Compare commits

..

501 Commits

Author SHA1 Message Date
41852cdbf3 add old way 2025-09-11 16:43:31 -04:00
3ad3bfe11d added example for torch.is_storage (#162614)
Fixes #162613

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162614
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-09-11 20:25:26 +00:00
1c6dfbe557 Revert "[inductor] FlexibleLayout for ExternKernelChoice for mms (#161351)"
This reverts commit f08487aa8692751c36e608e338204490b0955583.

Reverted https://github.com/pytorch/pytorch/pull/161351 on behalf of https://github.com/huydhn due to Check with @coconutruben and the internal failures look real ([comment](https://github.com/pytorch/pytorch/pull/161351#issuecomment-3282511692))
2025-09-11 20:24:15 +00:00
934f878883 Revert "[inductor] leverage template stacking in V.choices.get_mm_configs (#161350)"
This reverts commit 623e623c821f639559248e9acd6084311c8fd3d5.

Reverted https://github.com/pytorch/pytorch/pull/161350 on behalf of https://github.com/huydhn due to Check with @coconutruben and the internal failures look real ([comment](https://github.com/pytorch/pytorch/pull/161351#issuecomment-3282511692))
2025-09-11 20:24:15 +00:00
cef05b1202 Revert "[inductor][choices] rename get_mm_configs to get_template_configs (#162293)"
This reverts commit 30191fcf03ddd6a09381a490096c4bb721874316.

Reverted https://github.com/pytorch/pytorch/pull/162293 on behalf of https://github.com/huydhn due to Check with @coconutruben and the internal failures look real ([comment](https://github.com/pytorch/pytorch/pull/161351#issuecomment-3282511692))
2025-09-11 20:24:15 +00:00
b500c166ef [FlexAttention][Easy] turn off TMA when cannot use it (#162569)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162569
Approved by: https://github.com/drisspg
2025-09-11 19:51:19 +00:00
d65ffdef3d [ROCm] fix miopen batchnorm changing output format (#162112)
It was found that the integration of miopen batchnorm was causing the output to always be in default contig memory format even when the input was channels last.  This also unskips a number of related unit tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162112
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Co-authored-by: Dmitry Nikolaev <dmitry.nikolaev@amd.com>
Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
2025-09-11 19:37:48 +00:00
ac72f81c12 [dynamic shapes] unbacked-safe should_swap (#160473)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160473
Approved by: https://github.com/laithsakka
2025-09-11 18:51:25 +00:00
9cac1b9259 AMD CPU CI - Add freezing + fix label trigger (#162176)
Added the following changes:

1. Added freezing by default for AMD CPU based CI
2. Fixed issue with label based CI triggers

Addresses code review comment in https://github.com/pytorch/pytorch/pull/161155

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162176
Approved by: https://github.com/malfet, https://github.com/jeffdaily
2025-09-11 18:41:29 +00:00
9bc648235d [MPS] mps sparse mul op implementation (#162349)
Implements mps sparse mul operation as well as enables other operations such as:
1. copy_
2. div
3. sum
4. floor
5. power
6. sub
7. floor_divide

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162349
Approved by: https://github.com/pearu, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-09-11 18:36:24 +00:00
799471d92b [triton] Update 3.5 pin (AMD compilation fix + warp spec) (#162733)
Fixes #162390

Also adds warp spec (thanks @manman-ren!)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162733
Approved by: https://github.com/atalman
2025-09-11 18:19:16 +00:00
43d9b5ecaa [ONNX] Set fallback=False by default (#162726)
This change addresses confusing error messages users encounter when using the ONNX exporter with default settings. Previously, `fallback=True` was the default, which would attempt to fall back to the TorchScript exporter when the dynamo path failed, leading to mixed error messages that obscured the actual issues.

## Problem

When `fallback=True` by default:
- Users get confusing error messages mixing dynamo and TorchScript export failures
- Error messages tell users to provide the `f` argument unnecessarily
- Dynamo error messages get flushed with TorchScript errors when both paths fail
- Users expecting the dynamo path get unexpected fallback behavior

## Solution

Changed the default from `fallback=True` to `fallback=False` in both:
- `torch.onnx.export()` function
- `torch.onnx._internal.exporter._compat.export_compat()` function

## Impact

**Before:**
```python
# Would fallback to TorchScript on dynamo failure, causing mixed error messages
torch.onnx.export(model, args)
```

**After:**
```python
# Clean dynamo-only errors by default
torch.onnx.export(model, args)

# Advanced users can still opt-in to fallback behavior
torch.onnx.export(model, args, fallback=True)
```

Fixes #162697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162726
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
2025-09-11 18:09:58 +00:00
463fbc8ca0 Support vmap + custom autograd function/improve DTensor constructor inefficiency (#162240)
This makes gemma3 exportable on transformers=4.55.4

In HF, there is a torch funciton mode called TransformGetItemToIndex which internally calls custom autograd function. When this custom autograd function is called under vmap, It triggers CustomFunctionHigherOrderOP which error-ed because there was no pre-dispatch proxy mode implementation.

Since there are number of requests lately to add various operators in pre-dispatch IR, I introduce a decorator in export that works similar to `allow_in_graph`. Basically:
1) We intercept custom_autograd_function.apply at pre-dispatch mode when this decorator is applied
2) We apply `flat_apply` HOP to hide the pytree spec for this autograd function. Note that this adds restriction that this custom autograd function needs to take in fx-able types.
3) subclass constructor decorator is implemented similarly, so we just refactor it to use similar implementation as this new decorator. eventually we should delete the subclass constructor decorator.
4) Move some code in subclass constructor decorator to exit early in non-export environment which should shave off some inefficiency (around 1% according to @swolchok 's benchmark)

Fixes: https://github.com/pytorch/pytorch/issues/161563#issuecomment-3246309758

Differential Revision: [D82141316](https://our.internmc.facebook.com/intern/diff/D82141316)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162240
Approved by: https://github.com/ydwu4
2025-09-11 17:42:41 +00:00
2f53395943 [ez][CI] Fix docs push in nightly workflow (#162657)
HUD metrics page says docs push hasn't happened in 21 days
<img width="293" height="142" alt="image" src="https://github.com/user-attachments/assets/f930aab8-0503-4bf2-b962-8c375dec6b78" />

I guess main branch docs just haven't been updated?  Did anyone notice?  Do we care?

Either way I think this should fix it

Likely started after https://github.com/pytorch/pytorch/pull/161182
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162657
Approved by: https://github.com/huydhn
2025-09-11 16:45:41 +00:00
fccddf02b6 repro 161902 (#162416)
Summary:
Sometimes `ShapeEnv.create_symbol` can return a `sympy.Integer`. This messes up our phantom symbol infra for derived dims.

Fixes #161902

Test Plan:
added test based on repro

Rollback Plan:

Differential Revision: D81960709

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162416
Approved by: https://github.com/tugsbayasgalan
2025-09-11 16:35:23 +00:00
8be8b94793 Update SECURITY.md with reporting guidelines (#162608)
Added clarification that all reports will be disclosed within 90 days

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162608
Approved by: https://github.com/seemethere, https://github.com/albanD
2025-09-11 16:30:29 +00:00
suo
fe8cc619b8 [torch][c10d] fix split_group in mixed backend case (#162424)
Today we can initialize a mixed-backend process group (e.g. "cpu:gloo,cuda:nccl") but we can only pass one set of process group options.

However, when we call `split_group`, we retrieve that set of options from the parent PG and pass it to the ProcessGroup::groupSplit C++ API, which then attempts to propagate that set of options to all backends.

This leads to an assert on some user code, where ProcessGroupGloo::split is expecting gloo options but receives nccl options instead.

Arguably the APIs as currently designed are just broken; we should not ever expect a single set of backend options to apply across multiple backends. However, fixing this would require changing quite a few public APIs.

As a quick fix, since user-provided options really only exist for NCCL, just warn and fall-back to defaulted options for Gloo if non-gloo options are detected.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162424
Approved by: https://github.com/d4l3k, https://github.com/fduwjj, https://github.com/H-Huang
2025-09-11 16:29:32 +00:00
2f5a24c2a2 Smoke tests don't run nvshmem on Windows (#162646)
Only available for linux x86 and aarch64 :
https://pypi.org/project/nvidia-nvshmem-cu13/#files

nvshmem is available only on linux:
``
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | "
``
https://github.com/pytorch/pytorch/blob/main/.github/scripts/generate_binary_build_matrix.py#L57
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162646
Approved by: https://github.com/kwen2501
2025-09-11 16:09:20 +00:00
24492cbab2 [BE] Cleanup stale comments/copy from gemm (#162001)
Followup after https://github.com/pytorch/pytorch/pull/154012

Since the introduction of `gemm_no_downcast_stub` it's no longer necessary to allocate temporary array and then manually implement the `beta` logic in the codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162001
Approved by: https://github.com/drisspg
ghstack dependencies: #161999
2025-09-11 15:48:43 +00:00
3f6d88f04c paths to exclude shape guards (#162684)
Summary: Easier to land than https://www.internalfb.com/diff/D82030581

Test Plan:
everything blamed by https://www.internalfb.com/diff/D80713603 (except some old exir tests)

Rollback Plan:

Differential Revision: D82180349

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162684
Approved by: https://github.com/tugsbayasgalan
2025-09-11 15:34:06 +00:00
94db2ad51d Revert "Move prioritized text linker optimization code from setup.py to cmake (#160078)"
This reverts commit 26b3ae58908becbb03b28636f7384d2972a8c9a5.

Reverted https://github.com/pytorch/pytorch/pull/160078 on behalf of https://github.com/atalman due to Sorry reverting this broke linux aarch64 CUDA nightlies [pytorch/pytorch/actions/runs/17637486681/job/50146967503](https://github.com/pytorch/pytorch/actions/runs/17637486681/job/50146967503) ([comment](https://github.com/pytorch/pytorch/pull/160078#issuecomment-3281426631))
2025-09-11 15:29:29 +00:00
9f783e172d Revert "Build and Install Arm Compute Library in manylinux docker image (#159737)"
This reverts commit 582d278983b28a91ac0cedd035183f2495bb6887.

Reverted https://github.com/pytorch/pytorch/pull/159737 on behalf of https://github.com/atalman due to Sorry reverting this broke linux aarch64 CUDA nightlies [pytorch/pytorch/actions/runs/17637486681/job/50146967503](https://github.com/pytorch/pytorch/actions/runs/17637486681/job/50146967503) ([comment](https://github.com/pytorch/pytorch/pull/159737#issuecomment-3281398272))
2025-09-11 15:25:24 +00:00
a8432bcaad [dynamo][guards] Fail on an unknown framelocals to dict conversion (#162695)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162695
Approved by: https://github.com/williamwen42
ghstack dependencies: #162694
2025-09-11 15:01:00 +00:00
a3a40cb741 [dynamo][guards] Do not consturct framelocals to dict on GlobalsGuardAccessor (#162694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162694
Approved by: https://github.com/williamwen42
2025-09-11 15:01:00 +00:00
c924c675d0 Fix persistent buffer bug (#162190)
For non-persistent buffers, we should properly register them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162190
Approved by: https://github.com/zhxchen17
2025-09-11 14:56:26 +00:00
c3f30eca9e Remove tests-to-include from rocm-mi300 workflow (#162721)
Accidentally introduced by https://github.com/pytorch/pytorch/pull/162288 (was meant to be a temporary change)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162721
Approved by: https://github.com/jeffdaily
2025-09-11 14:36:07 +00:00
1e710552c1 [ROCm][CI] benchmark must patch fbgemm_gpu with tbb dep (#162649)
fbgemm adds tbb as a dep only for rocm to avoid missing tbb symbols at import.  But the way it was done was in setup.py to add the linker flag to CMAKE_CXX_FLAGS and it wasn't working for reasons unknown to me.  But what did work was to add tbb as a dep in the cmake file.  [We have a PR against upstream fbgemm](https://github.com/pytorch/FBGEMM/pull/4859) for that.  Meanwhile, a much smaller patch is applied here in this PR until the fbgemm rocm ci commit hash is moved forward to include the tbb patch from upstream.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162649
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-11 14:10:51 +00:00
7c39b2ecbe use torch.accelerator and device_module instead of cuda to make DataParallel more device agnostic. (#162573)
use torch.accelerator and `_get_device_module` instead of cuda to make DataParallel more device agnostic.

Fixes #162152

recently, I've done some works to support my own privateuse1 backend in DataParallel module, but I found some cuda related APIs exist in parallel_apply.py file, that makes me have to monkey patch DataParallel module to support DP on my own backend.

so I make some small changes to replace cuda.xxx to accelerator.xxx, and acquire device module by `_get_device_module`.

this is my first time to contribute to pytorch, please let me know if there is any problem about the change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162573
Approved by: https://github.com/ezyang, https://github.com/guangyey

Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
Co-authored-by: Edward Z. Yang <ezyang@mit.edu>
2025-09-11 10:04:27 +00:00
afdd4247a2 [torchao][pt2e] Make prepare and convert faster by caching (#162550)
Summary: D79674759 tried to fix the expensive prepare and convert steps, as `assert_and_get_unique_device` was called multiple times. This change fixes that issue by using `functools.cache` decorator.

Test Plan:
Verified on llm export to QNN.
LLM Quantization prepare time of ~20min reduced to ~3min.

Rollback Plan:

Differential Revision: D82073679

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162550
Approved by: https://github.com/andrewor14
2025-09-11 07:59:22 +00:00
22df9332da [serialization] Add pte file to archive (#162520)
Summary:
Add _package_executorch_files to archive apis. Allow us to package a PTE file into the archive.

I don't think there's a use-case to have more than one PTE file at the moment, but left it as `EXECUTORCH_FILES` just in case.

Test Plan:
Tested in D81992612

Rollback Plan:

Differential Revision: D81977483

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162520
Approved by: https://github.com/angelayi
2025-09-11 07:59:11 +00:00
6b9b7ce6fe fix torch.sparse.log_softmax on CPU (#161959)
Fix https://github.com/pytorch/pytorch/issues/152293.

**Example:**
```
import torch
from torch.sparse import log_softmax as sparse_log_softmax

def test_bug():
    a = torch.rand(4, 3)
    b = a - 10000000.0
    b_sparse = b.to_sparse()

    cpu_out_sparse = sparse_log_softmax(b_sparse, dim=1).to_dense()
    print('cpu_out_sparse =', cpu_out_sparse)

    b_sparse_double = b.double().to_sparse()
    cpu_out_sparse_double = sparse_log_softmax(b_sparse_double, dim=1).to_dense()
    print('cpu_out_sparse_double =', cpu_out_sparse_double)

if __name__ == '__main__':
    test_bug()
```

**Output:**

- before
```
cpu_out_sparse = tensor([[-2., -1., -2.],
        [-1., -1., -1.],
        [-1., -2., -2.],
        [-1., -1., -2.]])
cpu_out_sparse_double = tensor([[-1.5514, -0.5514, -1.5514],
        [-1.0986, -1.0986, -1.0986],
        [-0.5514, -1.5514, -1.5514],
        [-0.8620, -0.8620, -1.8620]], dtype=torch.float64)
```

