_AVX2_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_VSX_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_ZVECTOR_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_SVE_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_SVE256_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_ARCH_DISPATCH(svd_stub, DEFAULT, &svd_kernel)
REGISTER_AVX512_DISPATCH(svd_stub, &svd_kernel)
REGISTER_AVX2_DISPATCH(svd_stub, &svd_kernel)
REGISTER_VSX_DISPATCH(svd_stub, &svd_kernel)
REGISTER_ZVECTOR_DISPATCH(svd_stub, &svd_kernel)
REGISTER_SVE_DISPATCH(svd_stub, &svd_kernel)
REGISTER_SVE256_DISPATCH(svd_stub, &svd_kernel)
REGISTER_ARCH_DISPATCH(unpack_pivots_stub, DEFAULT, &unpack_pivots_cpu_kernel)
REGISTER_AVX512_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_AVX2_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_VSX_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_SVE_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_SVE256_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
} // namespace at::native

View File

@ -406,23 +406,11 @@ struct ConvParams {
// cudnn and miopen are guaranteed not to be on mobile, and T102591915 / T110194934 suggest
// that maybe the compiledWithCuDNN() check sometimes segfaults (though I can't imagine how)
#if !defined(C10_MOBILE)
if (!detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda() || !cudnn_enabled) {
if (!detail::getCUDAHooks().compiledWithCuDNN()) {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
// broken on cuDNN 9.8
if (cudnn_version >= 90800) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
(input.scalar_type() == at::kBFloat16 || input.scalar_type() == at::kHalf) &&
weight.dim() == 5) {
for (int i = 2; i < weight.dim(); i++) {
if (weight.size(i) != 1) {
return false;
}
}
}
}
if (needs_64bit_indexing_no_split(input, weight)) {
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
if (!(cudnn_version >= 90300 && at::native::cudnnv8_enabled_check_debug())) {
TORCH_WARN_ONCE("cuDNN cannot be used for large non-batch-splittable convolutions"
" if the V8 API is not enabled or before cuDNN version 9.3+."
@ -430,6 +418,9 @@ struct ConvParams {
return false;
}
}
if (!input.is_cuda() || !cudnn_enabled) {
return false;
}
if (input.scalar_type() == at::kBFloat16 || weight.scalar_type() == at::kBFloat16) {
if (!(detail::getCUDAHooks().supportsBFloat16ConvolutionWithCuDNNv8() && at::native::cudnnv8_enabled_check_debug())) {
return false;
@ -448,19 +439,16 @@ struct ConvParams {
// Use cudnn for FP16 depthwise convolutions
bool use_cudnn_depthwise(const at::Tensor& input, const at::Tensor& weight) const {
if (!cudnn_enabled || !detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda()) {
if (!detail::getCUDAHooks().compiledWithCuDNN()) {
return false;
}
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous && use_cudnn(input, weight)) {
// always use cudnn_depthwise for channels_last format
return true;
}
// native kernel doesn't support 64-bit non-splittable case
if (!(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
if (cudnn_enabled && !(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionCuDNN() : -1;
// TODO(eqy): remove this once cuDNN fixes 64-bit depthwise support, first broken in 9.11x
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
if (cudnn_version < 0 || cudnn_version > 91000) {
return false;
}
}
if (!(cudnn_version >= 90300 && at::native::cudnnv8_enabled_check_debug())) {
TORCH_WARN_ONCE("cuDNN cannot be used for large non-batch-splittable convolutions"
" if the V8 API is not enabled or before cuDNN version 9.3+."
@ -470,10 +458,6 @@ struct ConvParams {
return true;
}
}
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
// always use cudnn_depthwise for channels_last format
return true;
}
if (detail::getCUDAHooks().supportsDepthwiseConvolutionWithCuDNN()) {
bool kernel_cond = (use_cudnn(input, weight) &&
input.scalar_type() == kHalf && // only for FP16

