Compare commits

..

1 Commits

Author SHA1 Message Date
d84a652bb0 Initial type coverage 2025-11-07 10:39:12 -08:00
665 changed files with 7371 additions and 14330 deletions

View File

@ -36,7 +36,11 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)

View File

@ -168,18 +168,6 @@ case "$tag" in
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.11-clang12)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=12
VISION=no
TRITON=no
;;
pytorch-linux-jammy-py3.12-clang12)
ANACONDA_PYTHON_VERSION=3.12
CLANG_VERSION=12
VISION=no
TRITON=no
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-jammy-rocm-n-py3-benchmarks | pytorch-linux-noble-rocm-n-py3)
if [[ $tag =~ "jammy" ]]; then
ANACONDA_PYTHON_VERSION=3.10
@ -207,9 +195,9 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-noble-xpu-n-py3 | pytorch-linux-noble-xpu-n-py3-inductor-benchmarks)
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=13
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.2
NINJA_VERSION=1.9.0
@ -260,12 +248,6 @@ case "$tag" in
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-py3.12-pallas)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
PALLAS=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
@ -387,7 +369,6 @@ docker build \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "PALLAS=${PALLAS}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \

View File

@ -1 +0,0 @@
0.8.0

View File

@ -1,40 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
# Get the pinned JAX version (same for all CUDA versions)
JAX_VERSION=$(get_pinned_commit /ci_commit_pins/jax)
function install_jax_12() {
echo "Installing JAX ${JAX_VERSION} with CUDA 12 support"
pip_install "jax[cuda12]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 12"
}
function install_jax_13() {
echo "Installing JAX ${JAX_VERSION} with CUDA 13 support"
pip_install "jax[cuda13]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 13"
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4|12.6|12.6.*|12.8|12.8.*|12.9|12.9.*) install_jax_12;
;;
13.0|13.0.*) install_jax_13;
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -9,7 +9,7 @@ set -xe
function install_ubuntu() {
. /etc/os-release
if [[ ! " jammy noble " =~ " ${VERSION_CODENAME} " ]]; then
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
echo "Ubuntu version ${VERSION_CODENAME} not supported"
exit
fi
@ -35,24 +35,25 @@ function install_ubuntu() {
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
# Compute and Media Runtimes
if [[ " ${VERSION_CODENAME} " =~ " noble " ]]; then
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
else # jammy
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
else # rolling driver
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
fi
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
# Install Intel Support Packages
apt-get install -y ${XPU_PACKAGES}
@ -65,7 +66,7 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
@ -146,7 +147,7 @@ function install_sles() {
XPU_DRIVER_VERSION=""
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2523"
XPU_DRIVER_VERSION="/lts/2350"
fi
# Default use Intel® oneAPI Deep Learning Essentials 2025.1

View File

@ -49,7 +49,11 @@ case ${DOCKER_TAG_PREFIX} in
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -87,7 +87,11 @@ case ${image} in
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -143,15 +143,6 @@ COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG PALLAS
ARG CUDA_VERSION
# Install JAX with CUDA support (for Pallas)
COPY ./common/install_jax.sh install_jax.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/jax.txt /ci_commit_pins/jax.txt
RUN if [ -n "${PALLAS}" ]; then bash ./install_jax.sh ${CUDA_VERSION}; fi
RUN rm -f install_jax.sh common_utils.sh /ci_commit_pins/jax.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./

View File

@ -8,11 +8,9 @@ from abc import ABC, abstractmethod
try:
from collections.abc import Callable # Python 3.11+
from typing import Any, Required, TypedDict
from typing import Any, Callable, Required, TypedDict # Python 3.11+
except ImportError:
from collections.abc import Callable
from typing import Any, TypedDict
from typing import Any, Callable, TypedDict
from typing_extensions import Required # Fallback for Python <3.11

View File

@ -168,16 +168,14 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/umf/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Enable XCCL build
export USE_XCCL=1
export USE_MPI=0
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
export USE_KINETO=0
export TORCH_XPU_ARCH_LIST=pvc
fi

View File

@ -208,8 +208,6 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
fi
@ -826,11 +824,6 @@ test_inductor_halide() {
assert_git_not_dirty
}
test_inductor_pallas() {
python test/run_test.py --include inductor/test_pallas.py --verbose
assert_git_not_dirty
}
test_inductor_triton_cpu() {
python test/run_test.py --include inductor/test_triton_cpu_backend.py inductor/test_torchinductor_strided_blocks.py --verbose
assert_git_not_dirty
@ -1731,8 +1724,6 @@ elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
test_inductor_halide
elif [[ "${TEST_CONFIG}" == *inductor-pallas* ]]; then
test_inductor_pallas
elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then

View File

@ -1 +1 @@
ccb801b88af136454798b945175c4c87e636ac33
cfbc5c2f1c798991715a6b06bb3ce46478c4487c

View File

@ -1 +1 @@
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9

22
.github/labeler.yml vendored
View File

@ -138,8 +138,7 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -149,8 +148,7 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -160,21 +158,7 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- aten/src/ATen/native/cuda/Blas.cpp
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/mps":
- aten/src/ATen/mps/**
- aten/src/ATen/native/mps/**
- torch/_inductor/codegen/mps.py
- test/test_mps.py
- test/inductor/test_mps_basic.py
"ciflow/h100-symm-mem":
- torch/csrc/distributed/c10d/symm_mem/**
- torch/distributed/_symmetric_memory/**
- test/distributed/**/*mem*
- test/distributed/**/*mem*/**

View File

@ -10,4 +10,3 @@
pathFilter:
- 'torch/csrc/inductor/aoti_torch/c/*'
- 'torch/csrc/inductor/aoti_torch/generated/*'
- 'torch/csrc/stable/c/*'

View File

@ -2,8 +2,8 @@ tracking_issue: 24422
ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-distributed
- ciflow/b200-symm-mem
- ciflow/b200-distributed
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
@ -22,8 +22,6 @@ ciflow_push_tags:
- ciflow/inductor-perf-test-nightly-xpu
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/inductor-rocm-mi200
- ciflow/inductor-rocm-mi300
- ciflow/linux-aarch64
- ciflow/mps
- ciflow/nightly
@ -35,13 +33,11 @@ ciflow_push_tags:
- ciflow/quantization-periodic
- ciflow/riscv64
- ciflow/rocm
- ciflow/rocm-mi200
- ciflow/rocm-mi300
- ciflow/rocm-mi355
- ciflow/rocm-navi31
- ciflow/s390
- ciflow/slow
- ciflow/slow-rocm-mi200
- ciflow/torchbench
- ciflow/triton_binaries
- ciflow/trunk

View File

@ -1,11 +1,10 @@
# Delete old branches
import os
import re
from collections.abc import Callable
from datetime import datetime
from functools import lru_cache
from pathlib import Path
from typing import Any
from typing import Any, Callable
from github_utils import gh_fetch_json_dict, gh_graphql
from gitutils import GitRepo

View File

@ -8,11 +8,10 @@ import re
import subprocess
import sys
import warnings
from collections.abc import Callable
from enum import Enum
from functools import cache
from logging import info
from typing import Any, Optional
from typing import Any, Callable, Optional
from urllib.request import Request, urlopen
import yaml

View File

@ -11,8 +11,7 @@ import sys
import time
import urllib
import urllib.parse
from collections.abc import Callable
from typing import Any, Optional
from typing import Any, Callable, Optional
from urllib.request import Request, urlopen

View File

@ -3,9 +3,8 @@
import json
import os
import warnings
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, cast, Optional, Union
from typing import Any, Callable, cast, Optional, Union
from urllib.error import HTTPError
from urllib.parse import quote
from urllib.request import Request, urlopen

View File

@ -4,10 +4,10 @@ import os
import re
import tempfile
from collections import defaultdict
from collections.abc import Callable, Iterator
from collections.abc import Iterator
from datetime import datetime
from functools import wraps
from typing import Any, cast, Optional, TypeVar, Union
from typing import Any, Callable, cast, Optional, TypeVar, Union
T = TypeVar("T")

View File

@ -34,9 +34,6 @@ python3 torch/utils/data/datapipes/gen_pyi.py
# Also check generated pyi files
find torch -name '*.pyi' -exec git add --force -- "{}" +
# Print current environment
python3 -m pip freeze
RC=0
# Run lintrunner on all files
if ! lintrunner --force-color --tee-json=lint.json ${ADDITIONAL_LINTRUNNER_ARGS} 2> /dev/null; then

View File

@ -17,12 +17,12 @@ import re
import time
import urllib.parse
from collections import defaultdict
from collections.abc import Callable, Iterable
from collections.abc import Iterable
from dataclasses import dataclass
from functools import cache
from pathlib import Path
from re import Pattern
from typing import Any, cast, NamedTuple, Optional
from typing import Any, Callable, cast, NamedTuple, Optional
from warnings import warn
import yaml

View File

@ -37,6 +37,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'

View File

@ -37,6 +37,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'

View File

@ -56,8 +56,6 @@ jobs:
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9,
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.10-clang12,
pytorch-linux-jammy-py3.11-clang12,
pytorch-linux-jammy-py3.12-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-py3.14-clang12,
pytorch-linux-jammy-rocm-n-py3,
@ -67,10 +65,9 @@ jobs:
pytorch-linux-jammy-py3.10-gcc11,
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-cuda12.8-py3.12-pallas,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-noble-xpu-n-py3,
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-xpu-n-py3,
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,

View File

@ -37,6 +37,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.c7i.12xlarge"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'

View File

@ -83,8 +83,8 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3-inductor-benchmarks
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
@ -117,7 +117,7 @@ jobs:
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-noble-xpu-n-py3.10
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
@ -137,7 +137,7 @@ jobs:
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-noble-xpu-n-py3.10
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}

View File

@ -7,7 +7,6 @@ on:
- release/*
tags:
- ciflow/inductor-rocm/*
- ciflow/inductor-rocm-mi300/*
workflow_dispatch:
concurrency:

View File

@ -7,7 +7,7 @@ on:
branches:
- release/*
tags:
- ciflow/inductor-rocm-mi200/*
- ciflow/inductor-rocm/*
workflow_dispatch:
concurrency:

View File

@ -81,32 +81,6 @@ jobs:
test-matrix: ${{ needs.inductor-halide-build.outputs.test-matrix }}
secrets: inherit
inductor-pallas-build:
name: inductor-pallas-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-py3.12-pallas
cuda-arch-list: '8.9'
runner: linux.8xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
test-matrix: |
{ include: [
{ config: "inductor-pallas", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.12xlarge.nvidia.gpu" },
]}
secrets: inherit
inductor-pallas-test:
name: inductor-pallas-test
uses: ./.github/workflows/_linux-test.yml
needs: inductor-pallas-build
with:
build-environment: linux-jammy-py3.12-gcc11
docker-image: ${{ needs.inductor-pallas-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-pallas-build.outputs.test-matrix }}
secrets: inherit
inductor-triton-cpu-build:
name: inductor-triton-cpu-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -5,11 +5,9 @@ on:
- cron: 0 0 * * *
push:
tags:
# NOTE: Doc build pipelines should only get triggered on:
# Major or minor release candidates builds
- v[0-9]+.[0-9]+.0+-rc[0-9]+
# Final RC for major, minor and patch releases
- v[0-9]+.[0-9]+.[0-9]+
# NOTE: Doc build pipelines should only get triggered on release candidate builds
# Release candidate tags look like: v1.11.0-rc1
- v[0-9]+.[0-9]+.[0-9]+-rc[0-9]+
- ciflow/nightly/*
workflow_dispatch:

View File

@ -11,6 +11,7 @@ on:
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi200/*
branches:
- release/*

View File

@ -11,7 +11,6 @@ on:
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi300/*
branches:
- release/*

View File

@ -342,16 +342,16 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
secrets: inherit
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# This should sync with the build in xpu.yml but xpu uses a larger runner
# sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },

View File

@ -6,7 +6,6 @@ on:
- main
- release/*
tags:
- ciflow/rocm/*
- ciflow/rocm-mi300/*
workflow_dispatch:
schedule:

View File

@ -5,7 +5,7 @@ on:
branches:
- release/*
tags:
- ciflow/rocm-mi200/*
- ciflow/rocm/*
workflow_dispatch:
schedule:
- cron: 29 8 * * * # about 1:29am PDT

View File

@ -1,81 +0,0 @@
# This workflow is dedicated to host slow jobs that are run only periodically because
# they are too slow to run in every commit. The list of slow tests can be found in
# https://github.com/pytorch/test-infra/blob/generated-stats/stats/slow-tests.json
name: slow-rocm-mi200
on:
push:
branches:
- release/*
tags:
- ciflow/slow/*
- ciflow/slow-rocm-mi200/*
schedule:
- cron: 0 */3 * * *
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
llm-td:
if: github.repository_owner == 'pytorch'
name: before-test
uses: ./.github/workflows/llm_td_retrieval.yml
permissions:
id-token: write
contents: read
target-determination:
name: before-test
uses: ./.github/workflows/target_determination.yml
needs: llm-td
permissions:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit

View File

@ -105,6 +105,36 @@ jobs:
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-py3_10-clang18-asan-build:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-build.yml

View File

@ -52,6 +52,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
@ -72,4 +73,4 @@ jobs:
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit
secrets: inherit

View File

@ -41,6 +41,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'

View File

@ -11,16 +11,15 @@ on:
- inductor
- unstable
- slow
- slow-rocm-mi200
- unstable-periodic
- inductor-periodic
- rocm-mi200
- rocm
- rocm-mi300
- rocm-mi355
- inductor-micro-benchmark
- inductor-micro-benchmark-x86
- inductor-cu124
- inductor-rocm-mi200
- inductor-rocm
- inductor-rocm-mi300
- mac-mps
- linux-aarch64

View File

@ -47,15 +47,15 @@ jobs:
]}
secrets: inherit
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
@ -74,17 +74,17 @@ jobs:
]}
secrets: inherit
linux-noble-xpu-n-py3_10-test:
name: linux-noble-xpu-n-py3.10
linux-jammy-xpu-n-py3_10-test:
name: linux-jammy-xpu-n-py3.10
uses: ./.github/workflows/_xpu-test.yml
needs: linux-noble-xpu-n-py3_10-build
needs: linux-jammy-xpu-n-py3_10-build
permissions:
id-token: write
contents: read
with:
build-environment: linux-noble-xpu-n-py3.10
docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
build-environment: linux-jammy-xpu-n-py3.10
docker-image: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.test-matrix }}
secrets: inherit
windows-xpu-n-1-build:

View File

@ -143,8 +143,7 @@ init_command = [
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12" and python_version <= "3.13"',
'numpy==2.3.4 ; python_version >= "3.14"',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'pyrefly==0.36.2',
'sympy==1.13.3',
@ -186,8 +185,6 @@ include_patterns = [
'aten/src/ATen/native/nested/cuda/*.h',
'aten/src/ATen/native/nested/*.cpp',
'aten/src/ATen/native/nested/*.h',
'aten/src/ATen/xpu/**/*.h',
'aten/src/ATen/xpu/**/*.cpp',
'c10/**/*.cpp',
'c10/**/*.h',
'torch/*.h',
@ -1404,7 +1401,7 @@ init_command = [
'--dry-run={{DRYRUN}}',
'usort==1.0.8.post1',
'isort==6.0.1',
'ruff==0.14.4', # sync with RUFF
'ruff==0.13.1', # sync with RUFF
]
is_formatter = true
@ -1539,7 +1536,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.14.4', # sync with PYFMT
'ruff==0.13.1', # sync with PYFMT
]
is_formatter = true

