Compare commits

..

1 Commits

Author SHA1 Message Date
937ffabfe8 [dynamo][export] Do not graph break on torch.autograd._profiler_enabled for export
Actually we would like to not graph break even in the case of Dynamo.
But there is a weird-unsolved bug with Kineto + Dynamo when there are
distributed jobs that lead to NCCL timeouts. This bug is a rare edege
case, but we have not been able to root cause it yet.

But for export, we do not anticipate JIT tracing in distributed job
training and therefore this PR is safe for export.
2025-10-01 16:49:10 -07:00
701 changed files with 3682 additions and 11701 deletions

View File

@ -1 +1 @@
deb42f2a8e48f5032b4a98ee781a15fa87a157cf
e0dda9059d082537cee36be6c5e4fe3b18c880c0

View File

@ -19,8 +19,8 @@ pip_install \
transformers==4.36.2
pip_install coloredlogs packaging
pip_install onnxruntime==1.23.0
pip_install onnxscript==0.5.3
pip_install onnxruntime==1.22.1
pip_install onnxscript==0.4.0
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -341,7 +341,7 @@ onnx==1.18.0
#Pinned versions:
#test that import:
onnxscript==0.5.3
onnxscript==0.4.0
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:

View File

@ -34,14 +34,12 @@ fi
# Patch numba to avoid CUDA-13 crash, see https://github.com/pytorch/pytorch/issues/162878
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
if [ -n "$NUMBA_CUDA_DIR" ]; then
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
pushd "$NUMBA_CUDA_DIR"
patch -p4 <"$NUMBA_PATCH"
popd
fi
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
if [ -n "$NUMBA_CUDA_DIR" ]; then
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
pushd "$NUMBA_CUDA_DIR"
patch -p4 <"$NUMBA_PATCH"
popd
fi
echo "Environment variables:"

View File

@ -37,10 +37,10 @@ IF "%CUDA_PATH_V128%"=="" (
)
IF "%BUILD_VISION%" == "" (
set TORCH_CUDA_ARCH_LIST=7.0;7.5;8.0;8.6;9.0;10.0;12.0
set TORCH_CUDA_ARCH_LIST=6.1;7.0;7.5;8.0;8.6;9.0;10.0;12.0
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
) ELSE (
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
)
set "CUDA_PATH=%CUDA_PATH_V128%"

View File

@ -59,14 +59,13 @@ performance-*,
-performance-enum-size,
readability-container-size-empty,
readability-delete-null-pointer,
readability-duplicate-include,
readability-duplicate-include
readability-misplaced-array-index,
readability-redundant*,
readability-redundant*
readability-simplify-subscript-expr,
readability-string-compare,
-readability-redundant-access-specifiers,
-readability-redundant-control-flow,
-readability-redundant-inline-specifier,
'
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
WarningsAsErrors: '*'

View File

@ -1 +1 @@
0ad9951c416d33c5da4f7a504fb162cbe62386f5
78a47f87ce259a48f0391fa9ae15add05ea7432b

View File

@ -1 +1 @@
2a9138a26ee257fef05310ad3fecf7c55fe80d73
0fc62aa26a30ed7ca419d285f285cb5ba02c4394

View File

@ -202,7 +202,7 @@ ARG max_jobs=16
ENV MAX_JOBS=${max_jobs}
ARG nvcc_threads=4
ENV NVCC_THREADS=$nvcc_threads
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
ARG USE_SCCACHE
@ -297,28 +297,16 @@ RUN echo "[INFO] Listing current directory before torch install step:" && \
echo "[INFO] Showing torch_build_versions.txt content:" && \
cat torch_build_versions.txt
# Install build and runtime dependencies, this is needed for flashinfer install
COPY requirements/build.txt requirements/build.txt
COPY use_existing_torch.py use_existing_torch.py
RUN python3 use_existing_torch.py
RUN cat requirements/build.txt
# Install uv for faster pip installs if not existed
RUN --mount=type=cache,target=/root/.cache/uv \
if ! python3 -m uv --version > /dev/null 2>&1; then \
python3 -m pip install uv==0.8.4; \
fi
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/build.txt
# Default mount file as placeholder, this just avoid the mount error
ARG TORCH_WHEELS_PATH="./requirements"
# Install torch, torchaudio and torchvision
@ -344,11 +332,13 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Install xformers wheel from previous stage
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system /wheels/xformers/*.whl --verbose
# Build flashinfer from source.
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
# install package for build flashinfer
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
RUN pip install build==1.3.0
RUN pip freeze | grep -E 'setuptools|packaging|build'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}

View File

@ -1,14 +1,9 @@
import glob
import os
requires_files = glob.glob("requirements/*.txt")
requires_files += ["pyproject.toml"]
for file in requires_files:
if not os.path.exists(file):
print(f"!!! skipping missing {file}")
continue
print(f">>> cleaning {file}")
with open(file) as f:
lines = f.readlines()

View File

@ -40,15 +40,6 @@ jobs:
# Use gh CLI to get changed files in the PR with explicit repo
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
# See https://github.com/pytorch/pytorch/pull/134215#issuecomment-2332128790
PYI_FILES_TO_ADD=""
for file in ${CHANGED_FILES}; do
if [[ "${file}" == *".pyi.in" ]]; then
PYI_FILES_TO_ADD="${PYI_FILES_TO_ADD} ${file//.in/}"
fi
done
CHANGED_FILES="${CHANGED_FILES}${PYI_FILES_TO_ADD}"
if [ -z "$CHANGED_FILES" ]; then
echo "No changed files found, setting to '*'"
CHANGED_FILES="*"

View File

@ -106,16 +106,6 @@ jobs:
{ config: "dynamic_aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_inductor_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_inductor_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "dynamic_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "aot_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "aot_inductor_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "aot_inductor_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "aot_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "aot_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit

View File

@ -18,7 +18,6 @@ permissions:
contents: read
jobs:
# H100 A100 runners
opmicrobenchmark-build:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build
@ -45,56 +44,3 @@ jobs:
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
secrets: inherit
# B200 runner
opmicrobenchmark-build-b200:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build-b200
uses: ./.github/workflows/_linux-build.yml
with:
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
]}
secrets: inherit
opmicrobenchmark-test-b200:
name: opmicrobenchmark-test-b200
uses: ./.github/workflows/_linux-test.yml
needs: opmicrobenchmark-build-b200
with:
timeout-minutes: 500
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit
# ROCM MI300 runner
opmicrobenchmark-build-rocm:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build-rocm
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-rocm-py3_10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit
opmicrobenchmark-test-rocm:
name: opmicrobenchmark-test-rocm
uses: ./.github/workflows/_rocm-test.yml
needs: opmicrobenchmark-build-rocm
with:
timeout-minutes: 500
build-environment: linux-jammy-rocm-py3_10
docker-image: ${{ needs.opmicrobenchmark-build-rocm.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build-rocm.outputs.test-matrix }}
secrets: inherit

View File

@ -213,9 +213,9 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
]}
secrets: inherit

View File

@ -127,6 +127,8 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# More memory is needed to build with asan
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan

View File

@ -140,6 +140,8 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# More memory is needed to build with asan
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan

View File

@ -160,10 +160,9 @@ jobs:
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
]}
secrets: inherit
@ -190,6 +189,41 @@ jobs:
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
secrets: inherit
linux-jammy-rocm-py3_10-build:
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "distributed", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.4" },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
secrets: inherit
inductor-build:
name: inductor-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -42,7 +42,7 @@ jobs:
build-external-packages: "vllm"
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm
cuda-arch-list: '8.0 8.9 9.0'
cuda-arch-list: '8.0;8.9;9.0'
runner: linux.24xlarge.memory
test-matrix: |
{ include: [

View File

@ -18,7 +18,6 @@ exclude_patterns = [
'torch/_inductor/autoheuristic/artifacts/**',
'scripts/**',
'test/generated_type_hints_smoketest.py',
'test/test_torchfuzz_repros.py',
# CPython tests
'test/dynamo/cpython/**',
# Tests from the NumPy test suite
@ -28,7 +27,6 @@ exclude_patterns = [
'torch/lib/**',
'venv/**',
'**/*.pyi',
"tools/experimental/dynamic_shapes/torchfuzz/**",
'tools/test/test_selective_build.py',
]
command = [
@ -1573,7 +1571,6 @@ exclude_patterns = [
'torch/_inductor/fx_passes/serialized_patterns/**',
'torch/_inductor/autoheuristic/artifacts/**',
'test/dynamo/cpython/**',
'test/test_torchfuzz_repros.py',
'scripts/**',
'third_party/**',
'fb/**',

View File

@ -181,15 +181,15 @@ caffe2/utils/hip @jeffdaily @jithunnair-amd
/torch/csrc/jit/python/init.cpp @mikaylagawarecki
# CUDA and CUDA math libraries
aten/src/ATen/cuda/ @eqy @syed-ahmed @Aidyn-A
aten/src/ATen/cudnn/ @eqy @syed-ahmed @Aidyn-A
aten/src/ATen/native/cuda/ @eqy @syed-ahmed @Aidyn-A
aten/src/ATen/native/cudnn/ @eqy @syed-ahmed @Aidyn-A
c10/cuda @eqy @syed-ahmed @Aidyn-A
torch/cuda/ @eqy @syed-ahmed @Aidyn-A
torch/csrc/cuda/ @eqy @syed-ahmed @Aidyn-A
torch/backends/cuda/ @eqy @syed-ahmed @Aidyn-A
torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
aten/src/ATen/cuda/ @eqy @syed-ahmed
aten/src/ATen/cudnn/ @eqy @syed-ahmed
aten/src/ATen/native/cuda/ @eqy @syed-ahmed
aten/src/ATen/native/cudnn/ @eqy @syed-ahmed
c10/cuda @eqy @syed-ahmed
torch/cuda/ @eqy @syed-ahmed
torch/csrc/cuda/ @eqy @syed-ahmed
torch/backends/cuda/ @eqy @syed-ahmed
torch/backends/cudnn/ @eqy @syed-ahmed
# PyTree utilities
/torch/utils/_pytree.py @XuehaiPan

View File

@ -50,10 +50,11 @@ RUN git submodule update --init --recursive
FROM conda as conda-installs
ARG PYTHON_VERSION=3.11
ARG CUDA_PATH=cu121
ARG CUDA_CHANNEL=nvidia
ARG INSTALL_CHANNEL=whl/nightly
# Automatically set by buildx
# pinning version of conda here see: https://github.com/pytorch/pytorch/issues/164574
RUN /opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -y python=${PYTHON_VERSION} conda=25.7.0
RUN /opt/conda/bin/conda update -y -n base -c defaults conda
RUN /opt/conda/bin/conda install -y python=${PYTHON_VERSION}
ARG TARGETPLATFORM

View File

@ -3,7 +3,6 @@
<!-- toc -->
- [Release Compatibility Matrix](#release-compatibility-matrix)
- [PyTorch CUDA Support Matrix](#pytorch-cuda-support-matrix)
- [Release Cadence](#release-cadence)
- [General Overview](#general-overview)
- [Frequently Asked Questions](#frequently-asked-questions)
@ -64,22 +63,6 @@ Following is the Release Compatibility Matrix for PyTorch releases:
| 1.13 | >=3.7, <=3.10 | C++14 | CUDA 11.6, CUDNN 8.3.2.44 | CUDA 11.7, CUDNN 8.5.0.96 | ROCm 5.2 |
| 1.12 | >=3.7, <=3.10 | C++14 | CUDA 11.3, CUDNN 8.3.2.44 | CUDA 11.6, CUDNN 8.3.2.44 | ROCm 5.0 |
### PyTorch CUDA Support Matrix
For Release 2.9 PyTorch Supports following CUDA Architectures:
| CUDA | architectures supported for Linux x86 and Windows builds | notes |
| --- | --- | --- |
| 12.6.3 | Maxwell(5.0), Pascal(6.0), Volta(7.0), Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0) | |
| 12.8.1 | Volta(7.0), Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0), Blackwell(10.0, 12.0) | |
| 13.0.0 | Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0), Blackwell(10.0, 12.0+PTX) | +PTX available on linux builds only |
| CUDA | architectures supported for Linux aarch64 builds |
| --- | --- |
| 12.6.3 | Ampere(8.0), Hopper(9.0) |
| 12.8.1 | Ampere(8.0), Hopper(9.0), Blackwell(10.0, 12.0) |
| 13.0.0 | Ampere(8.0), Hopper(9.0), Blackwell(10.0, 11.0, 12.0+PTX) |
## Release Cadence
Following is the release cadence. All future dates below are tentative. For latest updates on the release schedule, please follow [dev discuss](https://dev-discuss.pytorch.org/c/release-announcements/27). Please note: Patch Releases are optional.

View File

@ -605,11 +605,6 @@ if(UNIX)
if(HAVE_MALLOC_USABLE_SIZE)
add_definitions(-DHAVE_MALLOC_USABLE_SIZE=1)
endif(HAVE_MALLOC_USABLE_SIZE)
set(CMAKE_EXTRA_INCLUDE_FILES "fcntl.h")
CHECK_FUNCTION_EXISTS(posix_fallocate HAVE_POSIX_FALLOCATE)
if(HAVE_POSIX_FALLOCATE)
add_definitions(-DHAVE_POSIX_FALLOCATE=1)
endif(HAVE_POSIX_FALLOCATE)
endif(UNIX)
ADD_DEFINITIONS(-DUSE_EXTERNAL_MZCRC)