View File

@ -39,21 +39,19 @@ static CPUCapability compute_cpu_capability() {
}
#elif defined(HAVE_SVE_CPU_DEFINITION)
int sve_vl = cpuinfo_get_max_arm_sve_length(); //Returns maximum SVE VL supported by your HW.
if (envar == "sve") {
// Select SVE capability based on the maximum SVE VL supported by the HW.
#ifdef HAVE_SVE256_CPU_DEFINITION
if (envar == "sve256") {
if (sve_vl == 256) {
#ifdef HAVE_ARM_BF16_CPU_DEFINITION
if (cpuinfo_has_arm_bf16()) {
return CPUCapability::SVE256;
}
} else if (sve_vl == 128) {
if (cpuinfo_has_arm_bf16()) {
return CPUCapability::SVE128;
}
} else {
TORCH_WARN("SVE capability not available on hardware. Falling back to DEFAULT");
return CPUCapability::DEFAULT;
#endif
}
TORCH_WARN("SVE256 capability not available on hardware. Falling back to DEFAULT");
return CPUCapability::DEFAULT;
}
#endif
#else
#ifdef HAVE_AVX512_CPU_DEFINITION
if (envar == "avx512") {
@ -115,11 +113,6 @@ static CPUCapability compute_cpu_capability() {
#endif
}
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
if (sve_vl == 128) { // Check for SVE128
return CPUCapability::SVE128;
}
#endif
// Return the default CPU capability.
return CPUCapability::DEFAULT;
}
@ -154,9 +147,6 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
) {
constexpr auto supported_devices = c10::array_of<c10::DeviceType>(
c10::DeviceType::CPU,
@ -194,9 +184,6 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, SVE128
#endif
);
if (!std::holds_alternative<ErrorType>(result)) {
@ -255,9 +242,6 @@ void* DispatchStubImpl::get_call_ptr(
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
) {
auto result = try_get_call_ptr(
@ -282,10 +266,6 @@ void* DispatchStubImpl::get_call_ptr(
#ifdef HAVE_SVE256_CPU_DEFINITION
,
SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
,
SVE128
#endif
);
if (std::holds_alternative<ErrorType>(result)) {
@ -320,9 +300,6 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
){
@ -365,16 +342,6 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
return DispatchResult(SVE256);
}
}
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
if (C10_UNLIKELY(!SVE128)) {
// dispatch to DEFAULT, since the SVE kernel is missing
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
} else {
return DispatchResult(SVE128);
}
}
#endif
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
}
@ -396,9 +363,6 @@ void* DispatchStubImpl::choose_cpu_impl(
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
) {
auto capability = static_cast<int>(get_cpu_capability());
(void)capability;
@ -444,17 +408,6 @@ void* DispatchStubImpl::choose_cpu_impl(
return SVE256;
}
}
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
if (C10_UNLIKELY(!SVE128)) {
// dispatch to DEFAULT, since the SVE kernel is missing
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
return DEFAULT;
} else {
return SVE128;
}
}
#endif
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
return DEFAULT;

View File

@ -64,9 +64,8 @@ enum class CPUCapability {
VSX = 1,
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
ZVECTOR = 1,
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
SVE256 = 1,
SVE128 = 2,
#else
AVX2 = 1,
AVX512 = 2,
@ -118,9 +117,6 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -142,9 +138,6 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -166,9 +159,6 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -193,9 +183,6 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -253,9 +240,6 @@ private:
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, reinterpret_cast<void*>(SVE256)
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, reinterpret_cast<void*>(SVE128)
#endif
)
);
@ -317,9 +301,6 @@ public:
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, reinterpret_cast<void*>(SVE256)
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, reinterpret_cast<void*>(SVE128)
#endif
);
if (std::holds_alternative<ErrorType>(result)){
@ -344,9 +325,6 @@ public:
#ifdef HAVE_SVE256_CPU_DEFINITION
static TORCH_API FnPtr SVE256;
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
static TORCH_API FnPtr SVE128;
#endif
private:
DispatchStubImpl impl;
};
@ -454,12 +432,6 @@ struct RegisterPRIVATEUSE1Dispatch {
#define REGISTER_SVE256_DISPATCH(name, fn)
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
#define REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, SVE128, fn)
#else
#define REGISTER_SVE128_DISPATCH(name, fn)
#endif
// Macro to register the same kernel for all CPU arch types. This is useful
// if a kernel does not benefit from being recompiled across different arch types.
#define REGISTER_ALL_CPU_DISPATCH(name, fn) \
@ -468,11 +440,6 @@ struct RegisterPRIVATEUSE1Dispatch {
REGISTER_AVX2_DISPATCH(name, fn) \
REGISTER_VSX_DISPATCH(name, fn) \
REGISTER_ZVECTOR_DISPATCH(name, fn) \
REGISTER_SVE256_DISPATCH(name, fn) \
REGISTER_SVE128_DISPATCH(name, fn)
#define REGISTER_SVE_DISPATCH(name, fn) \
REGISTER_SVE128_DISPATCH(name, fn) \
REGISTER_SVE256_DISPATCH(name, fn)
#define REGISTER_NO_CPU_DISPATCH(name) \
@ -515,7 +482,6 @@ struct RegisterPRIVATEUSE1Dispatch {
// REGISTER_DISPATCH now dispatches an AVX512 kernel to nullptr but registers other dispatches.
// ALSO_REGISTER_AVX512_DISPATCH should be used for ensuring AVX512 dispatch, among others.
// ALSO_REGISTER_SVE256_DISPATCH should be used for ensuring SVE256 dispatch, among others.
// ALSO_REGISTER_SVE128_DISPATCH should be used for ensuring SVE128 dispatch, among others.
#ifdef CPU_CAPABILITY_AVX512
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, ((void*)(fn) ? nullptr : nullptr))
#else
@ -523,7 +489,6 @@ struct RegisterPRIVATEUSE1Dispatch {
#endif
#define ALSO_REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#define ALSO_REGISTER_SVE256_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#define ALSO_REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#endif
} // namespace at::native