View File

@ -736,44 +736,6 @@ if(NOT DEFINED USE_BLAS)
set(USE_BLAS ON)
endif()
# Prioritized Text Linker Optimization
if(USE_PRIORITIZED_TEXT_FOR_LD)
set(LINKER_SCRIPT_FILE_IN "${CMAKE_SOURCE_DIR}/cmake/prioritized_text.txt")
set(LINKER_SCRIPT_FILE_OUT "${CMAKE_SOURCE_DIR}/cmake/linker_script.ld")
execute_process(
COMMAND ${Python_EXECUTABLE}
${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py
--filein "${LINKER_SCRIPT_FILE_IN}"
--fout "${LINKER_SCRIPT_FILE_OUT}"
RESULT_VARIABLE _gen_result
OUTPUT_VARIABLE _gen_output
ERROR_VARIABLE _gen_error
)
if(NOT _gen_result EQUAL 0)
message(FATAL_ERROR
"Failed to generate linker script:\n${_gen_output}\n${_gen_error}")
endif()
append_cxx_flag_if_supported("-ffunction-sections" CMAKE_CXX_FLAGS)
append_cxx_flag_if_supported("-fdata-sections" CMAKE_CXX_FLAGS)
append_c_flag_if_supported("-ffunction-sections" CMAKE_C_FLAGS)
append_c_flag_if_supported("-fdata-sections" CMAKE_C_FLAGS)
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -T${LINKER_SCRIPT_FILE_OUT}")
set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} -T${LINKER_SCRIPT_FILE_OUT}")
else()
if(LINUX AND CPU_AARCH64)
message(WARNING [[
It is strongly recommend to enable linker script optimization for all AArch64 Linux builds.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()
# Build libtorch mobile library, which contains ATen/TH ops and native support
# for TorchScript model, but doesn't contain not-yet-unified caffe2 ops;
if(INTERN_BUILD_MOBILE)
@ -1440,6 +1402,9 @@ if(BUILD_JNI)
add_subdirectory(android/pytorch_android)
endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()
# Parse custom debug info
if(DEFINED USE_CUSTOM_DEBINFO)
string(REPLACE ";" " " SOURCE_FILES "${USE_CUSTOM_DEBINFO}")
@ -1479,5 +1444,56 @@ if(BUILD_BUNDLE_PTXAS AND USE_CUDA)
DESTINATION "${CMAKE_INSTALL_BINDIR}")
endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()
if(USE_PRIORITIZED_TEXT_FOR_LD)
add_compile_options(
$<$<COMPILE_LANGUAGE:C,CXX>:-ffunction-sections>
$<$<COMPILE_LANGUAGE:C,CXX>:-fdata-sections>
)
set(LINKER_SCRIPT_FILE_OUT "${CMAKE_SOURCE_DIR}/cmake/linker_script.ld")
set(LINKER_SCRIPT_FILE_IN "${CMAKE_SOURCE_DIR}/cmake/prioritized_text.txt")
add_custom_command(
OUTPUT "${LINKER_SCRIPT_FILE_OUT}"
COMMAND ${Python_EXECUTABLE} ${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py --filein "${LINKER_SCRIPT_FILE_IN}" --fout "${LINKER_SCRIPT_FILE_OUT}"
DEPENDS ${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py "${LINKER_SCRIPT_FILE_IN}"
COMMENT "Generating prioritized text linker files"
VERBATIM
)
add_custom_target(generate_linker_script DEPENDS "${LINKER_SCRIPT_FILE_OUT}")
if(BUILD_PYTHON)
set(LINKER_OPT_TARGETS torch_python)
endif()
if(NOT BUILD_LIBTORCHLESS)
list(APPEND LINKER_OPT_TARGETS torch_cpu c10)
if(USE_CUDA)
list(APPEND LINKER_OPT_TARGETS torch_cuda c10_cuda)
endif()
if(USE_XPU)
list(APPEND LINKER_OPT_TARGETS torch_xpu c10_xpu)
endif()
if(USE_ROCM)
list(APPEND LINKER_OPT_TARGETS torch_hip c10_hip)
endif()
endif()
foreach(tgt IN LISTS LINKER_OPT_TARGETS)
if(TARGET ${tgt})
add_dependencies("${tgt}" generate_linker_script)
target_link_options_if_supported(${tgt} "-T,${LINKER_SCRIPT_FILE_OUT}")
set_property(TARGET ${tgt} APPEND PROPERTY LINK_DEPENDS "${LINKER_SCRIPT_FILE_OUT}")
else()
message(WARNING "Requested target '${tgt}' for linker script optimization was not found.")
endif()
endforeach()
else()
if(LINUX AND CPU_AARCH64)
message(WARNING [[
It is strongly recommend to enable linker script optimization for all AArch64 Linux builds.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()

View File

@ -210,12 +210,8 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision & Grouped GEMMs
# Low Precision GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/GroupedBlas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/ScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -174,12 +174,6 @@ class TORCH_API Context {
static long versionCuDNN() {
return detail::getCUDAHooks().versionCuDNN();
}
static long versionRuntimeCuDNN() {
return detail::getCUDAHooks().versionRuntimeCuDNN();
}
static long versionCuDNNFrontend() {
return detail::getCUDAHooks().versionCuDNNFrontend();
}
static bool hasCuSOLVER() {
return detail::getCUDAHooks().hasCuSOLVER();
}

View File

@ -94,11 +94,6 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
}
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
c10::DeviceIndex device_index) {
const auto device_type = getAccelerator(true).value();
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
}
} // namespace at::accelerator
namespace at {

View File

@ -6,7 +6,6 @@
#include <c10/util/Half.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/complex.h>
#include <torch/headeronly/core/Dispatch.h>
#ifdef __CUDACC__
#include <cuda.h> // For CUDA_VERSION
@ -62,9 +61,12 @@ TORCH_API void record_kernel_function_dtype(std::string name);
} \
} while (0)
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
THO_PRIVATE_CASE_TYPE_USING_HINT_TMPL( \
AT_PRIVATE_CHECK_SELECTIVE_BUILD, enum_type, HINT, __VA_ARGS__)
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
case enum_type: { \
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
using HINT [[maybe_unused]] = c10::impl::ScalarTypeToCPPTypeT<enum_type>; \
return __VA_ARGS__(); \
}
#define AT_DISPATCH_CASE(enum_type, ...) \
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
@ -93,6 +95,14 @@ TORCH_API void record_kernel_function_dtype(std::string name);
return __VA_ARGS__(); \
}
namespace detail {
inline at::ScalarType scalar_type(at::ScalarType s) {
return s;
}
} // namespace detail
// The AT_DISPATCH_* family of macros provides the ability to
// conveniently generate specializations of a kernel over all of the
// dtypes we care about in PyTorch. We call it "dispatch" because
@ -180,13 +190,27 @@ TORCH_API void record_kernel_function_dtype(std::string name);
// but we're just being safe (and it doesn't hurt.) Note we must
// use it to shut up warnings about unused store.
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
THO_DISPATCH_SWITCH_TMPL( \
RECORD_KERNEL_FUNCTION_DTYPE, \
TORCH_CHECK_NOT_IMPLEMENTED, \
TYPE, \
NAME, \
__VA_ARGS__)
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
[&] { \
const auto& the_type = TYPE; \
constexpr const char* at_dispatch_name = NAME; \
/* don't use TYPE again in case it is an expensive or side-effect op */ \
at::ScalarType _st = ::detail::scalar_type(the_type); \
RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
switch (_st) { \
__VA_ARGS__ \
default: \
TORCH_CHECK_NOT_IMPLEMENTED( \
false, \
'"', \
at_dispatch_name, \
"\" not implemented for '", \
toString(_st), \
"'"); \
} \
C10_DIAGNOSTIC_POP() \
}()
#define AT_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \

View File

@ -1,8 +1,3 @@
#pragma once
#include <torch/headeronly/core/Dispatch_v2.h>
// Get AT_DISPATCH_SWITCH and AT_DISPATCH_CASE:
#include <ATen/Dispatch.h>
// This is a new implementation of the AT_DISPATCH macro family from
@ -79,19 +74,41 @@
// macro expansion occurs, mediated with AT_EXPAND and AT_GUARD. I mostly
// relied on GPT4 to help me get it right.
// Public API macros
// See documentation above
#define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
THO_DISPATCH_V2_TMPL( \
AT_DISPATCH_SWITCH, \
AT_DISPATCH_CASE, \
TYPE, \
NAME, \
AT_WRAP(BODY), \
__VA_ARGS__)
AT_DISPATCH_SWITCH(TYPE, NAME, AT_AP_VAR(AT_WRAP(BODY), TYPE, __VA_ARGS__))
// This macro lets you pass an arbitrary expression that may contain internal
// commas to another macro without having the commas causing the expression
// to be interpreted as being multiple arguments
#define AT_WRAP(...) __VA_ARGS__
#define AT_FLOAT8_TYPES \
c10::kFloat8_e5m2, c10::kFloat8_e5m2fnuz, c10::kFloat8_e4m3fn, \
c10::kFloat8_e4m3fnuz, c10::kFloat8_e8m0fnu
#define AT_INTEGRAL_TYPES \
c10::kByte, c10::kChar, c10::kInt, c10::kLong, c10::kShort
#define AT_FLOATING_TYPES c10::kDouble, c10::kFloat
#define AT_BAREBONES_UNSIGNED_TYPES c10::kUInt16, c10::kUInt32, c10::kUInt64
#define AT_INTEGRAL_TYPES_V2 \
AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)
#define AT_COMPLEX_TYPES c10::kComplexDouble, c10::kComplexFloat
#define AT_QINT_TYPES c10::kQInt8, c10::kQUInt8, c10::kQInt32
// NB: not *actually* all types
#define AT_ALL_TYPES AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
#define AT_ALL_TYPES_AND_COMPLEX \
AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES)
// Helper macros
// Unused helper macros, kept for BC:
#define AT_AP_VAR(N, T, ...) \
AT_EXPAND(AT_CONCAT(AT_AP, AT_NUM_ARGS(__VA_ARGS__))(AT_WRAP(N), __VA_ARGS__))
#define AT_CONCAT(a, b) AT_CONCAT_AUX(a, b)
#define AT_CONCAT_AUX(a, b) a##b
#define AT_EXPAND(X) X
// Ensure we never have too many scalar types for the expansion here to
// support. To bump this, you must regenerate the macros below.
@ -102,6 +119,12 @@ static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 60);
num_args = 60
nums = ', '.join(str(i) for i in reversed(range(num_args+1)))
args = ', '.join(f'_{i}' for i in range(1, num_args+1))
print(f'#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, {nums}))')
print(f'#define AT_NUM_ARGS_AUX({args}, N, ...) N')
for i in range(1, num_args+1):
args = ', '.join(f'_{i}' for i in range(1, i+1))
cases = ' '.join([f'AT_DISPATCH_CASE(_{j}, N)' for j in range(1, i+1)])
@ -112,6 +135,8 @@ for i in range(1, num_args+1):
// Begin generated code
// clang-format off
#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
#define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, N, ...) N
#define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
#define AT_AP2(N, _1, _2) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N)
#define AT_AP3(N, _1, _2, _3) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N)

View File

@ -226,8 +226,8 @@ template <
typename B = HostBlock<S>>
struct CachingHostAllocatorImpl {
virtual ~CachingHostAllocatorImpl() {
if (active_) {
active_ = false;
active_ = false;
if (pinned_use_background_threads()) {
getBackgroundThreadPool()->waitWorkComplete();
}
}
@ -260,7 +260,6 @@ struct CachingHostAllocatorImpl {
if (pinned_use_background_threads()) {
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
active_ = true;
getBackgroundThreadPool()->run([&]() {
while (active_) {
process_events();
@ -684,9 +683,9 @@ struct CachingHostAllocatorImpl {
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
// Indicates whether the event-processing thread pool is active.
// Indicates whether the object is active.
// Set to false in the destructor to signal background threads to stop.
std::atomic<bool> active_{false};
std::atomic<bool> active_{true};
protected:
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
};

View File

@ -55,6 +55,14 @@ struct numeric_limits<int8_t> {
static inline __host__ __device__ int8_t upper_bound() { return INT8_MAX; }
};
template <>
struct numeric_limits<uint16_t> {
static inline __host__ __device__ uint16_t lowest() { return 0; }
static inline __host__ __device__ uint16_t max() { return UINT16_MAX; }
static inline __host__ __device__ uint16_t lower_bound() { return 0; }
static inline __host__ __device__ uint16_t upper_bound() { return UINT16_MAX; }
};
template <>
struct numeric_limits<int16_t> {
static inline __host__ __device__ int16_t lowest() { return INT16_MIN; }
@ -63,6 +71,14 @@ struct numeric_limits<int16_t> {
static inline __host__ __device__ int16_t upper_bound() { return INT16_MAX; }
};
template <>
struct numeric_limits<uint32_t> {
static inline __host__ __device__ uint32_t lowest() { return 0; }
static inline __host__ __device__ uint32_t max() { return UINT32_MAX; }
static inline __host__ __device__ uint32_t lower_bound() { return 0; }
static inline __host__ __device__ uint32_t upper_bound() { return UINT32_MAX; }
};
template <>
struct numeric_limits<int32_t> {
static inline __host__ __device__ int32_t lowest() { return INT32_MIN; }
@ -71,6 +87,21 @@ struct numeric_limits<int32_t> {
static inline __host__ __device__ int32_t upper_bound() { return INT32_MAX; }
};
template <>
struct numeric_limits<uint64_t> {
#ifdef _MSC_VER
static inline __host__ __device__ uint64_t lowest() { return 0; }
static inline __host__ __device__ uint64_t max() { return _UI64_MAX; }
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
static inline __host__ __device__ uint64_t upper_bound() { return _UI64_MAX; }
#else
static inline __host__ __device__ uint64_t lowest() { return 0; }
static inline __host__ __device__ uint64_t max() { return UINT64_MAX; }
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
static inline __host__ __device__ uint64_t upper_bound() { return UINT64_MAX; }
#endif
};
template <>
struct numeric_limits<int64_t> {
#ifdef _MSC_VER

View File

@ -21,7 +21,6 @@
#if AT_CUDNN_ENABLED()
#include <ATen/cudnn/cudnn-wrapper.h>
#include <cudnn_frontend.h>
#endif
#if AT_MAGMA_ENABLED()
@ -352,26 +351,6 @@ long CUDAHooks::versionCuDNN() const {
#endif
}
long CUDAHooks::versionRuntimeCuDNN() const {
#if AT_CUDNN_ENABLED()
#ifndef USE_STATIC_CUDNN
return cudnnGetVersion();
#else
return CUDNN_VERSION;
#endif
#else
TORCH_CHECK(false, "Cannot query CuDNN version if ATen_cuda is not built with CuDNN");
#endif
}
long CUDAHooks::versionCuDNNFrontend() const {
#if AT_CUDNN_ENABLED()
return CUDNN_FRONTEND_VERSION;
#else
TORCH_CHECK(false, "Cannot query CuDNN Frontend version if ATen_cuda is not built with CuDNN");
#endif
}
long CUDAHooks::versionMIOpen() const {
#if AT_ROCM_ENABLED()
return MIOPEN_VERSION_MAJOR * 10000 +

View File

@ -49,8 +49,6 @@ struct CUDAHooks : public at::CUDAHooksInterface {
bool hasCUDART() const override;
long versionCUDART() const override;
long versionCuDNN() const override;
long versionRuntimeCuDNN() const override;
long versionCuDNNFrontend() const override;
long versionMIOpen() const override;
std::string showConfig() const override;
double batchnormMinEpsilonCuDNN() const override;

View File

@ -174,14 +174,6 @@ struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionRuntimeCuDNN() const {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionCuDNNFrontend() const {
TORCH_CHECK(false, "Cannot query cuDNN Frontend version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionMIOpen() const {
TORCH_CHECK(false, "Cannot query MIOpen version without ATen_cuda library. ", CUDA_HELP);
}

View File

@ -157,8 +157,6 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::Negative,
DispatchKey::Conjugate,
DispatchKey::XLA,
DispatchKey::XPU,
DispatchKey::HPU,
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,