View File

@ -40,6 +40,41 @@ namespace {
->conv
->rnn
*/
const std::map<std::string, std::vector<std::string>> _fp32_precisions = {
{"generic", {{"ieee", "tf32", "bf16", "none"}}},
{"mkldnn", {{"ieee", "tf32", "bf16", "none"}}},
{"cuda", {{"ieee", "tf32", "none"}}}};
// Check whether the backend and op are legal
void check_fp32_prec_backend_and_op(
const std::string& backend,
const std::string& op) {
static std::vector<std::string> backends = {"generic", "mkldnn", "cuda"};
static std::vector<std::string> operators = {"conv", "matmul", "rnn", "all"};
TORCH_CHECK(
std::find(backends.begin(), backends.end(), backend) != backends.end(),
"Invalid backend: ",
backend);
TORCH_CHECK(
std::find(operators.begin(), operators.end(), op) != operators.end(),
"Invalid operator: ",
op);
if (backend == "generic") {
TORCH_CHECK(op == "all", "Invalid operation for generic backend: ", op);
}
}
// Return whether the precision is supported by backends
bool validate_fp32_prec(
const std::string& backend,
const std::string& precision) {
auto iterp = _fp32_precisions.find(backend);
TORCH_CHECK(iterp != _fp32_precisions.end());
auto precisions = iterp->second;
bool valid = std::find(precisions.begin(), precisions.end(), precision) !=
precisions.end();
return valid;
}
C10_ALWAYS_INLINE void warn_deprecated_fp32_precision_api(){
TORCH_WARN_ONCE(
@ -51,54 +86,6 @@ namespace {
}
} // namespace
Float32Backend str2backend(const std::string& name) {
if (name == "generic")
return Float32Backend::GENERIC;
else if (name == "cuda")
return Float32Backend::CUDA;
else if (name == "mkldnn")
return Float32Backend::MKLDNN;
TORCH_CHECK(false, "Unknown backend: ", name);
}
Float32Op str2op(const std::string& name) {
if (name == "all")
return Float32Op::ALL;
else if (name == "conv")
return Float32Op::CONV;
else if (name == "rnn")
return Float32Op::RNN;
else if (name == "matmul")
return Float32Op::MATMUL;
TORCH_CHECK(false, "Unknown op: ", name);
}
Float32Precision str2precision(const std::string& name) {
if (name == "none")
return Float32Precision::NONE;
else if (name == "ieee")
return Float32Precision::IEEE;
else if (name == "tf32")
return Float32Precision::TF32;
else if (name == "bf16")
return Float32Precision::BF16;
TORCH_CHECK(false, "Unknown precision: ", name);
}
std::string precision2str(Float32Precision prec) {
switch (prec) {
case Float32Precision::NONE:
return "none";
case Float32Precision::IEEE:
return "ieee";
case Float32Precision::TF32:
return "tf32";
case Float32Precision::BF16:
return "bf16";
}
TORCH_CHECK(false, "Invalid enum Float32Precision(", static_cast<int>(prec), ")");
}
Context::Context() = default;
// TODO: This could be bad juju if someone calls globalContext() in the
@ -192,10 +179,10 @@ void Context::setUserEnabledNNPACK(bool e) {
enabled_nnpack = e;
}
bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
if (!op.has_value()) {
bool allow_tf32_rnn = float32Precision(Float32Backend::CUDA, Float32Op::RNN) == Float32Precision::TF32;
bool allow_tf32_conv = float32Precision(Float32Backend::CUDA, Float32Op::CONV) == Float32Precision::TF32;
bool Context::allowTF32CuDNN(const std::string& op) const {
if (op.empty()){
bool allow_tf32_rnn = float32Precision("cuda", "rnn") == "tf32";
bool allow_tf32_conv = float32Precision("cuda", "conv") == "tf32";
TORCH_CHECK(
allow_tf32_rnn == allow_tf32_conv && allow_tf32_rnn == allow_tf32_cudnn,
"PyTorch is checking whether allow_tf32 is enabled for cuDNN without a specific operator name,",
@ -204,15 +191,15 @@ bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
"We suggest only using the new API to set the TF32 flag(s). See also: ",
"https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices");
} else {
return float32Precision(Float32Backend::CUDA, op.value()) == Float32Precision::TF32;
return float32Precision("cuda", op) == "tf32";
}
warn_deprecated_fp32_precision_api();
return allow_tf32_cudnn;
}
void Context::setAllowTF32CuDNN(bool b) {
setFloat32Precision(Float32Backend::CUDA, Float32Op::RNN, b ? Float32Precision::TF32 : Float32Precision::NONE);
setFloat32Precision(Float32Backend::CUDA, Float32Op::CONV, b ? Float32Precision::TF32 : Float32Precision::NONE);
setFloat32Precision("cuda", "rnn", b ? "tf32" : "none");
setFloat32Precision("cuda", "conv", b ? "tf32" : "none");
allow_tf32_cudnn = b;
warn_deprecated_fp32_precision_api();
}
@ -292,6 +279,42 @@ bool Context::userEnabledOverrideableSDP() const {
return enabled_overrideable;
}
static constexpr const auto cublas_config_var_name = "CUBLAS_WORKSPACE_CONFIG";
static constexpr const std::array<const char*, 2> cublas_deterministic_configs = {":4096:8", ":16:8"};
bool Context::checkCuBLASConfigDeterministic() {
// If using CUDA 10.2 or greater, need to make sure CuBLAS workspace config
// is set to deterministic setting
if (hasCUDART()) {
const auto workspace_config = c10::utils::get_env(cublas_config_var_name);
return (workspace_config == cublas_deterministic_configs[0] || workspace_config == cublas_deterministic_configs[1]);
}
return true;
}
void Context::alertCuBLASConfigNotDeterministic() const {
static const bool cublas_config_deterministic = checkCuBLASConfigDeterministic();
if (C10_LIKELY(!deterministicAlgorithms() || cublas_config_deterministic)) {
return;
}
auto msg = c10::str(
"Deterministic behavior was enabled with either `torch.use_deterministic_algorithms(True)` or ",
"`at::Context::setDeterministicAlgorithms(true)`, but this operation is not deterministic because ",
"it uses CuBLAS and you have CUDA >= 10.2. To enable deterministic behavior in this ",
"case, you must set an environment variable before running your PyTorch application: ",
cublas_config_var_name, "=", cublas_deterministic_configs[0], " or ",
cublas_config_var_name, "=", cublas_deterministic_configs[1], ". For more information, go to ",
"https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility"
);
if (deterministicAlgorithmsWarnOnly()) {
TORCH_WARN(msg);
} else {
TORCH_CHECK(false, msg);
}
}
bool Context::benchmarkCuDNN() const {
return benchmark_cudnn;
}
@ -318,7 +341,7 @@ void Context::setImmediateMiopen(bool b) {
bool Context::allowTF32CuBLAS() const {
bool legacy_allow_tf32 = float32_matmul_precision != at::Float32MatmulPrecision::HIGHEST;
bool allow_tf32_new = float32Precision(Float32Backend::CUDA, Float32Op::MATMUL) == Float32Precision::TF32;
bool allow_tf32_new = float32Precision("cuda", "matmul") == "tf32";
TORCH_CHECK(
legacy_allow_tf32 == allow_tf32_new,
"PyTorch is checking whether allow_tf32_new is enabled for cuBlas matmul,",
@ -331,17 +354,17 @@ bool Context::allowTF32CuBLAS() const {
void Context::setAllowTF32CuBLAS(bool b) {
float32_matmul_precision = b ? at::Float32MatmulPrecision::HIGH : at::Float32MatmulPrecision::HIGHEST;
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, b ? Float32Precision::TF32 : Float32Precision::IEEE);
setFloat32Precision("cuda", "matmul", b ? "tf32" : "ieee");
}
Float32MatmulPrecision Context::float32MatmulPrecision() const {
bool invalid = float32Precision(Float32Backend::CUDA, Float32Op::MATMUL) == Float32Precision::TF32 &&
bool invalid = float32Precision("cuda", "matmul") == "tf32" &&
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST;
invalid = invalid ||
(float32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL) == Float32Precision::BF16 &&
(float32Precision("mkldnn", "matmul") == "bf16" &&
float32_matmul_precision != at::Float32MatmulPrecision::MEDIUM);
invalid = invalid ||
(float32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL) == Float32Precision::TF32 &&
(float32Precision("mkldnn", "matmul") == "tf32" &&
float32_matmul_precision != at::Float32MatmulPrecision::HIGH);
TORCH_CHECK(
!invalid,
@ -353,26 +376,15 @@ Float32MatmulPrecision Context::float32MatmulPrecision() const {
return float32_matmul_precision;
}
Float32Precision Context::float32Precision(Float32Backend backend, Float32Op op) const {
std::pair<Float32Backend, Float32Op> key{backend, op};
auto it = fp32_precision.find(key);
TORCH_CHECK(it != fp32_precision.end(), "Invalid (backend, op) pair: (", backend, ", ", op, ")");
Float32Precision precision = it->second;
if (precision == Float32Precision::NONE) {
key.second = Float32Op::ALL;
precision = fp32_precision.find(key)->second;
}
if (precision == Float32Precision::NONE) {
key.first = Float32Backend::GENERIC;
precision = fp32_precision.find(key)->second;
}
// "cuda" does not support "bf16"
if (backend == Float32Backend::CUDA && precision == Float32Precision::BF16) {
return Float32Precision::NONE;
}
return precision;
std::string Context::float32Precision(const std::string& backend, const std::string& op) const {
check_fp32_prec_backend_and_op(backend, op);
auto precision = fp32_precision.find(backend)->second.find(op)->second;
if (precision == "none")
precision = fp32_precision.find(backend)->second.find("all")->second;
if (precision == "none")
precision = fp32_precision.find("generic")->second.find("all")->second;
bool valid_prec = validate_fp32_prec(backend, precision);
return valid_prec ? precision : "none";
}
void Context::setFloat32MatmulPrecision(const std::string &s) {
@ -381,18 +393,18 @@ void Context::setFloat32MatmulPrecision(const std::string &s) {
// TODO: consider if CuDNN field needs to also be set for potential future CuDNN ops like multi-headed attention
if (s_ == "highest") {
float32_matmul_precision = at::Float32MatmulPrecision::HIGHEST;
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::IEEE);
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::IEEE);
setFloat32Precision("cuda", "matmul", "ieee");
setFloat32Precision("mkldnn", "matmul", "ieee");
return true;
} else if (s_ == "high") {
float32_matmul_precision = at::Float32MatmulPrecision::HIGH;
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::TF32);
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::TF32);
setFloat32Precision("cuda", "matmul", "tf32");
setFloat32Precision("mkldnn", "matmul", "tf32");
return true;
} else if (s_ == "medium") {
float32_matmul_precision = at::Float32MatmulPrecision::MEDIUM;
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::TF32);
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::BF16);
setFloat32Precision("cuda", "matmul", "tf32");
setFloat32Precision("mkldnn", "matmul", "bf16");
return true;
}
return false;
@ -406,16 +418,25 @@ void Context::setFloat32MatmulPrecision(const std::string &s) {
"setFloat32MatmulPrecision call has no effect.");
}
void Context::setFloat32Precision(Float32Backend backend, Float32Op op, Float32Precision p) {
auto it = fp32_precision.find(std::make_pair(backend, op));
TORCH_CHECK(
it != fp32_precision.end(),
"Invalid (backend, op) pair: (", backend, ", ", op, ")");
TORCH_CHECK(
!(backend == Float32Backend::CUDA && p == Float32Precision::BF16),
"backend 'cuda' does not support precision 'bf16'");
it->second = p;
void Context::setFloat32Precision(const std::string& backend, const std::string& op, const std::string& p) {
check_fp32_prec_backend_and_op(backend, op);
if (validate_fp32_prec(backend, p)) {
fp32_precision[backend][op] = p;
} else {
std::string msg;
auto iterp = _fp32_precisions.find(backend);
TORCH_CHECK(iterp != _fp32_precisions.end());
for (const auto& p : iterp->second) {
msg += p;
msg += " ";
}
TORCH_WARN(
"you have set wrong precision for backend:",
backend,
" setFloat32Precision call has no effect.",
"Please choose precision from: ",
msg);
}
}
at::LinalgBackend Context::linalgPreferredBackend() const {

View File

@ -25,27 +25,17 @@
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/util/env.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
#include <cstdint>
#include <map>
#include <mutex>
#include <unordered_map>
namespace at {
class Tensor;
enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM };
enum class TORCH_API Float32Backend { GENERIC, CUDA, MKLDNN };
enum class TORCH_API Float32Op { ALL, CONV, RNN, MATMUL };
enum class TORCH_API Float32Precision { NONE, IEEE, TF32, BF16 };
TORCH_API Float32Backend str2backend(const std::string& name);
TORCH_API Float32Op str2op(const std::string& name);
TORCH_API Float32Precision str2precision(const std::string& name);
TORCH_API std::string precision2str(Float32Precision prec);
class TORCH_API Context {
public:
@ -320,7 +310,13 @@ class TORCH_API Context {
//
// * Throw an error when `Context::deterministicAlgorithms()` is true. Most
// of the time, this should be accomplished by calling
// `at::globalContext().alertNotDeterminstic().
// `at::globalContext().alertNotDeterminstic()`. However, if the
// nondeterministic behavior is caused by the CuBLAS workspace
// configuration in CUDA >= 10.2,
// `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
// called instead (in this case, a comment explaining why the operation is
// nondeterministic is not necessary). See below for details on these
// methods.
//
// * Have an entry in the list of nondeterministic PyTorch operations in the
// docstring of `use_deterministic_algorithms()` in torch/__init__.py
@ -344,19 +340,27 @@ class TORCH_API Context {
// Throws an error if `Context::deterministicAlgorithms()` is true
static void alertNotDeterministic(std::string_view const& caller);
// Throws an error if `Context::deterministicAlgorithms()` is true, CUDA
// >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or
// ":4096:8". For more details:
// https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
void alertCuBLASConfigNotDeterministic() const;
void setFloat32MatmulPrecision(const std::string& s);
void setFloat32Precision(
Float32Backend backend,
Float32Op op,
Float32Precision p);
bool allowTF32CuDNN(std::optional<Float32Op> op = std::nullopt) const;
const std::string& backend,
const std::string& op,
const std::string& s);
bool allowTF32CuDNN(const std::string& op = std::string()) const;
void setAllowTF32CuDNN(bool);
bool allowTF32OneDNN() const;
void setAllowTF32OneDNN(bool);
bool allowTF32CuBLAS() const;
void setAllowTF32CuBLAS(bool);
Float32MatmulPrecision float32MatmulPrecision() const;
Float32Precision float32Precision(Float32Backend backend, Float32Op op) const;
std::string float32Precision(
const std::string& backend,
const std::string& op) const;
bool allowFP16ReductionCuBLAS() const;
void setAllowFP16ReductionCuBLAS(bool);
bool allowBF16ReductionCuBLAS() const;
@ -425,6 +429,7 @@ class TORCH_API Context {
}
private:
static bool checkCuBLASConfigDeterministic();
std::array<c10::once_flag, at::COMPILE_TIME_MAX_DEVICE_TYPES> init_;
bool enabled_cudnn = true;
bool deterministic_cudnn = false;
@ -483,20 +488,21 @@ class TORCH_API Context {
bool enable_sparse_tensor_invariant_checks = false;
bool allow_fp16_reduction_cpu = false;
using Key = std::pair<Float32Backend, Float32Op>;
std::unordered_map<Key, Float32Precision, c10::hash<Key>> fp32_precision = {
{{Float32Backend::GENERIC, Float32Op::ALL}, Float32Precision::NONE},
{{Float32Backend::MKLDNN, Float32Op::ALL}, Float32Precision::NONE},
{{Float32Backend::MKLDNN, Float32Op::CONV}, Float32Precision::NONE},
{{Float32Backend::MKLDNN, Float32Op::RNN}, Float32Precision::NONE},
{{Float32Backend::MKLDNN, Float32Op::MATMUL}, Float32Precision::NONE},
{{Float32Backend::CUDA, Float32Op::ALL}, Float32Precision::NONE},
{{Float32Backend::CUDA, Float32Op::CONV}, Float32Precision::TF32},
{{Float32Backend::CUDA, Float32Op::RNN}, Float32Precision::TF32},
{{Float32Backend::CUDA, Float32Op::MATMUL},
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST
? Float32Precision::NONE
: Float32Precision::TF32},
std::map<std::string, std::map<std::string, std::string>> fp32_precision = {
{"generic", {{"all", "none"}}},
{"mkldnn",
{{"matmul", "none"},
{"conv", "none"},
{"rnn", "none"},
{"all", "none"}}},
{"cuda",
{{"matmul",
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST
? "none"
: "tf32"},
{"conv", "tf32"},
{"rnn", "tf32"},
{"all", "none"}}},
};
Allocator* prev_allocator_ptr_{nullptr};
@ -678,4 +684,5 @@ struct TORCH_API ROCmBackwardPassGuard {
~ROCmBackwardPassGuard();
static bool is_backward_pass();
};
} // namespace at

View File

@ -292,28 +292,6 @@ MapAllocator::MapAllocator(WithFd, std::string_view filename, int fd, int flags,
if (ftruncate(fd, static_cast<off_t>(size)) == -1) {
TORCH_CHECK(false, "unable to resize file <", filename_, "> to the right size: ", c10::utils::str_error(errno), " (", errno, ")");
}
#ifdef HAVE_POSIX_FALLOCATE
if (flags_ & ALLOCATOR_MAPPED_SHAREDMEM) {
for (;;) {
if (posix_fallocate(fd, 0, static_cast<off_t>(size)) == 0) {
break;
}
if (errno == EINTR) {
continue;
}
if (errno == EINVAL || errno == EOPNOTSUPP) {
// the underlying filesystem does not support the operation
break;
}
TORCH_CHECK(false, "unable to allocate shared memory(shm) for file <", filename_, ">: ", c10::utils::str_error(errno), " (", errno, ")");
}
}
#endif
if (fstat(fd, &file_stat) == -1 || file_stat.st_size < static_cast<int64_t>(size)) {
#ifndef STRIP_ERROR_MESSAGES
int last_err = errno;

View File

@ -179,7 +179,7 @@ void propagate_names_except(const Tensor& result, const Tensor& src, IntArrayRef
return;
}
const auto src_names = src.names();
const auto result_dim = result.dim();
const auto result_dim = static_cast<int64_t>(result.dim());
const auto src_dim = static_cast<int64_t>(src_names.size());
const auto excluded_dim = static_cast<int64_t>(excluded_idxs.size());
TORCH_INTERNAL_ASSERT(src_dim - excluded_dim == result_dim);

View File

@ -214,7 +214,7 @@ inline Tensor applySlice(
"step must be greater than zero");
// See NOTE [nested tensor size for indexing]
if (self_sizes.has_value() && !self_sizes.value().empty()) {
if (self_sizes.has_value() && self_sizes.value().size() > 0) {
// Skip this optimization if we are tracing, as the trace may be polymorphic
// over the shape of the `self` tensor, and we still want to record
// the slice.

