mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-31 20:34:54 +08:00 
			
		
		
		
	Compare commits
	
		
			60 Commits
		
	
	
		
			fbcode/war
			...
			v1.5.0-rc2
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| dacdbc22d1 | |||
| 2a789cd0e0 | |||
| f9b010f399 | |||
| 55614ff306 | |||
| b12579da53 | |||
| 920e3eb761 | |||
| bec01e755a | |||
| 6a880e1bc9 | |||
| fa86e32a4e | |||
| 5aabaf2b18 | |||
| 4a707e8f95 | |||
| db127b21eb | |||
| 45313cd9e1 | |||
| df531973e1 | |||
| 9e3c577caa | |||
| 5357b8e4d9 | |||
| 0f23d23db4 | |||
| 7c24280a3f | |||
| 7100f0be13 | |||
| f7f611c2ec | |||
| acb982d0b0 | |||
| aa8b7ad989 | |||
| 2d403ed8be | |||
| c25a664f77 | |||
| ab660ae394 | |||
| 3c476a8858 | |||
| 651fa88645 | |||
| 565c3400b4 | |||
| 3e332778b4 | |||
| f598738920 | |||
| 4c6bfa0187 | |||
| 6f25003682 | |||
| 752c129fa1 | |||
| fb59a9caca | |||
| 4d30dbdd35 | |||
| b7f4a1a397 | |||
| afda1dc943 | |||
| d506ae882b | |||
| 36e5abe531 | |||
| 6e6f62230e | |||
| 5d15577e6c | |||
| 6aa5298c5c | |||
| f3df13725b | |||
| 4eee3caa11 | |||
| 4d96463130 | |||
| 246b824644 | |||
| 5ca9014318 | |||
| 48590d6a9b | |||
| 75148df1f5 | |||
| b89eb7c654 | |||
| 8877885454 | |||
| e2184ba083 | |||
| 8ef47ad2f0 | |||
| 6725b6f503 | |||
| bcd3f6da1a | |||
| 0b3d2f7b7d | |||
| f522651a7e | |||
| 01c8ef2757 | |||
| 7cfe68ce3a | |||
| 6f3120c6b9 | 
| @ -34,8 +34,6 @@ def get_processor_arch_name(cuda_version): | ||||
|  | ||||
| LINUX_PACKAGE_VARIANTS = OrderedDict( | ||||
|     manywheel=[ | ||||
|         "2.7m", | ||||
|         "2.7mu", | ||||
|         "3.5m", | ||||
|         "3.6m", | ||||
|         "3.7m", | ||||
|  | ||||
| @ -351,16 +351,16 @@ jobs: | ||||
|           export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE}) | ||||
|  | ||||
|           # TODO We may want to move the rebase logic to a separate step after checkout | ||||
|           # Rebase to master only if in xenial_py3_6_gcc5_4 case | ||||
|           if [[ "${CIRCLE_BRANCH}" != "master" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then | ||||
|             echo "Merge master branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT" | ||||
|           # Rebase to release/1.5 only if in xenial_py3_6_gcc5_4 case | ||||
|           if [[ "${CIRCLE_BRANCH}" != "release/1.5" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then | ||||
|             echo "Merge release/1.5 branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT" | ||||
|             set -x | ||||
|             git config --global user.email "circleci.ossci@gmail.com" | ||||
|             git config --global user.name "CircleCI" | ||||
|             git config remote.origin.url https://github.com/pytorch/pytorch.git | ||||
|             git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master | ||||
|             git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet | ||||
|             export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/master` | ||||
|             git config --add remote.origin.fetch +refs/heads/release/1.5:refs/remotes/origin/release/1.5 | ||||
|             git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/release/1.5:refs/remotes/origin/release/1.5 --depth=100 --quiet | ||||
|             export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/release/1.5` | ||||
|             echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET} | ||||
|             export GIT_COMMIT=${CIRCLE_SHA1} | ||||
|             echo "GIT_COMMIT: " ${GIT_COMMIT} | ||||
| @ -369,7 +369,7 @@ jobs: | ||||
|             git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET} | ||||
|             set +x | ||||
|           else | ||||
|             echo "Do NOT merge master branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT" | ||||
|             echo "Do NOT merge release/1.5 branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT" | ||||
|           fi | ||||
|  | ||||
|           git submodule sync && git submodule update -q --init --recursive | ||||
| @ -2544,28 +2544,6 @@ workflows: | ||||
|           libtorch_variant: "shared-with-deps" | ||||
|           docker_image: "pytorch/pytorch-binary-docker-image-ubuntu16.04:latest" | ||||
|  | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7m_cpu_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7m cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7mu_cpu_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7mu cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_3_5m_cpu_devtoolset7_nightly | ||||
|           build_environment: "manywheel 3.5m cpu devtoolset7" | ||||
| @ -2610,32 +2588,6 @@ workflows: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7m_cu92_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7m cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7mu_cu92_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7mu cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_3_5m_cu92_devtoolset7_nightly | ||||
|           build_environment: "manywheel 3.5m cu92 devtoolset7" | ||||
| @ -2688,32 +2640,6 @@ workflows: | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7m_cu101_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7m cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7mu_cu101_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7mu cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_3_5m_cu101_devtoolset7_nightly | ||||
|           build_environment: "manywheel 3.5m cu101 devtoolset7" | ||||
| @ -2766,32 +2692,6 @@ workflows: | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7m_cu102_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7m cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_2_7mu_cu102_devtoolset7_nightly | ||||
|           build_environment: "manywheel 2.7mu cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - update_s3_htmls_for_nightlies | ||||
|             - update_s3_htmls_for_nightlies_devtoolset7 | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - smoke_linux_test: | ||||
|           name: smoke_linux_manywheel_3_5m_cu102_devtoolset7_nightly | ||||
|           build_environment: "manywheel 3.5m cu102 devtoolset7" | ||||
| @ -3636,28 +3536,6 @@ workflows: | ||||
|           filters: | ||||
|             branches: | ||||
|               only: postnightly | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7m cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7mu cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_3_5m_cpu_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 3.5m cpu devtoolset7" | ||||
| @ -3702,28 +3580,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7m cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7mu cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_3_5m_cu92_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 3.5m cu92 devtoolset7" | ||||
| @ -3768,28 +3624,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7m cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7mu cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_3_5m_cu101_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 3.5m cu101 devtoolset7" | ||||
| @ -3834,28 +3668,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7m cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 2.7mu cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_build: | ||||
|           name: binary_linux_manywheel_3_5m_cu102_devtoolset7_nightly_build | ||||
|           build_environment: "manywheel 3.5m cu102 devtoolset7" | ||||
| @ -4706,30 +4518,6 @@ workflows: | ||||
| ############################################################################## | ||||
| # Nightly tests | ||||
| ############################################################################## | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7m cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7mu cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_3_5m_cpu_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 3.5m cpu devtoolset7" | ||||
| @ -4778,34 +4566,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7m cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7mu cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_3_5m_cu92_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 3.5m cu92 devtoolset7" | ||||
| @ -4862,34 +4622,6 @@ workflows: | ||||
|           docker_image: "pytorch/manylinux-cuda92" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7m cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7mu cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_3_5m_cu101_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 3.5m cu101 devtoolset7" | ||||
| @ -4946,34 +4678,6 @@ workflows: | ||||
|           docker_image: "pytorch/manylinux-cuda101" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7m cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 2.7mu cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_build | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           docker_image: "pytorch/manylinux-cuda102" | ||||
|           use_cuda_docker_runtime: "1" | ||||
|           resource_class: gpu.medium | ||||
|       - binary_linux_test: | ||||
|           name: binary_linux_manywheel_3_5m_cu102_devtoolset7_nightly_test | ||||
|           build_environment: "manywheel 3.5m cu102 devtoolset7" | ||||
| @ -5772,30 +5476,6 @@ workflows: | ||||
|       #      - binary_linux_libtorch_2.7m_cu90_build | ||||
|  | ||||
|       # Nightly uploads | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7m cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7mu cpu devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_3_5m_cpu_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 3.5m cpu devtoolset7" | ||||
| @ -5844,30 +5524,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7m cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7mu cu92 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_3_5m_cu92_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 3.5m cu92 devtoolset7" | ||||
| @ -5916,30 +5572,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7m cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7mu cu101 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_3_5m_cu101_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 3.5m cu101 devtoolset7" | ||||
| @ -5988,30 +5620,6 @@ workflows: | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7m cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 2.7mu cu102 devtoolset7" | ||||
|           requires: | ||||
|             - setup | ||||
|             - binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_test | ||||
|           filters: | ||||
|             branches: | ||||
|               only: nightly | ||||
|             tags: | ||||
|               only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/ | ||||
|           context: org-member | ||||
|       - binary_linux_upload: | ||||
|           name: binary_linux_manywheel_3_5m_cu102_devtoolset7_nightly_upload | ||||
|           build_environment: "manywheel 3.5m cu102 devtoolset7" | ||||
|  | ||||
| @ -2,6 +2,19 @@ | ||||
| set -eux -o pipefail | ||||
| export TZ=UTC | ||||
|  | ||||
| tagged_version() { | ||||
|   # Grabs version from either the env variable CIRCLE_TAG | ||||
|   # or the pytorch git described version | ||||
|   GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe" | ||||
|   if [[ -n "${CIRCLE_TAG:-}" ]]; then | ||||
|     echo "${CIRCLE_TAG}" | ||||
|   elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then | ||||
|     ${GIT_DESCRIBE} --tags | ||||
|   else | ||||
|     return 1 | ||||
|   fi | ||||
| } | ||||
|  | ||||
| # We need to write an envfile to persist these variables to following | ||||
| # steps, but the location of the envfile depends on the circleci executor | ||||
| if [[ "$(uname)" == Darwin ]]; then | ||||
| @ -47,15 +60,17 @@ export DATE="$(date -u +%Y%m%d)" | ||||
