Compare commits

..

167 Commits

Author SHA1 Message Date
3c31d73c87 [ONNX] Fix pow op export [1.5.1] (#39791)
* [ONNX] Fix pow op export (#38065)

Summary:
Fix pow type cast for opset 9 and update opset 12
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38065

Differential Revision: D21485353

Pulled By: malfet

fbshipit-source-id: 3993e835ffad07b2e6585eb5cf1cb7c8474de2ec

* Update ort-nighly version as suggested in https://github.com/pytorch/pytorch/pull/39685#issuecomment-641452470

* Apply changes from https://github.com/pytorch/pytorch/pull/37846 to  `test_topk_smallest_unsorted`

Co-authored-by: neginraoof <neginmr@utexas.edu>
2020-06-11 15:26:46 -07:00
dfe8cdff5a [v1.5.1] add dtype checks for scatter/gather family of functions (#39773)
* add dtype checks for scatter/gather family of functions [1.5.1]

Adds additional dtype checks for scatter/gather family of functions, namely:
1. Checks whether `index` is of type `Long`
2. Checks whether `src.dtype == self.dtype`.

This is a rather involved rework of https://github.com/pytorch/pytorch/pull/38646

* Adjust test to match both TH and ATen exception patterns
2020-06-10 10:29:54 -07:00
e7a6ed8151 [v1.5.1] add dtype checking for gather and scatter (#38025)
Summary:
Fixed https://github.com/pytorch/pytorch/issues/37996

in the `cpu_scatter_gather_base_kernel`, it interpret a pointer as `int64_t` regardless the actual dtype.
2b41b9bceb/aten/src/ATen/native/cpu/ScatterGatherKernel.cpp (L106)
add a index dtype checking will avoid the nasty index out of bound error. As using `int64_t` is convention in ATen code (a.k.a, a limitation), no further fix is needed at the moment.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38025

Differential Revision: D21498146

Pulled By: ezyang

fbshipit-source-id: b1f96f394a460c4bc63d21ec8d4a2cfbf3e97b03
2020-06-09 10:59:51 -04:00
fc0dde5db3 Fix weight quantization in RNNs
Weight quantization was done incorrectly for LSTMs, the statistics for all weights (across layers) were combined in the observer. This meant that weights for later layers in a LSTM would use sub-optimal scales impacting accuracy. The problem gets worse as the number of layers increases.

Differential Revision: [D20842145](https://our.internmc.facebook.com/intern/diff/D20842145/)

[ghstack-poisoned]
2020-06-09 10:39:57 -04:00
83edd5164a [1.5.1] Check illegal output dtype for torch.{min, max} (#39686)
* Check illegal output dtype for torch.{min, max}

Summary:
The test is currently only enabled for CPU, and it will be enabled for CUDA after the migration of `min` and `max` from THC to ATen is done.
This is a cherry-pick of https://github.com/pytorch/pytorch/pull/38850

* Skip test_minmax_illegal_dtype for XLA

Co-authored-by: Xiang Gao <qasdfgtyuiop@gmail.com>
2020-06-08 21:25:10 -07:00
833c4201ad allow user passing relative paths in include_dirs within setuptools.setup (#38264)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38264

Test Plan: Imported from OSS

Differential Revision: D21509277

Pulled By: glaringlee

fbshipit-source-id: b0bc17d375a89b96b1bdacde5987b4f4baa9468e
2020-06-08 11:35:49 -04:00
5579c9e4c2 [v1.5.1] Remove duplicate 'with_gil' declaration.
This gets picked up by mypy as an error in 1.5.1, not sure if it's a different version or setting, but might as well fix.

ghstack-source-id: 016f8d4bdb0444dd8285f1f29bdc8f2db2265c12
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39540
2020-06-08 11:34:31 -04:00
367901e1f9 [v1.5.1 cherry-pick] Work around building onnx in older rocm docker images (#39253) (#39547)
Summary:
Cherry-pick of https://github.com/pytorch/pytorch/pull/39253

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2020-06-04 21:10:57 -07:00
c4903bde61 [1.5.1] Bug fix for argmin/argmax (#39212) 2020-06-03 19:26:54 -04:00
7d2fcd505c [v1.5.1 cherry pick] fix the device inconsistency for import convert_sync_batchnorm (#39344)
* resolve merge conflict

* Remove wrong merge

Co-authored-by: jiej <jiej@nvidia.com>
2020-06-03 17:27:26 -04:00
bb33e5fc85 as_strided : add size and stride length check (#39301)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/39281
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39301

Differential Revision: D21849082

Pulled By: gchanan

fbshipit-source-id: 5d30ef10767c4d35c6cb59c5e6a9acbfe0270a40
2020-06-03 16:52:29 -04:00
c5424a85dc Make _C extension a thin C wrapper (#39422)
Summary:
It just depends on a single `torch_python` library.
C library does not depend on standard C++ library and as result it closes https://github.com/pytorch/pytorch/issues/36941
This is a cherry-pick of https://github.com/pytorch/pytorch/pull/39375 into release/1.5 branch
2020-06-03 07:44:48 -07:00
5d01f87e58 fix asserts in cuda code (#39047)
Summary:
Gets rid of some in-kernel asserts where they can be replaced with static_asserts
Replaces bare in-kernel `assert` in one case with `CUDA_KERNEL_ASSERT` where necessary
replaces host code `assert`s with `TORCH_INTERNAL_ASSERT`
Another group of asserts is in fractional max pooling kernels which should be fixed regardless https://github.com/pytorch/pytorch/issues/39044, the problems there are not just asserts.
I've audited remaining cases of in-kernel asserts, and they are more like `TORCH_INTERNAL_ASSERT`, so they should not happen with invalid user data. I think it's ok to leave them as is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39047

Differential Revision: D21750392

Pulled By: ngimel

fbshipit-source-id: e9417523a2c672284de3515933cb7ed166e56719
2020-06-03 10:01:08 -04:00
82f549b0a8 [v1.5.1][JIT] make torch.unique compilable (#38156)
Summary:
Fix for https://github.com/pytorch/pytorch/issues/37986

Follows the stack in https://github.com/pytorch/pytorch/pull/33783 stack to make functions in `torch/functional.py` resolve to their python implementations. Because the return type of `torch.unique` depends on `return_inverse` and `return_counts` I had to refactor the implementation to use our boolean_dispatch mechanism.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38156

Differential Revision: D21504449

Pulled By: eellison

fbshipit-source-id: 7efb1dff3b5c00655da10168403ac4817286ff59
2020-06-02 12:00:57 -04:00
f306655d49 [v1.5.1] Implement CUDA_KERNEL_ASSERT for MSVC (#39218) (#39288)
* Implement CUDA_KERNEL_ASSERT for MSVC (#39218)

Summary:
Tested locally on CPU/GPU + Debug/Release.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39218

Differential Revision: D21786500

Pulled By: malfet

fbshipit-source-id: 7e871003d3509436952932b5ff3599e36bb8f205

# Conflicts:
#	test/test_cuda.py

* Fix one more conflict
2020-06-01 16:01:27 -07:00
409e42e3b8 Restore thread_local states in continuation thread on RPC servers (#38512)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38512

As we gradually making the RPC non-blocking on server side, the
processing of the same request can yield-run on different threads.
Hence, we need to populate thread_local states (e.g., ctx id) in
the continuation thread.

Fixes #38439

Test Plan: Imported from OSS

Differential Revision: D21583642

Pulled By: mrshenli

fbshipit-source-id: a79bce1cb207fd11f1fa02b08465e49badda65fc
2020-06-01 17:56:25 -04:00
6151405f6c Fix DDP bug in single process multiple device use cases (#36503)
This is a commit to merge #36503 into the 1.5.1 release. It fixes
single-process multi-GPU DDP use cases by explicitly exposing
model replica's parameters to DDP. #36656 is landed into master at 8d6a8d2.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36503

Test Plan: Imported from OSS

Differential Revision: D21179274

Pulled By: mrshenli

fbshipit-source-id: 0afce30ae0ddda753d1e240584a0f80df9aec4c2
2020-06-01 17:56:01 -04:00
d01065e50c fix argmin/argmax behavior wrt autograd 2020-06-01 11:17:47 -04:00
67508dadaa Update FBGEMM hash (#39278)
Includes FBGEMM-1.5.0 hash + cherry-picked https://github.com/pytorch/FBGEMM/pull/381
2020-06-01 08:07:39 -07:00
b54a731c8e [v1.5.1] fix clip_grad_norm to work with parameters on the different devices (#38615)
Summary:
Per title.
We move all the individual gradient norms to a single device before stacking (no-op if all the gradients are already on a single device), `clip_coef` is copied to the device of gradient, which may be suboptimal as there could be multiple copies, but no worse than when we were synchronizing for each parameter. In a simple case of all gradients on a single device, there should be no synchronization.
Also, we no longer error out if parameter list is empty or none of the parameters have gradients, and return 0 total_norm instead.
Fixes https://github.com/pytorch/pytorch/issues/38605
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38615

Reviewed By: ailzhang

Differential Revision: D21634588

Pulled By: ngimel

fbshipit-source-id: ea4d08d4f3445438260052820c7ca285231a156b
2020-05-29 19:12:26 -04:00
3920c1d173 Support paths with spaces when building ninja extension (#38670)
Summary:
Generate the following `build.ninja` file and can successfully build:
```
cflags = -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA '-I/scratch/yuxinwu/space space/detectron2/layers/csrc' -I/private/home/yuxinwu/miniconda3/lib/python3.7
/site-packages/torch/include -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torc
h/include/TH -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include/THC -I/public/apps/cuda/10.1/include -I/private/home/yuxinwu/miniconda3/include/python3.7m -c
post_cflags = -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14
cuda_cflags = -DWITH_CUDA '-I/scratch/yuxinwu/space space/detectron2/layers/csrc' -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include -I/private/home/yuxinwu/miniconda3/li
b/python3.7/site-packages/torch/include/torch/csrc/api/include -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include/TH -I/private/home/yuxinwu/miniconda3/lib/python3.7/site
-packages/torch/include/THC -I/public/apps/cuda/10.1/include -I/private/home/yuxinwu/miniconda3/include/python3.7m -c
cuda_post_cflags = -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options '-fPIC' -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_
OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -ccbin=/public/apps/gcc/7.1.0/bin/gcc -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0
-gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -std=c++14
ldflags =

rule compile
  command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags
  depfile = $out.d
  deps = gcc

rule cuda_compile
  command = $nvcc $cuda_cflags -c $in -o $out $cuda_post_cflags

build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/vision.o: compile /scratch/yuxinwu/space$ space/detectron2/layers/csrc/vision.c$
p
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.o: compile /scratch/yuxinwu/space$ space/de$
ectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.o: compile /scratch/yuxinwu/space$ space/de$
ectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/nms_rotated/nms_rotated_cpu.o: compile /scratch/yuxinwu/space$ space/detectron2$
layers/csrc/nms_rotated/nms_rotated_cpu.cpp
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/ROIAlign/ROIAlign_cpu.o: compile /scratch/yuxinwu/space$ space/detectron2/layer$
/csrc/ROIAlign/ROIAlign_cpu.cpp

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38670

Differential Revision: D21689613

Pulled By: ppwwyyxx

fbshipit-source-id: 1f71b12433e18f6b0c6aad5e1b390b4438654563
2020-05-29 09:48:49 -04:00
8d48a6490a Fix cpp extension build failure if path contains space (#38860)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38860

Differential Revision: D21686335

Pulled By: ezyang

fbshipit-source-id: 2675f4f70b48ae3b58ea597a2b584b446d03c704
2020-05-29 09:48:40 -04:00
17eae0e0cd restore proper cuda assert behavior with DNDEBUG (#38943)
Summary:
Per title. https://github.com/pytorch/pytorch/issues/32719 essentially disabled asserts in cuda kernels in release build. Asserts in cuda kernels are typically used to prevent invalid reads/writes, so without asserts invalid read/writes are silent errors in most cases (sometimes they would still cause "illegal memory access" errors, but because of caching allocator this usually won't happen).
We don't need 2 macros, CUDA_ALWAYS_ASSERT and CUDA_KERNEL_ASSERT because all current asserts in cuda kernels are important to prevent illegal memory accesses, and they should never be disabled.
This PR removes macro CUDA_ALWAYS_ASSERT and instead makes CUDA_KERNEL_ASSERT (that is commonly used in the kernels) an asserttion both in release and debug builds.
Fixes https://github.com/pytorch/pytorch/issues/38771
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38943

Differential Revision: D21723767

Pulled By: ngimel

fbshipit-source-id: d88d8aa1b047b476d5340e69311e65aff4da5074
2020-05-28 19:00:31 -04:00
4a9e45d50e [v1.5.1] Reduction should not coalesce_dimensions when splitting for 32bit indexing (#37788)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/37583
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37788

Differential Revision: D21387325

Pulled By: ngimel

fbshipit-source-id: dbd0f5a23e06d8c4cc68cd21b09b4b0221c4bba7
2020-05-28 19:00:16 -04:00
eb387a0a2b Give _VariableFunctions class a different name, so pickling works (#38033)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38033

Pickles require class names to be actually accessible from the module
in question.  _VariableFunction was not!  This fixes it.

Fixes https://github.com/pytorch/pytorch/issues/37703

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21458068

Pulled By: ezyang

fbshipit-source-id: 2a5ac41f9d1972e300724981b9b4b84364ddc18c
2020-05-28 14:15:35 -04:00
420c6dc43d [v1.5.1] Fixes floordiv dunder registrations (#38695)
Summary:
floordiv was missing a couple dunder registrations, which was causing __ifloordiv__ to not be called when it should. This adds the appropriate registrations and adds a test verifying that the inplace dunders are actually occuring inplace.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38695

Differential Revision: D21633980

Pulled By: mruberry

fbshipit-source-id: a423f5ec327cdc062fd6d9d56abd36fe44ac8198
2020-05-28 14:13:29 -04:00
39f0a2752a fix multinomial kernels to properly advance random states (#38046)
Summary:
Before, multinomial kernels did not advance random states enough, which lead to the same sequence being generated over and over with a shift of 4. This PR fixes that.
Fixes https://github.com/pytorch/pytorch/issues/37403
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38046

Differential Revision: D21516542

Pulled By: ngimel

fbshipit-source-id: 23248a8c3a5c44316c4c35cd71a8c3b5f76c90f2
2020-05-28 14:07:13 -04:00
366026ab10 Fix memory usage increase reported in #38568 (#38674)
Summary:
update to in-place version for bias add in convolution, this saves unnecessary memory allocation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38674

Differential Revision: D21626080

Pulled By: ngimel

fbshipit-source-id: 4f52a3ae2e5aefae372d8ea5188336216f910da3
2020-05-28 13:54:00 -04:00
408e158df9 skip ctc_loss test on Windows (#35069)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35069

It is flaky on Windows only, so disable for now:
https://github.com/pytorch/pytorch/issues/34870

Test Plan: Imported from OSS

Differential Revision: D20544736

Pulled By: suo

fbshipit-source-id: 49e35a4b4f0d1d20157769a4dff22cb4fe86770c
2020-05-28 13:52:47 -04:00
3598dea7ad Pin flake8 to 3.7.9 (#38269)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38269

Test Plan: Imported from OSS

Differential Revision: D21510318

Pulled By: mrshenli

fbshipit-source-id: ac57a0ffed7401c13b7983b8685a8706b8181142
2020-05-27 18:12:10 -04:00
a5b05e8867 Correct Javadoc link (#39039)
Correct Javadoc link to match the 1.4 version: https://github.com/pytorch/pytorch/blob/release/1.4/docs/source/index.rst
2020-05-27 12:41:47 -07:00
7fc2433458 Fix conv non zero padding being applied in wrong dim (#37881)
Summary:
Turns out F.pad takes in dims in reverse order. Fixes https://github.com/pytorch/pytorch/issues/37844
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37881

Differential Revision: D21554011

Pulled By: soumith

fbshipit-source-id: a85a7f6db9f981d915728965903c5c57b6617c93
2020-05-18 11:26:00 -04:00
aba610b9e8 add slope == 0 case into standard leaky relu nn test (#37559)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37559

Test Plan: Imported from OSS

Differential Revision: D21319922

Pulled By: glaringlee

fbshipit-source-id: 212ef8e9d0f0d55a312d282693cd5990e0376c6a
2020-05-05 11:32:04 -04:00
dc30c519dd allow inplace leaky_relu backward calc when slope == 0 (#37453)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37453

to fix (#37345)

Test Plan: Imported from OSS

Differential Revision: D21290911

Pulled By: glaringlee

fbshipit-source-id: 81677e9e195298bc1bde82b77c51f52d58aa5422
2020-05-05 11:32:04 -04:00
9bf2aaa659 Fix cpp extension compile failure on some envs (#37221)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37221

Test Plan: Imported from OSS

Differential Revision: D21226873

Pulled By: glaringlee

fbshipit-source-id: 0a390bbeaf153ee5ec355943f92c2dbcc5e04b59
2020-05-05 11:32:04 -04:00
25621d05df Don't use NonVariableTypeMode in custom ops (#37355)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37355

Potentially fixes https://github.com/pytorch/pytorch/issues/37306
ghstack-source-id: 103073537

Test Plan: waitforsandcastle

Differential Revision: D21261946

fbshipit-source-id: 454652b528dcf942bec5438f89201822de40bbf0
2020-04-29 21:10:19 -07:00
96f218d7dd Add experimental tag 2020-04-21 10:12:52 -07:00
f810011c40 Update persons_of_interest.rst (#37001)
Co-authored-by: Joseph Spisak <spisakjo@gmail.com>
2020-04-21 12:13:52 -04:00
5f8bb352c3 Move rpc.rst back to the source folder to preserve existing doc URLs (#36675) (#36732)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36675

Test Plan: Imported from OSS

Differential Revision: D21048628

Pulled By: mrshenli

fbshipit-source-id: 3cb1b35ddc1f40c673b0db9048d77dfa024be1e7

Co-authored-by: Shen Li <shenli@devfair017.maas>
2020-04-21 07:55:53 -07:00
52469a512b run the simple executor for jit tests by default, add profiling jobs for fusion tests (#36933)
* run the simple executor for jit tests by default, add profiling jobs for fusion tests

* fix flake8 warnings

* fix ci failures

* fix test_determination.py
2020-04-21 10:52:39 -04:00
c56adee862 Add new C++ landing page and update in index.rst (#36972)
* Add cpp landing page

* Update C++ to go to cpp_index.rst
2020-04-21 00:35:45 -07:00
4ff3872a20 [v.1.5.0] Ensure linearIndex of advanced indexing backwards is contig… (#36962)
* [v.1.5.0] Ensure linearIndex of advanced indexing backwards is contiguous.

This is a more straightforward solution to the problem than https://github.com/pytorch/pytorch/pull/36957; I don't know about the relative performance.

Fixes: #36956

ghstack-source-id: 43c48eaee7232cd3ed2b108edbbee24c11e8321a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36959

* Fix test.
2020-04-20 19:59:38 -04:00
d7bdffabed [v1.5 Patch] Disable flaky test_backward_node_failure_python_udf test in dist_autograd_test.py
This test is flaky on 1.5 release branch. Below is a failed CI run:
https://app.circleci.com/pipelines/github/pytorch/pytorch/157331/workflows/b3e0bd6b-6c55-4d14-bde8-96b8345cf9e2/jobs/5190025
2020-04-20 14:25:32 -04:00
9ba0a89489 Overwrite bazel if /usr/bin/bazel already exists. 2020-04-20 14:24:42 -04:00
c164fbccb1 Add TorchServe 2020-04-19 21:44:32 -07:00
9a51e477ac make simple executor the default for OSS 2020-04-17 20:00:53 -04:00
375566fb78 Handle log_sigmoid(out=) properly.
Fixes: https://github.com/pytorch/pytorch/issues/36499

Changes:
1) Moves some bindings from LegacyNNDefinitions to Activation so all of log_sigmoid lives together
2) Properly handle non-contiguous / incorrectly sized out parameters to log_sigmoid.  This is done by copying from a buffer if necessary.
3) Require that the internal buffer (different from 2)) is contiguous.  This should always be the case because it's always created internally.
4) Adds a test
2020-04-17 15:43:35 -04:00
dfdc788076 Fix incorrect merge of #34136.
If you look at https://github.com/pytorch/pytorch/pull/34136/, you will notice a commit (80c15c087c) that didn't get merged.
This is to address that, to avoid crashing on remainder when the rhs is 0.

ghstack-source-id: e805e290bd4b7d3165fd78d4e537e56e4c459162
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36760
2020-04-17 15:42:20 -04:00
9e6ef814cc [v1.5.0] Print keyword-only arg symbol for function signature suggestions.
Fixes: https://github.com/pytorch/pytorch/issues/36773

ghstack-source-id: 6b08839ffc8b228e9533a47b7fd034367fc93dec
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36780
2020-04-17 15:42:04 -04:00
31461800f6 Migrate release CI jobs to CircleCI for Windows (v1.5 Release) (#36658)
* Migrate release CI jobs to CircleCI for Windows (v1.5 Release)

* Fix comments
2020-04-16 12:18:27 -04:00
Jie
e741839b0e Fixing SyncBN dgrad (#36382)
Summary:
Previous PR https://github.com/pytorch/pytorch/issues/22248 which provides support for variadic batch size across processes doesn't account the mean_dy/mean_dy_xmu on backward path, which produces wrong dgrad.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36382

Differential Revision: D20984446

Pulled By: ngimel

fbshipit-source-id: 80066eee83760b275d61e2cdd4e86facca5577fd
2020-04-16 10:58:16 -04:00
8eb39c9cfd [CI] fix test_distributed for python 3.8+ (#36542)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36542

Python 3.8 set the default multiprocessing start mode to spawn, but we
need fork in these tests, otherwise there are some pickling issues.
Test: Ensure that these tests succeed when run with python 3.8
ghstack-source-id: 102093824

Test Plan: Ensure success with python 3.8

Differential Revision: D21007753

fbshipit-source-id: 4b39844c6ba76a53293c0dfde7c98ec5a78fe113
2020-04-16 10:54:57 -04:00
b5e4c0993d Add a warning for Single-Process Multi-GPU DDP 2020-04-15 19:08:24 -04:00
6bc6832bda fix syntax 2020-04-15 19:00:11 -04:00
593594839c Update docs for 1.5 to remove Python 2 references (#36338)
* Remove python 2 from jit.rst

* Remove python 2 from jit_language_reference.rst

* Remove python 2 from multiprocessing.rst

* Remove python 2 from named_tensor.rst

* Remove python 2 from multiprocessing.rst

* Remove python 2 from windows.rst

* Update multiprocessing.rst

* Remove python 2 from notes/multiprocessing.rst
2020-04-14 15:57:02 -07:00
cf65c8ef15 Fix torch.min docs (#36319)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36319

On the way to resolving #35216.
This is a fix for just the master branch but once this goes in,
I'll send a cherry-pick to release/1.5

The problem is that we were not calling `format` on a string that had
templates (e.g., '{input}', '{dim}'). This change makes it so that we
call format on the entire docstring for `torch.min`.

Test Plan:
- The `torch.max` docs are OK:
https://pytorch.org/docs/master/torch.html#torch.max and don't need
changing.
- `torch.min` docs, before this change: see second screenshot in #35216.
- after this change: <Insert link here on github>

![image](https://user-images.githubusercontent.com/5652049/78921702-4e2acc00-7a63-11ea-9ea0-89636ff6fb0a.png)

Differential Revision: D20946702

Pulled By: zou3519

fbshipit-source-id: a1a28707e41136a9bb170c8a4191786cf037a0c2
2020-04-13 19:03:03 -04:00
ca0dc1fcdc skip test in 3.8 because of inconsistent regex 2020-04-10 11:06:47 -07:00
b58f89b2e4 Use counter instead of vector of futures in _parallel_run (#36159) (#36334)
Summary:
This should be faster than allocating one mutex, flag and conditional variable per task.

Using `std::atomic<size_t>` to count remaing tasks is not sufficient,
because modification of remaining counter and signalling conditional variable must happen atomically,
otherwise `wait()` might get invoked after `notify_one()` was called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36159

Test Plan: CI

Differential Revision: D20905411

Pulled By: malfet

fbshipit-source-id: facaf599693649c3f43edafc49f369e90d2f60de
(cherry picked from commit 986a8fdd6a18d9110f8bde59361967139450966b)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-09 14:08:57 -07:00
87b6685c6b repr and _*state_dict for qRNN (#31540)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31540

Fixes #31468

Test Plan: Imported from OSS

Differential Revision: D19205894

Pulled By: z-a-f

fbshipit-source-id: 80c36f74aa20a125ea8d74a54e9905576f1bc6d7
2020-04-09 12:26:56 -04:00
f746f1b746 Revert "Avoid clone for sparse tensors during accumulation of grads. (#33427)"
This reverts commit b185359fb4ba4dcb0c048fd1d049da23eff88b27.
2020-04-09 11:33:55 -04:00
1379415150 Revert "AccumulateGrad: ensure sparse tensor indices and values refcount is always 1 (#34559)"
This reverts commit 2ce9513b0c8894987f6d42bfb57ff95b22e32c95.
2020-04-09 11:33:55 -04:00
7d638d2596 [v1.5.0] fix is_float_scale_factor warning (python and c++) (#36274)
* fix is_float_scale_factor warning

* fix python impl

Co-authored-by: Robin Lobel <divide@divideconcept.net>
Co-authored-by: Will Feng <willfeng@fb.com>
2020-04-09 11:31:13 -04:00
bad005d331 .circleci: Add binary builds/tests to run on release branches (#36283)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-04-08 16:37:24 -07:00
16d8a52407 [pytorch] Add error when PyTorch used with Python 2 (#36151)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36151

Python 2 has reached end-of-life and is no longer supported by PyTorch. To avoid confusing behavior when trying to use PyTorch with Python 2, detect this case early and fail with a clear message.  This commit covers `import torch` only and not C++  for now.

Test Plan: waitforsandcastle

Reviewed By: dreiss

Differential Revision: D20894381

fbshipit-source-id: a1073b7a648e07cf10cda5a99a2cf4eee5a89230
2020-04-08 18:55:58 -04:00
a33b264588 Revert "Update docs for 1.5 to remove Python 2 references (#36116)"
This reverts commit 63dcd9eccc90136afdfb5d8130077ff1e917ba2e.
2020-04-08 18:51:13 -04:00
3a67e00889 [1.5 cherrypick] C++ Adam optimizer - corrected messages for check of default options (#36245)
* Corrected messages for check of default options

* Added 0<= betas < 1 range check, match python messages for check of betas

Co-authored-by: meganset <meganset@gmail.com>
2020-04-08 18:06:16 -04:00
6bd039551d Remove determine_from from test/run_test.py (#36256)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-04-08 14:58:23 -07:00
b6c3058d61 Exclude torch/csrc/cuda/*nccl* from clang-tidy (#36251)
Since workflow configures pytorch with 'USE_NCCL` set to 0, we can not tidy those files

(cherry picked from commit e172a6ef920b6838b67eb8f0020d78031df8cde5)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-08 13:37:16 -07:00
ed908b4fbc [release/1.5] Move all nccl from torch_python to torch_cuda (#36229)
* Remote dead code

`THCPModule_useNccl()` doesn't seem to be used anywhere

* Move all nccl calls from `torch_python` to `torch_cuda`

Because `torch_python` is supposed to be thin wrapper around torch

This ensures API parity between C++ and Python, as well as reduces `torch_python` binary size

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-08 10:39:20 -07:00
b66e0af58b s/repo.continuum.io/repo.anaconda.com/
Followup after  https://github.com/pytorch/pytorch/pull/36201

Per https://github.com/conda/conda/issues/6886  `repo.anaconda.com` should have been used since Feb 2019

Test Plan: CI
2020-04-08 13:05:04 -04:00
bf8a5ede96 [ONNX] fix size for opset 11 (#35984)
Summary:
Fixing size, as the aten op has updated to support 0 inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35984

Reviewed By: hl475

Differential Revision: D20858214

Pulled By: houseroad

fbshipit-source-id: 8ad0a0174a569455e89da6798eed403c8b162a47
2020-04-08 11:50:59 -04:00
c2bc5c56c5 Use repo.anaconda.com instead of repo.continuum.io (#36201)
Summary:
Per https://github.com/conda/conda/issues/6886  `repo.anaconda.com` should have been used since Feb 2019
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36201

Test Plan: CI

Differential Revision: D20910667

Pulled By: malfet

fbshipit-source-id: 3a191e2cae293e6f96dbb323853e84c07cd7aabc
2020-04-08 08:39:52 -07:00
db3c3ed662 Move test to test_jit_py3.py 2020-04-08 11:15:33 -04:00
9de4770bbd [v1.5.0] Group libraries in TOC and add PyTorch Elastic
Move XLA out of Notes and group with other libraries. Also adds link to PyTorch Elastic.
2020-04-08 11:08:39 -04:00
911a2a6b63 [BugFix] Fix compare_exchange_weak in DispatchStub.h (#35794)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35794

### Summary

As PyTorch has gone in production on iOS for about week, we've spotted a few crashes (90 out of 20.3k ) related to DispatchStub.h. The major part of the crash log is pasted below (full crash information can be found at `bunnylol logview 1d285dc9172c877b679d0f8539da58f0`):