View File

@ -440,7 +440,7 @@ bool MPSHeapAllocatorImpl::release_cached_buffers() {
// we need to release the lock temporarily as synchronizing may cause deadlock with completion handlers.
m_mutex.unlock();
auto stream = getDefaultMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
dispatch_sync(stream->queue(), ^() {
stream->synchronize(SyncType::COMMIT_AND_WAIT);
});
m_mutex.lock();

View File

@ -110,9 +110,6 @@ class TORCH_API MPSStream {
return _stream;
}
MTLBuffer_t getErrorBuffer();
void checkLastError();
private:
Stream _stream;
MTLCommandQueue_t _commandQueue = nil;
@ -124,8 +121,6 @@ class TORCH_API MPSStream {
dispatch_queue_t _serialQueue = nullptr;
// CommitAndContinue is enabled by default
bool _enableCommitAndContinue = true;
// Buffer that contains last raised error
MTLBuffer_t _errorBuffer = nil;
// use synchronize() to access any of these commit functions outside MPSStream
void commit();
@ -160,7 +155,4 @@ class TORCH_API MPSStreamImpl {
MPSStreamImpl();
};
#ifdef __OBJC__
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)());
#endif
} // namespace at::mps

View File

@ -3,13 +3,13 @@
#include <ATen/mps/MPSAllocatorInterface.h>
#include <ATen/mps/MPSProfiler.h>
#include <ATen/mps/MPSStream.h>
#include <c10/metal/error.h>
@interface MPSGraphExecutionDescriptor ()
@property(readwrite, atomic) BOOL enableCommitAndContinue;
@end
namespace at::mps {
//-----------------------------------------------------------------
// MPSStream
//-----------------------------------------------------------------
@ -30,10 +30,6 @@ MPSStream::MPSStream(Stream stream) : _stream(stream) {
// Choose level which optimizes for GPU
_compilationDescriptor.optimizationLevel = MPSGraphOptimizationLevel0;
_executionDescriptor.compilationDescriptor = _compilationDescriptor;
_errorBuffer = [MPSDevice::getInstance()->device() newBufferWithLength:sizeof(c10::metal::ErrorMessages)
options:MTLResourceStorageModeShared];
std::memset([_errorBuffer contents], 0, 1024);
}
MPSStream::~MPSStream() {
@ -42,8 +38,6 @@ MPSStream::~MPSStream() {
[_executionDescriptor release];
[_compilationDescriptor release];
_executionDescriptor = nil;
[_errorBuffer release];
_errorBuffer = nil;
_compilationDescriptor = nil;
assert(_commandBuffer == nil);
@ -110,7 +104,6 @@ void MPSStream::commitAndWait() {
[_prevCommandBuffer waitUntilCompleted];
[_prevCommandBuffer release];
_prevCommandBuffer = nil;
checkLastError();
}
if (_commandBuffer) {
@ -118,7 +111,6 @@ void MPSStream::commitAndWait() {
[_commandBuffer waitUntilCompleted];
[_commandBuffer release];
_commandBuffer = nil;
checkLastError();
}
}
@ -161,7 +153,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
if (length == 0) {
return;
}
dispatch_sync_with_rethrow(_serialQueue, ^() {
dispatch_sync(_serialQueue, ^() {
@autoreleasepool {
endKernelCoalescing();
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
@ -191,7 +183,7 @@ void MPSStream::copy(id<MTLBuffer> srcBuffer,
size_t dstOffset,
uint64_t profileId,
SyncType syncType) {
dispatch_sync_with_rethrow(_serialQueue, ^() {
dispatch_sync(_serialQueue, ^() {
@autoreleasepool {
endKernelCoalescing();
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
@ -244,7 +236,7 @@ void MPSStream::executeMPSGraph(MPSGraph* mpsGraph, NSDictionary* feeds, NSDicti
auto& profiler = getMPSProfiler();
const bool isGraphProfilingEnabled = profiler.isOperationProfilingEnabled();
dispatch_sync_with_rethrow(_serialQueue, ^() {
dispatch_sync(_serialQueue, ^() {
endKernelCoalescing();
if (isGraphProfilingEnabled) {
// this function call is only relevant for interval-based Signposts
@ -274,24 +266,6 @@ void MPSStream::executeMPSGraph(MPSGraph* mpsGraph, NSDictionary* feeds, NSDicti
});
}
id<MTLBuffer> MPSStream::getErrorBuffer() {
return _errorBuffer;
}
void MPSStream::checkLastError() {
auto msgs = reinterpret_cast<c10::metal::ErrorMessages*>([_errorBuffer contents]);
const auto& msg = msgs->msg[0];
if (!msgs) {
return;
}
unsigned int count = 0;
std::swap(count, msgs->count);
if (!count) {
return;
}
throw c10::AcceleratorError({msg.func, msg.file, msg.line}, 1, msg.message);
}
//-----------------------------------------------------------------
// MPSStreamImpl
//-----------------------------------------------------------------
@ -315,19 +289,4 @@ MPSStream* getDefaultMPSStream() {
return MPSStreamImpl::getInstance();
}
// Helper methods
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)()) {
__block std::optional<std::exception_ptr> block_exception;
dispatch_sync(queue, ^() {
try {
block();
} catch (...) {
block_exception = std::current_exception();
}
});
if (block_exception) {
std::rethrow_exception(*block_exception);
}
}
} // namespace at::mps

View File

@ -409,7 +409,7 @@ struct ConvParams {
if (!detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda() || !cudnn_enabled) {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionRuntimeCuDNN();
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
// broken on cuDNN 9.8 - 9.14
if (cudnn_version >= 90800 && cudnn_version < 91500) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
@ -453,7 +453,7 @@ struct ConvParams {
}
// native kernel doesn't support 64-bit non-splittable case
if (!(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionRuntimeCuDNN() : -1;
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionCuDNN() : -1;
// TODO(eqy): remove this once cuDNN fixes 64-bit depthwise support, first broken in 9.11x
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
if (cudnn_version < 0 || cudnn_version > 91000) {

View File

@ -23,7 +23,6 @@
#include <ATen/ops/_aminmax_native.h>
#include <ATen/ops/_assert_async_native.h>
#include <ATen/ops/_assert_scalar_native.h>
#include <ATen/ops/_async_error_native.h>
#include <ATen/ops/_functional_assert_async_native.h>
#include <ATen/ops/_functional_assert_scalar_native.h>
#include <ATen/ops/_make_per_tensor_quantized_tensor.h>
@ -480,14 +479,6 @@ Tensor isfinite(const Tensor& self) {
});
}
void _async_error(std::string_view msg) {
TORCH_CHECK(0, msg);
}
void _async_error_meta(std::string_view msg) {
// Do NOT error, it's an async error!
}
void _assert_async_cpu(const Tensor& self) {
TORCH_CHECK(
native::is_nonzero(self),

View File

@ -5,6 +5,7 @@
#include <ATen/native/ReduceOpsUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <ATen/OpMathType.h>
@ -78,12 +79,12 @@ void min_all_kernel_impl(Tensor& result, const Tensor& input) {
reduce_all_impl<int64_t>(result, input, upper_bound<int64_t>(),
[=](int64_t a, int64_t b) -> int64_t { return min_impl(a, b); });
} else {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "min_all", [&] {
AT_DISPATCH_V2(input.scalar_type(), "min_all", AT_WRAP([&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
reduce_all_impl_vec<scalar_t>(result, input, upper_bound<scalar_t>(),
[=] (scalar_t a , scalar_t b) -> scalar_t { return min_impl(a, b); },
[=](Vec a, Vec b) -> Vec { return minimum(a, b); });
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
}
}
@ -103,12 +104,12 @@ void max_all_kernel_impl(Tensor& result, const Tensor& input) {
reduce_all_impl<int64_t>(result, input, lower_bound<int64_t>(),
[=](int64_t a, int64_t b) -> int64_t { return max_impl(a, b); });
} else {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "max_all", [&] {
AT_DISPATCH_V2(input.scalar_type(), "max_all", AT_WRAP([&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
reduce_all_impl_vec<scalar_t>(result, input, lower_bound<scalar_t>(),
[=] (scalar_t a , scalar_t b) -> scalar_t { return max_impl(a, b); },
[=](Vec a, Vec b) -> Vec { return maximum(a, b); });
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
}
}
@ -199,7 +200,7 @@ void aminmax_allreduce_kernel(
}
);
} else {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, input.scalar_type(), "aminmax_cpu", [&] {
AT_DISPATCH_V2(input.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
using scalar_t_pair = std::pair<scalar_t, scalar_t>;
reduce_all_impl_vec_two_outputs<scalar_t>(
@ -214,7 +215,7 @@ void aminmax_allreduce_kernel(
[=](Vec a, Vec b) -> Vec { return minimum(a, b); },
[=](Vec a, Vec b) -> Vec { return maximum(a, b); }
);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
}
}

View File

@ -3,6 +3,7 @@
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/OpMathType.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
@ -347,34 +348,35 @@ struct MinValuesOps: public at::native::MinOps<scalar_t> {
};
void min_values_kernel_impl(TensorIterator& iter) {
if (iter.dtype() == kLong) {
// This case is special because of Vectorized<int64_t> does not
// handle upper_bound<int64_t>().
// See: https://github.com/pytorch/pytorch/issues/43254
using scalar_t = int64_t;
binary_kernel_reduce(
iter,
MinValuesOps<scalar_t>{},
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
// This case is special because of Vectorized<int64_t> does not
// handle upper_bound<int64_t>().
// See: https://github.com/pytorch/pytorch/issues/43254
if (iter.dtype() == kLong || iter.dtype() == kUInt64) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
binary_kernel_reduce(
iter,
MinValuesOps<scalar_t>{},
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
}), kLong, kUInt64);
return;
}
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cpu", [&iter] {
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
binary_kernel_reduce_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t { return min_impl(a, b); },
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return minimum(a, b); },
static_cast<double>(upper_bound<scalar_t>()));
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void max_values_kernel_impl(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cpu", [&iter] {
AT_DISPATCH_V2(iter.dtype(), "max_values_cpu", AT_WRAP([&iter] {
binary_kernel_reduce_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t { return max_impl(a, b); },
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return maximum(a, b); },
lower_bound<scalar_t>());
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void argmax_kernel_impl(TensorIterator &iter) {

View File

@ -11,6 +11,7 @@
#include <vector>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/NumericUtils.h>
#include <ATen/TensorIterator.h>
@ -106,7 +107,7 @@ void min_kernel_impl(
bool keepdim) {
int64_t self_dim_size = ensure_nonempty_size(self, dim);
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "min_cpu", [&] {
AT_DISPATCH_V2(self.scalar_type(), "min_cpu", AT_WRAP([&] {
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
scalar_t* result_data, int64_t* indice_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -128,7 +129,7 @@ void min_kernel_impl(
*indice_data = index;
}
);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
}
void max_kernel_impl(
@ -139,7 +140,7 @@ void max_kernel_impl(
bool keepdim) {
int64_t self_dim_size = ensure_nonempty_size(self, dim);
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "max_cpu", [&] {
AT_DISPATCH_V2(self.scalar_type(), "max_cpu", AT_WRAP([&] {
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
scalar_t* result_data, int64_t* indice_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -161,7 +162,7 @@ void max_kernel_impl(
*indice_data = index;
}
);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
}
void aminmax_kernel(
@ -186,7 +187,7 @@ void aminmax_kernel(
return;
}
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half, self.scalar_type(), "aminmax_cpu", [&] {
AT_DISPATCH_V2(self.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
compare_base_kernel<scalar_t, scalar_t>(min_result, max_result, self, wrap_dim, keepdim, [&] (
scalar_t* min_result_data, scalar_t* max_result_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -209,7 +210,7 @@ void aminmax_kernel(
*max_result_data = max_number;
}
);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half);
}
void where_kernel_impl(TensorIterator &iter) {

View File

@ -884,69 +884,6 @@ struct type_specialized_kernel_launcher {
}
};
template <int arg_index>
struct type_specialized_broadcast_kernel_launcher {
template <
typename func_t,
typename array_t,
typename dtypes_t,
typename calc_t>
static void apply(
int64_t numel,
func_t f,
array_t data,
dtypes_t dtypes,
calc_t offset_calc) {
using traits = function_traits<func_t>;
using ret_t = typename traits::result_type;
using arg0_t = typename traits::template arg<0>::type;
using arg1_t = typename traits::template arg<1>::type;
if (dtypes[0] == rt_binary_specializations[arg_index][0] &&
dtypes[1] == rt_binary_specializations[arg_index][1] &&
dtypes[2] == rt_binary_specializations[arg_index][2]) {
using ret_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][0]>;
using arg0_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][1]>;
using arg1_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][2]>;
constexpr int grp_sz = 128;
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
if (unrl) {
auto offsets0 = offset_calc.get(idx);
auto offsets1 = offset_calc.get(idx + grp_sz);
auto offsets2 = offset_calc.get(idx + grp_sz * 2);
auto offsets3 = offset_calc.get(idx + grp_sz * 3);
void* out0 = data[0] + offsets0[0];
void* out1 = data[0] + offsets1[0];
void* out2 = data[0] + offsets2[0];
void* out3 = data[0] + offsets3[0];
auto u = c10::load<arg0_cpp_t>(data[1] + offsets0[1]);
auto v = c10::load<arg1_cpp_t>(data[2] + offsets0[2]);
ret_t result0 = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
auto u1 = c10::load<arg0_cpp_t>(data[1] + offsets1[1]);
auto v1 = c10::load<arg1_cpp_t>(data[2]+ offsets1[2]);
ret_t result1 = f(c10::convert<arg0_t>(u1), c10::convert<arg1_t>(v1));
auto u2 = c10::load<arg0_cpp_t>(data[1] + offsets2[1]);
auto v2 = c10::load<arg1_cpp_t>(data[2] + offsets2[2]);
ret_t result2 = f(c10::convert<arg0_t>(u2), c10::convert<arg1_t>(v2));
auto u3 = c10::load<arg0_cpp_t>(data[1] + offsets3[1]);
auto v3 = c10::load<arg1_cpp_t>(data[2] + offsets3[2]);
ret_t result3 = f(c10::convert<arg0_t>(u3), c10::convert<arg1_t>(v3));
*(ret_cpp_t*)out0 = c10::convert<ret_cpp_t>(result0);
*(ret_cpp_t*)out1 = c10::convert<ret_cpp_t>(result1);
*(ret_cpp_t*)out2 = c10::convert<ret_cpp_t>(result2);
*(ret_cpp_t*)out3 = c10::convert<ret_cpp_t>(result3);
} else {
auto offsets = offset_calc.get(idx);
void* out = data[0] + offsets[0];
auto u = c10::load<arg0_cpp_t>(data[1] + offsets[1]);
auto v = c10::load<arg1_cpp_t>(data[2] + offsets[2]);
ret_t result = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
*(ret_cpp_t*)out = c10::convert<ret_cpp_t>(result);
}
});
}
}
};
} // namespace
#endif
@ -1065,32 +1002,6 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
}
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
#ifdef USE_ROCM
if (check_binary_rt_types_for_specialization(iter)) {
// constexpr to reduce the amount of kernels generated for
// broadcast elementwise with mexed dtypes and limit which functors are actually
// applied to the load and store at compile time.
using func_tuple = typename traits::ArgsTuple;
if constexpr (
std::is_same_v<float, arg0_t> && traits::arity == 2 &&
check_binary_functor_types_for_specialization<
func_tuple,
float,
float,
traits::arity,
/*arg_num=*/0>::check()) {
memory::detail::static_unroll<
type_specialized_broadcast_kernel_launcher,
rt_binary_specializations.size()>::with_args(
numel,
f,
data,
dtypes,
offset_calc
);
return;
}
}
constexpr int grp_sz = 128;
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
if (unrl) {