View File

@ -466,7 +466,7 @@ REGISTER_AVX2_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cp
REGISTER_AVX512_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
REGISTER_VSX_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
REGISTER_SVE_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
REGISTER_SVE256_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
// offsets dispatches
REGISTER_ARCH_DISPATCH(
@ -477,7 +477,7 @@ REGISTER_AVX2_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cp
REGISTER_AVX512_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
REGISTER_VSX_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
REGISTER_SVE_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
REGISTER_SVE256_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
// Currently some computation is being duplicated across forward and backward.
// TODO: Cache indices in forward pass to reuse in backward
@ -548,7 +548,7 @@ REGISTER_VSX_DISPATCH(
REGISTER_ZVECTOR_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel)
REGISTER_SVE_DISPATCH(
REGISTER_SVE256_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel)
@ -568,7 +568,7 @@ REGISTER_VSX_DISPATCH(
REGISTER_ZVECTOR_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel)
REGISTER_SVE_DISPATCH(
REGISTER_SVE256_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel)

View File

@ -212,7 +212,7 @@ std::pair<vec::Vectorized<float>, vec::Vectorized<float>> fmadd(
const vec::Vectorized<c10::Half>& b,
const vec::Vectorized<float>& acc_low,
const vec::Vectorized<float>& acc_high) {
#if defined(__aarch64__) && ((defined(__ARM_FEATURE_FP16_FML) && !defined(__ARM_FEATURE_SVE)) || (defined(CPU_CAPABILITY_SVE128)))
#if defined(__ARM_FEATURE_FP16_FML) && !defined(CPU_CAPABILITY_SVE)
return std::make_pair(vfmlalq_low_f16(acc_low, a, b), vfmlalq_high_f16(acc_high, a, b));
#else
const auto [a_float_low, a_float_high] = convert_half_float(a);
@ -233,7 +233,7 @@ std::pair<vec::Vectorized<float>, vec::Vectorized<float>> fmadd(
// Return a + b_low * c_low + b_high * c_high
vec::Vectorized<float> fmadd(vec::Vectorized<float> a, vec::Vectorized<Half> b, vec::Vectorized<Half> c) {
#if defined(__aarch64__) && ((defined(__ARM_FEATURE_FP16_FML) && !defined(__ARM_FEATURE_SVE)) || (defined(CPU_CAPABILITY_SVE128)))
#if defined(__aarch64__) && defined(__ARM_FEATURE_FP16_FML) && !defined(__ARM_FEATURE_SVE)
// NOTE: this instruction is an optional instruction in ARM v8.2 and
// v8.3, but mandatory in v8.4 per
// https://developer.arm.com/documentation/ddi0596/2021-03/SIMD-FP-Instructions/FMLAL--FMLAL2--vector---Floating-point-fused-Multiply-Add-Long-to-accumulator--vector--?lang=en

View File

@ -1124,17 +1124,6 @@ bool is_rowwise_scaling(const at::Tensor& t, const at::Tensor& scale) {
&& scale.is_contiguous());
}
bool check_size_stride(const at::Tensor& scale, int dim, int size, int stride) {
// For Blockwise1x128 and Blockwise128x128,
// when the scale tensor has a dimension of size 1, the stride is effectively
// "meaningless", i.e. PyTorch decides to use a stride of 1. Thus, the regular
// stride check fails. Here, we relax the stride check when the effective
// stride is 1.
return (
scale.size(dim) == size && (size <= 1 || scale.stride(dim) == stride));
}
// 1x16 blocks for packed nvfp4 data and fp8_e4m3fn scales
bool is_blockwise_1x16_scaling(const at::Tensor& t, const at::Tensor& scale) {
// Multiply t.size(1) by 2 to adjust for fp4x2 packing
@ -1160,24 +1149,15 @@ bool is_blockwise_1x32_scaling(const at::Tensor& t, const at::Tensor& scale) {
}
bool is_blockwise_1x128_scaling(const at::Tensor& t, const at::Tensor& scale) {
return (
isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat &&
scale.dim() == 2 && check_size_stride(scale, 0, t.size(0), 1) &&
check_size_stride(
scale, 1, ceil_div<int64_t>(t.size(1), 128), t.size(0)));
return (isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat && scale.dim() == 2
&& scale.size(0) == t.size(0) && scale.size(1) == ceil_div<int64_t>(t.size(1), 128)
&& scale.stride(0) == 1 && scale.stride(1) == t.size(0));
}
bool is_blockwise_128x128_scaling(const at::Tensor& t, const at::Tensor& scale) {
return (
isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat &&
scale.dim() == 2 &&
check_size_stride(
scale,
0,
ceil_div<int64_t>(t.size(0), 128),
round_up<int64_t>(ceil_div<int64_t>(t.size(1), 128), 4)) &&
check_size_stride(
scale, 1, ceil_div<int64_t>(t.size(1), 128), 1));
return (isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat && scale.dim() == 2
&& scale.size(0) == ceil_div<int64_t>(t.size(0), 128) && scale.size(1) == ceil_div<int64_t>(t.size(1), 128)
&& scale.stride(0) == round_up<int64_t>(ceil_div<int64_t>(t.size(1), 128), 4) && scale.stride(1) == 1);
}
bool is_desired_scaling(const at::Tensor& t, const at::Tensor& scale, ScalingType desired_scaling) {