```
FBCameraFramework void at::native::DispatchStub<void (*)(at::TensorIterator&, c10::Scalar), at::native::add_stub>::operator()<at::TensorIterator&, c10::Scalar&>(c10::DeviceType, at::TensorIterator&, c10::Scalar&)(DispatchStub.h:0)
+FBCameraFramework at::native::add(at::Tensor const&, at::Tensor const&, c10::Scalar)(BinaryOps.cpp:53)
+FBCameraFramework at::CPUType::add_Tensor(at::Tensor const&, at::Tensor const&, c10::Scalar)(CPUType.cpp:55)
+FBCameraFramework at::add(at::Tensor const&, at::Tensor const&, c10::Scalar)(Functions.h:1805)
+FBCameraFramework [inlined] c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::intrusive_ptr(c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>&&)(intrusive_ptr.h:0)
+FBCameraFramework [inlined] c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::intrusive_ptr(c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>&&)(intrusive_ptr.h:221)
+FBCameraFramework [inlined] at::Tensor::Tensor(at::Tensor&&)(TensorBody.h:93)
+FBCameraFramework [inlined] at::Tensor::Tensor(at::Tensor&&)(TensorBody.h:93)
+FBCameraFramework c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >::operator()(at::Tensor, at::Tensor, c10::Scalar)(kernel_lambda.h:23)
+FBCameraFramework [inlined] c10::guts::infer_function_traits<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> > >::type::return_type c10::detail::call_functor_with_args_from_stack_<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >, false, 0ul, 1ul, 2ul>(c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*, std::__1::vector<c10::IValue, c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*::allocator<std::__1::vector> >*, c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*::integer_sequence<unsigned long, 0ul, 1ul, 2ul>)(kernel_functor.h:210)
+FBCameraFramework [inlined] c10::guts::infer_function_traits<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> > >::type::return_type c10::detail::call_functor_with_args_from_stack<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >, false>(c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*, std::__1::vector<c10::IValue, c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*::allocator<std::__1::vector> >*)(kernel_functor.h:218)
+FBCameraFramework c10::detail::make_boxed_from_unboxed_functor<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >, false, void>::call(c10::OperatorKernel*, c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*)(kernel_functor.h:250)
+FBCameraFramework [inlined] (anonymous namespace)::variable_fallback_kernel(c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*)(VariableFallbackKernel.cpp:32)
+FBCameraFramework void c10::KernelFunction::make_boxed_function<&((anonymous namespace)::variable_fallback_kernel(c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*))>(c10::OperatorKernel*, c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*)(KernelFunction_impl.h:21)
+FBCameraFramework torch::jit::mobile::InterpreterState::run(std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >&)(interpreter.cpp:0)
+FBCameraFramework torch::jit::mobile::Function::run(std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >&) const(function.cpp:59)
+FBCameraFramework torch::jit::mobile::Module::run_method(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >)(module.cpp:51)
+FBCameraFramework [inlined] torch::jit::mobile::Module::forward(std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >)(module.h:28)
```
The problem is `compare_exchange_weak` is not guaranteed to be successful in one shot, as described in  [C++ Concurrency in Action (2nd Edition)](https://livebook.manning.com/book/c-plus-plus-concurrency-in-action-second-edition/chapter-5/79). This might result in `cpu_dispatch_ptr` being null pointer in concurrent situations, thus leading to the crash. As suggested in the book, due to spurious failure, the `compare_exchange_weak` is typically used in a loop.  There is also a [stackoverflow discussion](https://stackoverflow.com/questions/25199838/understanding-stdatomiccompare-exchange-weak-in-c11) about this. Feel free to drop comments below if there is a better option.

### The original PR

- [Enhance DispatchStub to be thread safe from a TSAN point of view](https://github.com/pytorch/pytorch/pull/32148)

### Test Plan

- Keep observing the crash reports in QE

Test Plan: Imported from OSS

Differential Revision: D20808751

Pulled By: xta0

fbshipit-source-id: 52f5c865b70c59b332ef9f0865315e76d97f6eaa
2020-04-08 10:56:07 -04:00
60375bcfdf [1.5.0] Attempt to fix the pytorch_cpp_doc_push build by pinning breathe. 2020-04-08 10:54:56 -04:00
63dcd9eccc Update docs for 1.5 to remove Python 2 references (#36116) 2020-04-07 16:03:44 -07:00
e8236d2ed4 fix max_pool2d cuda version Dimension out of range issue(#36046) (#36095)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36095

Test Plan: Imported from OSS

Differential Revision: D20876733

Pulled By: glaringlee

fbshipit-source-id: a2b92fd2dd0254c5443af469e3fb2faa2323e5c9
2020-04-07 18:52:21 -04:00
0058b1bb7e [1.5 cherrypick][JIT] Fix fake_range() 2020-04-07 18:47:22 -04:00
419283e291 Improve C++ API autograd and indexing docs (#35777)
Summary:
This PR adds docs for the following components:
1. Tensor autograd APIs (such as `is_leaf` / `backward` / `detach` / `detach_` / `retain_grad` / `grad` / `register_hook` / `remove_hook`)
2. Autograd APIs: `torch::autograd::backward` / `grad` / `Function` / `AutogradContext`, `torch::NoGradGuard` / `torch::AutoGradMode`
3. Tensor indexing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35777

Differential Revision: D20810616

Pulled By: yf225

fbshipit-source-id: 60526ec0c5b051021901d89bc3b56861c68758e8
2020-04-07 18:37:27 -04:00
0e6f6ba218 [pytorch] Remove python2 support from tests and torch.jit (#35042) (#36162)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35042

Removing python2 tests and some compat code in torch.jit. Check if dependent projects and external tests have any issues after these changes.

Test Plan: waitforsandcastle

Reviewed By: suo, seemethere

Differential Revision: D18942633

fbshipit-source-id: d76cc41ff20bee147dd8d44d70563c10d8a95a35
(cherry picked from commit 8240db11e193b0334a60a33d9fc907ebc6ba6987)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Orion Reblitz-Richardson <orionr@fb.com>
2020-04-07 13:55:50 -07:00
ec8dbaf920 Add more alternative filters in places people forgot to add them. (#36082) (#36148)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36082

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20874618

Pulled By: ezyang

fbshipit-source-id: b6f12100a247564428eb7272f803a03c9cad3a97
(cherry picked from commit 449a4ca3408774ed961f1702ca31a549f5818b80)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Edward Yang <ezyang@fb.com>
2020-04-07 09:59:33 -07:00
7e168d134f Pin Sphinx to 2.4.4 (take 2), fix docs CIs (#36072)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36072

Update to https://github.com/pytorch/pytorch/pull/36065/ which was
almost there

Test Plan: - Wait for CI

Differential Revision: D20871661

Pulled By: zou3519

fbshipit-source-id: 2bf5ce382e879aafd232700ff1c0d61fc17ea52d
2020-04-07 10:54:36 -04:00
6daae58871 Remove __nv_relfatbin section from nccl_static library (#35907)
Test Plan: CI

(cherry picked from commit 04e06b419990328157f0e2108a95b2848f66d75f)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-06 16:57:03 -07:00
fee0ff1bf6 May fix TopKTypeConfig<at::Half> without an additional Bitfield specialization 2020-04-06 19:41:17 -04:00
deaf3b65cf Compile THCTensorTopK per dtype.
ROCm builds fail inconsistently on this file by timing out.

ghstack-source-id: 4a8f22731aa82c02d464a8cba522e856afbe49b8
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36074
2020-04-06 19:41:17 -04:00
dca9c2501d Revert "Revert "Fix handling of non-finite values in topk (#35253)" (#35582)"
This reverts commit dacdbc22d195f80e0b529b4e9111c8ca9a172914.
2020-04-06 19:41:17 -04:00
842cd47416 Refactor and turn on C++ API parity test in CI
gh-metadata: pytorch pytorch 35190 gh/yf225/106/head
2020-04-06 15:40:35 -04:00
a30b49085c Move NewModuleTest and NewCriterionTest from test_nn.py to common_nn.py (#35189)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35189

Test Plan: Imported from OSS

Differential Revision: D20588197

Pulled By: yf225

fbshipit-source-id: 5a28159b653895678c250cbc0c1ddd51bc7a3123
2020-04-06 15:40:35 -04:00
82626f8ad9 More generic dedupe MKL fix (#35966)
* Stop linking against MKL

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Perform test for build size

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* fixup

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* One more MSVC fix

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Revert "Perform test for build size"

This reverts commit 8b5ed8eac81cc880b5cedb33cb3b86f584abacb7.
2020-04-06 11:50:48 -07:00
27fddfda4f Use std::abs instead of abs in lbfgs.cpp (#35974)
Summary:
This supersedes https://github.com/pytorch/pytorch/pull/35698.

`abs` is a C-style function that takes only integral argument
`std::abs` is polymorphic and can be applied to both integral and floating point types

This PR also increases `kBatchSize` in `test_optimizer_xor` function in `test/cpp/api/optim.cpp` to fix `OptimTest.XORConvergence_LBFGS` failure under ASAN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35974

Test Plan: CI

Reviewed By: pbelevich

Differential Revision: D20853570

Pulled By: yf225

fbshipit-source-id: 6135588df2426c5b974e4e097b416955d1907bd4
2020-04-06 14:50:18 -04:00
7ecf6a1c10 [release/1.5] Bump libtorch to 3.7, remove python2 (#36080)
* .cirlceci: Remove Python 2.7 builds, switch libtorch to 3.7

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

* .circleci: Bump libtorch builds to 3.7

The image is actually using Python 3.7.2 so we should reflect that
within our circleci configs

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
(cherry picked from commit b3f2572aaf83d1f5383369187f6263e6f926103b)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-04-06 11:10:48 -07:00
beb07a44c4 Ports integer division callsite cleanup 2020-04-02 20:17:31 -04:00
a01c3bd1fe [BC] Fix the BC test for 1.5 (#35733)
* [BC] Fix the BC test for 1.5

* Skip RRef

* Skip more

* Skip more

* Fix whitelist

* Fix whitelist
2020-04-02 19:36:18 -04:00
ffd010f8a0 Make test_leaky_relu_inplace_with_neg_slope device-generic and skipIfRocm. (#35816)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35816

Fixes https://github.com/pytorch/pytorch/issues/35689.

Test Plan: Imported from OSS

Differential Revision: D20796656

Pulled By: gchanan

fbshipit-source-id: 474790fe07899d9944644f6b3d7a15db1c2b96db
2020-04-02 17:05:23 -04:00
8ad59f03a8 Skip ROCm test in test/test_cpp_extensions_aot.py (#35838)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35838

It may be flaky.

Test Plan: Imported from OSS

Differential Revision: D20807409

Pulled By: gchanan

fbshipit-source-id: f085d05bcb6a04d304f3cd048c38d2e8453125d6
2020-04-02 17:04:54 -04:00
ed3640df68 Fix another case of float2::x and float2::y may not be the same on ROCm (#35785)
Summary:
This is another case of the issue fixed in https://github.com/pytorch/pytorch/pull/35783. Mirroring 35786.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35785

Differential Revision: D20800317

Pulled By: ezyang

fbshipit-source-id: de5f32839755d5ff5aefff8408df69adbab4d0a1
2020-04-02 17:01:27 -04:00
fb88942f6c Fix typo 2020-04-02 13:53:13 -04:00
5d05c51887 Refactored rpc docs (#35109)
Summary:
Reorganize as per jlin27 's comments. Screenshots added in comments.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35109

Differential Revision: D20788774

Pulled By: rohan-varma

fbshipit-source-id: 7d64be70ef76ed6ff303d05d39c338293c234766
2020-04-02 13:53:13 -04:00
df5986fbf3 [1.5 Release] Disabled complex tensor construction (#35579)
* disabled complex tensor construction

* minor

* doc fix

* added docs back and updated complex dtype check

* removed test_complex.py

* removed complexfloat reg test

* debug
2020-04-01 11:11:05 -04:00
165403f614 [v1.5.0] float2::x and float2::y may not be the same as float on ROCm (#35593)
Summary:
This causes ambiguity and can be triggered sometimes (e.g., by https://github.com/pytorch/pytorch/issues/35217). Explicitly convert them to float.

    error: conditional expression is ambiguous; 'const
    hip_impl::Scalar_accessor<float, Native_vec_, 0>' can be converted to
    'float' and vice versa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35593

Differential Revision: D20735663

Pulled By: ezyang

fbshipit-source-id: ae6a38a08e59821bae13eb0b9f9bdf21a008d5c0
2020-03-31 19:58:40 -04:00
fbf18c34ff ports disabling imag 2020-03-31 18:55:45 -04:00
84f806c821 ports real and imag fixes 2020-03-31 13:34:39 -04:00
94139a7d95 Add warnings that amp is incomplete in 1.5 2020-03-31 10:49:45 -04:00
75e36186b2 [v1.5.0] Fix Caffe2 mobile compilation
Ports #35288
2020-03-30 17:17:59 -04:00
f4a0b406dd Warn a known autograd issue on XLA backend. 2020-03-30 17:16:39 -04:00
e884e720f0 [Windows] make torch_cuda's forced link also work for CMake
Was only working for ninja
2020-03-30 17:13:51 -04:00
dacdbc22d1 Revert "Fix handling of non-finite values in topk (#35253)" (#35582)
This reverts commit b12579da5398ff23b421332e21e18dc619a0b960.

This patch in-and-of itself looks fine, but it's causing some AMP tests to fail.
2020-03-27 17:44:03 -07:00
2a789cd0e0 [C++ API Parity] [Optimizers] Merged Optimizer and LossClosureOptimizer (#34957)
Summary:
1. Removed LossClosureOptimizer, and merged Optimizer into OptimizerBase (and renamed the merged class to Optimizer)
2. Merged the LBFGS-specific serialize test function and the generic test_serialize_optimizer function.
3. BC-compatibility serialization test for LBFGS
4. Removed mentions of parameters_ in optimizer.cpp, de-virtualize all functions
5. Made defaults_ optional argument in all optimizers except SGD

**TODO**: add BC-breaking notes for this PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34957

Test Plan: Imported from GitHub, without a `Test Plan:` line.

Differential Revision: D20678162

Pulled By: yf225

fbshipit-source-id: 74e062e42d86dc118f0fbaddd794e438b2eaf35a
2020-03-27 12:30:29 -04:00
f9b010f399 enforce rref JIT pickling to be in the scope of rpc calls (#34689)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34689

rref JIT pickling is only allowed inside rpc calls. enforcing this by adding a thread local variable isInRpcCall and set it as True when converting rpc requests or responses to message, before calling JIT::pickle(). Inside JIT::pickle(), it allowes to pickle RRef only when the isInRpcCall is true.
ghstack-source-id: 100481001

Test Plan: unit tests

Differential Revision: D20429826

fbshipit-source-id: dbc04612ed15de5d6c7d75a4732041ccd4ef3f8c
2020-03-27 11:13:01 -04:00
55614ff306 Enforce rref python pickling to be in the scope of RPC call (#34755)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34755

This diff disallows to use python pickler to pickle RRef. RRef can only be pickled in the scope of RPC call using _InternalRPCPickler.
ghstack-source-id: 100481337

Test Plan: unit tests

Differential Revision: D20453806

fbshipit-source-id: ebd4115ee01457ba6958cde805afd0a87c686612
2020-03-27 11:12:36 -04:00
b12579da53 Fix handling of non-finite values in topk (#35253)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/34191

`at::native::radixSelect` basically uses integer comparison which creates a defined ordering of non-finite float values. This isn't compatible with IEEE float comparison, so mixing the two leads to unwritten values in the output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35253

Differential Revision: D20645554

Pulled By: ezyang

fbshipit-source-id: 651bcb1742ed67086ec89cc318d862caae65b981
2020-03-27 10:53:18 -04:00
920e3eb761 Making sure all tensors in torch.cat sequence have the same dtype. (#35150)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35150

Fixes #35014

Test Plan: Imported from OSS

Differential Revision: D20578589

Pulled By: z-a-f

fbshipit-source-id: edeaef133d1cf5152dcbafab2b969f1424ee2836
2020-03-26 16:49:11 -04:00
bec01e755a Renaming: MultiLabelMarginLossFuncOptions -> MultilabelMarginLossFuncOptions, MultiLabelSoftMarginLossFuncOptions -> MultilabelSoftMarginLossFuncOptions
gh-metadata: pytorch pytorch 35163 gh/yf225/104/head
2020-03-26 14:31:21 -04:00
6a880e1bc9 Add inplace tests for several torch::nn modules / functionals
gh-metadata: pytorch pytorch 35147 gh/yf225/101/head
2020-03-26 14:31:21 -04:00
fa86e32a4e Fix F::interpolate and torch::nn::Upsample implementation
gh-metadata: pytorch pytorch 35025 gh/yf225/100/head
2020-03-26 14:31:21 -04:00
5aabaf2b18 Fix fractional_max_pool3d_with_indices implementation
gh-metadata: pytorch pytorch 35024 gh/yf225/99/head
2020-03-26 14:31:21 -04:00
4a707e8f95 Fix Conv and ConvTranspose implementation
gh-metadata: pytorch pytorch 35023 gh/yf225/98/head
2020-03-26 14:31:21 -04:00
db127b21eb Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation
gh-metadata: pytorch pytorch 35022 gh/yf225/97/head
2020-03-26 14:31:21 -04:00
45313cd9e1 [1.5 cherrypick] [C++ API Parity] Add xor_convergence test for lbfgs (#35440)
* add xor_convergence test for lbfgs

* increased batchsize to 6

* minor

* increased batch size

Co-authored-by: anjali411 <chourdiaanjali123@gmail.com>
2020-03-26 14:22:55 -04:00
df531973e1 [ONNX] update producer version (#35059)
Summary:
Updating producer version
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35059

Reviewed By: hl475

Differential Revision: D20585173

Pulled By: houseroad

fbshipit-source-id: af0c4e3860beb899548466ea99be2050150f905d
2020-03-26 13:56:57 -04:00
9e3c577caa Fix torch.mm export to ONNX (#34661)
Summary:
torch.mm is exported as Gemm operator in ONNX and both have an optional input: out.
out is considered as broadcastable in Gemm and during graph optimization the optional input (out) would get selected. Since out is optional, in case when it is not defined in torch.mm that would result in the following exception:
IndexError: vector::_M_range_check: __n (which is 2) >= this->size() (which is 2)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34661

Reviewed By: hl475

Differential Revision: D20496398

Pulled By: houseroad

fbshipit-source-id: e677aef0a6aefb1f83a54033153aaabe5c23bc0f
2020-03-26 13:55:18 -04:00
5357b8e4d9 .circleci: Remove python 2 binary builds (#35475)
Python 2 is EOL soon so we're dropping support as of v1.5.0

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-26 10:50:34 -07:00
0f23d23db4 Add docs to resize_ and resize_as_ (#35392)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35392

Test Plan: Imported from OSS

Differential Revision: D20650097

Pulled By: VitalyFedyunin

fbshipit-source-id: cff4f555d355dfee42394f6070fe3e466949aeb5
2020-03-26 12:23:04 -04:00
7c24280a3f Add docs about memory format (#34818)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34818

Test Plan: Imported from OSS

Differential Revision: D20601336

Pulled By: VitalyFedyunin

fbshipit-source-id: d34ad226be950bf134c6b383a4810ea6aa75599e
2020-03-26 12:23:04 -04:00
7100f0be13 ports true_divide method variant to 1.5 (#35390)
Co-authored-by: Mike Ruberry <mruberry@devfair044.maas>
2020-03-26 11:50:00 -04:00
f7f611c2ec torch.cat: disallow inputs on different devices (#35053)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/35045
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35053

Differential Revision: D20545517

Pulled By: ngimel

fbshipit-source-id: eee3fc87c7e578ff44d69d5ce6f92a8f496fa97b
2020-03-26 10:58:33 -04:00
acb982d0b0 Add TORCH_CUDA_API to FilterDescriptor (#35131)
Summary:
`FilterDescriptor` is missing a `TORCH_CUDA_API`, so this symbol is not exported from `torch_cuda.so`, and users could have trouble building cpp_extension when using cudnn.

cc: ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35131

Differential Revision: D20604439

Pulled By: ezyang

fbshipit-source-id: c57414fc8a9df9cb1e910e2ec0a48cfdbe7d1779
2020-03-26 10:57:59 -04:00
aa8b7ad989 Fix thread_local initializtion in C10 WarningHandler. (#34822)
Summary:
The Windows + MSVC-specific bug discussed here: https://github.com/pytorch/pytorch/issues/19394 and fixed here: https://github.com/pytorch/pytorch/issues/22405 still appears in C10's warning handler class. This results in a crash if a user attempts to run code which would print a warning when that code is running inside a thread created by a DLL. This PR applies a similar fix to that of https://github.com/pytorch/pytorch/issues/22405.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34822

Test Plan:
* Tested locally by running CodecverseWorkbench Unity app with patched build.
* CI

Differential Revision: D20627971

Pulled By: HapeMask

fbshipit-source-id: 64dfca531ed7eebbe9e0ecac3d3d4d025c683883
2020-03-25 20:02:45 -07:00
2d403ed8be Add python excepiton handling catch block to resolve deadlock (#35283) (#35402)
Summary:
Note: This PR has been merged into master after the 1.5.0 branch cut at
36e3c00 (see original PR: #35283). This PR is to cherry pick it into 1.5.

---- Original Commit Description Follows ---

Pull Request resolved: https://github.com/pytorch/pytorch/pull/35283

https://github.com/pytorch/pytorch/issues/34260

Deadlock on destructing py::error_already_set.

There are request callback impls in Python, where Python exceptions
could be thrown. For releasing Python exception py::objects, GIL must
be held.

Differential Revision: D7753253

fbshipit-source-id: 4bfaaaf027e4254f5e3fedaca80228c8b4282e39

Co-authored-by: Shihao Xu <shihaoxu@fb.com>
2020-03-25 17:05:18 -07:00
c25a664f77 Trying pinning pyyaml and setuptools on macos to older version (#35296) (#35400)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35296

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20624843

Pulled By: ezyang

fbshipit-source-id: 9028f1dd62d0c25e916eb4927fd8dd6acbd88886
(cherry picked from commit 3f896ef7435201b2c3f51851f80dc674dfadfd40)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Edward Yang <ezyang@fb.com>
2020-03-25 16:04:06 -07:00
ab660ae394 Fix Tensor __radd__ type hint issue (#35231)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35231

Fixes #35213

(Note: this ignores all push blocking failures!)

Test Plan: `mypy -c "import torch; ten = torch.tensor([1.0, 2.0, 3.0]); print(7 + ten)"` should not produce any warnings

Differential Revision: D20604924

Pulled By: pbelevich

fbshipit-source-id: 53a293a99b3f2ab6ca5516b31f3a92f67eb67a39
2020-03-25 18:37:07 -04:00
3c476a8858 PyTorch should always depend on future (#35057) (#35412)
Summary:
Because `past` is used in `caffe2.python.core`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35057

Test Plan: CI

Differential Revision: D20547042

Pulled By: malfet

fbshipit-source-id: cad2123c7b88271fea37f21e616df551075383a8
(cherry picked from commit d3f5045bf55e4a5dfb53ceccb6130e4e408cf466)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-03-25 14:54:26 -07:00
651fa88645 Load all DLLs in the lib directory for Windows (v.1.5.0) 2020-03-25 16:23:22 -04:00
565c3400b4 Update view op list. 2020-03-25 16:14:08 -04:00
3e332778b4 non blocking copy from #35144 2020-03-25 14:54:41 -04:00
f598738920 UBSAN deliberate float to int fix 2020-03-25 11:24:30 -04:00
4c6bfa0187 [1.5 cherrypick][JIT] Namespaces for TorchBind 2020-03-25 11:23:03 -04:00
6f25003682 [1.5 cherrypick][JIT] BC shim for TorchBind classes 2020-03-25 11:23:03 -04:00
752c129fa1 Update docs about DP and DDP for CUDA (#35063)
Summary:
We should recommend DDP instead of DP. Hope we can also cherry-pick this for 1.5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35063

Differential Revision: D20549621

Pulled By: ngimel

fbshipit-source-id: 86b1b2134664065cc6070ea4212895f993eaf543
2020-03-25 11:18:17 -04:00
fb59a9caca .circleci: Change default CUDA for pip, cu101 -> cu102 (#35310)
So that packages are correctly marked when looking through the html
pages.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-24 15:05:25 -07:00
4d30dbdd35 Pin XLA CI to use r1.5 release branch. 2020-03-24 17:54:31 -04:00
b7f4a1a397 .circleci: Switch master to release/1.5 for git merge (#35320)
Since we're on a release branch we'll need to fix this up to do a merge
for release/1.5 instead of master.

TODO: In the future we should have a dynamic way of gathering the base
branch for PRs.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-24 14:52:24 -07:00
afda1dc943 Revert "Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation"
This reverts commit e2184ba08352d730d7165455c14f783b3e54082a.
2020-03-24 14:09:18 -04:00
d506ae882b Revert "Fix Conv and ConvTranspose implementation"
This reverts commit 88778854546b08bc6dd9f68e0a64311902c7d30c.
2020-03-24 14:09:18 -04:00
36e5abe531 Revert "Fix fractional_max_pool3d_with_indices implementation"
This reverts commit b89eb7c654b846fb3391cf4cc5aeb536cc41f1d7.
2020-03-24 14:09:18 -04:00
6e6f62230e Revert "Fix F::interpolate and torch::nn::Upsample implementation"
This reverts commit 75148df1f56c91f54965b530d606a6b9a4c8e269.
2020-03-24 14:09:18 -04:00
5d15577e6c Revert "Add inplace tests for several torch::nn modules / functionals"
This reverts commit 48590d6a9b939fb8097e4f2108872721ea5a516f.
2020-03-24 14:09:18 -04:00
6aa5298c5c Revert "Renaming: MultiLabelMarginLossFuncOptions -> MultilabelMarginLossFuncOptions, MultiLabelSoftMarginLossFuncOptions -> MultilabelSoftMarginLossFuncOptions"
This reverts commit 5ca901431886d60687275b9a310eac5b5aeba02f.
2020-03-24 14:09:18 -04:00
f3df13725b Revert "[1.5 cherrypick] [C++ API Parity] Add xor_convergence test for lbfgs (#35113)"
This reverts commit 246b824644c3731b00be6119f69795afd4eac9b6.
2020-03-24 14:08:56 -04:00
4eee3caa11 [release/1.5] .circleci: Fix unbound CIRCLE_TAG variable (#35242)
Was failing when trying to execute this script on a non-tag

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-23 16:21:44 -07:00
4d96463130 Updating fbgemm 2020-03-23 13:31:24 -07:00
246b824644 [1.5 cherrypick] [C++ API Parity] Add xor_convergence test for lbfgs (#35113)
* add xor_convergence test for lbfgs

* increased batchsize to 6

* minor

* increased batch size
2020-03-23 16:00:57 -04:00
5ca9014318 Renaming: MultiLabelMarginLossFuncOptions -> MultilabelMarginLossFuncOptions, MultiLabelSoftMarginLossFuncOptions -> MultilabelSoftMarginLossFuncOptions 2020-03-23 15:55:18 -04:00
48590d6a9b Add inplace tests for several torch::nn modules / functionals
gh-metadata: pytorch pytorch 35147 gh/yf225/101/head
2020-03-23 15:55:18 -04:00
75148df1f5 Fix F::interpolate and torch::nn::Upsample implementation
gh-metadata: pytorch pytorch 35025 gh/yf225/100/head
2020-03-23 15:55:18 -04:00
b89eb7c654 Fix fractional_max_pool3d_with_indices implementation
gh-metadata: pytorch pytorch 35024 gh/yf225/99/head
2020-03-23 15:55:18 -04:00
8877885454 Fix Conv and ConvTranspose implementation
gh-metadata: pytorch pytorch 35023 gh/yf225/98/head
2020-03-23 15:55:18 -04:00
e2184ba083 Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation
gh-metadata: pytorch pytorch 35022 gh/yf225/97/head
2020-03-23 15:55:18 -04:00
8ef47ad2f0 Updating fbgemm 2020-03-23 10:08:52 -07:00
6725b6f503 .cirlceci: Refactor how to grab the tagged version
Discovered that the upload scripts do not do well when there's no
pytorch repository to actually do git operations on.

CirlceCI however provides a nice environment variable with the name of
the current tag so let's just use that when it's available and fall back
on the git describe functionality if that fails.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 16:34:57 -07:00
bcd3f6da1a .circleci: Remove quotes from --git-dir
git doesn't handle the escapes correctly so let's just not put them
altogether.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:39:31 -07:00
0b3d2f7b7d .circleci: Make sure to add .git to --git-dir
--git-dir only works when it points directly to a .git folder

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:28:23 -07:00
f522651a7e .circleci: Switch git -C -> git --git-dir
Older versions of git do not contain the '-C' flag so let's switch to a
flag that is pre-historic and will run on any version of RHEL that is
still supported in the modern era.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:22:44 -07:00
01c8ef2757 .circleci: One more -C to add to get correct git info
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:08:02 -07:00
7cfe68ce3a .circleci: Hardcode directory to /pytorch to ensure git
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 14:54:57 -07:00
6f3120c6b9 .circleci: Ensure describe happens in pytorch repo
Found an issue where the git describe wasn't properly executed since the
binary_populate_env.sh script was being executed from a different
directory.

'git -C' forces the describe to run in the running directory for the
script which should contain the correct git information

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 14:24:18 -07:00
21072 changed files with 867605 additions and 3224778 deletions

View File

@ -1,4 +0,0 @@
# We do not use this library in our Bazel build. It contains an
# infinitely recursing symlink that makes Bazel very unhappy.
third_party/ittapi/
third_party/opentelemetry-cpp

114
.bazelrc
View File

@ -1,114 +0,0 @@
build --cxxopt=--std=c++17
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin
build --experimental_ui_max_stdouterr_bytes=2048576
# Configuration to disable tty features for environments like CI
build:no-tty --curses no
build:no-tty --progress_report_interval 10
build:no-tty --show_progress_rate_limit 10
# Build with GPU support by default.
build --define=cuda=true
# rules_cuda configuration
build --@rules_cuda//cuda:enable_cuda
build --@rules_cuda//cuda:cuda_targets=sm_52
build --@rules_cuda//cuda:compiler=nvcc
build --repo_env=CUDA_PATH=/usr/local/cuda
# Configuration to build without GPU support
build:cpu-only --define=cuda=false
# define a separate build folder for faster switching between configs
build:cpu-only --platform_suffix=-cpu-only
# See the note on the config-less build for details about why we are
# doing this. We must also do it for the "-cpu-only" platform suffix.
build --copt=-isystem --copt=bazel-out/k8-fastbuild-cpu-only/bin
# rules_cuda configuration
build:cpu-only --@rules_cuda//cuda:enable_cuda=False
# Definition of --config=shell
# interactive shell immediately before execution
build:shell --run_under="//tools/bazel_tools:shellwrap"
# Disable all warnings for external repositories. We don't care about
# their warnings.
build --per_file_copt=^external/@-w
# Set additional warnings to error level.
#
# Implementation notes:
# * we use file extensions to determine if we are using the C++
# compiler or the cuda compiler
# * we use ^// at the start of the regex to only permit matching
# PyTorch files. This excludes external repos.
#
# Note that because this is logically a command-line flag, it is
# considered the word on what warnings are enabled. This has the
# unfortunate consequence of preventing us from disabling an error at
# the target level because those flags will come before these flags in
# the action invocation. Instead we provide per-file exceptions after
# this.
#
# On the bright side, this means we don't have to more broadly apply
# the exceptions to an entire target.
#
# Looking for CUDA flags? We have a cu_library macro that we can edit
# directly. Look in //tools/rules:cu.bzl for details. Editing the
# macro over this has the following advantages:
# * making changes does not require discarding the Bazel analysis
# cache
# * it allows for selective overrides on individual targets since the
# macro-level opts will come earlier than target level overrides
build --per_file_copt='^//.*\.(cpp|cc)$'@-Werror=all
# The following warnings come from -Wall. We downgrade them from error
# to warnings here.
#
# We intentionally use #pragma unroll, which is compiler specific.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-error=unknown-pragmas
build --per_file_copt='^//.*\.(cpp|cc)$'@-Werror=extra
# The following warnings come from -Wextra. We downgrade them from error
# to warnings here.
#
# unused-parameter-compare has a tremendous amount of violations in the
# codebase. It will be a lot of work to fix them, just disable it for
# now.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-unused-parameter
# missing-field-parameters has both a large number of violations in
# the codebase, but it also is used pervasively in the Python C
# API. There are a couple of catches though:
# * we use multiple versions of the Python API and hence have
# potentially multiple different versions of each relevant
# struct. They may have different numbers of fields. It will be
# unwieldy to support multiple versions in the same source file.
# * Python itself for many of these structs recommends only
# initializing a subset of the fields. We should respect the API
# usage conventions of our dependencies.
#
# Hence, we just disable this warning altogether. We may want to clean
# up some of the clear-cut cases that could be risky, but we still
# likely want to have this disabled for the most part.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-missing-field-initializers
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-unused-function
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-unused-variable
build --per_file_copt='//:aten/src/ATen/RegisterCompositeExplicitAutograd\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterCompositeImplicitAutograd\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterMkldnnCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterNestedTensorCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterQuantizedCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseCsrCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterNestedTensorMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterQuantizedMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterZeroTensor\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:torch/csrc/lazy/generated/RegisterAutogradLazy\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:torch/csrc/lazy/generated/RegisterLazy\.cpp$'@-Wno-error=unused-function

View File

@ -1 +0,0 @@
6.5.0

View File

@ -1,19 +0,0 @@
# Aarch64 (ARM/Graviton) Support Scripts
Scripts for building aarch64 PyTorch PIP Wheels. These scripts build the following wheels:
* torch
* torchvision
* torchaudio
* torchtext
* torchdata
## Aarch64_ci_build.sh
This script is design to support CD operations within PyPi manylinux aarch64 container, and be executed in the container. It prepares the container and then executes __aarch64_wheel_ci_build.py__ to build the wheels. The script "assumes" the PyTorch repo is located at: ```/pytorch``` and will put the wheels into ```/artifacts```.
### Usage
```DESIRED_PYTHON=<PythonVersion> aarch64_ci_build.sh```
__NOTE:__ CI build is currently __EXPERMINTAL__
## Build_aarch64_wheel.py
This app allows a person to build using AWS EC3 resources and requires AWS-CLI and Boto3 with AWS credentials to support building EC2 instances for the wheel builds. Can be used in a codebuild CD or from a local system.
### Usage
```build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch <RCtag>```

View File

@ -1,29 +0,0 @@
#!/bin/bash
set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
# cuda arm build for Grace Hopper solely
export TORCH_CUDA_ARCH_LIST="9.0"
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
source $SCRIPTPATH/aarch64_ci_setup.sh
###############################################################################
# Run aarch64 builder python
###############################################################################
cd /
# adding safe directory for git as the permissions will be
# on the mounted pytorch repo
git config --global --add safe.directory /pytorch
pip install -r /pytorch/requirements.txt
pip install auditwheel
if [ "$DESIRED_CUDA" = "cpu" ]; then
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
else
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
fi

View File

@ -1,23 +0,0 @@
#!/bin/bash
set -eux -o pipefail
# This script is used to prepare the Docker container for aarch64_ci_wheel_build.py python script
# By creating symlinks from desired /opt/python to /usr/local/bin/
NUMPY_VERSION=2.0.2
PYGIT2_VERSION=1.15.1
if [[ "$DESIRED_PYTHON" == "3.13" ]]; then
NUMPY_VERSION=2.1.2
PYGIT2_VERSION=1.16.0
fi
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
source $SCRIPTPATH/../manywheel/set_desired_python.sh
pip install -q numpy==${NUMPY_VERSION} pyyaml==6.0.2 scons==4.7.0 ninja==1.11.1 patchelf==0.17.2 pygit2==${PYGIT2_VERSION}
for tool in python python3 pip pip3 ninja scons patchelf; do
ln -sf ${DESIRED_PYTHON_BIN_DIR}/${tool} /usr/local/bin;
done
python --version

View File

@ -1,230 +0,0 @@
#!/usr/bin/env python3
# encoding: UTF-8
import os
import shutil
from subprocess import check_call, check_output
from typing import List
from pygit2 import Repository
def list_dir(path: str) -> List[str]:
"""'
Helper for getting paths for Python
"""
return check_output(["ls", "-1", path]).decode().split("\n")
def build_ArmComputeLibrary() -> None:
"""
Using ArmComputeLibrary for aarch64 PyTorch
"""
print("Building Arm Compute Library")
acl_build_flags = [
"debug=0",
"neon=1",
"opencl=0",
"os=linux",
"openmp=1",
"cppthreads=0",
"arch=armv8a",
"multi_isa=1",
"fixed_format_kernels=1",
"build=native",
]
acl_install_dir = "/acl"
acl_checkout_dir = "ComputeLibrary"
os.makedirs(acl_install_dir)
check_call(
[
"git",
"clone",
"https://github.com/ARM-software/ComputeLibrary.git",
"-b",
"v24.09",
"--depth",
"1",
"--shallow-submodules",
]
)
check_call(
["scons", "Werror=1", "-j8", f"build_dir=/{acl_install_dir}/build"]
+ acl_build_flags,
cwd=acl_checkout_dir,
)
for d in ["arm_compute", "include", "utils", "support", "src"]:
shutil.copytree(f"{acl_checkout_dir}/{d}", f"{acl_install_dir}/{d}")
def update_wheel(wheel_path) -> None:
"""
Update the cuda wheel libraries
"""
folder = os.path.dirname(wheel_path)
wheelname = os.path.basename(wheel_path)
os.mkdir(f"{folder}/tmp")
os.system(f"unzip {wheel_path} -d {folder}/tmp")
libs_to_copy = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
"/usr/local/cuda/lib64/libcudart.so.12",
"/usr/local/cuda/lib64/libcufft.so.11",
"/usr/local/cuda/lib64/libcusparse.so.12",
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnvToolsExt.so.1",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.6",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
]
if enable_cuda:
libs_to_copy += [
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
else:
libs_to_copy += [
"/opt/OpenBLAS/lib/libopenblas.so.0",
]
# Copy libraries to unzipped_folder/a/lib
for lib_path in libs_to_copy:
lib_name = os.path.basename(lib_path)
shutil.copy2(lib_path, f"{folder}/tmp/torch/lib/{lib_name}")
os.system(
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
)
os.mkdir(f"{folder}/cuda_wheel")
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
shutil.move(
f"{folder}/cuda_wheel/{wheelname}",
f"{folder}/{wheelname}",
copy_function=shutil.copy2,
)
os.system(f"rm -rf {folder}/tmp/ {folder}/cuda_wheel/")
def complete_wheel(folder: str) -> str:
"""
Complete wheel build and put in artifact location
"""
wheel_name = list_dir(f"/{folder}/dist")[0]
if "pytorch" in folder and not enable_cuda:
print("Repairing Wheel with AuditWheel")
check_call(["auditwheel", "repair", f"dist/{wheel_name}"], cwd=folder)
repaired_wheel_name = list_dir(f"/{folder}/wheelhouse")[0]
print(f"Moving {repaired_wheel_name} wheel to /{folder}/dist")
os.rename(
f"/{folder}/wheelhouse/{repaired_wheel_name}",
f"/{folder}/dist/{repaired_wheel_name}",
)
else:
repaired_wheel_name = wheel_name
print(f"Copying {repaired_wheel_name} to artifacts")
shutil.copy2(
f"/{folder}/dist/{repaired_wheel_name}", f"/artifacts/{repaired_wheel_name}"
)
return repaired_wheel_name
def parse_arguments():
"""
Parse inline arguments
"""
from argparse import ArgumentParser
parser = ArgumentParser("AARCH64 wheels python CD")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--build-only", action="store_true")
parser.add_argument("--test-only", type=str)
parser.add_argument("--enable-mkldnn", action="store_true")
parser.add_argument("--enable-cuda", action="store_true")
return parser.parse_args()
if __name__ == "__main__":
"""
Entry Point
"""
args = parse_arguments()
enable_mkldnn = args.enable_mkldnn
enable_cuda = args.enable_cuda
repo = Repository("/pytorch")
branch = repo.head.name
if branch == "HEAD":
branch = "master"
print("Building PyTorch wheel")
build_vars = "MAX_JOBS=5 CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
os.system("cd /pytorch; python setup.py clean")
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
if override_package_version is not None:
version = override_package_version
build_vars += (
f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version} PYTORCH_BUILD_NUMBER=1 "
)
elif branch in ["nightly", "master"]:
build_date = (
check_output(["git", "log", "--pretty=format:%cs", "-1"], cwd="/pytorch")
.decode()
.replace("-", "")
)
version = (
check_output(["cat", "version.txt"], cwd="/pytorch").decode().strip()[:-2]
)
if enable_cuda:
desired_cuda = os.getenv("DESIRED_CUDA")
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date}+{desired_cuda} PYTORCH_BUILD_NUMBER=1 "
else:
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1 "
elif branch.startswith(("v1.", "v2.")):
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1:branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
if enable_mkldnn:
build_ArmComputeLibrary()
print("build pytorch with mkldnn+acl backend")
build_vars += (
"USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
"ACL_ROOT_DIR=/acl "
"LD_LIBRARY_PATH=/pytorch/build/lib:/acl/build:$LD_LIBRARY_PATH "
"ACL_INCLUDE_DIR=/acl/build "
"ACL_LIBRARY=/acl/build "
)
if enable_cuda:
build_vars += "BLAS=NVPL "
else:
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/OpenBLAS "
else:
print("build pytorch without mkldnn backend")
os.system(f"cd /pytorch; {build_vars} python3 setup.py bdist_wheel")
if enable_cuda:
print("Updating Cuda Dependency")
filename = os.listdir("/pytorch/dist/")
wheel_path = f"/pytorch/dist/{filename[0]}"
update_wheel(wheel_path)
pytorch_wheel_name = complete_wheel("/pytorch/")
print(f"Build Complete. Created {pytorch_wheel_name}..")

File diff suppressed because it is too large Load Diff

View File

@ -1,87 +0,0 @@
#!/usr/bin/env python3
import os
import shutil
import sys
from subprocess import check_call
from tempfile import TemporaryDirectory
from auditwheel.elfutils import elf_file_filter
from auditwheel.lddtree import lddtree
from auditwheel.patcher import Patchelf
from auditwheel.repair import copylib
from auditwheel.wheeltools import InWheelCtx
def replace_tag(filename):
with open(filename) as f:
lines = f.read().split("\\n")
for i, line in enumerate(lines):
if not line.startswith("Tag: "):
continue
lines[i] = line.replace("-linux_", "-manylinux2014_")
print(f"Updated tag from {line} to {lines[i]}")
with open(filename, "w") as f:
f.write("\\n".join(lines))
class AlignedPatchelf(Patchelf):
def set_soname(self, file_name: str, new_soname: str) -> None:
check_call(
["patchelf", "--page-size", "65536", "--set-soname", new_soname, file_name]
)
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
check_call(
[
"patchelf",
"--page-size",
"65536",
"--replace-needed",
soname,
new_soname,
file_name,
]
)
def embed_library(whl_path, lib_soname, update_tag=False):
patcher = AlignedPatchelf()
out_dir = TemporaryDirectory()
whl_name = os.path.basename(whl_path)
tmp_whl_name = os.path.join(out_dir.name, whl_name)
with InWheelCtx(whl_path) as ctx:
torchlib_path = os.path.join(ctx._tmpdir.name, "torch", "lib")
ctx.out_wheel = tmp_whl_name
new_lib_path, new_lib_soname = None, None
for filename, _ in elf_file_filter(ctx.iter_files()):
if not filename.startswith("torch/lib"):
continue
libtree = lddtree(filename)
if lib_soname not in libtree["needed"]:
continue
lib_path = libtree["libs"][lib_soname]["path"]
if lib_path is None:
print(f"Can't embed {lib_soname} as it could not be found")
break
if lib_path.startswith(torchlib_path):
continue
if new_lib_path is None:
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
patcher.replace_needed(filename, lib_soname, new_lib_soname)
print(f"Replacing {lib_soname} with {new_lib_soname} for {filename}")
if update_tag:
# Add manylinux2014 tag
for filename in ctx.iter_files():
if os.path.basename(filename) != "WHEEL":
continue
replace_tag(filename)
shutil.move(tmp_whl_name, whl_path)
if __name__ == "__main__":
embed_library(
sys.argv[1], "libgomp.so.1", len(sys.argv) > 2 and sys.argv[2] == "--update-tag"
)

View File

@ -1,36 +0,0 @@
set -ex
LOCAL_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)
ROOT_DIR=$(cd "$LOCAL_DIR"/../.. && pwd)
TEST_DIR="$ROOT_DIR/test"
gtest_reports_dir="${TEST_DIR}/test-reports/cpp"
pytest_reports_dir="${TEST_DIR}/test-reports/python"
# Figure out which Python to use
PYTHON="$(which python)"
if [[ "${BUILD_ENVIRONMENT}" =~ py((2|3)\.?[0-9]?\.?[0-9]?) ]]; then
PYTHON=$(which "python${BASH_REMATCH[1]}")
fi
if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
# HIP_PLATFORM is auto-detected by hipcc; unset to avoid build errors
unset HIP_PLATFORM
if which sccache > /dev/null; then
# Save sccache logs to file
sccache --stop-server || true
rm -f ~/sccache_error.log || true
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
# Report sccache stats for easier debugging
sccache --zero-stats
fi
fi
# /usr/local/caffe2 is where the cpp bits are installed to in cmake-only
# builds. In +python builds the cpp tests are copied to /usr/local/caffe2 so
# that the test code in .ci/test.sh is the same
INSTALL_PREFIX="/usr/local/caffe2"
mkdir -p "$gtest_reports_dir" || true
mkdir -p "$pytest_reports_dir" || true
mkdir -p "$INSTALL_PREFIX" || true

View File

@ -1,172 +0,0 @@
#!/bin/bash
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
if [[ ${BUILD_ENVIRONMENT} == *onnx* ]]; then
pip install click mock tabulate networkx==2.0
pip -q install --user "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
fi
# Skip tests in environments where they are not built/applicable
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
echo 'Skipping tests'
exit 0
fi
if [[ "${BUILD_ENVIRONMENT}" == *-rocm* ]]; then
# temporary to locate some kernel issues on the CI nodes
export HSAKMT_DEBUG_LEVEL=4
fi
# These additional packages are needed for circleci ROCm builds.
if [[ $BUILD_ENVIRONMENT == *rocm* ]]; then
# Need networkx 2.0 because bellmand_ford was moved in 2.1 . Scikit-image by
# defaults installs the most recent networkx version, so we install this lower
# version explicitly before scikit-image pulls it in as a dependency
pip install networkx==2.0
# click - onnx
pip install --progress-bar off click protobuf tabulate virtualenv mock typing-extensions
fi
# Find where cpp tests and Caffe2 itself are installed
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
# For cmake only build we install everything into /usr/local
cpp_test_dir="$INSTALL_PREFIX/cpp_test"
ld_library_path="$INSTALL_PREFIX/lib"
else
# For Python builds we install into python
# cd to /usr first so the python import doesn't get confused by any 'caffe2'
# directory in cwd
python_installation="$(dirname $(dirname $(cd /usr && $PYTHON -c 'import os; import caffe2; print(os.path.realpath(caffe2.__file__))')))"
caffe2_pypath="$python_installation/caffe2"
cpp_test_dir="$python_installation/torch/test"
ld_library_path="$python_installation/torch/lib"
fi
################################################################################
# C++ tests #
################################################################################
# Only run cpp tests in the first shard, don't run cpp tests a second time in the second shard
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
echo "Running C++ tests.."
for test in $(find "$cpp_test_dir" -executable -type f); do
case "$test" in
# skip tests we know are hanging or bad
*/mkl_utils_test|*/aten/integer_divider_test)
continue
;;
*/scalar_tensor_test|*/basic|*/native_test)
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
continue
else
LD_LIBRARY_PATH="$ld_library_path" "$test"
fi
;;
*/*_benchmark)
LD_LIBRARY_PATH="$ld_library_path" "$test" --benchmark_color=false
;;
*)
# Currently, we use a mixture of gtest (caffe2) and Catch2 (ATen). While
# planning to migrate to gtest as the common PyTorch c++ test suite, we
# currently do NOT use the xml test reporter, because Catch doesn't
# support multiple reporters
# c.f. https://github.com/catchorg/Catch2/blob/master/docs/release-notes.md#223
# which means that enabling XML output means you lose useful stdout
# output for Jenkins. It's more important to have useful console
# output than it is to have XML output for Jenkins.
# Note: in the future, if we want to use xml test reporter once we switch
# to all gtest, one can simply do:
LD_LIBRARY_PATH="$ld_library_path" \
"$test" --gtest_output=xml:"$gtest_reports_dir/$(basename $test).xml"
;;
esac
done
fi
################################################################################
# Python tests #
################################################################################
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
exit 0
fi
# If pip is installed as root, we must use sudo.
# CircleCI docker images could install conda as jenkins user, or use the OS's python package.
PIP=$(which pip)
PIP_USER=$(stat --format '%U' $PIP)
CURRENT_USER=$(id -u -n)
if [[ "$PIP_USER" = root && "$CURRENT_USER" != root ]]; then
MAYBE_SUDO=sudo
fi
# Uninstall pre-installed hypothesis and coverage to use an older version as newer
# versions remove the timeout parameter from settings which ideep/conv_transpose_test.py uses
$MAYBE_SUDO pip -q uninstall -y hypothesis
$MAYBE_SUDO pip -q uninstall -y coverage
# "pip install hypothesis==3.44.6" from official server is unreliable on
# CircleCI, so we host a copy on S3 instead
$MAYBE_SUDO pip -q install attrs==18.1.0 -f https://s3.amazonaws.com/ossci-linux/wheels/attrs-18.1.0-py2.py3-none-any.whl
$MAYBE_SUDO pip -q install coverage==4.5.1 -f https://s3.amazonaws.com/ossci-linux/wheels/coverage-4.5.1-cp36-cp36m-macosx_10_12_x86_64.whl
$MAYBE_SUDO pip -q install hypothesis==3.44.6 -f https://s3.amazonaws.com/ossci-linux/wheels/hypothesis-3.44.6-py3-none-any.whl
# Collect additional tests to run (outside caffe2/python)
EXTRA_TESTS=()
# CUDA builds always include NCCL support
if [[ "$BUILD_ENVIRONMENT" == *-cuda* ]] || [[ "$BUILD_ENVIRONMENT" == *-rocm* ]]; then
EXTRA_TESTS+=("$caffe2_pypath/contrib/nccl")
fi
rocm_ignore_test=()
if [[ $BUILD_ENVIRONMENT == *-rocm* ]]; then
# Currently these tests are failing on ROCM platform:
# On ROCm, RCCL (distributed) development isn't complete.
# https://github.com/ROCmSoftwarePlatform/rccl
rocm_ignore_test+=("--ignore $caffe2_pypath/python/data_parallel_model_test.py")
# This test has been flaky in ROCm CI (but note the tests are
# cpu-only so should be unrelated to ROCm)
rocm_ignore_test+=("--ignore $caffe2_pypath/python/operator_test/blobs_queue_db_test.py")
# This test is skipped on Jenkins(compiled without MKL) and otherwise known flaky
rocm_ignore_test+=("--ignore $caffe2_pypath/python/ideep/convfusion_op_test.py")
# This test is skipped on Jenkins(compiled without MKL) and causing segfault on Circle
rocm_ignore_test+=("--ignore $caffe2_pypath/python/ideep/pool_op_test.py")
fi
echo "Running Python tests.."
# locale setting is required by click package
for loc in "en_US.utf8" "C.UTF-8"; do
if locale -a | grep "$loc" >/dev/null 2>&1; then
export LC_ALL="$loc"
export LANG="$loc"
break;
fi
done
# Some Caffe2 tests fail when run using AVX512 ISA, see https://github.com/pytorch/pytorch/issues/66111
export DNNL_MAX_CPU_ISA=AVX2
# Should still run even in the absence of SHARD_NUMBER
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
# TODO(sdym@meta.com) remove this when the linked issue resolved.
# py is temporary until https://github.com/Teemu/pytest-sugar/issues/241 is fixed
pip install --user py==1.11.0
pip install --user pytest-sugar
# NB: Warnings are disabled because they make it harder to see what
# the actual erroring test is
"$PYTHON" \
-m pytest \
-x \
-v \
--disable-warnings \
--junit-xml="$pytest_reports_dir/result.xml" \
--ignore "$caffe2_pypath/python/test/executor_test.py" \
--ignore "$caffe2_pypath/python/operator_test/matmul_op_test.py" \
--ignore "$caffe2_pypath/python/operator_test/pack_ops_test.py" \
--ignore "$caffe2_pypath/python/mkl/mkl_sbn_speed_test.py" \
--ignore "$caffe2_pypath/python/trt/test_pt_onnx_trt.py" \
${rocm_ignore_test[@]} \
"$caffe2_pypath/python" \
"${EXTRA_TESTS[@]}"
fi

View File

@ -1,38 +0,0 @@
# Docker images for GitHub CI and CD
This directory contains everything needed to build the Docker images
that are used in our CI.
The Dockerfiles located in subdirectories are parameterized to
conditionally run build stages depending on build arguments passed to
`docker build`. This lets us use only a few Dockerfiles for many
images. The different configurations are identified by a freeform
string that we call a _build environment_. This string is persisted in
each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
## Docker CI builds
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu` -- Dockerfile for Ubuntu image for CPU build and test jobs
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
* `ubuntu-rocm` -- Dockerfile for Ubuntu image with ROCm support
* `ubuntu-xpu` -- Dockerfile for Ubuntu image with XPU support
### Docker CD builds
* `conda` - Dockerfile and build.sh to build Docker images used in nightly conda builds
* `manywheel` - Dockerfile and build.sh to build Docker images used in nightly manywheel builds
* `libtorch` - Dockerfile and build.sh to build Docker images used in nightly libtorch builds
## Usage
```bash
# Build a specific image
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
# Set flags (see build.sh) and build image
sudo bash -c 'PROTOBUF=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```