View File

@ -273,11 +273,11 @@ void checkLayout(CheckedFrom c, at::ArrayRef<Tensor> tensors, at::Layout layout)
}
void * maybe_data_ptr(const Tensor& tensor) {
return tensor.defined() ? tensor.data_ptr() : nullptr;
return tensor.defined() ? (void *)tensor.data_ptr() : nullptr;
}
void * maybe_data_ptr(const TensorArg& tensor) {
return tensor->defined() ? tensor->data_ptr() : nullptr;
return tensor->defined() ? (void *)tensor->data_ptr() : nullptr;
}
void check_dim_size(

View File

@ -50,57 +50,19 @@ namespace {
constexpr size_t MAX_SIZE_INDEX = 64;
}
// A large reserved pinned memory segment that is created in advance which is used
// to allocate small pinned memory requests to avoid calling into expensive APIs.
// We never free this memory and move up the pointer as we allocate new blocks
// and when blocks are freed, they are cached in the free lists.
struct PinnedReserveSegment {
PinnedReserveSegment(void *start, size_t size) : start_(start), size_(size),
current_ptr_(start_), initialized_(true) {}
PinnedReserveSegment() : start_(nullptr), size_(0), current_ptr_(nullptr), initialized_(false) {}
bool initialized() {
return initialized_;
}
void* allocate(size_t bytes) {
std::lock_guard<std::mutex> guard(mutex_);
// Round up the requested size to 4KB boundary for all including the small ones.
size_t rounded_bytes = (bytes + 4096 - 1) & ~(4096 - 1);
if (((uint8_t*)current_ptr_ + rounded_bytes) > ((uint8_t*)start_ + size_)) {
return nullptr;
}
void* ptr = current_ptr_;
current_ptr_ = (uint8_t*)current_ptr_ + rounded_bytes;
return ptr;
}
bool owns(void* ptr) {
return ptr >= start_ && ptr < (uint8_t*)start_ + size_;
}
std::mutex mutex_;
void* start_;
size_t size_;
void* current_ptr_;
bool initialized_;
};
// Struct containing memory allocator summary statistics for host.
struct TORCH_API HostStats {
// COUNT: total allocations (active)
Stat active_requests;
// SUM: bytes allocated/reserved by this memory alocator. (active)
Stat active_bytes;
// COUNT: total allocations (active + free)
Stat allocations;
// SUM: bytes allocated/reserved by this memory alocator. This accounts
// for both free and in-use blocks.
// COUNT: allocations requested by client code. Note that active
// count can be extracted by looking at current allocations
Stat allocation;
// COUNT: number of allocated segments from host memory allocation.
Stat segment;
// SUM: bytes allocated by this memory alocator. Note that active bytes
// can be extracted by looking at current bytes allocated
Stat allocated_bytes;
// SUM: bytes reserved by this memory allocator (both free and used)
Stat reserved_bytes;
// SUM: time spent in cudaHostAlloc/cudaHostRegister in microseconds
DurationStat host_alloc_time;
@ -115,7 +77,7 @@ struct TORCH_API HostStats {
// COUNT: number of times cudaHostFree/cudaHostUnregister was called.
int64_t num_host_free = 0; // This is derived from segment or timing
// Count of cudaHostAlloc/cudaHostRegister per bucket
// Count of cudaHostFree/cudaHostUnregister per bucket
std::vector<int64_t> bucket_allocation = std::vector<int64_t>(MAX_SIZE_INDEX);
};
@ -124,22 +86,17 @@ struct TORCH_API HostStats {
// avoid locking the allocator while collecting stats.
struct alignas(64) HostStatsStaged {
std::mutex timing_mutex_;
// COUNT: total allocations (active + free)
// COUNT: allocations requested by client code resulting in a new segment/block allocation
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
Stat allocation;
// SUM: bytes within active memory blocks, including blocks that are
// currently in the free list.
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
Stat allocations;
// SUM: bytes allocated/reserved by this memory alocator. This accounts
// for both free and in-use blocks.
Stat allocated_bytes;
// COUNT: number of allocations per bucket (active)
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
std::vector<Stat> active_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
// SUM: bytes of allocation per bucket (active)
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
std::vector<Stat> active_bytes_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
// COUNT: number of allocations per bucket (active + free)
// COUNT: number of allocations per bucket
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
std::vector<Stat> allocation_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
// SUM: bytes of allocation per bucket (active + free)
// SUM: bytes of allocation per bucket
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
std::vector<Stat> allocated_bytes_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
// SUM: time spent in cudaHostAlloc/cudaHostRegister
@ -243,21 +200,7 @@ struct CachingHostAllocatorImpl {
// background.
if (!pinned_use_background_threads()) {
process_events();
}
// Round up the allocation to the nearest power of two to improve reuse.
// These power of two sizes are also used to index into the free list.
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
// First, try to allocate from the free list
auto* block = get_free_block(roundSize);
if (block) {
return {block->ptr_, reinterpret_cast<void*>(block)};
}
// Check in the recently freed blocks with pending events to see if we
// can reuse them. Call get_free_block again after processing events
if (pinned_use_background_threads()) {
} else {
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
getBackgroundThreadPool()->run([&]() {
@ -270,6 +213,16 @@ struct CachingHostAllocatorImpl {
}();
}
// Round up the allocation to the nearest power of two to improve reuse.
// These power of two sizes are also used to index into the free list.
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
// First, try to allocate from the free list
auto* block = get_free_block(roundSize);
if (block) {
return {block->ptr_, reinterpret_cast<void*>(block)};
}
// Slow path: if we can't allocate from the cached free list, we need
// to create a new block.
void* ptr = nullptr;
@ -380,7 +333,7 @@ struct CachingHostAllocatorImpl {
ptr_to_block_.erase(block->ptr_);
auto index = size_index(block->size_);
free_block(block);
stats_.allocations.decrease(1);
stats_.allocation.decrease(1);
stats_.allocated_bytes.decrease(block->size_);
stats_.allocation_bucket_stats[index].decrease(1);
stats_.allocated_bytes_bucket_stats[index].decrease(block->size_);
@ -430,16 +383,16 @@ struct CachingHostAllocatorImpl {
// per bucket (we pick index 0 arbitrarily). These are also all the host
// allocations, not taking into account caching and free lists.
if (i == 0) {
stats.allocations = stats_.allocations;
stats.allocated_bytes = stats_.allocated_bytes;
stats.num_host_alloc = stats.allocations.allocated;
stats.num_host_free = stats.allocations.freed;
stats.segment = stats_.allocation;
stats.reserved_bytes = stats_.allocated_bytes;
stats.num_host_alloc = stats.segment.allocated;
stats.num_host_free = stats.segment.freed;
}
// Bucket stats need to be merged with the slow-path stats. We do this in
// a best effort manner, since we can't really replay the cached events per bucket.
add_bucket_stats(stats.active_requests, stats_.active_bucket_stats[i]);
add_bucket_stats(stats.active_bytes, stats_.active_bytes_bucket_stats[i]);
add_bucket_stats(stats.allocation, stats_.allocation_bucket_stats[i]);
add_bucket_stats(stats.allocated_bytes, stats_.allocated_bytes_bucket_stats[i]);
stats.bucket_allocation[i] = stats_.allocation_bucket_stats[i].allocated;
}
@ -464,11 +417,9 @@ struct CachingHostAllocatorImpl {
std::lock_guard<std::mutex> gb(blocks_mutex_, std::adopt_lock);
if (i == 0) {
stats_.allocations.reset_accumulated();
stats_.allocation.reset_accumulated();
stats_.allocated_bytes.reset_accumulated();
}
stats_.active_bucket_stats[i].reset_accumulated();
stats_.active_bytes_bucket_stats[i].reset_accumulated();
stats_.allocation_bucket_stats[i].reset_accumulated();
stats_.allocated_bytes_bucket_stats[i].reset_accumulated();
}
@ -491,11 +442,9 @@ struct CachingHostAllocatorImpl {
std::lock_guard<std::mutex> gb(blocks_mutex_, std::adopt_lock);
if (i == 0) {
stats_.allocations.reset_peak();
stats_.allocation.reset_peak();
stats_.allocated_bytes.reset_peak();
}
stats_.active_bucket_stats[i].reset_peak();
stats_.active_bytes_bucket_stats[i].reset_peak();
stats_.allocation_bucket_stats[i].reset_peak();
stats_.allocated_bytes_bucket_stats[i].reset_peak();
}
@ -512,7 +461,7 @@ struct CachingHostAllocatorImpl {
virtual void add_allocated_block(B* block) {
std::lock_guard<std::mutex> g(blocks_mutex_);
blocks_.insert(block);
stats_.allocations.increase(1);
stats_.allocation.increase(1);
stats_.allocated_bytes.increase(block->size_);
ptr_to_block_.insert({block->ptr_, block});
@ -525,8 +474,6 @@ struct CachingHostAllocatorImpl {
std::lock_guard<std::mutex> g(free_list_[index].mutex_);
stats_.allocation_bucket_stats[index].increase(1);
stats_.allocated_bytes_bucket_stats[index].increase(size);
stats_.active_bucket_stats[index].increase(1);
stats_.active_bytes_bucket_stats[index].increase(size);
}
}
@ -537,8 +484,6 @@ struct CachingHostAllocatorImpl {
B* block = free_list_[index].list_.back();
free_list_[index].list_.pop_back();
block->allocated_ = true;
stats_.active_bucket_stats[index].increase(1);
stats_.active_bytes_bucket_stats[index].increase(size);
return block;
}
return nullptr;
@ -632,8 +577,6 @@ struct CachingHostAllocatorImpl {
auto index = size_index(block->size_);
std::lock_guard<std::mutex> g(free_list_[index].mutex_);
free_list_[index].list_.push_back(block);
stats_.active_bucket_stats[index].decrease(1);
stats_.active_bytes_bucket_stats[index].decrease(size);
if (size != -1) {
return;
}

View File

@ -117,7 +117,7 @@ C10_HOST_DEVICE inline T cauchy(T val, T median, T sigma) {
template <>
C10_HOST_DEVICE inline double cauchy(double val, double median, double sigma) {
// https://en.wikipedia.org/wiki/Cauchy_distribution#Cumulative_distribution_function
return median + sigma * at::tan(c10::pi<double> * (val - 0.5));
return median + sigma * at::tan(c10::pi<double> * (val - static_cast<double>(0.5)));
}
/**

View File

@ -2,7 +2,7 @@
namespace c10 {
inline BoxedKernel::BoxedKernel() : boxed_kernel_func_(nullptr) {}
inline BoxedKernel::BoxedKernel() : functor_(), boxed_kernel_func_(nullptr) {}
inline BoxedKernel::BoxedKernel(
std::unique_ptr<OperatorKernel> functor,

View File

@ -20,7 +20,9 @@ make_unique_base(Args&&... args) {
} // namespace detail
inline KernelFunction::KernelFunction()
: unboxed_kernel_func_(nullptr), sym_unboxed_kernel_func_(nullptr) {}
: boxed_kernel_func_(),
unboxed_kernel_func_(nullptr),
sym_unboxed_kernel_func_(nullptr) {}
inline KernelFunction::~KernelFunction() {
if (tokens_) {

View File

@ -76,7 +76,13 @@ void _print_dispatch_trace(const std::string& label, const std::string& op_name,
OpRegistrationListener::~OpRegistrationListener()= default;
Dispatcher::Dispatcher(): backendFallbackKernels_(), listeners_(std::make_unique<detail::RegistrationListenerList>()), guard_(std::make_shared<Guard>())
Dispatcher::Dispatcher()
: operators_()
, operatorLookupTable_()
, backendFallbackKernels_()
, listeners_(std::make_unique<detail::RegistrationListenerList>())
, cond_var_()
, guard_(std::make_shared<Guard>())
{}
Dispatcher::~Dispatcher() {

View File

@ -96,7 +96,7 @@ class TORCH_API Dispatcher final {
friend class TypedOperatorHandle;
struct Guard final {
Guard() : alive(true) {}
Guard() : alive(true), mutex() {}
std::atomic<bool> alive;
std::mutex mutex;
};

View File

@ -62,7 +62,17 @@ static const auto& getDispatchTableIndexToKey() {
}
OperatorEntry::OperatorEntry(OperatorName&& operator_name)
: name_(std::move(operator_name)), dispatchTable_(), dispatchKeyExtractor_(DispatchKeyExtractor::makeUninitialized()), is_observed_(ObservedOperators::isObserved(name_))
: name_(std::move(operator_name))
, schema_()
#ifndef C10_MOBILE
, tags_()
#endif
, dispatchTable_()
, dispatchKeyExtractor_(DispatchKeyExtractor::makeUninitialized())
, kernels_()
, cpp_signature_()
, sym_cpp_signature_()
, is_observed_(ObservedOperators::isObserved(name_))
{
// Pick up any backend fallbacks that were registered prior to this
// OperatorEntry being created.