View File

@ -5,7 +5,6 @@
#include <array>
#include <type_traits>
#include <ATen/core/TensorBase.h>
#include <ATen/ceil_div.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/cuda/CUDAContext.h>
@ -84,17 +83,11 @@ void gpu_index_kernel(TensorIteratorBase& iter, const IntArrayRef index_size, co
auto ind_dim_size = index_size[0];
auto inp_stride_bytes = index_stride[0];
auto out_stride_bytes = iter.strides(0)[1];
// avoid grid overflow in the fast kernel
const int64_t vec_chunks = ceil_div(slice_size, alignment);
const int64_t blocks_per_slice_upper = ceil_div(vec_chunks, (int64_t)launch_size_nd);
const int max_grid_y = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
// if it's an eligible grid we use the fast path, otherwise default to slower path
if (blocks_per_slice_upper <= max_grid_y) {
at::native::vectorized_gather_kernel_launch<alignment, int64_t>(out_ptr, in_ptr, (int64_t*)iter.data_ptr(2), num_ind,
slice_size, ind_dim_size, inp_stride_bytes, out_stride_bytes, /*allow_neg_indices*/true);
return;
}
}
if (iter.numel() == 0) return;
at::native::vectorized_gather_kernel_launch<alignment, int64_t>(out_ptr, in_ptr, (int64_t*)iter.data_ptr(2), num_ind,
slice_size, ind_dim_size, inp_stride_bytes, out_stride_bytes, /*allow_neg_indices*/true);
return;
}
}
auto sizes = std::array<int64_t, MAX_DIMS>{};

View File

@ -1238,7 +1238,7 @@ Tensor _cholesky_solve_helper_cuda_magma(const Tensor& self, const Tensor& A, bo
// Todo: cusolverDn<T>potrsBatched only supports nrhs == 1 and does not have good performance.
// Batched cholesky_solve is dispatched to magma.
Tensor _cholesky_solve_helper_cuda(const Tensor& self, const Tensor& A, bool upper) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
auto preferred_backend = at::globalContext().linalgPreferredBackend();
switch (preferred_backend) {
case at::LinalgBackend::Cusolver:
@ -1352,7 +1352,7 @@ void cholesky_helper_magma(const Tensor& input, bool upper, const Tensor& info)
}
static void cholesky_kernel(const Tensor& input, const Tensor& info, bool upper) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
auto preferred_backend = at::globalContext().linalgPreferredBackend();
switch (preferred_backend) {
case at::LinalgBackend::Cusolver:
@ -2709,7 +2709,7 @@ void linalg_lstsq_gels(const Tensor& A, const Tensor& B, const Tensor& /*infos*/
}
void gels_looped(const Tensor& a, Tensor& b, Tensor& infos) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
auto preferred_backend = at::globalContext().linalgPreferredBackend();
switch (preferred_backend) {
case at::LinalgBackend::Magma:
@ -2733,7 +2733,7 @@ void lstsq_kernel(const Tensor& a, Tensor& b, Tensor& /*rank*/, Tensor& /*singul
// first handle the underdetermined case (m < n)
// this case is not supported by MAGMA or cuBLAS
if (m < n) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
linalg_lstsq_gels(a, b, infos);
#else
TORCH_CHECK(

View File

@ -165,7 +165,7 @@ REGISTER_AVX2_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_co
REGISTER_AVX512_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_ZVECTOR_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_VSX_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_SVE_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_SVE256_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
// _out variants can be shared between PocketFFT and MKL
Tensor& _fft_r2c_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,