View File

@ -1,98 +0,0 @@
ARG CUDA_VERSION=12.4
ARG BASE_TARGET=cuda${CUDA_VERSION}
FROM amd64/almalinux:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ARG DEVTOOLSET_VERSION=11
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum -y update
RUN yum -y install epel-release
RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel openssl-devel yum-utils autoconf automake make gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake3
RUN rm -rf /usr/local/cuda-*
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
FROM base as patchelf
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh && cp $(which patchelf) /patchelf
FROM base as conda
# Install Anaconda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install CUDA
FROM base as cuda
ARG CUDA_VERSION=12.4
RUN rm -rf /usr/local/cuda-*
ADD ./common/install_cuda.sh install_cuda.sh
ENV CUDA_HOME=/usr/local/cuda-${CUDA_VERSION}
# Preserve CUDA_VERSION for the builds
ENV CUDA_VERSION=${CUDA_VERSION}
# Make things in our path by default
ENV PATH=/usr/local/cuda-${CUDA_VERSION}/bin:$PATH
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
ENV DESIRED_CUDA=11.8
FROM cuda as cuda12.1
RUN bash ./install_cuda.sh 12.1
ENV DESIRED_CUDA=12.1
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
ENV DESIRED_CUDA=12.4
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
ENV DESIRED_CUDA=12.6
# Install MNIST test data
FROM base as mnist
ADD ./common/install_mnist.sh install_mnist.sh
RUN bash ./install_mnist.sh
FROM base as all_cuda
COPY --from=cuda11.8 /usr/local/cuda-11.8 /usr/local/cuda-11.8
COPY --from=cuda12.1 /usr/local/cuda-12.1 /usr/local/cuda-12.1
COPY --from=cuda12.4 /usr/local/cuda-12.4 /usr/local/cuda-12.4
COPY --from=cuda12.6 /usr/local/cuda-12.6 /usr/local/cuda-12.6
# Final step
FROM ${BASE_TARGET} as final
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=patchelf /patchelf /usr/local/bin/patchelf
COPY --from=conda /opt/conda /opt/conda
# Add jni.h for java host build.
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
ENV PATH /opt/conda/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
COPY --from=mnist /usr/local/mnist /usr/local/mnist
RUN rm -rf /usr/local/cuda
RUN chmod o+rw /usr/local
RUN touch /.condarc && \
chmod o+rw /.condarc && \
chmod -R o+rw /opt/conda

View File

@ -1,82 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
DOCKER_IMAGE_NAME="pytorch/${image}"
export DOCKER_BUILDKIT=1
TOPDIR=$(git rev-parse --show-toplevel)
CUDA_VERSION=${CUDA_VERSION:-12.1}
case ${CUDA_VERSION} in
cpu)
BASE_TARGET=base
DOCKER_TAG=cpu
;;
all)
BASE_TARGET=all_cuda
DOCKER_TAG=latest
;;
*)
BASE_TARGET=cuda${CUDA_VERSION}
DOCKER_TAG=cuda${CUDA_VERSION}
;;
esac
(
set -x
# TODO: Remove LimitNOFILE=1048576 patch once https://github.com/pytorch/test-infra/issues/5712
# is resolved. This patch is required in order to fix timing out of Docker build on Amazon Linux 2023.
sudo sed -i s/LimitNOFILE=infinity/LimitNOFILE=1048576/ /usr/lib/systemd/system/docker.service
sudo systemctl daemon-reload
sudo systemctl restart docker
docker build \
--target final \
--progress plain \
--build-arg "BASE_TARGET=${BASE_TARGET}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=11" \
-t ${DOCKER_IMAGE_NAME} \
$@ \
-f "${TOPDIR}/.ci/docker/almalinux/Dockerfile" \
${TOPDIR}/.ci/docker/
)
if [[ "${DOCKER_TAG}" =~ ^cuda* ]]; then
# Test that we're using the right CUDA compiler
(
set -x
docker run --rm "${DOCKER_IMAGE_NAME}" nvcc --version | grep "cuda_${CUDA_VERSION}"
)
fi
GITHUB_REF=${GITHUB_REF:-$(git symbolic-ref -q HEAD || git describe --tags --exact-match)}
GIT_BRANCH_NAME=${GITHUB_REF##*/}
GIT_COMMIT_SHA=${GITHUB_SHA:-$(git rev-parse HEAD)}
DOCKER_IMAGE_BRANCH_TAG=${DOCKER_IMAGE_NAME}-${GIT_BRANCH_NAME}
DOCKER_IMAGE_SHA_TAG=${DOCKER_IMAGE_NAME}-${GIT_COMMIT_SHA}
if [[ "${WITH_PUSH:-}" == true ]]; then
(
set -x
docker push "${DOCKER_IMAGE_NAME}"
if [[ -n ${GITHUB_REF} ]]; then
docker tag ${DOCKER_IMAGE_NAME} ${DOCKER_IMAGE_BRANCH_TAG}
docker tag ${DOCKER_IMAGE_NAME} ${DOCKER_IMAGE_SHA_TAG}
docker push "${DOCKER_IMAGE_BRANCH_TAG}"
docker push "${DOCKER_IMAGE_SHA_TAG}"
fi
)
fi

View File

@ -1,577 +0,0 @@
#!/bin/bash
set -ex
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "bionic" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
# Use the same pre-built XLA test image from PyTorch/XLA
if [[ "$image" == *xla* ]]; then
echo "Using pre-built XLA test image..."
exit 0
fi
if [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *-jammy* ]]; then
UBUNTU_VERSION=22.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
# When using ubuntu - 22.04, start from Ubuntu docker image, instead of nvidia/cuda docker image.
if [[ "$image" == *cuda* && "$UBUNTU_VERSION" != "22.04" ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
elif [[ "$image" == *xpu* ]]; then
DOCKERFILE="${OS}-xpu/Dockerfile"
elif [[ "$image" == *cuda*linter* ]]; then
# Use a separate Dockerfile for linter to keep a small image size
DOCKERFILE="linter-cuda/Dockerfile"
elif [[ "$image" == *linter* ]]; then
# Use a separate Dockerfile for linter to keep a small image size
DOCKERFILE="linter/Dockerfile"
fi
# CMake 3.18 is needed to support CUDA17 language variant
CMAKE_VERSION=3.18.5
_UCX_COMMIT=7bb2722ff2187a0cad557ae4a6afa090569f83fb
_UCC_COMMIT=20eae37090a4ce1b32bcce6144ccad0b49943e0b
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9)
CUDA_VERSION=11.8.0
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-py3-clang10-onnx)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=10
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
ONNX=yes
;;
pytorch-linux-focal-py3.9-clang10)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=10
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-py3.11-clang10)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=10
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-py3.9-gcc9)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-rocm-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=6.2.4
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-rocm-n-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=6.3
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-jammy-xpu-2024.0-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
PROTOBUF=yes
DB=yes
VISION=yes
XPU_VERSION=0.5
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-jammy-xpu-2025.0-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
PROTOBUF=yes
DB=yes
VISION=yes
XPU_VERSION=2025.0
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
CONDA_CMAKE=yes
TRITON=yes
DOCS=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=11.8
CUDNN_VERSION=9
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-asan)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang15-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=15
CONDA_CMAKE=yes
VISION=yes
;;
pytorch-linux-jammy-py3-clang18-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=18
CONDA_CMAKE=yes
VISION=yes
;;
pytorch-linux-jammy-py3.9-gcc11)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
CONDA_CMAKE=yes
TRITON=yes
DOCS=yes
UNINSTALL_DILL=yes
;;
pytorch-linux-jammy-py3-clang12-executorch)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=12
CONDA_CMAKE=yes
EXECUTORCH=yes
;;
pytorch-linux-jammy-py3.12-halide)
CUDA_VERSION=12.4
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
CONDA_CMAKE=yes
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.4
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
CONDA_CMAKE=yes
TRITON_CPU=yes
;;
pytorch-linux-focal-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
ANACONDA_PYTHON_VERSION=3.9
CONDA_CMAKE=yes
;;
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-linter)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=11.8
CONDA_CMAKE=yes
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
INDUCTOR_BENCHMARKS=yes
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
NINJA_VERSION=1.9.0
TRITON=yes
# To ensure that any ROCm config will build using conda cmake
# and thus have LAPACK/MKL enabled
CONDA_CMAKE=yes
fi
if [[ "$image" == *centos7* ]]; then
NINJA_VERSION=1.10.2
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 9 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
# Build image
docker build \
--no-cache \
--progress=plain \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "DB=${DB:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942}" \
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
--build-arg "CONDA_CMAKE=${CONDA_CMAKE}" \
--build-arg "TRITON=${TRITON}" \
--build-arg "TRITON_CPU=${TRITON_CPU}" \
--build-arg "ONNX=${ONNX}" \
--build-arg "DOCS=${DOCS}" \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "ACL=${ACL:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn9-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
exit 1
fi
if !(drun lsb_release -a 2>&1 | grep -qF "$UBUNTU_VERSION"); then
echo "UBUNTU_VERSION=$UBUNTU_VERSION, but:"
drun lsb_release -a
exit 1
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
fi
if [ -n "$GCC_VERSION" ]; then
if !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "GCC_VERSION=$GCC_VERSION, but:"
drun gcc --version
exit 1
fi
fi
if [ -n "$CLANG_VERSION" ]; then
if !(drun clang --version 2>&1 | grep -qF "clang version $CLANG_VERSION"); then
echo "CLANG_VERSION=$CLANG_VERSION, but:"
drun clang --version
exit 1
fi
fi
if [ -n "$KATEX" ]; then
if !(drun katex --version); then
echo "KATEX=$KATEX, but:"
drun katex --version
exit 1
fi
fi

View File

@ -1,126 +0,0 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Update CentOS git version
RUN yum -y remove git
RUN yum -y remove git-*
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm || \
(yum -y install https://packages.endpointdev.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm && \
sed -i "s/packages.endpoint/packages.endpointdev/" /etc/yum.repos.d/endpoint.repo)
RUN yum install -y git
# Install devtoolset
ARG DEVTOOLSET_VERSION
COPY ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
COPY ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
COPY ./common/install_amdsmi.sh install_amdsmi.sh
RUN bash ./install_amdsmi.sh
RUN rm install_amdsmi.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
ENV CMAKE_C_COMPILER cc
ENV CMAKE_CXX_COMPILER c++
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton.txt triton.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton.txt triton_version.txt
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -1 +0,0 @@
a29b208a06ab378bb29ab1aa68932e412f8e09f1

View File

@ -1 +0,0 @@
461c12871f336fe6f57b55d6a297f13ef209161b

View File

@ -1 +0,0 @@
243e186efbf7fb93328dd6b34927a4e8c8f24395

View File

@ -1 +0,0 @@
ac3470188b914c5d7a5058a7e28b9eb685a62427

View File

@ -1 +0,0 @@
c7711371cace304afe265c1ffa906415ab82fc66

View File

@ -1 +0,0 @@
e98b6fcb8df5b44eb0d0addb6767c573d37ba024

View File

@ -1 +0,0 @@
0d4682f073ded4d1a8260dd4208a43d735ae3a2b

View File

@ -1,18 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
# Cache the test models at ~/.cache/torch/hub/
IMPORT_SCRIPT_FILENAME="/tmp/torchvision_import_script.py"
as_jenkins echo 'import torchvision; torchvision.models.mobilenet_v2(pretrained=True); torchvision.models.mobilenet_v3_large(pretrained=True);' > "${IMPORT_SCRIPT_FILENAME}"
pip_install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cpu
# Very weird quoting behavior here https://github.com/conda/conda/issues/10972,
# so echo the command to a file and run the file instead
conda_run python "${IMPORT_SCRIPT_FILENAME}"
# Cleaning up
conda_run pip uninstall -y torch torchvision
rm "${IMPORT_SCRIPT_FILENAME}" || true

View File

@ -1,36 +0,0 @@
#!/bin/bash
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
export SUDO=/bin/sudo
else
export SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -E -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
# This should be called as
# conda_install pkg1 pkg2 ... [-c channel]
as_jenkins conda install -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_run() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION --no-capture-output $*
}
pip_install() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION pip install --progress-bar off $*
}
get_pinned_commit() {
cat "${1}".txt
}

View File

@ -1,16 +0,0 @@
set -euo pipefail
readonly version=v24.04
readonly src_host=https://github.com/ARM-software
readonly src_repo=ComputeLibrary
# Clone ACL
[[ ! -d ${src_repo} ]] && git clone ${src_host}/${src_repo}.git
cd ${src_repo}
git checkout $version
# Build with scons
scons -j8 Werror=0 debug=0 neon=1 opencl=0 embed_kernels=0 \
os=linux arch=armv8a build=native multi_isa=1 \
fixed_format_kernels=1 openmp=1 cppthreads=0

View File

@ -1,5 +0,0 @@
#!/bin/bash
set -ex
cd /opt/rocm/share/amd_smi && pip install .

View File

@ -1,160 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn9-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
cmake3="cmake=3.16*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
cmake3="cmake=3.22*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
fi
if [[ "$CLANG_VERSION" == 15 ]]; then
maybe_libomp_dev="libomp-15-dev"
elif [[ "$CLANG_VERSION" == 12 ]]; then
maybe_libomp_dev="libomp-12-dev"
elif [[ "$CLANG_VERSION" == 10 ]]; then
maybe_libomp_dev="libomp-10-dev"
else
maybe_libomp_dev=""
fi
# HACK: UCC testing relies on libnccl library from NVIDIA repo, and version 2.16 crashes
# See https://github.com/pytorch/pytorch/pull/105260#issuecomment-1673399729
if [[ "$UBUNTU_VERSION" == "20.04"* && "$CUDA_VERSION" == "11.8"* ]]; then
maybe_libnccl_dev="libnccl2=2.15.5-1+cuda11.8 libnccl-dev=2.15.5-1+cuda11.8 --allow-downgrades --allow-change-held-packages"
else
maybe_libnccl_dev=""
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
deploy_deps="libffi-dev libbz2-dev libreadline-dev libncurses5-dev libncursesw5-dev libgdbm-dev libsqlite3-dev uuid-dev tk-dev"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${deploy_deps} \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
${maybe_libiomp_dev} \
libyaml-dev \
libz-dev \
libjemalloc2 \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
${maybe_libomp_dev} \
${maybe_libnccl_dev} \
software-properties-common \
wget \
sudo \
vim \
jq \
libtool \
vim \
unzip \
gpg-agent \
gdb \
bc
# Should resolve issues related to various apt package repository cert issues
# see: https://github.com/pytorch/pytorch/issues/65931
apt-get install -y libgnutls30
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim \
unzip \
gdb
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.20.0
wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
./configure --prefix=/usr/local
make -j$[$(nproc) - 2]
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"

View File

@ -1,142 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
echo "Preparing to build sccache from source"
apt-get update
# libssl-dev will not work as it is upgraded to libssl3 in Ubuntu-22.04.
# Instead use lib and headers from OpenSSL1.1 installed in `install_openssl.sh``
apt-get install -y cargo
echo "Checking out sccache repo"
git clone https://github.com/mozilla/sccache -b v0.9.0
cd sccache
echo "Building sccache"
cargo build --release
cp target/release/sccache /opt/cache/bin
echo "Cleaning up"
cd ..
rm -rf sccache
apt-get remove -y cargo rustc
apt-get autoclean && apt-get clean
echo "Downloading old sccache binary from S3 repo for PCH builds"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache-0.2.14a
chmod 755 /opt/cache/bin/sccache-0.2.14a
}
install_binary() {
echo "Downloading sccache binary from S3 repo"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
}
mkdir -p /opt/cache/bin
mkdir -p /opt/cache/lib
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
export PATH="/opt/cache/bin:$PATH"
# Setup compiler cache
install_ubuntu
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
# Unset LD_PRELOAD for ps because of asan + ps issues
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90589
if [ $1 == "gcc" ]; then
# Do not call sccache recursively when dumping preprocessor argument
# For some reason it's very important for the first cached nvcc invocation
cat >"/opt/cache/bin/$1" <<EOF
#!/bin/sh
# sccache does not support -E flag, so we need to call the original compiler directly in order to avoid calling this wrapper recursively
for arg in "\$@"; do
if [ "\$arg" = "-E" ]; then
exec $(which $1) "\$@"
fi
done
if [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then
exec sccache $(which $1) "\$@"
else
exec $(which $1) "\$@"
fi
EOF
else
cat >"/opt/cache/bin/$1" <<EOF
#!/bin/sh
if [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then
exec sccache $(which $1) "\$@"
else
exec $(which $1) "\$@"
fi
EOF
fi
chmod a+x "/opt/cache/bin/$1"
}
write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
# NOTE: See specific ROCM_VERSION case below.
if [ "x$ROCM_VERSION" = x ]; then
write_sccache_stub clang
write_sccache_stub clang++
fi
if [ -n "$CUDA_VERSION" ]; then
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
# implementation cannot find nvcc if it is setup this way, because it
# appears to search for the nvcc in PATH, and use its path to infer
# where CUDA is installed. Instead, we install an nvcc symlink outside
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
write_sccache_stub nvcc
mv /opt/cache/bin/nvcc /opt/cache/lib/
fi
if [ -n "$ROCM_VERSION" ]; then
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
# directly under /opt/rocm while also preserving the original compiler names.
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
# Final link in symlink chain must point back to original directory.
# Original compiler is moved one directory deeper. Wrapper replaces it.
function write_sccache_stub_rocm() {
OLDCOMP=$1
COMPNAME=$(basename $OLDCOMP)
TOPDIR=$(dirname $OLDCOMP)
WRAPPED="$TOPDIR/original/$COMPNAME"
mv "$OLDCOMP" "$WRAPPED"
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" >"$OLDCOMP"
chmod a+x "$OLDCOMP"
}
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
# ROCm 3.3 or earlier.
mkdir /opt/rocm/hcc/bin/original
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/hcc/bin/original
ln -s ../$(readlink clang)
popd
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
# ROCm 3.5 and beyond.
mkdir /opt/rocm/llvm/bin/original
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/llvm/bin/original
ln -s ../$(readlink clang)
popd
else
echo "Cannot find ROCm compiler."
exit 1
fi
fi

View File

@ -1,51 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$CLANG_VERSION" ]; then
if [[ $CLANG_VERSION == 9 && $UBUNTU_VERSION == 18.04 ]]; then
sudo apt-get update
# gpg-agent is not available by default on 18.04
sudo apt-get install -y --no-install-recommends gpg-agent
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
apt-add-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-${CLANG_VERSION} main"
elif [[ $UBUNTU_VERSION == 22.04 ]]; then
# work around ubuntu apt-get conflicts
sudo apt-get -y -f install
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
if [[ $CLANG_VERSION == 18 ]]; then
apt-add-repository "deb http://apt.llvm.org/jammy/ llvm-toolchain-jammy-18 main"
fi
fi
sudo apt-get update
if [[ $CLANG_VERSION -ge 18 ]]; then
apt-get install -y libomp-${CLANG_VERSION}-dev libclang-rt-${CLANG_VERSION}-dev clang-"$CLANG_VERSION" llvm-"$CLANG_VERSION"
else
apt-get install -y --no-install-recommends clang-"$CLANG_VERSION" llvm-"$CLANG_VERSION"
fi
# Install dev version of LLVM.
if [ -n "$LLVMDEV" ]; then
sudo apt-get install -y --no-install-recommends llvm-"$CLANG_VERSION"-dev
fi
# Use update-alternatives to make this version the default
update-alternatives --install /usr/bin/clang clang /usr/bin/clang-"$CLANG_VERSION" 50
update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-"$CLANG_VERSION" 50
# Override cc/c++ to clang as well
update-alternatives --install /usr/bin/cc cc /usr/bin/clang 50
update-alternatives --install /usr/bin/c++ c++ /usr/bin/clang++ 50
# clang's packaging is a little messed up (the runtime libs aren't
# added into the linker path), so give it a little help
clang_lib=("/usr/lib/llvm-$CLANG_VERSION/lib/clang/"*"/lib/linux")
echo "$clang_lib" > /etc/ld.so.conf.d/clang.conf
ldconfig
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,31 +0,0 @@
#!/bin/bash
set -ex
[ -n "$CMAKE_VERSION" ]
# Remove system cmake install so it won't get used instead
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
apt-get remove cmake -y
;;
centos)
yum remove cmake -y
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -1,105 +0,0 @@
#!/bin/bash
set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download"
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
fi
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2)
case "$MAJOR_PYTHON_VERSION" in
3);;
*)
echo "Unsupported ANACONDA_PYTHON_VERSION: $ANACONDA_PYTHON_VERSION"
exit 1
;;
esac
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda
SCRIPT_FOLDER="$( cd "$(dirname "$0")" ; pwd -P )"
source "${SCRIPT_FOLDER}/common_utils.sh"
pushd /tmp
wget -q "${BASE_URL}/${CONDA_FILE}"
# NB: Manually invoke bash per https://github.com/conda/conda/issues/10431
as_jenkins bash "${CONDA_FILE}" -b -f -p "/opt/conda"
popd
# NB: Don't do this, rely on the rpath to get it right
#echo "/opt/conda/lib" > /etc/ld.so.conf.d/conda-python.conf
#ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/conda/bin:\1"|g' -i /etc/environment
export PATH="/opt/conda/bin:$PATH"
# Ensure we run conda in a directory that jenkins has write access to
pushd /opt/conda
# Prevent conda from updating to 4.14.0, which causes docker build failures
# See https://hud.pytorch.org/pytorch/pytorch/commit/754d7f05b6841e555cea5a4b2c505dd9e0baec1d
# Uncomment the below when resolved to track the latest conda update
# as_jenkins conda update -y -n base conda
if [[ $(uname -m) == "aarch64" ]]; then
export SYSROOT_DEP="sysroot_linux-aarch64=2.17"
else
export SYSROOT_DEP="sysroot_linux-64=2.17"
fi
# Install correct Python version
# Also ensure sysroot is using a modern GLIBC to match system compilers
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y\
python="$ANACONDA_PYTHON_VERSION" \
${SYSROOT_DEP}
# libstdcxx from conda default channels are too old, we need GLIBCXX_3.4.30
# which is provided in libstdcxx 12 and up.
conda_install libstdcxx-ng=12.3.0 -c conda-forge
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
if [[ $(uname -m) == "aarch64" ]]; then
conda_install "openblas==0.3.28=*openmp*"
else
conda_install "mkl=2021.4.0 mkl-include=2021.4.0"
fi
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
# and libpython-static for torch deploy
conda_install llvmdev=8.0.0 "libpython-static=${ANACONDA_PYTHON_VERSION}"
# Use conda cmake in some cases. Conda cmake will be newer than our supported
# min version (3.5 for xenial and 3.10 for bionic), so we only do it in those
# following builds that we know should use conda. Specifically, Ubuntu bionic
# and focal cannot find conda mkl with stock cmake, so we need a cmake from conda
if [ -n "${CONDA_CMAKE}" ]; then
conda_install cmake
fi
# Magma package names are concatenation of CUDA major and minor ignoring revision
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
# Magma is installed from a tarball in the ossci-linux bucket into the conda env
if [ -n "$CUDA_VERSION" ]; then
${SCRIPT_FOLDER}/install_magma_conda.sh $(cut -f1-2 -d'.' <<< ${CUDA_VERSION}) ${ANACONDA_PYTHON_VERSION}
fi
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt
if [ -n "$DOCS" ]; then
apt-get update
apt-get -y install expect-dev
# We are currently building docs with python 3.8 (min support version)
pip_install -r /opt/conda/requirements-docs.txt
fi
popd
fi