- after
```
cpu_out_sparse = tensor([[-0.8620, -1.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986],
        [-1.8620, -0.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986]])
cpu_out_sparse_double = tensor([[-0.8620, -1.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986],
        [-1.8620, -0.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986]], dtype=torch.float64)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161959
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/mingfeima
2025-09-11 07:52:05 +00:00
1274297e06 Remove __torch_dispatch__ check in THPVariable_make_dtensor (#162337)
We control DTensor, so we can just guarantee there isn't a programming error with __torch_dispatch__. (The guard is already less-than-perfect; see the note that the deleted comment refers to.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162337
Approved by: https://github.com/Skylion007
ghstack dependencies: #161591, #161595, #161633, #161634, #161692, #162219, #162220, #162218, #161596
2025-09-11 06:58:35 +00:00
f68f76d8c7 Remove logger.debug statements in DTensor dispatch (#161596)
These seem to have been costing us 5-10 usec per detach (out of ~~95 usec total).  If they need to ship let's talk about requirements and how we can make this more efficient given that we would prefer if an entire DTensor op could finish in 10 usec.

Differential Revision: [D81530106](https://our.internmc.facebook.com/intern/diff/D81530106)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161596
Approved by: https://github.com/ezyang, https://github.com/Skylion007
ghstack dependencies: #161591, #161595, #161633, #161634, #161692, #162219, #162220, #162218
2025-09-11 06:58:35 +00:00
fa1d409e83 [2/N]Port several test files under test/distributed to Intel GPU (#159473)
For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU. This PR will work on some test files under test/distributed. We could enable Intel GPU with following methods and try the best to keep the original code styles:

- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- use requires_accelerator_dist_backend to allow both nccl and xccl test
- enabled XPU for some test path
- Change the hardcoded world_size according to device_count.
- Unify some common code under torch/testing/_internal for multiple backend, for example:
  Added xpu for Backend.backend_capability and dist.Backend.register_backend()

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159473
Approved by: https://github.com/guangyey, https://github.com/d4l3k
2025-09-11 06:44:26 +00:00
52d4660ae9 [AOTI] Fix Windows fail to zip opened file. (#162617)
Original issue:
<img width="1767" height="544" alt="Image" src="https://github.com/user-attachments/assets/9de90d50-217f-4049-8f19-77ff1660c8b0" />

reproducer:
```cmd
pytest test\inductor\test_aot_inductor.py -v -k test_weight_on_disk_legacy_cpu
```

Fixed list:
1. `WritableTempFile`'s `__exit__` function auto unlink opened file, when the file was opened, it should raise error. Ignore it on Windows.
2. When open zip file, if the file is opened, it would be failed. Switch to `_wfsopen` with shared access flag, which can open file with shared access.

Local test passed:
<img width="1101" height="233" alt="image" src="https://github.com/user-attachments/assets/935cbf2e-52db-41f1-80fa-617569b92a96" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162617
Approved by: https://github.com/jansel
2025-09-11 06:22:21 +00:00
7345454e2e compile_kernel: Handle python floats as c double (#162626)
This was an open todo in the code and probably a footgun in waiting

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162626
Approved by: https://github.com/malfet
2025-09-11 06:03:25 +00:00
23170dfebc Revert "Move inductor jobs 3.9->3.10 (#162323)"
This reverts commit 0663bdb12383b9717af49d58aed9d88de0dd0ecc.

Reverted https://github.com/pytorch/pytorch/pull/162323 on behalf of https://github.com/huydhn due to Not sure what had happened, but some inductor unit tests start failing after this lands ([comment](https://github.com/pytorch/pytorch/pull/162323#issuecomment-3278125192))
2025-09-11 05:57:13 +00:00
12e993f533 compile_kernel large shared memory fix (#162647)
Alternate solution to https://github.com/pytorch/pytorch/pull/162328

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162647
Approved by: https://github.com/eqy
2025-09-11 05:52:46 +00:00
07d2531672 [vllm hash update] update the pinned vllm hash (#162551)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vllm hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162551
Approved by: https://github.com/pytorchbot
2025-09-11 04:56:04 +00:00
6944d4b639 [ROCm] rocblas Aten GEMM overload for FP32 output from FP16/BF16 inputs (#162600)
Fix ROCm GEMM helper to set output type (C/D) based on C_Dtype template parameter.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162600
Approved by: https://github.com/jeffdaily, https://github.com/pruthvistony
2025-09-11 03:34:07 +00:00
f654cff566 [inductor] Add shape to load_input in matmul templates (#162513)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162513
Approved by: https://github.com/eellison
ghstack dependencies: #162426
2025-09-11 01:51:15 +00:00
f17c5e0789 [inductor] Add shape for store_output in matmul templates (#162426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162426
Approved by: https://github.com/eellison
2025-09-11 01:51:15 +00:00
435c18fb4a [DTensor] add op support for aten.unbind.int (#162560)
As titled.

It seems unbind returns views of the original tensor. E.g. see https://stackoverflow.com/questions/78910951/does-unbind-return-the-views-of-tensors-in-pytorch

So we error out when `shard_dim == unbind_dim`. This is similar to why we error out in view ops.
https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/_ops/_view_ops.py#L544-L546

This PR also refactors some other tensor ops code, by creating two utils function `shift_shard_dims_after_insert`, `shift_shard_dims_after_remove`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162560
Approved by: https://github.com/zpcore
2025-09-11 00:58:23 +00:00
612cdc8f48 -ldl for nativert tests (#162643)
Fixes #162640

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162643
Approved by: https://github.com/yiming0416, https://github.com/robert-hardwick
2025-09-11 00:35:57 +00:00
da5069f289 Don't include cuh header when USE_NVSHMEM is off (#162635)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162635
Approved by: https://github.com/kwen2501
2025-09-11 00:24:50 +00:00
4fd2a2b273 Add cuda headers automatically for compile_kernel (#162634)
Issue was pointed out before by @ngimel and more recently by https://gau-nernst.github.io/nvrtc-matmul/#missing-cuda-and-c-headers- by @gau-nernst

Benefit is now we can add

`#include <cuda_fp16.h>` without crapping out
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162634
Approved by: https://github.com/ngimel
2025-09-11 00:20:33 +00:00
bb1d53bc47 [CD] CUDA 13 specific followup changes (#162455)
Follow up for CUDA 13 bring up https://github.com/pytorch/pytorch/issues/159779
sm50-70 should not be added to sbsa build arch list, as previous archs had no support for arm.
remove platform_machine from PYTORCH_EXTRA_INSTALL_REQUIREMENTS

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162455
Approved by: https://github.com/atalman
2025-09-11 00:03:47 +00:00
36338fc7f2 Relax fences for intrusive ptr's refcnt (#162072)
Summary: Relax fences for intrusive ptr's refcnt dec op for performance testing.

lock needs acquire when the op succeeds and relaxed if the op is not. In addition, the expire call and the following refcnt reads were merged to remove one extra read.

incref does not need any fences because the caller should already have a valid reference. use_count follows the same reasoning.

decref only needs a release fence to make sure every write op prior to it has finished. When the refcnt goes to zero, there should be a acquire fence to make sure no read op reads stale data before the object is destructed. However, microbenchmark showed that the optimal fence for decref is not performing noticeably better than the current decref with acq-rel, so we keep decref as-is.

This change should have no material impact on x86, but for Arm64 (and other CPUs with weak memory models), it should boost performance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162072
Approved by: https://github.com/swolchok, https://github.com/yfeldblum
2025-09-10 23:17:01 +00:00
e0c910149c Build fbgemm_gpu for TORCH_CUDA_ARCH_LIST=10.0 and CUDA 12.8 and 12.9 (#162544)
## Summary
- pytorch is not built for *a variants of SM architectures, due to non-portability. However, we need fbgemm_gpu kernels built for sm100a (see #162209)

## Changes
- **Setting USE_FBGEMM_GENAI for CUDA builds**: fbgemm_gpu builds for sm100a if using CUDA 12.8 or 12.9 ([source](2033a0a08f/.github/scripts/nova_dir.bash (L29-L32))), so I follow the same rule here.
- **Extra nvcc flags**: if USE_FBGEMM_GENAI and USE_CUDA are set, we add extra nvcc flags for sm100a

## Test plan

Test build:
```
echo $CUDA_HOME
/usr/local/cuda-12.9

export TORCH_CUDA_ARCH_LIST=10.0
python -m pip install --no-build-isolation -v -e .
```

Check build logs:
```
  CMake Warning at CMakeLists.txt:901 (message):
    Setting USE_FBGEMM_GENAI to ON, doing CUDA build for SM100a
```

Run unit tests:
- `pytest test/test_matmul_cuda.py  -k test_mxfp8_scaled_grouped_mm`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162544
Approved by: https://github.com/drisspg
2025-09-10 22:59:41 +00:00
f4aeceaa9d Use upper bound for persistent rblock (#162441)
Previously, we were using 128 and increasing to upper bound. We should be setting at the upper bound and raising to next power of 2.

Differential Revision: [D81984103](https://our.internmc.facebook.com/intern/diff/D81984103)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162441
Approved by: https://github.com/PaulZhang12
2025-09-10 22:29:02 +00:00
d8e6b2fddc [Cutlass] Add exp and sigmoid activations (#162536)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162536
Approved by: https://github.com/henrylhtsang, https://github.com/eellison
ghstack dependencies: #162535
2025-09-10 21:44:26 +00:00
31c25c7d01 [Cutlass] Add tanh activation and test case for activations (#162535)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162535
Approved by: https://github.com/henrylhtsang
2025-09-10 21:44:26 +00:00
eqy
5dbee5691c [cuDNN][Convolution][TF32][64bit] Add tf32_on_and_off decorator to conv3d 64bit test (#161004)
cuDNN has new generated kernels that can use TF32.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161004
Approved by: https://github.com/janeyx99, https://github.com/Skylion007
2025-09-10 21:39:35 +00:00
864ffe12d7 Fix some edge cases (#162295)
``` Summary
🔝 Top 5 Performance Differences (by absolute %):
shape: (5, 7)
┌────────────────┬────────────────┬─────────────────────────────┬───────────────────┬──────────────────────┬───────────────────────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D)       ┆ TFlops BWD (base) ┆ TFlops BWD (no_peel) ┆ no_peel_speedup_over_base ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                         ┆ ---               ┆ ---                  ┆ ---                       ┆ ---       │
│ str            ┆ str            ┆ str                         ┆ f64               ┆ f64                  ┆ f64                       ┆ f64       │
╞════════════════╪════════════════╪═════════════════════════════╪═══════════════════╪══════════════════════╪═══════════════════════════╪═══════════╡
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, 1024, 64)  ┆ 56.937931         ┆ 58.960459            ┆ 1.035522                  ┆ 3.552163  │
│ noop           ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, 1024, 128) ┆ 89.221306         ┆ 86.295642            ┆ 0.967209                  ┆ -3.27911  │
│ causal         ┆ torch.bfloat16 ┆ (2, 16, 4096, 4, 4096, 128) ┆ 111.552594        ┆ 114.380841           ┆ 1.025353                  ┆ 2.535349  │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, 1024, 64) ┆ 74.830149         ┆ 76.685445            ┆ 1.024793                  ┆ 2.479344  │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, 1024, 64)  ┆ 55.279932         ┆ 56.369312            ┆ 1.019707                  ┆ 1.97066   │
└────────────────┴────────────────┴─────────────────────────────┴───────────────────┴──────────────────────┴───────────────────────────┴───────────┘

🔺 Top 5 Cases Where no_peel (change) is Faster than base (baseline):
shape: (5, 7)
┌────────────────┬────────────────┬─────────────────────────────┬───────────────────┬──────────────────────┬───────────────────────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D)       ┆ TFlops BWD (base) ┆ TFlops BWD (no_peel) ┆ no_peel_speedup_over_base ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                         ┆ ---               ┆ ---                  ┆ ---                       ┆ ---       │
│ str            ┆ str            ┆ str                         ┆ f64               ┆ f64                  ┆ f64                       ┆ f64       │
╞════════════════╪════════════════╪═════════════════════════════╪═══════════════════╪══════════════════════╪═══════════════════════════╪═══════════╡
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, 1024, 64)  ┆ 56.937931         ┆ 58.960459            ┆ 1.035522                  ┆ 3.552163  │
│ causal         ┆ torch.bfloat16 ┆ (2, 16, 4096, 4, 4096, 128) ┆ 111.552594        ┆ 114.380841           ┆ 1.025353                  ┆ 2.535349  │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, 1024, 64) ┆ 74.830149         ┆ 76.685445            ┆ 1.024793                  ┆ 2.479344  │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, 1024, 64)  ┆ 55.279932         ┆ 56.369312            ┆ 1.019707                  ┆ 1.97066   │
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 4096, 4, 4096, 64)  ┆ 111.08814         ┆ 112.447047           ┆ 1.012233                  ┆ 1.22327   │
└────────────────┴────────────────┴─────────────────────────────┴───────────────────┴──────────────────────┴───────────────────────────┴───────────┘

🔻 Top 5 Cases Where no_peel (change) is Slower than base (baseline):
shape: (5, 7)
┌────────────────┬────────────────┬─────────────────────────────┬───────────────────┬──────────────────────┬───────────────────────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D)       ┆ TFlops BWD (base) ┆ TFlops BWD (no_peel) ┆ no_peel_speedup_over_base ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                         ┆ ---               ┆ ---                  ┆ ---                       ┆ ---       │
│ str            ┆ str            ┆ str                         ┆ f64               ┆ f64                  ┆ f64                       ┆ f64       │
╞════════════════╪════════════════╪═════════════════════════════╪═══════════════════╪══════════════════════╪═══════════════════════════╪═══════════╡
│ noop           ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, 1024, 128) ┆ 89.221306         ┆ 86.295642            ┆ 0.967209                  ┆ -3.27911  │
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 1024, 4, 1024, 64)  ┆ 78.23082          ┆ 76.693169            ┆ 0.980345                  ┆ -1.965531 │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 2048, 4, 2048, 128) ┆ 96.95663          ┆ 95.573333            ┆ 0.985733                  ┆ -1.426717 │
│ alibi          ┆ torch.bfloat16 ┆ (4, 16, 2048, 4, 2048, 64)  ┆ 93.373473         ┆ 92.294147            ┆ 0.988441                  ┆ -1.155924 │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 2048, 4, 2048, 128) ┆ 96.95147          ┆ 96.105389            ┆ 0.991273                  ┆ -0.872685 │
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162295
Approved by: https://github.com/mlazos, https://github.com/v0i0
2025-09-10 21:33:45 +00:00
4e35594674 [Lowering] Fix the edge case of empty subgraph split due to dataclass node (#161716)
Summary: Fix the edge case by allowing `call_function` nodes with no deps as graph entry (starter_nodes) in the splitter.

Test Plan:
The test shall pass in the current diff (after fix), and fail in the parent diff (before fix)

```
buck test mode/opt //glow/fb/fx/lowering:split_tests -- test_dataclass_as_graph_entry
```

Rollback Plan:

Differential Revision: D81232435

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161716
Approved by: https://github.com/ezyang
2025-09-10 21:23:42 +00:00
35d7b32159 Improve device info with new flops and bandwidth formula based on hardware libraries (#162245)
Previously, DeviceInfo provided theoretical hardware information based on a hardcoded list manually created from various datasheets.

This update:
- Attempting to gather the information from a hardware library like `pynvml`, improving accuracy and expanding support to devices that don't have entries in the datasheet list.
- Adjusts flops and bw calculation based on these hardware values. For example, if the the memory or SMs are underclocked, it adjusts the theoretical max flops/bw accordingly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162245
Approved by: https://github.com/v0i0, https://github.com/shunting314
2025-09-10 21:19:13 +00:00
0663bdb123 Move inductor jobs 3.9->3.10 (#162323)
Related to: https://github.com/pytorch/pytorch/issues/161167

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162323
Approved by: https://github.com/huydhn, https://github.com/Skylion007
2025-09-10 20:58:41 +00:00
40ea6e418a Revert "Fix decorators skipping NCCL tests (#158846)"
This reverts commit c2388201fc85b0748173212de5a17514c7a71f21.

Reverted https://github.com/pytorch/pytorch/pull/158846 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing some inductor tests ([comment](https://github.com/pytorch/pytorch/pull/158846#issuecomment-3276471387))
2025-09-10 20:51:31 +00:00
348303ebd2 [ez] add docstring/typing for codegen_kernel_benchmark (#162609)
```
lintrunner init && lintrunner -m origin/main
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162609
Approved by: https://github.com/coconutruben
ghstack dependencies: #162442
2025-09-10 20:49:38 +00:00
94755e81c4 [inductor] Enable combo kernels with unbacked inputs (#162442)
Internal user tried enabling combo kernels, but ran into "Cannot convert symbols to int". This PR is to enable combo kernels on inputs with data-dependent shapes.

### Example exception