View File

@ -357,7 +357,7 @@ IValue IValue::equals(const IValue& rhs) const {
case Tag::Enum:
return lhs.toEnumHolder()->is(*rhs.toEnumHolder());
case Tag::Uninitialized:
// Uninitialized ivalues show up in no-ops when the compiler can prove a
// Unitialized ivalues show up in no-ops when the compiler can prove a
// value will never be used. Just return false on any equality comparison.
return false;
}

View File

@ -114,7 +114,7 @@ constexpr bool allowlist_contains(std::string_view allowlist, std::string_view i
}
next++;
} else {
if (allowlist.substr(cur) == item) {
if (allowlist.substr(cur).compare(item) == 0) {
return true;
}
break;

View File

@ -73,7 +73,7 @@ c10::FunctionSchema RegisterOperators::inferSchemaFromKernels_(
std::optional<FunctionSchema> inferred_schema = std::nullopt;
for (const auto& kernel : options.kernels) {
if (nullptr != kernel.inferred_function_schema) {
if (nullptr != kernel.inferred_function_schema.get()) {
if (!inferred_schema.has_value()) {
inferred_schema = *kernel.inferred_function_schema;
break;

View File

@ -411,6 +411,7 @@ public:
Options()
: schemaOrName_(std::nullopt)
, kernels()
, aliasAnalysisKind_(std::nullopt)
{}
@ -419,6 +420,7 @@ public:
struct KernelRegistrationConfig final {
KernelRegistrationConfig()
: dispatch_key(std::nullopt)
, func()
, cpp_signature(std::nullopt)
, inferred_function_schema(nullptr)
{}

View File

@ -905,7 +905,7 @@ class Vectorized8 : public Vectorizedi {
// Because loadu(const void* ptr, T count) requires zero initialization for
// upper 128 bits. However, by using _mm256_castsi128_si256, the upper 128
// bits of the result are undefined.
// TODO<leslie> We can use _mm256_zextsi128_si256 in the future,
// TODO<leslie> We can use _mm256_zextsi128_si256 in the furture,
// since gcc 9.3 doesn't support it now.
__m128i input_128 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr));
return _mm256_castsi128_si256(input_128);
@ -1844,7 +1844,7 @@ Vectorized<int16_t> inline shift_256_16(
c0 = _mm256_srav_epi32(a0, b0);
c0 = _mm256_shuffle_epi8(c0, ctl_1_0);
// Perform shifting the same way for input array elements with
// Peform shifting the same way for input array elements with
// idx%2==1.
__m256i a1 = _mm256_and_si256(a, keep_1);
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
@ -2180,7 +2180,7 @@ Vectorized<T> inline shift_256_8(
c0 = _mm256_srlv_epi32(a0, b0);
c0 = _mm256_shuffle_epi8(c0, ctl_3_0);
// Perform shifting the same way for input array elements with
// Peform shifting the same way for input array elements with
// idx%4==1.
__m256i a1 = _mm256_shuffle_epi8(a, ctl_1_3);
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
@ -2193,7 +2193,7 @@ Vectorized<T> inline shift_256_8(
c1 = _mm256_srlv_epi32(a1, b1);
c1 = _mm256_shuffle_epi8(c1, ctl_3_1);
// Perform shifting the same way for input array elements with
// Peform shifting the same way for input array elements with
// idx%4==2.
__m256i a2 = _mm256_shuffle_epi8(a, ctl_2_3);
__m256i b2 = _mm256_shuffle_epi8(b, ctl_2_0);
@ -2206,7 +2206,7 @@ Vectorized<T> inline shift_256_8(
c2 = _mm256_srlv_epi32(a2, b2);
c2 = _mm256_shuffle_epi8(c2, ctl_3_2);
// Perform shifting the same way for input array elements with
// Peform shifting the same way for input array elements with
// idx%4==3.
__m256i a3 = _mm256_and_si256(a, keep_3);
__m256i b3 = _mm256_shuffle_epi8(b, ctl_3_0);

View File

@ -1088,7 +1088,7 @@ class Vectorized8 : public Vectorizedi {
// Because loadu(const void* ptr, T count) requires zero initialization for
// upper 384 bits. However, by using _mm512_castsi128_si512, the upper 384
// bits of the result are undefined.
// TODO<leslie> We can use _mm512_zextsi128_si512 in the future,
// TODO<leslie> We can use _mm512_zextsi128_si512 in the furture,
// since gcc 9.3 doesn't support it now.
__m128i input_128 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(ptr));
return _mm512_castsi128_si512(input_128);
@ -2022,7 +2022,7 @@ Vectorized<T> inline shift_512_8(
c0 = _mm512_srlv_epi16(a0, b0);
c0 = _mm512_shuffle_epi8(c0, ctl_1_0);
// Perform shifting the same way for input array elements with
// Peform shifting the same way for input array elements with
// idx%2==1.
__m512i a1 = _mm512_and_si512(a, keep_1);
__m512i b1 = _mm512_shuffle_epi8(b, ctl_1_0);

View File

@ -323,7 +323,7 @@ class CuBlasLtMatmulDescriptor : public CuBlasLtDescriptor<
descriptor_.reset(raw_descriptor);
}
template <typename T>
void setAttribute(cublasLtMatmulDescAttributes_t attr, const T value) {
inline void setAttribute(cublasLtMatmulDescAttributes_t attr, const T value) {
// NOLINTNEXTLINE(bugprone-sizeof-expression)
TORCH_CUDABLAS_CHECK(::cublasLtMatmulDescSetAttribute(descriptor(), attr, &value, sizeof(value)));
}
@ -345,7 +345,7 @@ class CuBlasLtMatrixLayout : public CuBlasLtDescriptor<
descriptor_.reset(raw_descriptor);
}
template <typename T>
void setAttribute(cublasLtMatrixLayoutAttribute_t attr, const T value) {
inline void setAttribute(cublasLtMatrixLayoutAttribute_t attr, const T value) {
TORCH_CUDABLAS_CHECK(::cublasLtMatrixLayoutSetAttribute(descriptor(), attr, &value, sizeof(T)));
}
};
@ -360,7 +360,7 @@ class CuBlasLtMatmulPreference : public CuBlasLtDescriptor<
descriptor_.reset(raw_descriptor);
}
template <typename T>
void setAttribute(cublasLtMatmulPreferenceAttributes_t attr, const T value) {
inline void setAttribute(cublasLtMatmulPreferenceAttributes_t attr, const T value) {
TORCH_CUDABLAS_CHECK(::cublasLtMatmulPreferenceSetAttribute(descriptor(), attr, &value, sizeof(T)));
}
};
@ -395,7 +395,7 @@ static inline bool bgemm_internal_cublaslt(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(D
computeType = CUBLAS_COMPUTE_64F;
scaleType = CUDA_R_64F;
} else if constexpr (std::is_same_v<Dtype, float>) {
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
computeType = CUBLAS_COMPUTE_32F_FAST_TF32;
}
} else if constexpr (std::is_same_v<Dtype, c10::complex<double>>) {
@ -440,6 +440,7 @@ static inline bool bgemm_internal_cublaslt(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(D
static_assert(false && sizeof(Dtype), "at::cuda::blas::bgemm_internal_cublaslt: not implemented");
}
globalContext().alertCuBLASConfigNotDeterministic();
cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -573,6 +574,8 @@ inline void bgemm_internal_cublas(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, C_D
template <>
void bgemm_internal_cublas<double>(CUDABLAS_BGEMM_ARGTYPES(double)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -584,6 +587,8 @@ void bgemm_internal_cublas<double>(CUDABLAS_BGEMM_ARGTYPES(double)) {
template <>
void bgemm_internal_cublas<float>(CUDABLAS_BGEMM_ARGTYPES(float)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -595,6 +600,8 @@ void bgemm_internal_cublas<float>(CUDABLAS_BGEMM_ARGTYPES(float)) {
template <>
void bgemm_internal_cublas<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<double>)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -608,6 +615,8 @@ void bgemm_internal_cublas<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::co
template <>
void bgemm_internal_cublas<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<float>)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -621,6 +630,8 @@ void bgemm_internal_cublas<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::com
template <typename C_Dtype>
inline void bgemm_internal_cublas_half_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::Half, C_Dtype)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -692,6 +703,8 @@ inline void bgemm_internal_cublas_half_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYP
template <typename C_Dtype>
inline void bgemm_internal_cublas_bfloat16_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::BFloat16, C_Dtype)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
BGEMM_CHECK_ARGVALUES(at::BFloat16);
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
@ -1015,6 +1028,8 @@ inline void gemm_internal_cublas(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(Dtype, C_Dty
template <>
void gemm_internal_cublas<double>(CUDABLAS_GEMM_ARGTYPES(double)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -1026,6 +1041,8 @@ void gemm_internal_cublas<double>(CUDABLAS_GEMM_ARGTYPES(double)) {
template <>
void gemm_internal_cublas<float>(CUDABLAS_GEMM_ARGTYPES(float)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -1037,6 +1054,8 @@ void gemm_internal_cublas<float>(CUDABLAS_GEMM_ARGTYPES(float)) {
template <>
void gemm_internal_cublas<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<double>)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -1050,6 +1069,8 @@ void gemm_internal_cublas<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::comp
template <>
void gemm_internal_cublas<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<float>)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -1063,6 +1084,8 @@ void gemm_internal_cublas<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::compl
template <typename C_Dtype>
inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::Half, C_Dtype)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -1171,6 +1194,7 @@ inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(
template <typename C_Dtype>
inline void gemm_internal_cublas_bfloat16_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::BFloat16, C_Dtype)) {
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t opa = _cublasOpFromChar(transa);
cublasOperation_t opb = _cublasOpFromChar(transb);
@ -1559,7 +1583,7 @@ bool gemm_and_bias(
computeType = CUBLAS_COMPUTE_64F;
scaleType = CUDA_R_64F;
} else if constexpr (std::is_same_v<Dtype, float>) {
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
computeType = CUBLAS_COMPUTE_32F_FAST_TF32;
}
} else if constexpr (std::is_same_v<Dtype, at::Half>) {
@ -2384,6 +2408,8 @@ void trsmBatched<c10::complex<double>>(
template <>
void gemv<c10::complex<double>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<double>)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t op = _cublasOpFromChar(trans);
_cublasAdjustLdLevel2(m, n, &lda);
@ -2399,6 +2425,8 @@ void gemv<c10::complex<float>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<float>)) {
// gemv is bw bound, and does not benefit from TF32. But the precision
// loss still happens on TF32. So we disable it here.
NoTF32Guard disable_tf32;
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t op = _cublasOpFromChar(trans);
_cublasAdjustLdLevel2(m, n, &lda);
@ -2411,6 +2439,8 @@ void gemv<c10::complex<float>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<float>)) {
template <>
void gemv<double>(CUDABLAS_GEMV_ARGTYPES(double)) {
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t op = _cublasOpFromChar(trans);
_cublasAdjustLdLevel2(m, n, &lda);
@ -2424,6 +2454,8 @@ void gemv<float>(CUDABLAS_GEMV_ARGTYPES(float)) {
// gemv is bw bound, and does not benefit from TF32. But the precision
// loss still happens on TF32. So we disable it here.
NoTF32Guard disable_tf32;
// See Note [Writing Nondeterministic Operations]
globalContext().alertCuBLASConfigNotDeterministic();
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cublasOperation_t op = _cublasOpFromChar(trans);
_cublasAdjustLdLevel2(m, n, &lda);

View File

@ -109,7 +109,7 @@ void CUDAGeneratorState::increase(uint64_t increment) {
offset_intragraph_ % 4 == 0, "RNG offset must be a multiple of 4.");
// Ensures the increment does not cause overflow.
TORCH_INTERNAL_ASSERT(
offset_intragraph_ <= std::numeric_limits<uint64_t>::max() - increment,
offset_intragraph_ <= std::numeric_limits<uint32_t>::max() - increment,
"Increment causes overflow in the offset value.");
offset_intragraph_ += increment;
} else {
@ -461,7 +461,7 @@ void CUDAGeneratorImpl::unregister_graph(cuda::CUDAGraph* graph) {
*/
PhiloxCudaState CUDAGeneratorImpl::philox_cuda_state(uint64_t increment) {
if (at::cuda::currentStreamCaptureStatus() != at::cuda::CaptureStatus::None) {
uint64_t offset = state_->offset_intragraph_;
uint32_t offset = state_->offset_intragraph_;
state_->increase(increment);
return PhiloxCudaState(
state_->seed_extragraph_.data_ptr<int64_t>(),

View File

@ -96,16 +96,16 @@ struct CUDAGraph;
struct CUDAGeneratorState : public c10::intrusive_ptr_target {
uint64_t seed_;
uint64_t philox_offset_per_thread_;
uint64_t offset_intragraph_;
uint32_t offset_intragraph_;
bool capturing_{};
std::unordered_set<cuda::CUDAGraph*> registered_graphs_;
at::TensorBase seed_extragraph_;
at::TensorBase offset_extragraph_;
at::TensorBase seed_extragraph_{};
at::TensorBase offset_extragraph_{};
CUDAGeneratorState(
uint64_t seed = default_rng_seed_val,
uint64_t philox_offset_per_thread = 0,
uint64_t offset_intragraph = 0)
uint32_t offset_intragraph = 0)
: seed_(seed),
philox_offset_per_thread_(philox_offset_per_thread),
offset_intragraph_(offset_intragraph) {}
@ -167,7 +167,7 @@ struct TORCH_CUDA_CPP_API CUDAGeneratorImpl : public c10::GeneratorImpl {
CUDAGeneratorImpl* clone_impl() const override;
c10::intrusive_ptr<CUDAGeneratorState> state_;
std::atomic_flag no_reset_rnn_state_;
std::atomic_flag no_reset_rnn_state_{};
};
namespace cuda::detail {

View File

@ -56,7 +56,7 @@ struct TORCH_CUDA_CPP_API CUDAGraph {
// the ID assigned by cuda during graph capture,
// used to identify when a stream is participating in capture
CaptureId_t capture_id_ = 0;
CaptureId_t capture_id_ = -1;
// uuid used to request a particular private mempool from CUDACachingAllocator.
// By default, this will be set to {id_, 0}.

View File

@ -6,15 +6,43 @@
#define HIPSPARSE_VERSION ((hipsparseVersionMajor*100000) + (hipsparseVersionMinor*100) + hipsparseVersionPatch)
#endif
// cuSparse Generic API added in CUDA 10.1
// Windows support added in CUDA 11.0
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && ((CUSPARSE_VERSION >= 10300) || (CUSPARSE_VERSION >= 11000 && defined(_WIN32)))
#define AT_USE_CUSPARSE_GENERIC_API() 1
#else
#define AT_USE_CUSPARSE_GENERIC_API() 0
#endif
// cuSparse Generic API descriptor pointers were changed to const in CUDA 12.0
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && \
(CUSPARSE_VERSION < 12000)
#define AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() 1
#else
#define AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() 0
#endif
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && \
(CUSPARSE_VERSION >= 12000)
#define AT_USE_CUSPARSE_CONST_DESCRIPTORS() 1
#else
#define AT_USE_CUSPARSE_CONST_DESCRIPTORS() 0
#endif
#if defined(USE_ROCM)
// hipSparse const API added in v2.4.0
#if HIPSPARSE_VERSION >= 200400
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 1
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 0
#define AT_USE_HIPSPARSE_GENERIC_API() 1
#else
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 0
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 1
#define AT_USE_HIPSPARSE_GENERIC_API() 1
#endif
#else // USE_ROCM
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 0
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 0
#define AT_USE_HIPSPARSE_GENERIC_API() 0
#endif // USE_ROCM

View File

@ -12,6 +12,8 @@ cusparseStatus_t destroyConstDnMat(const cusparseDnMatDescr* dnMatDescr) {
return cusparseDestroyDnMat(const_cast<cusparseDnMatDescr*>(dnMatDescr));
}
#if AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
namespace {
// If a specific GPU model does not provide native support for a given data
@ -208,4 +210,6 @@ CuSparseSpMatCsrDescriptor::CuSparseSpMatCsrDescriptor(const Tensor& input, int6
descriptor_.reset(raw_descriptor);
}
#endif // AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
} // namespace at::cuda::sparse