View File

@ -1,5 +1,6 @@
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/ReduceAllOps.h>
@ -28,22 +29,22 @@ void _min_max_values_kernel_cuda_impl(TensorIterator& iter) {
}
void aminmax_allreduce_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "aminmax_all_cuda", [&] {
AT_DISPATCH_V2(
iter.input_dtype(), "aminmax_all_cuda", AT_WRAP([&] {
_min_max_values_kernel_cuda_impl<scalar_t>(iter);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void aminmax_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "aminmax_cuda", [&]() {
AT_DISPATCH_V2(
iter.input_dtype(), "aminmax_cuda", AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinMaxOps<scalar_t, scalar_t, int32_t>{},
thrust::pair<scalar_t, scalar_t>(
at::numeric_limits<scalar_t>::upper_bound(),
at::numeric_limits<scalar_t>::lower_bound()));
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
} // namespace at::native

View File

@ -1,5 +1,6 @@
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/ReduceAllOps.h>
@ -33,27 +34,27 @@ void max_values_kernel_cuda_impl(TensorIterator& iter) {
}
void max_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cuda", [&]() {
AT_DISPATCH_V2(
iter.dtype(), "max_values_cuda", AT_WRAP([&]() {
max_values_kernel_cuda_impl<scalar_t>(iter);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void max_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "max_cuda", [&]() {
AT_DISPATCH_V2(
iter.input_dtype(), "max_cuda", AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MaxOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(
at::numeric_limits<scalar_t>::lower_bound(), 0));
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void max_all_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "max_all_cuda", [&] {
AT_DISPATCH_V2(iter.input_dtype(), "max_all_cuda", AT_WRAP([&] {
max_values_kernel_cuda_impl<scalar_t>(iter);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
REGISTER_DISPATCH(max_values_stub, &max_values_kernel_cuda)

View File

@ -12,6 +12,7 @@
#include <ATen/NumericUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/cuda/NumericLimits.cuh>
@ -33,24 +34,24 @@ void min_values_kernel_cuda_impl(TensorIterator& iter) {
}
void min_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cuda", [&]() {
AT_DISPATCH_V2(iter.dtype(), "min_values_cuda", AT_WRAP([&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void min_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "min_cuda", [&]() {
AT_DISPATCH_V2(iter.input_dtype(), "min_cuda", AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::upper_bound(), 0));
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
void min_all_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "min_all_cuda", [&] {
AT_DISPATCH_V2(iter.input_dtype(), "min_all_cuda", AT_WRAP([&] {
min_values_kernel_cuda_impl<scalar_t>(iter);
});
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
}
REGISTER_DISPATCH(min_values_stub, &min_values_kernel_cuda)

View File

@ -133,7 +133,7 @@ at::Tensor quantized_convolution(
// supported in conv.
mask_weight = weight_zero_points.numel() > 1 ? 1 : 0;
if (groups > 1 && weight_zero_points.numel() > 1)
mask_weight = (1 << 0) | (1 << 1); // 2^0 (group) | 2^1 (output channel)
mask_weight = (2 ^ 0) | (2 ^ 1); // 2^0 (group) | 2^1 (output channel)
dnnl::primitive_attr pattr;
bool src_need_zp = (act_zero_point != 0);

View File

@ -40,6 +40,8 @@ using namespace at::mps;
namespace at::native::mps {
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)());
struct MPSScalar {
id<MTLBuffer> getMTLBuffer() const {
return __builtin_bit_cast(id<MTLBuffer>, buffer.get());

View File

@ -53,6 +53,21 @@
@end
namespace at::native::mps {
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)()) {
__block std::optional<std::exception_ptr> block_exception;
dispatch_sync(queue, ^() {
try {
block();
} catch (...) {
block_exception = std::current_exception();
}
});
if (block_exception) {
std::rethrow_exception(*block_exception);
}
}
/**
* Computes distance from lowest to highest element offset in given tensor.
*/

View File

@ -1,5 +1,4 @@
#include <c10/metal/atomic.h>
#include <c10/metal/error.h>
#include <c10/metal/indexing.h>
#include <metal_stdlib>
@ -32,24 +31,10 @@ OffsetT index_apply_indices(
constant IndexAB* indices,
constant int64_t* sizes,
constant int64_t* strides,
uint num_indices,
thread bool& error,
device ErrorMessages* error_buf) {
uint num_indices) {
OffsetT rc = offs.x;
for (uint i = 0; i < num_indices; i++) {
auto idx = indices[i].indexArray[offs.y];
if (idx < -sizes[i] || idx >= sizes[i]) {
TORCH_REPORT_ERROR(
error_buf,
"index ",
idx,
" is out of bounds for dimension ",
i,
" with size ",
sizes[i]);
error = true;
break;
}
if (idx < 0) {
idx += sizes[i];
}
@ -70,7 +55,6 @@ kernel void index_select(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
const auto ndim = ndim_nindices_numel.x;
const auto num_indices = ndim_nindices_numel.y;
@ -81,19 +65,8 @@ kernel void index_select(
indices_strides,
ndim,
thread_index);
bool error = false;
auto input_offs = index_apply_indices<OffsetT>(
offs.yz,
indices,
index_sizes,
index_strides,
num_indices,
error,
error_buffer);
if (error) {
output[offs.x / sizeof(T)] = 0;
return;
}
offs.yz, indices, index_sizes, index_strides, num_indices);
output[offs.x / sizeof(T)] = input[input_offs / sizeof(T)];
}
@ -109,9 +82,7 @@ inline void index_put_impl(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index) {
bool error = false;
const auto ndim = ndim_nindices_numel.x;
const auto num_indices = ndim_nindices_numel.y;
const auto offs = index_get_offsets(
@ -122,16 +93,7 @@ inline void index_put_impl(
ndim,
thread_index);
auto output_offs = index_apply_indices<OffsetT>(
offs.xz,
indices,
index_sizes,
index_strides,
num_indices,
error,
error_buffer);
if (error) {
return;
}
offs.xz, indices, index_sizes, index_strides, num_indices);
output[output_offs / sizeof(T)] = input[offs.y / sizeof(T)];
}
@ -147,7 +109,6 @@ kernel void index_put(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
index_put_impl(
output,
@ -160,7 +121,6 @@ kernel void index_put(
index_sizes,
index_strides,
ndim_nindices_numel,
error_buffer,
thread_index);
}
@ -176,7 +136,6 @@ kernel void index_put_serial(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
(void)thread_index; // Suppress unused vairable varning
for (uint idx = 0; idx < ndim_nindices_numel.z; ++idx) {
@ -191,7 +150,6 @@ kernel void index_put_serial(
index_sizes,
index_strides,
ndim_nindices_numel,
error_buffer,
idx);
}
}
@ -208,7 +166,6 @@ kernel void index_put_accumulate(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
const auto ndim = ndim_nindices_numel.x;
const auto num_indices = ndim_nindices_numel.y;
@ -219,18 +176,8 @@ kernel void index_put_accumulate(
indices_strides,
ndim,
thread_index);
bool error = false;
auto output_offs = index_apply_indices<OffsetT>(
offs.xz,
indices,
index_sizes,
index_strides,
num_indices,
error,
error_buffer);
if (error) {
return;
}
offs.xz, indices, index_sizes, index_strides, num_indices);
AtomicType<T>::atomic_add(
reinterpret_cast<device AtomicType_t<T>*>(output),
output_offs / sizeof(T),
@ -250,7 +197,6 @@ kernel void index_put_accumulate(
constant int64_t* index_sizes, \
constant int64_t* index_strides, \
constant uint4& ndim_nindices_numel, \
device ErrorMessages* error_buffer, \
uint thread_index [[thread_position_in_grid]])
#define REGISTER_INDEX_OP_ALL_DTYPES(OP_NAME) \

View File

@ -141,9 +141,6 @@ static Tensor& addmv_out_mps_impl(const Tensor& self,
};
MPSStream* stream = at::mps::getCurrentMPSStream();
if (result.numel() == 0) {
return result;
}
Tensor matMulVec = at::mm(mat, vec.unsqueeze(1)).squeeze(1);
@autoreleasepool {

View File

@ -220,7 +220,7 @@ Tensor _embedding_bag_dense_backward_mps(const Tensor& output_grad,
auto num_threads = (params.mode == EmbeddingBagMode::MAX) ? output_grad.numel() : num_indices * params.feature_size;
MPSStream* stream = getCurrentMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("embedding_bag_backward_{}_{}",
@ -273,7 +273,7 @@ Tensor _embedding_bag_per_sample_weights_backward_mps(const Tensor& output_grad,
auto num_threads = num_indices * feature_size;
MPSStream* stream = getCurrentMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("embedding_bag_per_sample_weights_backward_{}_{}",

View File

@ -179,8 +179,7 @@ static void dispatch_index_kernel(TensorIteratorBase& iter,
iter.strides(2),
index_size,
index_stride,
ndim_nindiees,
mpsStream->getErrorBuffer());
ndim_nindiees);
mtl_dispatch1DJob(computeEncoder, indexSelectPSO, serial ? 1 : iter.numel());
});
}
@ -300,7 +299,7 @@ static Tensor& nonzero_out_native_mps(const Tensor& self, Tensor& out_) {
MPSStream* stream = getCurrentMPSStream();
using CachedGraph = MPSUnaryCachedGraph;
dispatch_sync_with_rethrow(stream->queue(), ^() {
dispatch_sync(stream->queue(), ^() {
stream->synchronize(SyncType::COMMIT_AND_WAIT);
});
int64_t total_nonzero = at::count_nonzero(self).item<int64_t>();
@ -385,7 +384,7 @@ Tensor& nonzero_out_mps(const Tensor& self, Tensor& out_) {
MPSStream* stream = getCurrentMPSStream();
using CachedGraph = MPSUnaryCachedGraph;
dispatch_sync_with_rethrow(stream->queue(), ^() {
dispatch_sync(stream->queue(), ^() {
stream->synchronize(SyncType::COMMIT_AND_WAIT);
});
int64_t total_nonzero = at::count_nonzero(self).item<int64_t>();

View File

@ -923,7 +923,7 @@ std::tuple<Tensor, Tensor, Tensor> layer_norm_mps(const Tensor& input,
MPSStream* stream = getCurrentMPSStream();
TORCH_CHECK_NOT_IMPLEMENTED(input.scalar_type() != kLong, "Not implemented for long on MPS");
@autoreleasepool {
dispatch_sync_with_rethrow(stream->queue(), ^() {
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
// which kernel variant to use based on the normalized axis N size
const int N_READS = 4;
auto metalType = mps::scalarToMetalTypeString(input);

View File

@ -192,11 +192,6 @@
CompositeExplicitAutograd: _assert_tensor_metadata
Meta: _assert_tensor_metadata_meta_symint
- func: _async_error(str msg) -> ()
dispatch:
CompositeExplicitAutograd: _async_error
Meta: _async_error_meta
- func: _print(str s) -> ()
dispatch:
CompositeExplicitAutograd: _print
@ -2808,7 +2803,7 @@
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA, MPS, MTIA: floor_divide_out
CPU, CUDA, MPS: floor_divide_out
SparseCPU, SparseCUDA, SparseMPS: floor_divide_out_sparse_zerodim
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
@ -4297,7 +4292,6 @@
dispatch:
SparseCPU: sparse_sparse_matmul_cpu
SparseCUDA: sparse_sparse_matmul_cuda
SparseMPS: sparse_sparse_matmul_mps
autogen: _sparse_sparse_matmul.out
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
@ -4389,7 +4383,7 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: mv
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
SparseCPU, SparseCUDA: mv_sparse
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
@ -9838,7 +9832,7 @@
structured_delegate: erfinv.out
variants: method, function
dispatch:
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse
SparseCPU, SparseCUDA: erfinv_sparse
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr
tags: pointwise
@ -9847,7 +9841,7 @@
structured_delegate: erfinv.out
variants: method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_
SparseCPU, SparseCUDA: erfinv_sparse_
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_
tags: pointwise
@ -9857,7 +9851,7 @@
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: erfinv_out
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_out
SparseCPU, SparseCUDA: erfinv_sparse_out
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out
tags: pointwise

View File

@ -10,10 +10,6 @@
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_coalesce_native.h>
#include <ATen/ops/repeat_interleave_native.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/_sparse_sparse_matmul_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/add_native.h>
@ -892,114 +888,5 @@ static void sparse_mask_intersection_out_mps_kernel(
/*coalesce_mask=*/false);
}
Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
TORCH_CHECK(mat1_.is_sparse() && mat2_.is_sparse(),
"sparse_sparse_matmul_mps: both inputs must be sparse COO tensors");
TORCH_CHECK(mat1_.is_mps() && mat2_.is_mps(),
"sparse_sparse_matmul_mps: both inputs must be on MPS device");
TORCH_CHECK(mat1_.dim() == 2 && mat2_.dim() == 2,
"sparse_sparse_matmul_mps: both inputs must be 2D matrices");
TORCH_CHECK(mat1_.dense_dim() == 0 && mat2_.dense_dim() == 0,
"sparse_sparse_matmul_mps: only scalar values supported (dense_dim == 0)");
TORCH_CHECK(mat1_.size(1) == mat2_.size(0),
"mat1 and mat2 shapes cannot be multiplied (", mat1_.size(0), "x", mat1_.size(1), " and ", mat2_.size(0), "x", mat2_.size(1), ")");
TORCH_CHECK(mat1_.scalar_type() == mat2_.scalar_type(),
"sparse_sparse_matmul_mps: mat1 dtype ", mat1_.scalar_type(),
" does not match mat2 dtype ", mat2_.scalar_type());
const auto device = mat1_.device();
auto A = mat1_.coalesce();
auto B = mat2_.coalesce();
const auto I = A.size(0);
const auto K = A.size(1);
const auto N = B.size(1);
const auto nnzA = A._nnz();
const auto nnzB = B._nnz();
// Early empty result, return an empty, coalesced tensor
if (I == 0 || N == 0 || K == 0 || nnzA == 0 || nnzB == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
const auto computeDtype = at::result_type(mat1_, mat2_);
auto A_idx = A._indices().contiguous();
auto A_val = A._values().to(computeDtype).contiguous();
auto A_i = A_idx.select(0, 0).contiguous();
auto A_k = A_idx.select(0, 1).contiguous();
auto B_idx = B._indices().contiguous();
auto B_val = B._values().to(computeDtype).contiguous();
auto B_k = B_idx.select(0, 0).contiguous();
auto B_j = B_idx.select(0, 1).contiguous();
// csr-style row pointers for B by k (the shared dimension)
Tensor row_ptr_B;
{
auto batch_ptr = at::tensor({0LL, nnzB}, at::device(device).dtype(at::kLong));
row_ptr_B = at::empty({K + 1}, at::device(device).dtype(at::kLong));
build_row_ptr_per_batch_mps(B_k, batch_ptr, /*B=*/1, /*I=*/K, row_ptr_B);
}
auto row_ptr_B_lo = row_ptr_B.narrow(0, 0, K);
auto row_ptr_B_hi = row_ptr_B.narrow(0, 1, K);
auto deg_B = row_ptr_B_hi.sub(row_ptr_B_lo);
auto counts = deg_B.index_select(0, A_k);
const int64_t P = counts.sum().item<int64_t>();
if (P == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
auto group_ids = repeat_interleave_mps(counts);
// exclusive cumsum of counts
auto offsets = cumsum(counts, /*dim=*/0).sub(counts);
auto offsets_gather = offsets.index_select(0, group_ids);
auto within = at::arange(P, at::device(device).dtype(at::kLong)).sub(offsets_gather);
// Map each output element to its source B row and position
auto k_per_out = A_k.index_select(0, group_ids);
auto start_in_B = row_ptr_B.index_select(0, k_per_out);
auto seg_index = start_in_B.add(within);
// Assemble candidate coo pairs and values
auto i_out = A_i.index_select(0, group_ids).contiguous();
auto j_out = B_j.index_select(0, seg_index).contiguous();
auto vA_out = A_val.index_select(0, group_ids).contiguous();
auto vB_out = B_val.index_select(0, seg_index).contiguous();
auto v_out = vA_out.mul(vB_out);
// build (2, P) indices
auto out_indices = at::empty({2, P}, at::device(device).dtype(at::kLong)).contiguous();
out_indices.select(0, 0).copy_(i_out);
out_indices.select(0, 1).copy_(j_out);
auto result = _sparse_coo_tensor_unsafe(
out_indices, v_out, {I, N}, mat1_.options().dtype(computeDtype));
result = result.coalesce();
if (result.scalar_type() != mat1_.scalar_type()) {
auto cast_vals = result._values().to(mat1_.scalar_type());
auto out = _sparse_coo_tensor_unsafe(result._indices(), cast_vals, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
return result;
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -478,7 +478,7 @@ bool check_cudnn_tensor_shapes(sdp_params const& params, bool debug) {
const auto s_k = params.key.sym_size(2);
const auto d_qk = params.query.sym_size(3);
const auto d_v = params.value.sym_size(3);
long cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
if (cudnn_version < 8903) {
if (debug) {
TORCH_WARN("SDPA fprop requires cudnn 8.9.3 or higher");
@ -709,7 +709,7 @@ bool can_use_cudnn_attention(const sdp_params& params, bool debug) {
return false;
#endif
#if defined(CUDNN_VERSION)
static auto cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
static auto cudnn_version = cudnnGetVersion();
if (params.dropout > 0.0 && cudnn_version > 91100 && cudnn_version < 91400) {
if (debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version does not support droppout in SDPA (9.11 - 9.13).");