| #TODO: We should be pulling semver version from the base version.txt | ||||
| BASE_BUILD_VERSION="1.5.0.dev$DATE" | ||||
| # Change BASE_BUILD_VERSION to git tag when on a git tag | ||||
| if git describe --tags --exact >/dev/null 2>/dev/null; then | ||||
| # Use 'git -C' to make doubly sure we're in the correct directory for checking | ||||
| # the git tag | ||||
| if tagged_version >/dev/null; then | ||||
|   # Switch upload folder to 'test/' if we are on a tag | ||||
|   PIP_UPLOAD_FOLDER='test/' | ||||
|   # Grab git tag, remove prefixed v and remove everything after - | ||||
|   # Used to clean up tags that are for release candidates like v1.5.0-rc1 | ||||
|   # Turns tag v1.5.0-rc1 -> v1.5.0 | ||||
|   BASE_BUILD_VERSION="$(git describe --tags | sed -e 's/^v//' -e 's/-.*$//')" | ||||
|   BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')" | ||||
| fi | ||||
| if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu101" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then | ||||
| if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then | ||||
|   export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}" | ||||
| else | ||||
|   export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA" | ||||
|  | ||||
| @ -20,16 +20,16 @@ jobs: | ||||
|           export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE}) | ||||
|  | ||||
|           # TODO We may want to move the rebase logic to a separate step after checkout | ||||
|           # Rebase to master only if in xenial_py3_6_gcc5_4 case | ||||
|           if [[ "${CIRCLE_BRANCH}" != "master" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then | ||||
|             echo "Merge master branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT" | ||||
|           # Rebase to release/1.5 only if in xenial_py3_6_gcc5_4 case | ||||
|           if [[ "${CIRCLE_BRANCH}" != "release/1.5" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then | ||||
|             echo "Merge release/1.5 branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT" | ||||
|             set -x | ||||
|             git config --global user.email "circleci.ossci@gmail.com" | ||||
|             git config --global user.name "CircleCI" | ||||
|             git config remote.origin.url https://github.com/pytorch/pytorch.git | ||||
|             git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master | ||||
|             git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet | ||||
|             export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/master` | ||||
|             git config --add remote.origin.fetch +refs/heads/release/1.5:refs/remotes/origin/release/1.5 | ||||
|             git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/release/1.5:refs/remotes/origin/release/1.5 --depth=100 --quiet | ||||
|             export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/release/1.5` | ||||
|             echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET} | ||||
|             export GIT_COMMIT=${CIRCLE_SHA1} | ||||
|             echo "GIT_COMMIT: " ${GIT_COMMIT} | ||||
| @ -38,7 +38,7 @@ jobs: | ||||
|             git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET} | ||||
|             set +x | ||||
|           else | ||||
|             echo "Do NOT merge master branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT" | ||||
|             echo "Do NOT merge release/1.5 branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT" | ||||
|           fi | ||||
|  | ||||
|           git submodule sync && git submodule update -q --init --recursive | ||||
|  | ||||
| @ -167,7 +167,7 @@ fi | ||||
|  | ||||
| # Patch required to build xla | ||||
| if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then | ||||
|   git clone --recursive https://github.com/pytorch/xla.git | ||||
|   git clone --recursive -b r1.5 https://github.com/pytorch/xla.git | ||||
|   ./xla/scripts/apply_patches.sh | ||||
| fi | ||||
|  | ||||
|  | ||||
| @ -18,7 +18,7 @@ if [ ! -d "${WORKSPACE_DIR}/miniconda3" ]; then | ||||
| fi | ||||
| export PATH="${WORKSPACE_DIR}/miniconda3/bin:$PATH" | ||||
| source ${WORKSPACE_DIR}/miniconda3/bin/activate | ||||
| retry conda install -y mkl mkl-include numpy pyyaml setuptools cmake cffi ninja | ||||
| retry conda install -y mkl mkl-include numpy pyyaml=5.3 setuptools=46.0.0 cmake cffi ninja | ||||
|  | ||||
| # The torch.hub tests make requests to GitHub. | ||||
| # | ||||
|  | ||||
| @ -16,14 +16,6 @@ | ||||
| #include <numeric> | ||||
| #include <memory> | ||||
|  | ||||
| #if defined(__clang__) | ||||
| #define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero"))) | ||||
| #define __ubsan_ignore_vptr__ __attribute__((no_sanitize("vptr"))) | ||||
| #else | ||||
| #define __ubsan_ignore_float_divide_by_zero__ | ||||
| #define __ubsan_ignore_vptr__ | ||||
| #endif | ||||
|  | ||||
| #define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \ | ||||
|   TypeName(const TypeName&) = delete; \ | ||||
|   void operator=(const TypeName&) = delete | ||||
|  | ||||
| @ -20,6 +20,10 @@ void registerCustomClass(at::ClassTypePtr class_type) { | ||||
| } | ||||
|  | ||||
| at::ClassTypePtr getCustomClass(const std::string& name) { | ||||
|   // BC hack so we can upgrade a binary internally | ||||
|   if (name == "__torch__.torch.classes.SentencePiece") { | ||||
|     return getCustomClass("__torch__.torch.classes.fb.SentencePiece"); | ||||
|   } | ||||
|   return customClasses().count(name) ? customClasses()[name] : nullptr; | ||||
| } | ||||
|  | ||||
|  | ||||
| @ -15,6 +15,7 @@ | ||||
| #include <c10/util/math_compat.h> | ||||
| #include <ATen/native/cpu/zmath.h> | ||||
| #include <c10/util/TypeCast.h> | ||||
| #include <c10/macros/Macros.h> | ||||
|  | ||||
| #if defined(__GNUC__) | ||||
| #define __at_align32__ __attribute__((aligned(32))) | ||||
|  | ||||
| @ -145,7 +145,7 @@ private: | ||||
|  | ||||
| std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d); | ||||
|  | ||||
| class FilterDescriptor | ||||
| class TORCH_CUDA_API FilterDescriptor | ||||
|   : public Descriptor<cudnnFilterStruct, | ||||
|                       &cudnnCreateFilterDescriptor, | ||||
|                       &cudnnDestroyFilterDescriptor> | ||||
|  | ||||
| @ -138,6 +138,10 @@ Tensor true_divide(const Tensor& self, const Tensor& divisor) { | ||||
|   return iter.output(); | ||||
| } | ||||
|  | ||||
| Tensor& true_divide_(Tensor& self, const Tensor& divisor) { | ||||
|   return native::true_divide_out(self, self, divisor); | ||||
| } | ||||
|  | ||||
| Tensor& floor_divide_out(Tensor& result, const Tensor& self, const Tensor& other) { | ||||
|   auto iter = TensorIterator::binary_op(result, self, other, | ||||
|     /*check_mem_overlap=*/true); | ||||
| @ -731,7 +735,11 @@ Tensor& fmod_(Tensor& self, Scalar other) { | ||||
| } | ||||
|  | ||||
| Tensor true_divide(const Tensor& self, Scalar divisor) { | ||||
|   return at::true_divide(self, wrapped_scalar_tensor(divisor)); // redispatch! | ||||
|   return self.true_divide(wrapped_scalar_tensor(divisor)); // redispatch! | ||||
| } | ||||
|  | ||||
| Tensor& true_divide_(Tensor& self, Scalar divisor) { | ||||
|   return self.true_divide_(wrapped_scalar_tensor(divisor)); // redispatch! | ||||
| } | ||||
|  | ||||
| } | ||||
|  | ||||
| @ -33,7 +33,7 @@ static inline Tensor to_impl(const Tensor& self, const TensorOptions& options, b | ||||
|     if (self.is_non_overlapping_and_dense()) { | ||||
|       // Copy all strides | ||||
|       auto r = at::empty_strided(self.sizes(), self.strides(), options.memory_format(c10::nullopt)); | ||||
|       r.copy_(self); | ||||
|       r.copy_(self, non_blocking); | ||||
|       return r; | ||||
|     } else { | ||||
|       memory_format = self.suggest_memory_format(); | ||||
|  | ||||
| @ -98,6 +98,15 @@ Tensor & _cat_out_cpu(Tensor& result, TensorList tensors, int64_t dim) { | ||||
|         "output memory locations. Found overlap in input tensor ", i); | ||||
|   } | ||||
|  | ||||
|   // Dtypes should be the same | ||||
|   const auto first_in_cat = tensors[0]; | ||||
|   for (int64_t i = 1; i < tensors.size(); i++) { | ||||
|     TORCH_CHECK(first_in_cat.dtype() == tensors[i].dtype(), | ||||
|               "Expected object of scalar type ", first_in_cat.dtype(), | ||||
|               " but got scalar type ", tensors[i].dtype(), | ||||
|               " for sequence element ", i, "."); | ||||
|   } | ||||
|  | ||||
|   auto should_skip = [](const Tensor& t) { return t.numel() == 0 && t.dim() == 1; }; | ||||
|   for (auto const &tensor : tensors) { | ||||
|     if (should_skip(tensor)) { | ||||
|  | ||||
| @ -7,6 +7,7 @@ | ||||
| #include <ATen/native/TensorIterator.h> | ||||
| #include <ATen/native/BinaryOps.h> | ||||
| #include <ATen/native/cpu/Loops.h> | ||||
| #include <c10/macros/Macros.h> | ||||
|  | ||||
| namespace at { namespace native { | ||||
| namespace { | ||||
|  | ||||
| @ -4,7 +4,7 @@ | ||||
| #include <ATen/native/cuda/zmath.cuh> | ||||
| #include <ATen/native/TensorIterator.h> | ||||
| #include <ATen/native/BinaryOps.h> | ||||
|  | ||||
| #include <c10/macros/Macros.h> | ||||
|  | ||||
| // NOTE: CUDA on Windows requires that the enclosing function | ||||
| // of a __device__ lambda not have internal linkage. | ||||
|  | ||||
| @ -307,6 +307,15 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) { | ||||
|                 "tensor ", i); | ||||
|   } | ||||
|  | ||||
|   // Dtypes should be the same | ||||
|   const auto first_in_cat = inputs[0]; | ||||
|   for (int64_t i = 1; i < inputs.size(); i++) { | ||||
|     TORCH_CHECK(first_in_cat.dtype() == inputs[i].dtype(), | ||||
|               "Expected object of scalar type ", first_in_cat.dtype(), | ||||
|               " but got scalar type ", inputs[i].dtype(), | ||||
|               " for sequence element ", i, "."); | ||||
|   } | ||||
|  | ||||
|   for (int i = 0; i < inputs.size(); i++) | ||||
|   { | ||||
|     if (should_skip(inputs[i])) { | ||||
| @ -325,6 +334,12 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) { | ||||
|   TORCH_CHECK(inputs.size() > 0, "invalid number of inputs ", inputs.size()); | ||||
|   TORCH_CHECK(dimension >= 0, "invalid dimension ", dimension); | ||||
|  | ||||
|   for (const Tensor& t: inputs) { | ||||
|     TORCH_CHECK(t.device() == notSkippedTensor->device(), | ||||
|                 "All input tensors must be on the same device. Received ", | ||||
|                 t.device(), " and ", notSkippedTensor->device()); | ||||
|   } | ||||
|  | ||||
|   c10::MemoryFormat memory_format = compute_output_memory_format(inputs); | ||||
|  | ||||
|   std::vector<int64_t> size(notSkippedTensor->sizes().vec()); | ||||
| @ -355,17 +370,11 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) { | ||||
|   // 4. The number of dimensions is <= 4 | ||||
|   // 5. All input tensors are contiguous (output tensor may be non-contig) | ||||
|   // 6. All input tensors can use 32-bit indexing | ||||
|   // 7. All input tensors are on the same device | ||||
|  | ||||
|   const bool all32BitIndexable = std::all_of(inputs.begin(), inputs.end(), | ||||
|     [] (const Tensor& t) { | ||||
|       return at::cuda::detail::canUse32BitIndexMath(t); | ||||
|     }); | ||||
|   Device firstDevice = notSkippedTensor->device(); | ||||
|   const bool allSameDevice = std::all_of(inputs.begin(), inputs.end(), | ||||
|     [firstDevice](const Tensor& t) { | ||||
|       return t.device() == firstDevice; | ||||
|     }); | ||||
|   const bool allContiguous = std::all_of(inputs.begin(), inputs.end(), | ||||
|     [=](const Tensor& t) { | ||||
|       return !t.defined() || t.is_contiguous(memory_format); | ||||
| @ -375,8 +384,7 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) { | ||||
|       out.dim() <= CAT_ARRAY_MAX_INPUT_DIMS && | ||||
|       at::cuda::detail::canUse32BitIndexMath(out) && | ||||
|       allContiguous && | ||||
|       all32BitIndexable && | ||||