View File

@ -14,8 +14,8 @@ template <typename T, int D, int V = D>
device T* out [[buffer(3)]],
const constant uint& gqa_factor [[buffer(4)]],
const constant uint& N [[buffer(5)]],
const constant uint3& qkv_head_strides [[buffer(6)]],
const constant uint3& qkv_seq_strides [[buffer(7)]],
const constant uint2& k_head_seq_stride [[buffer(6)]],
const constant uint2& v_head_seq_stride [[buffer(7)]],
const constant float& scale [[buffer(8)]],
const device bool* mask [[buffer(9)]],
const constant uint3& mask_strides [[buffer(10)]],
@ -28,12 +28,10 @@ template <typename T, int D, int V = D>
constexpr uint BD = 32;
constexpr uint qk_per_thread = D / BD;
constexpr uint v_per_thread = V / BD;
const uint q_head_stride = qkv_head_strides.x;
const uint q_seq_stride = qkv_seq_strides.x;
const uint k_head_stride = qkv_head_strides.y;
const uint k_seq_stride = qkv_seq_strides.y;
const uint v_head_stride = qkv_head_strides.z;
const uint v_seq_stride = qkv_seq_strides.z;
const uint k_head_stride = k_head_seq_stride.x;
const uint k_seq_stride = k_head_seq_stride.y;
const uint v_head_stride = v_head_seq_stride.x;
const uint v_seq_stride = v_head_seq_stride.y;
const uint mask_head_stride = mask_strides.x;
const uint mask_kv_seq_stride = mask_strides.y;
const uint mask_q_seq_stride = mask_strides.z;
@ -56,9 +54,9 @@ template <typename T, int D, int V = D>
const int kv_head_idx = head_idx / gqa_factor;
const int Q = tpg.y;
const int group_offset = head_idx * Q + q_seq_idx;
const int q_offset = group_offset;
const int o_offset = group_offset;
queries += head_idx * q_head_stride + q_seq_idx * q_seq_stride +
simd_lid * qk_per_thread;
queries += q_offset * D + simd_lid * qk_per_thread;
keys += kv_head_idx * k_head_stride + simd_gid * k_seq_stride +
simd_lid * qk_per_thread;
values += kv_head_idx * v_head_stride + simd_gid * v_seq_stride +
@ -158,8 +156,8 @@ template <typename T, int D, int V = D>
device float* maxs [[buffer(5)]],
const constant uint& gqa_factor [[buffer(6)]],
const constant uint& N [[buffer(7)]],
const constant uint3& qkv_head_strides [[buffer(8)]],
const constant uint3& qkv_seq_strides [[buffer(9)]],
const constant uint2& k_head_seq_stride [[buffer(8)]],
const constant uint2& v_head_seq_stride [[buffer(9)]],
const constant float& scale [[buffer(10)]],
const device bool* mask [[buffer(11)]],
const constant uint3& mask_strides [[buffer(12)]],
@ -172,12 +170,10 @@ template <typename T, int D, int V = D>
constexpr int BD = 32;
constexpr int qk_per_thread = D / BD;
constexpr int v_per_thread = V / BD;
const int q_head_stride = qkv_head_strides.x;
const int q_seq_stride = qkv_seq_strides.x;
const int k_head_stride = qkv_head_strides.y;
const int k_seq_stride = qkv_seq_strides.y;
const int v_head_stride = qkv_head_strides.z;
const int v_seq_stride = qkv_seq_strides.z;
const int k_head_stride = k_head_seq_stride.x;
const int k_seq_stride = k_head_seq_stride.y;
const int v_head_stride = v_head_seq_stride.x;
const int v_seq_stride = v_head_seq_stride.y;
const int mask_kv_seq_stride = mask_strides.x;
const int mask_q_seq_stride = mask_strides.y;
const int mask_head_stride = mask_strides.z;
@ -200,10 +196,10 @@ template <typename T, int D, int V = D>
const int head_idx = tid.x;
const int q_seq_idx = tid.y;
const int o_offset = head_idx * tpg.y + q_seq_idx;
const int q_offset = o_offset;
const int kv_head_idx = head_idx / gqa_factor;
queries += head_idx * q_head_stride + q_seq_idx * q_seq_stride +
simd_lid * qk_per_thread;
queries += q_offset * D + simd_lid * qk_per_thread;
keys += kv_head_idx * k_head_stride +
(block_idx * BN + simd_gid) * k_seq_stride + simd_lid * qk_per_thread;
values += kv_head_idx * v_head_stride +
@ -524,25 +520,25 @@ kernel void attention(
}
}
#define INSTANTIATE_SDPA_VECTOR(DTYPE, QK_DIM, VALUE_DIM) \
template [[host_name("sdpa_vector_" #DTYPE "_" #QK_DIM \
"_" #VALUE_DIM)]] kernel void \
sdpa_vector<DTYPE, QK_DIM, VALUE_DIM>( \
const device DTYPE* queries [[buffer(0)]], \
const device DTYPE* keys [[buffer(1)]], \
const device DTYPE* values [[buffer(2)]], \
device DTYPE* out [[buffer(3)]], \
const constant uint& gqa_factor [[buffer(4)]], \
const constant uint& N [[buffer(5)]], \
const constant uint3& qkv_head_strides [[buffer(6)]], \
const constant uint3& qkv_seq_strides [[buffer(7)]], \
const constant float& scale [[buffer(8)]], \
const device bool* mask [[buffer(9)]], \
const constant uint3& mask_strides [[buffer(10)]], \
const constant bool& has_mask [[buffer(11)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 tpg [[threadgroups_per_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
#define INSTANTIATE_SDPA_VECTOR(DTYPE, QK_DIM, VALUE_DIM) \
template [[host_name("sdpa_vector_" #DTYPE "_" #QK_DIM \
"_" #VALUE_DIM)]] kernel void \
sdpa_vector<DTYPE, QK_DIM, VALUE_DIM>( \
const device DTYPE* queries [[buffer(0)]], \
const device DTYPE* keys [[buffer(1)]], \
const device DTYPE* values [[buffer(2)]], \
device DTYPE* out [[buffer(3)]], \
const constant uint& gqa_factor [[buffer(4)]], \
const constant uint& N [[buffer(5)]], \
const constant uint2& k_head_seq_stride [[buffer(6)]], \
const constant uint2& v_head_seq_stride [[buffer(7)]], \
const constant float& scale [[buffer(8)]], \
const device bool* mask [[buffer(9)]], \
const constant uint3& mask_strides [[buffer(10)]], \
const constant bool& has_mask [[buffer(11)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 tpg [[threadgroups_per_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
#define INSTANTIATE_SDPA_VECTOR_2PASS_1(DTYPE, QK_DIM, VALUE_DIM) \
@ -557,8 +553,8 @@ kernel void attention(
device float* maxs [[buffer(5)]], \
const constant uint& gqa_factor [[buffer(6)]], \
const constant uint& N [[buffer(7)]], \
const constant uint3& qkv_head_strides [[buffer(8)]], \
const constant uint3& qkv_seq_strides [[buffer(9)]], \
const constant uint2& k_head_seq_stride [[buffer(8)]], \
const constant uint2& v_head_seq_stride [[buffer(9)]], \
const constant float& scale [[buffer(10)]], \
const device bool* mask [[buffer(11)]], \
const constant uint3& mask_strides [[buffer(12)]], \