View File

@ -952,7 +952,7 @@ def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
first_fields.append(kwargs["tag"])
headers = first_headers + ["speedup", "abs_latency"]
row = first_fields + [float(speedup), median[1] * 1000]
msg = f"{median[0] * 1000} ms, {median[1] * 1000} ms, {speedup:.3f}x"
msg = f"{speedup:.3f}x"
if args.baseline:
headers.extend(
[
@ -1010,7 +1010,7 @@ def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
# Hypothetically you can use this from other places, but it's currently
# inaccessible, and when this assert fails you need to update the
# event_name here to account for the other cases you are using this
assert any([args.quantization, args.optimus])
assert args.quantization is not None
output_signpost(
dict(zip(headers, row)),
args,
@ -2587,9 +2587,6 @@ class BenchmarkRunner:
**experiment_kwargs,
)
# reset dynamo
torch._dynamo.reset()
if self.args.export_aot_inductor:
optimized_model_iter_fn = optimize_ctx
else:
@ -2953,7 +2950,7 @@ class BenchmarkRunner:
status = self.check_tolerance(name, model, example_inputs, optimize_ctx)
print(status)
elif self.args.performance:
if self.args.backend in ["torchao", "optimus"]:
if self.args.backend == "torchao":
status = self.run_performance_test_non_alternate(
name, model, example_inputs, optimize_ctx, experiment, tag
)
@ -3529,12 +3526,6 @@ def parse_args(args=None):
action="store_true",
help="Measure speedup with TorchInductor",
)
group.add_argument(
"--optimus",
choices=["vertical_opt", "horizontal_opt", "all"],
default=None,
help="Measure speedup of Optimus with TorchInductor baseline",
)
group.add_argument(
"--quantization",
choices=[
@ -3792,9 +3783,6 @@ def run(runner, args, original_dir=None):
if args.inductor:
assert args.backend is None
args.backend = "inductor"
if args.optimus:
assert args.backend is None
args.backend = "optimus"
if args.quantization:
assert args.backend is None
args.backend = "torchao"
@ -4079,22 +4067,10 @@ def run(runner, args, original_dir=None):
runner.model_iter_fn = model_iter_fn_and_mark_step
optimize_ctx = torchao_optimize_ctx(args.quantization)
elif args.backend == "optimus":
from .optimus import get_baseline_ctx, get_optimus_optimize_ctx
baseline_ctx = get_baseline_ctx(
nopython=args.nopython, inductor_compile_mode=args.inductor_compile_mode
)
runner.model_iter_fn = baseline_ctx(runner.model_iter_fn)
optimize_ctx = get_optimus_optimize_ctx(
args.optimus, args.nopython, args.inductor_compile_mode
)
else:
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
experiment = (
speedup_experiment
if args.backend not in ["torchao", "optimus"]
else latency_experiment
speedup_experiment if args.backend != "torchao" else latency_experiment
)
if args.accuracy:
output_filename = f"accuracy_{args.backend}.csv"
@ -4115,12 +4091,7 @@ def run(runner, args, original_dir=None):
if args.only in runner.disable_cudagraph_models:
args.disable_cudagraphs = True
if (
args.inductor
or args.backend == "inductor"
or args.export_aot_inductor
or args.backend == "optimus"
):
if args.inductor or args.backend == "inductor" or args.export_aot_inductor:
inductor_config.triton.cudagraphs = not args.disable_cudagraphs
inductor_config.triton.persistent_reductions = (
not args.disable_persistent_reductions

View File

@ -1,62 +0,0 @@
import functools
import torch
def get_baseline_ctx(nopython, inductor_compile_mode):
return functools.partial(
torch.compile,
backend="inductor",
fullgraph=nopython,
mode=inductor_compile_mode,
)
def get_optimus_optimize_ctx(config, nopython, inductor_compile_mode):
if config == "vertical_opt":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"merge_splits_pass": {},
"split_cat_pass": {},
"unbind_stack_pass": {},
"unbind_cat_to_view_pass": {},
}
}
elif config == "horizontal_opt":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"batch_linear": {},
"batch_layernorm": {},
},
}
elif config == "all":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"batch_linear": {},
"batch_layernorm": {},
"merge_splits_pass": {},
"split_cat_pass": {},
"unbind_stack_pass": {},
"unbind_cat_to_view_pass": {},
},
}
else:
raise RuntimeError(f"Unknown optimus config: {config}")
def _inner(fn):
if "pre_grad_fusion_options" in optimus_inductor_config:
torch._inductor.config.pre_grad_fusion_options = optimus_inductor_config[
"pre_grad_fusion_options"
]
if "post_grad_fusion_options" in optimus_inductor_config:
torch._inductor.config.post_grad_fusion_options = optimus_inductor_config[
"post_grad_fusion_options"
]
return torch.compile(
fn, backend="inductor", fullgraph=nopython, mode=inductor_compile_mode
)
return _inner

View File

@ -484,106 +484,24 @@ PyTorch,sum,sum_R256_V512_dim0_contiguousTrue_cpu,short,False,50.954394,0.000000
PyTorch,sum,sum_R256_V512_dim0_contiguousFalse_cpu,short,False,57.957757,0.000000
PyTorch,sum,sum_R256_V512_dim1_contiguousTrue_cpu,short,False,53.592068,0.000000
PyTorch,sum,sum_R256_V512_dim1_contiguousFalse_cpu,short,False,51.339726,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool,short,False,0.927,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8,short,False,6.261,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8,short,False,6.351,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16,short,False,6.177,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32,short,False,6.333,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64,short,False,6.588,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16,short,False,8.117,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16,short,False,9.358,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32,short,False,7.844,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64,short,False,8.097,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool,short,False,6.159,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,0.926,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8,short,False,6.192,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16,short,False,6.276,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,6.461,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64,short,False,6.524,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16,short,False,8.136,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16,short,False,6.854,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32,short,False,6.446,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64,short,False,6.829,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool,short,False,6.088,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8,short,False,6.059,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8,short,False,0.922,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16,short,False,6.263,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32,short,False,6.330,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64,short,False,6.688,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16,short,False,8.176,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16,short,False,6.959,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32,short,False,6.430,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64,short,False,6.818,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool,short,False,6.350,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8,short,False,6.221,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8,short,False,6.193,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16,short,False,0.922,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32,short,False,6.263,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64,short,False,6.525,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16,short,False,7.960,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16,short,False,6.801,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32,short,False,6.594,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64,short,False,7.089,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool,short,False,6.498,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,6.358,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8,short,False,6.390,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16,short,False,6.415,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,0.925,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64,short,False,6.657,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16,short,False,7.954,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16,short,False,6.930,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32,short,False,6.737,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64,short,False,6.948,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool,short,False,6.757,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8,short,False,6.402,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8,short,False,6.550,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16,short,False,6.518,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32,short,False,6.766,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64,short,False,0.929,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16,short,False,8.557,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16,short,False,9.045,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32,short,False,7.672,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64,short,False,7.276,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool,short,False,6.414,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8,short,False,7.736,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8,short,False,7.889,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16,short,False,8.170,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32,short,False,7.783,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64,short,False,7.743,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16,short,False,0.927,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16,short,False,7.018,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32,short,False,8.428,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64,short,False,6.767,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool,short,False,6.479,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8,short,False,7.827,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8,short,False,6.450,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16,short,False,6.320,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32,short,False,6.385,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64,short,False,8.119,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16,short,False,8.063,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16,short,False,0.925,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32,short,False,8.629,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64,short,False,6.638,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool,short,False,6.425,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8,short,False,7.803,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8,short,False,6.502,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16,short,False,6.429,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32,short,False,6.549,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64,short,False,7.749,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16,short,False,7.301,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16,short,False,7.682,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32,short,False,0.930,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64,short,False,6.738,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool,short,False,6.798,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8,short,False,6.506,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8,short,False,6.494,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16,short,False,6.668,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32,short,False,6.696,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64,short,False,7.115,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16,short,False,7.910,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16,short,False,7.410,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32,short,False,6.868,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64,short,False,0.924,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N16_cpu,short,False,7.040985,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N64_cpu,short,False,7.168604,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N128_cpu,short,False,7.434442,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N16_cpu,short,False,7.078318,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N64_cpu,short,False,7.426670,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N128_cpu,short,False,7.679027,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N16_cpu,short,False,7.281365,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N64_cpu,short,False,7.682783,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N128_cpu,short,False,8.381938,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N16_cpu,short,False,7.039854,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N64_cpu,short,False,7.399855,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N128_cpu,short,False,7.715193,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N16_cpu,short,False,7.255140,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N64_cpu,short,False,7.753522,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N128_cpu,short,False,8.364281,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N16_cpu,short,False,7.476377,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N64_cpu,short,False,8.458564,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N128_cpu,short,False,9.391939,0.000000
PyTorch,addcmul,addcmul_M1_N2_cpu_dtypetorch.float32,short,False,4.461410,0.000000
PyTorch,addcmul,addcmul_M1_N2_cpu_dtypetorch.bfloat16,short,False,4.560082,0.000000
PyTorch,addcmul,addcmul_M32_N64_cpu_dtypetorch.float32,short,False,5.141248,0.000000

1 Benchmarking Framework Benchmarking Module Name Case Name tag run_backward Execution Time Peak Memory (KB)
484 PyTorch sum sum_R256_V512_dim0_contiguousFalse_cpu short False 57.957757 0.000000
485 PyTorch sum sum_R256_V512_dim1_contiguousTrue_cpu short False 53.592068 0.000000
486 PyTorch sum sum_R256_V512_dim1_contiguousFalse_cpu short False 51.339726 0.000000
487 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool FloatToHalfTensorConversionBenchmark_M8_N16_cpu short False 0.927 7.040985 0.000000
488 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8 FloatToHalfTensorConversionBenchmark_M8_N64_cpu short False 6.261 7.168604 0.000000
489 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8 FloatToHalfTensorConversionBenchmark_M8_N128_cpu short False 6.351 7.434442 0.000000
490 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16 FloatToHalfTensorConversionBenchmark_M16_N16_cpu short False 6.177 7.078318 0.000000
491 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32 FloatToHalfTensorConversionBenchmark_M16_N64_cpu short False 6.333 7.426670 0.000000
492 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64 FloatToHalfTensorConversionBenchmark_M16_N128_cpu short False 6.588 7.679027 0.000000
493 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16 FloatToHalfTensorConversionBenchmark_M32_N16_cpu short False 8.117 7.281365 0.000000
494 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16 FloatToHalfTensorConversionBenchmark_M32_N64_cpu short False 9.358 7.682783 0.000000
495 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32 FloatToHalfTensorConversionBenchmark_M32_N128_cpu short False 7.844 8.381938 0.000000
496 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64 HalfToFloatTensorConversionBenchmark_M8_N16_cpu short False 8.097 7.039854 0.000000
497 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool HalfToFloatTensorConversionBenchmark_M8_N64_cpu short False 6.159 7.399855 0.000000
498 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8 HalfToFloatTensorConversionBenchmark_M8_N128_cpu short False 0.926 7.715193 0.000000
499 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8 HalfToFloatTensorConversionBenchmark_M16_N16_cpu short False 6.192 7.255140 0.000000
500 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16 HalfToFloatTensorConversionBenchmark_M16_N64_cpu short False 6.276 7.753522 0.000000
501 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32 HalfToFloatTensorConversionBenchmark_M16_N128_cpu short False 6.461 8.364281 0.000000
502 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64 HalfToFloatTensorConversionBenchmark_M32_N16_cpu short False 6.524 7.476377 0.000000
503 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16 HalfToFloatTensorConversionBenchmark_M32_N64_cpu short False 8.136 8.458564 0.000000
504 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16 HalfToFloatTensorConversionBenchmark_M32_N128_cpu short False 6.854 9.391939 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32 short False 6.446 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64 short False 6.829 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool short False 6.088 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8 short False 6.059 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8 short False 0.922 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16 short False 6.263 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32 short False 6.330 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64 short False 6.688 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16 short False 8.176 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16 short False 6.959 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32 short False 6.430 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64 short False 6.818 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool short False 6.350 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8 short False 6.221 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8 short False 6.193 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16 short False 0.922 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32 short False 6.263 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64 short False 6.525 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16 short False 7.960 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16 short False 6.801 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32 short False 6.594 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64 short False 7.089 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool short False 6.498 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8 short False 6.358 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8 short False 6.390 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16 short False 6.415 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32 short False 0.925 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64 short False 6.657 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16 short False 7.954 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16 short False 6.930 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32 short False 6.737 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64 short False 6.948 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool short False 6.757 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8 short False 6.402 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8 short False 6.550 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16 short False 6.518 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32 short False 6.766 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64 short False 0.929 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16 short False 8.557 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16 short False 9.045 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32 short False 7.672 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64 short False 7.276 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool short False 6.414 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8 short False 7.736 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8 short False 7.889 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16 short False 8.170 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32 short False 7.783 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64 short False 7.743 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16 short False 0.927 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16 short False 7.018 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32 short False 8.428 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64 short False 6.767 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool short False 6.479 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8 short False 7.827 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8 short False 6.450 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16 short False 6.320 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32 short False 6.385 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64 short False 8.119 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16 short False 8.063 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16 short False 0.925 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32 short False 8.629 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64 short False 6.638 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool short False 6.425 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8 short False 7.803 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8 short False 6.502 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16 short False 6.429 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32 short False 6.549 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64 short False 7.749 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16 short False 7.301 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16 short False 7.682 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32 short False 0.930 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64 short False 6.738 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool short False 6.798 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8 short False 6.506 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8 short False 6.494 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16 short False 6.668 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32 short False 6.696 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64 short False 7.115 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16 short False 7.910 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16 short False 7.410 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32 short False 6.868 0.000000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64 short False 0.924 0.000000
505 PyTorch addcmul addcmul_M1_N2_cpu_dtypetorch.float32 short False 4.461410 0.000000
506 PyTorch addcmul addcmul_M1_N2_cpu_dtypetorch.bfloat16 short False 4.560082 0.000000
507 PyTorch addcmul addcmul_M32_N64_cpu_dtypetorch.float32 short False 5.141248 0.000000