View File

@ -1,20 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
# Anaconda
# Latest anaconda is using openssl-3 which is incompatible with all currently published versions of git
# Which are using openssl-1.1.1, see https://anaconda.org/anaconda/git/files?version=2.40.1 for example
MINICONDA_URL=https://repo.anaconda.com/miniconda/Miniconda3-py311_23.5.2-0-Linux-x86_64.sh
wget -q $MINICONDA_URL
# NB: Manually invoke bash per https://github.com/conda/conda/issues/10431
bash $(basename "$MINICONDA_URL") -b -p /opt/conda
rm $(basename "$MINICONDA_URL")
export PATH=/opt/conda/bin:$PATH
# See https://github.com/pytorch/builder/issues/1473
# Pin conda to 23.5.2 as it's the last one compatible with openssl-1.1.1
conda install -y conda=23.5.2 conda-build anaconda-client git ninja
# The cmake version here needs to match with the minimum version of cmake
# supported by PyTorch (3.18). There is only 3.18.2 on anaconda
/opt/conda/bin/pip3 install cmake==3.18.2
conda remove -y --force patchelf

View File

@ -1,112 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -uex -o pipefail
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
# Python versions to be installed in /opt/$VERSION_NO
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.8.1 3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t"}
function check_var {
if [ -z "$1" ]; then
echo "required variable not defined"
exit 1
fi
}
function do_cpython_build {
local py_ver=$1
local py_folder=$2
check_var $py_ver
check_var $py_folder
tar -xzf Python-$py_ver.tgz
local additional_flags=""
if [ "$py_ver" == "3.13.0t" ]; then
additional_flags=" --disable-gil"
mv cpython-3.13/ cpython-3.13t/
fi
pushd $py_folder
local prefix="/opt/_internal/cpython-${py_ver}"
mkdir -p ${prefix}/lib
if [[ -n $(which patchelf) ]]; then
local shared_flags="--enable-shared"
else
local shared_flags="--disable-shared"
fi
if [[ -z "${WITH_OPENSSL+x}" ]]; then
local openssl_flags=""
else
local openssl_flags="--with-openssl=${WITH_OPENSSL} --with-openssl-rpath=auto"
fi
# -Wformat added for https://bugs.python.org/issue17547 on Python 2.6
CFLAGS="-Wformat" ./configure --prefix=${prefix} ${openssl_flags} ${shared_flags} ${additional_flags} > /dev/null
make -j40 > /dev/null
make install > /dev/null
if [[ "${shared_flags}" == "--enable-shared" ]]; then
patchelf --set-rpath '$ORIGIN/../lib' ${prefix}/bin/python3
fi
popd
rm -rf $py_folder
# Some python's install as bin/python3. Make them available as
# bin/python.
if [ -e ${prefix}/bin/python3 ]; then
ln -s python3 ${prefix}/bin/python
fi
${prefix}/bin/python get-pip.py
if [ -e ${prefix}/bin/pip3 ] && [ ! -e ${prefix}/bin/pip ]; then
ln -s pip3 ${prefix}/bin/pip
fi
# install setuptools since python 3.12 is required to use distutils
${prefix}/bin/pip install wheel==0.34.2 setuptools==68.2.2
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
ln -sf ${prefix} /opt/python/${abi_tag}
}
function build_cpython {
local py_ver=$1
check_var $py_ver
check_var $PYTHON_DOWNLOAD_URL
local py_ver_folder=$py_ver
if [ "$py_ver" = "3.13.0t" ]; then
PY_VER_SHORT="3.13"
PYT_VER_SHORT="3.13t"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PYT_VER_SHORT
elif [ "$py_ver" = "3.13.0" ]; then
PY_VER_SHORT="3.13"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PY_VER_SHORT
else
wget -q $PYTHON_DOWNLOAD_URL/$py_ver_folder/Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_ver
fi
rm -f Python-$py_ver.tgz
}
function build_cpythons {
check_var $GET_PIP_URL
curl -sLO $GET_PIP_URL
for py_ver in $@; do
build_cpython $py_ver
done
rm -f get-pip.py
}
mkdir -p /opt/python
mkdir -p /opt/_internal
build_cpythons $CPYTHON_VERSIONS

View File

@ -1,332 +0,0 @@
#!/bin/bash
set -ex
NCCL_VERSION=v2.21.5-1
CUDNN_VERSION=9.5.1.17
function install_cusparselt_040 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.4.0.7-archive.tar.xz
tar xf libcusparse_lt-linux-x86_64-0.4.0.7-archive.tar.xz
cp -a libcusparse_lt-linux-x86_64-0.4.0.7-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-x86_64-0.4.0.7-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_cusparselt_052 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.5.2.1-archive.tar.xz
tar xf libcusparse_lt-linux-x86_64-0.5.2.1-archive.tar.xz
cp -a libcusparse_lt-linux-x86_64-0.5.2.1-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-x86_64-0.5.2.1-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_cusparselt_062 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.6.2.3-archive.tar.xz
tar xf libcusparse_lt-linux-x86_64-0.6.2.3-archive.tar.xz
cp -a libcusparse_lt-linux-x86_64-0.6.2.3-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-x86_64-0.6.2.3-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_cusparselt_063 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.6.3.2-archive.tar.xz
tar xf libcusparse_lt-linux-x86_64-0.6.3.2-archive.tar.xz
cp -a libcusparse_lt-linux-x86_64-0.6.3.2-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-x86_64-0.6.3.2-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_118 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 11.8 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.4.0"
rm -rf /usr/local/cuda-11.8 /usr/local/cuda
# install CUDA 11.8.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
chmod +x cuda_11.8.0_520.61.05_linux.run
./cuda_11.8.0_520.61.05_linux.run --toolkit --silent
rm -f cuda_11.8.0_520.61.05_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-11.8 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_040
ldconfig
}
function install_121 {
echo "Installing CUDA 12.1 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.5.2"
rm -rf /usr/local/cuda-12.1 /usr/local/cuda
# install CUDA 12.1.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
chmod +x cuda_12.1.1_530.30.02_linux.run
./cuda_12.1.1_530.30.02_linux.run --toolkit --silent
rm -f cuda_12.1.1_530.30.02_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.1 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_052
ldconfig
}
function install_124 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 12.4.1 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.2"
rm -rf /usr/local/cuda-12.4 /usr/local/cuda
# install CUDA 12.4.1 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.4.1/local_installers/cuda_12.4.1_550.54.15_linux.run
chmod +x cuda_12.4.1_550.54.15_linux.run
./cuda_12.4.1_550.54.15_linux.run --toolkit --silent
rm -f cuda_12.4.1_550.54.15_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.4 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_062
ldconfig
}
function install_126 {
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.3"
rm -rf /usr/local/cuda-12.6 /usr/local/cuda
# install CUDA 12.6.3 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.6.3/local_installers/cuda_12.6.3_560.35.05_linux.run
chmod +x cuda_12.6.3_560.35.05_linux.run
./cuda_12.6.3_560.35.05_linux.run --toolkit --silent
rm -f cuda_12.6.3_560.35.05_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.6 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_063
ldconfig
}
function prune_118 {
echo "Pruning CUDA 11.8 and cuDNN"
#####################################################################################
# CUDA 11.8 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.8/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.8/lib64"
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 11.8 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.8/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.3.0 $CUDA_BASE/nsight-systems-2022.4.2/
}
function prune_121 {
echo "Pruning CUDA 12.1"
#####################################################################################
# CUDA 12.1 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.1/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.1/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.1 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.1/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2023.1.0 $CUDA_BASE/nsight-systems-2023.1.2/
}
function prune_124 {
echo "Pruning CUDA 12.4"
#####################################################################################
# CUDA 12.4 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.4/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.4/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
if [[ -n "$OVERRIDE_GENCODE_CUDNN" ]]; then
export GENCODE_CUDNN=$OVERRIDE_GENCODE_CUDNN
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.4 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.4/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.1.0 $CUDA_BASE/nsight-systems-2023.4.4/
}
function prune_126 {
echo "Pruning CUDA 12.6"
#####################################################################################
# CUDA 12.6 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.6/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.6/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
if [[ -n "$OVERRIDE_GENCODE_CUDNN" ]]; then
export GENCODE_CUDNN=$OVERRIDE_GENCODE_CUDNN
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.6 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.6/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.3.2 $CUDA_BASE/nsight-systems-2024.5.1/
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
11.8) install_118; prune_118
;;
12.1) install_121; prune_121
;;
12.4) install_124; prune_124
;;
12.6) install_126; prune_126
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -1,175 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
NCCL_VERSION=v2.21.5-1
CUDNN_VERSION=9.5.1.17
function install_cusparselt_062 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.6.2.3-archive.tar.xz
tar xf libcusparse_lt-linux-sbsa-0.6.2.3-archive.tar.xz
cp -a libcusparse_lt-linux-sbsa-0.6.2.3-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-sbsa-0.6.2.3-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_cusparselt_063 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.6.3.2-archive.tar.xz
tar xf libcusparse_lt-linux-sbsa-0.6.3.2-archive.tar.xz
cp -a libcusparse_lt-linux-sbsa-0.6.3.2-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-sbsa-0.6.3.2-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_124 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 12.4.1 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.2"
rm -rf /usr/local/cuda-12.4 /usr/local/cuda
# install CUDA 12.4.1 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.4.1/local_installers/cuda_12.4.1_550.54.15_linux_sbsa.run
chmod +x cuda_12.4.1_550.54.15_linux_sbsa.run
./cuda_12.4.1_550.54.15_linux_sbsa.run --toolkit --silent
rm -f cuda_12.4.1_550.54.15_linux_sbsa.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.4 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-sbsa/cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b ${NCCL_VERSION} --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_062
ldconfig
}
function prune_124 {
echo "Pruning CUDA 12.4"
#####################################################################################
# CUDA 12.4 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.4/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.4/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.4 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.4/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.1.0 $CUDA_BASE/nsight-systems-2023.4.4/
}
function install_126 {
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.3"
rm -rf /usr/local/cuda-12.6 /usr/local/cuda
# install CUDA 12.6.3 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.6.3/local_installers/cuda_12.6.3_560.35.05_linux_sbsa.run
chmod +x cuda_12.6.3_560.35.05_linux_sbsa.run
./cuda_12.6.3_560.35.05_linux_sbsa.run --toolkit --silent
rm -f cuda_12.6.3_560.35.05_linux_sbsa.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.6 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-sbsa/cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b ${NCCL_VERSION} --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_063
ldconfig
}
function prune_126 {
echo "Pruning CUDA 12.6"
#####################################################################################
# CUDA 12.6 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.6/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.6/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
if [[ -n "$OVERRIDE_GENCODE_CUDNN" ]]; then
export GENCODE_CUDNN=$OVERRIDE_GENCODE_CUDNN
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.6 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.6/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.3.2 $CUDA_BASE/nsight-systems-2024.5.1/
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4) install_124; prune_124
;;
12.6) install_126; prune_126
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -1,24 +0,0 @@
#!/bin/bash
if [[ -n "${CUDNN_VERSION}" ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn
pushd tmp_cudnn
if [[ ${CUDA_VERSION:0:4} == "12.6" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.5.1.17_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "12" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
else
print "Unsupported CUDA version ${CUDA_VERSION}"
exit 1
fi
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${CUDNN_NAME}.tar.xz
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -1,25 +0,0 @@
#!/bin/bash
set -ex
# cudss license: https://docs.nvidia.com/cuda/cudss/license.html
mkdir tmp_cudss && cd tmp_cudss
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[1-4]$ ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUDSS_NAME="libcudss-linux-${arch_path}-0.3.0.9_cuda12-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudss/redist/libcudss/linux-${arch_path}/${CUDSS_NAME}.tar.xz
# only for cuda 12
tar xf ${CUDSS_NAME}.tar.xz
cp -a ${CUDSS_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDSS_NAME}/lib/* /usr/local/cuda/lib64/
fi
cd ..
rm -rf tmp_cudss
ldconfig

View File

@ -1,34 +0,0 @@
#!/bin/bash
set -ex
# cuSPARSELt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && cd tmp_cusparselt
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[2-6]$ ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.6.2.3-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "12.1" ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.5.2.1-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUSPARSELT_NAME="libcusparse_lt-linux-x86_64-0.4.0.7-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/${CUSPARSELT_NAME}.tar.xz
fi
tar xf ${CUSPARSELT_NAME}.tar.xz
cp -a ${CUSPARSELT_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUSPARSELT_NAME}/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cusparselt
ldconfig

View File

@ -1,38 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
apt-get update
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,25 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$KATEX" ]; then
apt-get update
# Ignore error if gpg-agent doesn't exist (for Ubuntu 16.04)
apt-get install -y gpg-agent || :
curl --retry 3 -sL https://deb.nodesource.com/setup_16.x | sudo -E bash -
sudo apt-get install -y nodejs
curl --retry 3 -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
apt-get update
apt-get install -y --no-install-recommends yarn
yarn global add katex --prefix /usr/local
sudo apt-get -y install doxygen
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,59 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
clone_executorch() {
EXECUTORCH_PINNED_COMMIT=$(get_pinned_commit executorch)
# Clone the Executorch
git clone https://github.com/pytorch/executorch.git
# and fetch the target commit
pushd executorch
git checkout "${EXECUTORCH_PINNED_COMMIT}"
git submodule update --init
popd
chown -R jenkins executorch
}
install_buck2() {
pushd executorch/.ci/docker
BUCK2_VERSION=$(cat ci_commit_pins/buck2.txt)
source common/install_buck.sh
popd
}
install_conda_dependencies() {
pushd executorch/.ci/docker
# Install conda dependencies like flatbuffer
conda_install --file conda-env-ci.txt
popd
}
install_pip_dependencies() {
pushd executorch
as_jenkins bash install_requirements.sh --pybind xnnpack
popd
}
setup_executorch() {
pushd executorch
export PYTHON_EXECUTABLE=python
export EXECUTORCH_BUILD_PYBIND=ON
export CMAKE_ARGS="-DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
as_jenkins .ci/scripts/setup-linux.sh cmake || true
popd
}
clone_executorch
install_buck2
install_conda_dependencies
install_pip_dependencies
setup_executorch

View File

@ -1,20 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,46 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
COMMIT=$(get_pinned_commit halide)
test -n "$COMMIT"
# activate conda to populate CONDA_PREFIX
test -n "$ANACONDA_PYTHON_VERSION"
eval "$(conda shell.bash hook)"
conda activate py_$ANACONDA_PYTHON_VERSION
if [ -n "${UBUNTU_VERSION}" ];then
apt update
apt-get install -y lld liblld-15-dev libpng-dev libjpeg-dev libgl-dev \
libopenblas-dev libeigen3-dev libatlas-base-dev libzstd-dev
fi
conda_install numpy scipy imageio cmake ninja
git clone --depth 1 --branch release/16.x --recursive https://github.com/llvm/llvm-project.git
cmake -DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="clang" \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX" \
-DLLVM_ENABLE_TERMINFO=OFF -DLLVM_ENABLE_ASSERTIONS=ON \
-DLLVM_ENABLE_EH=ON -DLLVM_ENABLE_RTTI=ON -DLLVM_BUILD_32_BITS=OFF \
-S llvm-project/llvm -B llvm-build -G Ninja
cmake --build llvm-build
cmake --install llvm-build --prefix llvm-install
export LLVM_ROOT=`pwd`/llvm-install
export LLVM_CONFIG=$LLVM_ROOT/bin/llvm-config
git clone https://github.com/halide/Halide.git
pushd Halide
git checkout ${COMMIT} && git submodule update --init --recursive
pip_install -r requirements.txt
cmake -G Ninja -DCMAKE_BUILD_TYPE=Release -S . -B build
cmake --build build
test -e ${CONDA_PREFIX}/lib/python3 || ln -s python${ANACONDA_PYTHON_VERSION} ${CONDA_PREFIX}/lib/python3
cmake --install build --prefix ${CONDA_PREFIX}
chown -R jenkins ${CONDA_PREFIX}
popd
rm -rf Halide llvm-build llvm-project llvm-install
python -c "import halide" # check for errors

View File

@ -1,32 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
function install_huggingface() {
local version
commit=$(get_pinned_commit huggingface)
pip_install "git+https://github.com/huggingface/transformers@${commit}"
}
function install_timm() {
local commit
commit=$(get_pinned_commit timm)
# TODO (huydhn): There is no torchvision release on 3.13 when I write this, so
# I'm using nightly here instead. We just need to package to be able to install
# TIMM. Removing this once vision has a release on 3.13
if [[ "${ANACONDA_PYTHON_VERSION}" == "3.13" ]]; then
pip_install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu124
fi
pip_install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
# Clean up
conda_run pip uninstall -y cmake torch torchvision triton
}
# Pango is needed for weasyprint which is needed for doctr
conda_install pango
install_huggingface
install_timm

View File

@ -1,8 +0,0 @@
#!/bin/bash
set -ex
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
pushd lcov
sudo make install # will be installed in /usr/local/bin/lcov
popd

View File

@ -1,23 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
LIBPNG_VERSION=1.6.37
mkdir -p libpng
pushd libpng
wget http://download.sourceforge.net/libpng/libpng-$LIBPNG_VERSION.tar.gz
tar -xvzf libpng-$LIBPNG_VERSION.tar.gz
pushd libpng-$LIBPNG_VERSION
./configure
make
make install
popd
popd
rm -rf libpng

View File

@ -1,29 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
if [ -n "${UBUNTU_VERSION}" ]; then
apt update
apt-get install -y clang doxygen git graphviz nodejs npm libtinfo5
fi
# Do shallow clone of PyTorch so that we can init lintrunner in Docker build context
git clone https://github.com/pytorch/pytorch.git --depth 1
chown -R jenkins pytorch
pushd pytorch
# Install all linter dependencies
pip_install -r requirements.txt
conda_run lintrunner init
# Cache .lintbin directory as part of the Docker image
cp -r .lintbin /tmp
popd
# Node dependencies required by toc linter job
npm install -g markdown-toc
# Cleaning up
rm -rf pytorch

View File

@ -1,27 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
function do_install() {
cuda_version=$1
cuda_version_nodot=${1/./}
MAGMA_VERSION="2.6.1"
magma_archive="magma-cuda${cuda_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
cuda_dir="/usr/local/cuda-${cuda_version}"
(
set -x
tmp_dir=$(mktemp -d)
pushd ${tmp_dir}
curl -OLs https://ossci-linux.s3.us-east-1.amazonaws.com/${magma_archive}
tar -xvf "${magma_archive}"
mkdir -p "${cuda_dir}/magma"
mv include "${cuda_dir}/magma/include"
mv lib "${cuda_dir}/magma/lib"
popd
)
}
do_install $1

View File

@ -1,26 +0,0 @@
#!/usr/bin/env bash
# Script that replaces the magma install from a conda package
set -eou pipefail
function do_install() {
cuda_version_nodot=${1/./}
anaconda_python_version=$2
MAGMA_VERSION="2.6.1"
magma_archive="magma-cuda${cuda_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
anaconda_dir="/opt/conda/envs/py_${anaconda_python_version}"
(
set -x
tmp_dir=$(mktemp -d)
pushd ${tmp_dir}
curl -OLs https://ossci-linux.s3.us-east-1.amazonaws.com/${magma_archive}
tar -xvf "${magma_archive}"
mv include/* "${anaconda_dir}/include/"
mv lib/* "${anaconda_dir}/lib"
popd
)
}
do_install $1 $2

View File

@ -1,129 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
ROCM_VERSION=$1
if [[ -z $ROCM_VERSION ]]; then
echo "missing ROCM_VERSION"
exit 1;
fi
IS_UBUNTU=0
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
IS_UBUNTU=1
;;
centos|almalinux)
IS_UBUNTU=0
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# To make version comparison easier, create an integer representation.
save_IFS="$IFS"
IFS=. ROCM_VERSION_ARRAY=(${ROCM_VERSION})
IFS="$save_IFS"
if [[ ${#ROCM_VERSION_ARRAY[@]} == 2 ]]; then
ROCM_VERSION_MAJOR=${ROCM_VERSION_ARRAY[0]}
ROCM_VERSION_MINOR=${ROCM_VERSION_ARRAY[1]}
ROCM_VERSION_PATCH=0
elif [[ ${#ROCM_VERSION_ARRAY[@]} == 3 ]]; then
ROCM_VERSION_MAJOR=${ROCM_VERSION_ARRAY[0]}
ROCM_VERSION_MINOR=${ROCM_VERSION_ARRAY[1]}
ROCM_VERSION_PATCH=${ROCM_VERSION_ARRAY[2]}
else
echo "Unhandled ROCM_VERSION ${ROCM_VERSION}"
exit 1
fi
ROCM_INT=$(($ROCM_VERSION_MAJOR * 10000 + $ROCM_VERSION_MINOR * 100 + $ROCM_VERSION_PATCH))
# Function to retry functions that sometimes timeout or have flaky failures
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Build custom MIOpen to use comgr for offline compilation.
## Need a sanitized ROCM_VERSION without patchlevel; patchlevel version 0 must be added to paths.
ROCM_DOTS=$(echo ${ROCM_VERSION} | tr -d -c '.' | wc -c)
if [[ ${ROCM_DOTS} == 1 ]]; then
ROCM_VERSION_NOPATCH="${ROCM_VERSION}"
ROCM_INSTALL_PATH="/opt/rocm-${ROCM_VERSION}.0"
else
ROCM_VERSION_NOPATCH="${ROCM_VERSION%.*}"
ROCM_INSTALL_PATH="/opt/rocm-${ROCM_VERSION}"
fi
MIOPEN_CMAKE_COMMON_FLAGS="
-DMIOPEN_USE_COMGR=ON
-DMIOPEN_BUILD_DRIVER=OFF
"
if [[ $ROCM_INT -ge 60200 ]] && [[ $ROCM_INT -lt 60204 ]]; then
MIOPEN_BRANCH="release/rocm-rel-6.2-staging"
else
echo "ROCm ${ROCM_VERSION} does not need any patches, do not build from source"
exit 0
fi
if [[ ${IS_UBUNTU} == 1 ]]; then
apt-get remove -y miopen-hip
else
# Workaround since almalinux manylinux image already has this and cget doesn't like that
rm -rf /usr/local/lib/pkgconfig/sqlite3.pc
# Versioned package name needs regex match
# Use --noautoremove to prevent other rocm packages from being uninstalled
yum remove -y miopen-hip* --noautoremove
fi
git clone https://github.com/ROCm/MIOpen -b ${MIOPEN_BRANCH}
pushd MIOpen
# remove .git to save disk space since CI runner was running out
rm -rf .git
# Don't build CK to save docker build time
sed -i '/composable_kernel/d' requirements.txt
## MIOpen minimum requirements
cmake -P install_deps.cmake --minimum
# clean up since CI runner was running out of disk space
rm -rf /tmp/*
if [[ ${IS_UBUNTU} == 1 ]]; then
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
else
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
fi
## Build MIOpen
mkdir -p build
cd build
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig CXX=${ROCM_INSTALL_PATH}/llvm/bin/clang++ cmake .. \
${MIOPEN_CMAKE_COMMON_FLAGS} \
${MIOPEN_CMAKE_DB_FLAGS} \
-DCMAKE_PREFIX_PATH="${ROCM_INSTALL_PATH}"
make MIOpen -j $(nproc)
# Build MIOpen package
make -j $(nproc) package
# clean up since CI runner was running out of disk space
rm -rf /usr/local/cget
if [[ ${IS_UBUNTU} == 1 ]]; then
sudo dpkg -i miopen-hip*.deb
else
yum install -y miopen-*.rpm
fi
popd
rm -rf MIOpen

View File

@ -1,16 +0,0 @@
#!/bin/bash
set -ex
# MKL
MKL_VERSION=2024.2.0
MKLROOT=/opt/intel
mkdir -p ${MKLROOT}
pushd /tmp
python3 -mpip install wheel
python3 -mpip download -d . mkl-static==${MKL_VERSION}
python3 -m wheel unpack mkl_static-${MKL_VERSION}-py2.py3-none-manylinux1_x86_64.whl
python3 -m wheel unpack mkl_include-${MKL_VERSION}-py2.py3-none-manylinux1_x86_64.whl
mv mkl_static-${MKL_VERSION}/mkl_static-${MKL_VERSION}.data/data/lib ${MKLROOT}
mv mkl_include-${MKL_VERSION}/mkl_include-${MKL_VERSION}.data/data/include ${MKLROOT}

View File

@ -1,13 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
mkdir -p /usr/local/mnist/
cd /usr/local/mnist
for img in train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz; do
wget -q https://ossci-datasets.s3.amazonaws.com/mnist/$img
gzip -d $img
done

View File

@ -1,20 +0,0 @@
#!/bin/bash
set -ex
function install_nvpl {
mkdir -p /opt/nvpl/lib /opt/nvpl/include
wget https://developer.download.nvidia.com/compute/nvpl/redist/nvpl_blas/linux-sbsa/nvpl_blas-linux-sbsa-0.3.0-archive.tar.xz
tar xf nvpl_blas-linux-sbsa-0.3.0-archive.tar.xz
cp -r nvpl_blas-linux-sbsa-0.3.0-archive/lib/* /opt/nvpl/lib/
cp -r nvpl_blas-linux-sbsa-0.3.0-archive/include/* /opt/nvpl/include/
wget https://developer.download.nvidia.com/compute/nvpl/redist/nvpl_lapack/linux-sbsa/nvpl_lapack-linux-sbsa-0.2.3.1-archive.tar.xz
tar xf nvpl_lapack-linux-sbsa-0.2.3.1-archive.tar.xz
cp -r nvpl_lapack-linux-sbsa-0.2.3.1-archive/lib/* /opt/nvpl/lib/
cp -r nvpl_lapack-linux-sbsa-0.2.3.1-archive/include/* /opt/nvpl/include/
}
install_nvpl

View File

@ -1,52 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
retry () {
"$@" || (sleep 10 && "$@") || (sleep 20 && "$@") || (sleep 40 && "$@")
}
# A bunch of custom pip dependencies for ONNX
pip_install \
beartype==0.15.0 \
filelock==3.9.0 \
flatbuffers==2.0 \
mock==5.0.1 \
ninja==1.10.2 \
networkx==2.5 \
numpy==1.24.2
# ONNXRuntime should be installed before installing
# onnx-weekly. Otherwise, onnx-weekly could be
# overwritten by onnx.
pip_install \
parameterized==0.8.1 \
pytest-cov==4.0.0 \
pytest-subtests==0.10.0 \
tabulate==0.9.0 \
transformers==4.36.2
pip_install coloredlogs packaging
pip_install onnxruntime==1.18.1
pip_install onnx==1.16.2
pip_install onnxscript==0.1.0.dev20241124 --no-deps
# required by onnxscript
pip_install ml_dtypes
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/
IMPORT_SCRIPT_FILENAME="/tmp/onnx_import_script.py"
as_jenkins echo 'import transformers; transformers.AutoModel.from_pretrained("sshleifer/tiny-gpt2"); transformers.AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2"); transformers.AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large-v3");' > "${IMPORT_SCRIPT_FILENAME}"
# Need a PyTorch version for transformers to work
pip_install --pre torch --index-url https://download.pytorch.org/whl/nightly/cpu
# Very weird quoting behavior here https://github.com/conda/conda/issues/10972,
# so echo the command to a file and run the file instead
conda_run python "${IMPORT_SCRIPT_FILENAME}"
# Cleaning up
conda_run pip uninstall -y torch
rm "${IMPORT_SCRIPT_FILENAME}" || true