View File

@ -35,6 +35,7 @@ class CuSparseDescriptor {
std::unique_ptr<T, CuSparseDescriptorDeleter<T, destructor>> descriptor_;
};
#if AT_USE_CUSPARSE_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_CONST_DESCRIPTORS()
template <typename T, cusparseStatus_t (*destructor)(const T*)>
struct ConstCuSparseDescriptorDeleter {
void operator()(T* x) {
@ -57,6 +58,7 @@ class ConstCuSparseDescriptor {
protected:
std::unique_ptr<T, ConstCuSparseDescriptorDeleter<T, destructor>> descriptor_;
};
#endif // AT_USE_CUSPARSE_CONST_DESCRIPTORS || AT_USE_HIPSPARSE_CONST_DESCRIPTORS
#if defined(USE_ROCM)
using cusparseMatDescr = std::remove_pointer_t<hipsparseMatDescr_t>;
@ -121,8 +123,39 @@ class TORCH_CUDA_CPP_API CuSparseBsrsm2Info
#endif // AT_USE_HIPSPARSE_TRIANGULAR_SOLVE
#if AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
cusparseIndexType_t getCuSparseIndexType(const c10::ScalarType& scalar_type);
#if AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS()
class TORCH_CUDA_CPP_API CuSparseDnMatDescriptor
: public CuSparseDescriptor<cusparseDnMatDescr, &cusparseDestroyDnMat> {
public:
explicit CuSparseDnMatDescriptor(const Tensor& input, int64_t batch_offset = -1);
};
class TORCH_CUDA_CPP_API CuSparseConstDnMatDescriptor
: public CuSparseDescriptor<const cusparseDnMatDescr, &destroyConstDnMat> {
public:
explicit CuSparseConstDnMatDescriptor(const Tensor& input, int64_t batch_offset = -1);
cusparseDnMatDescr* unsafe_mutable_descriptor() const {
return const_cast<cusparseDnMatDescr*>(descriptor());
}
cusparseDnMatDescr* unsafe_mutable_descriptor() {
return const_cast<cusparseDnMatDescr*>(descriptor());
}
};
class TORCH_CUDA_CPP_API CuSparseDnVecDescriptor
: public CuSparseDescriptor<cusparseDnVecDescr, &cusparseDestroyDnVec> {
public:
explicit CuSparseDnVecDescriptor(const Tensor& input);
};
class TORCH_CUDA_CPP_API CuSparseSpMatDescriptor
: public CuSparseDescriptor<cusparseSpMatDescr, &cusparseDestroySpMat> {};
#elif AT_USE_CUSPARSE_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_CONST_DESCRIPTORS()
class TORCH_CUDA_CPP_API CuSparseDnMatDescriptor
: public ConstCuSparseDescriptor<
cusparseDnMatDescr,
@ -161,6 +194,7 @@ cusparseIndexType_t getCuSparseIndexType(const c10::ScalarType& scalar_type);
: public ConstCuSparseDescriptor<
cusparseSpMatDescr,
&cusparseDestroySpMat> {};
#endif // AT_USE_CUSPARSE_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_CONST_DESCRIPTORS()
class TORCH_CUDA_CPP_API CuSparseSpMatCsrDescriptor
: public CuSparseSpMatDescriptor {
@ -249,4 +283,6 @@ class TORCH_CUDA_CPP_API CuSparseSpGEMMDescriptor
}
};
#endif // AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
} // namespace at::cuda::sparse

View File

@ -9,6 +9,7 @@
#include <cuda_runtime_api.h>
#include <future>
#include <unordered_map>
namespace at::cuda {
namespace {
@ -71,20 +72,9 @@ using Block = HostBlock<CUDAStream>;
struct CUDACachingHostAllocatorImpl
: public CachingHostAllocatorImpl<CUDAStream, EventPool::Event> {
private:
ska::flat_hash_map<void*, bool> use_host_register;
std::unordered_map<void*, bool> use_host_register;
void allocate_host_memory(size_t size, void** ptr) override {
// try allocating from reserve segment first before calling into expensive APIs
if (get_reserve_segment().initialized()) {
*ptr = get_reserve_segment().allocate(size);
if (*ptr != nullptr) {
return;
}
}
allocate_host_memory_slowpath(size, ptr);
}
void allocate_host_memory_slowpath(size_t size, void** ptr) {
// Pinned memory pointers allocated by any device can be directly used by
// any other device, regardless of the current device at the time of
// allocation, since we assume unified addressing. So we grab any existing
@ -123,18 +113,6 @@ struct CUDACachingHostAllocatorImpl
}
void free_block(Block* block) override {
// We never free blocks from the reserve segment
if (get_reserve_segment().initialized()) {
// Check if the block is from the reserve segment
if (get_reserve_segment().owns(block->ptr_)) {
return;
}
}
free_block_slowpath(block);
}
void free_block_slowpath(Block* block) {
auto start = std::chrono::steady_clock::now();
// Users may change the allocator config at will. torch unit tests do this.
// However, allocations using cudaHostRegister should use corresonding
@ -194,20 +172,6 @@ struct CUDACachingHostAllocatorImpl
return event_pool->get(idx);
}
PinnedReserveSegment& get_reserve_segment() {
static auto reserve_segment = [&]() {
if (c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::pinned_reserve_segment_size_mb() > 0) {
void *ptr;
size_t sz = c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::pinned_reserve_segment_size_mb() * 1024 * 1024;
allocate_host_memory_slowpath(sz, &ptr);
return PinnedReserveSegment(ptr, sz);
} else {
return PinnedReserveSegment();
}
} ();
return reserve_segment;
}
TaskThreadPool* getThreadPool() {
static TaskThreadPool* pool = new TaskThreadPool(
static_cast<int>(c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
@ -222,15 +186,15 @@ struct CUDACachingHostAllocatorImpl
size_t numThreads,
size_t pageSize) {
uintptr_t start = (uintptr_t)ptr + (size * i / numThreads);
uintptr_t end = start + (size / numThreads);
uintptr_t end = (uintptr_t)start + (size / numThreads);
if (i == (numThreads - 1)) {
end = (uintptr_t)ptr + size;
}
// pre-fault/map the pages by setting the first byte of the page
uintptr_t alignedStart =
((start + pageSize - 1) & ~(pageSize - 1));
for (uintptr_t p = alignedStart; p < (end); p += pageSize) {
(((uintptr_t)start + pageSize - 1) & ~(pageSize - 1));
for (uintptr_t p = alignedStart; p < ((uintptr_t)end); p += pageSize) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
memset((void*)p, 0, 1);
}

View File

@ -310,7 +310,7 @@ cublasHandle_t getCurrentCUDABlasHandle() {
// FP32 data type calculations based on the value of the allow_tf32 flag.
// To enable TF32, set the math mode of the handle to CUBLAS_TF32_TENSOR_OP_MATH.
if (!NoTF32Guard::should_disable_tf32() &&
at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
TORCH_CUDABLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TF32_TENSOR_OP_MATH));
} else {
TORCH_CUDABLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));

View File

@ -122,7 +122,7 @@ struct DeviceThreadHandlePool : public std::enable_shared_from_this<DeviceThread
// Called by the destructor. Releases this thread's handles back into the pool.
void release() {
if(!my_handles.empty()) {
if(my_handles.size() > 0) {
auto parent = weak_parent.lock();
if (!parent) {
// If this thread exits after atexit handlers have completed, the

View File

@ -19,7 +19,7 @@ struct PhiloxCudaState {
// Called if graph capture is underway
PhiloxCudaState(int64_t* seed,
int64_t* offset_extragraph,
uint64_t offset_intragraph) {
uint32_t offset_intragraph) {
seed_.ptr = seed;
offset_.ptr = offset_extragraph;
offset_intragraph_ = offset_intragraph;
@ -36,7 +36,7 @@ struct PhiloxCudaState {
Payload seed_{};
Payload offset_{};
uint64_t offset_intragraph_ = 0;
uint32_t offset_intragraph_ = 0;
bool captured_ = false;
};

View File

@ -162,7 +162,7 @@ inline std::string ComputeTypeFor() {
// ROCBLAS and hipBLASLt.
template <>
inline std::string ComputeTypeFor<float>() {
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) != at::Float32Precision::TF32) {
if (at::globalContext().float32Precision("cuda", "matmul") != "tf32") {
return "f32_r";
} else {
return "xf32_r";

View File

@ -506,7 +506,7 @@ class HipblasltGemmOp : public Callable<ParamsT> {
}
hipblasComputeType_t computeType = HIPBLAS_COMPUTE_32F;
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
computeType = HIPBLAS_COMPUTE_32F_FAST_TF32;
}
HipBlasLtMatmulDescriptor matmul(computeType, HIP_R_32F);

View File

@ -141,7 +141,7 @@ class RocblasGemmOp : public Callable<GemmParams<T>> {
TuningStatus Call(const GemmParams<T>* params) override {
auto input_output_type = RocBlasDataTypeFor<T>();
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32 && input_output_type == rocblas_datatype_f32_r)
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32" && input_output_type == rocblas_datatype_f32_r)
return FAIL; // no support for TF32 in rocBLAS
auto compute_type = RocBlasComputeTypeFor<T>();
auto h_a = DoCastForHalfOrBfloat16(params->alpha);
@ -209,7 +209,7 @@ class RocblasGemmStridedBatchedOp : public Callable<GemmStridedBatchedParams<T>>
TuningStatus Call(const GemmStridedBatchedParams<T>* params) override {
auto input_output_type = RocBlasDataTypeFor<T>();
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32 && input_output_type == rocblas_datatype_f32_r)
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32" && input_output_type == rocblas_datatype_f32_r)
return FAIL; // no support for TF32 in rocBLAS
auto compute_type = RocBlasComputeTypeFor<T>();
auto h_a = DoCastForHalfOrBfloat16(params->alpha);

View File

@ -404,6 +404,8 @@ TuningContext::TuningContext() :
max_warmup_iterations_{0},
icache_flush_{true},
rotating_buffer_size_{-1},
filename_{},
untuned_file_{},
results_count_from_input_file_{0},
is_shutting_down_{false}
{

View File

@ -141,7 +141,7 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
size[i] = (int) t.size(i);
}
for (const auto i : c10::irange(dim, pad)) {
size[i] = 1;
size[i] = (int) 1;
}
dim = std::max(dim, pad);
cudnnTensorFormat_t filter_format{};

View File

@ -176,7 +176,7 @@ struct LinalgCheckMatrixUnaryRuleHelper;
template <char const *op_name, typename F, F Func, typename A, typename... T>
struct LinalgCheckMatrixUnaryRuleHelper<op_name, F, Func, typelist<A, T...>> {
static Tensor check_and_reshape_input(const Tensor& tensor, std::optional<int64_t> batch_dim) {
static inline Tensor check_and_reshape_input(const Tensor& tensor, std::optional<int64_t> batch_dim) {
TORCH_CHECK(rankWithoutBatchDim(tensor, batch_dim) >= 2, op_name, ": The input tensor A must have at least 2 dimensions.");
return moveBatchDimToFront(tensor, batch_dim);
}
@ -222,7 +222,7 @@ struct LinalgCheckMatrixBinaryRuleHelper;
template <char const *op_name, typename F, F Func, typename A, typename B, typename... T>
struct LinalgCheckMatrixBinaryRuleHelper<op_name, F, Func, typelist<A, B, T...>> {
static std::tuple<Tensor, Tensor> check_inputs_and_reshape_inputs(
static inline std::tuple<Tensor, Tensor> check_inputs_and_reshape_inputs(
const Tensor& first, std::optional<int64_t> first_bdim,
const Tensor& second, std::optional<int64_t> second_bdim) {
TORCH_CHECK(rankWithoutBatchDim(first, first_bdim) >= 2,

View File

@ -58,7 +58,7 @@ scalar_t dot_impl(int64_t n, const scalar_t *x, int64_t incx, const scalar_t *y,
template<typename scalar_t>
scalar_t vdot_impl(int64_t n, const scalar_t *x, int64_t incx, const scalar_t *y, int64_t incy);
static constexpr bool lda_cond(int64_t m, int64_t n, int64_t lda) {
static constexpr inline bool lda_cond(int64_t m, int64_t n, int64_t lda) {
return n == 1 || lda >= std::max<int64_t>(1L, m);
}

View File

@ -991,7 +991,7 @@ std::size_t UnsafeUkernelKeyHasher<PackKey>::operator()(const PackKey& key) cons
template <typename key_t, typename value_t>
struct KernelCache {
using kstore_t = std::unordered_map<key_t, std::shared_ptr<value_t>, UnsafeUkernelKeyHasher<key_t>>;
static std::shared_ptr<value_t>&& fetch_or_create(
static inline std::shared_ptr<value_t>&& fetch_or_create(
const key_t& key,
const std::function<std::shared_ptr<value_t>()>& callback) {
auto&& search = get_store().find(key);
@ -1003,7 +1003,7 @@ struct KernelCache {
}
}
static kstore_t& get_store() {
static inline kstore_t& get_store() {
static thread_local kstore_t cache_kernels;
return cache_kernels;
}
@ -1067,7 +1067,7 @@ struct GemmHelper {
struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
// Fetch/create GemmHelper object and execute brgemm with batch size = 1
template <typename scalar_t_a, typename scalar_t_b, typename scalar_t_c>
static void call(
static inline void call(
int64_t M,
int64_t N,
int64_t K,
@ -1118,12 +1118,12 @@ struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
.execute(A, B, (*value).A_B_offsets, C, (*value).scratchpad.data());
}
static std::shared_ptr<GemmHelper>& get_current() {
static inline std::shared_ptr<GemmHelper>& get_current() {
static thread_local std::shared_ptr<GemmHelper> current;
return current;
}
static bool device_check(ScalarType dtype) {
static inline bool device_check(ScalarType dtype) {
if (!at::globalContext().userEnabledMkldnn()) {
return false;
}
@ -1153,7 +1153,7 @@ using pack_t = dnnl::ukernel::brgemm_pack_B;
using pack_t = dnnl::ukernel::transform;
#endif
struct Pack : public KernelCache <PackKey, pack_t> {
static void call(
static inline void call(
int64_t K,
int64_t N,
int64_t ld_in,
@ -1182,7 +1182,7 @@ struct Pack : public KernelCache <PackKey, pack_t> {
}
}
static bool could_pack(ScalarType dtype) {
static inline bool could_pack(ScalarType dtype) {
if (!at::globalContext().userEnabledMkldnn()) {
return false;
}