```
  File "/data/users/colinpeppler/pytorch/torch/_inductor/codegen/triton.py", line 4997, in benchmark_combo_kernel
    kernel_code_list = self.generate_combo_kernel_code(
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/colinpeppler/pytorch/torch/_inductor/codegen/simd.py", line 1849, in generate_combo_kernel_code
    src_code = kernel.codegen_kernel()
               ^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/colinpeppler/pytorch/torch/_inductor/codegen/triton_combo_kernel.py", line 802, in codegen_kernel
    code.splice(self.codegen_kernel_benchmark(num_gb=0))
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/colinpeppler/pytorch/torch/_inductor/codegen/triton_combo_kernel.py", line 852, in codegen_kernel_benchmark
    var_names.extend(self.kernel_benchmark_extra_args())
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/colinpeppler/pytorch/torch/_inductor/codegen/triton_combo_kernel.py", line 733, in kernel_benchmark_extra_args
    extra_args.append(str(V.graph.sizevars.size_hint(tree.numel)))
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/colinpeppler/pytorch/torch/_inductor/sizevars.py", line 584, in size_hint
    return int(out)
           ^^^^^^^^
  File "/home/colinpeppler/.conda/envs/pytorch/lib/python3.12/site-packages/sympy/core/expr.py", line 307, in __int__
    raise TypeError("Cannot convert symbols to int")
torch._inductor.exc.InductorError: TypeError: Cannot convert symbols to int
```

Differential Revision: [D82042230](https://our.internmc.facebook.com/intern/diff/D82042230)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162442
Approved by: https://github.com/jansel
2025-09-10 20:49:38 +00:00
6d65737aee testing infra and some fixes (#162183)
This PR is quite large in that it covers most of rough edges in the new strict export flow:

1. Handle nn_module_stack correctly now that we are tracing wrapper module
2. module_call_spec needs to get queried from source directly because we are not running the bytecode anymore.
3. Correct input and output handling.

@diff-train-skip-merge

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162183
Approved by: https://github.com/zhxchen17
2025-09-10 20:48:12 +00:00
053251b98d Revert "Make functorch notebook symlinks PEP 517 valid (#157813)"
This reverts commit b494547f0bd6cb1ce5d8d104cb419802434c9c08.

Reverted https://github.com/pytorch/pytorch/pull/157813 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but this surfaces a weird discrepancy between GitHub and Mecurial used internally ([comment](https://github.com/pytorch/pytorch/pull/157813#issuecomment-3276442242))
2025-09-10 20:45:48 +00:00
7e2e83cdbe [ONNX] Update export docstring (#162622)
Update export docstring to reflect the latest configuration.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162622
Approved by: https://github.com/titaiwangms
2025-09-10 20:29:46 +00:00
d033d11d26 Revert "[torch][c10d] fix split_group in mixed backend case (#162424)"
This reverts commit 2dc26131801a430e030a773c4fbfe874e263259d.

Reverted https://github.com/pytorch/pytorch/pull/162424 on behalf of https://github.com/clee2000 due to failure seems related, maybe a hang/timeout distributed/test_distributed_spawn.py::TestDistBackendWithSpawn::test_ddp_model_diff_shape_across_ranks log classifier is pointing at the wrong line ([comment](https://github.com/pytorch/pytorch/pull/162424#issuecomment-3276360494))
2025-09-10 20:13:44 +00:00
80d4da893c Revert "Put torchao (0.13.0) back to benchmark workflow (#162227)"
This reverts commit 00985970e312c3c5e674e8e14d39fe77c226600e.

Reverted https://github.com/pytorch/pytorch/pull/162227 on behalf of https://github.com/huydhn due to Crashing some inductor jobs in trunk ([comment](https://github.com/pytorch/pytorch/pull/162227#issuecomment-3276355034))
2025-09-10 20:11:37 +00:00
bf7f481144 Update misleading torch.sparse_coo_tensor error check (#161900)
Fixes #160622

### Summary
Updated the misleading torch.sparse_coo_tensor error check to provide clear context.
earlier:
`RuntimeError: number of dimensions must be sparse_dim (3) + dense_dim (0), but got 1`

Updated:
`RuntimeError: 'len(size) == sparse_dim + dense_dim' is not satisfied: len(size) = 1, sparse_dim = 3, dense_dim = 0`

**Impacts:**

- Comprehensive error message that will improve developer experience.
- module: sparse

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161900
Approved by: https://github.com/nikitaved, https://github.com/pearu
2025-09-10 19:57:11 +00:00
ab0694f1c6 [ROCm][Inductor][CK backend] Install rocm-composable-kernel python package on ROCm Linux CI docker images (#162288)
Reopened from #158747 which got reverted since without setuptools-scm in pytorch index URL the wheel cannot be built

We reconsider the original PR idea of introducing CK as a pytorch dependency on ROCm Linux and install the CK python package in CI only -- since (1) rocm-composable-kernel depends on setuptools-scm which depends on tomli and the existing index URLs need to be modified to host the new packages and (2) there also is a packaging [bug](https://github.com/pypa/setuptools/issues/3269#issuecomment-1254507377) in Ubuntu 22.04 which prevents correct dynamic version calculation with default system pip.

Extras:

 ->   this PR reconsiders how TORCHINDUCTOR_CK_DIR env variable is used; previously, this var was used to point to rocm-composable-kernel package installation path on the filesystem; now, the path is inferred by trying to import ck4inductor
 ->   the tests are updated to reflect this change
 ->   since in CI clang points to a bash script which invokes sccache, we cannot patch PATH to not contain sccache, this logic is removed from the testing code
->    scaled_mm test crashes during the benchmarking when the benchmarking happens in the main process, and times out benchmarking when it happens in a subprocess, on gfx942, so it is disabled

TBD: roll back rocm-mi300 workflow before merging

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162288
Approved by: https://github.com/jeffdaily
2025-09-10 19:33:40 +00:00
5f630d28d7 [dynamo][guards] Do not construct entire framelocals dict for LAMBDA_GUARD (#162525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162525
Approved by: https://github.com/williamwen42
ghstack dependencies: #162509
2025-09-10 18:52:15 +00:00
a67e798cb7 [dynamo][guards] Prevent framelocals to dict conversion for not required LAMBDA_GUARD (#162509)
This is a smaller PR to reduce framelocals to dict conversion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162509
Approved by: https://github.com/williamwen42
2025-09-10 18:52:15 +00:00
30191fcf03 [inductor][choices] rename get_mm_configs to get_template_configs (#162293)
# why

- eventually we want all templates to go through this
- we're exposing this through diode as a sort of interface/API
- avoid later renaming

# what

- rename get_mm_configs to get_template_configs
- rename _finalize_mm_configs to _finalize_template_configs

# testing

- lintrunner
- ci

Differential Revision: [D81820641](https://our.internmc.facebook.com/intern/diff/D81820641)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162293
Approved by: https://github.com/eellison
ghstack dependencies: #161351, #161350
2025-09-10 18:47:44 +00:00
623e623c82 [inductor] leverage template stacking in V.choices.get_mm_configs (#161350)
# why

- now everything is in place to just gather templates and run
  the V.choices.get_mm_configs once per op
- enables any overrides inside V.choices.get_mm_configs to
  have a full view of the options for an op, not just for
  one template

# what

- replace multiple calls to V.choices.get_mm_configs with
  calls to gather the active templates, and then using those
  in a single call

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520571](https://our.internmc.facebook.com/intern/diff/D81520571)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161350
Approved by: https://github.com/eellison, https://github.com/jansel
ghstack dependencies: #161351
2025-09-10 18:47:44 +00:00
f08487aa86 [inductor] FlexibleLayout for ExternKernelChoice for mms (#161351)
# why

- if we only use ExternKernelChoice we're not doing any codegen
- if we're not doing any codegen, we can use a FlexibleLayout
  here, and provide deeper passes more chances to change it

# what

- if all the kernel template choices (KTC) are with a ExternKernelChoice
  template, we switch to a FlexibleLayout before generating the choice
- add a test to make sure that works as intended (FlexibleLayout for
  only extern, and FixedLayout if Triton is involved)

- caveats:
    - because CPP, CUTLASS, and CK are not using
       V.choices.get_mm_configs yet, we turn off the optimization
       if either of those backends are in use. This will be relaxed
       once they support this too
    - because Triton templates are still using their own calls
       (not a single call) to get_mm_configs, it's also turned
       off there. The next diff unifies Triton + ATEN to a single
       call to get_mm_configs and that in turn allows the optimization
       there too

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520584](https://our.internmc.facebook.com/intern/diff/D81520584)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161351
Approved by: https://github.com/eellison, https://github.com/jansel
2025-09-10 18:47:34 +00:00
1051c7dbc2 Don't unconditionally import torch._dynamo, it's slow (#162595)
A trivial test on OS X.

Before:

```
real	0m6.550s
user	0m2.532s
sys	0m3.359s
```

After:

```
real	0m2.607s
user	0m1.898s
sys	0m3.344s
```

Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162595
Approved by: https://github.com/albanD
2025-09-10 17:21:03 +00:00
suo
2dc2613180 [torch][c10d] fix split_group in mixed backend case (#162424)
Today we can initialize a mixed-backend process group (e.g. "cpu:gloo,cuda:nccl") but we can only pass one set of process group options.

However, when we call `split_group`, we retrieve that set of options from the parent PG and pass it to the ProcessGroup::groupSplit C++ API, which then attempts to propagate that set of options to all backends.

This leads to an assert on some user code, where ProcessGroupGloo::split is expecting gloo options but receives nccl options instead.

Arguably the APIs as currently designed are just broken; we should not ever expect a single set of backend options to apply across multiple backends. However, fixing this would require changing quite a few public APIs.

As a quick fix, since user-provided options really only exist for NCCL, just warn and fall-back to defaulted options for Gloo if non-gloo options are detected.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162424
Approved by: https://github.com/d4l3k, https://github.com/fduwjj, https://github.com/H-Huang
2025-09-10 16:59:18 +00:00
582d278983 Build and Install Arm Compute Library in manylinux docker image (#159737)
----

This PR will be part of a series of PR's that aims to remove `.ci/aarch64_linux` folder entirely, such that Aarch64 manylinux build happens as part of `.ci/manywheel/build.sh`, the same as other platforms.

In this PR:

- We prebuild + install Arm Compute Library in the manylinux docker image ( at /acl ), instead of a build time for every pytorch build.  Also updated jammy install path to be /acl too.
- We can therefore remove build_ArmComputeLibrary functions from the ci build scripts.
- There is also some refactoring of install_openblas.sh and install_acl.sh to align them together ( similar formatting, similar variable names, same place for version number update )
- We had 2 places to define openblas version, this has been reduced to 1 now ( install_openblas.sh ).
- ACL_VERSION and OPENBLAS_VERSION are now able to be overriden at build.sh level for developers, but there is only 1 version of each hardcoded for ci.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159737
Approved by: https://github.com/seemethere
ghstack dependencies: #160078
2025-09-10 15:39:38 +00:00
b5e6e58050 [nn] Assert parsed iterable arguments are an appropriate length (#162340)
Fixes #162327
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162340
Approved by: https://github.com/Skylion007
2025-09-10 15:15:49 +00:00
fefc406a3d fix typo: summit -> submit (#162587)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162587
Approved by: https://github.com/justinchuby
2025-09-10 14:43:53 +00:00
3d32bb114b [CD] Aarch64 Fix packaging `libarm_compute.so` and other libraries to the aarch64 CUDA wheels (#162566)
Fixes aarch64 linux packaging, following error:
https://github.com/pytorch/vision/actions/runs/17612462583/job/50037380487#step:15:62
```
Traceback (most recent call last):
  File "/__w/vision/vision/pytorch/vision/setup.py", line 13, in <module>
    import torch
  File "/__w/_temp/conda_environment_17612462583/lib/python3.11/site-packages/torch/__init__.py", line 415, in <module>
    from torch._C import *  # noqa: F403
    ^^^^^^^^^^^^^^^^^^^^^^
ImportError: libarm_compute.so: cannot open shared object file: No such file or directory
```
Due to missing dependencies.

Current Error:
File torch-2.10.0.dev20250910+cu130-cp310-cp310-linux_aarch64.whl is extracted
File is repackaged as torch-2.10.0.dev20250910+cu130-cp310-cp310-manylinux_2_28_aarch64.whl
File torch-2.10.0.dev20250910+cu130-cp310-cp310-linux_aarch64.whl renamed as torch-2.10.0.dev20250910+cu130-cp310-cp310-manylinux_2_28_aarch64.whl
Hence the repackaging does not take any effect.

This PR does following
File torch-2.10.0.dev20250910+cu130-cp310-cp310-linux_aarch64.whl is extracted
File torch-2.10.0.dev20250910+cu130-cp310-cp310-linux_aarch64.whl  deleted
File is repackaged as torch-2.10.0.dev20250910+cu130-cp310-cp310-manylinux_2_28_aarch64.whl

Looks like after migrating from zipping the wheel to wheel pack renaming the wheel is no longer necessary. Hence removing renaming and deleting old file.
```
2025-09-10T10:10:05.9652454Z Using nvidia libs from pypi - skipping CUDA library bundling
2025-09-10T10:10:05.9656595Z Copying to /pytorch/dist/tmp/torch/lib/libgomp.so.1
2025-09-10T10:10:05.9873843Z Copying to /pytorch/dist/tmp/torch/lib/libgfortran.so.5
2025-09-10T10:10:06.0410041Z Copying to /pytorch/dist/tmp/torch/lib/libarm_compute.so
2025-09-10T10:10:06.2869242Z Copying to /pytorch/dist/tmp/torch/lib/libarm_compute_graph.so
2025-09-10T10:10:06.4385740Z Copying to /pytorch/dist/tmp/torch/lib/libnvpl_lapack_lp64_gomp.so.0
2025-09-10T10:10:06.5461372Z Copying to /pytorch/dist/tmp/torch/lib/libnvpl_blas_lp64_gomp.so.0
2025-09-10T10:10:06.5728970Z Copying to /pytorch/dist/tmp/torch/lib/libnvpl_lapack_core.so.0
2025-09-10T10:10:06.6231872Z Copying to /pytorch/dist/tmp/torch/lib/libnvpl_blas_core.so.0
2025-09-10T10:10:14.1503110Z Updated tag from Tag: cp310-cp310-linux_aarch64
2025-09-10T10:10:14.1503482Z  to Tag: cp310-cp310-manylinux_2_28_aarch64
2025-09-10T10:10:14.1503682Z
2025-09-10T10:10:41.6498892Z Repacking wheel as /pytorch/dist/torch-2.10.0.dev20250910+cu130-cp310-cp310-manylinux_2_28_aarch64.whl...OK
2025-09-10T10:10:41.9394460Z Renaming torch-2.10.0.dev20250910+cu130-cp310-cp310-linux_aarch64.whl wheel to torch-2.10.0.dev20250910+cu130-cp310-cp310-manylinux_2_28_aarch64.whl
```

Test Plan, Executed on local file:
```
  inflating: ubuntu/dist/tmp/torch-2.9.0.dev20250909+cu130.dist-info/WHEEL
  inflating: ubuntu/dist/tmp/torch-2.9.0.dev20250909+cu130.dist-info/entry_points.txt
  inflating: ubuntu/dist/tmp/torch-2.9.0.dev20250909+cu130.dist-info/top_level.txt
  inflating: ubuntu/dist/tmp/torch-2.9.0.dev20250909+cu130.dist-info/RECORD
Bundling CUDA libraries with wheel
Updated tag from Tag: cp310-cp310-manylinux_2_28_aarch64
 to Tag: cp310-cp310-manylinux_2_28_aarch64

Repacking wheel as ubuntu/dist/torch-2.9.0.dev20250909+cu130-cp310-cp310-manylinux_2_28_aarch64.whl...OK
Copying torch-2.9.0.dev20250909+cu130-cp310-cp310-manylinux_2_28_aarch64.whl to artifacts
Build Complete. Created torch-2.9.0.dev20250909+cu130-cp310-cp310-manylinux_2_28_aarch64.whl..
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162566
Approved by: https://github.com/jeanschmidt, https://github.com/NicolasHug
2025-09-10 14:22:41 +00:00
de05dbc39c Replace export_for_training with export (#162396)
Summary: replace export_for_training with epxort

Test Plan:
CI

Rollback Plan:

Differential Revision: D81935792

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162396
Approved by: https://github.com/angelayi, https://github.com/jerryzh168
2025-09-10 14:19:34 +00:00
fc1b09a52a Revert "Fix DCE eliminating in-place operations by improving Node.is_impure() (#162267)"
This reverts commit b9a7d0e13b4a34be83c778734dbad437c7c5117b.

Reverted https://github.com/pytorch/pytorch/pull/162267 on behalf of https://github.com/malfet due to Not sure how it happened, but looks like it broke everything, see c2388201fc/1 ([comment](https://github.com/pytorch/pytorch/pull/162267#issuecomment-3275164109))
2025-09-10 14:12:22 +00:00
c2388201fc Fix decorators skipping NCCL tests (#158846)
Avoid failures caused by tests exiting via sys.exit instead of `unittest.skip`

In particular it will not try to start the test (causing forks into subprocess) just to stop them (killing the subprocess) which is done in the test setup

Using `unittest.skip` decorators avoids the starting of the test in the first place.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158846
Approved by: https://github.com/Skylion007
2025-09-10 12:25:42 +00:00
a6f9e0e62a [c10d][nvshmem] fix override function modifier (#162515)
Summary: Fix compilation error in fbsource by missing override modifier

Differential Revision: D82038876

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162515
Approved by: https://github.com/Skylion007, https://github.com/kwen2501
2025-09-10 11:35:49 +00:00
337fe1079d [nativert] AOTI delegate with flat inputs and outputs (#162538)
Summary: `executorch_call_delegate` should have flattened inputs and outputs. So that it can be correctly serialized and the input/output specs are consistent with runtime.

Test Plan:
CI

Rollback Plan:

Differential Revision: D82064354

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162538
Approved by: https://github.com/dolpm
2025-09-10 11:35:44 +00:00
b494547f0b Make functorch notebook symlinks PEP 517 valid (#157813)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157813
Approved by: https://github.com/zou3519, https://github.com/atalman
2025-09-10 10:13:24 +00:00
d9832d8425 [triton][export] serialization in internal path + unit tests (#162200)
Summary: will package triton artifacts to be runnable in nativert if wrappers exist.

Test Plan:
unit tests

Rollback Plan:

Differential Revision: D81368559

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162200
Approved by: https://github.com/angelayi
2025-09-10 09:49:10 +00:00
f0ae3a57f6 [Optimus] Add batch dropout pattern (#162443)
Summary: We observe dropout pattern in AFOC, such add a new pattern to Optimus