View File

@ -1,22 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
cd /
git clone https://github.com/OpenMathLib/OpenBLAS.git -b v0.3.28 --depth 1 --shallow-submodules
OPENBLAS_BUILD_FLAGS="
NUM_THREADS=128
USE_OPENMP=1
NO_SHARED=0
DYNAMIC_ARCH=1
TARGET=ARMV8
CFLAGS=-O3
"
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}

View File

@ -1,10 +0,0 @@
#!/bin/bash
sudo apt-get update
# also install ssh to avoid error of:
# --------------------------------------------------------------------------
# The value of the MCA parameter "plm_rsh_agent" was set to a path
# that could not be found:
# plm_rsh_agent: ssh : rsh
sudo apt-get install -y ssh
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev

View File

@ -1,17 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://ossci-linux.s3.amazonaws.com/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: openssl install errors out when built with the -j option
NPROC=$[$(nproc) - 2]
make -j${NPROC}; make install_sw
# Link the ssl libraries to the /usr/lib folder.
sudo ln -s /opt/openssl/lib/lib* /usr/lib
cd ..
rm -rf "${OPENSSL}"

View File

@ -1,16 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
# Pin the version to latest release 0.17.2, building newer commit starts
# to fail on the current image
git clone -b 0.17.2 --single-branch https://github.com/NixOS/patchelf
cd patchelf
sed -i 's/serial/parallel/g' configure.ac
./bootstrap.sh
./configure
make
make install
cd ..
rm -rf patchelf

View File

@ -1,19 +0,0 @@
#!/bin/bash
set -ex
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz" --retry 3
tar -xvz --no-same-owner -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
NPROC=$[$(nproc) - 2]
pushd "$pb_dir" && ./configure && make -j${NPROC} && make -j${NPROC} check && sudo make -j${NRPOC} install && sudo ldconfig
popd
rm -rf $pb_dir

View File

@ -1,164 +0,0 @@
#!/bin/bash
set -ex
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev \
amd-smi-lib
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.1) ]]; then
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated rocm-llvm-dev
fi
# precompiled miopen kernels added in ROCm 3.5, renamed in ROCm 5.5
# search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
fi
# ROCm 6.0 had a regression where journal_mode was enabled on the kdb files resulting in permission errors at runtime
for kdb in /opt/rocm/share/miopen/db/*.kdb
do
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
done
# ROCm 6.3 had a regression where initializing static code objects had significant overhead
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]]; then
# clr build needs CppHeaderParser but can only find it using conda's python
/opt/conda/bin/python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b rocm-6.3.x
HIP_COMMON_DIR=$(readlink -f HIP)
git clone https://github.com/jeffdaily/clr -b release/rocm-rel-6.3-statco-hotfix
mkdir -p clr/build
pushd clr/build
cmake .. -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
make -j
cp hipamd/lib/libamdhip64.so.6.3.* /opt/rocm/lib/libamdhip64.so.6.3.*
popd
rm -rf HIP clr
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y kmod
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
# Add amdgpu repository
local amdgpu_baseurl
if [[ $OS_VERSION == 9 ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/9.0/main/x86_64"
else
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/7.9/main/x86_64"
fi
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=${rocm_baseurl}" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev \
amd-smi-lib
# precompiled miopen kernels; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENHIPGFX=$(yum -q search miopen-hip-gfx | grep miopen-hip-gfx | awk '{print $1}'| grep -F kdb. || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
else
yum install -y ${MIOPENHIPGFX}
fi
# ROCm 6.0 had a regression where journal_mode was enabled on the kdb files resulting in permission errors at runtime
for kdb in /opt/rocm/share/miopen/db/*.kdb
do
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
done
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,150 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
###########################
### prereqs
###########################
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
apt-get update -y
apt-get install -y libpciaccess-dev pkg-config
apt-get clean
;;
centos|almalinux)
yum install -y libpciaccess-devel pkgconfig
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
python3 -m pip install meson ninja
###########################
### clone repo
###########################
GIT_SSL_NO_VERIFY=true git clone https://gitlab.freedesktop.org/mesa/drm.git
pushd drm
###########################
### patch
###########################
patch -p1 <<'EOF'
diff --git a/amdgpu/amdgpu_asic_id.c b/amdgpu/amdgpu_asic_id.c
index a5007ffc..13fa07fc 100644
--- a/amdgpu/amdgpu_asic_id.c
+++ b/amdgpu/amdgpu_asic_id.c
@@ -22,6 +22,13 @@
*
*/
+#define _XOPEN_SOURCE 700
+#define _LARGEFILE64_SOURCE
+#define _FILE_OFFSET_BITS 64
+#include <ftw.h>
+#include <link.h>
+#include <limits.h>
+
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
@@ -34,6 +41,19 @@
#include "amdgpu_drm.h"
#include "amdgpu_internal.h"
+static char *amdgpuids_path = NULL;
+static const char* amdgpuids_path_msg = NULL;
+
+static int check_for_location_of_amdgpuids(const char *filepath, const struct stat *info, const int typeflag, struct FTW *pathinfo)
+{
+ if (typeflag == FTW_F && strstr(filepath, "amdgpu.ids")) {
+ amdgpuids_path = strdup(filepath);
+ return 1;
+ }
+
+ return 0;
+}
+
static int parse_one_line(struct amdgpu_device *dev, const char *line)
{
char *buf, *saveptr;
@@ -113,10 +133,46 @@ void amdgpu_parse_asic_ids(struct amdgpu_device *dev)
int line_num = 1;
int r = 0;
+ // attempt to find typical location for amdgpu.ids file
fp = fopen(AMDGPU_ASIC_ID_TABLE, "r");
+
+ // if it doesn't exist, search
+ if (!fp) {
+
+ char self_path[ PATH_MAX ];
+ ssize_t count;
+ ssize_t i;
+
+ count = readlink( "/proc/self/exe", self_path, PATH_MAX );
+ if (count > 0) {
+ self_path[count] = '\0';
+
+ // remove '/bin/python' from self_path
+ for (i=count; i>0; --i) {
+ if (self_path[i] == '/') break;
+ self_path[i] = '\0';
+ }
+ self_path[i] = '\0';
+ for (; i>0; --i) {
+ if (self_path[i] == '/') break;
+ self_path[i] = '\0';
+ }
+ self_path[i] = '\0';
+
+ if (1 == nftw(self_path, check_for_location_of_amdgpuids, 5, FTW_PHYS)) {
+ fp = fopen(amdgpuids_path, "r");
+ amdgpuids_path_msg = amdgpuids_path;
+ }
+ }
+
+ }
+ else {
+ amdgpuids_path_msg = AMDGPU_ASIC_ID_TABLE;
+ }
+
+ // both hard-coded location and search have failed
if (!fp) {
- fprintf(stderr, "%s: %s\n", AMDGPU_ASIC_ID_TABLE,
- strerror(errno));
+ fprintf(stderr, "amdgpu.ids: No such file or directory\n");
return;
}
@@ -132,7 +188,7 @@ void amdgpu_parse_asic_ids(struct amdgpu_device *dev)
continue;
}
- drmMsg("%s version: %s\n", AMDGPU_ASIC_ID_TABLE, line);
+ drmMsg("%s version: %s\n", amdgpuids_path_msg, line);
break;
}
@@ -150,7 +206,7 @@ void amdgpu_parse_asic_ids(struct amdgpu_device *dev)
if (r == -EINVAL) {
fprintf(stderr, "Invalid format: %s: line %d: %s\n",
- AMDGPU_ASIC_ID_TABLE, line_num, line);
+ amdgpuids_path_msg, line_num, line);
} else if (r && r != -EAGAIN) {
fprintf(stderr, "%s: Cannot parse ASIC IDs: %s\n",
__func__, strerror(-r));
EOF
###########################
### build
###########################
meson builddir --prefix=/opt/amdgpu
pushd builddir
ninja install
popd
popd

View File

@ -1,50 +0,0 @@
#!/bin/bash
# Script used in CI and CD pipeline
set -ex
# Magma build scripts need `python`
ln -sf /usr/bin/python3 /usr/bin/python
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
almalinux)
yum install -y gcc-gfortran
;;
*)
echo "No preinstalls to build magma..."
;;
esac
MKLROOT=${MKLROOT:-/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION}
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
# Version 2.7.2 + ROCm related updates
git checkout a1625ff4d9bc362906bd01f805dbbe12612953f6
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
if [[ -f "${MKLROOT}/lib/libmkl_core.a" ]]; then
echo 'LIB = -Wl,--start-group -lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -Wl,--end-group -lpthread -lstdc++ -lm -lgomp -lhipblas -lhipsparse' >> make.inc
fi
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib -ldl' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
else
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`
fi
for arch in $amdgpu_targets; do
echo "DEVCCFLAGS += --offload-arch=$arch" >> make.inc
done
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT="${MKLROOT}"
make testing/testing_dgemm -j $(nproc) MKLROOT="${MKLROOT}"
popd
mv magma /opt/rocm

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${SWIFTSHADER}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
# SwiftShader
_swiftshader_dir=/var/lib/jenkins/swiftshader
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
mkdir -p $_swiftshader_dir
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
curl --silent --show-error --location --fail --retry 3 \
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"

View File

@ -1,87 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
get_conda_version() {
as_jenkins conda list -n py_$ANACONDA_PYTHON_VERSION | grep -w $* | head -n 1 | awk '{print $2}'
}
conda_reinstall() {
as_jenkins conda install -q -n py_$ANACONDA_PYTHON_VERSION -y --force-reinstall $*
}
if [ -n "${XPU_VERSION}" ]; then
TRITON_REPO="https://github.com/intel/intel-xpu-backend-for-triton"
TRITON_TEXT_FILE="triton-xpu"
elif [ -n "${TRITON_CPU}" ]; then
TRITON_REPO="https://github.com/triton-lang/triton-cpu"
TRITON_TEXT_FILE="triton-cpu"
else
TRITON_REPO="https://github.com/triton-lang/triton"
TRITON_TEXT_FILE="triton"
fi
# The logic here is copied from .ci/pytorch/common_utils.sh
TRITON_PINNED_COMMIT=$(get_pinned_commit ${TRITON_TEXT_FILE})
if [ -n "${UBUNTU_VERSION}" ];then
apt update
apt-get install -y gpg-agent
fi
if [ -n "${CONDA_CMAKE}" ]; then
# Keep the current cmake and numpy version here, so we can reinstall them later
CMAKE_VERSION=$(get_conda_version cmake)
NUMPY_VERSION=$(get_conda_version numpy)
fi
if [ -z "${MAX_JOBS}" ]; then
export MAX_JOBS=$(nproc)
fi
# Git checkout triton
mkdir /var/lib/jenkins/triton
chown -R jenkins /var/lib/jenkins/triton
chgrp -R jenkins /var/lib/jenkins/triton
pushd /var/lib/jenkins/
as_jenkins git clone --recursive ${TRITON_REPO} triton
cd triton
as_jenkins git checkout ${TRITON_PINNED_COMMIT}
as_jenkins git submodule update --init --recursive
cd python
# TODO: remove patch setup.py once we have a proper fix for https://github.com/triton-lang/triton/issues/4527
as_jenkins sed -i -e 's/https:\/\/tritonlang.blob.core.windows.net\/llvm-builds/https:\/\/oaitriton.blob.core.windows.net\/public\/llvm-builds/g' setup.py
if [ -n "${UBUNTU_VERSION}" ] && [ -n "${GCC_VERSION}" ] && [[ "${GCC_VERSION}" == "7" ]]; then
# Triton needs at least gcc-9 to build
apt-get install -y g++-9
CXX=g++-9 pip_install -e .
elif [ -n "${UBUNTU_VERSION}" ] && [ -n "${CLANG_VERSION}" ]; then
# Triton needs <filesystem> which surprisingly is not available with clang-9 toolchain
add-apt-repository -y ppa:ubuntu-toolchain-r/test
apt-get install -y g++-9
CXX=g++-9 pip_install -e .
else
pip_install -e .
fi
if [ -n "${CONDA_CMAKE}" ]; then
# TODO: This is to make sure that the same cmake and numpy version from install conda
# script is used. Without this step, the newer cmake version (3.25.2) downloaded by
# triton build step via pip will fail to detect conda MKL. Once that issue is fixed,
# this can be removed.
#
# The correct numpy version also needs to be set here because conda claims that it
# causes inconsistent environment. Without this, conda will attempt to install the
# latest numpy version, which fails ASAN tests with the following import error: Numba
# needs NumPy 1.20 or less.
conda_reinstall cmake="${CMAKE_VERSION}"
# Note that we install numpy with pip as conda might not have the version we want
pip_install --force-reinstall numpy=="${NUMPY_VERSION}"
fi

View File

@ -1,53 +0,0 @@
#!/bin/bash
set -ex
if [[ -d "/usr/local/cuda/" ]]; then
with_cuda=/usr/local/cuda/
else
with_cuda=no
fi
function install_ucx() {
set -ex
git clone --recursive https://github.com/openucx/ucx.git
pushd ucx
git checkout ${UCX_COMMIT}
git submodule update --init --recursive
./autogen.sh
./configure --prefix=$UCX_HOME \
--enable-mt \
--with-cuda=$with_cuda \
--enable-profiling \
--enable-stats
time make -j
sudo make install
popd
rm -rf ucx
}
function install_ucc() {
set -ex
git clone --recursive https://github.com/openucx/ucc.git
pushd ucc
git checkout ${UCC_COMMIT}
git submodule update --init --recursive
./autogen.sh
# We only run distributed tests on Tesla M60 and A10G
NVCC_GENCODE="-gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_86,code=compute_86"
./configure --prefix=$UCC_HOME \
--with-ucx=$UCX_HOME \
--with-cuda=$with_cuda \
--with-nvcc-gencode="${NVCC_GENCODE}"
time make -j
sudo make install
popd
rm -rf ucc
}
install_ucx
install_ucc

View File

@ -1,40 +0,0 @@
#!/bin/bash
set -ex
# Since version 24 the system ships with user 'ubuntu' that has id 1000
# We need a work-around to enable id 1000 usage for this script
if [[ $UBUNTU_VERSION == 24.04 ]]; then
# touch is used to disable harmless error message
touch /var/mail/ubuntu && chown ubuntu /var/mail/ubuntu && userdel -r ubuntu
fi
# Mirror jenkins user in container
# jenkins user as ec2-user should have the same user-id
echo "jenkins:x:1000:1000::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1000:" >> /etc/group
# Needed on focal or newer
echo "jenkins:*:19110:0:99999:7:::" >>/etc/shadow
# Create $HOME
mkdir -p /var/lib/jenkins
chown jenkins:jenkins /var/lib/jenkins
mkdir -p /var/lib/jenkins/.ccache
chown jenkins:jenkins /var/lib/jenkins/.ccache
# Allow writing to /usr/local (for make install)
chown jenkins:jenkins /usr/local
# Allow sudo
# TODO: Maybe we shouldn't
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
# Test that sudo works
$SUDO -u jenkins $SUDO -v

View File

@ -1,46 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libopencv-dev
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
yum install -y \
opencv-devel
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Cache vision models used by the test
source "$(dirname "${BASH_SOURCE[0]}")/cache_vision_models.sh"

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${VULKAN_SDK_VERSION}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
curl \
--silent \
--show-error \
--location \
--fail \
--retry 3 \
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
mkdir -p "${_vulkansdk_dir}"
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
rm -rf "${_tmp_vulkansdk_targz}"

View File

@ -1,167 +0,0 @@
#!/bin/bash
set -xe
# Script used in CI and CD pipeline
# Intel® software for general purpose GPU capabilities.
# Refer to https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
# Users should update to the latest version as it becomes available
function install_ubuntu() {
. /etc/os-release
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
echo "Ubuntu version ${VERSION_CODENAME} not supported"
exit
fi
apt-get update -y
apt-get install -y gpg-agent wget
# To add the online network package repository for the GPU Driver
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key \
| gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] \
https://repositories.intel.com/gpu/ubuntu ${VERSION_CODENAME}${XPU_DRIVER_VERSION} unified" \
| tee /etc/apt/sources.list.d/intel-gpu-${VERSION_CODENAME}.list
# To add the online network network package repository for the Intel Support Packages
wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor > /usr/share/keyrings/oneapi-archive-keyring.gpg.gpg
echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg.gpg] \
https://apt.repos.intel.com/${XPU_REPO_NAME} all main" \
| tee /etc/apt/sources.list.d/oneAPI.list
# Update the packages list and repository index
apt-get update
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
apt-get install -y intel-ocloc
fi
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
# Install Intel Support Packages
apt-get install -y ${XPU_PACKAGES}
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.8"
fi
dnf install -y 'dnf-command(config-manager)'
# To add the online network package repository for the GPU Driver
dnf config-manager --add-repo \
https://repositories.intel.com/gpu/rhel/${VERSION_ID}${XPU_DRIVER_VERSION}/unified/intel-gpu-${VERSION_ID}.repo
# To add the online network network package repository for the Intel Support Packages
tee > /etc/yum.repos.d/oneAPI.repo << EOF
[oneAPI]
name=Intel for Pytorch GPU dev repository
baseurl=https://yum.repos.intel.com/${XPU_REPO_NAME}
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
EOF
# Install Intel Support Packages
yum install -y ${XPU_PACKAGES}
# The xpu-smi packages
dnf install -y xpu-smi
# Compute and Media Runtimes
dnf install --skip-broken -y \
intel-opencl intel-media intel-mediasdk libmfxgen1 libvpl2\
level-zero intel-level-zero-gpu mesa-dri-drivers mesa-vulkan-drivers \
mesa-vdpau-drivers libdrm mesa-libEGL mesa-libgbm mesa-libGL \
mesa-libxatracker libvpl-tools intel-metrics-discovery \
intel-metrics-library intel-igc-core intel-igc-cm \
libva libva-utils intel-gmmlib libmetee intel-gsc intel-ocloc
# Development packages
dnf install -y --refresh \
intel-igc-opencl-devel level-zero-devel intel-gsc-devel libmetee-devel \
level-zero-devel
# Cleanup
dnf clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
function install_sles() {
. /etc/os-release
VERSION_SP=${VERSION_ID//./sp}
if [[ ! " 15sp4 15sp5 " =~ " ${VERSION_SP} " ]]; then
echo "SLES version ${VERSION_ID} not supported"
exit
fi
# To add the online network package repository for the GPU Driver
zypper addrepo -f -r \
https://repositories.intel.com/gpu/sles/${VERSION_SP}${XPU_DRIVER_VERSION}/unified/intel-gpu-${VERSION_SP}.repo
rpm --import https://repositories.intel.com/gpu/intel-graphics.key
# To add the online network network package repository for the Intel Support Packages
zypper addrepo https://yum.repos.intel.com/${XPU_REPO_NAME} oneAPI
rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
# The xpu-smi packages
zypper install -y lsb-release flex bison xpu-smi
# Compute and Media Runtimes
zypper install -y intel-level-zero-gpu level-zero intel-gsc intel-opencl intel-ocloc \
intel-media-driver libigfxcmrt7 libvpl2 libvpl-tools libmfxgen1 libmfx1
# Development packages
zypper install -y libigdfcl-devel intel-igc-cm libigfxcmrt-devel level-zero-devel
# Install Intel Support Packages
zypper install -y ${XPU_PACKAGES}
}
# Default use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2350"
if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
# Use GPU driver rolling releases
XPU_DRIVER_VERSION=""
fi
XPU_REPO_NAME="intel-for-pytorch-gpu-dev"
XPU_PACKAGES="intel-for-pytorch-gpu-dev-0.5 intel-pti-dev-0.9"
if [[ "$XPU_VERSION" == "2025.0" ]]; then
XPU_REPO_NAME="oneapi"
XPU_PACKAGES="intel-deep-learning-essentials-2025.0"
fi
# The installation depends on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
rhel|almalinux)
install_rhel
;;
sles)
install_sles
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,105 +0,0 @@
ARG BASE_TARGET=base
ARG GPU_IMAGE=ubuntu:20.04
FROM ${GPU_IMAGE} as base
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get clean && apt-get update
RUN apt-get install -y curl locales g++ git-all autoconf automake make cmake wget unzip sudo
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
RUN locale-gen en_US.UTF-8
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
# Install openssl
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# Install python
FROM base as python
ADD common/install_cpython.sh install_cpython.sh
RUN apt-get update -y && \
apt-get install build-essential gdb lcov libbz2-dev libffi-dev \
libgdbm-dev liblzma-dev libncurses5-dev libreadline6-dev \
libsqlite3-dev libssl-dev lzma lzma-dev tk-dev uuid-dev zlib1g-dev -y && \
bash ./install_cpython.sh && \
rm install_cpython.sh && \
apt-get clean
FROM base as conda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
FROM base as cpu
# Install Anaconda
COPY --from=conda /opt/conda /opt/conda
# Install python
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
ENV PATH=/opt/conda/bin:/usr/local/cuda/bin:$PATH
# Install MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM cpu as cuda
ADD ./common/install_cuda.sh install_cuda.sh
ADD ./common/install_magma.sh install_magma.sh
ENV CUDA_HOME /usr/local/cuda
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
RUN bash ./install_magma.sh 11.8
RUN ln -sf /usr/local/cuda-11.8 /usr/local/cuda
FROM cuda as cuda12.1
RUN bash ./install_cuda.sh 12.1
RUN bash ./install_magma.sh 12.1
RUN ln -sf /usr/local/cuda-12.1 /usr/local/cuda
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
RUN bash ./install_magma.sh 12.4
RUN ln -sf /usr/local/cuda-12.4 /usr/local/cuda
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
RUN bash ./install_magma.sh 12.6
RUN ln -sf /usr/local/cuda-12.6 /usr/local/cuda
FROM cpu as rocm
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
ENV MKLROOT /opt/intel
# Adding ROCM_PATH env var so that LoadHip.cmake (even with logic updated for ROCm6.0)
# find HIP works for ROCm5.7. Not needed for ROCm6.0 and above.
# Remove below when ROCm5.7 is not in support matrix anymore.
ENV ROCM_PATH /opt/rocm
# No need to install ROCm as base docker image should have full ROCm install
#ADD ./common/install_rocm.sh install_rocm.sh
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
# gfortran and python needed for building magma from source for ROCm
RUN apt-get update -y && \
apt-get install gfortran -y && \
apt-get install python -y && \
apt-get clean
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
FROM ${BASE_TARGET} as final
COPY --from=openssl /opt/openssl /opt/openssl
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
# Install Anaconda
COPY --from=conda /opt/conda /opt/conda
# Install python
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
ENV PATH=/opt/conda/bin:/usr/local/cuda/bin:$PATH

View File

@ -1,83 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
DOCKER_IMAGE="pytorch/${image}"
TOPDIR=$(git rev-parse --show-toplevel)
GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu}
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
WITH_PUSH=${WITH_PUSH:-}
DOCKER=${DOCKER:-docker}
case ${GPU_ARCH_TYPE} in
cpu)
BASE_TARGET=cpu
DOCKER_TAG=cpu
GPU_IMAGE=ubuntu:20.04
DOCKER_GPU_BUILD_ARG=""
;;
cuda)
BASE_TARGET=cuda${GPU_ARCH_VERSION}
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
GPU_IMAGE=ubuntu:20.04
DOCKER_GPU_BUILD_ARG=""
;;
rocm)
BASE_TARGET=rocm
DOCKER_TAG=rocm${GPU_ARCH_VERSION}
GPU_IMAGE=rocm/dev-ubuntu-20.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100;gfx1101;gfx942"
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)
echo "ERROR: Unrecognized GPU_ARCH_TYPE: ${GPU_ARCH_TYPE}"
exit 1
;;
esac
(
set -x
DOCKER_BUILDKIT=1 ${DOCKER} build \
--target final \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--build-arg "BASE_TARGET=${BASE_TARGET}" \
-t "${DOCKER_IMAGE}" \
$@ \
-f "${TOPDIR}/.ci/docker/libtorch/Dockerfile" \
"${TOPDIR}/.ci/docker/"
)
GITHUB_REF=${GITHUB_REF:-$(git symbolic-ref -q HEAD || git describe --tags --exact-match)}
GIT_BRANCH_NAME=${GITHUB_REF##*/}
GIT_COMMIT_SHA=${GITHUB_SHA:-$(git rev-parse HEAD)}
DOCKER_IMAGE_BRANCH_TAG=${DOCKER_IMAGE}-${GIT_BRANCH_NAME}
DOCKER_IMAGE_SHA_TAG=${DOCKER_IMAGE}-${GIT_COMMIT_SHA}
if [[ "${WITH_PUSH}" == true ]]; then
(
set -x
${DOCKER} push "${DOCKER_IMAGE}"
if [[ -n ${GITHUB_REF} ]]; then
${DOCKER} tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_BRANCH_TAG}
${DOCKER} tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_SHA_TAG}
${DOCKER} push "${DOCKER_IMAGE_BRANCH_TAG}"
${DOCKER} push "${DOCKER_IMAGE_SHA_TAG}"
fi
)
fi

View File

@ -1,45 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install missing libomp-dev
RUN apt-get update && apt-get install -y --no-install-recommends libomp-dev && apt-get autoclean && apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_magma_conda.sh install_magma_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install cuda and cudnn
ARG CUDA_VERSION
COPY ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${CUDA_VERSION} && rm install_cuda.sh
ENV DESIRED_CUDA ${CUDA_VERSION}
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH
# Note that Docker build forbids copying file outside the build context
COPY ./common/install_linter.sh install_linter.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh common_utils.sh
USER jenkins
CMD ["bash"]

View File

@ -1,34 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Note that Docker build forbids copying file outside the build context
COPY ./common/install_linter.sh install_linter.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh common_utils.sh
USER jenkins
CMD ["bash"]