View File

@ -702,7 +702,7 @@ static void check_shape_forward(const at::Tensor& input,
// If kernel size is incorrect
std::ostringstream input_ss;
std::ostringstream kernel_ss;
std::string separator;
std::string separator = "";
for (int i = 0, len = input_shape.size(); i < len; ++i) {
input_ss << separator << input_shape[i];
@ -1019,7 +1019,7 @@ static Tensor convolution_same(
if (symmetric_padding) {
// All backends handle symmetric padding natively
SymDimVector output_padding(dim);
SymDimVector output_padding(static_cast<size_t>(dim));
return at::convolution_symint(input, weight, bias, stride, padding_l, dilation,
false, output_padding, groups);
}
@ -1039,7 +1039,7 @@ static Tensor convolution_same(
}
}
auto padded_input = at::constant_pad_nd_symint(input, pad_nd, 0);
SymDimVector output_padding(dim);
SymDimVector output_padding(static_cast<size_t>(dim));
return at::convolution_symint(padded_input, weight, bias, stride, padding_l,
dilation, false, output_padding, groups);
}
@ -1174,7 +1174,7 @@ at::Tensor convolution(
bool deterministic = ctx.deterministicCuDNN() || ctx.deterministicAlgorithms();
return at::_convolution(input, weight, bias, stride, padding, dilation,
transposed, output_padding, groups,
ctx.benchmarkCuDNN(), deterministic, ctx.userEnabledCuDNN(), ctx.allowTF32CuDNN(at::Float32Op::CONV));
ctx.benchmarkCuDNN(), deterministic, ctx.userEnabledCuDNN(), ctx.allowTF32CuDNN("conv"));
}
at::Tensor convolution_overrideable(
@ -1319,7 +1319,7 @@ ConvBackend select_conv_backend(
params.benchmark = ctx.benchmarkCuDNN();
params.deterministic = ctx.deterministicCuDNN() || ctx.deterministicAlgorithms();
params.cudnn_enabled = ctx.userEnabledCuDNN();
params.allow_tf32 = ctx.allowTF32CuDNN(at::Float32Op::CONV);
params.allow_tf32 = ctx.allowTF32CuDNN("conv");
auto input = input_r;
auto weight = weight_r;
@ -1699,7 +1699,7 @@ at::Tensor _convolution(
c10::MaybeOwned<Tensor> bias_r_maybe_owned = at::borrow_from_optional_tensor(bias_r_opt);
const Tensor& bias_r = *bias_r_maybe_owned;
return at::_convolution(input_r, weight_r, bias_r, stride_, padding_, dilation_, transposed_, output_padding_, groups_, benchmark, deterministic, cudnn_enabled, at::globalContext().allowTF32CuDNN(at::Float32Op::CONV));
return at::_convolution(input_r, weight_r, bias_r, stride_, padding_, dilation_, transposed_, output_padding_, groups_, benchmark, deterministic, cudnn_enabled, at::globalContext().allowTF32CuDNN("conv"));
}
std::tuple<Tensor, Tensor, Tensor> convolution_backward_overrideable(
@ -1997,7 +1997,7 @@ std::tuple<Tensor, Tensor, Tensor> convolution_backward(
params.benchmark = ctx.benchmarkCuDNN();
params.deterministic = ctx.deterministicCuDNN() || ctx.deterministicAlgorithms();
params.cudnn_enabled = ctx.userEnabledCuDNN();
params.allow_tf32 = ctx.allowTF32CuDNN(at::Float32Op::CONV);
params.allow_tf32 = ctx.allowTF32CuDNN("conv");
// Validate inputs.
check_shape_backward(input, weight.sizes(), params);

View File

@ -1,5 +1,6 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/Copy.h>
#include <ATen/native/Copy.h>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>

View File

@ -70,7 +70,7 @@ Tensor constant_pad_nd(const Tensor& self, IntArrayRef pad, const Scalar& value)
new_shape.emplace_back(input_sizes[i]);
}
for (const auto i : c10::irange(l_pad)) {
for (const auto i : c10::irange((size_t)l_pad)) {
auto pad_idx = pad.size() - ((i + 1) * 2);
auto new_dim = input_sizes[l_diff + i] + pad[pad_idx] + pad[pad_idx + 1];
TORCH_CHECK(new_dim >= 0, "The input size ", input_sizes[l_diff + i], ", plus negative padding ",

View File

@ -47,7 +47,7 @@ int64_t compute_arange_size(const Scalar& start, const Scalar& end, const Scalar
int64_t sgn = (xstep > 0) - (xstep < 0);
size_d = std::ceil((xend - xstart + xstep - sgn) / xstep);
} else {
size_d = std::ceil((end.to<double>() - start.to<double>())
size_d = std::ceil(static_cast<double>(end.to<double>() - start.to<double>())
/ step.to<double>());
}

View File

@ -107,6 +107,11 @@ void resize_bytes_cpu(StorageImpl* storage, size_t size_bytes) {
storage->set_nbytes(size_bytes);
}
// Call the sparse implementation in SparseTensor.cpp directly.
// A dynamic dispatch here is NOT necessary, so I didn't put
// this function in native_functions.yaml
const Tensor& resize_as_sparse_(const Tensor& self, const Tensor& src);
// TODO(VitalyFedyunin): Move it to HTML docs.
//
// Strides of the output tensor of `resize_as_` operator is defined by input

View File

@ -145,6 +145,12 @@
#include <utility>
#include <vector>
namespace at::native {
AdvancedIndex make_info(Tensor self, IOptTensorListRef orig);
} // namespace at::native
namespace at::meta {
TORCH_META_FUNC(gather)

View File

@ -73,6 +73,7 @@
#include <ATen/ops/where_native.h>
#include <ATen/ops/zeros_like.h>
#include <iostream>
#include <utility>
#endif

View File

@ -1880,43 +1880,34 @@ Tensor repeat(const Tensor& self, IntArrayRef repeats) {
Tensor xtensor = self.expand(padded_size);
Tensor urtensor;
if (self.is_quantized()) {
urtensor = at::empty_quantized(target_size, self);
} else {
urtensor = at::empty(target_size, self.options());
}
// return an empty tensor if one of the repeat dimensions is zero
if (zero_tensor) {
return urtensor;
return self.is_quantized() ? at::empty_quantized(target_size, self)
: at::empty(target_size, self.options());
}
// Create view of shape [r0, s0, r1, s1, ...]
// where ri is repeat[i], si is self.size(i).
Tensor view = xtensor;
auto expand_shape = std::vector<int64_t>();
expand_shape.reserve(xtensor.dim() * 2);
for (const auto i : c10::irange(xtensor.dim())) {
// can't unfold with step 0, so make sure step is at least 1
// (it doesn't matter what it is in that case, because the size is 0).
auto size_i = xtensor.sizes()[i];
urtensor = urtensor.unfold(i, size_i, std::max<int64_t>(size_i, 1));
view = view.unsqueeze(2 * i);
expand_shape.push_back(repeats[i]);
expand_shape.push_back(xtensor.size(i));
}
// expanded_view is non-contiguous because .expand set stride to 0.
auto expanded_view = view.expand(expand_shape);
urtensor.copy_(xtensor.expand_as(urtensor));
// copy to contiguous tensor.
auto contiguous_copy = at::empty(
expanded_view.sizes(),
expanded_view.options(),
at::MemoryFormat::Contiguous);
contiguous_copy.copy_(expanded_view);
// Combine the dimensions to produce the target_size.
// xtensor dims: [a0, ..., ad-1]
// urtensor dims: [a0, ..., ad-1, b0, ..., bd-1]
// b dims are produced by unfold.
// Transform urtensor to [a0 * b0, ..., ad-1 * bd-1]
const int64_t n_dims = xtensor.dim();
auto range_a = at::arange(xtensor.dim(), at::TensorOptions(at::kLong));
auto range_b = range_a + n_dims;
auto stacked = stack({std::move(range_a), std::move(range_b)}, 1).flatten();
auto permutation = IntArrayRef(stacked.data_ptr<int64_t>(), n_dims * 2);
// Permute from [a0, ..., ad-1, b0, ..., bd-1] to [a0, b0, ..., ad-1, bd-1]
urtensor = urtensor.permute(permutation);
// Reshape from [a0, b0, ..., ad-1, bd-1] to [a0 * b0, ..., ad-1 * bd-1]
urtensor = urtensor.reshape(target_size);
return urtensor;
// Reshape to [s0 * r0, s1 * r1, ...].
// No extra copy of data during reshape for a contiguous tensor.
return contiguous_copy.view(target_size);
}
Tensor tile_symint(const Tensor& self, SymIntArrayRef reps) {
@ -2067,7 +2058,7 @@ Tensor _reshape_copy_symint(
TORCH_CHECK(0, "_reshape_copy not implemented for mkldnn tensors");
}
if (self.is_contiguous_or_false()) {
if (self.is_contiguous()) {
return self.view_symint(shape).clone(at::MemoryFormat::Contiguous);
} else {
return at::_unsafe_view_symint(

View File

@ -124,7 +124,7 @@ struct IsUnique {};
template <typename scalar_t>
struct IsUnique<scalar_t, false> {
bool operator() (scalar_t* data_ptr, int64_t i) {
inline bool operator() (scalar_t* data_ptr, int64_t i) {
if (i == 0) { return true; }
return c10::load(&data_ptr[i]) != c10::load(&data_ptr[i - 1]);
}
@ -132,7 +132,7 @@ struct IsUnique<scalar_t, false> {
template <typename scalar_t>
struct IsUnique<scalar_t, true> {
bool operator() (scalar_t* data_ptr, int64_t i) {
inline bool operator() (scalar_t* data_ptr, int64_t i) {
if (i == 0) { return true; }
return (c10::load(&data_ptr[i]) != c10::load(&data_ptr[i - 1]))
&& !(_isnan(data_ptr[i]) && _isnan(data_ptr[i - 1]));

View File

@ -4,6 +4,7 @@
#include <ATen/OpMathType.h>
#include <ATen/TensorUtils.h>
#include <ATen/OpMathType.h>
#include <ATen/core/Tensor.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>

View File

@ -17,7 +17,7 @@
namespace ao::sparse {
int register_linear_params();
#ifdef USE_FBGEMM

View File

@ -20,7 +20,7 @@
namespace ao::sparse {
int register_linear_params();
#ifdef USE_FBGEMM
namespace {

View File

@ -16,7 +16,7 @@
#endif
namespace ao::sparse {
int register_linear_params();
#ifdef USE_FBGEMM

View File

@ -22,7 +22,7 @@ static inline void cpu_atomic_add_float(float* dst, float fvalue)
old_value.floatV = *dst;
new_value.floatV = old_value.floatV + fvalue;
unsigned* old_intV = &old_value.intV;
unsigned* old_intV = (unsigned*)(&old_value.intV);
while (!std::atomic_compare_exchange_strong(dst_intV, old_intV, new_value.intV)) {
#ifdef __aarch64__
__asm__ __volatile__("yield;" : : : "memory");

View File

@ -118,7 +118,7 @@ gemm_notrans_(
scale_(m, n, beta, c, ldc);
// c += alpha * (a @ b)
const uint64_t unsigned_m = m;
const uint64_t unsigned_m = static_cast<int64_t>(m);
const uint64_t i_m = unsigned_m / 4;
for (const uint64_t l : c10::irange(k)) {
for (const uint64_t j : c10::irange(n)) {

View File

@ -8,6 +8,7 @@
#include <c10/util/irange.h>
#include <ATen/OpMathType.h>
#include <ATen/native/cpu/utils.h>
#include <ATen/OpMathType.h>
namespace at::native {
inline namespace CPU_CAPABILITY {

View File

@ -17,6 +17,7 @@
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/irange.h>
#include <ATen/OpMathType.h>
// [Note AVX-SSE transitions] In general we avoid calls into cmath for code
// compiled with AVX/AVX2 This is because of SSE-AVX transitions and a bug in

View File

@ -240,7 +240,7 @@ static void unfolded2d_copy(
int64_t output_height,
int64_t output_width) {
at::parallel_for(
0, n_input_plane * kH * kW, 0, [&](int64_t start, int64_t end) {
0, (int64_t)n_input_plane * kH * kW, 0, [&](int64_t start, int64_t end) {
for (const auto k : c10::irange(start, end)) {
int64_t nip = k / (kH * kW);
int64_t rest = k % (kH * kW);
@ -316,7 +316,7 @@ static void unfolded2d_copy(
for (int64_t x = 0; x < output_width; x++)
memcpy(
dst + (size_t)y * output_width + x,
src + (size_t)iy * input_width + ix + x * dW,
src + (size_t)iy * input_width + ix + (int64_t)x * dW,
sizeof(scalar_t) * (1));
}
}

View File

@ -906,7 +906,7 @@ static void ref_dyn_quant_matmul_4bit_channelwise_kernel(
// Round to nearest integer
const int32_t nudged_zero_point0 = lrintf(zero_point0);
int8_t* dst_ptr = lhs_qa8dx + m_idx * dst_stride;
int8_t* dst_ptr = (int8_t*)lhs_qa8dx + m_idx * dst_stride;
// LHS offset at the beginning of the row
*((float*)(dst_ptr)) = recip_scale0;
@ -1048,7 +1048,7 @@ static void ref_dyn_quant_matmul_4bit_groupwise_kernel(
zero_point0 = (std::min)(zero_point0, qmax);
const int32_t nudged_zero_point0 = lrintf(zero_point0);
int8_t* dst_ptr = lhs_qa8dx + row_idx * dst_stride;
int8_t* dst_ptr = (int8_t*)lhs_qa8dx + row_idx * dst_stride;
*((float*)(dst_ptr)) = recip_scale0;
dst_ptr += sizeof(float);

View File

@ -1375,7 +1375,7 @@ _scaled_mm_out_cuda(const Tensor& mat1, const Tensor& mat2,
if (scaling_choice_a == ScalingType::RowWise && scaling_choice_b == ScalingType::RowWise
&& ((dprops->major < 9 || CUBLAS_VERSION < 120900 || cublasLtGetVersion() < 120900)
// cuBLAS only supports tiled 1D factor layout for 1D block scaling, no 2D block scales
|| (dprops->major >= 10 && (!scale_a.sizes().empty() || !scale_b.sizes().empty())))) {
|| (dprops->major >= 10 && (scale_a.sizes().size() || scale_b.sizes().size())))) {
TORCH_CHECK(out.dtype() == kBFloat16, "Only bf16 high precision output types are supported for row-wise scaling.");
at::cuda::detail::f8f8bf16_rowwise(
mat1,
@ -1919,7 +1919,7 @@ Tensor& _mm_dtype_out_cuda(const Tensor& self, const Tensor& mat2, const at::Sca
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
addmm_out_cuda_impl(out, out, self, mat2, 0, 1);
addmm_out_cuda_impl(const_cast<Tensor&>(out), out, self, mat2, 0, 1);
return out;
}

View File

@ -8,6 +8,7 @@
#include <ATen/NativeFunctions.h>
#include <ATen/Dispatch.h>
#include <ATen/DynamicLibrary.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/cuda/MiscUtils.h>
#include <ATen/native/Resize.h>
#include <ATen/native/LinearAlgebra.h>

View File

@ -102,7 +102,13 @@ __host__ __device__ c10::complex<scalar_t> _log_add_exp_helper(const c10::comple
}
void launch_logcumsumexp_cuda_kernel(const TensorBase& result, const TensorBase& self, int64_t dim) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(ScalarType::Half, ScalarType::BFloat16,
// Compile time for CUDA-11.4 is 3x slower than with CUDA-11.6+, specifically for complex numbers
#if defined(FBCODE_CAFFE2) || defined(OVRSOURCE)
#define _LCME_DISPATCH AT_DISPATCH_FLOATING_TYPES_AND2
#else
#define _LCME_DISPATCH AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2
#endif
_LCME_DISPATCH(ScalarType::Half, ScalarType::BFloat16,
self.scalar_type(), "logcumsumexp_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;

View File

@ -1041,8 +1041,8 @@ std::string generate_code(
// and `extra_args` for computation call if
// extra arguments to capture runtime state are passed.
// (look at polygamma for example).
std::string extra_params;
std::string extra_args;
std::string extra_params = "";
std::string extra_args = "";
for (size_t i = 0; i < extra_args_typenames.size(); i++) {
auto type = std::string(extra_args_typenames[i]);
auto name = "extra_arg_" + std::to_string(i);
@ -1352,7 +1352,7 @@ std::string generate_reduction_code(
int vec_size,
int max_threads_codegen) {
TORCH_INTERNAL_ASSERT(desc.nInputs == 1);
TORCH_INTERNAL_ASSERT(desc.extra_args_types.empty());
TORCH_INTERNAL_ASSERT(desc.extra_args_types.size() == 0);
return generate_reduction_code(
desc.nOutputs,
@ -1451,7 +1451,7 @@ std::optional<std::string> get_cache_dir() {
std::string cache_dir;
char* ptkcp = std::getenv("PYTORCH_KERNEL_CACHE_PATH");
// Create kernel_cache_dir if needed as we do not want to create the base directory passed by the user
std::string kernels_cache_dir;
std::string kernels_cache_dir = "";
if (ptkcp != nullptr) {
cache_dir = std::string(ptkcp);
} else {