View File

@ -25,7 +25,7 @@ struct ReductionOp {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
opmath_t<T> out_val,
bool /*is_first*/) {
bool is_first) {
return weight_val + out_val;
}
};
@ -44,9 +44,9 @@ template <EmbeddingBagMode M, typename T>
struct MaybeApplyPerSampleWeight {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
uint32_t /*per_sample_weights_index*/,
constant T* /*per_sample_weights*/,
uint32_t /*per_sample_weights_stride*/) {
uint32_t per_sample_weights_index,
constant T* per_sample_weights,
uint32_t per_sample_weights_stride) {
return weight_val;
}
};
@ -71,12 +71,12 @@ struct MaybeApplyPerSampleWeight<EmbeddingBagMode::SUM, T> {
template <EmbeddingBagMode M, typename T, typename I>
struct MaybeCalcMaxIndex {
inline void operator()(
opmath_t<T> /*weight_val*/,
opmath_t<T> /*out_val*/,
bool /*is_first*/,
thread I& /*max_idx*/,
I /*weight_idx*/,
bool /*pad*/) {}
opmath_t<T> weight_val,
opmath_t<T> out_val,
bool is_first,
thread I& max_idx,
I weight_idx,
bool pad) {}
};
template <typename T, typename I>

View File

@ -223,6 +223,9 @@ void grid_sampler_single_element(
auto input_size = input_sizes[input_dim];
auto coord = static_cast<opmath_t<T>>(coords[coord_dim]);
// Interpret nan as -1
coord = isnan(coord) ? -1 : coord;
if (!align_corners) {
// Map unaligned grid space to aligned grid space
auto corner_alignment_factor = static_cast<opmath_t<T>>(input_size) /

View File

@ -182,8 +182,6 @@ static std::tuple<Tensor, Tensor> sdpa_vector_fast_mps(const Tensor& q_,
uint maxSeqLength = k_.size(2);
uint N = k_.size(2);
uint B = q_.size(0) * q_.size(1);
uint q_head_stride = q_.stride(1);
uint q_seq_stride = q_.stride(2);
uint k_head_stride = k_.stride(1);
uint k_seq_stride = k_.stride(2);
uint v_head_stride = v_.stride(1);
@ -211,8 +209,8 @@ static std::tuple<Tensor, Tensor> sdpa_vector_fast_mps(const Tensor& q_,
out,
1,
N,
std::array<uint32_t, 3>{q_head_stride, k_head_stride, v_head_stride},
std::array<uint32_t, 3>{q_seq_stride, k_seq_stride, v_seq_stride},
std::array<uint32_t, 2>{k_head_stride, k_seq_stride},
std::array<uint32_t, 2>{v_head_stride, v_seq_stride},
scale_factor);
if (has_mask) {
@ -259,8 +257,6 @@ static std::tuple<Tensor, Tensor> sdpa_vector_2pass_mps(const Tensor& q_,
uint B = batchSize * num_heads;
uint gqa_factor = q_.size(1) / k_.size(1);
uint q_head_stride = q_.stride(1);
uint q_seq_stride = q_.stride(2);
uint k_head_stride = k_.stride(1);
uint k_seq_stride = k_.stride(2);
uint v_head_stride = v_.stride(1);
@ -298,8 +294,8 @@ static std::tuple<Tensor, Tensor> sdpa_vector_2pass_mps(const Tensor& q_,
maxs,
gqa_factor,
N,
std::array<uint32_t, 3>{q_head_stride, k_head_stride, v_head_stride},
std::array<uint32_t, 3>{q_seq_stride, k_seq_stride, v_seq_stride},
std::array<uint32_t, 2>{k_head_stride, k_seq_stride},
std::array<uint32_t, 2>{v_head_stride, v_seq_stride},
scale_factor);
if (has_mask) {