View File

@ -1,200 +0,0 @@
# syntax = docker/dockerfile:experimental
ARG ROCM_VERSION=3.7
ARG BASE_CUDA_VERSION=11.8
ARG GPU_IMAGE=centos:7
FROM centos:7 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ARG DEVTOOLSET_VERSION=9
# Note: This is required patch since CentOS have reached EOL
# otherwise any yum install setp will fail
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which perl zlib-devel
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
# Note: After running yum-config-manager --enable rhel-server-rhscl-7-rpms
# patch is required once again. Somehow this steps adds mirror.centos.org
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y devtoolset-${DEVTOOLSET_VERSION}-gcc devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran devtoolset-${DEVTOOLSET_VERSION}-binutils
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
RUN yum --enablerepo=extras install -y epel-release
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake
RUN yum install -y autoconf aclocal automake make sudo
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# EPEL for cmake
FROM base as patchelf
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM patchelf as python
# build python
COPY manywheel/build_scripts /build_scripts
ADD ./common/install_cpython.sh /build_scripts/install_cpython.sh
RUN bash build_scripts/build.sh && rm -r build_scripts
FROM base as cuda
ARG BASE_CUDA_VERSION=10.2
# Install CUDA
ADD ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${BASE_CUDA_VERSION} && rm install_cuda.sh
FROM base as intel
# MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as magma
ARG BASE_CUDA_VERSION=10.2
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as jni
# Install java jni header
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
# Install libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM ${GPU_IMAGE} as common
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum install -y \
aclocal \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm
RUN yum install -y \
https://repo.ius.io/ius-release-el7.rpm \
https://ossci-linux.s3.amazonaws.com/epel-release-7-14.noarch.rpm
RUN yum swap -y git git236-core
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=python /opt/python/cp39-cp39/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
FROM common as cpu_final
ARG BASE_CUDA_VERSION=10.1
ARG DEVTOOLSET_VERSION=9
# Install Anaconda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
ENV PATH /opt/conda/bin:$PATH
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y devtoolset-${DEVTOOLSET_VERSION}-gcc devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran devtoolset-${DEVTOOLSET_VERSION}-binutils
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# cmake is already installed inside the rocm base image, so remove if present
RUN rpm -e cmake || true
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake
# ninja
RUN yum install -y ninja-build
FROM cpu_final as cuda_final
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
ENV PATH=/usr/local/cuda/bin:$PATH
FROM cpu_final as rocm_final
ARG ROCM_VERSION=3.7
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Adding ROCM_PATH env var so that LoadHip.cmake (even with logic updated for ROCm6.0)
# find HIP works for ROCm5.7. Not needed for ROCm6.0 and above.
# Remove below when ROCm5.7 is not in support matrix anymore.
ENV ROCM_PATH /opt/rocm
ENV MKLROOT /opt/intel
# No need to install ROCm as base docker image should have full ROCm install
#ADD ./common/install_rocm.sh install_rocm.sh
#RUN ROCM_VERSION=${ROCM_VERSION} bash ./install_rocm.sh && rm install_rocm.sh
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
# cmake3 is needed for the MIOpen build
RUN ln -sf /usr/local/bin/cmake /usr/bin/cmake3
ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh

View File

@ -1,153 +0,0 @@
# syntax = docker/dockerfile:experimental
ARG ROCM_VERSION=3.7
ARG BASE_CUDA_VERSION=10.2
ARG GPU_IMAGE=nvidia/cuda:${BASE_CUDA_VERSION}-devel-centos7
FROM quay.io/pypa/manylinux2014_x86_64 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which perl zlib-devel
RUN yum install -y yum-utils centos-release-scl sudo
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN yum install -y devtoolset-7-gcc devtoolset-7-gcc-c++ devtoolset-7-gcc-gfortran devtoolset-7-binutils
ENV PATH=/opt/rh/devtoolset-7/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-7/root/usr/lib64:/opt/rh/devtoolset-7/root/usr/lib:$LD_LIBRARY_PATH
# cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
FROM base as cuda
ARG BASE_CUDA_VERSION=10.2
# Install CUDA
ADD ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${BASE_CUDA_VERSION} && rm install_cuda.sh
FROM base as intel
# MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as magma
ARG BASE_CUDA_VERSION=10.2
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as jni
# Install java jni header
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
# Install libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM ${GPU_IMAGE} as common
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum install -y \
aclocal \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm
RUN yum install -y \
https://repo.ius.io/ius-release-el7.rpm \
https://ossci-linux.s3.amazonaws.com/epel-release-7-14.noarch.rpm
RUN yum swap -y git git236-core
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=base /opt/python /opt/python
COPY --from=base /opt/_internal /opt/_internal
COPY --from=base /usr/local/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel
COPY --from=base /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
FROM common as cpu_final
ARG BASE_CUDA_VERSION=10.2
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN yum install -y devtoolset-7-gcc devtoolset-7-gcc-c++ devtoolset-7-gcc-gfortran devtoolset-7-binutils
ENV PATH=/opt/rh/devtoolset-7/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-7/root/usr/lib64:/opt/rh/devtoolset-7/root/usr/lib:$LD_LIBRARY_PATH
# cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
# ninja
RUN yum install -y http://repo.okay.com.mx/centos/7/x86_64/release/okay-release-1-1.noarch.rpm
RUN yum install -y ninja-build
FROM cpu_final as cuda_final
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
FROM common as rocm_final
ARG ROCM_VERSION=3.7
# Install ROCm
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh ${ROCM_VERSION} && rm install_rocm.sh
# cmake is already installed inside the rocm base image, but both 2 and 3 exist
# cmake3 is needed for the later MIOpen custom build, so that step is last.
RUN yum install -y cmake3 && \
rm -f /usr/bin/cmake && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh

View File

@ -1,174 +0,0 @@
# syntax = docker/dockerfile:experimental
ARG BASE_CUDA_VERSION=11.8
ARG GPU_IMAGE=amd64/almalinux:8
FROM quay.io/pypa/manylinux_2_28_x86_64 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ARG DEVTOOLSET_VERSION=11
RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel yum-utils gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake3
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
FROM base as cuda
ARG BASE_CUDA_VERSION=11.8
# Install CUDA
ADD ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${BASE_CUDA_VERSION} && rm install_cuda.sh
FROM base as intel
# MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as magma
ARG BASE_CUDA_VERSION=10.2
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as jni
# Install java jni header
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
# Install libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM ${GPU_IMAGE} as common
ARG DEVTOOLSET_VERSION=11
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
gcc-toolset-${DEVTOOLSET_VERSION}-toolchain \
glibc-langpack-en
RUN yum install -y \
https://repo.ius.io/ius-release-el7.rpm \
https://ossci-linux.s3.amazonaws.com/epel-release-7-14.noarch.rpm
RUN yum swap -y git git236-core
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=base /opt/python /opt/python
COPY --from=base /opt/_internal /opt/_internal
COPY --from=base /usr/local/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel
COPY --from=base /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
FROM common as cpu_final
ARG BASE_CUDA_VERSION=11.8
ARG DEVTOOLSET_VERSION=11
# Install Anaconda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
ENV PATH /opt/conda/bin:$PATH
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# Install setuptools and wheel for python 3.12/3.13
RUN for cpython_version in "cp312-cp312" "cp313-cp313" "cp313-cp313t"; do \
/opt/python/${cpython_version}/bin/python -m pip install setuptools wheel; \
done;
# cmake-3.18.4 from pip; force in case cmake3 already exists
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -sf /usr/local/bin/cmake /usr/bin/cmake3
FROM cpu_final as cuda_final
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
ENV PATH=/usr/local/cuda/bin:$PATH
FROM cpu_final as rocm_final
ARG ROCM_VERSION=6.0
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
ARG DEVTOOLSET_VERSION=11
ENV LDFLAGS="-Wl,-rpath=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64 -Wl,-rpath=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib"
# Somewhere in ROCm stack, we still use non-existing /opt/rocm/hip path,
# below workaround helps avoid error
ENV ROCM_PATH /opt/rocm
# cmake-3.28.4 from pip to get enable_language(HIP)
# and avoid 3.21.0 cmake+ninja issues with ninja inserting "-Wl,--no-as-needed" in LINK_FLAGS for static linker
RUN python3 -m pip install --upgrade pip && \
python3 -mpip install cmake==3.28.4
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
ENV MKLROOT /opt/intel
ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh
FROM cpu_final as xpu_final
# XPU CD use rolling driver
ENV XPU_DRIVER_TYPE ROLLING
# cmake-3.28.4 from pip
RUN python3 -m pip install --upgrade pip && \
python3 -mpip install cmake==3.28.4
ADD ./common/install_xpu.sh install_xpu.sh
ENV XPU_VERSION 2025.0
RUN bash ./install_xpu.sh && rm install_xpu.sh
RUN pushd /opt/_internal && tar -xJf static-libs-for-embedding-only.tar.xz && popd

View File

@ -1,64 +0,0 @@
FROM quay.io/pypa/manylinux_2_28_aarch64 as base
# Graviton needs GCC 10 or above for the build. GCC12 is the default version in almalinux-8.
ARG GCCTOOLSET_VERSION=11
# Language variabes
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
less \
libffi-devel \
libgomp \
make \
openssl-devel \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
zstd \
sudo \
gcc-toolset-${GCCTOOLSET_VERSION}-toolchain
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
FROM base as openblas
# Install openblas
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
FROM base as final
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH

View File

@ -1,94 +0,0 @@
FROM quay.io/pypa/manylinux2014_aarch64 as base
# Graviton needs GCC 10 for the build
ARG DEVTOOLSET_VERSION=10
# Language variabes
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
less \
zstd \
libgomp \
sudo \
devtoolset-${DEVTOOLSET_VERSION}-gcc \
devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ \
devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran \
devtoolset-${DEVTOOLSET_VERSION}-binutils
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
###############################################################################
# libglfortran.a hack
#
# libgfortran.a from quay.io/pypa/manylinux2014_aarch64 is not compiled with -fPIC.
# This causes __stack_chk_guard@@GLIBC_2.17 on pytorch build. To solve, get
# ubuntu's libgfortran.a which is compiled with -fPIC
# NOTE: Need a better way to get this library as Ubuntu's package can be removed by the vender, or changed
###############################################################################
RUN cd ~/ \
&& curl -L -o ~/libgfortran-10-dev.deb http://ports.ubuntu.com/ubuntu-ports/pool/universe/g/gcc-10/libgfortran-10-dev_10.5.0-4ubuntu2_arm64.deb \
&& ar x ~/libgfortran-10-dev.deb \
&& tar --use-compress-program=unzstd -xvf data.tar.zst -C ~/ \
&& cp -f ~/usr/lib/gcc/aarch64-linux-gnu/10/libgfortran.a /opt/rh/devtoolset-10/root/usr/lib/gcc/aarch64-redhat-linux/10/
# install cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
FROM base as openblas
# Install openblas
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
FROM openssl as final
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH

View File

@ -1,91 +0,0 @@
FROM quay.io/pypa/manylinux_2_28_aarch64 as base
# Cuda ARM build needs gcc 11
ARG DEVTOOLSET_VERSION=11
# Language variables
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
less \
zstd \
libgomp \
sudo \
gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
FROM openssl as final
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
FROM base as cuda
ARG BASE_CUDA_VERSION
# Install CUDA
ADD ./common/install_cuda_aarch64.sh install_cuda_aarch64.sh
RUN bash ./install_cuda_aarch64.sh ${BASE_CUDA_VERSION} && rm install_cuda_aarch64.sh
FROM base as magma
ARG BASE_CUDA_VERSION
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as nvpl
# Install nvpl
ADD ./common/install_nvpl.sh install_nvpl.sh
RUN bash ./install_nvpl.sh && rm install_nvpl.sh
FROM final as cuda_final
ARG BASE_CUDA_VERSION
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=nvpl /opt/nvpl/lib/ /usr/local/lib/
COPY --from=nvpl /opt/nvpl/include/ /usr/local/include/
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
ENV PATH=/usr/local/cuda/bin:$PATH

View File

@ -1,71 +0,0 @@
FROM centos:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ENV PATH /opt/rh/gcc-toolset-11/root/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# change to a valid repo
RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Linux-*.repo
# enable to install ninja-build
RUN sed -i 's|enabled=0|enabled=1|g' /etc/yum.repos.d/CentOS-Linux-PowerTools.repo
RUN yum -y update
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which zlib-devel sudo
RUN yum install -y autoconf automake make cmake gdb gcc-toolset-11-gcc-c++
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# Install python
FROM base as python
RUN yum install -y openssl-devel zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel
ADD common/install_cpython.sh install_cpython.sh
RUN bash ./install_cpython.sh && rm install_cpython.sh
FROM base as conda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN /opt/conda/bin/conda install -y cmake
FROM base as intel
# Install MKL
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=conda /opt/conda /opt/conda
ENV PATH=/opt/conda/bin:$PATH
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM base as jni
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM base as final
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=intel /opt/intel /opt/intel
COPY --from=conda /opt/conda /opt/conda
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
RUN yum install -y ninja-build

View File

@ -1,124 +0,0 @@
FROM quay.io/pypa/manylinux_2_28_s390x as base
# Language variables
ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8
ENV LANGUAGE=C.UTF-8
ARG DEVTOOLSET_VERSION=13
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
sudo \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
less \
zstd \
libgomp \
gcc-toolset-${DEVTOOLSET_VERSION}-gcc \
gcc-toolset-${DEVTOOLSET_VERSION}-gcc-c++ \
gcc-toolset-${DEVTOOLSET_VERSION}-binutils \
gcc-toolset-${DEVTOOLSET_VERSION}-gcc-gfortran \
cmake \
rust \
cargo \
llvm-devel \
libzstd-devel \
python3.12-devel \
python3.12-setuptools \
python3.12-pip \
python3-virtualenv \
python3.12-pyyaml \
python3.12-numpy \
python3.12-wheel \
python3.12-cryptography \
blas-devel \
openblas-devel \
lapack-devel \
atlas-devel \
libjpeg-devel \
libxslt-devel \
libxml2-devel \
openssl-devel \
valgrind
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
# installed python doesn't have development parts. Rebuild it from scratch
RUN /bin/rm -rf /opt/_internal /opt/python /usr/local/*/*
# EPEL for cmake
FROM base as patchelf
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM patchelf as python
# build python
COPY manywheel/build_scripts /build_scripts
ADD ./common/install_cpython.sh /build_scripts/install_cpython.sh
ENV SSL_CERT_FILE=
RUN bash build_scripts/build.sh && rm -r build_scripts
FROM base as final
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=python /opt/python/cp39-cp39/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
RUN alternatives --set python /usr/bin/python3.12
RUN alternatives --set python3 /usr/bin/python3.12
RUN pip-3.12 install typing_extensions
ENTRYPOINT []
CMD ["/bin/bash"]
# install test dependencies:
# - grpcio requires system openssl, bundled crypto fails to build
# - ml_dtypes 0.4.0 requires some fixes provided in later commits to build
RUN dnf install -y \
protobuf-devel \
protobuf-c-devel \
protobuf-lite-devel \
wget \
patch
RUN env GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=True pip3 install grpcio==1.65.4
RUN cd ~ && \
git clone https://github.com/jax-ml/ml_dtypes && \
cd ml_dtypes && \
git checkout v0.4.0 && \
git submodule update --init --recursive && \
wget https://github.com/jax-ml/ml_dtypes/commit/b969f76914d6b30676721bc92bf0f6021a0d1321.patch && \
wget https://github.com/jax-ml/ml_dtypes/commit/d4e6d035ecda073eab8bcf60f4eef572ee7087e6.patch && \
patch -p1 < b969f76914d6b30676721bc92bf0f6021a0d1321.patch && \
patch -p1 < d4e6d035ecda073eab8bcf60f4eef572ee7087e6.patch && \
python3 setup.py bdist_wheel && \
pip3 install dist/*.whl && \
rm -rf ml_dtypes

View File

@ -1,159 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
TOPDIR=$(git rev-parse --show-toplevel)
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
DOCKER_IMAGE="pytorch/${image}"
DOCKER_REGISTRY="${DOCKER_REGISTRY:-docker.io}"
GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu}
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-}
DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-}
WITH_PUSH=${WITH_PUSH:-}
case ${GPU_ARCH_TYPE} in
cpu)
TARGET=cpu_final
DOCKER_TAG=cpu
GPU_IMAGE=centos:7
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
;;
cpu-manylinux_2_28)
TARGET=cpu_final
DOCKER_TAG=cpu
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
cpu-aarch64)
TARGET=final
DOCKER_TAG=cpu-aarch64
GPU_IMAGE=arm64v8/centos:7
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=10"
MANY_LINUX_VERSION="aarch64"
;;
cpu-aarch64-2_28)
TARGET=final
DOCKER_TAG=cpu-aarch64
GPU_IMAGE=arm64v8/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28_aarch64"
;;
cpu-cxx11-abi)
TARGET=final
DOCKER_TAG=cpu-cxx11-abi
GPU_IMAGE=""
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
MANY_LINUX_VERSION="cxx11-abi"
;;
cpu-s390x)
TARGET=final
DOCKER_TAG=cpu-s390x
GPU_IMAGE=s390x/almalinux:8
DOCKER_GPU_BUILD_ARG=""
MANY_LINUX_VERSION="s390x"
;;
cuda)
TARGET=cuda_final
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
# Keep this up to date with the minimum version of CUDA we currently support
GPU_IMAGE=centos:7
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=9"
;;
cuda-manylinux_2_28)
TARGET=cuda_final
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
cuda-aarch64)
TARGET=cuda_final
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
GPU_IMAGE=arm64v8/centos:7
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="aarch64"
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
rocm|rocm-manylinux_2_28)
TARGET=rocm_final
DOCKER_TAG=rocm${GPU_ARCH_VERSION}
GPU_IMAGE=rocm/dev-centos-7:${GPU_ARCH_VERSION}-complete
DEVTOOLSET_VERSION="9"
if [ ${GPU_ARCH_TYPE} == "rocm-manylinux_2_28" ]; then
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101"
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
xpu)
TARGET=xpu_final
DOCKER_TAG=xpu
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
*)
echo "ERROR: Unrecognized GPU_ARCH_TYPE: ${GPU_ARCH_TYPE}"
exit 1
;;
esac
IMAGES=''
if [[ -n ${MANY_LINUX_VERSION} && -z ${DOCKERFILE_SUFFIX} ]]; then
DOCKERFILE_SUFFIX=_${MANY_LINUX_VERSION}
fi
(
set -x
if [ "$(uname -m)" != "s390x" ]; then
# TODO: Remove LimitNOFILE=1048576 patch once https://github.com/pytorch/test-infra/issues/5712
# is resolved. This patch is required in order to fix timing out of Docker build on Amazon Linux 2023.
sudo sed -i s/LimitNOFILE=infinity/LimitNOFILE=1048576/ /usr/lib/systemd/system/docker.service
sudo systemctl daemon-reload
sudo systemctl restart docker
fi
DOCKER_BUILDKIT=1 docker build \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--target "${TARGET}" \
-t "${DOCKER_IMAGE}" \
$@ \
-f "${TOPDIR}/.ci/docker/manywheel/Dockerfile${DOCKERFILE_SUFFIX}" \
"${TOPDIR}/.ci/docker/"
)
GITHUB_REF=${GITHUB_REF:-$(git symbolic-ref -q HEAD || git describe --tags --exact-match)}
GIT_BRANCH_NAME=${GITHUB_REF##*/}
GIT_COMMIT_SHA=${GITHUB_SHA:-$(git rev-parse HEAD)}
DOCKER_IMAGE_BRANCH_TAG=${DOCKER_IMAGE}-${GIT_BRANCH_NAME}
DOCKER_IMAGE_SHA_TAG=${DOCKER_IMAGE}-${GIT_COMMIT_SHA}
if [[ "${WITH_PUSH}" == true ]]; then
(
set -x
docker push "${DOCKER_IMAGE}"
if [[ -n ${GITHUB_REF} ]]; then
docker tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_BRANCH_TAG}
docker tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_SHA_TAG}
docker push "${DOCKER_IMAGE_BRANCH_TAG}"
docker push "${DOCKER_IMAGE_SHA_TAG}"
fi
)
fi

View File

@ -1,118 +0,0 @@
#!/bin/bash
# Top-level build script called from Dockerfile
# Script used only in CD pipeline
# Stop at any error, show all commands
set -ex
# openssl version to build, with expected sha256 hash of .tar.gz
# archive
OPENSSL_ROOT=openssl-1.1.1l
OPENSSL_HASH=0b7a3e5e59c34827fe0c3a74b7ec8baef302b98fa80088d7f9153aa16fa76bd1
DEVTOOLS_HASH=a8ebeb4bed624700f727179e6ef771dafe47651131a00a78b342251415646acc
PATCHELF_HASH=d9afdff4baeacfbc64861454f368b7f2c15c44d245293f7587bbf726bfe722fb
CURL_ROOT=curl-7.73.0
CURL_HASH=cf34fe0b07b800f1c01a499a6e8b2af548f6d0e044dca4a29d88a4bee146d131
AUTOCONF_ROOT=autoconf-2.69
AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
# Dependencies for compiling Python that we want to remove from
# the final image after compiling Python
PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel"
if [ "$(uname -m)" != "s390x" ] ; then
PYTHON_COMPILE_DEPS="${PYTHON_COMPILE_DEPS} db4-devel"
else
PYTHON_COMPILE_DEPS="${PYTHON_COMPILE_DEPS} libdb-devel"
fi
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel"
# Get build utilities
MY_DIR=$(dirname "${BASH_SOURCE[0]}")
source $MY_DIR/build_utils.sh
# Development tools and libraries
yum -y install bzip2 make git patch unzip bison yasm diffutils \
automake which file \
${PYTHON_COMPILE_DEPS}
# Install newest autoconf
build_autoconf $AUTOCONF_ROOT $AUTOCONF_HASH
autoconf --version
# Compile the latest Python releases.
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
build_openssl $OPENSSL_ROOT $OPENSSL_HASH
/build_scripts/install_cpython.sh
PY39_BIN=/opt/python/cp39-cp39/bin
# Our openssl doesn't know how to find the system CA trust store
# (https://github.com/pypa/manylinux/issues/53)
# And it's not clear how up-to-date that is anyway
# So let's just use the same one pip and everyone uses
$PY39_BIN/pip install certifi
ln -s $($PY39_BIN/python -c 'import certifi; print(certifi.where())') \
/opt/_internal/certs.pem
# If you modify this line you also have to modify the versions in the
# Dockerfiles:
export SSL_CERT_FILE=/opt/_internal/certs.pem
# Install newest curl
build_curl $CURL_ROOT $CURL_HASH
rm -rf /usr/local/include/curl /usr/local/lib/libcurl* /usr/local/lib/pkgconfig/libcurl.pc
hash -r
curl --version
curl-config --features
# Install patchelf (latest with unreleased bug fixes)
curl -sLOk https://nixos.org/releases/patchelf/patchelf-0.10/patchelf-0.10.tar.gz
# check_sha256sum patchelf-0.9njs2.tar.gz $PATCHELF_HASH
tar -xzf patchelf-0.10.tar.gz
(cd patchelf-0.10 && ./configure && make && make install)
rm -rf patchelf-0.10.tar.gz patchelf-0.10
# Install latest pypi release of auditwheel
$PY39_BIN/pip install auditwheel
ln -s $PY39_BIN/auditwheel /usr/local/bin/auditwheel
# Clean up development headers and other unnecessary stuff for
# final image
yum -y erase wireless-tools gtk2 libX11 hicolor-icon-theme \
avahi freetype bitstream-vera-fonts \
${PYTHON_COMPILE_DEPS} || true > /dev/null 2>&1
yum -y install ${MANYLINUX1_DEPS}
yum -y clean all > /dev/null 2>&1
yum list installed
# we don't need libpython*.a, and they're many megabytes
find /opt/_internal -name '*.a' -print0 | xargs -0 rm -f
# Strip what we can -- and ignore errors, because this just attempts to strip
# *everything*, including non-ELF files:
find /opt/_internal -type f -print0 \
| xargs -0 -n1 strip --strip-unneeded 2>/dev/null || true
# We do not need the Python test suites, or indeed the precompiled .pyc and
# .pyo files. Partially cribbed from:
# https://github.com/docker-library/python/blob/master/3.4/slim/Dockerfile
find /opt/_internal \
\( -type d -a -name test -o -name tests \) \
-o \( -type f -a -name '*.pyc' -o -name '*.pyo' \) \
-print0 | xargs -0 rm -f
for PYTHON in /opt/python/*/bin/python; do
# Smoke test to make sure that our Pythons work, and do indeed detect as
# being manylinux compatible:
$PYTHON $MY_DIR/manylinux1-check.py
# Make sure that SSL cert checking works
$PYTHON $MY_DIR/ssl-check.py
done
# Fix libc headers to remain compatible with C99 compilers.
find /usr/include/ -type f -exec sed -i 's/\bextern _*inline_*\b/extern __inline __attribute__ ((__gnu_inline__))/g' {} +
# Now we can delete our built SSL
rm -rf /usr/local/ssl

View File

@ -1,91 +0,0 @@
#!/bin/bash
# Helper utilities for build
# Script used only in CD pipeline
OPENSSL_DOWNLOAD_URL=https://www.openssl.org/source/old/1.1.1/
CURL_DOWNLOAD_URL=https://curl.askapache.com/download
AUTOCONF_DOWNLOAD_URL=https://ftp.gnu.org/gnu/autoconf
function check_var {
if [ -z "$1" ]; then
echo "required variable not defined"
exit 1
fi
}
function do_openssl_build {
./config no-ssl2 no-shared -fPIC --prefix=/usr/local/ssl > /dev/null
make > /dev/null
make install > /dev/null
}
function check_sha256sum {
local fname=$1
check_var ${fname}
local sha256=$2
check_var ${sha256}
echo "${sha256} ${fname}" > ${fname}.sha256
sha256sum -c ${fname}.sha256
rm -f ${fname}.sha256
}
function build_openssl {
local openssl_fname=$1
check_var ${openssl_fname}
local openssl_sha256=$2
check_var ${openssl_sha256}
check_var ${OPENSSL_DOWNLOAD_URL}
curl -sLO ${OPENSSL_DOWNLOAD_URL}/${openssl_fname}.tar.gz
check_sha256sum ${openssl_fname}.tar.gz ${openssl_sha256}
tar -xzf ${openssl_fname}.tar.gz
(cd ${openssl_fname} && do_openssl_build)
rm -rf ${openssl_fname} ${openssl_fname}.tar.gz
}
function do_curl_build {
LIBS=-ldl ./configure --with-ssl --disable-shared > /dev/null
make > /dev/null
make install > /dev/null
}
function build_curl {
local curl_fname=$1
check_var ${curl_fname}
local curl_sha256=$2
check_var ${curl_sha256}
check_var ${CURL_DOWNLOAD_URL}
curl -sLO ${CURL_DOWNLOAD_URL}/${curl_fname}.tar.bz2
check_sha256sum ${curl_fname}.tar.bz2 ${curl_sha256}
tar -jxf ${curl_fname}.tar.bz2
(cd ${curl_fname} && do_curl_build)
rm -rf ${curl_fname} ${curl_fname}.tar.bz2
}
function do_standard_install {
./configure > /dev/null
make > /dev/null
make install > /dev/null
}
function build_autoconf {
local autoconf_fname=$1
check_var ${autoconf_fname}
local autoconf_sha256=$2
check_var ${autoconf_sha256}
check_var ${AUTOCONF_DOWNLOAD_URL}
curl -sLO ${AUTOCONF_DOWNLOAD_URL}/${autoconf_fname}.tar.gz
check_sha256sum ${autoconf_fname}.tar.gz ${autoconf_sha256}
tar -zxf ${autoconf_fname}.tar.gz
(cd ${autoconf_fname} && do_standard_install)
rm -rf ${autoconf_fname} ${autoconf_fname}.tar.gz
}

View File

@ -1,60 +0,0 @@
# Logic copied from PEP 513
def is_manylinux1_compatible():
# Only Linux, and only x86-64 / i686
from distutils.util import get_platform
if get_platform() not in ["linux-x86_64", "linux-i686", "linux-s390x"]:
return False
# Check for presence of _manylinux module
try:
import _manylinux
return bool(_manylinux.manylinux1_compatible)
except (ImportError, AttributeError):
# Fall through to heuristic check below
pass
# Check glibc version. CentOS 5 uses glibc 2.5.
return have_compatible_glibc(2, 5)
def have_compatible_glibc(major, minimum_minor):
import ctypes
process_namespace = ctypes.CDLL(None)
try:
gnu_get_libc_version = process_namespace.gnu_get_libc_version
except AttributeError:
# Symbol doesn't exist -> therefore, we are not linked to
# glibc.
return False
# Call gnu_get_libc_version, which returns a string like "2.5".
gnu_get_libc_version.restype = ctypes.c_char_p
version_str = gnu_get_libc_version()
# py2 / py3 compatibility:
if not isinstance(version_str, str):
version_str = version_str.decode("ascii")
# Parse string and check against requested version.
version = [int(piece) for piece in version_str.split(".")]
assert len(version) == 2
if major != version[0]:
return False
if minimum_minor > version[1]:
return False
return True
import sys
if is_manylinux1_compatible():
print(f"{sys.executable} is manylinux1 compatible")
sys.exit(0)
else:
print(f"{sys.executable} is NOT manylinux1 compatible")
sys.exit(1)

View File

@ -1,31 +0,0 @@
# cf. https://github.com/pypa/manylinux/issues/53
import sys
from urllib.request import urlopen
GOOD_SSL = "https://google.com"
BAD_SSL = "https://self-signed.badssl.com"
print("Testing SSL certificate checking for Python:", sys.version)
if sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4):
print("This version never checks SSL certs; skipping tests")
sys.exit(0)
EXC = OSError
print(f"Connecting to {GOOD_SSL} should work")
urlopen(GOOD_SSL)
print("...it did, yay.")
print(f"Connecting to {BAD_SSL} should fail")
try:
urlopen(BAD_SSL)
# If we get here then we failed:
print("...it DIDN'T!!!!!11!!1one!")
sys.exit(1)
except EXC:
print("...it did, yay.")