|       allSameDevice) { | ||||
|       all32BitIndexable) { | ||||
|  | ||||
|     AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3( | ||||
|         at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16, | ||||
|  | ||||
| @ -2872,7 +2872,7 @@ | ||||
|  | ||||
| - func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor | ||||
|   use_c10_dispatcher: full | ||||
|   variants: function | ||||
|   variants: function, method | ||||
|   dispatch: | ||||
|     CPU: true_divide | ||||
|     CUDA: true_divide | ||||
| @ -2880,6 +2880,15 @@ | ||||
|     SparseCUDA: true_divide_sparse | ||||
|   supports_named_tensor: True | ||||
|  | ||||
| - func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) | ||||
|   variants: method | ||||
|   dispatch: | ||||
|     CPU: true_divide_ | ||||
|     CUDA: true_divide_ | ||||
|     SparseCPU: true_divide_sparse_ | ||||
|     SparseCUDA: true_divide_sparse_ | ||||
|   supports_named_tensor: True | ||||
|  | ||||
| - func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!) | ||||
|   dispatch: | ||||
|     CPU: true_divide_out | ||||
| @ -2890,7 +2899,11 @@ | ||||
|  | ||||
| - func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor | ||||
|   use_c10_dispatcher: full | ||||
|   variants: function | ||||
|   variants: function, method | ||||
|   supports_named_tensor: True | ||||
|  | ||||
| - func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) | ||||
|   variants: method | ||||
|   supports_named_tensor: True | ||||
|  | ||||
| - func: trunc(Tensor self) -> Tensor | ||||
|  | ||||
| @ -272,6 +272,10 @@ SparseTensor& true_divide_out_sparse_scalar( | ||||
|   return true_divide_out_sparse_zerodim(result, dividend, wrapped_scalar_tensor(divisor)); | ||||
| } | ||||
|  | ||||
| Tensor& true_divide_sparse_(Tensor& self, const Tensor& divisor) { | ||||
|   return true_divide_out_sparse_zerodim(self, self, divisor); | ||||
| } | ||||
|  | ||||
| // -------------------------------------------------------------------- | ||||
| // floor_divide(SparseTensor, Scalar) | ||||
| // -------------------------------------------------------------------- | ||||
|  | ||||
| @ -14,7 +14,7 @@ namespace xnnpack { | ||||
| namespace { | ||||
| torch::jit::class_<XNNPackLinearOpContext> register_xnnpack_linear_op_context_class() { | ||||
|   static auto register_linear_op_context_class = | ||||
|       torch::jit::class_<XNNPackLinearOpContext>("XNNPackLinearOpContext") | ||||
|       torch::jit::class_<XNNPackLinearOpContext>("xnnpack", "XNNPackLinearOpContext") | ||||
|           .def_pickle( | ||||
|               [](const c10::intrusive_ptr<XNNPackLinearOpContext>& op_context) | ||||
|                   -> SerializationTypeLinearPrePack { // __getstate__ | ||||
| @ -38,7 +38,7 @@ torch::jit::class_<XNNPackLinearOpContext> register_xnnpack_linear_op_context_cl | ||||
|  | ||||
| torch::jit::class_<XNNPackConv2dOpContext> register_xnnpack_conv2d_op_context_class() { | ||||
|   static auto register_conv2d_op_context_class = | ||||
|       torch::jit::class_<XNNPackConv2dOpContext>("XNNPackConv2dOpContext") | ||||
|       torch::jit::class_<XNNPackConv2dOpContext>("xnnpack", "XNNPackConv2dOpContext") | ||||
|           .def_pickle( | ||||
|               [](const c10::intrusive_ptr<XNNPackConv2dOpContext>& op_context) | ||||
|                   -> SerializationTypeConv2dPrePack { // __getstate__ | ||||
| @ -74,25 +74,25 @@ static auto registry = | ||||
|   // Registering under _xnnpack namespace for now. As we add more backend requiring similar functionality | ||||
|   // We can refactor the code and use a better namespace. | ||||
|     torch::RegisterOperators() | ||||
|         .op("_xnnpack::linear_prepack(Tensor W, Tensor? B=None) -> __torch__.torch.classes.XNNPackLinearOpContext", | ||||
|         .op("_xnnpack::linear_prepack(Tensor W, Tensor? B=None) -> __torch__.torch.classes.xnnpack.XNNPackLinearOpContext", | ||||
|             torch::RegisterOperators::options() | ||||
|             .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION) | ||||
|             .kernel<internal::linear::LinearPrePack>( | ||||
|                 DispatchKey::CPUTensorId)) | ||||
|         .op("_xnnpack::linear_packed(Tensor X, __torch__.torch.classes.XNNPackLinearOpContext W_prepack) -> Tensor Y", | ||||
|         .op("_xnnpack::linear_packed(Tensor X, __torch__.torch.classes.xnnpack.XNNPackLinearOpContext W_prepack) -> Tensor Y", | ||||
|             torch::RegisterOperators::options() | ||||
|             .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION) | ||||
|             .kernel<internal::linear::LinearPacked>( | ||||
|                 DispatchKey::CPUTensorId)) | ||||
|         .op("_xnnpack::conv2d_prepack(Tensor W, Tensor? B, int[2] stride, " | ||||
|             "int[2] padding, int[2] dilation, int groups) " | ||||
|             "-> __torch__.torch.classes.XNNPackConv2dOpContext", | ||||
|             "-> __torch__.torch.classes.xnnpack.XNNPackConv2dOpContext", | ||||
|             torch::RegisterOperators::options() | ||||
|             .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION) | ||||
|             .kernel<internal::convolution2d::Conv2dPrePack>( | ||||
|                 DispatchKey::CPUTensorId)) | ||||
|         .op("_xnnpack::conv2d_packed(Tensor X, " | ||||
|             "__torch__.torch.classes.XNNPackConv2dOpContext W_prepack) -> Tensor Y", | ||||
|             "__torch__.torch.classes.xnnpack.XNNPackConv2dOpContext W_prepack) -> Tensor Y", | ||||
|             torch::RegisterOperators::options() | ||||
|             .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION) | ||||
|             .kernel<internal::convolution2d::Conv2dPacked>( | ||||
|  | ||||
| @ -69,12 +69,6 @@ | ||||
| # define TH_UNUSED | ||||
| #endif | ||||
|  | ||||
| #if defined(__clang__) | ||||
| #define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero"))) | ||||
| #else | ||||
| #define __ubsan_ignore_float_divide_by_zero__ | ||||
| #endif | ||||
|  | ||||
| #ifndef M_PI | ||||
| # define M_PI 3.14159265358979323846 | ||||
| #endif | ||||
|  | ||||
| @ -23,6 +23,14 @@ | ||||
|  | ||||
| #include "c10/macros/Export.h" | ||||
|  | ||||
| #if defined(__clang__) | ||||
|   #define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero"))) | ||||
|   #define __ubsan_ignore_float_cast_overflow__ __attribute__((no_sanitize("float-cast-overflow"))) | ||||
| #else | ||||
|   #define __ubsan_ignore_float_divide_by_zero__ | ||||
|   #define __ubsan_ignore_float_cast_overflow__ | ||||
| #endif | ||||
|  | ||||
| // Disable the copy and assignment operator for a class. Note that this will | ||||
| // disable the usage of the class in std containers. | ||||
| #define C10_DISABLE_COPY_AND_ASSIGN(classname) \ | ||||
|  | ||||
| @ -66,24 +66,44 @@ void Error::AppendMessage(const std::string& new_msg) { | ||||
| namespace Warning { | ||||
|  | ||||
| namespace { | ||||
|   WarningHandler* getHandler() { | ||||
|   WarningHandler* getBaseHandler() { | ||||
|     static WarningHandler base_warning_handler_ = WarningHandler(); | ||||
|     return &base_warning_handler_; | ||||
|   }; | ||||
|   static thread_local WarningHandler* warning_handler_ = getHandler(); | ||||
|  | ||||
|   class ThreadWarningHandler { | ||||
|     public: | ||||
|       ThreadWarningHandler() = delete; | ||||
|  | ||||
|       static WarningHandler* get_handler() { | ||||
|         if (!warning_handler_) { | ||||
|           warning_handler_ = getBaseHandler(); | ||||
|         } | ||||
|         return warning_handler_; | ||||
|       } | ||||
|  | ||||
|       static void set_handler(WarningHandler* handler) { | ||||
|         warning_handler_ = handler; | ||||
|       } | ||||
|  | ||||
|     private: | ||||
|       static thread_local WarningHandler* warning_handler_; | ||||
|   }; | ||||
|  | ||||
|   thread_local WarningHandler* ThreadWarningHandler::warning_handler_ = nullptr; | ||||
|  | ||||
| } | ||||
|  | ||||
| void warn(SourceLocation source_location, const std::string& msg) { | ||||
|   warning_handler_->process(source_location, msg); | ||||
|   ThreadWarningHandler::get_handler()->process(source_location, msg); | ||||
| } | ||||
|  | ||||
| void set_warning_handler(WarningHandler* handler) noexcept(true) { | ||||
|   warning_handler_ = handler; | ||||
|   ThreadWarningHandler::set_handler(handler); | ||||
| } | ||||
|  | ||||
| WarningHandler* get_warning_handler() noexcept(true) { | ||||
|   return warning_handler_; | ||||
|   return ThreadWarningHandler::get_handler(); | ||||
| } | ||||
|  | ||||
| } // namespace Warning | ||||
|  | ||||
| @ -67,7 +67,7 @@ struct maybe_real<true, src_t> { | ||||
|  | ||||
| template <typename dest_t, typename src_t> | ||||
| struct static_cast_with_inter_type { | ||||
|   C10_HOST_DEVICE static inline dest_t apply(src_t src) { | ||||
|   C10_HOST_DEVICE __ubsan_ignore_float_cast_overflow__ static inline dest_t apply(src_t src) { | ||||
|     constexpr bool real = needs_real<dest_t, src_t>::value; | ||||
|     return static_cast<dest_t>( | ||||
|       static_cast<inter_copy_type_t<dest_t>>(maybe_real<real, src_t>::apply(src))); | ||||
|  | ||||
| @ -395,6 +395,8 @@ of 16 | ||||
| .. autofunction:: all_gather_multigpu | ||||
|  | ||||
|  | ||||
| .. _distributed-launch: | ||||
|  | ||||
| Launch utility | ||||
| -------------- | ||||
|  | ||||
|  | ||||
| @ -306,20 +306,30 @@ to overlap data transfers with computation. | ||||
| You can make the :class:`~torch.utils.data.DataLoader` return batches placed in | ||||
| pinned memory by passing ``pin_memory=True`` to its constructor. | ||||
|  | ||||
| .. _cuda-nn-dataparallel-instead: | ||||
| .. _cuda-nn-ddp-instead: | ||||
|  | ||||
| Use nn.DataParallel instead of multiprocessing | ||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ||||
| Use nn.parallel.DistributedDataParallel instead of multiprocessing or nn.DataParallel | ||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ||||
|  | ||||
| Most use cases involving batched inputs and multiple GPUs should default to | ||||
| using :class:`~torch.nn.DataParallel` to utilize more than one GPU. Even with | ||||
| the GIL, a single Python process can saturate multiple GPUs. | ||||
|  | ||||
| As of version 0.1.9, large numbers of GPUs (8+) might not be fully utilized. | ||||
| However, this is a known issue that is under active development. As always, | ||||
| test your use case. | ||||
| using :class:`~torch.nn.parallel.DistributedDataParallel` to utilize more | ||||
| than one GPU. | ||||
|  | ||||
| There are significant caveats to using CUDA models with | ||||
| :mod:`~torch.multiprocessing`; unless care is taken to meet the data handling | ||||
| requirements exactly, it is likely that your program will have incorrect or | ||||
| undefined behavior. | ||||
|  | ||||
| It is recommended to use :class:`~torch.nn.parallel.DistributedDataParallel`, | ||||
| instead of :class:`~torch.nn.DataParallel` to do multi-GPU training, even if | ||||
| there is only a single node. | ||||
|  | ||||
| The difference between :class:`~torch.nn.parallel.DistributedDataParallel` and | ||||
| :class:`~torch.nn.DataParallel` is: :class:`~torch.nn.parallel.DistributedDataParallel` | ||||
| uses multiprocessing where a process is created for each GPU, while | ||||
| :class:`~torch.nn.DataParallel` uses multithreading. By using multiprocessing, | ||||
| each GPU has its dedicated process, this avoids the performance overhead caused | ||||
| by GIL of Python interpreter.  | ||||
|  | ||||
| If you use :class:`~torch.nn.parallel.DistributedDataParallel`, you could use  | ||||
| `torch.distributed.launch` utility to launch your program, see :ref:`distributed-launch`. | ||||
|  | ||||
| @ -45,7 +45,7 @@ the consumer process has references to the tensor, and the refcounting can not | ||||
| save you if the consumer process exits abnormally via a fatal signal. See | ||||