View File

@ -9,22 +9,11 @@
#else
#include <ATen/ops/_unique2.h>
#include <ATen/ops/_unique2_native.h>
#include <ATen/ops/arange.h>
#include <ATen/ops/argsort.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/full.h>
#include <ATen/ops/masked_select.h>
#include <ATen/ops/nonzero.h>
#include <ATen/ops/ones.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/slice.h>
#include <ATen/ops/unique_consecutive.h>
#include <ATen/ops/unique_consecutive_native.h>
#include <ATen/ops/unique_dim_consecutive.h>
#include <ATen/ops/unique_dim_consecutive_native.h>
#include <ATen/ops/unique_dim_native.h>
#include <ATen/ops/zeros.h>
#endif
namespace at::native {
@ -316,85 +305,4 @@ std::tuple<Tensor, Tensor, Tensor> _unique2_mps(const Tensor& self,
return _unique_impl_mps(self, return_inverse, return_counts, false, std::nullopt);
}
static Tensor lexsort_rows_perm_mps(const Tensor& mat_2d) {
const auto rows = mat_2d.size(0), cols = mat_2d.size(1);
if (rows <= 1 || cols == 0) {
return arange(rows, mat_2d.options().dtype(kLong));
}
auto perm = arange(rows, mat_2d.options().dtype(kLong));
for (auto c = cols - 1; c >= 0; --c) {
auto keys = mat_2d.select(1, c).index_select(0, perm);
const auto idx = argsort(keys, /*dim=*/0, /*descending=*/false);
perm = perm.index_select(0, idx);
}
return perm;
}
static std::tuple<Tensor, Tensor, Tensor> unique_dim_sorted_mps_impl(const Tensor& self,
int64_t dim,
bool return_inverse,
bool return_counts) {
dim = maybe_wrap_dim(dim, self.dim());
auto sizes = self.sizes().vec();
auto num_zero_dims = std::count(sizes.begin(), sizes.end(), (int64_t)0);
if (self.size(dim) == 0) {
auto output = at::empty(sizes, self.options());
auto inverse_indices = at::empty({0}, self.options().dtype(kLong));
auto counts = at::empty({0}, self.options().dtype(kLong));
return {output, inverse_indices, counts};
}
auto transposed = self.moveaxis(dim, 0);
auto orig_sizes = transposed.sizes().vec();
auto rows = transposed.size(0);
auto input_flat = transposed.contiguous().view({rows, -1});
auto perm = lexsort_rows_perm_mps(input_flat);
auto input_sorted = input_flat.index_select(0, perm);
Tensor is_unique = at::zeros({rows}, self.options().dtype(kBool));
if (rows > 0) {
is_unique.narrow(0, 0, 1).fill_(true);
}
if (rows > 1) {
auto a = input_sorted.narrow(0, 1, rows - 1);
auto b = input_sorted.narrow(0, 0, rows - 1);
auto row_changed = a.ne(b).any(1);
is_unique.narrow(0, 1, rows - 1).copy_(row_changed);
}
auto unique_pos = nonzero(is_unique).squeeze(1);
auto group_id = cumsum(is_unique.to(kLong), 0).sub(1);
auto unique_rows_2d = input_sorted.index_select(0, unique_pos);
Tensor inverse_indices = empty({0}, self.options().dtype(kLong));
if (return_inverse) {
inverse_indices = empty({rows}, self.options().dtype(kLong));
inverse_indices.index_copy_(0, perm, group_id);
}
Tensor counts = empty({0}, self.options().dtype(kLong));
if (return_counts) {
const auto num_unique = unique_pos.size(0);
counts = zeros({num_unique}, self.options().dtype(kLong));
counts.scatter_add_(0, group_id, ones_like(group_id, group_id.options().dtype(kLong)));
}
orig_sizes[0] = unique_rows_2d.size(0);
auto output = unique_rows_2d.view(orig_sizes).moveaxis(0, dim);
return std::make_tuple(std::move(output), std::move(inverse_indices), std::move(counts));
}
std::tuple<Tensor, Tensor, Tensor> unique_dim_mps(const Tensor& self,
int64_t dim,
const bool /*sorted*/,
const bool return_inverse,
const bool return_counts) {
return unique_dim_sorted_mps_impl(self, dim, return_inverse, return_counts);
}
} // namespace at::native

View File

@ -1409,7 +1409,7 @@
- func: _sparse_broadcast_to(Tensor(a) self, int[] size) -> Tensor(a)
variants: function
dispatch:
SparseCPU, SparseCUDA, SparseMPS: sparse_broadcast_to
SparseCPU, SparseCUDA: sparse_broadcast_to
- func: cat(Tensor[] tensors, int dim=0) -> Tensor
structured_delegate: cat.out
@ -6450,7 +6450,6 @@
dispatch:
CPU: unique_dim_cpu
CUDA: unique_dim_cuda
MPS: unique_dim_mps
tags: dynamic_output_shape
autogen: unique_dim.out

View File

@ -27,6 +27,6 @@ REGISTER_AVX512_DISPATCH(flatten_indices_stub, &flatten_indices_cpu_kernel)
REGISTER_AVX2_DISPATCH(flatten_indices_stub, &flatten_indices_cpu_kernel)
REGISTER_VSX_DISPATCH(flatten_indices_stub, &flatten_indices_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(flatten_indices_stub, &flatten_indices_cpu_kernel)
REGISTER_SVE_DISPATCH(flatten_indices_stub, &flatten_indices_cpu_kernel)
REGISTER_SVE256_DISPATCH(flatten_indices_stub, &flatten_indices_cpu_kernel)
} // namespace at::native