View File

@ -4,84 +4,74 @@ import torch
tensor_conversion_short_configs = op_bench.cross_product_configs(
M=[32],
N=[128],
M=(
8,
16,
32,
),
N=(
16,
64,
128,
),
device=["cpu", "cuda"],
dtype_one=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
dtype_two=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
tags=["short"],
)
tensor_conversion_long_configs = op_bench.cross_product_configs(
M=[1024],
N=[1024],
M=(
64,
128,
256,
512,
),
N=(
256,
512,
1024,
2048,
),
device=["cpu", "cuda"],
dtype_one=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
dtype_two=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
tags=["long"],
)
class TensorConversionBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, dtype_one, dtype_two, device):
class FloatToHalfTensorConversionBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device):
self.inputs = {
"input": torch.rand(
M, N, device=device, requires_grad=False, dtype=torch.float
).to(dtype=dtype_one)
)
}
self.dtype_one = dtype_one
self.dtype_two = dtype_two
def forward(self, input):
return input.to(dtype=self.dtype_two)
return input.to(torch.half)
op_bench.generate_pt_test(tensor_conversion_short_configs, TensorConversionBenchmark)
op_bench.generate_pt_test(tensor_conversion_long_configs, TensorConversionBenchmark)
class HalfToFloatTensorConversionBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device):
self.inputs = {
"input": torch.rand(
M, N, device=device, requires_grad=False, dtype=torch.half
)
}
def forward(self, input):
return input.to(torch.float)
op_bench.generate_pt_test(
tensor_conversion_short_configs, FloatToHalfTensorConversionBenchmark
)
op_bench.generate_pt_test(
tensor_conversion_long_configs, FloatToHalfTensorConversionBenchmark
)
op_bench.generate_pt_test(
tensor_conversion_short_configs, HalfToFloatTensorConversionBenchmark
)
op_bench.generate_pt_test(
tensor_conversion_long_configs, HalfToFloatTensorConversionBenchmark
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()

View File

@ -349,106 +349,24 @@ PyTorch,sum,sum_R256_V512_dim0_contiguousTrue_cpu,short,FALSE,12.5841
PyTorch,sum,sum_R256_V512_dim0_contiguousFALSE_cpu,short,FALSE,20.8765
PyTorch,sum,sum_R256_V512_dim1_contiguousTrue_cpu,short,FALSE,15.4414
PyTorch,sum,sum_R256_V512_dim1_contiguousFALSE_cpu,short,FALSE,15.3287
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool,short,False,0.797
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8,short,False,6.071
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8,short,False,6.031
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16,short,False,6.243
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32,short,False,7.231
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64,short,False,7.791
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16,short,False,12.661
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16,short,False,11.225
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32,short,False,9.772
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64,short,False,9.872
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool,short,False,6.033
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,0.781
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8,short,False,6.060
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16,short,False,6.180
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.258
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64,short,False,7.758
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16,short,False,10.504
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16,short,False,6.749
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32,short,False,7.679
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64,short,False,7.797
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool,short,False,6.019
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8,short,False,6.079
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8,short,False,0.785
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16,short,False,6.188
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32,short,False,7.288
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64,short,False,7.770
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16,short,False,10.466
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16,short,False,6.676
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32,short,False,7.736
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64,short,False,7.780
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool,short,False,6.130
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8,short,False,6.221
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8,short,False,6.101
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16,short,False,0.791
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32,short,False,6.254
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64,short,False,7.733
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16,short,False,10.562
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16,short,False,6.704
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32,short,False,7.819
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64,short,False,8.276
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool,short,False,6.361
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,6.364
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8,short,False,6.309
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16,short,False,6.362
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,0.791
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64,short,False,7.746
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16,short,False,9.462
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16,short,False,6.678
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32,short,False,7.827
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64,short,False,8.200
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool,short,False,6.925
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8,short,False,6.947
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8,short,False,6.962
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16,short,False,6.906
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32,short,False,7.664
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64,short,False,0.782
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16,short,False,10.528
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16,short,False,10.123
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32,short,False,9.234
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64,short,False,8.694
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool,short,False,12.653
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8,short,False,9.348
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8,short,False,8.774
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16,short,False,9.063
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32,short,False,10.012
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64,short,False,13.641
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16,short,False,0.788
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16,short,False,13.757
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32,short,False,7.170
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64,short,False,12.511
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool,short,False,6.516
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8,short,False,8.539
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8,short,False,6.483
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16,short,False,6.468
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32,short,False,7.752
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64,short,False,9.868
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16,short,False,10.556
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16,short,False,0.792
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32,short,False,7.577
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64,short,False,8.267
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool,short,False,6.819
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8,short,False,7.715
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8,short,False,6.754
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16,short,False,6.825
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32,short,False,7.790
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64,short,False,9.219
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16,short,False,5.977
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16,short,False,7.069
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32,short,False,0.794
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64,short,False,8.301
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool,short,False,7.401
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8,short,False,7.843
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8,short,False,7.117
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16,short,False,7.170
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32,short,False,8.000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64,short,False,9.284
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16,short,False,7.179
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16,short,False,7.645
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32,short,False,7.988
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64,short,False,0.792
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N16_cpu,short,FALSE,5.0499
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N64_cpu,short,FALSE,5.3229
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N128_cpu,short,FALSE,5.4418
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N16_cpu,short,FALSE,5.0868
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N64_cpu,short,FALSE,5.4495
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N128_cpu,short,FALSE,5.5578
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N16_cpu,short,FALSE,5.2631
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N64_cpu,short,FALSE,5.5646
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N128_cpu,short,FALSE,5.7898
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N16_cpu,short,FALSE,5.0228
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N64_cpu,short,FALSE,5.3692
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N128_cpu,short,FALSE,5.4006
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N16_cpu,short,FALSE,5.1107
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N64_cpu,short,FALSE,5.4119
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N128_cpu,short,FALSE,5.5583
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N16_cpu,short,FALSE,5.3818
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N64_cpu,short,FALSE,5.5742
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N128_cpu,short,FALSE,6.8414
PyTorch,relu,"relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.quint8",short,FALSE,9.4657
PyTorch,relu,"relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint8",short,FALSE,9.4625
PyTorch,relu,"relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint32",short,FALSE,9.4165

1 Benchmarking Framework Benchmarking Module Name Case Name tag run_backward Execution Time
349 PyTorch sum sum_R256_V512_dim0_contiguousFALSE_cpu short FALSE 20.8765
350 PyTorch sum sum_R256_V512_dim1_contiguousTrue_cpu short FALSE 15.4414
351 PyTorch sum sum_R256_V512_dim1_contiguousFALSE_cpu short FALSE 15.3287
352 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool FloatToHalfTensorConversionBenchmark_M8_N16_cpu short False FALSE 0.797 5.0499
353 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8 FloatToHalfTensorConversionBenchmark_M8_N64_cpu short False FALSE 6.071 5.3229
354 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8 FloatToHalfTensorConversionBenchmark_M8_N128_cpu short False FALSE 6.031 5.4418
355 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16 FloatToHalfTensorConversionBenchmark_M16_N16_cpu short False FALSE 6.243 5.0868
356 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32 FloatToHalfTensorConversionBenchmark_M16_N64_cpu short False FALSE 7.231 5.4495
357 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64 FloatToHalfTensorConversionBenchmark_M16_N128_cpu short False FALSE 7.791 5.5578
358 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16 FloatToHalfTensorConversionBenchmark_M32_N16_cpu short False FALSE 12.661 5.2631
359 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16 FloatToHalfTensorConversionBenchmark_M32_N64_cpu short False FALSE 11.225 5.5646
360 PyTorch TensorConversionBenchmark FloatToHalfTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32 FloatToHalfTensorConversionBenchmark_M32_N128_cpu short False FALSE 9.772 5.7898
361 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64 HalfToFloatTensorConversionBenchmark_M8_N16_cpu short False FALSE 9.872 5.0228
362 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool HalfToFloatTensorConversionBenchmark_M8_N64_cpu short False FALSE 6.033 5.3692
363 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8 HalfToFloatTensorConversionBenchmark_M8_N128_cpu short False FALSE 0.781 5.4006
364 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8 HalfToFloatTensorConversionBenchmark_M16_N16_cpu short False FALSE 6.060 5.1107
365 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16 HalfToFloatTensorConversionBenchmark_M16_N64_cpu short False FALSE 6.180 5.4119
366 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32 HalfToFloatTensorConversionBenchmark_M16_N128_cpu short False FALSE 7.258 5.5583
367 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64 HalfToFloatTensorConversionBenchmark_M32_N16_cpu short False FALSE 7.758 5.3818
368 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16 HalfToFloatTensorConversionBenchmark_M32_N64_cpu short False FALSE 10.504 5.5742
369 PyTorch TensorConversionBenchmark HalfToFloatTensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16 HalfToFloatTensorConversionBenchmark_M32_N128_cpu short False FALSE 6.749 6.8414
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32 short False 7.679
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64 short False 7.797
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool short False 6.019
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8 short False 6.079
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8 short False 0.785
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16 short False 6.188
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32 short False 7.288
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64 short False 7.770
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16 short False 10.466
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16 short False 6.676
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32 short False 7.736
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64 short False 7.780
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool short False 6.130
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8 short False 6.221
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8 short False 6.101
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16 short False 0.791
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32 short False 6.254
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64 short False 7.733
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16 short False 10.562
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16 short False 6.704
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32 short False 7.819
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64 short False 8.276
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool short False 6.361
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8 short False 6.364
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8 short False 6.309
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16 short False 6.362
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32 short False 0.791
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64 short False 7.746
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16 short False 9.462
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16 short False 6.678
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32 short False 7.827
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64 short False 8.200
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool short False 6.925
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8 short False 6.947
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8 short False 6.962
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16 short False 6.906
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32 short False 7.664
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64 short False 0.782
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16 short False 10.528
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16 short False 10.123
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32 short False 9.234
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64 short False 8.694
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool short False 12.653
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8 short False 9.348
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8 short False 8.774
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16 short False 9.063
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32 short False 10.012
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64 short False 13.641
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16 short False 0.788
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16 short False 13.757
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32 short False 7.170
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64 short False 12.511
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool short False 6.516
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8 short False 8.539
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8 short False 6.483
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16 short False 6.468
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32 short False 7.752
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64 short False 9.868
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16 short False 10.556
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16 short False 0.792
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32 short False 7.577
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64 short False 8.267
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool short False 6.819
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8 short False 7.715
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8 short False 6.754
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16 short False 6.825
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32 short False 7.790
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64 short False 9.219
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16 short False 5.977
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16 short False 7.069
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32 short False 0.794
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64 short False 8.301
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool short False 7.401
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8 short False 7.843
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8 short False 7.117
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16 short False 7.170
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32 short False 8.000
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64 short False 9.284
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16 short False 7.179
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16 short False 7.645
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32 short False 7.988
PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64 short False 0.792
370 PyTorch relu relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.quint8 short FALSE 9.4657
371 PyTorch relu relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint8 short FALSE 9.4625
372 PyTorch relu relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint32 short FALSE 9.4165

View File

@ -52,18 +52,19 @@ def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time

View File

@ -1,8 +1,6 @@
#pragma once
#include <c10/core/SafePyObject.h>
#include <c10/macros/Export.h>
#include <optional>
namespace c10 {
@ -17,8 +15,7 @@ struct C10_API AutogradState {
bool inference_mode,
bool fw_grad_mode,
bool multithreading_enabled)
: graph_exec_group_(std::nullopt),
grad_mode_(grad_mode),
: grad_mode_(grad_mode),
inference_mode_(inference_mode),
fw_grad_mode_(fw_grad_mode),
multithreading_enabled_(multithreading_enabled),
@ -44,10 +41,6 @@ struct C10_API AutogradState {
view_replay_enabled_ = view_replay_enabled;
}
void set_graph_exec_group(std::optional<SafePyObject> group) {
graph_exec_group_ = std::move(group);
}
bool get_grad_mode() const {
return grad_mode_;
}
@ -68,12 +61,7 @@ struct C10_API AutogradState {
return view_replay_enabled_;
}
const std::optional<SafePyObject>& get_graph_exec_group() const {
return graph_exec_group_;
}
private:
std::optional<SafePyObject> graph_exec_group_;
bool grad_mode_ : 1;
bool inference_mode_ : 1;
bool fw_grad_mode_ : 1;

View File

@ -96,10 +96,6 @@ struct C10_API DeviceAllocator : public c10::Allocator {
// Resets peak memory usage statistics for the specified device
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
// Return the free memory size and total memory size in bytes for the
// specified device.
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) = 0;
};
// This function is used to get the DeviceAllocator for a specific device type

View File

@ -345,13 +345,6 @@ class CUDAAllocator : public DeviceAllocator {
c10::DeviceIndex device,
std::shared_ptr<AllocatorState> pps) = 0;
virtual std::string name() = 0;
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
c10::DeviceGuard device_guard({at::kCUDA, device});
size_t free = 0;
size_t total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
return {free, total};
}
};
// Allocator object, statically initialized

View File

@ -1,111 +0,0 @@
#pragma once
#include <c10/metal/common.h>
namespace c10 {
namespace metal {
C10_METAL_CONSTEXPR unsigned error_message_count = 30;
struct ErrorMessage {
char file[128];
char func[128];
char message[250];
unsigned int line;
};
struct ErrorMessages {
#ifdef __METAL__
::metal::atomic<unsigned int> count;
#else
unsigned int count;
#endif
ErrorMessage msg[error_message_count];
};
#ifdef __METAL__
namespace detail {
static uint strncpy(device char* dst, constant const char* src, unsigned len) {
uint i = 0;
while (src[i] != 0 && i < len - 1) {
dst[i] = src[i];
i++;
}
dst[i] = 0;
return i;
}
inline uint print_arg(
device char* ptr,
unsigned len,
constant const char* arg) {
return strncpy(ptr, arg, len);
}
// Returns number length as string in base10
static inline uint base10_length(long num) {
uint rc = 1;
if (num < 0) {
num = -num;
rc += 1;
}
while (num > 9) {
num /= 10;
rc++;
}
return rc;
}
// Converts signed integer to string
inline uint print_arg(device char* ptr, unsigned len, long arg) {
const auto arg_len = base10_length(arg);
if (arg_len >= len)
return 0;
if (arg < 0) {
ptr[0] = '-';
arg = -arg;
}
uint idx = 1;
do {
ptr[arg_len - idx] = '0' + (arg % 10);
arg /= 10;
idx++;
} while (arg > 0);
ptr[arg_len] = 0;
return arg_len;
}
template <typename T>
inline void print_args(device char* ptr, unsigned len, T arg) {
print_arg(ptr, len, arg);
}
template <typename T, typename... Args>
inline void print_args(device char* ptr, unsigned len, T arg, Args... args) {
const auto rc = print_arg(ptr, len, arg);
print_args(ptr + rc, len - rc, args...);
}
} // namespace detail
template <typename... Args>
static void report_error(
device ErrorMessages* msgs,
constant const char* file,
int line,
constant const char* func,
Args... args) {
const auto idx =
atomic_fetch_add_explicit(&msgs->count, 1, ::metal::memory_order_relaxed);
if (idx >= error_message_count) {
return;
}
device auto* msg = &msgs->msg[idx];
detail::strncpy(msg->file, file, 128);
detail::strncpy(msg->func, func, 128);
detail::print_args(msg->message, 250, args...);
msg->line = line;
}
#define TORCH_REPORT_ERROR(buf, ...) \
::c10::metal::report_error(buf, __FILE__, __LINE__, __func__, __VA_ARGS__)
#endif
} // namespace metal
} // namespace c10

View File

@ -66,15 +66,6 @@ def define_targets(rules):
],
)
rules.cc_test(
name = "util/nofatal_test",
srcs = ["util/nofatal_test.cpp"],
deps = [
"//c10/util:base",
"@com_google_googletest//:gtest_main",
],
)
rules.cc_test(
name = "util/ssize_test",
srcs = ["util/ssize_test.cpp"],