| :ref:`this section <multiprocessing-cuda-sharing-details>`. | ||||
|  | ||||
| See also: :ref:`cuda-nn-dataparallel-instead` | ||||
| See also: :ref:`cuda-nn-ddp-instead` | ||||
|  | ||||
|  | ||||
| Best practices and tips | ||||
|  | ||||
| @ -210,3 +210,25 @@ Example:: | ||||
|     (1, 5) | ||||
|  | ||||
| For more information on ``torch.sparse_coo`` tensors, see :ref:`sparse-docs`. | ||||
|  | ||||
| torch.memory_format | ||||
| ------------ | ||||
|  | ||||
| .. class:: torch.memory_format | ||||
|  | ||||
| A :class:`torch.memory_format` is an object representing the memory format on which a :class:`torch.Tensor` is | ||||
| or will be allocated. | ||||
|  | ||||
| Possible values are: | ||||
|  | ||||
| - ``torch.contiguous_format``: | ||||
|   Tensor is or will be  allocated in dense non-overlapping memory. Strides represented by values in decreasing order. | ||||
|  | ||||
| - ``torch.channels_last``: | ||||
|   Tensor is or will be  allocated in dense non-overlapping memory. Strides represented by values in  | ||||
|   ``strides[0] > strides[2] > strides[3] > strides[1] == 1`` aka NHWC order.  | ||||
|  | ||||
| - ``torch.preserve_format``: | ||||
|   Used in functions like `clone` to preserve the memory format of the input tensor. If input tensor is  | ||||
|   allocated in dense non-overlapping memory, the output tensor strides will be copied from the input.  | ||||
|   Otherwise output strides will follow ``torch.contiguous_format`` | ||||
| @ -49,8 +49,10 @@ For reference, here’s a full list of view ops in PyTorch: | ||||
|  | ||||
| - Basic slicing and indexing op, e.g. ``tensor[0, 2:, 1:7:2]`` returns a view of base ``tensor``, see note below. | ||||
| - :meth:`~torch.Tensor.as_strided` | ||||
| - :meth:`~torch.Tensor.detach` | ||||
| - :meth:`~torch.Tensor.diagonal` | ||||
| - :meth:`~torch.Tensor.expand` | ||||
| - :meth:`~torch.Tensor.expand_as` | ||||
| - :meth:`~torch.Tensor.narrow` | ||||
| - :meth:`~torch.Tensor.permute` | ||||
| - :meth:`~torch.Tensor.select` | ||||
|  | ||||
| @ -495,6 +495,8 @@ view of a storage and defines numeric operations on it. | ||||
|    .. automethod:: tril_ | ||||
|    .. automethod:: triu | ||||
|    .. automethod:: triu_ | ||||
|    .. automethod:: true_divide | ||||
|    .. automethod:: true_divide_ | ||||
|    .. automethod:: trunc | ||||
|    .. automethod:: trunc_ | ||||
|    .. automethod:: type | ||||
|  | ||||
							
								
								
									
										4
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										4
									
								
								setup.py
									
									
									
									
									
								
							| @ -352,10 +352,10 @@ def build_deps(): | ||||
| ################################################################################ | ||||
|  | ||||
| # the list of runtime dependencies required by this built package | ||||
| install_requires = [] | ||||
| install_requires = ['future'] | ||||
|  | ||||
| if sys.version_info <= (2, 7): | ||||
|     install_requires += ['future', 'typing'] | ||||
|     install_requires += ['typing'] | ||||
|  | ||||
| missing_pydep = ''' | ||||
| Missing build dependency: Unable to `import {importname}`. | ||||
|  | ||||
| @ -115,6 +115,10 @@ white_list = [ | ||||
|     ('aten::confirmed_by_owner', datetime.date(2020, 3, 17)), | ||||
|     ('aten::owner', datetime.date(2020, 3, 27)), | ||||
|     ('aten::owner_name', datetime.date(2020, 3, 27)), | ||||
|     ('_xnnpack::conv2d_packed', datetime.date(2020, 4, 2)), | ||||
|     ('_xnnpack::conv2d_prepack', datetime.date(2020, 4, 2)), | ||||
|     ('_xnnpack::linear_packed', datetime.date(2020, 4, 2)), | ||||
|     ('_xnnpack::linear_prepack', datetime.date(2020, 4, 2)), | ||||
| ] | ||||
|  | ||||
|  | ||||
| @ -176,6 +180,9 @@ if __name__ == '__main__': | ||||
|             line = f.readline() | ||||
|             if not line: | ||||
|                 break | ||||
|             if "torch.classes" in line: | ||||
|                 # TODO Fix type __torch__.torch.classes.xxx | ||||
|                 continue | ||||
|  | ||||
|             s = parse_schema(line.strip()) | ||||
|             slist = new_schema_dict.get(s.name, []) | ||||
|  | ||||
| @ -293,7 +293,7 @@ TEST_F(FunctionalTest, MultiLabelSoftMarginLossWeightedNoReduction) { | ||||
|   auto input = torch::tensor({{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); | ||||
|   auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); | ||||
|   auto weight = torch::tensor({0.1, 0.6, 0.4, 0.8}, torch::kFloat); | ||||
|   auto options = F::MultiLabelSoftMarginLossFuncOptions().reduction(torch::kNone).weight(weight); | ||||
|   auto options = F::MultilabelSoftMarginLossFuncOptions().reduction(torch::kNone).weight(weight); | ||||
|   auto output = | ||||
|       F::multilabel_soft_margin_loss(input, target, options); | ||||
|   auto expected = torch::tensor({0.4876902, 0.3321295}, torch::kFloat); | ||||
| @ -1875,7 +1875,7 @@ TEST_F(FunctionalTest, Interpolate) { | ||||
|     // 1D interpolation | ||||
|     auto input = torch::ones({1, 1, 2}); | ||||
|     auto options = F::InterpolateFuncOptions() | ||||
|                        .size({4}) | ||||
|                        .size(std::vector<int64_t>({4})) | ||||
|                        .mode(torch::kNearest); | ||||
|     auto output = F::interpolate(input, options); | ||||
|     auto expected = torch::ones({1, 1, 4}); | ||||
| @ -1889,7 +1889,7 @@ TEST_F(FunctionalTest, Interpolate) { | ||||
|       for (const auto scale_factor : {0.5, 1.5, 2.0}) { | ||||
|         auto input = torch::ones({1, 1, 2, 2}); | ||||
|         auto options = F::InterpolateFuncOptions() | ||||
|                            .scale_factor({scale_factor, scale_factor}) | ||||
|                            .scale_factor(std::vector<double>({scale_factor, scale_factor})) | ||||
|                            .mode(torch::kBilinear) | ||||
|                            .align_corners(align_corners); | ||||
|         auto output = F::interpolate(input, options); | ||||
| @ -1908,7 +1908,7 @@ TEST_F(FunctionalTest, Interpolate) { | ||||
|         auto input = torch::ones({1, 1, 2, 2, 2}); | ||||
|         auto options = | ||||
|             F::InterpolateFuncOptions() | ||||
|                 .scale_factor({scale_factor, scale_factor, scale_factor}) | ||||
|                 .scale_factor(std::vector<double>({scale_factor, scale_factor, scale_factor})) | ||||
|                 .mode(torch::kTrilinear) | ||||
|                 .align_corners(align_corners); | ||||
|         auto output = F::interpolate(input, options); | ||||
| @ -1924,13 +1924,13 @@ TEST_F(FunctionalTest, Interpolate) { | ||||
|   { | ||||
|     auto input = torch::randn({3, 2, 2}); | ||||
|     ASSERT_THROWS_WITH( | ||||
|         F::interpolate(input[0], F::InterpolateFuncOptions().size({4, 4})), | ||||
|         F::interpolate(input[0], F::InterpolateFuncOptions().size(std::vector<int64_t>({4, 4}))), | ||||
|         "Input Error: Only 3D, 4D and 5D input Tensors supported (got 2D) " | ||||
|         "for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)"); | ||||
|     ASSERT_THROWS_WITH( | ||||
|         F::interpolate( | ||||
|             torch::reshape(input, {1, 1, 1, 3, 2, 2}), | ||||
|             F::InterpolateFuncOptions().size({1, 1, 1, 3, 4, 4})), | ||||
|             F::InterpolateFuncOptions().size(std::vector<int64_t>({1, 1, 1, 3, 4, 4}))), | ||||
|         "Input Error: Only 3D, 4D and 5D input Tensors supported (got 6D) " | ||||
|         "for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)"); | ||||
|     ASSERT_THROWS_WITH( | ||||
| @ -1939,12 +1939,12 @@ TEST_F(FunctionalTest, Interpolate) { | ||||
|     ASSERT_THROWS_WITH( | ||||
|         F::interpolate( | ||||
|             input, | ||||
|             F::InterpolateFuncOptions().size({3, 4, 4}).scale_factor({0.5})), | ||||
|             F::InterpolateFuncOptions().size(std::vector<int64_t>({3, 4, 4})).scale_factor(std::vector<double>({0.5}))), | ||||
|         "only one of size or scale_factor should be defined"); | ||||
|     ASSERT_THROWS_WITH( | ||||
|         F::interpolate(input, F::InterpolateFuncOptions().scale_factor({3, 2})), | ||||
|         F::interpolate(input, F::InterpolateFuncOptions().scale_factor(std::vector<double>({3, 2}))), | ||||
|         "scale_factor shape must match input shape. " | ||||
|         "Input is 1D, scale_factor size is 2"); | ||||
|         "Input is 1D, scale_factor size is [3, 2]"); | ||||
|     ASSERT_THROWS_WITH( | ||||
|         F::interpolate( | ||||
|             input, | ||||
| @ -2328,9 +2328,15 @@ TEST_F(FunctionalTest, AlphaDropout) { | ||||
|   auto input_std = input.std(); | ||||
|  | ||||
|   for (const auto rate : {0.2, 0.5, 0.8}) { | ||||
|     auto output = F::alpha_dropout(input, F::AlphaDropoutFuncOptions().p(rate).training(false)); | ||||
|     ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); | ||||
|     ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); | ||||
|     for (const auto inplace : {false, true}) { | ||||
|       auto input_ = input.clone(); | ||||
|       auto output = F::alpha_dropout(input_, F::AlphaDropoutFuncOptions().p(rate).training(false).inplace(inplace)); | ||||
|       ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); | ||||
|       ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); | ||||
|       if (inplace) { | ||||
|         ASSERT_TRUE(torch::allclose(input_, output)); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   auto output = F::detail::alpha_dropout(input, 0.5, false, false); | ||||
|   ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); | ||||
| @ -2343,9 +2349,15 @@ TEST_F(FunctionalTest, FeatureAlphaDropout) { | ||||
|   auto input_std = input.std(); | ||||
|  | ||||
|   for (const auto rate : {0.2, 0.5, 0.8}) { | ||||
|     auto output = F::feature_alpha_dropout(input, F::FeatureAlphaDropoutFuncOptions().p(rate).training(false)); | ||||
|     ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); | ||||
|     ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); | ||||
|     for (const auto inplace : {false, true}) { | ||||
|       auto input_ = input.clone(); | ||||
|       auto output = F::feature_alpha_dropout(input_, F::FeatureAlphaDropoutFuncOptions().p(rate).training(false).inplace(inplace)); | ||||
|       ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); | ||||
|       ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1)); | ||||
|       if (inplace) { | ||||
|         ASSERT_TRUE(torch::allclose(input_, output)); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|   auto output = F::feature_alpha_dropout(input); | ||||
|   ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1)); | ||||
|  | ||||
| @ -1300,54 +1300,81 @@ TEST_F(ModulesTest, FeatureAlphaDropout) { | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, Dropout) { | ||||
|   Dropout dropout(0.5); | ||||
|   torch::Tensor x = torch::ones(100, torch::requires_grad()); | ||||
|   torch::Tensor y = dropout(x); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     Dropout dropout(DropoutOptions(0.5).inplace(inplace)); | ||||
|     torch::Tensor x = torch::ones(100); | ||||
|     if (!inplace) { | ||||
|       x.requires_grad_(true); | ||||
|     } | ||||
|     torch::Tensor y = dropout(x); | ||||
|  | ||||
|   y.backward(torch::ones_like(y)); | ||||
|   ASSERT_EQ(y.ndimension(), 1); | ||||
|   ASSERT_EQ(y.size(0), 100); | ||||
|   ASSERT_LT(y.sum().item<float>(), 130); // Probably | ||||
|   ASSERT_GT(y.sum().item<float>(), 70); // Probably | ||||
|     ASSERT_EQ(y.ndimension(), 1); | ||||
|     ASSERT_EQ(y.size(0), 100); | ||||
|     ASSERT_LT(y.sum().item<float>(), 130); // Probably | ||||
|     ASSERT_GT(y.sum().item<float>(), 70); // Probably | ||||
|     if (inplace) { | ||||
|       ASSERT_TRUE(y.allclose(x)); | ||||
|     } else { | ||||
|       y.backward(torch::ones_like(y)); | ||||