Test Plan:
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:group_batch_fusion -- test_batch_dropout_pre_grad_fusion
```

Buck UI: https://www.internalfb.com/buck2/2c899fb5-6e8b-43eb-8fb3-b53abfbfa6d9
Test UI: https://www.internalfb.com/intern/testinfra/testrun/15762598805248688
Network: Up: 0B  Down: 0B  (reSessionID-bfbb9e6a-7e2a-425a-a027-b44282cef419)
Executing actions. Remaining     0/3                                                                                                     1.3s exec time total
Command: test.     Finished 2 local
Time elapsed: 1:22.3s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

### E2E

baseline
f791163796

proposal
f793225207

Rollback Plan:

Differential Revision: D81981264

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162443
Approved by: https://github.com/Yuzhen11, https://github.com/mlazos
2025-09-10 09:49:01 +00:00
26b3ae5890 Move prioritized text linker optimization code from setup.py to cmake (#160078)
Note. This is a replica PR of #155901 which will be closed. I had to create a new PR in order to add it into my ghstack as there are some later commits which depend on it.

### Summary

🚀 This PR moves the prioritized text linker optimization from setup.py to cmake ( and enables by default on Linux aarch64 systems )

This change consolidates what was previously manual CI logic into a single location (cmake), ensuring consistent behavior across local builds, CI pipelines, and developer environments.

### Motivation
Prioritized text layout has measurable performance benefits on Arm systems by reducing code padding and improving cache utilization. This optimization was previously triggered manually via CI scripts (.ci/aarch64_linux/aarch64_ci_build.sh) or user-set environment variables. By detecting the target architecture within setup.py, this change enables the optimization automatically where applicable, improving maintainability and usability.

Note:

Due to ninja/cmake graph generation issues we cannot apply the linker file globally to all targets to the targets must be manually defined. See CMakeLists.txt the main libraries torch_python, torch, torch_cpu, torch_cuda, torch_xpu have been targetted which should be enough to maintain the performance benefits outlined above.

Co-authored-by: Usamah Zaheer <usamah.zaheer@arm.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160078
Approved by: https://github.com/seemethere
2025-09-10 09:21:53 +00:00
be8095b07f [DeviceMesh] Clarifying flatten use case (#161311)
Since we are in the middle of big refactoring and simplying the bookkeeping for device mesh. We found an interesting bug inside DeviceMesh flatten implementation. Here is the finding:
1. In unit test, we assume users can call `dp_cp_mesh._flatten()` many times but no backend will be created (aka cached).
2. From the implementation of slicing, we actually throw exception erroring out doing the `_flatten` more than once. But there is bug which was partially fixed in https://github.com/pytorch/pytorch/pull/160709 but it does not fixed the check for the case when we call the `_flatten` twice.

What's more important question to ask is, what behavior we want for `_flatten`? Do we allow calling `_flatten` multiple times (with same mesh_name)? I think we should, why?
1. We allow slicing for the same mesh_name or name_list multiple times, and we cache the PG behinds. Although we will return a new device mesh object everytime, when we compare them they are all the same (according to __eq__).
2. We actually cached the flattened mesh today inside `root_to_flatten_mapping` and actually do the early return but that  line will never be reached if we error out before that.

Also we should allow a no-op for flatten a 1D mesh into itself's mesh_dim_name, I added a unit test for it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161311
Approved by: https://github.com/fegin
2025-09-10 07:46:51 +00:00
b2d8f6a6af [OpenReg] Update the docs about Accelerator Integration (#162046)
Fix the issue describled by this [comment](https://github.com/pytorch/pytorch/pull/161845#discussion_r2317299390)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162046
Approved by: https://github.com/albanD
2025-09-10 07:45:07 +00:00
98e22c8a69 Skip test_ind_worker_queue on Windows and macOS (flaky) (#162555)
Fixes https://github.com/pytorch/pytorch/issues/68643

It was closed by the bot yesterday and the issue was still there https://github.com/pytorch/pytorch/actions/runs/17595694816/job/49989589647.  It's better to just skip it directly in the code as this test has been disabled on Windows and MacOS since 2021 O_o
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162555
Approved by: https://github.com/clee2000
2025-09-10 07:05:14 +00:00
e1f0a69943 Revert "test fixing benchmarks (#162503)"
This reverts commit 484c4093a87a3e6767e55ed553f95db8fc137442.

Reverted https://github.com/pytorch/pytorch/pull/162503 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it regresses CPU perf smoke test ([comment](https://github.com/pytorch/pytorch/pull/162503#issuecomment-3273554680))
2025-09-10 06:55:35 +00:00
833997a6fd [Inductor][UT] Fix flex attention related inductor cases (#162450)
## Motivation
Fixes #162435, Fixes #162436

UT failures:
* https://github.com/pytorch/pytorch/actions/runs/17523991468/job/49772651636
* https://github.com/pytorch/pytorch/actions/runs/17523991468/job/49772651637

To fix flex attention related cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162450
Approved by: https://github.com/drisspg
2025-09-10 06:48:00 +00:00
b9a7d0e13b Fix DCE eliminating in-place operations by improving Node.is_impure() (#162267)
Change is_impure to check in-place operations on Node to prevent eliminate_dead_code from eliminating in-place operations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162267
Approved by: https://github.com/ezyang
2025-09-10 06:02:15 +00:00
1c16c18a53 [nativert][triton] improve hardware registration (#162499)
Summary: att

Test Plan:
ci

Rollback Plan:

Differential Revision: D82031814

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162499
Approved by: https://github.com/angelayi
2025-09-10 04:52:57 +00:00
96ef26f71a Revert "[ROCm] Integrate AITER Fav3 fwd kernels (#160105)"
This reverts commit d2393c2d7da03a1523a12e6f80edb6bd7b464ec5.

Reverted https://github.com/pytorch/pytorch/pull/160105 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing internal ROCm build ([comment](https://github.com/pytorch/pytorch/pull/160105#issuecomment-3273297183))
2025-09-10 04:42:28 +00:00
5ac112b569 [dynamo] Graph break on on user-defined class in compiled region (#161670)
Currently, user-defined classes inside of a compiled frame will cause the whole
frame to be skipped by dynamo.  This change defers the Unsupported exception
until the __build_class__ builtin is actually called, which allows a graph break
to be inserted.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161670
Approved by: https://github.com/williamwen42, https://github.com/guilhermeleobas
2025-09-10 04:39:20 +00:00
dda071587f Revert "Make distributed modules importable even when backend not built (#159889)" (#162568)
This reverts commit a0d026688cd69583d5a4e0c6f3e5fda141a7f4a9.

Revert "Always build USE_DISTRIBUTED. (#160449)"

This reverts commit d80297a6846f1f2c36fd4f19e22919f2abe8fcea.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162568
Approved by: https://github.com/huydhn
2025-09-10 04:29:42 +00:00
11acfed3ce [audio hash update] update the pinned audio hash (#162552)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162552
Approved by: https://github.com/pytorchbot
2025-09-10 04:24:39 +00:00
5f40a8a9a3 [BE] Fix '_WIN32' is not defined warning (#162516)
Summary: As indeed it is not defined neither on  Linux nor on MacOS platforms

Test Plan:
CI

Rollback Plan:

Differential Revision: D82044853

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162516
Approved by: https://github.com/Skylion007
2025-09-10 04:21:38 +00:00
e64965300a Repackage vLLM nightlies (#162371)
I suspected that I would need to repack vLLM wheels from https://github.com/pytorch/pytorch/pull/162000 because I renamed the wheel, and it turns out to be true.  The error is as follows:

```
$ uv pip install --pre xformers --index-url https://download.pytorch.org/whl/nightly/cu129
Using Python 3.12.11+meta environment at: venv/py3.12
Resolved 28 packages in 759ms
error: Failed to install: xformers-0.0.33.dev20250901+cu129-cp39-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (xformers==0.0.33.dev20250901+cu129)
  Caused by: Wheel version does not match filename: 0.0.33+5d4b92a5.d20250907 != 0.0.33.dev20250901+cu129
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162371
Approved by: https://github.com/atalman
2025-09-10 04:02:34 +00:00
00985970e3 Put torchao (0.13.0) back to benchmark workflow (#162227)
0.13.0 was released on Sep 3rd https://pypi.org/project/torchao/#history, which should have fixed the crashing issue on transformers now
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162227
Approved by: https://github.com/malfet
2025-09-10 03:56:25 +00:00
484c4093a8 test fixing benchmarks (#162503)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162503
Approved by: https://github.com/huydhn
ghstack dependencies: #160741
2025-09-10 03:15:49 +00:00
760c478a14 [FlexAttn][Minor] Update FlexConfig doc (#162533)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162533
Approved by: https://github.com/drisspg
2025-09-10 02:03:48 +00:00
dc4f97e9c1 [triton] enable int64 indexing in convolution and mm template (#162506)
Summary: hitting illegal memory access issue when compiling conv and addmm kernels with the change in https://github.com/pytorch/pytorch/pull/157767

Differential Revision: D81995664

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162506
Approved by: https://github.com/iseeyuan
2025-09-10 01:53:26 +00:00
c66e58b7d0 [ONNX] Expose the testing module (#162495)
* Created a new module `torch/onnx/testing.py` that exposes the `assert_onnx_program` function for testing exported ONNX models.
* Updated the ONNX documentation (`docs/source/onnx.md`) to include `onnx_testing` in the list of relevant modules.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162495
Approved by: https://github.com/titaiwangms, https://github.com/xadupre
2025-09-10 01:40:24 +00:00
878f59ef75 DeviceMesh: support _rank for use with non-global PGs (#162439)
Summary: This adds a `_rank` field to DeviceMesh init that allows for instantiating a DeviceMesh without depending on `dist.get_rank()` which requires a global PG to be instantiated.

Test Plan:
```
buck2 test mode/opt -c fbcode.enable_gpu_sections=true  //caffe2/test/distributed:device_mesh -- init_backend
```

Rollback Plan:

Differential Revision: D81981777

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162439
Approved by: https://github.com/kwen2501, https://github.com/fduwjj
2025-09-10 01:18:28 +00:00
e60ad4f628 [DTensor] fix copy_ strategy to support linearity (#162460)
Fixing issue introduced in https://github.com/pytorch/pytorch/pull/158538
where `aten.copy_.default` is registered as a pointwise op, but without linearity.

In particular, when both `src` and `dst` tensors have same `Partial` placements, direct copy should happen without redistribute, instead of redistributing both to `Replicate` before making the copy.

This was discovered from silent incorrect results e.g. on `torch.einsum` backward.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162460
Approved by: https://github.com/zpcore
2025-09-10 00:47:14 +00:00
2281d009e5 Revert "[ROCm] Add specific compile options for CK SDPA (#161759)"
This reverts commit d22d916719eb7daff8455a01d216d65f81899a9e.

Reverted https://github.com/pytorch/pytorch/pull/161759 on behalf of https://github.com/huydhn due to Sorry for reverting your change but this seems to break internal ROCm jobs ([comment](https://github.com/pytorch/pytorch/pull/161759#issuecomment-3272807726))
2025-09-10 00:44:30 +00:00
33589374b6 [DCP] Avoid multiple storage writer resets in async save (#159448)
Summary: Avoid multiple storage writer resets in async save. Currently the reset gets called by the async_save method and then again in the save method. In the async path, async_save should only do the staging and the reset should only happen in the synchronous save path.

Test Plan:
```
buck test 'fbcode//mode/opt' //aiplatform/modelstore/experimental/DCP/tests:checkpoint_dist_client_test
```
https://www.internalfb.com/intern/testinfra/testrun/15199648841705052

Rollback Plan:

Differential Revision: D79230339

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159448
Approved by: https://github.com/meetv18
2025-09-10 00:43:03 +00:00
5539916fe1 [dynamo][refactor] Move get_framelocals_idx to a helper (#162519)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162519
Approved by: https://github.com/williamwen42
2025-09-10 00:35:09 +00:00
e4174b1fd7 remove gso from collapse_view_helper (#162212)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162212
Approved by: https://github.com/aorenste

Co-authored-by: Aaron Orenstein <aorenste@fb.com>
2025-09-10 00:17:15 +00:00
0e7ccc09db [easy] Don't force copy result of getAllOperatorsFor in init.cpp (#162218)
It returns a const reference to a vector.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162218
Approved by: https://github.com/Skylion007
ghstack dependencies: #161591, #161595, #161633, #161634, #161692, #162219, #162220
2025-09-10 00:08:15 +00:00
87cc126457 [associative_scan] partial gradient support (#162388)
This PR tests the partial gradient support of the `associative_scan` operation. It replaces https://github.com/bohnstingl/pytorch/pull/6

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162388
Approved by: https://github.com/ydwu4
2025-09-09 23:52:29 +00:00
a3e26d1727 Revert "[dynamo] Graph break on on user-defined class in compiled region (#161670)"
This reverts commit e2545487de3dbbe663e3f0adb699547a14da0f6a.

Reverted https://github.com/pytorch/pytorch/pull/161670 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing a trunk test ([comment](https://github.com/pytorch/pytorch/pull/161670#issuecomment-3272626391))
2025-09-09 23:40:26 +00:00
d2393c2d7d [ROCm] Integrate AITER Fav3 fwd kernels (#160105)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160105
Approved by: https://github.com/jeffdaily
2025-09-09 22:30:12 +00:00
b498299953 154849 Add support to handle IGUSR1 and SIGUSR2 in multiprocessing (#160690)
Fixes #154849

This change addresses the request to add support for SIGUSR1 and SIGUSR2 signals in torchrun for SLURM environments.  Changes supports these signals through the configurable `TORCHELASTIC_SIGNALS_TO_HANDLE` environment variable and signals_to_handle parameter from laucher api

Tests:
For validations purpose:
test_signal_handling.py,
simple_test_api_signal_handling.py,

Unit Tests:
for launcher changes:launcher/test_api.py
for api changes:  multiprocessing/test_api.py
E2E: test_run.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160690
Approved by: https://github.com/fduwjj
2025-09-09 22:23:06 +00:00
4d66a3b894 fix Dtensor doc link (#162494)
Small fix for https://docs.pytorch.org/docs/main/distributed.tensor.parallel.html
<img width="890" height="274" alt="image" src="https://github.com/user-attachments/assets/6ee7fc7c-e0fe-4f5e-ab7e-a895bb3fa79f" />

now it is:

<img width="909" height="320" alt="image" src="https://github.com/user-attachments/assets/8b2c41ef-1684-4597-8dae-144b49723796" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162494
Approved by: https://github.com/XilunWu
2025-09-09 22:10:37 +00:00
e2545487de [dynamo] Graph break on on user-defined class in compiled region (#161670)
Currently, user-defined classes inside of a compiled frame will cause the whole
frame to be skipped by dynamo.  This change defers the Unsupported exception
until the __build_class__ builtin is actually called, which allows a graph break
to be inserted.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161670
Approved by: https://github.com/williamwen42, https://github.com/guilhermeleobas
2025-09-09 21:07:49 +00:00
8922bbcaab Use same NVSHMEM version across CUDA builds (#162206)
#161321 bumped NVSHMEM version to 3.3.24 for CUDA 13, leaving CUDA 12 with 3.3.20.
This PR bumps the NVSHMEM version to 3.3.24 for CUDA 12 as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162206
Approved by: https://github.com/tinglvv, https://github.com/Skylion007
2025-09-09 20:59:50 +00:00
14744e1ab2 [Release 2.9] Add compatibility matrix, Version Bump (#162526)
Release 2.9
1. Add release compatibility matrix
2. Add version bump for 2.10
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162526
Approved by: https://github.com/malfet
2025-09-09 20:38:15 +00:00
b477fb106f [ROCm] enable grouped gemm fallback (#162419)
Enables bf16 group gemm alternative path as described in #161366
Fast path will be enabled in future through CK integration.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162419
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-09 20:04:56 +00:00
d22d916719 [ROCm] Add specific compile options for CK SDPA (#161759)
Updates CK version and adds CK specific compilation options

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161759
Approved by: https://github.com/jeffdaily
2025-09-09 20:04:19 +00:00
86d34a43f5 NamedTuple: Allow side effects for dynamic attributes (#161645)
I confirmed that the tracing was correct i.e. NamedTupleVariable had the correct dynamic attribute added to it.

The problem was that NamedTupleVariable was always marked as immutable. This does not reflect the behavior of namedtuple.

Subclasses of namedtuple may be mutable, so when a NamedTupleVariable is derived from a subclass that is mutable, I made NamedTupleVariable mutable as well. Then side_effects correctly updates the returned object.

Fixes #161610

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161645
Approved by: https://github.com/anijain2305, https://github.com/StrongerXi
2025-09-09 19:42:02 +00:00
8508651477 Fix flaky AOTFxirTestCase (#162472)
Fixes https://github.com/pytorch/pytorch/issues/162357
Fixes https://github.com/pytorch/pytorch/issues/160970
Fixes https://github.com/pytorch/pytorch/issues/161038
Fixes https://github.com/pytorch/pytorch/issues/160951
Fixes https://github.com/pytorch/pytorch/issues/161698

These tests were introduced in https://github.com/pytorch/pytorch/pull/160765 and they are all flaky when `torch._inductor.aot_compile` uses multiple threads (the default option).  The issue could be reproduced by running them locally multiple times.  For example,

```
pytest --flake-runs 10 --flake-finder -v inductor/test_fxir_backend.py -k test_aoti_fx_add
(output logs at P1938386961)
...
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 2), ('async_compile_cache_hit', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 2), ('async_compile_cache_hit', 1)]
graph_break []
--------------------------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------------------------------------------------
inductor [('async_compile_cache_miss', 2), ('async_compile_cache_hit', 1)]
graph_break []
================================================================================================================================================= short test summary info ==================================================================================================================================================
FAILED [0.4834s] inductor/test_fxir_backend.py::AOTFxirTestCase::test_aoti_fx_add - AttributeError: 'NoneType' object has no attribute '__code__'
FAILED [0.4576s] inductor/test_fxir_backend.py::AOTFxirTestCase::test_aoti_fx_add - AttributeError: 'NoneType' object has no attribute '__code__'
FAILED [0.4613s] inductor/test_fxir_backend.py::AOTFxirTestCase::test_aoti_fx_add - AttributeError: 'NoneType' object has no attribute '__code__'
=============================================================================================================================================== 3 failed, 7 passed in 12.89s ===============================================================================================================================================
```

Setting `compile_threads` to 1 will get rid of the test flakiness, but there might be underlying issues from https://github.com/pytorch/pytorch/pull/160765.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162472
Approved by: https://github.com/angelayi, https://github.com/Skylion007
2025-09-09 19:39:24 +00:00
723c27ed78 [standalone_compile] binary format write should be atomic (#162432)
We update it to call write_atomic instead of file.write

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162432
Approved by: https://github.com/oulgen
2025-09-09 18:43:13 +00:00
bdbe931d58 [build] Add LeakSanitizer option to CMake (#158686)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158686
Approved by: https://github.com/eellison
2025-09-09 18:41:20 +00:00
af60398c3a Update the operator benchmarking, to benchmark using torch.compile (#161394)
This pull request enhances the PyTorch operator benchmarking suite by introducing support for benchmarking with `torch.compile` mode, in addition to existing Eager and JIT. It also adds peak memory measurement (fwd/bwd pass); improves the output format in JSON to be used by dashboard for reporting; and introduce some more CLI options. The new CLI flags introduced are:

- Added `--use-compile` CLI argument and corresponding logic to run benchmarks using `torch.compile`, including mutual exclusivity with `--use-jit`
- Added `--benchmark-name` argument for customizing the benchmark name in output
- Updated default value for `--output-json-for-dashboard` to `benchmark-results.json` for more predictable output file name

Sample command to run a single operator:
`python -m pt.mm_test --use-compile`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161394
Approved by: https://github.com/jbschlosser
2025-09-09 18:17:37 +00:00
82f1eb9b03 Revert "[MPS] mps sparse mul op implementation (#162349)"
This reverts commit 3ea686804925f1291de57ffdb3394da0b46deb54.