View File

@ -1,8 +1,9 @@
#include <c10/test/util/Macros.h>
#include <c10/util/Metaprogramming.h>
#include <gtest/gtest.h>
#include <torch/headeronly/util/Metaprogramming.h>
#include <cstdlib>
using namespace torch::headeronly::guts;
using namespace c10::guts;
// NOLINTBEGIN(modernize*, cppcoreguidelines-special-member-functions)
namespace {
@ -64,15 +65,6 @@ static_assert(
typename make_function_traits_t<void, typelist::typelist<int, float>>::
func_type>::value,
"");
struct Functor final {
std::string operator()(int64_t a, float b) const;
};
static_assert(
std::is_same<
std::string(int64_t, float),
typename infer_function_traits_t<Functor>::func_type>::value,
"");
} // namespace test_function_traits
struct MovableOnly {

View File

@ -1,8 +1,8 @@
#include <c10/util/TypeList.h>
#include <gtest/gtest.h>
#include <torch/headeronly/util/TypeList.h>
#include <memory>
using namespace torch::headeronly::guts::typelist;
using namespace c10::guts::typelist;
// NOLINTBEGIN(modernize-unary-static-assert)
namespace test_size {
class MyClass {};

View File

@ -1,7 +1,7 @@
#include <c10/util/TypeTraits.h>
#include <gtest/gtest.h>
#include <torch/headeronly/util/TypeTraits.h>
using namespace torch::headeronly::guts;
using namespace c10::guts;
// NOLINTBEGIN(modernize-unary-static-assert)
namespace {

View File

@ -1,53 +0,0 @@
#include <gtest/gtest.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
namespace {
template <typename T>
inline void expectThrowsEq(T&& fn, const char* expected_msg) {
try {
std::forward<T>(fn)();
} catch (const c10::Error& e) {
EXPECT_TRUE(
std::string(e.what_without_backtrace()).find(expected_msg) !=
std::string::npos);
return;
}
ADD_FAILURE() << "Expected to throw exception with message \"" << expected_msg
<< "\" but didn't throw";
}
} // namespace
TEST(NofatalTest, TorchCheckComparisons) {
// quick make sure that no-op works as expected
TORCH_CHECK_EQ(1, 1) << "i am a silly message " << 1;
expectThrowsEq(
[]() { TORCH_CHECK_EQ(1, 2) << "i am a silly message " << 1; },
"Check failed: 1 == 2 (1 vs. 2). i am a silly message 1");
expectThrowsEq(
[]() { TORCH_CHECK_NE(2, 2); }, "Check failed: 2 != 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LT(2, 2); }, "Check failed: 2 < 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LE(3, 2); }, "Check failed: 3 <= 2 (3 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GT(2, 2); }, "Check failed: 2 > 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GE(2, 3); }, "Check failed: 2 >= 3 (2 vs. 3).");
expectThrowsEq(
[]() {
void* p = nullptr;
TORCH_CHECK_NOTNULL(p);
},
"Check failed: 'p' must be non NULL.");
#if GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
// if dbg build, DCHECK should result in deth
EXPECT_DEATH(TORCH_DCHECK_EQ(1, 2), "Check failed");
#else
TORCH_DCHECK_EQ(1, 2); // no-op
#endif
#endif // GTEST_HAS_DEATH_TEST
}

View File

@ -702,98 +702,6 @@ namespace c10::detail {
#define TORCH_CHECK_ARG(cond, argN, ...) \
TORCH_CHECK(cond, "invalid argument ", argN, ": ", __VA_ARGS__)
#ifndef FATAL_IF
#ifdef C10_USE_GLOG
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::google::GLOG_FATAL) \
.stream()
#else
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL).stream()
#endif
#endif
#ifndef NON_FATAL_IF
#ifdef C10_USE_GLOG
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger( \
__FILE__, __LINE__, ::google::GLOG_FATAL, false) \
.stream()
#else
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL, false) \
.stream()
#endif
#endif
// Binary comparison check macros
#define TORCH_CHECK_OP(val1, val2, op) \
NON_FATAL_IF(((val1)op(val2))) \
<< "Check failed: " #val1 " " #op " " #val2 " (" << (val1) << " vs. " \
<< (val2) << "). "
#define TORCH_DCHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << "). "
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
// Debug versions of TORCH_CHECK_OP macros
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_DCHECK_OP(val1, val2, >)
#else // !NDEBUG
// Optimized versions - generate no code
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >)
#endif // NDEBUG
// Null pointer check macro
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), false)
#ifndef NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), true)
#else // !NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ----------------------------------------------------------------------------
// Deprecated macros
// ----------------------------------------------------------------------------

View File

@ -291,32 +291,6 @@ namespace c10 {
using fLB::FLAGS_logtostderr;
using fLI::FLAGS_minloglevel;
using fLI::FLAGS_v;
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: stream_(), severity_(severity), exit_on_fatal_(exit_on_fatal) {}
MessageLogger::~MessageLogger() noexcept(false) {
if (severity_ == ::google::GLOG_FATAL) {
DealWithFatal();
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
LOG(FATAL) << stream_.str();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
C10_DEFINE_int(
@ -438,16 +412,17 @@ void ShowLogInfoToStderr() {
FLAGS_caffe2_log_level = GLOG_INFO;
}
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: severity_(severity), exit_on_fatal_(exit_on_fatal) {
MessageLogger::MessageLogger(const char* file, int line, int severity)
: severity_(severity) {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
}
#ifdef ANDROID
tag_ = "native";
#else // !ANDROID
tag_ = "";
#endif // ANDROID
time_t rawtime = 0;
time(&rawtime);
@ -483,7 +458,7 @@ MessageLogger::MessageLogger(
}
// Output the contents of the stream to the proper channel on destruction.
MessageLogger::~MessageLogger() noexcept(false) {
MessageLogger::~MessageLogger() {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
@ -523,18 +498,6 @@ MessageLogger::~MessageLogger() noexcept(false) {
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
abort();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
#endif // !C10_USE_GLOG

View File

@ -0,0 +1 @@
#include <c10/util/Metaprogramming.h>

View File

@ -1 +1,224 @@
#include <torch/headeronly/util/Metaprogramming.h>
#pragma once
#include <c10/util/TypeList.h>
#include <type_traits>
namespace c10::guts {
/**
* Access information about result type or arguments from a function type.
* Example:
* using A = function_traits<int (float, double)>::return_type // A == int
* using A = function_traits<int (float, double)>::parameter_types::tuple_type
* // A == tuple<float, double>
*/
template <class Func>
struct function_traits {
static_assert(
!std::is_same_v<Func, Func>,
"In function_traits<Func>, Func must be a plain function type.");
};
template <class Result, class... Args>
struct function_traits<Result(Args...)> {
using func_type = Result(Args...);
using return_type = Result;
using parameter_types = typelist::typelist<Args...>;
static constexpr auto number_of_parameters = sizeof...(Args);
};
/**
* infer_function_traits: creates a `function_traits` type for a simple
* function (pointer) or functor (lambda/struct). Currently does not support
* class methods.
*/
template <typename Functor>
struct infer_function_traits {
using type = function_traits<
c10::guts::detail::strip_class_t<decltype(&Functor::operator())>>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result (*)(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename T>
using infer_function_traits_t = typename infer_function_traits<T>::type;
/**
* make_function_traits: creates a `function_traits` type given a Return type
* and a typelist of Argument types
*
* Example:
* bool f(int, int);
*
* infer_function_traits_t<f> == make_function_traits_t<bool,
* typelist::typelist<int, int>>
*/
template <typename Result, typename ArgList>
struct make_function_traits {
static_assert(
false_t<ArgList>::value,
"In guts::make_function_traits<Result, TypeList>, the ArgList argument must be typelist<...>.");
};
template <typename Result, typename... Args>
struct make_function_traits<Result, typelist::typelist<Args...>> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename ArgList>
using make_function_traits_t =
typename make_function_traits<Result, ArgList>::type;
/**
* make_offset_index_sequence<Start, N>
* Like make_index_sequence<N>, but starting from Start instead of 0.
*
* Example:
* make_offset_index_sequence<10, 3> == std::index_sequence<10, 11, 12>
*/
template <size_t Start, size_t N, size_t... Is>
struct make_offset_index_sequence_impl
: make_offset_index_sequence_impl<Start, N - 1, Start + N - 1, Is...> {
static_assert(
static_cast<int>(Start) >= 0,
"make_offset_index_sequence: Start < 0");
static_assert(static_cast<int>(N) >= 0, "make_offset_index_sequence: N < 0");
};
template <size_t Start, size_t... Is>
struct make_offset_index_sequence_impl<Start, 0, Is...> {
typedef std::index_sequence<Is...> type;
};
template <size_t Start, size_t N>
using make_offset_index_sequence =
typename make_offset_index_sequence_impl<Start, N>::type;
/**
* Use tuple_elements to extract a position-indexed subset of elements
* from the argument tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, double> result = tuple_elements(t, std::index_sequence<0,
* 2>());
*/
template <class Tuple, size_t... Is>
constexpr auto tuple_elements(Tuple t, std::index_sequence<Is...> /*unused*/) {
return std::tuple<std::tuple_element_t<Is, Tuple>...>(std::get<Is>(t)...);
}
/**
* Use tuple_take to extract the first or last n elements from the argument
* tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, const char*> first_two = tuple_take<decltype(t), 2>(t);
* std::tuple<const char*, double> last_two = tuple_take<decltype(t), -2>(t);
*/
template <class Tuple, int N, class Enable = void>
struct TupleTake {};
template <class Tuple, int N>
struct TupleTake<Tuple, N, std::enable_if_t<N >= 0, void>> {
static auto call(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(N <= size, "tuple_take: N > size");
return tuple_elements(t, std::make_index_sequence<N>{});
}
};
template <class Tuple, int N>
struct TupleTake < Tuple,
N, std::enable_if_t<N<0, void>> {
static auto call(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(-N <= size, "tuple_take: -N > size");
return tuple_elements(t, make_offset_index_sequence<size + N, -N>{});
}
};
template <class Tuple, int N>
auto tuple_take(Tuple t) {
return TupleTake<Tuple, N>::call(t);
}
/**
* Use tuple_slice to extract a contiguous subtuple from the argument.
*
* Example:
* std::tuple<int, const char*, double, bool> t = std::make_tuple(0,
* "HEY", 2.0, false); std::tuple<int, const char*> middle_two =
* tuple_slice<decltype(t), 1, 2>(t);
*/
template <class Tuple, size_t Start, size_t N>
constexpr auto tuple_slice(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(Start + N <= size, "tuple_slice: Start + N > size");
return tuple_elements(t, make_offset_index_sequence<Start, N>{});
}
/**
* Use tuple_map to run a mapping function over a tuple to get a new tuple.
*
* Example 1:
* auto result = tuple_map(std::tuple<int32_t, int32_t, int32_t>(3, 4, 5), []
* (int32_t a) -> int16_t {return a+1;});
* // result == std::tuple<int16_t, int16_t, int16_t>(4, 5, 6)
*
* Example 2:
* struct Mapper {
* std::string operator()(int32_t a) const {
* return std::to_string(a);
* }
* int64_t operator()(const std::string& a) const {
* return atoi(a.c_str());
* }
* };
* auto result = tuple_map(std::tuple<int32_t, std::string>(3, "4"),
* Mapper());
* // result == std::tuple<std::string, int64_t>("3", 4)
*
* Example 3:
* struct A final {
* int32_t func() {
* return 5;
* }
* };
* struct B final {
* std::string func() {
* return "5";
* }
* };
* auto result = tuple_map(std::make_tuple(A(), B()), [] (auto a) { return
* a.func(); });
* // result == std::tuple<int32_t, std::string>(5, "5");
*/
namespace detail {
template <class Mapper, class... Args, size_t... Indices>
auto tuple_map(
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
std::tuple<Args...>&& tuple,
const Mapper& mapper,
std::index_sequence<Indices...> /*unused*/) {
return std::tuple<decltype(mapper(std::forward<Args>(std::get<Indices>(
tuple))))...>(mapper(std::forward<Args>(std::get<Indices>(tuple)))...);
}
} // namespace detail
template <class Mapper, class... Args>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper) {
return detail::tuple_map(
std::move(tuple), mapper, std::index_sequence_for<Args...>());
}
} // namespace c10::guts