|     } | ||||
|  | ||||
|   dropout->eval(); | ||||
|   y = dropout(x); | ||||
|   ASSERT_EQ(y.sum().item<float>(), 100); | ||||
|     dropout->eval(); | ||||
|     y = dropout(torch::ones(100)); | ||||
|     ASSERT_EQ(y.sum().item<float>(), 100); | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, Dropout2d) { | ||||
|   Dropout2d dropout(0.5); | ||||
|   torch::Tensor x = torch::ones({10, 10}, torch::requires_grad()); | ||||
|   torch::Tensor y = dropout(x); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     Dropout2d dropout(Dropout2dOptions(0.5).inplace(inplace)); | ||||
|     torch::Tensor x = torch::ones({10, 10}); | ||||
|     if (!inplace) { | ||||
|       x.requires_grad_(true); | ||||
|     } | ||||
|     torch::Tensor y = dropout(x); | ||||
|  | ||||
|   y.backward(torch::ones_like(y)); | ||||
|   ASSERT_EQ(y.ndimension(), 2); | ||||
|   ASSERT_EQ(y.size(0), 10); | ||||
|   ASSERT_EQ(y.size(1), 10); | ||||
|   ASSERT_LT(y.sum().item<float>(), 130); // Probably | ||||
|   ASSERT_GT(y.sum().item<float>(), 70); // Probably | ||||
|     ASSERT_EQ(y.ndimension(), 2); | ||||
|     ASSERT_EQ(y.size(0), 10); | ||||
|     ASSERT_EQ(y.size(1), 10); | ||||
|     ASSERT_LT(y.sum().item<float>(), 130); // Probably | ||||
|     ASSERT_GT(y.sum().item<float>(), 70); // Probably | ||||
|     if (inplace) { | ||||
|       ASSERT_TRUE(y.allclose(x)); | ||||
|     } else { | ||||
|       y.backward(torch::ones_like(y)); | ||||
|     } | ||||
|  | ||||
|   dropout->eval(); | ||||
|   y = dropout(x); | ||||
|   ASSERT_EQ(y.sum().item<float>(), 100); | ||||
|     dropout->eval(); | ||||
|     y = dropout(torch::ones({10, 10})); | ||||
|     ASSERT_EQ(y.sum().item<float>(), 100); | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, Dropout3d) { | ||||
|   Dropout3d dropout(0.5); | ||||
|   torch::Tensor x = torch::ones({4, 5, 5}, torch::requires_grad()); | ||||
|   torch::Tensor y = dropout(x); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     Dropout3d dropout(Dropout3dOptions(0.5).inplace(inplace)); | ||||
|     torch::Tensor x = torch::ones({4, 5, 5}); | ||||
|     if (!inplace) { | ||||
|       x.requires_grad_(true); | ||||
|     } | ||||
|     torch::Tensor y = dropout(x); | ||||
|  | ||||
|   y.backward(torch::ones_like(y)); | ||||
|   ASSERT_EQ(y.ndimension(), 3); | ||||
|   ASSERT_EQ(y.size(0), 4); | ||||
|   ASSERT_EQ(y.size(1), 5); | ||||
|   ASSERT_EQ(y.size(1), 5); | ||||
|   ASSERT_LT(y.sum().item<float>(), 130); // Probably | ||||
|   ASSERT_GT(y.sum().item<float>(), 70); // Probably | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.size(0), 4); | ||||
|     ASSERT_EQ(y.size(1), 5); | ||||
|     ASSERT_EQ(y.size(1), 5); | ||||
|     ASSERT_LT(y.sum().item<float>(), 130); // Probably | ||||
|     ASSERT_GT(y.sum().item<float>(), 70); // Probably | ||||
|     if (inplace) { | ||||
|       ASSERT_TRUE(y.allclose(x)); | ||||
|     } else { | ||||
|       y.backward(torch::ones_like(y)); | ||||
|     } | ||||
|  | ||||
|   dropout->eval(); | ||||
|   y = dropout(x); | ||||
|   ASSERT_EQ(y.sum().item<float>(), 100); | ||||
|     dropout->eval(); | ||||
|     y = dropout(torch::ones({4, 5, 5})); | ||||
|     ASSERT_EQ(y.sum().item<float>(), 100); | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, Parameters) { | ||||
| @ -2147,38 +2174,58 @@ TEST_F(ModulesTest, PairwiseDistance) { | ||||
| TEST_F(ModulesTest, ELU) { | ||||
|   const auto size = 3; | ||||
|   for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) { | ||||
|     ELU model {ELUOptions().alpha(alpha)}; | ||||
|     auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|     x.resize_({size, size, size}).set_requires_grad(true); | ||||
|     auto y = model(x); | ||||
|     torch::Tensor s = y.sum(); | ||||
|     for (const auto inplace : {false, true}) { | ||||
|       ELU model {ELUOptions().alpha(alpha).inplace(inplace)}; | ||||
|       auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|       x.resize_({size, size, size}); | ||||
|       if (!inplace) { | ||||
|         x.requires_grad_(true); | ||||
|       } | ||||
|       auto x_orig = x.clone(); | ||||
|       auto y = model(x); | ||||
|       torch::Tensor s = y.sum(); | ||||
|  | ||||
|     s.backward(); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|       ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|     auto y_exp = torch::max(torch::zeros_like(x), x) + | ||||
|                  torch::min(torch::zeros_like(x), alpha * (torch::exp(x) - 1.0)); | ||||
|     ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|       ASSERT_EQ(y.ndimension(), 3); | ||||
|       ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|       auto y_exp = torch::max(torch::zeros_like(x_orig), x_orig) + | ||||
|                    torch::min(torch::zeros_like(x_orig), alpha * (torch::exp(x_orig) - 1.0)); | ||||
|       ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|       if (inplace) { | ||||
|         ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|       } else { | ||||
|         s.backward(); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, SELU) { | ||||
|   SELU model; | ||||
|   auto input = torch::randn({5, 5}, torch::requires_grad()); | ||||
|   auto output = model->forward(input); | ||||
|   const double scale = 1.0507009873554804934193349852946; | ||||
|   const double alpha = 1.6732632423543772848170429916717; | ||||
|   auto zero = torch::zeros_like(input); | ||||
|   auto expected = scale * | ||||
|       (torch::max(zero, input) + | ||||
|        torch::min(zero, alpha * (torch::exp(input) - 1))); | ||||
|   auto s = output.sum(); | ||||
|   s.backward(); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     SELU model(inplace); | ||||
|     auto input = torch::randn({5, 5}); | ||||
|     if (!inplace) { | ||||
|       input.requires_grad_(true); | ||||
|     } | ||||
|     auto input_orig = input.clone(); | ||||
|     auto output = model->forward(input); | ||||
|     const double scale = 1.0507009873554804934193349852946; | ||||
|     const double alpha = 1.6732632423543772848170429916717; | ||||
|     auto zero = torch::zeros_like(input); | ||||
|     auto expected = scale * | ||||
|         (torch::max(zero, input_orig) + | ||||
|          torch::min(zero, alpha * (torch::exp(input_orig) - 1))); | ||||
|     auto s = output.sum(); | ||||
|  | ||||
|   ASSERT_EQ(s.ndimension(), 0); | ||||
|   ASSERT_TRUE(output.allclose(expected)); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|     ASSERT_TRUE(output.allclose(expected)); | ||||
|     if (inplace) { | ||||
|       ASSERT_TRUE(input.allclose(expected)); | ||||
|     } else { | ||||
|       s.backward(); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, Hardshrink) { | ||||
| @ -2192,7 +2239,6 @@ TEST_F(ModulesTest, Hardshrink) { | ||||
|  | ||||
|     s.backward(); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|     auto y_exp = (x.abs() > lambda) * x; | ||||
| @ -2204,21 +2250,30 @@ TEST_F(ModulesTest, Hardtanh) { | ||||
|   const auto size = 3; | ||||
|   for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) { | ||||
|     for (const auto max_val : {0.42, 1.0, 4.2}) { | ||||
|       Hardtanh model {HardtanhOptions().min_val(min_val).max_val(max_val)}; | ||||
|       auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|       x.resize_({size, size, size}).set_requires_grad(true); | ||||
|       auto y = model(x); | ||||
|       torch::Tensor s = y.sum(); | ||||
|       for (const auto inplace : {false, true}) { | ||||
|         Hardtanh model {HardtanhOptions().min_val(min_val).max_val(max_val).inplace(inplace)}; | ||||
|         auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|         x.resize_({size, size, size}); | ||||
|         if (!inplace) { | ||||
|           x.requires_grad_(true); | ||||
|         } | ||||
|         auto x_orig = x.clone(); | ||||
|         auto y = model(x); | ||||
|         torch::Tensor s = y.sum(); | ||||
|  | ||||
|       s.backward(); | ||||
|       ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|       ASSERT_EQ(y.ndimension(), 3); | ||||
|       ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|       auto y_exp = (x < min_val) * min_val + | ||||
|                    ((x >= min_val) * (x <= max_val)) * x + | ||||
|                    (x > max_val) * max_val; | ||||
|       ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|         ASSERT_EQ(s.ndimension(), 0); | ||||
|         ASSERT_EQ(y.ndimension(), 3); | ||||
|         ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|         auto y_exp = (x_orig < min_val) * min_val + | ||||
|                      ((x_orig >= min_val) * (x_orig <= max_val)) * x_orig + | ||||
|                      (x_orig > max_val) * max_val; | ||||
|         ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|         if (inplace) { | ||||
|           ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|         } else { | ||||
|           s.backward(); | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
| @ -2238,20 +2293,29 @@ TEST_F(ModulesTest, HardtanhMinValGEMaxVal) { | ||||
|  | ||||
| TEST_F(ModulesTest, LeakyReLU) { | ||||
|   const auto size = 3; | ||||
|   for (const auto negative_slope : {0.0, 0.42, 1.0}) { | ||||
|     LeakyReLU model {LeakyReLUOptions().negative_slope(negative_slope)}; | ||||
|     auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|     x.resize_({size, size, size}).set_requires_grad(true); | ||||
|     auto y = model(x); | ||||
|     torch::Tensor s = y.sum(); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     for (const auto negative_slope : {0.0, 0.42, 1.0}) { | ||||
|       LeakyReLU model {LeakyReLUOptions().negative_slope(negative_slope).inplace(inplace)}; | ||||
|       auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|       x.resize_({size, size, size}); | ||||
|       if (!inplace) { | ||||
|         x.requires_grad_(true); | ||||
|       } | ||||
|       auto x_orig = x.clone(); | ||||
|       auto y = model(x); | ||||
|       torch::Tensor s = y.sum(); | ||||
|  | ||||
|     s.backward(); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|     auto y_exp = (x < 0) * x * negative_slope + (x >= 0) * x; | ||||
|     ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|       ASSERT_EQ(s.ndimension(), 0); | ||||
|       ASSERT_EQ(y.ndimension(), 3); | ||||
|       ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|       auto y_exp = (x_orig < 0) * x_orig * negative_slope + (x_orig >= 0) * x_orig; | ||||
|       ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|       if (inplace) { | ||||
|         ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|       } else { | ||||
|         s.backward(); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| @ -2394,78 +2458,114 @@ TEST_F(ModulesTest, PReLU) { | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, ReLU) { | ||||
|   const auto size = 3; | ||||
|   ReLU model; | ||||
|   auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|   x.resize_({size, size, size}).set_requires_grad(true); | ||||
|   auto y = model(x); | ||||
|   torch::Tensor s = y.sum(); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     const auto size = 3; | ||||
|     ReLU model(inplace); | ||||
|     auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|     x.resize_({size, size, size}); | ||||
|     if (!inplace) { | ||||
|       x.requires_grad_(true); | ||||
|     } | ||||
|     auto x_orig = x.clone(); | ||||
|     auto y = model(x); | ||||
|     torch::Tensor s = y.sum(); | ||||
|  | ||||
|   s.backward(); | ||||
|   ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|   ASSERT_EQ(y.ndimension(), 3); | ||||
|   ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|   auto y_exp = (x < 0) * 0 + (x >= 0) * x; | ||||
|   ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|     auto y_exp = (x_orig < 0) * 0 + (x_orig >= 0) * x_orig; | ||||