Reverted https://github.com/pytorch/pytorch/pull/162349 on behalf of https://github.com/malfet due to Fails trunk tests, with uint8 sum ([comment](https://github.com/pytorch/pytorch/pull/162349#issuecomment-3271783442))
2025-09-09 18:14:16 +00:00
4b2d297eec python fastpath for DTensor detach(), confirm that aliasing DTensorSpec is ok (#160580)
My goal right now is to try to make the "vanilla" AccumulateGrad path for DTensor (that just calls detach) fast. I'm doing this in two steps:

(1) [this PR]: hardcode aten.detach in DTensor to re-use the input tensor's DTensorSpec, instead of running "real" sharding prop.

(2) [assuming success of 1]: move the detach() call into C++, try adding a DTensor dispatch key, and avoid dispatching back to python entirely (except for some code that probably needs to allocate a pyobject for the output DTensor, from C++)

I'm pushing this PR first to confirm that I don't break anything with my detach fastpath. I did some manual local testing to confirm that for normal usages of detach, the input and output DTensor have equal DTensorSpec objects. Technically, we previously would allocate a fresh DTensorSpec, and with this change we are just re-using the input tensor's DTensorSpec. So I'm mostly hoping that DTensorSpecs don't generally get mutated

This by itself does seem to speed up `alias` by quite a bit (roughly 2.5x speedup, from ~336us -> 133us):

**aten.detach(plain_tensor)**
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7f8da2921790>
_ = x.detach()
  4.80 us
  1 measurement, 100000 runs , 1 thread
```

**aten.detach(DTensor) [before this PR]**
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7f47cd68e750>
_ = x_dt.detach()
  336.40 us
  1 measurement, 1000 runs , 1 thread
```

**aten.detach(DTensor) [after this PR]**
```
<torch.utils.benchmark.utils.common.Measurement object at 0x7f0a34c05520>
_ = x_dt.detach()
  Median: 133.45 us
  2 measurements, 1000 runs per measurement, 1 thread
```

benchmark script:
```
import torch
import torch.distributed as dist
from torch.distributed.tensor import DeviceMesh, DTensor, Partial, Replicate, Shard
from torch.testing._internal.distributed.fake_pg import FakeStore
import torch.utils.benchmark as benchmark

fake_store = FakeStore()
dist.init_process_group("fake", store=fake_store, rank=0, world_size=2)

mesh = torch.distributed.device_mesh.init_device_mesh('cuda', (2,))
x = torch.randn(4, 4, requires_grad=True)
x_dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)

t0 = benchmark.Timer(
    stmt='_ = x_dt.detach()',
    globals={'x_dt': x_dt},
)
print(t0.blocked_autorange())

dist.destroy_process_group()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160580
Approved by: https://github.com/ezyang
2025-09-09 18:04:56 +00:00
0ec723acd0 Update docs for quantile to be clearer for nearest (#162423)
Correct the rounding scheme for nearest in quantile.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162423
Approved by: https://github.com/soulitzer
2025-09-09 18:04:12 +00:00
e1be887870 [PP] Add spacing to visualizer (#160474)
When visualizing the schedules using `_PipelineScheduleExecution`, we don't provide any spacing between dependencies, so when visualizing `DualPipeV` it looks like this:

<img width="3168" height="486" alt="image" src="https://github.com/user-attachments/assets/d2c881ad-4ee0-46b6-ac03-13e5600b5a55" />

While it has the correct order of operations, it does not show the dependencies correctly. As shown in the original implementation, it should look something like this:

<img width="3542" height="384" alt="image" src="https://github.com/user-attachments/assets/c930fa98-848e-4951-a58b-c81f41092d14" />

This allows an option to add spacing to the visualizer, so it is easier to see dependencies. After change:

<img width="3633" height="486" alt="image" src="https://github.com/user-attachments/assets/7708367e-bdb4-46e8-a7c4-f19e18047f59" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160474
Approved by: https://github.com/fegin
2025-09-09 17:52:52 +00:00
d91eecc9a5 [inductor][template heuristics] don't take layout to generate choices (#162238)
# why

- unnecessary as we only ever need to know the dtype and maybe the
  device
- we already take in the kernel inputs which have the device
- enable us to specify the layout after finding all the configs
  but before generating the ChoiceCallers

# what

- replace all calls in template_heuristics that used to take Layout
  with now just taking out_dtype

# testing

ci

Differential Revision: [D81820115](https://our.internmc.facebook.com/intern/diff/D81820115)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162238
Approved by: https://github.com/eellison
ghstack dependencies: #161347, #161348, #161349
2025-09-09 17:17:04 +00:00
24a4dae85b [inductor] V.choices.get_mm_configs override point (#161349)
# why

- enable us to override the default configs, or fall back to them
  through subclassing InductorChoices

# what

- override (private) function
- default implementationt takes the kernel template choice (ktc)
  generator for every template and just executes the generator
- future overrides can decide to replace those generators, or filter
  out choices

- the 2nd expensive step (maybe_append_choices, choice_or_none) is
  handled outside this function, in the main V.choices.get_mm_configs
  this means that any overriding benefits from not generating expensive
  templates that aren't going to be used

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520570](https://our.internmc.facebook.com/intern/diff/D81520570)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161349
Approved by: https://github.com/eellison
ghstack dependencies: #161347, #161348
2025-09-09 17:17:04 +00:00
d3c4cf838e [inductor][ez] V.choices.get_mm_configs returns list of ChoiceCallers (#161348)
\# why

- every callsite just executes the generator on the spot
- previous pr adds the ability to add an override before expensive
  generators are executed, so we don't need this generator anymore

\# what

- rather than yielding the ChoiceCaller, just return the list of all
  valid ChoiceCallers

\# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520574](https://our.internmc.facebook.com/intern/diff/D81520574)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161348
Approved by: https://github.com/eellison
ghstack dependencies: #161347
2025-09-09 17:16:57 +00:00
b1e99c8c7a [inductor] add kernel template choice (ktc) (#161347)
# why

- gather everything up to make choices, without running
  potentially expensive generators
- enables overrides where we toss the entire list of configs
  from inductor, without having to enumrate it (expensive)

# what

- add a holding class that just gets all the components necessary
  to generate a ChoiceCaller
- use that class to generate ChoiceCallers
- this does not (yet) add the override function, but just prepares
  the scene

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520569](https://our.internmc.facebook.com/intern/diff/D81520569)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161347
Approved by: https://github.com/eellison
2025-09-09 17:16:50 +00:00
5eb35d2ab8 [CUDA][float8][TF32] Disable tf32 for vs. emulated rowwise comparison (#162387)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162387
Approved by: https://github.com/Skylion007
2025-09-09 17:04:06 +00:00
f03d635dc6 [ROCm][CI] skip test_max_autotune until resolved (#162496)
many tests taking >30 min and causing timeouts

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162496
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-09 16:34:01 +00:00
1f0b01d4b6 [ROCm] OffsetCalc Unroll Optimization (#161700)
Our compiler is generating inefficient code for the offsetCalc in certain situations.
The root-cause for this needs to be identified. For now specialized unrolling based on 'dims' notably helps perf.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161700
Approved by: https://github.com/jeffdaily
2025-09-09 16:11:48 +00:00
c0142f5c06 [ROCm] Enabling several UTs (#161715)
All these UTs are working as is, just removing the skip
- test_p2p_ipc
- test_repros.py: working, added fp8 support
- test_activation_checkpointing.py
- test_content_store.py
- test_cuda_multigpu.py
- test_compute_comm_reordering.py
- test_segment_reductions.py
- test_dataloader.py
- test_math_ops.py
- test_loop_ordering.py
- test_control_flow.py
- distributed_test.py
- test_mem_tracker.py
- test_fsdp_optim_state.py
- test_fully_shard_mixed_precision.py: skippped for < ROCm7.0
- test_aot_inductor_custom_ops.py
- test_c10d_ops_nccl.py
- test_eager_transforms.py
- test_sparse_csr.py
- test_inductor_collectives.py
- test_fake_tensor.py
- test_cupy_as_tensor.py
- test_cuda.py: enable UTs that are working
- test_matmul_cuda.py: enable UTs that are working

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161715
Approved by: https://github.com/msaroufim

Co-authored-by: Mark Saroufim <marksaroufim@fb.com>
2025-09-09 15:49:21 +00:00
3ea6868049 [MPS] mps sparse mul op implementation (#162349)
Implements mps sparse mul operation as well as enables other operations such as:
1. copy_
2. div
3. sum
4. floor
5. power
6. sub
7. floor_divide

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162349
Approved by: https://github.com/pearu, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-09-09 15:45:37 +00:00
be3b8d2ec9 [ROCm][CI] update fbgemm nightly benchmark hash (#162385)
fbgemm_gpu was failing to clone due to missing submodule commit.
```
+ pushd fbgemm/fbgemm_gpu
~/pytorch/fbgemm/fbgemm_gpu ~/pytorch
+ git checkout 7f1de94a4c2d14f59ad4ca84538c36084ea6b2c8 --recurse-submodules
fatal: failed to unpack tree object b1281b8b08d973a7064f864f47eeb30f3e2596e9
error: Submodule 'external/composable_kernel' could not be updated.
error: Cannot update submodule:
	external/composable_kernel
```
Log File
[inductor-periodic · pytorch/pytorch@5babb4d](https://github.com/pytorch/pytorch/actions/runs/17536630806/job/49802458834)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162385
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-09 15:44:39 +00:00
5ccf3ca3ec Revert "Use same NVSHMEM version across CUDA builds (#162206)"
This reverts commit 0d9c95cd7ee299e2e8c09df26d395be8775b506b.

Reverted https://github.com/pytorch/pytorch/pull/162206 on behalf of https://github.com/malfet due to Broke lint, see 4dd73e659a/1 ([comment](https://github.com/pytorch/pytorch/pull/162206#issuecomment-3271040521))
2025-09-09 14:40:45 +00:00
e38e953432 CUDA 13.0 Windows Nvidia Driver Update to 580.88 (#162425)
Related to https://github.com/pytorch/pytorch/issues/162333
https://github.com/pytorch/pytorch/issues/159779

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162425
Approved by: https://github.com/tinglvv, https://github.com/malfet
2025-09-09 14:40:34 +00:00
4dd73e659a Revert "fix torch.sparse.log_softmax on CPU (#161959)"
This reverts commit 002e59440afe8711019e68df500f5e18b9a43f3c.

Reverted https://github.com/pytorch/pytorch/pull/161959 on behalf of https://github.com/davidberard98 due to test failure: test_sparse.py::TestSparseMPS::test_log_softmax_float_mps_float32 [GH job link](https://github.com/pytorch/pytorch/actions/runs/17573794461/job/49915138287) [HUD commit link](002e59440a) ([comment](https://github.com/pytorch/pytorch/pull/161959#issuecomment-3270509418))
2025-09-09 12:33:25 +00:00
0d9c95cd7e Use same NVSHMEM version across CUDA builds (#162206)
#161321 bumped NVSHMEM version to 3.3.24 for CUDA 13, leaving CUDA 12 with 3.3.20.
This PR bumps the NVSHMEM version to 3.3.24 for CUDA 12 as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162206
Approved by: https://github.com/tinglvv, https://github.com/Skylion007
2025-09-09 08:52:27 +00:00
dcc42e95f4 Fix missing moves in initJITBindings (#162428)
Per @Skylion007 on #162219

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162428
Approved by: https://github.com/Skylion007
2025-09-09 08:47:33 +00:00
002e59440a fix torch.sparse.log_softmax on CPU (#161959)
Fix https://github.com/pytorch/pytorch/issues/152293.

**Example:**
```
import torch
from torch.sparse import log_softmax as sparse_log_softmax

def test_bug():
    a = torch.rand(4, 3)
    b = a - 10000000.0
    b_sparse = b.to_sparse()

    cpu_out_sparse = sparse_log_softmax(b_sparse, dim=1).to_dense()
    print('cpu_out_sparse =', cpu_out_sparse)

    b_sparse_double = b.double().to_sparse()
    cpu_out_sparse_double = sparse_log_softmax(b_sparse_double, dim=1).to_dense()
    print('cpu_out_sparse_double =', cpu_out_sparse_double)

if __name__ == '__main__':
    test_bug()
```

**Output:**

- before
```
cpu_out_sparse = tensor([[-2., -1., -2.],
        [-1., -1., -1.],
        [-1., -2., -2.],
        [-1., -1., -2.]])
cpu_out_sparse_double = tensor([[-1.5514, -0.5514, -1.5514],
        [-1.0986, -1.0986, -1.0986],
        [-0.5514, -1.5514, -1.5514],
        [-0.8620, -0.8620, -1.8620]], dtype=torch.float64)
```

- after
```
cpu_out_sparse = tensor([[-0.8620, -1.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986],
        [-1.8620, -0.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986]])
cpu_out_sparse_double = tensor([[-0.8620, -1.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986],
        [-1.8620, -0.8620, -0.8620],
        [-1.0986, -1.0986, -1.0986]], dtype=torch.float64)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161959
Approved by: https://github.com/Skylion007
2025-09-09 06:25:16 +00:00
4840a1a591 Run vLLM tests on all trunk commits before 2.9 branch cut (#161797)
This makes it easier to bisect issue now given that we don't have lots of time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161797
Approved by: https://github.com/yangw-dev
2025-09-09 05:56:41 +00:00
d49205fe1f Add more tests for vllm and clean out the old vllm test (#162292)
Test failure coverage from pytorch 2.8 release issues
[internal access only](https://docs.google.com/document/d/1zvK1eUAHubHGGHg9jKxd-QlP89fzgfqOBvE2m9mUs90/edit?tab=t.0
)

See coverage mapping
| Given test / pattern | Suite ID (from config) |
|---|---|
| pytest -v -s basic_correctness/test_cumem.py | vllm_basic_correctness_test |
| pytest -v -s entrypoints/openai/test_sleep.py | vllm_entrypoints_test |
| pytest -v -s entrypoints/openai/test_translation_validation.py::test_long_audio_request | vllm_entrypoints_test |
| pytest -v -s lora/test_quant_model.py | vllm_lora_28_failure_test |
| pytest -v -s -x tests/lora/test_llama_tp.py | vllm_lora_tp_test_distributed |
| pytest -v -s distributed/test_sequence_parallel.py -k test_tp_sp_generation |vllm_distributed_test_28_failure_test |
| pytest -v -s distributed/test_sequence_parallel.py::test_tp_sp_generation[...] | vllm_distributed_test_28_failure_test |
| pytest models/language/generation/test_mistral.py::test_models[...] | vllm_languagde_model_test_extended_generation_28_failure_test |
| pytest models/multimodal/pooling/test_jinavl_reranker.py::test_model_text_image[...] | vllm_multi_model_test_28_failure_test |
| tests/lora/test_qwen2vl.py::test_qwen2vl_lora | vllm_lora_test |
| tests/lora/test_qwen2vl.py::test_qwen25vl_lora | vllm_lora_test |
| tests/lora/test_qwen2vl.py::test_qwen2vl_lora_beam_search | vllm_lora_test |
| tests/lora/test_phi.py::test_phi2_lora | DIDN'T FIND IT IT IN VLLM |
| models/multimodal/generation/test_voxtral.py::test_models_with_multiple_audios[5-128-half] | vllm_multi_model_test_28_failure_test |
| models/test_initialization.py::test_can_initialize[VoxtralForConditionalGeneration] | vllm_basic_models_test |
| pytest -v -s -x lora/test_chatglm3_tp.py -k test_chatglm3_lora_tp4_fully_sharded_loras | vllm_lora_tp_test_distributed |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162292
Approved by: https://github.com/atalman, https://github.com/huydhn
2025-09-09 05:53:46 +00:00
d85392a88e Add BundledAOTAutogradSerializableCallable (#162170)
This PR hooks up the python wrapper inductor backend to aot_compile. This is *not* the best way for us to grab the output of AOTAutograd; that involves a refactor to make AOTAutograd itself return a serializable callable. I'll do that refactor soon, but I want a basic interface to test with for now.

In the medium term, we'll want aot_compile to call AOTAutograd directly, instead of using the TorchInductorWrapper's callback through compile_fx.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162170
Approved by: https://github.com/zhxchen17
ghstack dependencies: #162169
2025-09-09 05:42:19 +00:00
7feb8fc589 [SymmMEM] Allow to import _SymmetricMemory when NVSHMEM is not available (#162142)
Summary:
As we have multiple backends, _SymmetricMemory should not be imported together with NVSHMEM related modules

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162142
Approved by: https://github.com/dcci, https://github.com/kwen2501
2025-09-09 05:37:43 +00:00
60d009267e Revert "testing infra and some fixes (#162183)"
This reverts commit d8b6622bb6a3879d3832ab6cdc26ff4188ea4a2d.

Reverted https://github.com/pytorch/pytorch/pull/162183 on behalf of https://github.com/huydhn due to Failing a test on macos ([comment](https://github.com/pytorch/pytorch/pull/162183#issuecomment-3268922096))
2025-09-09 05:26:32 +00:00
4590438329 [fx] fix qualified name for methods of torch.Tensor (#162407)
This fixes an error in the previous PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162407
Approved by: https://github.com/ezyang, https://github.com/XuehaiPan
2025-09-09 05:14:43 +00:00
8494afb837 Add missing fstream include to fix std::ofstream compilation error (#162421)
## Summary
This PR adds a missing `#include <fstream>` to fix a compilation error that occurred with the clang compiler on the standard *Google internal compile setup* (built with bazel).

## Details
The `std::ofstream` type was implicitly instantiated, which can cause compilation to fail with certain compilers. In this case, the clang compiler within the Google internal compile setup failed with an implicit instantiation error of `std::basic_ofstream<char>`. By explicitly including the `<fstream>` header, this PR resolves the error and ensures proper compilation in a wider range of setups and compilers.