View File

@ -161,19 +161,19 @@ REGISTER_AVX512_DISPATCH(mul_sparse_sparse_out_stub, &mul_sparse_sparse_out_cpu_
REGISTER_AVX2_DISPATCH(mul_sparse_sparse_out_stub, &mul_sparse_sparse_out_cpu_kernel)
REGISTER_VSX_DISPATCH(mul_sparse_sparse_out_stub, &mul_sparse_sparse_out_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(mul_sparse_sparse_out_stub, &mul_sparse_sparse_out_cpu_kernel)
REGISTER_SVE_DISPATCH(mul_sparse_sparse_out_stub, &mul_sparse_sparse_out_cpu_kernel)
REGISTER_SVE256_DISPATCH(mul_sparse_sparse_out_stub, &mul_sparse_sparse_out_cpu_kernel)
REGISTER_ARCH_DISPATCH(sparse_mask_intersection_out_stub, DEFAULT, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_AVX512_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_AVX2_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_VSX_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_SVE_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_SVE256_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_cpu_kernel)
REGISTER_ARCH_DISPATCH(sparse_mask_projection_out_stub, DEFAULT, &sparse_mask_projection_out_cpu_kernel)
REGISTER_AVX512_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_cpu_kernel)
REGISTER_AVX2_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_cpu_kernel)
REGISTER_VSX_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_cpu_kernel)
REGISTER_SVE_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_cpu_kernel)
REGISTER_SVE256_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_cpu_kernel)
}

View File

@ -448,7 +448,7 @@ REGISTER_AVX2_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_cpp)
REGISTER_AVX512_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_cpp)
REGISTER_VSX_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_cpp)
REGISTER_ZVECTOR_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_cpp)
REGISTER_SVE_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_cpp)
REGISTER_SVE256_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_cpp)
REGISTER_HPU_DISPATCH(_fused_sdp_choice_stub, &_fused_sdp_choice_meta)
int64_t _fused_sdp_choice_meta(

View File

@ -688,15 +688,6 @@ bool can_use_cudnn_attention(const sdp_params& params, bool debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version too old to use cuDNN Attention (< v9.0.0)");
}
return false;
#endif
#if defined(CUDNN_VERSION)
static auto cudnn_version = cudnnGetVersion();
if (params.dropout > 0.0 && cudnn_version > 91100 && cudnn_version < 91400) {
if (debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version does not support droppout in SDPA (9.11 - 9.13).");
}
return false;
}
#endif
// Define gate functions that determine if a flash kernel can be ran
// Replace with std::to_array when we migrate to c++20

View File

@ -218,7 +218,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
218
219
220
221
222
223
224

View File

@ -146,7 +146,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
146
147
148
149
150
151
152

View File

@ -182,7 +182,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,1
microbench_unbacked_tolist_sum,pass,0

1 name accuracy graph_breaks
182
183
184
185
186
187
188

View File

@ -182,7 +182,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,1
microbench_unbacked_tolist_sum,pass,0

1 name accuracy graph_breaks
182
183
184
185
186
187
188

View File

@ -198,7 +198,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
198
199
200
201
202
203
204

View File

@ -198,7 +198,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
198
199
200
201
202
203
204

View File

@ -198,7 +198,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
198
199
200
201
202
203
204

View File

@ -218,7 +218,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
218
219
220
221
222
223
224

View File

@ -146,7 +146,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
146
147
148
149
150
151
152

View File

@ -166,7 +166,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,1
microbench_unbacked_tolist_sum,pass,0

1 name accuracy graph_breaks
166
167
168
169
170
171
172

View File

@ -166,7 +166,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,1
microbench_unbacked_tolist_sum,pass,0

1 name accuracy graph_breaks
166
167
168
169
170
171
172

View File

@ -182,7 +182,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
182
183
184
185
186
187
188

View File

@ -198,7 +198,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
198
199
200
201
202
203
204

View File

@ -218,7 +218,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
218
219
220
221
222
223
224

View File

@ -146,7 +146,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
146
147
148
149
150
151
152

View File

@ -218,7 +218,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
218
219
220
221
222
223
224

View File

@ -146,7 +146,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
146
147
148
149
150
151
152

View File

@ -218,7 +218,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
218
219
220
221
222
223
224

View File

@ -146,7 +146,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
146
147
148
149
150
151
152

View File

@ -221,7 +221,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
221
222
223
224
225
226
227

View File

@ -154,7 +154,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
154
155
156
157
158
159
160

View File

@ -221,7 +221,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
221
222
223
224
225
226
227

View File

@ -154,7 +154,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
154
155
156
157
158
159
160

View File

@ -142,7 +142,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
142
143
144
145
146
147
148

View File

@ -221,7 +221,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
221
222
223
224
225
226
227

View File

@ -154,7 +154,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
154
155
156
157
158
159
160

View File

@ -142,7 +142,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
142
143
144
145
146
147
148

View File

@ -6,4 +6,4 @@
4. (Optional) flip a flag that you know will change the benchmark and run again with b.txt `PYTHONPATH=./ python benchmarks/[YOUR_BENCHMARK].py a.txt`
5. Compare `a.txt` and `b.txt` located within the `benchmarks/dynamo/pr_time_benchmarks` folder to make sure things look as you expect
6. Check in your new benchmark file and submit a new PR
7. In a few days, if your benchmark is stable, bug Laith Sakka to enable running your benchmark on all PRs. If you are a meta employee, you can find the dashboard here: https://internalfb.com/intern/unidash/dashboard/pt2_diff_time_metrics
7. In a few days, if your benchmark is stable, bug Laith Sakka to enable running your benchmark on all PRs. If your a meta employee, you can find the dashboard here: internalfb.com/intern/unidash/dashboard/pt2_diff_time_metrics

Some files were not shown because too many files have changed in this diff Show More