|     ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|     if (inplace) { | ||||
|       ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|     } else { | ||||
|       s.backward(); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, ReLU6) { | ||||
|   const auto size = 3; | ||||
|   ReLU6 model; | ||||
|   auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|   x.resize_({size, size, size}).set_requires_grad(true); | ||||
|   auto y = model(x); | ||||
|   torch::Tensor s = y.sum(); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     const auto size = 3; | ||||
|     ReLU6 model(inplace); | ||||
|     auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|     x.resize_({size, size, size}); | ||||
|     if (!inplace) { | ||||
|       x.requires_grad_(true); | ||||
|     } | ||||
|     auto x_orig = x.clone(); | ||||
|     auto y = model(x); | ||||
|     torch::Tensor s = y.sum(); | ||||
|  | ||||
|   s.backward(); | ||||
|   ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|   ASSERT_EQ(y.ndimension(), 3); | ||||
|   ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|   auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6; | ||||
|   ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|     auto y_exp = (x_orig < 0) * 0 + ((x_orig >= 0) * (x_orig <= 6)) * x_orig + (x_orig > 6) * 6; | ||||
|     ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|     if (inplace) { | ||||
|       ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|     } else { | ||||
|       s.backward(); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, RReLU) { | ||||
|   const auto size = 3; | ||||
|   for (const auto lower : {0.01, 0.1, 0.2}) { | ||||
|     for (const auto upper : {0.3, 0.4, 0.5}) { | ||||
|       RReLU model {RReLUOptions().lower(lower).upper(upper)}; | ||||
|       auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|       x.resize_({size, size, size}).set_requires_grad(true); | ||||
|       auto y = model(x); | ||||
|       torch::Tensor s = y.sum(); | ||||
|       for (const auto inplace : {false, true}) { | ||||
|         RReLU model {RReLUOptions().lower(lower).upper(upper).inplace(inplace)}; | ||||
|         auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|         x.resize_({size, size, size}); | ||||
|         if (!inplace) { | ||||
|           x.requires_grad_(true); | ||||
|         } | ||||
|         auto x_orig = x.clone(); | ||||
|         auto y = model(x); | ||||
|         torch::Tensor s = y.sum(); | ||||
|  | ||||
|       s.backward(); | ||||
|       ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|       ASSERT_EQ(y.ndimension(), 3); | ||||
|       ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|       auto z = ((x >= 0) * (x == y) + | ||||
|         (x < 0) * (y >= x * upper) * (y <= lower * x)) * 1.0; | ||||
|       ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); | ||||
|         ASSERT_EQ(s.ndimension(), 0); | ||||
|         ASSERT_EQ(y.ndimension(), 3); | ||||
|         ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|         auto z = ((x_orig >= 0) * (x_orig == y) + | ||||
|           (x_orig < 0) * (y >= x_orig * upper) * (y <= lower * x_orig)) * 1.0; | ||||
|         ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); | ||||
|         if (inplace) { | ||||
|           ASSERT_TRUE(torch::allclose(x, y)); | ||||
|         } else { | ||||
|           s.backward(); | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, CELU) { | ||||
|   const auto size = 3; | ||||
|   for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) { | ||||
|     CELU model {CELUOptions().alpha(alpha)}; | ||||
|     auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|     x.resize_({size, size, size}).set_requires_grad(true); | ||||
|     auto y = model(x); | ||||
|     torch::Tensor s = y.sum(); | ||||
|   for (const auto inplace : {false, true}) { | ||||
|     for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) { | ||||
|       CELU model {CELUOptions().alpha(alpha).inplace(inplace)}; | ||||
|       auto x = torch::linspace(-10.0, 10.0, size * size * size); | ||||
|       x.resize_({size, size, size}); | ||||
|       if (!inplace) { | ||||
|         x.requires_grad_(true); | ||||
|       } | ||||
|       auto x_orig = x.clone(); | ||||
|       auto y = model(x); | ||||
|       torch::Tensor s = y.sum(); | ||||
|  | ||||
|     s.backward(); | ||||
|     ASSERT_EQ(s.ndimension(), 0); | ||||
|  | ||||
|     ASSERT_EQ(y.ndimension(), 3); | ||||
|     ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|     auto y_exp = torch::max(torch::zeros_like(x), x) + | ||||
|         torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0)); | ||||
|     ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|       ASSERT_EQ(s.ndimension(), 0); | ||||
|       ASSERT_EQ(y.ndimension(), 3); | ||||
|       ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|       auto y_exp = torch::max(torch::zeros_like(x_orig), x_orig) + | ||||
|           torch::min(torch::zeros_like(x_orig), alpha * (torch::exp(x_orig / alpha) - 1.0)); | ||||
|       ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|       if (inplace) { | ||||
|         ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|       } else { | ||||
|         s.backward(); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| @ -2597,12 +2697,16 @@ TEST_F(ModulesTest, Threshold) { | ||||
|         Threshold model {ThresholdOptions(threshold, value).inplace(inplace)}; | ||||
|         auto x = torch::linspace(-3.0, 3.0, 61); | ||||
|         x.resize_({size, size, size}); | ||||
|         auto y_exp = (x <= threshold) * value + (x > threshold) * x; | ||||
|         auto x_orig = x.clone(); | ||||
|         auto y_exp = (x_orig <= threshold) * value + (x_orig > threshold) * x_orig; | ||||
|         auto y = model(x); | ||||
|  | ||||
|         ASSERT_EQ(y.ndimension(), 3); | ||||
|         ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); | ||||
|         ASSERT_TRUE(torch::allclose(y, y_exp)); | ||||
|         if (inplace) { | ||||
|           ASSERT_TRUE(torch::allclose(x, y_exp)); | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| @ -2611,7 +2715,7 @@ TEST_F(ModulesTest, Threshold) { | ||||
| TEST_F(ModulesTest, Upsampling1D) { | ||||
|   { | ||||
|     Upsample model(UpsampleOptions() | ||||
|                        .size({4}) | ||||
|                        .size(std::vector<int64_t>({4})) | ||||
|                        .mode(torch::kNearest)); | ||||
|     auto input = torch::ones({1, 1, 2}, torch::requires_grad()); | ||||
|     auto output = model->forward(input); | ||||
| @ -2627,7 +2731,7 @@ TEST_F(ModulesTest, Upsampling1D) { | ||||
|       // test float scale factor up & down sampling | ||||
|       for (const auto scale_factor : {0.5, 1.5, 2.0}) { | ||||
|         Upsample model(UpsampleOptions() | ||||
|                            .scale_factor({scale_factor}) | ||||
|                            .scale_factor(std::vector<double>({scale_factor})) | ||||
|                            .mode(torch::kLinear) | ||||
|                            .align_corners(align_corners)); | ||||
|         auto input = torch::ones({1, 1, 2}, torch::requires_grad()); | ||||
| @ -2646,7 +2750,7 @@ TEST_F(ModulesTest, Upsampling1D) { | ||||
|   { | ||||
|     // linear (1D) upsampling spatial invariance | ||||
|     Upsample model(UpsampleOptions() | ||||
|                        .scale_factor({3}) | ||||
|                        .scale_factor(std::vector<double>({3})) | ||||
|                        .mode(torch::kLinear) | ||||
|                        .align_corners(false)); | ||||
|     auto input = torch::zeros({1, 1, 9}); | ||||
| @ -2661,7 +2765,7 @@ TEST_F(ModulesTest, Upsampling1D) { | ||||
| TEST_F(ModulesTest, Upsampling2D) { | ||||
|   { | ||||
|     Upsample model(UpsampleOptions() | ||||
|                        .size({4, 4}) | ||||
|                        .size(std::vector<int64_t>({4, 4})) | ||||
|                        .mode(torch::kNearest)); | ||||
|     auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); | ||||
|     auto output = model->forward(input); | ||||
| @ -2677,7 +2781,7 @@ TEST_F(ModulesTest, Upsampling2D) { | ||||
|       // test float scale factor up & down sampling | ||||
|       for (const auto scale_factor : {0.5, 1.5, 2.0}) { | ||||
|         Upsample model(UpsampleOptions() | ||||
|                            .scale_factor({scale_factor, scale_factor}) | ||||
|                            .scale_factor(std::vector<double>({scale_factor, scale_factor})) | ||||
|                            .mode(torch::kBilinear) | ||||
|                            .align_corners(align_corners)); | ||||
|         auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); | ||||
| @ -2698,7 +2802,7 @@ TEST_F(ModulesTest, Upsampling2D) { | ||||
|       // test float scale factor up & down sampling | ||||
|       for (const auto scale_factor : {0.5, 1.5, 2.0}) { | ||||
|         Upsample model(UpsampleOptions() | ||||
|                            .scale_factor({scale_factor, scale_factor}) | ||||
|                            .scale_factor(std::vector<double>({scale_factor, scale_factor})) | ||||
|                            .mode(torch::kBicubic) | ||||
|                            .align_corners(align_corners)); | ||||
|         auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); | ||||
| @ -2719,7 +2823,7 @@ TEST_F(ModulesTest, Upsampling2D) { | ||||
| TEST_F(ModulesTest, Upsampling3D) { | ||||
|   { | ||||
|     Upsample model(UpsampleOptions() | ||||
|                        .size({4, 4, 4}) | ||||
|                        .size(std::vector<int64_t>({4, 4, 4})) | ||||
|                        .mode(torch::kNearest)); | ||||
|     auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad()); | ||||
|     auto output = model->forward(input); | ||||
| @ -2736,7 +2840,7 @@ TEST_F(ModulesTest, Upsampling3D) { | ||||
|       for (const auto scale_factor : {0.5, 1.5, 2.0}) { | ||||
|         Upsample model( | ||||
|             UpsampleOptions() | ||||
|                 .scale_factor({scale_factor, scale_factor, scale_factor}) | ||||
|                 .scale_factor(std::vector<double>({scale_factor, scale_factor, scale_factor})) | ||||
|                 .mode(torch::kTrilinear) | ||||
|                 .align_corners(align_corners)); | ||||
|         auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad()); | ||||
| @ -3876,10 +3980,10 @@ TEST_F(ModulesTest, PrettyPrintConvTranspose) { | ||||
|  | ||||
| TEST_F(ModulesTest, PrettyPrintUpsample) { | ||||
|   ASSERT_EQ( | ||||
|       c10::str(Upsample(UpsampleOptions().size({2, 4, 4}))), | ||||
|       c10::str(Upsample(UpsampleOptions().size(std::vector<int64_t>({2, 4, 4})))), | ||||
|       "torch::nn::Upsample(size=[2, 4, 4], mode=kNearest)"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(Upsample(UpsampleOptions().scale_factor({0.5, 1.5}).mode(torch::kBilinear))), | ||||
|       c10::str(Upsample(UpsampleOptions().scale_factor(std::vector<double>({0.5, 1.5})).mode(torch::kBilinear))), | ||||
|       "torch::nn::Upsample(scale_factor=[0.5, 1.5], mode=kBilinear)"); | ||||
| } | ||||
|  | ||||
| @ -3987,15 +4091,27 @@ TEST_F(ModulesTest, PrettyPrintAdaptiveMaxPool) { | ||||
|       c10::str(AdaptiveMaxPool2d(5)), | ||||
|       "torch::nn::AdaptiveMaxPool2d(output_size=[5, 5])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool2d(std::vector<int64_t>{5, 6})), | ||||
|       c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({5, 6}))), | ||||
|       "torch::nn::AdaptiveMaxPool2d(output_size=[5, 6])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({5, c10::nullopt}))), | ||||
|       "torch::nn::AdaptiveMaxPool2d(output_size=[5, None])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({c10::nullopt, c10::nullopt}))), | ||||