## Error message:
```
torch/csrc/distributed/c10d/FlightRecorder.cpp:8:17: error: implicit instantiation of undefined template 'std::basic_ofstream<char>'
8 | std::ofstream file(filename_, std::ios::binary);
| ^
libcxx/include/__fwd/fstream.h:26:7: note: template is declared here
26 | class basic_ofstream;
| ^
1 error generated.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162421
Approved by: https://github.com/ezyang
2025-09-09 05:14:32 +00:00
7ad40de60e [audio hash update] update the pinned audio hash (#162437)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162437
Approved by: https://github.com/pytorchbot
2025-09-09 04:41:34 +00:00
607327beae [vllm hash update] update the pinned vllm hash (#162356)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vllm hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162356
Approved by: https://github.com/pytorchbot
2025-09-09 04:40:25 +00:00
f216d64bfe [SymmMem] Better tuning of A2AV based on accurate node boundary (#162003)
Use `world_within_direct_access()` to distinguish intra- vs inter- node.
Previously we assumed a fixed node size of 8, which is not true for NVL72.

Also added env var `TORCH_SYMMMEM_NBLOCKS` for control.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162003
Approved by: https://github.com/ngimel, https://github.com/fduwjj
2025-09-09 04:18:17 +00:00
847d7f21af [CUDA-13] Implement workaround for cudaErrorNotSupported (#162412)
See https://github.com/pytorch/pytorch/issues/162333#issuecomment-3267929585
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162412
Approved by: https://github.com/eqy, https://github.com/atalman
2025-09-09 04:12:10 +00:00
065c446193 [SymmMem] Use global pe for put and get (#162394)
NVSHMEM put/get APIs take global PE instead of local counterpart. So we'd need to do a translation within the kernel.

Also added a sub-group test for dispatch and combine mimic'ing the Expert Parallel cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162394
Approved by: https://github.com/ngimel, https://github.com/fegin
ghstack dependencies: #162320
2025-09-09 03:58:48 +00:00
98ecc0f374 [SymmMem] Add team pool to hold duplicated teams for the same rank group (#162320)
When multiple threadblocks call device-side collectives concurrently, NVSHMEM requires each call being made on a separate team struct, see [Collective operations scopes and active sets](https://docs.nvidia.com/nvshmem/api/gen/api/collectives.html?highlight=nvshmem_barrier_all#collective-operations-scopes-and-active-sets).

This PR adds a util `get_n_teams` for creating duplicated nvshmem teams for the same rank group, i.e. team pool. So that we can use them on device side.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162320
Approved by: https://github.com/ngimel
2025-09-09 03:58:48 +00:00
4c45090cf7 [DTensor] Check if tracing for sharding propagation to handle unhashable keys (#160798)
Fixes #159590

This is similar to the reverted commit #156868, except it resolves an issue with two caches becoming misaligned, leading to incorrect objects for stateful placements (i.e. `_MaskPartial`) as in issue #159601. This adds little to no overhead in eager ([see past benchmarks](https://github.com/pytorch/pytorch/pull/156868#issuecomment-3047831149)).

This also handles cases such as #159590  where dynamo is disabled during tracing by entering the Python Dispatcher ahead of the sharding propogation during compile. Tests are added/modified to handle these, and the list/tuple inputs with the cat op.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160798
Approved by: https://github.com/bdhirsh
2025-09-09 03:52:05 +00:00
1641606aa4 Revert "Add BundledAOTAutogradSerializableCallable (#162170)"
This reverts commit 5babb4d5c04b1ff7ed5f96f7aea1898cd4faef5a.

Reverted https://github.com/pytorch/pytorch/pull/162170 on behalf of https://github.com/huydhn due to This PR has a merge conflict with D81793200 on aot_compile.py where PRs and diffs are landed in reverted order ([comment](https://github.com/pytorch/pytorch/pull/162170#issuecomment-3268735428))
2025-09-09 03:33:36 +00:00
7b8a64557d [inductor] fix 3d tiled online softmax (#162341)
The online_softmax_reduce runtime helper previously assumes the input tl.Tensor's are 2d tensors. But with tiled reduction, they can be 3d (y, x, r).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162341
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #162311
2025-09-09 02:59:52 +00:00
d8b6622bb6 testing infra and some fixes (#162183)
This PR is quite large in that it covers most of rough edges in the new strict export flow:

1. Handle nn_module_stack correctly now that we are tracing wrapper module
2. module_call_spec needs to get queried from source directly because we are not running the bytecode anymore.
3. Correct input and output handling.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162183
Approved by: https://github.com/zhxchen17
ghstack dependencies: #162167
2025-09-09 02:42:11 +00:00
a965f09793 [export] Update PT2 archive docs (#162308)
Summary: Minor updates based on the recent refactoring for weight saving and loading

Test Plan:
doc change only

Rollback Plan:

Differential Revision: D81821994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162308
Approved by: https://github.com/angelayi
2025-09-09 02:08:13 +00:00
583bbf7761 [MPS] Add native_dropout and native_dropout_backward (#162108)
Fixes #162002
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162108
Approved by: https://github.com/malfet
2025-09-09 01:44:06 +00:00
e025c0f459 Dynamo: set_eval_frame microoptimization (#162220)
Optimize for common case and remove a pair of refcount operations (see new comments.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162220
Approved by: https://github.com/jansel, https://github.com/williamwen42
ghstack dependencies: #161591, #161595, #161633, #161634, #161692, #162219
2025-09-09 01:10:06 +00:00
a8a187b2cf Overload _get_operation_for_overload_or_packet & friends to accept ArrayRef (#162219)
Avoids requiring vector allocation to call this.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162219
Approved by: https://github.com/Skylion007
ghstack dependencies: #161591, #161595, #161633, #161634, #161692
2025-09-09 01:10:06 +00:00
12db2a7889 Call checkLong in is_int_or_symint, completing TODO (#161692)
Calling this first minimizes overhead for plain old ints, making cheap things cheap.

Differential Revision: [D81530098](https://our.internmc.facebook.com/intern/diff/D81530098)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161692
Approved by: https://github.com/ezyang, https://github.com/Skylion007
ghstack dependencies: #161591, #161595, #161633, #161634
2025-09-09 01:10:06 +00:00
eab2afeff7 fastpath type Tensor in THPVariable_NewWithVar (#161634)
It is cheap to do an exact check against Tensor and much faster when it works (PyType_IsSubtype does not have this fastpath, I checked [source](9ee0214b5d/Objects/typeobject.c (L2889))). Spot-checked in perf on detach-DTensor-in-a-loop benchmark; small win but clear.

Differential Revision: [D81530101](https://our.internmc.facebook.com/intern/diff/D81530101)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161634
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #161591, #161595, #161633
2025-09-09 01:10:06 +00:00
a951f435fd Avoid redundant PyTuple_GetSize call in _maybe_handle_torch_function (#161633)
py::args::size() calls PyTuple_GetSize. Compiler can't know the two calls will always return the same result, so we have to consolidate them ourselves.

Differential Revision: [D81530096](https://our.internmc.facebook.com/intern/diff/D81530096)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161633
Approved by: https://github.com/ezyang, https://github.com/Skylion007
ghstack dependencies: #161591, #161595
2025-09-09 01:10:06 +00:00
6eb14ac60f [Inductor] Fix cross-device scalar lowering - cpu scalar with cuda tensor fails in torch.compile (#161447)
This PR fixes bug in TorchInductor where cross-device scalar indexing fails during compilation, causing discrepancies from eager mode behavior.

Fixes: #140457

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161447
Approved by: https://github.com/mlazos
2025-09-09 01:07:02 +00:00
ed77e23b68 Revert "[dynamo] Constant fold torch.autograd._profiler_enabled (#158482)"
This reverts commit d7e1b8b11d7430c7633dcad6f6596b5df8fa02f7.

Reverted https://github.com/pytorch/pytorch/pull/158482 on behalf of https://github.com/borgstrom due to NCCL hangs in S560336 ([comment](https://github.com/pytorch/pytorch/pull/158482#issuecomment-3268426781))
2025-09-09 00:21:05 +00:00
897c4e70a7 Move to small wheel approach for CUDA SBSA wheel (#160720)
https://github.com/pytorch/pytorch/issues/160673

Use download.pytorch.org's dependencies like x86 build instead of bundling libs into the wheel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160720
Approved by: https://github.com/atalman
2025-09-09 00:18:43 +00:00
8485aac873 [precompile] Fix inlined source tracking with generators. (#162389)
Summary:
When compiled code has generator, code.co_firstlineno will be inconsistent with the result from inspect.getsource, which returns the toplevel enclosing code source rather than the inner code location.

In this case, it seems simpler to just use the toplevel enclosing code location rather than the co_firstlineno field.

Test Plan:
test_package.py -k test_code_with_generator

Rollback Plan:

Differential Revision: D81929751

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162389
Approved by: https://github.com/dolpm, https://github.com/hrithick-codes
2025-09-09 00:13:54 +00:00
c0fc86b511 Fix aarch64 wheel pack (#159481)
PR that introduced the change: https://github.com/pytorch/builder/pull/1775
Use wheel pack instead of zip to repack the wheel.
It should regenerate the RECORD file and update all the hashes correctly.

TODO:
Apply wheel pack instead of zip to Rest of builds
Add validation test to make sure wheel contents matches RECORD file

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159481
Approved by: https://github.com/malfet
2025-09-08 23:36:50 +00:00
07f07309c6 [associative_scan] Autograd separated (#139939)
This PR implements the Autograd feature of the associative_scan.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139939
Approved by: https://github.com/huydhn
2025-09-08 23:30:11 +00:00
189a054cfb Remove guard_size_oblivious from default contiguity python check, and add aten.sym_is_contiguous. [attempt2] (#160869)
[relanding again after fixing internal build]
Summary:
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling  is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context

we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.

when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()

one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
    at::MemoryFormat memory_format) const {
  if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
    return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
        this, memory_format);
  }

  return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);

This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.

so I had to define it for pyinterpreter, and then I had to override it for nested tensors.

Approved by: https://github.com/ezyang

Test Plan:
contbuild & OSS CI, see e444cd24d4

Rollback Plan:

Differential Revision: D80435179

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160869
Approved by: https://github.com/ezyang
2025-09-08 22:59:13 +00:00
5fd6b6a2db [refactor] add helper sizevars function, is_size_one, for size==1 checks (#162189)
## Summary
- document guard behavior in `SizeVarAllocator.is_size_one`
- use `is_size_one` for broadcast/expand checks.
- This diff is a no-op since we'd use `shape_env.evaluate_expr(... fallback_value=False)`

a4f9132a17/torch/_inductor/sizevars.py (L450-L453)

------
https://chatgpt.com/codex/tasks/task_e_68b8d0d1f2c48328b2d38c00e738bc8c

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162189
Approved by: https://github.com/laithsakka
2025-09-08 22:48:16 +00:00
ac9ccd0dc2 Add return-max-scores to flex-attention (#161667)
# Summary

### Update

API

```Py
class AuxRequest(NamedTuple):
    """Request which auxiliary outputs to compute from flex_attention.

    Each field is a boolean indicating whether that auxiliary output should be computed.
    """

    lse: bool = False
    max_scores: bool = False

class AuxOutput(NamedTuple):
    """Auxiliary outputs from flex_attention operation.

    Fields will be None if not requested, or contain the tensor if requested.
    """

    lse: Optional[Tensor] = None
    max_scores: Optional[Tensor] = None

  out_only = flex_attention(query, key, value, score_mod)
  out_max, aux_max = flex_attention(
      query,
      key,
      value,
      score_mod,
      return_aux=FlexAttentionAuxRequest(max_scores=True),
  )
  out_both, aux_both = flex_attention(
      query,
      key,
      value,
      score_mod,
      return_aux=FlexAttentionAuxRequest(lse=True, max_scores=True),
        )
```

Returns the max post mod scores from flex attention.

Not being able to break BC is kinda of annoying here since we end up with a combinatorial problem where if we need to add any more return vals we need to new kwargs that gate if they get returned by the function and need to support the 2**N additional args possible return groups.

Ideally there isn't much more we need to return, but we might want to think about how best to set this up for expansion in the future. I added kwarg only now

Maybe we make a `ExtraReturns` type kwarg that can grow and we don't need to keep adding new top level args.

We could also return a Struct that holds all the extra tensors and start deprecation cycle for logsumexp eventually returning just 1 `ExtraReturns` like struct with the tensors.

### Req Grad
I currently dont return a max_scores that supports backproping grads. I think this might be feasible  but since max is essentially 1 hot 	on the inputs and a reduction we would either need to save another `max_location` from the forward or find the max_score but also only apply to first occurence if there is multiple equivalent scores (need to check if thats we define for vanilla max op in torch).

For now no grad, we can re-visit if needed.

## Perf
I am going to disable for flex_decode. Since at least initially the motivation is for training. I also more hard than it should be to have ops return nuns or optional tensors, If return max is at the false, we should probably just create a tensor of size zero so that we don't slow down the hot path.

```Shell
🔝 Top 5 TFlops Deltas (by absolute %):
shape: (5, 7)
┌────────────────┬────────────────┬───────────────────────┬───────────────┬──────────────┬───────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta     ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                   ┆ ---           ┆ ---          ┆ ---       ┆ ---       │
│ str            ┆ str            ┆ str                   ┆ f64           ┆ f64          ┆ f64       ┆ f64       │
╞════════════════╪════════════════╪═══════════════════════╪═══════════════╪══════════════╪═══════════╪═══════════╡
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 2048, 16,     ┆ 249.514658    ┆ 243.078974   ┆ 6.435684  ┆ 2.647569  │
│                ┆                ┆ 2048, 64)             ┆               ┆              ┆           ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,     ┆ 57.971274     ┆ 56.633641    ┆ 1.337633  ┆ 2.361905  │
│                ┆                ┆ 1024, 64)             ┆               ┆              ┆           ┆           │
│ noop           ┆ torch.bfloat16 ┆ (4, 16, 1024, 16,     ┆ 244.052884    ┆ 248.65129    ┆ -4.598406 ┆ -1.849339 │
│                ┆                ┆ 1024, 64)             ┆               ┆              ┆           ┆           │
│ noop           ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,     ┆ 280.71254     ┆ 275.686991   ┆ 5.025549  ┆ 1.822918  │
│                ┆                ┆ 1024, 128)            ┆               ┆              ┆           ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 16384, 16,    ┆ 152.970031    ┆ 150.489109   ┆ 2.480923  ┆ 1.648573  │
│                ┆                ┆ 16384, 64)            ┆               ┆              ┆           ┆           │
└────────────────┴────────────────┴───────────────────────┴───────────────┴──────────────┴───────────┴───────────┘

🔺 Top 5 Positive TFlops Deltas (highest +%):
shape: (5, 7)
┌────────────────┬────────────────┬────────────────────────┬───────────────┬──────────────┬──────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D)  ┆ TFlops (base) ┆ TFlops (max) ┆ delta    ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                    ┆ ---           ┆ ---          ┆ ---      ┆ ---       │
│ str            ┆ str            ┆ str                    ┆ f64           ┆ f64          ┆ f64      ┆ f64       │
╞════════════════╪════════════════╪════════════════════════╪═══════════════╪══════════════╪══════════╪═══════════╡
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 2048, 16,      ┆ 249.514658    ┆ 243.078974   ┆ 6.435684 ┆ 2.647569  │
│                ┆                ┆ 2048, 64)              ┆               ┆              ┆          ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,      ┆ 57.971274     ┆ 56.633641    ┆ 1.337633 ┆ 2.361905  │
│                ┆                ┆ 1024, 64)              ┆               ┆              ┆          ┆           │
│ noop           ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,      ┆ 280.71254     ┆ 275.686991   ┆ 5.025549 ┆ 1.822918  │
│                ┆                ┆ 1024, 128)             ┆               ┆              ┆          ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 16384, 16,     ┆ 152.970031    ┆ 150.489109   ┆ 2.480923 ┆ 1.648573  │
│                ┆                ┆ 16384, 64)             ┆               ┆              ┆          ┆           │
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 1024, 16,      ┆ 161.031318    ┆ 158.597808   ┆ 2.43351  ┆ 1.534391  │
│                ┆                ┆ 1024, 64)              ┆               ┆              ┆          ┆           │
└────────────────┴────────────────┴────────────────────────┴───────────────┴──────────────┴──────────┴───────────┘

🔻 Top 5 Negative TFlops Deltas (lowest -%):
shape: (5, 7)
┌────────────────┬────────────────┬───────────────────────┬───────────────┬──────────────┬───────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta     ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                   ┆ ---           ┆ ---          ┆ ---       ┆ ---       │
│ str            ┆ str            ┆ str                   ┆ f64           ┆ f64          ┆ f64       ┆ f64       │
╞════════════════╪════════════════╪═══════════════════════╪═══════════════╪══════════════╪═══════════╪═══════════╡
│ noop           ┆ torch.bfloat16 ┆ (4, 16, 1024, 16,     ┆ 244.052884    ┆ 248.65129    ┆ -4.598406 ┆ -1.849339 │
│                ┆                ┆ 1024, 64)             ┆               ┆              ┆           ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 4,      ┆ 175.546923    ┆ 177.81205    ┆ -2.265127 ┆ -1.273888 │
│                ┆                ┆ 1024, 128)            ┆               ┆              ┆           ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (4, 16, 16384, 4,     ┆ 156.282597    ┆ 158.209134   ┆ -1.926537 ┆ -1.217715 │
│                ┆                ┆ 16384, 64)            ┆               ┆              ┆           ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 2048, 16,     ┆ 232.542929    ┆ 235.140136   ┆ -2.597207 ┆ -1.104536 │
│                ┆                ┆ 2048, 128)            ┆               ┆              ┆           ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,     ┆ 169.652791    ┆ 171.475986   ┆ -1.823195 ┆ -1.063236 │
│                ┆                ┆ 1024, 128)            ┆               ┆              ┆           ┆           │
└────────────────┴────────────────┴───────────────────────┴───────────────┴──────────────┴───────────┴───────────┘
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161667
Approved by: https://github.com/Chillee, https://github.com/BoyuanFeng
2025-09-08 22:44:48 +00:00
711c8c821e shape guards (#161178)
Summary: This PR introduces shape guards to export. Previously only value ranges,  equalities, and specializations would be tracked for symbolic expressions, and we had a forward hook to check them. Instead now we create a function to check shape guards and call it in the exported program.