View File

@ -1,373 +0,0 @@
# Python dependencies required for unit tests
#awscli==1.6 #this breaks some platforms
#Description: AWS command line interface
#Pinned versions: 1.6
#test that import:
boto3==1.35.42
#Description: AWS SDK for python
#Pinned versions: 1.19.12, 1.16.34
#test that import:
click
#Description: Command Line Interface Creation Kit
#Pinned versions:
#test that import:
coremltools==5.0b5 ; python_version < "3.12"
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
#dataclasses #this breaks some platforms
#Description: Provides decorators for auto adding special methods to user classes
#Pinned versions:
#test that import:
dill==0.3.7
#Description: dill extends pickle with serializing and de-serializing for most built-ins
#Pinned versions: 0.3.7
#test that import: dynamo/test_replay_record.py test_dataloader.py test_datapipe.py test_serialization.py
expecttest==0.3.0
#Description: method for writing tests where test framework auto populates
# the expected output based on previous runs
#Pinned versions: 0.3.0
#test that import:
fbscribelogger==0.1.7
#Description: write to scribe from authenticated jobs on CI
#Pinned versions: 0.1.6
#test that import:
flatbuffers==2.0
#Description: cross platform serialization library
#Pinned versions: 2.0
#test that import:
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
#Description: unitparser handles JUnit/xUnit Result XML files
#Pinned versions: 2.1.1
#test that import:
lark==0.12.0
#Description: parser
#Pinned versions: 0.12.0
#test that import:
librosa>=0.6.2 ; python_version < "3.11"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
#mkl #this breaks linux-bionic-rocm4.5-py3.7
#Description: Intel oneAPI Math Kernel Library
#Pinned versions:
#test that import: test_profiler.py, test_public_bindings.py, test_testing.py,
#test_nn.py, test_mkldnn.py, test_jit.py, test_fx_experimental.py,
#test_autograd.py
#mkl-devel
# see mkl
#mock
#Description: A testing library that allows you to replace parts of your
#system under test with mock objects
#Pinned versions:
#test that import: test_modules.py, test_nn.py,
#test_testing.py
#MonkeyType # breaks pytorch-xla-linux-bionic-py3.7-clang8
#Description: collects runtime types of function arguments and return
#values, and can automatically generate stub files
#Pinned versions:
#test that import:
mypy==1.13.0
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 1.10.0
#test that import: test_typing.py, test_type_hints.py
networkx==2.8.8
#Description: creation, manipulation, and study of
#the structure, dynamics, and functions of complex networks
#Pinned versions: 2.8.8
#test that import: functorch
#ninja
#Description: build system. Note that it install from
#here breaks things so it is commented out
#Pinned versions: 1.10.0.post1
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9"
numba==0.55.2 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
#numpy
#Description: Provides N-dimensional arrays and linear algebra
#Pinned versions: 1.26.2
#test that import: test_view_ops.py, test_unary_ufuncs.py, test_type_promotion.py,
#test_type_info.py, test_torch.py, test_tensorexpr_pybind.py, test_tensorexpr.py,
#test_tensorboard.py, test_tensor_creation_ops.py, test_static_runtime.py,
#test_spectral_ops.py, test_sort_and_select.py, test_shape_ops.py,
#test_segment_reductions.py, test_reductions.py, test_pruning_op.py,
#test_overrides.py, test_numpy_interop.py, test_numba_integration.py
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
numpy==1.22.4; python_version == "3.9" or python_version == "3.10"
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
numpy==2.1.2; python_version >= "3.13"
pandas==2.0.3; python_version < "3.13"
pandas==2.2.3; python_version >= "3.13"
#onnxruntime
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
#Pinned versions: 1.9.0
#test that import:
opt-einsum==3.3
#Description: Python library to optimize tensor contraction order, used in einsum
#Pinned versions: 3.3
#test that import: test_linalg.py
optree==0.13.0
#Description: A library for tree manipulation
#Pinned versions: 0.13.0
#test that import: test_vmap.py, test_aotdispatch.py, test_dynamic_shapes.py,
#test_pytree.py, test_ops.py, test_control_flow.py, test_modules.py,
#common_utils.py, test_eager_transforms.py, test_python_dispatch.py,
#test_expanded_weights.py, test_decomp.py, test_overrides.py, test_masked.py,
#test_ops.py, test_prims.py, test_subclass.py, test_functionalization.py,
#test_schema_check.py, test_profiler_tree.py, test_meta.py, test_torchxla_num_output.py,
#test_utils.py, test_proxy_tensor.py, test_memory_profiler.py, test_view_ops.py,
#test_pointwise_ops.py, test_dtensor_ops.py, test_torchinductor.py, test_fx.py,
#test_fake_tensor.py, test_mps.py
pillow==11.0.0
#Description: Python Imaging Library fork
#Pinned versions: 10.3.0
#test that import:
protobuf==3.20.2
#Description: Googles data interchange format
#Pinned versions: 3.20.1
#test that import: test_tensorboard.py
psutil
#Description: information on running processes and system utilization
#Pinned versions:
#test that import: test_profiler.py, test_openmp.py, test_dataloader.py
pytest==7.3.2
#Description: testing framework
#Pinned versions:
#test that import: test_typing.py, test_cpp_extensions_aot.py, run_test.py
pytest-xdist==3.3.1
#Description: plugin for running pytest in parallel
#Pinned versions:
#test that import:
pytest-flakefinder==1.1.0
#Description: plugin for rerunning tests a fixed number of times in pytest
#Pinned versions: 1.1.0
#test that import:
pytest-rerunfailures>=10.3
#Description: plugin for rerunning failure tests in pytest
#Pinned versions:
#test that import:
pytest-subtests==0.13.1
#Description: plugin for subtest support
#Pinned versions:
#test that import:
#pytest-benchmark
#Description: fixture for benchmarking code
#Pinned versions: 3.2.3
#test that import:
#pytest-sugar
#Description: shows failures and errors instantly
#Pinned versions:
#test that import:
xdoctest==1.1.0
#Description: runs doctests in pytest
#Pinned versions: 1.1.0
#test that import:
pygments==2.15.0
#Description: support doctest highlighting
#Pinned versions: 2.12.0
#test that import: the doctests
#PyYAML
#Description: data serialization format
#Pinned versions:
#test that import:
#requests
#Description: HTTP library
#Pinned versions:
#test that import: test_type_promotion.py
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 10.9.0
#test that import:
scikit-image==0.19.3 ; python_version < "3.10"
scikit-image==0.22.0 ; python_version >= "3.10"
#Description: image processing routines
#Pinned versions:
#test that import: test_nn.py
#scikit-learn
#Description: machine learning package
#Pinned versions: 0.20.3
#test that import:
scipy==1.10.1 ; python_version <= "3.11"
scipy==1.14.1 ; python_version >= "3.12"
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.10.1
#test that import: test_unary_ufuncs.py, test_torch.py,test_tensor_creation_ops.py
#test_spectral_ops.py, test_sparse_csr.py, test_reductions.py,test_nn.py
#test_linalg.py, test_binary_ufuncs.py
#tabulate
#Description: Pretty-print tabular data
#Pinned versions:
#test that import:
tb-nightly==2.13.0a20230426
#Description: TensorBoard
#Pinned versions:
#test that import:
# needed by torchgen utils
typing-extensions>=4.10.0
#Description: type hints for python
#Pinned versions:
#test that import:
#virtualenv
#Description: virtual environment for python
#Pinned versions:
#test that import:
unittest-xml-reporting<=3.2.0,>=2.0.0
#Description: saves unit test results to xml
#Pinned versions:
#test that import:
#lintrunner is supported on aarch64-linux only from 0.12.4 version
lintrunner==0.12.7
#Description: all about linters!
#Pinned versions: 0.12.7
#test that import:
redis>=4.0.0
#Description: redis database
#test that import: anything that tests OSS caching/mocking (inductor/test_codecache.py, inductor/test_max_autotune.py)
ghstack==0.8.0
#Description: ghstack tool
#Pinned versions: 0.8.0
#test that import:
jinja2==3.1.5
#Description: jinja2 template engine
#Pinned versions: 3.1.4
#test that import:
pytest-cpp==2.3.0
#Description: This is used by pytest to invoke C++ tests
#Pinned versions: 2.3.0
#test that import:
z3-solver==4.12.6.0
#Description: The Z3 Theorem Prover Project
#Pinned versions:
#test that import:
tensorboard==2.13.0 ; python_version < "3.13"
tensorboard==2.18.0 ; python_version >= "3.13"
#Description: Also included in .ci/docker/requirements-docs.txt
#Pinned versions:
#test that import: test_tensorboard
pywavelets==1.4.1 ; python_version < "3.12"
pywavelets==1.7.0 ; python_version >= "3.12"
#Description: This is a requirement of scikit-image, we need to pin
# it here because 1.5.0 conflicts with numpy 1.21.2 used in CI
#Pinned versions: 1.4.1
#test that import:
lxml==5.3.0
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries
PyGithub==2.3.0
sympy==1.13.1 ; python_version >= "3.9"
#Description: Required by coremltools, also pinned in .github/requirements/pip-requirements-macOS.txt
#Pinned versions:
#test that import:
onnx==1.17.0
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
onnxscript==0.1.0.dev20240817
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
parameterized==0.8.1
#Description: Parameterizes unittests, both the tests themselves and the entire testing class
#Pinned versions:
#test that import:
#Description: required for testing torch/distributed/_tools/sac_estimator.py
#Pinned versions: 1.24.0
#test that import: test_sac_estimator.py
pwlf==2.2.1 ; python_version >= "3.8"
#Description: required for testing torch/distributed/_tools/sac_estimator.py
#Pinned versions: 2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
astunparse
PyYAML
setuptools
ninja==1.11.1 ; platform_machine == "aarch64"
scons==4.5.2 ; platform_machine == "aarch64"
pulp==2.9.0 ; python_version >= "3.8"
#Description: required for testing ilp formulaiton under torch/distributed/_tools
#Pinned versions: 2.9.0
#test that import: test_sac_ilp.py

View File

@ -1,50 +0,0 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought is probably
# something related to Docker setup. We can investigate this later
sphinxcontrib.katex==0.8.6
#Description: This is used to generate PyTorch docs
#Pinned versions: 0.8.6
matplotlib==3.5.3
#Description: This is used to generate PyTorch docs
#Pinned versions: 3.5.3
tensorboard==2.13.0 ; python_version < "3.13"
tensorboard==2.18.0 ; python_version >= "3.13"
#Description: This is used to generate PyTorch docs
#Pinned versions: 2.13.0
breathe==4.34.0
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 4.34.0
exhale==0.2.3
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 0.2.3
docutils==0.16
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 0.16
bs4==0.0.1
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 0.0.1
IPython==8.12.0
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 8.12.0
myst-nb==0.17.2
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 0.13.2
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
python-etcd==0.4.5
sphinx-copybutton==0.5.0
sphinx-panels==0.4.1
myst-parser==0.18.1

View File

@ -1 +0,0 @@
3.2.0

View File

@ -1,175 +0,0 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG IMAGE_NAME
FROM ${IMAGE_NAME}
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
ARG CONDA_CMAKE
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_magma_conda.sh install_magma_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
COPY ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
ARG INDUCTOR_BENCHMARKS
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton.txt triton.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton.txt triton_version.txt
ARG HALIDE
# Build and install halide
COPY ./common/install_halide.sh install_halide.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
# See https://github.com/pytorch/pytorch/issues/82174
# TODO(sdym@fb.com):
# check if this is needed after full off Xenial migration
ENV CARGO_NET_GIT_FETCH_WITH_CLI true
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# Install CUDNN
ARG CUDNN_VERSION
ARG CUDA_VERSION
COPY ./common/install_cudnn.sh install_cudnn.sh
RUN if [ -n "${CUDNN_VERSION}" ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
# Install CUSPARSELT
ARG CUDA_VERSION
COPY ./common/install_cusparselt.sh install_cusparselt.sh
RUN bash install_cusparselt.sh
RUN rm install_cusparselt.sh
# Install CUDSS
ARG CUDA_VERSION
COPY ./common/install_cudss.sh install_cudss.sh
RUN bash install_cudss.sh
RUN rm install_cudss.sh
# Delete /usr/local/cuda-11.X/cuda-11.X symlinks
RUN if [ -h /usr/local/cuda-11.6/cuda-11.6 ]; then rm /usr/local/cuda-11.6/cuda-11.6; fi
RUN if [ -h /usr/local/cuda-11.7/cuda-11.7 ]; then rm /usr/local/cuda-11.7/cuda-11.7; fi
RUN if [ -h /usr/local/cuda-12.1/cuda-12.1 ]; then rm /usr/local/cuda-12.1/cuda-12.1; fi
RUN if [ -h /usr/local/cuda-12.4/cuda-12.4 ]; then rm /usr/local/cuda-12.4/cuda-12.4; fi
USER jenkins
CMD ["bash"]

View File

@ -1,129 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh
ENV ROCM_PATH /opt/rocm
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# Install amdsmi
COPY ./common/install_amdsmi.sh install_amdsmi.sh
RUN bash ./install_amdsmi.sh
RUN rm install_amdsmi.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton.txt triton.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton.txt triton_version.txt
# This is needed by sccache
COPY ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
USER jenkins
CMD ["bash"]

View File

@ -1,119 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
ARG CLANG_VERSION
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ARG DOCS
ARG BUILD_ENVIRONMENT
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
ENV DOCS=$DOCS
COPY requirements-ci.txt requirements-docs.txt /opt/conda/
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
COPY ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
COPY ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
ARG INDUCTOR_BENCHMARKS
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
# Install XPU Dependencies
ARG XPU_VERSION
COPY ./common/install_xpu.sh install_xpu.sh
RUN bash ./install_xpu.sh && rm install_xpu.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton-xpu.txt triton-xpu.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-xpu.txt triton_version.txt
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
USER jenkins
CMD ["bash"]

View File

@ -1,206 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
ARG CLANG_VERSION
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ARG DOCS
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
ENV DOCS=$DOCS
COPY requirements-ci.txt requirements-docs.txt /opt/conda/
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_magma_conda.sh install_magma_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt
RUN if [ -n "${UNINSTALL_DILL}" ]; then pip uninstall -y dill; fi
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
COPY ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
# Install cuda and cudnn
ARG CUDA_VERSION
COPY ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${CUDA_VERSION} && rm install_cuda.sh
ENV DESIRED_CUDA ${CUDA_VERSION}
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
COPY ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
RUN rm install_vulkan_sdk.sh
# (optional) Install swiftshader
ARG SWIFTSHADER
COPY ./common/install_swiftshader.sh install_swiftshader.sh
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
RUN rm install_swiftshader.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
COPY ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
ARG INDUCTOR_BENCHMARKS
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton.txt triton.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton.txt
ARG TRITON_CPU
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton-cpu.txt triton-cpu.txt
RUN if [ -n "${TRITON_CPU}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-cpu.txt
ARG EXECUTORCH
# Build and install executorch
COPY ./common/install_executorch.sh install_executorch.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/executorch.txt executorch.txt
RUN if [ -n "${EXECUTORCH}" ]; then bash ./install_executorch.sh; fi
RUN rm install_executorch.sh common_utils.sh executorch.txt
ARG HALIDE
# Build and install halide
COPY ./common/install_halide.sh install_halide.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./
RUN if [ -n "${ONNX}" ]; then bash ./install_onnx.sh; fi
RUN rm install_onnx.sh common_utils.sh
# (optional) Build ACL
ARG ACL
COPY ./common/install_acl.sh install_acl.sh
RUN if [ -n "${ACL}" ]; then bash ./install_acl.sh; fi
RUN rm install_acl.sh
ENV INSTALLED_ACL ${ACL}
# Install ccache/sccache (do this last, so we get priority in PATH)
ARG SKIP_SCCACHE_INSTALL
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN if [ -z "${SKIP_SCCACHE_INSTALL}" ]; then bash ./install_cache.sh; fi
RUN rm install_cache.sh
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
ARG SKIP_LLVM_SRC_BUILD_INSTALL
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
RUN if [ -n "${SKIP_LLVM_SRC_BUILD_INSTALL}" ]; then set -eu; rm -rf /opt/llvm; fi
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
USER jenkins
CMD ["bash"]

View File

@ -1,10 +0,0 @@
#!/usr/bin/env bash
# This is mostly just a shim to manywheel/build.sh
# TODO: Make this a dedicated script to build just libtorch
set -ex
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
USE_CUSPARSELT=0 BUILD_PYTHONLESS=1 DESIRED_PYTHON="3.9" ${SCRIPTPATH}/../manywheel/build.sh

View File

@ -1,2 +0,0 @@
output/
magma-cuda*/

View File

@ -1,48 +0,0 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_CUDA ?= 11.8
DESIRED_CUDA_SHORT = $(subst .,,$(DESIRED_CUDA))
PACKAGE_NAME = magma-cuda
CUDA_ARCH_LIST ?= -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
-w /builder \
-e PACKAGE_NAME=${PACKAGE_NAME}${DESIRED_CUDA_SHORT} \
-e DESIRED_CUDA=${DESIRED_CUDA} \
-e CUDA_ARCH_LIST="${CUDA_ARCH_LIST}" \
"pytorch/manylinux-builder:cuda${DESIRED_CUDA}-main" \
magma/build_magma.sh
.PHONY: all
all: magma-cuda126
all: magma-cuda124
all: magma-cuda121
all: magma-cuda118
.PHONY:
clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-cuda126
magma-cuda126: DESIRED_CUDA := 12.6
magma-cuda126:
$(DOCKER_RUN)
.PHONY: magma-cuda124
magma-cuda124: DESIRED_CUDA := 12.4
magma-cuda124:
$(DOCKER_RUN)
.PHONY: magma-cuda121
magma-cuda121: DESIRED_CUDA := 12.1
magma-cuda121:
$(DOCKER_RUN)
.PHONY: magma-cuda118
magma-cuda118: DESIRED_CUDA := 11.8
magma-cuda118: CUDA_ARCH_LIST += -gencode arch=compute_37,code=sm_37
magma-cuda118:
$(DOCKER_RUN)

View File

@ -1,50 +0,0 @@
# Magma
This folder contains the scripts and configurations to build magma, statically linked for various versions of CUDA.
## Building
Look in the `Makefile` for available targets to build. To build any target, for example `magma-cuda118`, run
```
# Using `docker`
make magma-cuda118
# Using `podman`
DOCKER_CMD=podman make magma-cuda118
```
This spawns a `pytorch/manylinux-cuda<version>` docker image, which has the required `devtoolset` and CUDA versions installed.
Within the docker image, it runs `build_magma.sh` with the correct environment variables set, which package the necessary files
into a tarball, with the following structure:
```
.
├── include # header files
├── lib # libmagma.a
├── info
│ ├── licenses # license file
│ └── recipe # build script and patches
```
More specifically, `build_magma.sh` copies over the relevant files from the `package_files` directory depending on the CUDA version.
Outputted binaries should be in the `output` folder.
## Pushing
Packages can be uploaded to an S3 bucket using:
```
aws s3 cp output/*/magma-cuda*.bz2 <bucket-with-path>
```
If you do not have upload permissions, please ping @seemethere or @soumith to gain access
## New versions
New CUDA versions can be added by creating a new make target with the next desired version. For CUDA version NN.n, the target should be named `magma-cudaNNn`.
Make sure to edit the appropriate environment variables (e.g., DESIRED_CUDA, CUDA_ARCH_LIST) in the `Makefile` accordingly. Remember also to check `build_magma.sh` to ensure the logic for copying over the files remains correct.
New patches can be added by editing `Makefile` and`build_magma.sh` the same way `getrf_nbparam.patch` is implemented.

View File

@ -1,50 +0,0 @@
#!/usr/bin/env bash
set -eou pipefail
# Environment variables
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
MAGMA_VERSION=2.6.1
# Folders for the build
PACKAGE_FILES=${ROOT_DIR}/magma/package_files # source patches and metadata
PACKAGE_DIR=${ROOT_DIR}/magma/${PACKAGE_NAME} # build workspace
PACKAGE_OUTPUT=${ROOT_DIR}/magma/output # where tarballs are stored
PACKAGE_BUILD=${PACKAGE_DIR}/build # where the content of the tarball is prepared
PACKAGE_RECIPE=${PACKAGE_BUILD}/info/recipe
PACKAGE_LICENSE=${PACKAGE_BUILD}/info/licenses
mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RECIPE} ${PACKAGE_LICENSE}
# Fetch magma sources and verify checksum
pushd ${PACKAGE_DIR}
curl -LO http://icl.utk.edu/projectsfiles/magma/downloads/magma-${MAGMA_VERSION}.tar.gz
tar zxf magma-${MAGMA_VERSION}.tar.gz
sha256sum --check < ${PACKAGE_FILES}/magma-${MAGMA_VERSION}.sha256
popd
# Apply patches and build
pushd ${PACKAGE_DIR}/magma-${MAGMA_VERSION}
patch < ${PACKAGE_FILES}/CMake.patch
patch < ${PACKAGE_FILES}/cmakelists.patch
patch -p0 < ${PACKAGE_FILES}/thread_queue.patch
patch -p1 < ${PACKAGE_FILES}/getrf_shfl.patch
patch -p1 < ${PACKAGE_FILES}/getrf_nbparam.patch
# The build.sh script expects to be executed from the sources root folder
INSTALL_DIR=${PACKAGE_BUILD} ${PACKAGE_FILES}/build.sh
popd
# Package recipe, license and tarball
# Folder and package name are backward compatible for the build workflow
cp ${PACKAGE_FILES}/build.sh ${PACKAGE_RECIPE}/build.sh
cp ${PACKAGE_FILES}/thread_queue.patch ${PACKAGE_RECIPE}/thread_queue.patch
cp ${PACKAGE_FILES}/cmakelists.patch ${PACKAGE_RECIPE}/cmakelists.patch
cp ${PACKAGE_FILES}/getrf_shfl.patch ${PACKAGE_RECIPE}/getrf_shfl.patch
cp ${PACKAGE_FILES}/getrf_nbparam.patch ${PACKAGE_RECIPE}/getrf_nbparam.patch
cp ${PACKAGE_FILES}/CMake.patch ${PACKAGE_RECIPE}/CMake.patch
cp ${PACKAGE_FILES}/magma-${MAGMA_VERSION}.sha256 ${PACKAGE_RECIPE}/magma-${MAGMA_VERSION}.sha256
cp ${PACKAGE_DIR}/magma-${MAGMA_VERSION}/COPYRIGHT ${PACKAGE_LICENSE}/COPYRIGHT
pushd ${PACKAGE_BUILD}
tar cjf ${PACKAGE_OUTPUT}/linux-64/${PACKAGE_NAME}-${MAGMA_VERSION}-1.tar.bz2 include lib info
echo Built in ${PACKAGE_OUTPUT}/linux-64/${PACKAGE_NAME}-${MAGMA_VERSION}-1.tar.bz2
popd

View File

@ -1,40 +0,0 @@
--- CMake.src.cuda 2023-03-29 10:05:32.136954140 +0000
+++ CMake.src.cuda 2023-03-29 10:05:50.281318043 +0000
@@ -283,10 +283,10 @@
magmablas/zgeadd.cu
magmablas/zgeadd2.cu
magmablas/zgeam.cu
-magmablas/zgemm_fermi.cu
+#magmablas/zgemm_fermi.cu
magmablas/zgemm_reduce.cu
magmablas/zgemv_conj.cu
-magmablas/zgemv_fermi.cu
+#magmablas/zgemv_fermi.cu
magmablas/zgerbt.cu
magmablas/zgerbt_kernels.cu
magmablas/zgetmatrix_transpose.cpp
@@ -1009,18 +1009,18 @@
magmablas/sgeam.cu
magmablas/dgeam.cu
magmablas/cgeam.cu
-magmablas/sgemm_fermi.cu
-magmablas/dgemm_fermi.cu
-magmablas/cgemm_fermi.cu
+#magmablas/sgemm_fermi.cu
+#magmablas/dgemm_fermi.cu
+#magmablas/cgemm_fermi.cu
magmablas/sgemm_reduce.cu
magmablas/dgemm_reduce.cu
magmablas/cgemm_reduce.cu
magmablas/sgemv_conj.cu
magmablas/dgemv_conj.cu
magmablas/cgemv_conj.cu
-magmablas/sgemv_fermi.cu
-magmablas/dgemv_fermi.cu
-magmablas/cgemv_fermi.cu
+#magmablas/sgemv_fermi.cu
+#magmablas/dgemv_fermi.cu
+#magmablas/cgemv_fermi.cu
magmablas/sgerbt.cu
magmablas/dgerbt.cu
magmablas/cgerbt.cu

Some files were not shown because too many files have changed in this diff Show More