|       "torch::nn::AdaptiveMaxPool2d(output_size=[None, None])"); | ||||
|  | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool3d(5)), | ||||
|       "torch::nn::AdaptiveMaxPool3d(output_size=[5, 5, 5])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool3d(std::vector<int64_t>{5, 6, 7})), | ||||
|       c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({5, 6, 7}))), | ||||
|       "torch::nn::AdaptiveMaxPool3d(output_size=[5, 6, 7])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({5, c10::nullopt, 7}))), | ||||
|       "torch::nn::AdaptiveMaxPool3d(output_size=[5, None, 7])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({c10::nullopt, c10::nullopt, c10::nullopt}))), | ||||
|       "torch::nn::AdaptiveMaxPool3d(output_size=[None, None, None])"); | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) { | ||||
| @ -4007,15 +4123,27 @@ TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) { | ||||
|       c10::str(AdaptiveAvgPool2d(5)), | ||||
|       "torch::nn::AdaptiveAvgPool2d(output_size=[5, 5])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool2d(std::vector<int64_t>{5, 6})), | ||||
|       c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({5, 6}))), | ||||
|       "torch::nn::AdaptiveAvgPool2d(output_size=[5, 6])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({5, c10::nullopt}))), | ||||
|       "torch::nn::AdaptiveAvgPool2d(output_size=[5, None])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({c10::nullopt, c10::nullopt}))), | ||||
|       "torch::nn::AdaptiveAvgPool2d(output_size=[None, None])"); | ||||
|  | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool3d(5)), | ||||
|       "torch::nn::AdaptiveAvgPool3d(output_size=[5, 5, 5])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool3d(std::vector<int64_t>{5, 6, 7})), | ||||
|       c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({5, 6, 7}))), | ||||
|       "torch::nn::AdaptiveAvgPool3d(output_size=[5, 6, 7])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({5, c10::nullopt, 7}))), | ||||
|       "torch::nn::AdaptiveAvgPool3d(output_size=[5, None, 7])"); | ||||
|   ASSERT_EQ( | ||||
|       c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({c10::nullopt, c10::nullopt, c10::nullopt}))), | ||||
|       "torch::nn::AdaptiveAvgPool3d(output_size=[None, None, None])"); | ||||
| } | ||||
|  | ||||
| TEST_F(ModulesTest, PrettyPrintMaxUnpool) { | ||||
|  | ||||
| @ -26,7 +26,7 @@ bool test_optimizer_xor(Options options) { | ||||
|       Linear(8, 1), | ||||
|       Functional(torch::sigmoid)); | ||||
|  | ||||
|   const int64_t kBatchSize = 4; | ||||
|   const int64_t kBatchSize = 50; | ||||
|   const int64_t kMaximumNumberOfEpochs = 3000; | ||||
|  | ||||
|   OptimizerClass optimizer(model->parameters(), options); | ||||
| @ -40,13 +40,21 @@ bool test_optimizer_xor(Options options) { | ||||
|       inputs[i] = torch::randint(2, {2}, torch::kInt64); | ||||
|       labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>(); | ||||
|     } | ||||
|     inputs.set_requires_grad(true); | ||||
|     optimizer.zero_grad(); | ||||
|     auto x = model->forward(inputs); | ||||
|     torch::Tensor loss = torch::binary_cross_entropy(x, labels); | ||||
|     loss.backward(); | ||||
|  | ||||
|     optimizer.step(); | ||||
|     inputs.set_requires_grad(true); | ||||
|  | ||||
|     auto step = [&](OptimizerClass& optimizer, Sequential model, torch::Tensor inputs, torch::Tensor labels) { | ||||
|       auto closure = [&]() { | ||||
|         optimizer.zero_grad(); | ||||
|         auto x = model->forward(inputs); | ||||
|         auto loss = torch::binary_cross_entropy(x, labels); | ||||
|         loss.backward(); | ||||
|         return loss; | ||||
|       }; | ||||
|       return optimizer.step(closure); | ||||
|     }; | ||||
|  | ||||
|     torch::Tensor loss = step(optimizer, model, inputs, labels); | ||||
|  | ||||
|     running_loss = running_loss * 0.99 + loss.item<float>() * 0.01; | ||||
|     if (epoch > kMaximumNumberOfEpochs) { | ||||
| @ -166,30 +174,66 @@ TEST(OptimTest, OptimizerAccessors) { | ||||
|   optimizer_.state(); | ||||
| } | ||||
|  | ||||
| TEST(OptimTest, BasicInterface) { | ||||
| #define OLD_INTERFACE_WARNING_CHECK(func) \ | ||||
| { \ | ||||
|   std::stringstream buffer;\ | ||||
|   torch::test::CerrRedirect cerr_redirect(buffer.rdbuf());\ | ||||
|   func;\ | ||||
|   ASSERT_EQ(\ | ||||
|     torch::test::count_substr_occurrences(\ | ||||
|       buffer.str(),\ | ||||
|       "will be removed"\ | ||||
|     ),\ | ||||
|   1);\ | ||||
| } | ||||
|  | ||||
| struct MyOptimizerOptions : public OptimizerCloneableOptions<MyOptimizerOptions> { | ||||
|   MyOptimizerOptions(double lr = 1.0) : lr_(lr) {}; | ||||
|   TORCH_ARG(double, lr) = 1.0; | ||||
| }; | ||||
|  | ||||
| TEST(OptimTest, OldInterface) { | ||||
|   struct MyOptimizer : Optimizer { | ||||
|     using Optimizer::Optimizer; | ||||
|     torch::Tensor step(LossClosure closure = nullptr) override { return {};} | ||||
|     explicit MyOptimizer( | ||||
|         std::vector<at::Tensor> params, MyOptimizerOptions defaults = {}) : | ||||
|           Optimizer({std::move(OptimizerParamGroup(params))}, std::make_unique<MyOptimizerOptions>(defaults)) {} | ||||
|   }; | ||||
|   std::vector<torch::Tensor> parameters = { | ||||
|       torch::ones({2, 3}), torch::zeros({2, 3}), torch::rand({2, 3})}; | ||||
|   { | ||||
|     MyOptimizer optimizer(parameters); | ||||
|     ASSERT_EQ(optimizer.size(), parameters.size()); | ||||
|     size_t size; | ||||
|     OLD_INTERFACE_WARNING_CHECK(size = optimizer.size()); | ||||
|     ASSERT_EQ(size, parameters.size()); | ||||
|   } | ||||
|   { | ||||
|     MyOptimizer optimizer; | ||||
|     ASSERT_EQ(optimizer.size(), 0); | ||||
|     optimizer.add_parameters(parameters); | ||||
|     ASSERT_EQ(optimizer.size(), parameters.size()); | ||||
|     for (size_t p = 0; p < parameters.size(); ++p) { | ||||
|       ASSERT_TRUE(optimizer.parameters()[p].allclose(parameters[p])); | ||||
|     std::vector<at::Tensor> params; | ||||
|     MyOptimizer optimizer(params); | ||||
|  | ||||
|     size_t size; | ||||
|     OLD_INTERFACE_WARNING_CHECK(size = optimizer.size()); | ||||
|     ASSERT_EQ(size, 0); | ||||
|  | ||||
|     OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters)); | ||||
|  | ||||
|     OLD_INTERFACE_WARNING_CHECK(size = optimizer.size()); | ||||
|     ASSERT_EQ(size, parameters.size()); | ||||
|  | ||||
|     std::vector<torch::Tensor> params_; | ||||
|     OLD_INTERFACE_WARNING_CHECK(params_ = optimizer.parameters()); | ||||
|     for (size_t p = 0; p < size; ++p) { | ||||
|       ASSERT_TRUE(params_[p].allclose(parameters[p])); | ||||
|     } | ||||
|   } | ||||
|   { | ||||
|     Linear linear(3, 4); | ||||
|     MyOptimizer optimizer(linear->parameters()); | ||||
|     ASSERT_EQ(optimizer.size(), linear->parameters().size()); | ||||
|  | ||||
|     size_t size; | ||||
|     OLD_INTERFACE_WARNING_CHECK(size = optimizer.size()); | ||||
|     ASSERT_EQ(size, linear->parameters().size()); | ||||
|   } | ||||
| } | ||||
|  | ||||
| @ -198,6 +242,11 @@ TEST(OptimTest, XORConvergence_SGD) { | ||||
|       SGDOptions(0.1).momentum(0.9).nesterov(true).weight_decay(1e-6))); | ||||
| } | ||||
|  | ||||
| TEST(OptimTest, XORConvergence_LBFGS) { | ||||
|   ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0))); | ||||
|   ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0).line_search_fn("strong_wolfe"))); | ||||
| } | ||||
|  | ||||
| TEST(OptimTest, XORConvergence_Adagrad) { | ||||
|   ASSERT_TRUE(test_optimizer_xor<Adagrad>( | ||||
|       AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3))); | ||||
| @ -375,7 +424,7 @@ TEST(OptimTest, AddParameter_LBFGS) { | ||||
|   } | ||||
|  | ||||
|   LBFGS optimizer(std::vector<torch::Tensor>{}, 1.0); | ||||
|   optimizer.add_parameters(parameters); | ||||
|   OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters)); | ||||
|  | ||||
|   optimizer.step([]() { return torch::tensor(1); }); | ||||
|  | ||||
|  | ||||
| @ -64,7 +64,7 @@ void is_optimizer_state_equal( | ||||
| } | ||||
|  | ||||
| template <typename OptimizerClass, typename DerivedOptimizerOptions, typename DerivedOptimizerParamState> | ||||
| void test_serialize_optimizer(DerivedOptimizerOptions options) { | ||||
| void test_serialize_optimizer(DerivedOptimizerOptions options, bool only_has_global_state = false) { | ||||
|   auto model1 = Linear(5, 2); | ||||
|   auto model2 = Linear(5, 2); | ||||
|   auto model3 = Linear(5, 2); | ||||
| @ -125,9 +125,11 @@ void test_serialize_optimizer(DerivedOptimizerOptions options) { | ||||
|   auto& optim3_2_state = optim3_2.state(); | ||||
|   auto& optim3_state = optim3.state(); | ||||
|  | ||||
|   // optim3_2 and optim1 should have param_groups and state of size 1 and 2 respectively | ||||
|   // optim3_2 and optim1 should have param_groups and state of size 1 and state_size respectively | ||||
|   ASSERT_TRUE(optim3_2_param_groups.size() == 1); | ||||
|   ASSERT_TRUE(optim3_2_state.size() == 2); | ||||
|   // state_size = 2 for all optimizers except LBFGS as LBFGS only maintains one global state | ||||
|   int state_size = only_has_global_state ? 1 : 2; | ||||
|   ASSERT_TRUE(optim3_2_state.size() == state_size); | ||||
|  | ||||
|   // optim3_2 and optim1 should have param_groups and state of same size | ||||
|   ASSERT_TRUE(optim3_2_param_groups.size() == optim3_param_groups.size()); | ||||
| @ -668,39 +670,16 @@ TEST(SerializeTest, Optim_RMSprop) { | ||||
| } | ||||
|  | ||||
| TEST(SerializeTest, Optim_LBFGS) { | ||||
|   auto options = LBFGSOptions(); | ||||
|   test_serialize_optimizer<LBFGS, LBFGSOptions, LBFGSParamState>(LBFGSOptions(), true); | ||||
|   // bc compatibility check | ||||
|   auto model1 = Linear(5, 2); | ||||
|   auto model2 = Linear(5, 2); | ||||
|   auto model3 = Linear(5, 2); | ||||
|  | ||||
|   // Models 1, 2, 3 will have the same parameters. | ||||
|   auto model_tempfile = c10::make_tempfile(); | ||||
|   torch::save(model1, model_tempfile.name); | ||||
|   torch::load(model2, model_tempfile.name); | ||||
|   torch::load(model3, model_tempfile.name); | ||||
|  | ||||
|   auto param1 = model1->named_parameters(); | ||||
|   auto param2 = model2->named_parameters(); | ||||
|   auto param3 = model3->named_parameters(); | ||||
|   for (const auto& p : param1) { | ||||
|     ASSERT_TRUE(p->allclose(param2[p.key()])); | ||||
|     ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()])); | ||||
|   } | ||||
|   // Make some optimizers | ||||
|   auto optim1 = LBFGS( | ||||
|       {torch::optim::OptimizerParamGroup(model1->parameters())}, options); | ||||
|   auto optim2 = LBFGS( | ||||
|       model2->parameters(), options); | ||||
|   auto optim2_2 = LBFGS( | ||||
|       model2->parameters(), options); | ||||
|   auto optim3 = LBFGS( | ||||
|       model3->parameters(), options); | ||||
|   auto optim3_2 = LBFGS( | ||||
|       model3->parameters(), options); | ||||
|   auto model1_params = model1->parameters(); | ||||
|   // added a tensor for lazy init check - when all params do not have entry in buffers | ||||
|   model1_params.emplace_back(torch::randn({2,3})); | ||||
|   auto optim1 = torch::optim::LBFGS(model1_params, torch::optim::LBFGSOptions()); | ||||
|  | ||||
|   auto x = torch::ones({10, 5}); | ||||
|  | ||||
|   auto step = [&x](torch::optim::LossClosureOptimizer& optimizer, Linear model) { | ||||
|   auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) { | ||||
|     optimizer.zero_grad(); | ||||
|     auto y = model->forward(x).sum(); | ||||
|     y.backward(); | ||||
| @ -708,56 +687,47 @@ TEST(SerializeTest, Optim_LBFGS) { | ||||
|     optimizer.step(closure); | ||||
|   }; | ||||
|  | ||||
|   // Do 2 steps of model1 | ||||
|   step(optim1, model1); | ||||
|   step(optim1, model1); | ||||
|  | ||||
|   // Do 2 steps of model 2 without saving the optimizer | ||||