Test Plan:
updated several tests

Rollback Plan:

Differential Revision: D80713603

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161178
Approved by: https://github.com/tugsbayasgalan
2025-09-08 22:44:09 +00:00
2c538c9acf rewrite __maybe_broadcast should_expand check for unbacked (#162109)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162109
Approved by: https://github.com/aorenste
ghstack dependencies: #162084, #162099
2025-09-08 22:41:18 +00:00
85fe94e933 make should_swap more dde friendly (#162099)
unblock customers for common cases with DDE ,until @pianpwk  land the change to should_swap https://github.com/pytorch/pytorch/pull/160473.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162099
Approved by: https://github.com/aorenste
ghstack dependencies: #162084
2025-09-08 22:41:18 +00:00
fecd9686f5 Graph split event tracker (#159795)
Summary:
A tool to track events in graph split, specifically on how nodes being end up in acc or cpu subgraphs.

Usage: use env var to specify a mode and necessary arguments.

FX_NET_ACC_SPLITTER_TRACKER_MODE: Tracker mode.
```
Different modes of the event tracker:
"0": Tracker not enabled (by default)
"1": Tracker enabled but no dumps. Information available by setting breakpoints and visually inspect in pdb.
"2": Tracker enabled and dumps all events to DUMP_PREFIX_all.txt
"3": In addition to events dump, track nodes specified by ENV_FX_NET_ACC_SPLITTER_TRACKER_TRACKED_NODES recusrively and dump to DUMP_PREFIX_nodex.txt
"4:: In addition to events dump, track all nodes with more than 1 event recusrively and dump to DUMP_PREFIX_nodex.txt
```
FX_NET_ACC_SPLITTER_TRACKER_DUMP_PATH: overriding dump path. Leave empty for `~`.
FX_NET_ACC_SPLITTER_TRACKER_TRACKED_NODES: Nodes to track for mode "3".

Test Plan: New unit test

Reviewed By: georgiaphillips

Differential Revision: D79203595

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159795
Approved by: https://github.com/ezyang
2025-09-08 21:30:17 +00:00
dd44faa9d9 Revert "Modify ROCm MI2xx-based workflows to run on cron schedule (#162103)"
This reverts commit 0af70e2353e1dcda83175fd4834ecb7b63e009e0.

Reverted https://github.com/pytorch/pytorch/pull/162103 on behalf of https://github.com/jithunnair-amd due to Cirrascale network outage resolved. Reverting back to running per commit to aid in triage and CI health ([comment](https://github.com/pytorch/pytorch/pull/162103#issuecomment-3267977825))
2025-09-08 20:53:05 +00:00
5d819f3faf Revert "[associative_scan] Autograd separated (#139939)"
This reverts commit 103f725afa8dbf0204a1be6a042ab93aa16d85d8.

Reverted https://github.com/pytorch/pytorch/pull/139939 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I am seeing a weird failure after this lands in trunk ([comment](https://github.com/pytorch/pytorch/pull/139939#issuecomment-3267945657))
2025-09-08 20:42:47 +00:00
015423bef8 Add fp16-overflow regression test (#162401)
Discovered while debugging https://github.com/pytorch/pytorch/issues/160841 where sdpa returned NaNs, because during the computation intermediate values were cast back to fp16 before normalization, which was fixed by https://github.com/pytorch/pytorch/pull/161999 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162401
Approved by: https://github.com/Skylion007, https://github.com/drisspg
2025-09-08 20:33:23 +00:00
26a1b9cce2 [dynamo] fix resume_execution.py KeyError in Python 3.11+ (#162318)
Fixes https://github.com/pytorch/pytorch/issues/162313

Differential Revision: [D81938289](https://our.internmc.facebook.com/intern/diff/D81938289)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162318
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos, https://github.com/anijain2305
2025-09-08 20:26:24 +00:00
8f114650eb Add std::any_of to ConvParams struct (#162334)
Removes some for-loops that didn't short-circuit in favor of std::any_of.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162334
Approved by: https://github.com/Skylion007
2025-09-08 20:12:20 +00:00
ec2c1371af [BE]: Update cudnn frontend submodule to 1.14.1 (#162347)
Fixes a few bugs introduced to CUDNN 1.11 which affects all our CUDA13 builds. Also adds support for new CUDNN features whenever we choose to update. @eqy pretty sure this addresses the concern you had over the previous upgrade since that bugfix is now merged. This is a simple header only update.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162347
Approved by: https://github.com/eqy, https://github.com/atalman
2025-09-08 20:03:23 +00:00
8ec01f34e9 [bucketing] custom_ops mode to hide inductor copies overhead (#161499)
Adding "_custom_ops" bucketing to temporary fallback to eager execution of for_each,
to workaround too many generated kernels on inductor side.

This PR also reverts parts of bucketing changes for cycles detection that resulted in accuracy problems.

Differential Revision: [D81152293](https://our.internmc.facebook.com/intern/diff/D81152293)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161499
Approved by: https://github.com/eellison
2025-09-08 20:03:08 +00:00
9c991b63ff [CD] [aarch64] Add CUDA 12.6 and 12.8 to build matrix, remove 12.9 build (#162364)
https://github.com/pytorch/pytorch/issues/159779

Add the full CUDA support matrix to sbsa build (12.6, 12.8)
Same arch support as x86 build
Remove 12.9 sbsa build

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162364
Approved by: https://github.com/atalman
2025-09-08 20:00:25 +00:00
4e50651c5f [DTensor] fix F.one_hot (#162307)
F.one_hot(dtensor) used to run into a mixed DTensor-Tensor operation due
to an arange call creating a new Tensor (not DTensor). This PR fixes it
by allowing implicit replication of Tensors for the arange call and the
one consumer of the arange call (the at::eq call).

Test Plan:
- new test. Also, F.one_hot(num_classes=-1) is broken so we skip that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162307
Approved by: https://github.com/ezyang
ghstack dependencies: #162117
2025-09-08 19:37:08 +00:00
a0d026688c Make distributed modules importable even when backend not built (#159889)
This PR is greatly simplified now that it stacked on top of a PR that builds with distributed always. We only need to stub functions that may not be defined due to a backend not being enabled.

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159889
Approved by: https://github.com/wconstab
ghstack dependencies: #160449
2025-09-08 19:10:36 +00:00
d80297a684 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-08 19:10:36 +00:00
fbcabb4fbd Handle f([]) vs. f() in fake tensor caching (#162284)
Fixes https://github.com/pytorch/pytorch/issues/162279
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162284
Approved by: https://github.com/manuelcandales, https://github.com/aorenste
2025-09-08 18:28:05 +00:00
314d47a210 [audio hash update] update the pinned audio hash (#162315)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162315
Approved by: https://github.com/pytorchbot
2025-09-08 18:26:33 +00:00
bc4176c92a CD Windows CUDA 13.0 build - fix packaging of cuda dlls (#162383)
Trying to fix https://github.com/pytorch/pytorch/issues/162333

CUDA 13.0 file structure changed. Instead of keeping most of dlls in bin folder its now in ``bin\x64`` except for cudnn dll. See attached picture :
<img width="511" height="361" alt="Screenshot 2025-09-08 at 9 46 26 AM" src="https://github.com/user-attachments/assets/d2e630ee-930f-4da6-9b81-f9ef48fde7ce" />
<img width="490" height="333" alt="Screenshot 2025-09-08 at 9 46 34 AM" src="https://github.com/user-attachments/assets/194cbf43-b6ef-4218-b516-db37b91302be" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162383
Approved by: https://github.com/seemethere, https://github.com/ZainRizvi, https://github.com/malfet
2025-09-08 17:57:22 +00:00
eqy
de5dc1f038 [cuDNN][SDPA][Nested Tensor] add forward/backward caching support for cuDNN SDPA Nested tensor/varlen (#161434)
Don't recompile every time

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161434
Approved by: https://github.com/drisspg
2025-09-08 17:51:13 +00:00
72e6717d00 Avoid crash with release_available_cached_blocks (#162269)
updated release behavior for cached blocks
Fixes #159567

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162269
Approved by: https://github.com/eqy, https://github.com/Skylion007
2025-09-08 17:46:43 +00:00
ebd29a13fe [inductor] fuse for scalar shared data (#162311)
LOAF previously may skip these fusion opportunities and cause some tests fail.

Test:
- TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION=1 python test/inductor/test_torchinductor_strided_blocks.py TritonBlockPointerTestGPU.test_2d_reduction_odd_shapes_view_size4_num_block_pointers_1_num_triton_kernels_1_reduction_op4_cuda

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162311
Approved by: https://github.com/jansel
2025-09-08 17:20:46 +00:00
5793dd7875 [Intel GPU] Integrate OneDNN SDPA training forward and backward (#161058)
This PR is the first split PR of https://github.com/pytorch/pytorch/pull/156272, only contains the OneDNN code. Please help review.

Pending on OneDNN v3.9 commit update. Don't merge.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161058
Approved by: https://github.com/guangyey, https://github.com/EikanWang
2025-09-08 17:07:31 +00:00
49c446c617 Add C++ function for torch.distributed.tensor._op_schema.is_view_op (#161595)
This seems to have been an especially slow one because of the repeated pybind access (schema is a pybind, as is arguments, and then we hit each argument). It's still ~~1% of total benchmark runtime because of the repeated single pybind function call, but that's a lot better.

Differential Revision: [D81530095](https://our.internmc.facebook.com/intern/diff/D81530095)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161595
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
ghstack dependencies: #161466, #161586, #161590, #161591
2025-09-08 16:28:08 +00:00
8e076d889c Don't call check_has_torch_dispatch in THPVariable_NewWithVar if we already know (#161591)
We already know when we're called from make_wrapper_subclass or make_dtensor. The check isn't particularly cheap.

Differential Revision: [D81530099](https://our.internmc.facebook.com/intern/diff/D81530099)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161591
Approved by: https://github.com/ezyang
ghstack dependencies: #161466, #161586, #161590
2025-09-08 16:28:08 +00:00
f044fa2902 [AsyncTP] Use assertEqual instead of allClose for bf16 tests (#162041)
The async tp result and regular MM result are very close. If we adjust the allclose threshold, the test succeeds. This seems to indicate that the error is from numerical error of low precision.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162041
Approved by: https://github.com/danielvegamyhre, https://github.com/ngimel
ghstack dependencies: #162040
2025-09-08 16:12:52 +00:00
a92773eeb1 Revert "Use vectorized stores for all dtypes in cat (#161649)"
This reverts commit 377033757ae5ca524ea842f1b0a5f446ed3d8fe0.

Reverted https://github.com/pytorch/pytorch/pull/161649 on behalf of https://github.com/ngimel due to reverted internally ([comment](https://github.com/pytorch/pytorch/pull/161649#issuecomment-3266963044))
2025-09-08 15:58:58 +00:00
53297f6ad0 Revert "[audio hash update] update the pinned audio hash (#162315)"
This reverts commit c9ac8c25ef9ad020542898ab569910a9d0cd1f7e.

Reverted https://github.com/pytorch/pytorch/pull/162315 on behalf of https://github.com/jeanschmidt due to Reverting in order to see if this introduced the failure https://github.com/pytorch/pytorch/actions/runs/17539536914/job/49810513700 ([comment](https://github.com/pytorch/pytorch/pull/162315#issuecomment-3266932718))
2025-09-08 15:52:30 +00:00
25c170b72e [inductor] Runtime estimations: use nccl estimator; mm only benchmark mode (#161405)
During comms reordering , sink wait iterative observed previous runtime estimations pretty off for collectives and mms.

Adding optional usage of:
- c10d.time_estimator for collectives, which is based on NCCL estimator

Benchmark mode only for matmuls, as they are highly dependent on mm backend

- The logic mostly copied from Ruisi's PRs for inductor simple_fsdp https://github.com/pytorch/pytorch/pull/157572

This estimations corrections are in default `BaseSchedulerNode.estimate_runtime()`

Differential Revision: [D81152294](https://our.internmc.facebook.com/intern/diff/D81152294)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161405
Approved by: https://github.com/eellison
2025-09-08 14:33:19 +00:00
3f5993316e [upstream triton] update triton pin to triton 3.5 (#162278)
Update PyTorch to the latest Triton release candidate branch (release/3.5.x in triton-lang/triton)

Notably:
* this does *not* include the version number bump from 3.4 -> 3.5 (we'll do that in a follow-up PR)
* sam_fast is still failing, so we've disabled it temporarily https://github.com/pytorch/pytorch/issues/162282 and we are committed to fixing it, ideally before the branch cut but possibly as a cherry-pick into the release branch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162278
Approved by: https://github.com/atalman
ghstack dependencies: #162244, #162309
2025-09-08 14:29:24 +00:00
e101411b9f Update slow tests (#161395)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161395
Approved by: https://github.com/pytorchbot
2025-09-08 13:33:32 +00:00
32911ff541 [xla hash update] update the pinned xla hash (#162372)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned xla hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162372
Approved by: https://github.com/pytorchbot
2025-09-08 11:31:16 +00:00
5b90e85112 [AsyncTP] Fixes AsyncMM (#162040)
The original implementation set beta to be 1, which cause the out (C) being added to the the output. Thus if the output is not initialized as zero beforehand, the output can be incorrect.

Removing the alpha and beta fixes the issue.

Thanks @ngimel to figure out the root cause.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162040
Approved by: https://github.com/danielvegamyhre
2025-09-08 10:53:59 +00:00
31d5c67539 [inductor][triton] support static cuda launcher after triton # 7866 (#162309)
Fixes static cuda launcher after https://github.com/triton-lang/triton/pull/7866.

Static cuda launcher checks to make sure that no hook knobs are set (and if they are, it throws an error). But Triton has changed the semantics of hooks so that "empty hooks" are now represented by empty `HookChain`s instead of being represented by `None`. This PR changes the way we define "empty hooks" to account for HookChains.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162309
Approved by: https://github.com/aakhundov
ghstack dependencies: #162244
2025-09-08 07:57:48 +00:00
fb0afa853e [inductor][triton] more JITCallable._hash_lock support (#162244)
Follow-up to #161768.

Context: ProcessPool pickles the outputs before sending them back to the main process. Triton kernels have some un-pickleable fields, so `prepare_for_pickle()` is used to strip out those fields. Previously, in the standard case (without triton_bundler.py), `prepare_for_pickle()` would strip out the un-pickleable fields and they would never be added back after unpickling, because the un-pickleable fields were not actually needed after compilation finished.

In #161768 updated `prepare_for_pickle` to also strip out the `fn._hash_lock` field, a newly added field in JITCallable instances which is a `threading.RLock()`, which is not pickleable.

It turns out that we do need to restore the `fn._hash_lock` field, even in the non-triton_bundler case - the MultiKernel case uses the hash lock.

To do this, we add `restore_after_unpickle()` which will restore fields (or if the old fields are not provided, initialize just the hash_lock)

Compile time benchmarks look good, maybe a very minor regression (see the comment below on the PR)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162244
Approved by: https://github.com/atalman
2025-09-08 07:57:48 +00:00
1e0656f063 Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit de893e96c775023aa3be895060848fac3296772c.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to internal changes breaks import checks, see [D81845053](https://www.internalfb.com/diff/D81845053) ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3264887002))
2025-09-08 07:04:36 +00:00
29e09a6545 Revert "Make distributed modules importable even when backend not built (#159889)"
This reverts commit 01edcd4df8bf0c7b4cc2d3ec868bd2059eeea83b.

Reverted https://github.com/pytorch/pytorch/pull/159889 on behalf of https://github.com/jeanschmidt due to internal changes breaks import checks, see [D81845053](https://www.internalfb.com/diff/D81845053) ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3264887002))
2025-09-08 07:04:36 +00:00
c9ac8c25ef [audio hash update] update the pinned audio hash (#162315)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162315
Approved by: https://github.com/pytorchbot
2025-09-08 04:17:23 +00:00
103f725afa [associative_scan] Autograd separated (#139939)
This PR implements the Autograd feature of the associative_scan.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139939
Approved by: https://github.com/ydwu4
2025-09-08 03:21:17 +00:00
5babb4d5c0 Add BundledAOTAutogradSerializableCallable (#162170)
This PR hooks up the python wrapper inductor backend to aot_compile. This is *not* the best way for us to grab the output of AOTAutograd; that involves a refactor to make AOTAutograd itself return a serializable callable. I'll do that refactor soon, but I want a basic interface to test with for now.

In the medium term, we'll want aot_compile to call AOTAutograd directly, instead of using the TorchInductorWrapper's callback through compile_fx.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162170
Approved by: https://github.com/zhxchen17
ghstack dependencies: #162169
2025-09-07 23:37:31 +00:00
eb9073a6b7 [easy] [precompile] Convert CompileArtifacts to callable (#162169)
The goal of this PR stack is to be able to implement `aot_compile_module`, which AOT precompiles a torch.nn.Module.
Step 1 is a simple refactor to make CompileArtifacts itself the callable, which makes it easier to use directly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162169
Approved by: https://github.com/zhxchen17
2025-09-07 23:37:31 +00:00
ec2e3687c7 [while_loop][autograd] support autograd_key of while_loop (#160483)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160483
Approved by: https://github.com/zou3519
2025-09-07 21:55:29 +00:00
ff2de5d522 Revert "[2/N]Port several test files under test/distributed to Intel GPU (#159473)"
This reverts commit 040d00af048967dde7938d358d7f5988cbd18388.