View File

@ -14,6 +14,7 @@
#include <ATen/native/LinearAlgebraUtils.h>
#include <ATen/native/cuda/MiscUtils.h>
#include <ATen/native/LinearAlgebra.h>
#include <ATen/native/BatchLinearAlgebra.h>
#include <ATen/native/cuda/linalg/BatchLinearAlgebraLib.h>
#include <ATen/native/cuda/linalg/MagmaUtils.h>
#include <ATen/native/cpu/zmath.h>
@ -1614,7 +1615,16 @@ static void lu_factor(const Tensor& input, const Tensor& pivots, const Tensor& i
const auto preferred_backend = at::globalContext().linalgPreferredBackend();
#ifdef USE_LINALG_SOLVER
const auto lu_factor_cusolver = [batch_size, m, n](const Tensor& input, const Tensor& pivots, const Tensor& infos, bool compute_pivots) {
if (m != n || (batch_size == 1 || m >= 512)) {
// In CUDA 10.2, lu_factor_looped_cusolver does not finish the computations when the input
// matrix is exactly singular. The returned pivots contain garbage. This breaks linalg.det
// Now, batched_cublas does not handle rectangular matrices, so we still dispatch to
// looped_cusolver even if m != n.
#ifdef USE_ROCM
constexpr bool looped_correct = true;
#else
constexpr bool looped_correct = CUSOLVER_VERSION >= 11100;
#endif
if (m != n || (looped_correct && (batch_size == 1 || m >= 512))) {
lu_factor_looped_cusolver(input, pivots, infos, compute_pivots);
} else {
lu_factor_batched_cublas(input, pivots, infos, compute_pivots);

View File

@ -127,7 +127,8 @@ void apply_ldl_solve_cusolver(
const Tensor& pivots,
const Tensor& B,
bool upper) {
#if !(defined(CUDART_VERSION) && defined(CUSOLVER_VERSION))
#if !(defined(CUDART_VERSION) && defined(CUSOLVER_VERSION) && \
CUSOLVER_VERSION >= 11102)
TORCH_CHECK(
false,
"Calling torch.linalg.ldl_solve on a CUDA tensor requires compiling ",

View File

@ -169,10 +169,7 @@ std::string repro_from_args(const ConvolutionParams& params) {
ss << "If that doesn't trigger the error, please include your original repro script when reporting this issue.\n\n";
ss << "import torch\n";
ss << "torch.backends.cuda.matmul.allow_tf32 = "
<< pybool(
at::globalContext().float32Precision(
at::Float32Backend::CUDA, at::Float32Op::MATMUL) ==
at::Float32Precision::TF32)
<< pybool(at::globalContext().float32Precision("cuda", "matmul") == "tf32")
<< "\n";
ss << "torch.backends.cudnn.benchmark = "
<< pybool(at::globalContext().benchmarkCuDNN()) << "\n";
@ -729,7 +726,7 @@ Tensor cudnn_convolution_relu(
auto& ctx = at::globalContext();
bool benchmark = ctx.benchmarkCuDNN();
bool allow_tf32 = ctx.allowTF32CuDNN(at::Float32Op::CONV);
bool allow_tf32 = ctx.allowTF32CuDNN("conv");
auto _bias = bias_t.has_value()
? bias_t.value()
: at::zeros(
@ -787,7 +784,7 @@ Tensor cudnn_convolution_add_relu(
}
auto& ctx = at::globalContext();
bool allow_tf32 = ctx.allowTF32CuDNN(at::Float32Op::CONV);
bool allow_tf32 = ctx.allowTF32CuDNN("conv");
bool benchmark = ctx.benchmarkCuDNN();
auto _alpha = alpha.has_value() ? alpha.value().to<float>() : 1.0;
auto _bias = bias_t.has_value()

View File

@ -76,6 +76,7 @@ std::tuple<Tensor, Tensor> _cudnn_ctc_loss_tensor(
#else // AT_CUDNN_ENABLED
#include <ATen/cudnn/Descriptors.h>
#include <ATen/cudnn/Types.h>
#include <ATen/cudnn/Utils.h>
@ -283,9 +284,9 @@ std::tuple<Tensor, Tensor> _cudnn_ctc_loss_tensor(
checkBackend(c, {*targets}, Backend::CUDA);
const auto batch_size = log_probs->size(1);
int64_t input_lengths_size =
!input_lengths_.sizes().empty() ? input_lengths_.size(0) : 1;
input_lengths_.sizes().size() ? input_lengths_.size(0) : 1;
int64_t target_lengths_size =
!target_lengths_.sizes().empty() ? target_lengths_.size(0) : 1;
target_lengths_.sizes().size() ? target_lengths_.size(0) : 1;
TORCH_CHECK(
input_lengths_size == batch_size,
"input_lengths needs to have size to match batch_size");

View File

@ -142,6 +142,8 @@ void run_cudnn_SDP_bprop_nestedtensor(
namespace at {
namespace native {
#include <cudnn_frontend.h>
namespace fe = cudnn_frontend;
constexpr uint8_t MAX_MHA_DIM = 4;
@ -1377,7 +1379,7 @@ void run_cudnn_SDP_fprop(
cudnnHandle_t handle = getCudnnHandle();
// NB: The key initialization will round up sequence length, stride data etc.
// if use_ragged_in_dense is enabled (to allow multiple sequence lengths to
// if use_ragged_in_dense is enabled (to allow multiple sequence lenghths to
// reuse the same cached value/graph)
auto key = MHACacheKeyWrapper(
b,

View File

@ -245,7 +245,7 @@ descriptor(cudnnHandle_t handle, DropoutDescriptor&& dropout_desc) const {
datatype,
input_datatype,
algo,
at::globalContext().allowTF32CuDNN(at::Float32Op::RNN));
at::globalContext().allowTF32CuDNN("rnn"));
#else
rnn_desc.set(
handle,
@ -261,7 +261,7 @@ descriptor(cudnnHandle_t handle, DropoutDescriptor&& dropout_desc) const {
datatype,
input_datatype,
algo,
at::globalContext().allowTF32CuDNN(at::Float32Op::RNN));
at::globalContext().allowTF32CuDNN("rnn"));
#endif
return rnn_desc;
}

View File

@ -38,6 +38,7 @@ REGISTER_NO_CPU_DISPATCH(mkldnn_convolution_transpose_backward_stub)
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
#include <ATen/native/ConvUtils.h>
#include <c10/util/irange.h>
namespace at::native {
@ -104,7 +105,7 @@ static void check_shape_forward(const Tensor& input,
// If kernel size is incorrect
std::ostringstream input_ss;
std::ostringstream kernel_ss;
std::string separator;
std::string separator = "";
for (int i = 0, len = input_shape.size(); i < len; ++i) {
input_ss << separator << input_shape[i];
@ -155,12 +156,12 @@ static void check_shape_forward(const Tensor& input,
//
static bool mkldnn_conv_enabled_fpmath_mode_bf16(){
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::BF16 &&
return at::globalContext().float32Precision("mkldnn", "conv") == "bf16" &&
mkldnn_bf16_device_check();
}
static bool mkldnn_conv_enabled_fpmath_mode_tf32(){
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
return at::globalContext().float32Precision("mkldnn", "conv") == "tf32" &&
cpuinfo_has_x86_amx_fp16();
}

View File

@ -69,12 +69,12 @@ mkldnn_scaled_mm(const Tensor& mat1, const Tensor& mat2,
namespace at::native {
static bool use_mkldnn_bf32_linear() {
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::BF16 &&
return at::globalContext().float32Precision("mkldnn", "matmul") == "bf16" &&
mkldnn_bf16_device_check();
}
static bool use_mkldnn_tf32_linear() {
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
return at::globalContext().float32Precision("mkldnn", "matmul") == "tf32" &&
cpuinfo_has_x86_amx_fp16();
}

View File

@ -111,11 +111,11 @@ static bool use_mkldnn_fp16_matmul() {
}
static bool use_mkldnn_bf32_matmul() {
return use_mkldnn_bf16_matmul() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::BF16;
return use_mkldnn_bf16_matmul() && at::globalContext().float32Precision("mkldnn", "matmul") == "bf16";
}
static bool use_mkldnn_tf32_matmul() {
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision("mkldnn", "matmul") == "tf32";
}
// returns an ideep::tensor

View File

@ -14,7 +14,6 @@ struct EmbeddingBagParams {
::c10::metal::array<idx_type_t, 2> output_strides;
::c10::metal::array<idx_type_t, 2> max_indices_strides;
bool use_per_sample_weights;
idx_type_t per_sample_weights_stride;
idx_type_t num_indices;
@ -24,24 +23,3 @@ struct EmbeddingBagParams {
EmbeddingBagMode mode;
int64_t padding_idx;
};
template <typename idx_type_t = uint32_t>
struct EmbeddingBagBackwardParams {
::c10::metal::array<idx_type_t, 2> weight_grad_strides;
::c10::metal::array<idx_type_t, 2> output_grad_strides;
::c10::metal::array<idx_type_t, 2> max_indices_strides;
bool use_per_sample_weights;
idx_type_t per_sample_weights_stride;
idx_type_t feature_size;
EmbeddingBagMode mode;
int64_t padding_idx;
};
template <typename idx_type_t = uint32_t>
struct EmbeddingBagPerSampleWeightsBackwardParams {
::c10::metal::array<idx_type_t, 2> output_grad_strides;
::c10::metal::array<idx_type_t, 2> weight_strides;
idx_type_t per_sample_weights_grad_stride;
idx_type_t feature_size;
int64_t padding_idx;
};

View File

@ -1,5 +1,4 @@
#include <ATen/native/mps/kernels/EmbeddingBag.h>
#include <c10/metal/atomic.h>
#include <c10/metal/utils.h>
#include <metal_array>
#include <metal_stdlib>
@ -45,7 +44,6 @@ template <EmbeddingBagMode M, typename T>
struct MaybeApplyPerSampleWeight {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
bool /*use_per_sample_weights*/,
uint32_t /*per_sample_weights_index*/,
constant T* /*per_sample_weights*/,
uint32_t /*per_sample_weights_stride*/) {
@ -57,11 +55,10 @@ template <typename T>
struct MaybeApplyPerSampleWeight<EmbeddingBagMode::SUM, T> {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
bool use_per_sample_weights,
uint32_t per_sample_weights_index,
constant T* per_sample_weights,
uint32_t per_sample_weights_stride) {
if (use_per_sample_weights) {
if (per_sample_weights_stride) {
T per_sample_weight = per_sample_weights
[per_sample_weights_stride * per_sample_weights_index];
return static_cast<opmath_t<T>>(per_sample_weight) * weight_val;
@ -157,7 +154,6 @@ void embedding_bag_impl(
auto num_bags = params.num_bags;
auto feature_size = params.feature_size;
auto padding_idx = params.padding_idx;
auto use_per_sample_weights = params.use_per_sample_weights;
auto per_sample_weights_stride = params.per_sample_weights_stride;
constant auto& output_strides = params.output_strides;
constant auto& weight_strides = params.weight_strides;
@ -187,11 +183,7 @@ void embedding_bag_impl(
feature_idx * weight_strides[1]]);
weight_val = MaybeApplyPerSampleWeight<M, T>()(
weight_val,
use_per_sample_weights,
indices_idx,
per_sample_weights,
per_sample_weights_stride);
weight_val, indices_idx, per_sample_weights, per_sample_weights_stride);
auto new_out_val = ReductionOp<M, T>()(weight_val, out_val, bag_size_ == 0);
@ -247,208 +239,19 @@ kernel void embedding_bag(
}
}
template <EmbeddingBagMode M, typename T>
struct MaybeDivBagSize {
inline opmath_t<T> operator()(opmath_t<T> val, opmath_t<T> bag_size) {
return val;
}
};
template <typename T>
struct MaybeDivBagSize<EmbeddingBagMode::MEAN, T> {
inline opmath_t<T> operator()(opmath_t<T> val, opmath_t<T> bag_size) {
return val / bag_size;
}
};
template <EmbeddingBagMode M, typename T, typename I>
void embedding_bag_backward_sum_mean_impl(
constant T* output_grad,
constant I* indices,
constant I* offset2bag,
constant I* bag_size,
constant T* per_sample_weights,
device AtomicType_t<T>* weight_grad,
constant EmbeddingBagBackwardParams<uint32_t>& params,
uint tid) {
auto feature_size = params.feature_size;
auto indices_idx = tid / feature_size;
auto bag_idx = static_cast<uint32_t>(offset2bag[indices_idx]);
auto bag_size_val = bag_size[bag_idx];
auto weight_idx = indices[indices_idx];
auto padding_idx = params.padding_idx;
if (bag_size_val && weight_idx != padding_idx) {
auto feature_idx = tid % feature_size;
constant auto& weight_grad_strides = params.weight_grad_strides;
constant auto& output_grad_strides = params.output_grad_strides;
auto use_per_sample_weights = params.use_per_sample_weights;
auto per_sample_weights_stride = params.per_sample_weights_stride;
auto output_grad_val =
static_cast<opmath_t<T>>(output_grad
[bag_idx * output_grad_strides[0] +
feature_idx * output_grad_strides[1]]);
opmath_t<T> weight_grad_val = MaybeDivBagSize<M, T>()(
MaybeApplyPerSampleWeight<M, T>()(
output_grad_val,
use_per_sample_weights,
indices_idx,
per_sample_weights,
per_sample_weights_stride),
static_cast<opmath_t<T>>(bag_size_val));
AtomicType<T>::atomic_add(
weight_grad,
static_cast<int32_t>(weight_idx) * weight_grad_strides[0] +
feature_idx * weight_grad_strides[1],
static_cast<T>(weight_grad_val));
}
}
template <typename T, typename I>
void embedding_bag_backward_max_impl(
constant T* output_grad,
constant I* bag_size,
constant I* max_indices,
device AtomicType_t<T>* weight_grad,
constant EmbeddingBagBackwardParams<uint32_t>& params,
uint tid) {
auto feature_size = params.feature_size;
auto bag_idx = tid / feature_size;
auto bag_size_val = bag_size[bag_idx];
if (bag_size_val) {
auto feature_idx = tid % feature_size;
constant auto& weight_grad_strides = params.weight_grad_strides;
constant auto& output_grad_strides = params.output_grad_strides;
constant auto& max_indices_strides = params.max_indices_strides;
auto output_grad_val = output_grad
[bag_idx * output_grad_strides[0] +
feature_idx * output_grad_strides[1]];
auto max_index =
static_cast<uint32_t>(max_indices
[bag_idx * max_indices_strides[0] +
feature_idx * max_indices_strides[1]]);
AtomicType<T>::atomic_add(
weight_grad,
max_index * weight_grad_strides[0] +
feature_idx * weight_grad_strides[1],
output_grad_val);
}
}
#define DISPATCH_BACKWARD_SUM_MEAN_IMPL(MODE) \
return embedding_bag_backward_sum_mean_impl<MODE>( \
output_grad, \
indices, \
offset2bag, \
bag_size, \
per_sample_weights, \
weight_grad, \
params, \
tid)
template <typename T, typename I>
kernel void embedding_bag_backward(
constant T* output_grad [[buffer(0)]],
constant I* indices [[buffer(1)]],
constant I* offset2bag [[buffer(2)]],
constant I* bag_size [[buffer(3)]],
constant I* max_indices [[buffer(4)]],
constant T* per_sample_weights [[buffer(5)]],
device AtomicType_t<T>* weight_grad [[buffer(6)]],
constant EmbeddingBagBackwardParams<uint32_t>& params [[buffer(7)]],
uint tid [[thread_position_in_grid]]) {
switch (params.mode) {
case EmbeddingBagMode::SUM:
DISPATCH_BACKWARD_SUM_MEAN_IMPL(EmbeddingBagMode::SUM);
case EmbeddingBagMode::MEAN:
DISPATCH_BACKWARD_SUM_MEAN_IMPL(EmbeddingBagMode::MEAN);
case EmbeddingBagMode::MAX:
return embedding_bag_backward_max_impl(
output_grad, bag_size, max_indices, weight_grad, params, tid);
}
}
template <typename T, typename I>
kernel void embedding_bag_per_sample_weights_backward(
constant T* output_grad [[buffer(0)]],
constant T* weight [[buffer(1)]],
constant I* indices [[buffer(2)]],
constant I* offset2bag [[buffer(3)]],
device AtomicType_t<T>* per_sample_weights_grad [[buffer(4)]],
constant EmbeddingBagPerSampleWeightsBackwardParams<uint32_t>& params
[[buffer(5)]],
uint tid [[thread_position_in_grid]]) {
auto feature_size = params.feature_size;
auto padding_idx = params.padding_idx;
auto indices_idx = tid / feature_size;
auto weight_idx = indices[indices_idx];
if (weight_idx != padding_idx) {
auto feature_idx = tid % feature_size;
auto bag_idx = static_cast<uint32_t>(offset2bag[indices_idx]);
constant auto& output_grad_strides = params.output_grad_strides;
constant auto& weight_strides = params.weight_strides;
auto per_sample_weights_grad_stride = params.per_sample_weights_grad_stride;
auto weight_val = weight
[static_cast<uint32_t>(weight_idx) * weight_strides[0] +
feature_idx * weight_strides[1]];
auto output_grad_val = output_grad
[bag_idx * output_grad_strides[0] +
feature_idx * output_grad_strides[1]];
auto per_sample_weights_grad_val = static_cast<opmath_t<T>>(weight_val) *
static_cast<opmath_t<T>>(output_grad_val);
AtomicType<T>::atomic_add(
per_sample_weights_grad,
indices_idx * per_sample_weights_grad_stride,
static_cast<T>(per_sample_weights_grad_val));
}
}
#define REGISTER_EMBEDDING_BAG_OP(T, I) \
template [[host_name("embedding_bag_" #T "_" #I)]] \
kernel void embedding_bag<T, I>( \
constant T * weight [[buffer(0)]], \
constant I * indices [[buffer(1)]], \
constant I * offsets [[buffer(2)]], \
constant T * per_sample_weights [[buffer(3)]], \
device T * output [[buffer(4)]], \
device I * offset2bag [[buffer(5)]], \
device I * bag_size [[buffer(6)]], \
device I * max_indices [[buffer(7)]], \
constant EmbeddingBagParams<uint32_t> & params [[buffer(8)]], \
uint tid [[thread_position_in_grid]]); \
\
template [[host_name("embedding_bag_backward_" #T "_" #I)]] \
kernel void embedding_bag_backward<T, I>( \
constant T * output_grad [[buffer(0)]], \
constant I * indices [[buffer(1)]], \
constant I * offset2bag [[buffer(2)]], \
constant I * bag_size [[buffer(3)]], \
constant I * max_indices [[buffer(4)]], \
constant T * per_sample_weights [[buffer(5)]], \
device AtomicType_t<T> * weight_grad [[buffer(6)]], \
constant EmbeddingBagBackwardParams<uint32_t> & params [[buffer(7)]], \
uint tid [[thread_position_in_grid]]); \
\
template \
[[host_name("embedding_bag_per_sample_weights_backward_" #T "_" #I)]] \
kernel void embedding_bag_per_sample_weights_backward<T, I>( \
constant T * output_grad [[buffer(0)]], \
constant T * weight [[buffer(1)]], \
constant I * indices [[buffer(2)]], \
constant I * offset2bag [[buffer(3)]], \
device AtomicType_t<T> * per_sample_weights_grad [[buffer(4)]], \
constant EmbeddingBagPerSampleWeightsBackwardParams<uint32_t> & \
params [[buffer(5)]], \
uint tid [[thread_position_in_grid]]);
#define REGISTER_EMBEDDING_BAG_OP(T, I) \
template [[host_name("embedding_bag_" #T "_" #I)]] \
kernel void embedding_bag<T, I>( \
constant T * weight [[buffer(0)]], \
constant I * indices [[buffer(1)]], \
constant I * offsets [[buffer(2)]], \
constant T * per_sample_weights [[buffer(3)]], \
device T * output [[buffer(4)]], \
device I * offset2bag [[buffer(5)]], \
device I * bag_size [[buffer(6)]], \
device I * max_indices [[buffer(7)]], \
constant EmbeddingBagParams<uint32_t> & params [[buffer(8)]], \
uint tid [[thread_position_in_grid]]);
REGISTER_EMBEDDING_BAG_OP(float, int);
REGISTER_EMBEDDING_BAG_OP(float, long);