|   step(optim2, model2); | ||||
|   step(optim2_2, model2); | ||||
|   at::Tensor d, t, H_diag, prev_flat_grad, prev_loss; | ||||
|   std::deque<at::Tensor> old_dirs, old_stps; | ||||
|  | ||||
|   // Do 1 step of model 3 | ||||
|   step(optim3, model3); | ||||
|   const auto& params_ = optim1.param_groups()[0].params(); | ||||
|   auto key_ = c10::guts::to_string(params_[0].unsafeGetTensorImpl()); | ||||
|   const auto& optim1_state = static_cast<const LBFGSParamState&>(*(optim1.state().at(key_).get())); | ||||
|   d = optim1_state.d(); | ||||
|   t = at::tensor(optim1_state.t()); | ||||
|   H_diag = optim1_state.H_diag(); | ||||
|   prev_flat_grad = optim1_state.prev_flat_grad(); | ||||
|   prev_loss = at::tensor(optim1_state.prev_loss()); | ||||
|   old_dirs = optim1_state.old_dirs(); | ||||
|  | ||||
|   // save the optimizer | ||||
|   auto optim_tempfile = c10::make_tempfile(); | ||||
|   torch::save(optim3, optim_tempfile.name); | ||||
|   torch::load(optim3_2, optim_tempfile.name); | ||||
|   // write buffers to the file | ||||
|   auto optim_tempfile_old_format = c10::make_tempfile(); | ||||
|   torch::serialize::OutputArchive output_archive; | ||||
|   output_archive.write("d", d, /*is_buffer=*/true); | ||||
|   output_archive.write("t", t, /*is_buffer=*/true); | ||||
|   output_archive.write("H_diag", H_diag, /*is_buffer=*/true); | ||||
|   output_archive.write("prev_flat_grad", prev_flat_grad, /*is_buffer=*/true); | ||||
|   output_archive.write("prev_loss", prev_loss, /*is_buffer=*/true); | ||||
|   write_tensors_to_archive(output_archive, "old_dirs", old_dirs); | ||||
|   write_tensors_to_archive(output_archive, "old_stps", old_stps); | ||||
|   output_archive.save_to(optim_tempfile_old_format.name); | ||||
|  | ||||
|   auto& optim3_2_param_groups = optim3_2.param_groups(); | ||||
|   auto& optim3_param_groups = optim3.param_groups(); | ||||
|   auto& optim3_2_state = optim3_2.state(); | ||||
|   auto& optim3_state = optim3.state(); | ||||
|   auto optim1_2 = LBFGS(model1_params, torch::optim::LBFGSOptions()); | ||||
|   OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name); | ||||
|  | ||||
|   // LBFGS only supports 1 param_group | ||||
|   // optim3_2 and optim1 should have param_groups of size 1 | ||||
|   ASSERT_TRUE(optim3_param_groups.size() == 1); | ||||
|   ASSERT_TRUE(optim3_2_param_groups.size() == 1); | ||||
|   // LBFGS only maintains one global state | ||||
|   ASSERT_TRUE(optim3_2_state.size() == 1); | ||||
|   ASSERT_TRUE(optim3_state.size() == 1); | ||||
|   const auto& params1_2_ = optim1_2.param_groups()[0].params(); | ||||
|   auto param_key = c10::guts::to_string(params1_2_[0].unsafeGetTensorImpl()); | ||||
|   auto& optim1_2_state = static_cast<LBFGSParamState&>(*(optim1_2.state().at(param_key).get())); | ||||
|  | ||||
|   // checking correctness of serialization logic for optimizer.param_groups_ and optimizer.state_ | ||||
|   for (int i = 0; i < optim3_2_param_groups.size(); i++) { | ||||
|     is_optimizer_param_group_equal<LBFGSOptions>( | ||||
|       optim3_2_param_groups[i], optim3_param_groups[i]); | ||||
|     is_optimizer_state_equal<LBFGSParamState>(optim3_2_state, optim3_state); | ||||
|   } | ||||
|   // old LBFGS didn't track func_evals, n_iter, ro, al values | ||||
|   optim1_2_state.func_evals(optim1_state.func_evals()); | ||||
|   optim1_2_state.n_iter(optim1_state.n_iter()); | ||||
|   optim1_2_state.ro(optim1_state.ro()); | ||||
|   optim1_2_state.al(optim1_state.al()); | ||||
|  | ||||
|   // Do step2 for model 3 | ||||
|   step(optim3_2, model3); | ||||
|  | ||||
|   param1 = model1->named_parameters(); | ||||
|   param2 = model2->named_parameters(); | ||||
|   param3 = model3->named_parameters(); | ||||
|   for (const auto& p : param1) { | ||||
|     const auto& name = p.key(); | ||||
|     // Model 1 and 3 should be the same | ||||
|     ASSERT_TRUE( | ||||
|         param1[name].norm().item<float>() == param3[name].norm().item<float>()); | ||||
|     ASSERT_TRUE( | ||||
|         param1[name].norm().item<float>() != param2[name].norm().item<float>()); | ||||
|   } | ||||
|   is_optimizer_state_equal<LBFGSParamState>(optim1.state(), optim1_2.state()); | ||||
| } | ||||
|  | ||||
| TEST(SerializeTest, XOR_CUDA) { | ||||
|  | ||||
| @ -138,7 +138,7 @@ void testClassDerive() { | ||||
| static const auto torchbindSrc = R"JIT( | ||||
| class FooBar1234(Module): | ||||
|   __parameters__ = [] | ||||
|   f : __torch__.torch.classes._TorchScriptTesting_StackString | ||||
|   f : __torch__.torch.classes._TorchScriptTesting._StackString | ||||
|   training : bool | ||||
|   def forward(self: __torch__.FooBar1234) -> str: | ||||
|     return (self.f).top() | ||||
|  | ||||
| @ -66,7 +66,7 @@ struct PickleTester : torch::CustomClassHolder { | ||||
|   std::vector<int64_t> vals; | ||||
| }; | ||||
|  | ||||
| static auto test = torch::class_<Foo>("_TorchScriptTesting_Foo") | ||||
| static auto test = torch::class_<Foo>("_TorchScriptTesting", "_Foo") | ||||
|                        .def(torch::init<int64_t, int64_t>()) | ||||
|                        // .def(torch::init<>()) | ||||
|                        .def("info", &Foo::info) | ||||
| @ -75,7 +75,9 @@ static auto test = torch::class_<Foo>("_TorchScriptTesting_Foo") | ||||
|                        .def("combine", &Foo::combine); | ||||
|  | ||||
| static auto testStack = | ||||
|     torch::class_<MyStackClass<std::string>>("_TorchScriptTesting_StackString") | ||||
|     torch::class_<MyStackClass<std::string>>( | ||||
|         "_TorchScriptTesting", | ||||
|         "_StackString") | ||||
|         .def(torch::init<std::vector<std::string>>()) | ||||
|         .def("push", &MyStackClass<std::string>::push) | ||||
|         .def("pop", &MyStackClass<std::string>::pop) | ||||
| @ -101,7 +103,7 @@ static auto testStack = | ||||
| // clang-format on | ||||
|  | ||||
| static auto testPickle = | ||||
|     torch::class_<PickleTester>("_TorchScriptTesting_PickleTester") | ||||
|     torch::class_<PickleTester>("_TorchScriptTesting", "_PickleTester") | ||||
|         .def(torch::init<std::vector<int64_t>>()) | ||||
|         .def_pickle( | ||||
|             [](c10::intrusive_ptr<PickleTester> self) { // __getstate__ | ||||
| @ -127,10 +129,10 @@ at::Tensor take_an_instance(const c10::intrusive_ptr<PickleTester>& instance) { | ||||
|  | ||||
| torch::RegisterOperators& register_take_instance() { | ||||
|   static auto instance_registry = torch::RegisterOperators().op( | ||||
|   torch::RegisterOperators::options() | ||||
|       .schema( | ||||
|           "_TorchScriptTesting::take_an_instance(__torch__.torch.classes._TorchScriptTesting_PickleTester x) -> Tensor Y") | ||||
|       .catchAllKernel<decltype(take_an_instance), &take_an_instance>()); | ||||
|       torch::RegisterOperators::options() | ||||
|           .schema( | ||||
|               "_TorchScriptTesting::take_an_instance(__torch__.torch.classes._TorchScriptTesting._PickleTester x) -> Tensor Y") | ||||
|           .catchAllKernel<decltype(take_an_instance), &take_an_instance>()); | ||||
|   return instance_registry; | ||||
| } | ||||
|  | ||||
| @ -146,7 +148,7 @@ void testTorchbindIValueAPI() { | ||||
|   auto custom_class_obj = make_custom_class<MyStackClass<std::string>>( | ||||
|       std::vector<std::string>{"foo", "bar"}); | ||||
|   m.define(R"( | ||||
|     def forward(self, s : __torch__.torch.classes._TorchScriptTesting_StackString): | ||||
|     def forward(self, s : __torch__.torch.classes._TorchScriptTesting._StackString): | ||||
|       return s.pop(), s | ||||
|   )"); | ||||
|  | ||||
|  | ||||
| @ -343,7 +343,8 @@ void testLiteInterpreterBuiltinFunction() { | ||||
| namespace { | ||||
| static auto reg = | ||||
|     torch::jit::class_<TorchBindLiteInterpreterTestStruct>( | ||||
|         "_TorchScriptTesting_LiteInterpreterTest") | ||||
|         "_TorchScriptTesting", | ||||
|         "_LiteInterpreterTest") | ||||
|         .def("get", &TorchBindLiteInterpreterTestStruct::get) | ||||
|         .def_pickle( | ||||
|             // __getattr__ | ||||
|  | ||||
| @ -35,19 +35,19 @@ class TestCustomOperators(unittest.TestCase): | ||||
|  | ||||
|     def test_no_return_class(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_Foo(5, 3) | ||||
|             val = torch.classes._TorchScriptTesting._Foo(5, 3) | ||||
|             return val.info() | ||||
|         self.assertEqual(*test_equality(f, lambda x: x)) | ||||
|  | ||||
|     def test_constructor_with_args(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_Foo(5, 3) | ||||
|             val = torch.classes._TorchScriptTesting._Foo(5, 3) | ||||
|             return val | ||||
|         self.assertEqual(*test_equality(f, lambda x: x.info())) | ||||
|  | ||||
|     def test_function_call_with_args(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_Foo(5, 3) | ||||
|             val = torch.classes._TorchScriptTesting._Foo(5, 3) | ||||
|             val.increment(1) | ||||
|             return val | ||||
|  | ||||
| @ -55,7 +55,7 @@ class TestCustomOperators(unittest.TestCase): | ||||
|  | ||||
|     def test_function_method_wrong_type(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_Foo(5, 3) | ||||
|             val = torch.classes._TorchScriptTesting._Foo(5, 3) | ||||
|             val.increment("asdf") | ||||
|             return val | ||||
|  | ||||
| @ -65,8 +65,8 @@ class TestCustomOperators(unittest.TestCase): | ||||
|     @unittest.skip("We currently don't support passing custom classes to custom methods.") | ||||
|     def test_input_class_type(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_Foo(1, 2) | ||||
|             val2 = torch.classes._TorchScriptTesting_Foo(2, 3) | ||||
|             val = torch.classes._TorchScriptTesting._Foo(1, 2) | ||||
|             val2 = torch.classes._TorchScriptTesting._Foo(2, 3) | ||||
|             val.combine(val2) | ||||
|             return val | ||||
|  | ||||
| @ -74,14 +74,14 @@ class TestCustomOperators(unittest.TestCase): | ||||
|  | ||||
|     def test_stack_string(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_StackString(["asdf", "bruh"]) | ||||
|             val = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"]) | ||||
|             return val.pop() | ||||
|         self.assertEqual(*test_equality(f, lambda x: x)) | ||||
|  | ||||
|     def test_stack_push_pop(self): | ||||
|         def f(): | ||||
|             val = torch.classes._TorchScriptTesting_StackString(["asdf", "bruh"]) | ||||
|             val2 = torch.classes._TorchScriptTesting_StackString(["111", "222"]) | ||||
|             val = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"]) | ||||
|             val2 = torch.classes._TorchScriptTesting._StackString(["111", "222"]) | ||||
|             val.push(val2.pop()) | ||||
|             return val.pop() + val2.pop() | ||||
|         self.assertEqual(*test_equality(f, lambda x: x)) | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "x" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "4" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "4" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "x" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "weight" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "x" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "x" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "2" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "0" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "x" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "x" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     input: "input" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| ir_version: 6 | ||||
| producer_name: "pytorch" | ||||
| producer_version: "1.4" | ||||
| producer_version: "1.5" | ||||
| graph { | ||||
|   node { | ||||
|     output: "1" | ||||
|  | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user
	