View File

@ -1 +1,515 @@
#include <torch/headeronly/util/TypeList.h>
#pragma once
#include <c10/util/TypeTraits.h>
#include <algorithm>
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
namespace c10::guts {
template <class... T>
struct false_t : std::false_type {};
template <template <class> class... T>
struct false_higher_t : std::false_type {};
namespace typelist {
/**
* Type holding a list of types for compile time type computations
*/
template <class... Items>
struct typelist final {
public:
typelist() = delete; // not for instantiation
};
/**
* Returns the number of types in a typelist
* Example:
* 3 == size<typelist<int, int, double>>::value
*/
template <class TypeList>
struct size final {
static_assert(
false_t<TypeList>::value,
"In typelist::size<T>, T must be typelist<...>.");
};
template <class... Types>
struct size<typelist<Types...>> final {
static constexpr size_t value = sizeof...(Types);
};
/**
* Transforms a list of types into a tuple holding these types.
* Example:
* std::tuple<int, string> == to_tuple_t<typelist<int, string>>
*/
template <class TypeList>
struct to_tuple final {
static_assert(
false_t<TypeList>::value,
"In typelist::to_tuple<T>, T must be typelist<...>.");
};
template <class... Types>
struct to_tuple<typelist<Types...>> final {
using type = std::tuple<Types...>;
};
template <class TypeList>
using to_tuple_t = typename to_tuple<TypeList>::type;
/**
* Creates a typelist containing the types of a given tuple.
* Example:
* typelist<int, string> == from_tuple_t<std::tuple<int, string>>
*/
template <class Tuple>
struct from_tuple final {
static_assert(
false_t<Tuple>::value,
"In typelist::from_tuple<T>, T must be std::tuple<...>.");
};
template <class... Types>
struct from_tuple<std::tuple<Types...>> final {
using type = typelist<Types...>;
};
template <class Tuple>
using from_tuple_t = typename from_tuple<Tuple>::type;
/**
* Concatenates multiple type lists.
* Example:
* typelist<int, string, int> == concat_t<typelist<int, string>,
* typelist<int>>
*/
template <class... TypeLists>
struct concat final {
static_assert(
false_t<TypeLists...>::value,
"In typelist::concat<T1, ...>, the T arguments each must be typelist<...>.");
};
template <class... Head1Types, class... Head2Types, class... TailLists>
struct concat<typelist<Head1Types...>, typelist<Head2Types...>, TailLists...>
final {
using type =
typename concat<typelist<Head1Types..., Head2Types...>, TailLists...>::
type;
};
template <class... HeadTypes>
struct concat<typelist<HeadTypes...>> final {
using type = typelist<HeadTypes...>;
};
template <>
struct concat<> final {
using type = typelist<>;
};
template <class... TypeLists>
using concat_t = typename concat<TypeLists...>::type;
/**
* Filters the types in a type list by a type trait.
* Examples:
* typelist<int&, const string&&> == filter_t<std::is_reference,
* typelist<void, string, int&, bool, const string&&, int>>
*/
template <template <class> class Condition, class TypeList>
struct filter final {
static_assert(
false_t<TypeList>::value,
"In typelist::filter<Condition, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition, class Head, class... Tail>
struct filter<Condition, typelist<Head, Tail...>> final {
static_assert(
is_type_condition<Condition>::value,
"In typelist::filter<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
using type = std::conditional_t<
Condition<Head>::value,
concat_t<
typelist<Head>,
typename filter<Condition, typelist<Tail...>>::type>,
typename filter<Condition, typelist<Tail...>>::type>;
};
template <template <class> class Condition>
struct filter<Condition, typelist<>> final {
static_assert(
is_type_condition<Condition>::value,
"In typelist::filter<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
using type = typelist<>;
};
template <template <class> class Condition, class TypeList>
using filter_t = typename filter<Condition, TypeList>::type;
/**
* Counts how many types in the list fulfill a type trait
* Examples:
* 2 == count_if<std::is_reference, typelist<void, string, int&, bool, const
* string&&, int>>
*/
template <template <class> class Condition, class TypeList>
struct count_if final {
static_assert(
is_type_condition<Condition>::value,
"In typelist::count_if<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::count_if<Condition, TypeList>, the TypeList argument must be typelist<...>.");
// TODO Direct implementation might be faster
static constexpr size_t value = size<filter_t<Condition, TypeList>>::value;
};
/**
* Checks if a typelist contains a certain type.
* Examples:
* contains<typelist<int, string>, string> == true_type
* contains<typelist<int, string>, double> == false_type
*/
namespace detail {
template <class TypeList, class Type, class Enable = void>
struct contains {};
template <class Type>
struct contains<typelist<>, Type, void> : std::false_type {};
template <class Type, class Head, class... Tail>
struct contains<
typelist<Head, Tail...>,
Type,
std::enable_if_t<std::is_same_v<Head, Type>>> : std::true_type {};
template <class Type, class Head, class... Tail>
struct contains<
typelist<Head, Tail...>,
Type,
std::enable_if_t<!std::is_same_v<Head, Type>>>
: contains<typelist<Tail...>, Type> {};
} // namespace detail
template <class TypeList, class Type>
using contains = typename detail::contains<TypeList, Type>::type;
/**
* Returns true iff the type trait is true for all types in the type list
* Examples:
* true == all<std::is_reference, typelist<int&, const float&&, const
* MyClass&>>::value false == all<std::is_reference, typelist<int&, const
* float&&, MyClass>>::value
*/
template <template <class> class Condition, class TypeList>
struct all {
static_assert(
false_t<TypeList>::value,
"In typelist::all<Condition, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition, class... Types>
struct all<Condition, typelist<Types...>>
: std::conjunction<Condition<Types>...> {
static_assert(
is_type_condition<Condition>::value,
"In typelist::all<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
};
/**
* Returns true iff the type trait is true for any type in the type list
* Examples:
* true == true_for_any_type<std::is_reference, typelist<int, const
* float&&, const MyClass>>::value false ==
* true_for_any_type<std::is_reference, typelist<int, const float,
* MyClass>>::value
*/
template <template <class> class Condition, class TypeList>
struct true_for_any_type final {
static_assert(
false_t<TypeList>::value,
"In typelist::true_for_any_type<Condition, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition, class... Types>
struct true_for_any_type<Condition, typelist<Types...>> final
: std::disjunction<Condition<Types>...> {
static_assert(
is_type_condition<Condition>::value,
"In typelist::true_for_any_type<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
};
/**
* Maps types of a type list using a type trait
* Example:
* typelist<int&, double&, string&> == map_t<std::add_lvalue_reference_t,
* typelist<int, double, string>>
*/
template <template <class> class Mapper, class TypeList>
struct map final {
static_assert(
false_t<TypeList>::value,
"In typelist::map<Mapper, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Mapper, class... Types>
struct map<Mapper, typelist<Types...>> final {
using type = typelist<Mapper<Types>...>;
};
template <template <class> class Mapper, class TypeList>
using map_t = typename map<Mapper, TypeList>::type;
/**
* Returns the first element of a type list.
* Example:
* int == head_t<typelist<int, string>>
*/
template <class TypeList>
struct head final {
static_assert(
false_t<TypeList>::value,
"In typelist::head<T>, the T argument must be typelist<...>.");
};
template <class Head, class... Tail>
struct head<typelist<Head, Tail...>> final {
using type = Head;
};
template <class TypeList>
using head_t = typename head<TypeList>::type;
/**
* Returns the first element of a type list, or the specified default if the
* type list is empty. Example: int == head_t<bool, typelist<int, string>>
* bool == head_t<bool, typelist<>>
*/
template <class Default, class TypeList>
struct head_with_default final {
using type = Default;
};
template <class Default, class Head, class... Tail>
struct head_with_default<Default, typelist<Head, Tail...>> final {
using type = Head;
};
template <class Default, class TypeList>
using head_with_default_t = typename head_with_default<Default, TypeList>::type;
/**
* Returns the N-th element of a type list.
* Example:
* int == element_t<1, typelist<float, int, char>>
*/
/// Base template.
template <size_t Index, class TypeList>
struct element final {
static_assert(
false_t<TypeList>::value,
"In typelist::element<T>, the T argument must be typelist<...>.");
};
/// Successful case, we have reached the zero index and can "return" the head
/// type.
template <class Head, class... Tail>
struct element<0, typelist<Head, Tail...>> {
using type = Head;
};
/// Error case, we have an index but ran out of types! It will only be selected
/// if `Ts...` is actually empty!
template <size_t Index, class... Ts>
struct element<Index, typelist<Ts...>> {
static_assert(
Index < sizeof...(Ts),
"Index is out of bounds in typelist::element");
};
/// Shave off types until we hit the <0, Head, Tail...> or <Index> case.
template <size_t Index, class Head, class... Tail>
struct element<Index, typelist<Head, Tail...>>
: element<Index - 1, typelist<Tail...>> {};
/// Convenience alias.
template <size_t Index, class TypeList>
using element_t = typename element<Index, TypeList>::type;
/**
* Returns the last element of a type list.
* Example:
* int == last_t<typelist<int, string>>
*/
template <class TypeList>
struct last final {
static_assert(
false_t<TypeList>::value,
"In typelist::last<T>, the T argument must be typelist<...>.");
};
template <class Head, class... Tail>
struct last<typelist<Head, Tail...>> final {
using type = typename last<typelist<Tail...>>::type;
};
template <class Head>
struct last<typelist<Head>> final {
using type = Head;
};
template <class TypeList>
using last_t = typename last<TypeList>::type;
static_assert(std::is_same_v<int, last_t<typelist<double, float, int>>>);
/**
* Take/drop a number of arguments from a typelist.
* Example:
* typelist<int, string> == take_t<typelist<int, string, bool>, 2>
* typelist<bool> == drop_t<typelist<int, string, bool>, 2>
*/
namespace detail {
template <class TypeList, size_t offset, class IndexSequence>
struct take_elements final {};
template <class TypeList, size_t offset, size_t... Indices>
struct take_elements<TypeList, offset, std::index_sequence<Indices...>> final {
using type = typelist<typename element<offset + Indices, TypeList>::type...>;
};
} // namespace detail
template <class TypeList, size_t num>
struct take final {
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::take<T, num>, the T argument must be typelist<...>.");
static_assert(
num <= size<TypeList>::value,
"Tried to typelist::take more elements than there are in the list");
using type = typename detail::
take_elements<TypeList, 0, std::make_index_sequence<num>>::type;
};
template <class TypeList, size_t num>
using take_t = typename take<TypeList, num>::type;
template <class TypeList, size_t num>
struct drop final {
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::drop<T, num>, the T argument must be typelist<...>.");
static_assert(
num <= size<TypeList>::value,
"Tried to typelist::drop more elements than there are in the list");
using type = typename detail::take_elements<
TypeList,
num,
std::make_index_sequence<size<TypeList>::value - num>>::type;
};
template <class TypeList, size_t num>
using drop_t = typename drop<TypeList, num>::type;
/**
* Like drop, but returns an empty list rather than an assertion error if `num`
* is larger than the size of the TypeList.
* Example:
* typelist<> == drop_if_nonempty_t<typelist<string, bool>, 2>
* typelist<> == drop_if_nonempty_t<typelist<int, string, bool>, 3>
*/
template <class TypeList, size_t num>
struct drop_if_nonempty final {
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::drop<T, num>, the T argument must be typelist<...>.");
using type = typename detail::take_elements<
TypeList,
std::min(num, size<TypeList>::value),
std::make_index_sequence<
size<TypeList>::value - std::min(num, size<TypeList>::value)>>::type;
};
template <class TypeList, size_t num>
using drop_if_nonempty_t = typename drop_if_nonempty<TypeList, num>::type;
/**
* Reverses a typelist.
* Example:
* typelist<int, string> == reverse_t<typelist<string, int>>
*/
template <class TypeList>
struct reverse final {
static_assert(
false_t<TypeList>::value,
"In typelist::reverse<T>, the T argument must be typelist<...>.");
};
template <class Head, class... Tail>
struct reverse<typelist<Head, Tail...>> final {
using type =
concat_t<typename reverse<typelist<Tail...>>::type, typelist<Head>>;
};
template <>
struct reverse<typelist<>> final {
using type = typelist<>;
};
template <class TypeList>
using reverse_t = typename reverse<TypeList>::type;
/**
* Find the index of the first type in a typelist fulfilling a type trait
* condition. Example:
*
* 2 == find_if<typelist<char, int, char&, int&>, std::is_reference>::value
*/
template <class TypeList, template <class> class Condition, class Enable = void>
struct find_if final {
static_assert(
false_t<TypeList>::value,
"In typelist::find_if<TypeList, Condition>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition>
struct find_if<typelist<>, Condition, void> final {
static_assert(
false_higher_t<Condition>::value,
"In typelist::find_if<Type/List, Condition>, didn't find any type fulfilling the Condition.");
};
template <class Head, class... Tail, template <class> class Condition>
struct find_if<
typelist<Head, Tail...>,
Condition,
std::enable_if_t<Condition<Head>::value>>
final {
static constexpr size_t value = 0;
};
template <class Head, class... Tail, template <class> class Condition>
struct find_if<
typelist<Head, Tail...>,
Condition,
std::enable_if_t<!Condition<Head>::value>>
final {
static constexpr size_t value =
1 + find_if<typelist<Tail...>, Condition>::value;
};
/**
* Maps a list of types into a list of values.
* Examples:
* // Example 1
* auto sizes =
* map_types_to_values<typelist<int64_t, bool, uint32_t>>(
* [] (auto t) { return sizeof(decltype(t)::type); }
* );
* // sizes == std::tuple<size_t, size_t, size_t>{8, 1, 4}
*
* // Example 2
* auto shared_ptrs =
* map_types_to_values<typelist<int, double>>(
* [] (auto t) { return make_shared<typename decltype(t)::type>(); }
* );
* // shared_ptrs == std::tuple<shared_ptr<int>, shared_ptr<double>>()
*/
namespace detail {
template <class T>
struct type_ final {
using type = T;
};
template <class TypeList>
struct map_types_to_values final {
static_assert(
false_t<TypeList>::value,
"In typelist::map_types_to_values<T>, the T argument must be typelist<...>.");
};
template <class... Types>
struct map_types_to_values<typelist<Types...>> final {
template <class Func>
static auto call(Func&& func) {
return std::tuple{std::forward<Func>(func)(type_<Types>())...};
}
};
} // namespace detail
template <class TypeList, class Func>
auto map_types_to_values(Func&& func) {
return detail::map_types_to_values<TypeList>::call(std::forward<Func>(func));
}
} // namespace typelist
} // namespace c10::guts

View File

@ -1 +1,151 @@
#include <torch/headeronly/util/TypeTraits.h>
#pragma once
#include <functional>
#include <type_traits>
namespace c10::guts {
/**
* is_equality_comparable<T> is true_type iff the equality operator is defined
* for T.
*/
template <class T, class Enable = void>
struct is_equality_comparable : std::false_type {};
template <class T>
struct is_equality_comparable<
T,
std::void_t<decltype(std::declval<T&>() == std::declval<T&>())>>
: std::true_type {};
template <class T>
using is_equality_comparable_t = typename is_equality_comparable<T>::type;
/**
* is_hashable<T> is true_type iff std::hash is defined for T
*/
template <class T, class Enable = void>
struct is_hashable : std::false_type {};
template <class T>
struct is_hashable<T, std::void_t<decltype(std::hash<T>()(std::declval<T&>()))>>
: std::true_type {};
template <class T>
using is_hashable_t = typename is_hashable<T>::type;
/**
* is_function_type<T> is true_type iff T is a plain function type (i.e.
* "Result(Args...)")
*/
template <class T>
struct is_function_type : std::false_type {};
template <class Result, class... Args>
struct is_function_type<Result(Args...)> : std::true_type {};
template <class T>
using is_function_type_t = typename is_function_type<T>::type;
/**
* is_instantiation_of<T, I> is true_type iff I is a template instantiation of T
* (e.g. vector<int> is an instantiation of vector) Example:
* is_instantiation_of_t<vector, vector<int>> // true
* is_instantiation_of_t<pair, pair<int, string>> // true
* is_instantiation_of_t<vector, pair<int, string>> // false
*/
template <template <class...> class Template, class T>
struct is_instantiation_of : std::false_type {};
template <template <class...> class Template, class... Args>
struct is_instantiation_of<Template, Template<Args...>> : std::true_type {};
template <template <class...> class Template, class T>
using is_instantiation_of_t = typename is_instantiation_of<Template, T>::type;
namespace detail {
/**
* strip_class: helper to remove the class type from pointers to `operator()`.
*/
template <typename T>
struct strip_class {};
template <typename Class, typename Result, typename... Args>
struct strip_class<Result (Class::*)(Args...)> {
using type = Result(Args...);
};
template <typename Class, typename Result, typename... Args>
struct strip_class<Result (Class::*)(Args...) const> {
using type = Result(Args...);
};
template <typename T>
using strip_class_t = typename strip_class<T>::type;
} // namespace detail
/**
* Evaluates to true_type, iff the given class is a Functor
* (i.e. has a call operator with some set of arguments)
*/
template <class Functor, class Enable = void>
struct is_functor : std::false_type {};
template <class Functor>
struct is_functor<
Functor,
std::enable_if_t<is_function_type<
detail::strip_class_t<decltype(&Functor::operator())>>::value>>
: std::true_type {};
/**
* lambda_is_stateless<T> is true iff the lambda type T is stateless
* (i.e. does not have a closure).
* Example:
* auto stateless_lambda = [] (int a) {return a;};
* lambda_is_stateless<decltype(stateless_lambda)> // true
* auto stateful_lambda = [&] (int a) {return a;};
* lambda_is_stateless<decltype(stateful_lambda)> // false
*/
namespace detail {
template <class LambdaType, class FuncType>
struct is_stateless_lambda__ final {
static_assert(
!std::is_same_v<LambdaType, LambdaType>,
"Base case shouldn't be hit");
};
// implementation idea: According to the C++ standard, stateless lambdas are
// convertible to function pointers
template <class LambdaType, class C, class Result, class... Args>
struct is_stateless_lambda__<LambdaType, Result (C::*)(Args...) const>
: std::is_convertible<LambdaType, Result (*)(Args...)> {};
template <class LambdaType, class C, class Result, class... Args>
struct is_stateless_lambda__<LambdaType, Result (C::*)(Args...)>
: std::is_convertible<LambdaType, Result (*)(Args...)> {};
// case where LambdaType is not even a functor
template <class LambdaType, class Enable = void>
struct is_stateless_lambda_ final : std::false_type {};
// case where LambdaType is a functor
template <class LambdaType>
struct is_stateless_lambda_<
LambdaType,
std::enable_if_t<is_functor<LambdaType>::value>>
: is_stateless_lambda__<LambdaType, decltype(&LambdaType::operator())> {};
} // namespace detail
template <class T>
using is_stateless_lambda = detail::is_stateless_lambda_<std::decay_t<T>>;
/**
* is_type_condition<C> is true_type iff C<...> is a type trait representing a
* condition (i.e. has a constexpr static bool ::value member) Example:
* is_type_condition<std::is_reference> // true
*/
template <template <class> class C, class Enable = void>
struct is_type_condition : std::false_type {};
template <template <class> class C>
struct is_type_condition<
C,
std::enable_if_t<
std::is_same_v<bool, std::remove_cv_t<decltype(C<int>::value)>>>>
: std::true_type {};
/**
* is_fundamental<T> is true_type iff the lambda type T is a fundamental type
* (that is, arithmetic type, void, or nullptr_t). Example: is_fundamental<int>
* // true We define it here to resolve a MSVC bug. See
* https://github.com/pytorch/pytorch/issues/30932 for details.
*/
template <class T>
struct is_fundamental : std::is_fundamental<T> {};
} // namespace c10::guts

Some files were not shown because too many files have changed in this diff Show More