View File

@ -13,10 +13,8 @@
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_embedding_bag_dense_backward_native.h>
#include <ATen/ops/_embedding_bag_forward_only_native.h>
#include <ATen/ops/_embedding_bag_native.h>
#include <ATen/ops/_embedding_bag_per_sample_weights_backward_native.h>
#include <ATen/ops/empty.h>
#endif
@ -97,7 +95,6 @@ static std::tuple<Tensor, Tensor, Tensor, Tensor> _embedding_bag_mps_impl(
}
bool use_per_sample_weights = per_sample_weights_opt.has_value() && per_sample_weights_opt->defined();
params.use_per_sample_weights = use_per_sample_weights;
params.per_sample_weights_stride = use_per_sample_weights ? per_sample_weights_opt->stride(0) : 0;
params.num_indices = num_indices;
@ -180,117 +177,4 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> _embedding_bag_forward_only_mps(
padding_idx);
}
Tensor _embedding_bag_dense_backward_mps(const Tensor& output_grad,
const Tensor& indices,
const Tensor& offset2bag,
const Tensor& bag_size,
const Tensor& max_indices,
int64_t num_weights,
bool scale_grad_by_freq,
int64_t mode,
const std::optional<Tensor>& per_sample_weights_opt,
int64_t padding_idx) {
// indices and offset2bag are assumed having correct dtypes and
// contiguous here due to the checks in _embedding_bag_backward in
// EmbeddingBag.cpp.
// Also see NOTE [ embedding_bag Native Functions ] in native_functions.yaml
// for more details.
int64_t feature_size = output_grad.size(1);
auto weight_grad = at::zeros({num_weights, feature_size}, output_grad.options());
EmbeddingBagBackwardParams<uint32_t> params;
for (const auto dim : c10::irange(2)) {
params.output_grad_strides[dim] = output_grad.stride(dim);
params.weight_grad_strides[dim] = weight_grad.stride(dim);
if (mode == EmbeddingBagMode::MAX) {
params.max_indices_strides[dim] = safe_downcast<uint32_t, int64_t>(max_indices.stride(dim));
}
}
bool use_per_sample_weights = per_sample_weights_opt.has_value() && per_sample_weights_opt->defined();
params.use_per_sample_weights = use_per_sample_weights;
params.per_sample_weights_stride = use_per_sample_weights ? per_sample_weights_opt->stride(0) : 0;
params.feature_size = output_grad.size(1);
params.mode = static_cast<EmbeddingBagMode>(mode);
params.padding_idx = padding_idx;
auto num_indices = offset2bag.numel();
auto num_threads = (params.mode == EmbeddingBagMode::MAX) ? output_grad.numel() : num_indices * params.feature_size;
MPSStream* stream = getCurrentMPSStream();
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("embedding_bag_backward_{}_{}",
mps::scalarToMetalTypeString(output_grad),
mps::scalarToMetalTypeString(indices)));
getMPSProfiler().beginProfileKernel(
pipeline_state, "embedding_bag", {output_grad, indices, offset2bag, bag_size});
[computeEncoder setComputePipelineState:pipeline_state];
mps::mtl_setArgs(computeEncoder,
output_grad,
indices,
offset2bag,
bag_size,
max_indices,
use_per_sample_weights ? per_sample_weights_opt : std::nullopt,
weight_grad,
params);
mps::mtl_dispatch1DJob(computeEncoder, pipeline_state, num_threads);
getMPSProfiler().endProfileKernel(pipeline_state);
}
});
return std::move(weight_grad);
}
Tensor _embedding_bag_per_sample_weights_backward_mps(const Tensor& output_grad,
const Tensor& weight,
const Tensor& indices,
const Tensor& offsets,
const Tensor& offset2bag,
int64_t mode,
int64_t padding_idx) {
TORCH_INTERNAL_ASSERT(static_cast<EmbeddingBagMode>(mode) == EmbeddingBagMode::SUM);
int64_t num_indices = indices.size(0);
int64_t feature_size = output_grad.size(1);
auto per_sample_weights_grad = at::zeros({num_indices}, output_grad.options());
EmbeddingBagPerSampleWeightsBackwardParams params;
for (const auto dim : c10::irange(2)) {
params.output_grad_strides[dim] = output_grad.stride(dim);
params.weight_strides[dim] = weight.stride(dim);
}
params.per_sample_weights_grad_stride = per_sample_weights_grad.stride(0);
params.feature_size = feature_size;
params.padding_idx = padding_idx;
auto num_threads = num_indices * feature_size;
MPSStream* stream = getCurrentMPSStream();
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("embedding_bag_per_sample_weights_backward_{}_{}",
mps::scalarToMetalTypeString(output_grad),
mps::scalarToMetalTypeString(indices)));
getMPSProfiler().beginProfileKernel(
pipeline_state, "embedding_bag_per_sample_weights_backward", {output_grad, weight, indices, offset2bag});
[computeEncoder setComputePipelineState:pipeline_state];
mps::mtl_setArgs(computeEncoder, output_grad, weight, indices, offset2bag, per_sample_weights_grad, params);
mps::mtl_dispatch1DJob(computeEncoder, pipeline_state, num_threads);
getMPSProfiler().endProfileKernel(pipeline_state);
}
});
return std::move(per_sample_weights_grad);
}
} // namespace at::native

View File

@ -2379,7 +2379,7 @@
- func: _embedding_bag_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
dispatch:
CPU, CUDA, MPS: _embedding_bag_backward_symint
CPU, CUDA: _embedding_bag_backward_symint
- func: _embedding_bag_sparse_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
dispatch:
@ -2389,14 +2389,12 @@
dispatch:
CPU: _embedding_bag_dense_backward_cpu
CUDA: _embedding_bag_dense_backward_cuda
MPS: _embedding_bag_dense_backward_mps
autogen: _embedding_bag_dense_backward.out
- func: _embedding_bag_per_sample_weights_backward(Tensor grad, Tensor weight, Tensor indices, Tensor offsets, Tensor offset2bag, int mode, int padding_idx=-1) -> Tensor
dispatch:
CPU: _embedding_bag_per_sample_weights_backward_cpu
CUDA: _embedding_bag_per_sample_weights_backward_cuda
MPS: _embedding_bag_per_sample_weights_backward_mps
autogen: _embedding_bag_per_sample_weights_backward.out
- func: empty.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor

View File

@ -316,7 +316,7 @@ Tensor NestedTensor_to_padded_tensor_generic(
TORCH_CHECK(
(int64_t)output_size_.size() == ret_val.dim(),
"Length of output_size does not match NestedTensor dims. Broadcasting is not supported.");
for (int64_t i = 0; i < ret_val.dim(); i++) {
for (int64_t i = 0; i < (int64_t)ret_val.dim(); i++) {
TORCH_CHECK(
output_size_[i] >= ret_val.size(i),
"Value in output_size is less than NestedTensor padded size. Truncation is not supported.");

View File

@ -146,12 +146,12 @@ inline TensorQuantizationParams ChooseQuantizationParams(
// The arithmetic error on the zero point computed from either pair
// will be roughly machine_epsilon * (sum of absolute values of terms)
// so we want to use the variant that adds the smaller terms.
double zero_point_from_min = qmin - min / scale;
double zero_point_from_max = qmax - max / scale;
double zero_point_from_min = qmin - min / static_cast<double>(scale);
double zero_point_from_max = qmax - max / static_cast<double>(scale);
double zero_point_from_min_error =
std::abs(qmin) - std::abs(min / scale);
std::abs(qmin) - std::abs(min / static_cast<double>(scale));
double zero_point_from_max_error =
std::abs(qmax) - std::abs(max / scale);
std::abs(qmax) - std::abs(max / static_cast<double>(scale));
double initial_zero_point =
zero_point_from_min_error < zero_point_from_max_error
? zero_point_from_min

View File

@ -560,7 +560,7 @@ float hsum_sq(const int32_t* A, int len) {
alignas(64) float temp[8];
_mm256_store_ps(temp, sum_ps);
for (const auto k : c10::irange(8)) {
row_sum += temp[k];
row_sum += static_cast<float>(temp[k]);
}
#elif defined(CPU_CAPABILITY_AVX512)
__m512 sum_ps = _mm512_setzero_ps();
@ -574,7 +574,7 @@ float hsum_sq(const int32_t* A, int len) {
alignas(64) float temp[16];
_mm512_store_ps(temp, sum_ps);
for (const auto k : c10::irange(16)) {
row_sum += temp[k];
row_sum += static_cast<float>(temp[k]);
}
#endif // CPU_CAPABILITY_AVX2 or CPU_CAPABILITY_AVX512
@ -1282,7 +1282,7 @@ template <bool ReLUFused = false>
void qadd_scalar_kernel(Tensor& out, const Tensor& self, const Scalar& other) {
int64_t zero_point = out.q_zero_point();
float scale = static_cast<float>(out.q_scale());
float inv_scale = 1.0f / scale;
float inv_scale = static_cast<float>(1.0f / scale);
int64_t self_zero_point = self.q_zero_point();
float self_scale = static_cast<float>(self.q_scale());
@ -2915,7 +2915,7 @@ void fake_quantize_learnable_channel_grad_kernel_cpu(
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
*dx_output = (*dy_input) * (xqi >= quant_min && xqi <= quant_max);
// Calculate gradients for scale and zero point.
float xfqi = ((std::max(std::min(xqi, quant_max), quant_min) - (*zero_point_input)) * (*scale_input));
float xfqi = static_cast<float>((std::max(std::min(xqi, quant_max), quant_min) - (*zero_point_input)) * (*scale_input));
if (xqi < quant_min || xqi > quant_max) {
*dzero_point_output = (*dy_input) * (-1) * (*scale_input) * grad_factor;
*dscale_output = ((xqi < quant_min) ? ((*dy_input) * dscale_small) : ((*dy_input) * dscale_big)) * grad_factor;
@ -4415,7 +4415,7 @@ void _qmul_tensor_cpu_impl(
uint8_t y_data = *(y_ptr + idx);
int32_t x_val = static_cast<int32_t>(x_data) - x_zero_point;
int32_t y_val = static_cast<int32_t>(y_data) - y_zero_point;
int32_t out_val = x_val * y_val;
int32_t out_val = static_cast<int32_t>(x_val * y_val);
float out_val_f = (float)out_val * multiplier;
if constexpr (std::is_same<T, float>::value) {
*(out_ptr + idx) = out_val_f;

Some files were not shown because too many files have changed in this diff Show More