Reverted https://github.com/pytorch/pytorch/pull/159473 on behalf of https://github.com/jeanschmidt due to Seems to be breaking internal signals, @d4l3k please help the author to have this change landed. [D81718444](https://www.internalfb.com/diff/D81718444) ([comment](https://github.com/pytorch/pytorch/pull/159473#issuecomment-3264046983))
2025-09-07 21:06:38 +00:00
8235c4f65d Revert "[ROCm] Enabling several UTs (#161715)"
This reverts commit b9ba612f7a968f7b27e121ca8f4d0a4d954f5354.

Reverted https://github.com/pytorch/pytorch/pull/161715 on behalf of https://github.com/jeanschmidt due to Need to revert in order to revert https://github.com/pytorch/pytorch/pull/159473, feel free to merge it back once conflicts are cleared ([comment](https://github.com/pytorch/pytorch/pull/161715#issuecomment-3264040604))
2025-09-07 21:03:17 +00:00
e246a85b76 Revert "[1/N] Port 5 _composable/fsdp distributed test cases to Intel GPU (#159118)"
This reverts commit 5c473e9f5ee0ef0fc38e6cf34a95b547f8cdc8d5.

Reverted https://github.com/pytorch/pytorch/pull/159118 on behalf of https://github.com/jeanschmidt due to Need to revert in order to revert https://github.com/pytorch/pytorch/pull/159473 ([comment](https://github.com/pytorch/pytorch/pull/159118#issuecomment-3264037799))
2025-09-07 21:00:29 +00:00
df59c21768 Revert "[BE] Cleanup stale comments/copy from gemm (#162001)"
This reverts commit 6087ef41e54c2494b117ffd923faf20f515a6806.

Reverted https://github.com/pytorch/pytorch/pull/162001 on behalf of https://github.com/jeanschmidt due to breaks internal ads signal, see [D81845017](https://www.internalfb.com/diff/D81845017) ([comment](https://github.com/pytorch/pytorch/pull/162001#issuecomment-3264034312))
2025-09-07 20:53:16 +00:00
093ab5f477 Revert "[inductor] add kernel template choice (ktc) (#161347)"
This reverts commit 9a8d454c464c0b811fc4586ff104424bccf1da0c.

Reverted https://github.com/pytorch/pytorch/pull/161347 on behalf of https://github.com/jeanschmidt due to Seems to have broken internal builds, see [D81520569](https://www.internalfb.com/diff/D81520569) ([comment](https://github.com/pytorch/pytorch/pull/161347#issuecomment-3264027436))
2025-09-07 20:39:39 +00:00
4348db0b92 Revert "[inductor][ez] V.choices.get_mm_configs returns list of ChoiceCallers (#161348)"
This reverts commit c32111149921b48bfef909293f1049e21619ed76.

Reverted https://github.com/pytorch/pytorch/pull/161348 on behalf of https://github.com/jeanschmidt due to Seems to have broken internal builds, see [D81520569](https://www.internalfb.com/diff/D81520569) ([comment](https://github.com/pytorch/pytorch/pull/161347#issuecomment-3264027436))
2025-09-07 20:39:39 +00:00
9ad5e8edb1 Improve typing of ONNX decorators with ParamSpec (#162332)
## Summary
This PR improves typing in ONNX-related modules by replacing TypeVar bound to Callable[..., Any] with ParamSpec to preserve parameter types and avoid type erasure in decorator functions.

## Changes
- `torch/onnx/_internal/exporter/_flags.py`: Replace TCallable TypeVar with ParamSpec
- `torch/onnx/ops/_impl.py`: Replace _T TypeVar with ParamSpec for _onnx_op decorator
- `torch/onnx/_internal/exporter/_torchlib/_torchlib_registry.py`: Replace _T TypeVar with ParamSpec

## Motivation
The previous implementation used TypeVar bound to Callable which erased parameter type information to Any. ParamSpec preserves the exact parameter types and return types, providing better type safety and IDE support.

## Testing
- Verified all changes compile and import correctly
- Created comprehensive test suite to validate ParamSpec functionality
- No linting errors introduced
- Maintains backward compatibility

Fixes #142306
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162332
Approved by: https://github.com/Skylion007
2025-09-07 18:06:03 +00:00
7a83cf430e Revert " [while_loop][autograd] support autograd_key of while_loop (#160483)"
This reverts commit 2b8a83901c58a0858ea9e4ce00055f48e6ed164c.

Reverted https://github.com/pytorch/pytorch/pull/160483 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but some trunk tests are failing either from this PR or the previous one in the stack ([comment](https://github.com/pytorch/pytorch/pull/160483#issuecomment-3263597325))
2025-09-07 08:50:49 +00:00
ada43ed39c Revert "[inductor] pdl inductor option (disabled by default) (#160928)"
This reverts commit 9458d1ac3bd70c2af316a8ba95d2c6c9c1199c9c.

Reverted https://github.com/pytorch/pytorch/pull/160928 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/160928#issuecomment-3263560378))
2025-09-07 07:37:37 +00:00
93fb23d6fa Build vLLM nightly wheels (#162000)
This uses the same approach as building triton wheel where we publish a nightly wheel for vLLM whenever its pinned commit is updated.  The key change is to use `pytorch/manylinux2_28-builder` as the base image to build vLLM, so there are a couple of changes on the vLLM Dockerfile used by lumen_cli

1. `pytorch/manylinux2_28-builder` is RedHat instead of Debian-based, so no apt-get
2. Fix a bug in `.github/actions/build-external-packages/action.yml` where `CUDA_VERSION` is not set correctly, preventing CUDA 12.9 build
3. Fix a bug in `.github/actions/build-external-packages/action.yml` where `TORCH_WHEELS_PATH` is not set correctly and always defaulted to `dist`
4. In vLLM Dockerfile, use the correct index for the selected CUDA version, i.e. https://download.pytorch.org/whl/nightly/cu12[89] for CUDA 12.[89]
5. Install torch, vision, audio in one command. Unlike the CI image `pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm`, `pytorch/manylinux2_28-builder` doesn't have any torch dependencies preinstalled
6. Bump xformers version to 0.0.32.post2 now that PyTorch 2.8.0 has been landed on vLLM

We need to prepare 3 wheels for vLLM, xformers, and flashinfer-python. And I rename them in the same convention as PyTorch nightlies `MAJOR.MINOR.PATCH.devYYYYMMDD` so that vLLM nightlies will work with torch nightlies on the same date.

### Usage

* Install latest nightlies
```
pip install --pre torch torchvision torchaudio vllm xformers flashinfer_python \
  --index-url https://download.pytorch.org/whl/nightly/cu129
```

* Install a specific version
```
pip install --pre torch==2.9.0.dev20250903 torchvision torchaudio \
  vllm==1.0.0.dev20250903 \
  xformers=0.0.33.dev20250903 \
  flashinfer_python=0.2.14.dev20250903 \
  --index-url https://download.pytorch.org/whl/nightly/cu129
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162000
Approved by: https://github.com/atalman
2025-09-07 06:09:17 +00:00
104f2680e0 Revert "Add return-max-scores to flex-attention (#161667)"
This reverts commit 486b20b73cfcf32a773a4301b1b97f91c157ce76.

Reverted https://github.com/pytorch/pytorch/pull/161667 on behalf of https://github.com/huydhn due to Sorry for reverting your change but reverting https://github.com/pytorch/pytorch/pull/161730 does not seem to fix all trunk failures ([comment](https://github.com/pytorch/pytorch/pull/161667#issuecomment-3263512642))
2025-09-07 06:00:55 +00:00
eac3d6f04c Revert "[inductor] fuse for scalar shared data (#162311)"
This reverts commit 2a45837e98c63cae9d1a2e2133a727b829e549d5.

Reverted https://github.com/pytorch/pytorch/pull/162311 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is breaking lint ([comment](https://github.com/pytorch/pytorch/pull/162311#issuecomment-3263511162))
2025-09-07 05:57:43 +00:00
fea20775ad [vllm hash update] update the pinned vllm hash (#162314)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vllm hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162314
Approved by: https://github.com/pytorchbot
2025-09-07 04:29:23 +00:00
2a45837e98 [inductor] fuse for scalar shared data (#162311)
LOAF previously may skip these fusion opportunities and cause some tests fail.

Test:
- TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION=1 python test/inductor/test_torchinductor_strided_blocks.py TritonBlockPointerTestGPU.test_2d_reduction_odd_shapes_view_size4_num_block_pointers_1_num_triton_kernels_1_reduction_op4_cuda

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162311
Approved by: https://github.com/jansel
ghstack dependencies: #162028, #162221, #162303
2025-09-07 01:48:45 +00:00
b919560c4a [nativert] AOTI lowering and packaging as NativeRT delegate (#162285)
Summary:
A demo for creating AOTI delegate for NativeRT in OSS.

- It supports full graph lowering only.
- It leverages `executorch_call_delegate` HOP but doesn't rely on `executorch`.
- The delegate graph is obtained by tracing a `LoweredBackendModule` whose forward function calls `executorch_call_delegate`.
- The main difference between `executorch_call_delegate` and `aoti_call_delegate` is that the delegate graph from `executorch_call_delegate` doesn't have weights lifted as inputs.
- original_ep and delegate_ep are treated as flat EP dictionary and there is no nested structure.
- The naming contract is enforced by `model_name` and `backend_id`

Test Plan:
CI

Rollback Plan:

Differential Revision: D81641157

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162285
Approved by: https://github.com/dolpm
2025-09-07 01:29:54 +00:00
e3068cdb44 [dynamo] Use relaxed CLOSURE_MATCH guard then ID_MATCH (#162247)
I am unable to write a test that would fail here. The reason is that when we do _dynamo.disable(fn) in the compiled frame, the id of disabled function changes but currently we guard on the original function - `fn` whose id is not changing. This PR still guards on the `fn.__code__` just to be more precise.

Thanks to @thenumberouscode for pointing this out.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162247
Approved by: https://github.com/StrongerXi, https://github.com/jansel
2025-09-07 01:25:52 +00:00
5211f1f908 [export] Move example inputs in move_to_device_pass (#162301)
Summary:
If i have a EP that's exported on CPU and want to AOTI compile it for CUDA. I need to use `move_to_device_pass`.

But in `torch._inductor.aoti_compile_and_package()`, it directly uses the `example_inputs` attached to the EP, so we should move the example inputs as well if applicable.

Test Plan:
buck2 run mode/dev-nosan caffe2/test:test_export -- -r test_move_device_example_inputs

Rollback Plan:

Differential Revision: D81812366

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162301
Approved by: https://github.com/angelayi
2025-09-06 23:54:54 +00:00
2b8a83901c [while_loop][autograd] support autograd_key of while_loop (#160483)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160483
Approved by: https://github.com/zou3519
ghstack dependencies: #160548, #160467
2025-09-06 21:26:33 +00:00
48e3be3ab6 [while_loop][autograd] add hop while_loop_stack_output (#160467)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160467
Approved by: https://github.com/zou3519
ghstack dependencies: #160548
2025-09-06 21:26:33 +00:00
5927a70934 NLLLoss: validate target is 0D when input is 1D (#161412)
Add a shape check in nll_loss_forward to error out when both input and target are 1D. Added a unit test to cover the incompatible 1D/1D case.

Fixes #157420

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161412
Approved by: https://github.com/ngimel
2025-09-06 20:58:42 +00:00
1a588ace46 [inductor] rename deps during refreshing (#162303)
Skiping renaming cause wrong dependencies when mutations are involved.

Test:

CUDA_VISIBLE_DEVICES=4,5,6 TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION=1 python test/distributed/test_compute_comm_reordering.py TestComputeCommReorderingMultiProc.test_reorder_compute_for_overlap

Both all-reduce and wait-tensor ir node contains a MutationBuffer for this test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162303
Approved by: https://github.com/eellison, https://github.com/jansel
ghstack dependencies: #162028, #162221
2025-09-06 20:38:28 +00:00
541aa23de5 [inductor] fix TemplateBuffer.extract_read_writes (#162221)
Make sure TemplateBuffer & ComputedBuffer have the same dependencies prefix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162221
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #162028
2025-09-06 20:38:28 +00:00
047603d35b New export implementation with flat inp/out (#162167)
This is my first attempt of building new export API. The main thing it addresses is correctly getting input and output relations. Subsequent diffs willl add functionality for dynamic shapes, nn_module_stack etc.

Differential Revision: [D81793205](https://our.internmc.facebook.com/intern/diff/D81793205)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162167
Approved by: https://github.com/zhxchen17, https://github.com/avikchaudhuri
2025-09-06 20:03:52 +00:00
ae0edc133e [3/N] Enable 6 fsdp test on Intel GPU (#161601)
For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU. This PR is created base on PR https://github.com/pytorch/pytorch/pull/158533 and https://github.com/pytorch/pytorch/pull/159473 and will work on some test files under test/distributed/fsdp. We could enable Intel GPU with following methods and try the best to keep the original code styles in this PR:

1. add allow_xpu=True in instantiate_device_type_tests() if needed.
2. use "torch.accelerator.current_accelerator()" to determine the accelerator backend

3. enabled XPU for some test path

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161601
Approved by: https://github.com/guangyey, https://github.com/d4l3k
2025-09-06 16:47:13 +00:00
b6d0a9ea90 MXFP8 grouped GEMM support for torch._scaled_grouped_mm + submodule bump (#162209)
## Summary
- We just landed 2d-2d support for mxfp8 grouped gemm in FBGEMM: https://github.com/pytorch/FBGEMM/pull/4816
- This is needed for backward pass of mxfp8 MoE training with grouped gemms
- Changes:
    - Add dispatching + input validation for mxfp8 grouped gemm in `torch._scaled_grouped_mm`
    - Add meta registration input validation for mxfp8 grouped gemm, for composability with compile
    - Add unit tests exercising torch._scaled_grouped_mm with mxfp8 inputs
    - Bump FBGEMM third party submodule to include:
          - https://github.com/pytorch/FBGEMM/pull/4816
          - https://github.com/pytorch/FBGEMM/pull/4820
          - https://github.com/pytorch/FBGEMM/pull/4821
          - https://github.com/pytorch/FBGEMM/pull/4823

#### How fbgemm dependency was bumped
Documenting this since I haven't found it documented elsewhere:
- `cd ~/pytorch/third_party/fbgemm`
- `git fetch`
- `git checkout <hash>`
- `cd ~/pytorch`
- `git add third_party/fbgemm`

## Test plan

#### Test build
```
USE_FBGEMM_GENAI=1 python -m pip install --no-build-isolation -v -e .
...
Successfully installed torch-2.9.0a0+gitf5070f3
```
[full build log](https://www.internalfb.com/phabricator/paste/view/P1933787581)

#### Unit tests
```
pytest test/test_matmul_cuda.py -k test_mxfp8_scaled_grouped_mm_
...

test/test_matmul_cuda.py .........                                                                                                                        [100%]

============================================================== 9 passed, 1668 deselected in 5.34s ===============================================================
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162209
Approved by: https://github.com/ngimel
2025-09-06 15:25:30 +00:00
eqy
5985e28912 [CUDA 13][cuDNN][Windows] Roll back cuDNN upgrade from 9.13 to 9.12 on Windows (#162322)
Forward fix for #162268

CC @atalman

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162322
Approved by: https://github.com/atalman, https://github.com/nWEIdia
2025-09-06 13:32:07 +00:00
9aedb3cd87 [AOTI-FX] Support registering custom FX backends (#162317)
# Feature
Currently, `torch._inductor.compile_aot` always uses the `WrapperFxCodegen` class. In contrast, Python and C++ codegen allow users to register custom backends. This PR brings that feature to FX codegen.

# Test plan
Added a CI test registering a custom FX backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162317
Approved by: https://github.com/jansel
2025-09-06 07:32:03 +00:00
0ff8eabf13 Revert "[dynamo] Graph break on on user-defined class in compiled region (#161670)"
This reverts commit 146371483318e17929daefd37c8e459d9d6d47bb.

Reverted https://github.com/pytorch/pytorch/pull/161670 on behalf of https://github.com/jeanschmidt due to seems to have introduced https://github.com/pytorch/pytorch/actions/runs/17507127561/job/49733379267 and https://github.com/pytorch/pytorch/actions/runs/17507127561/job/49733379271 ([comment](https://github.com/pytorch/pytorch/pull/161670#issuecomment-3261241229))
2025-09-06 06:18:57 +00:00
28f4ab0737 Add -Wno-ctad-maybe-unsupported compiler flag (#162223)
When running bazel build, we (Google) run into the following error.
The `-Wctad-maybe-unsupported` warning would be raised to an error and break the build in certain cases.
So, we propose to suppress the warning to make the build with bazel more smooth.

This is the error message we got:
```
c10/util/IntrusiveList.h:166:12: error: 'std::reverse_iterator' may not intend to support class template argument deduction [-Werror,-Wctad-maybe-unsupported]
  166 |     return std::reverse_iterator{end()};
      |            ^
c10/test/util/IntrusiveList_test.cpp:24:18: note: in instantiation of member function 'c10::IntrusiveList<(anonymous namespace)::ListItem>::rbegin' requested here
   24 |     auto it = c1.rbegin();
      |                  ^
c10/test/util/IntrusiveList_test.cpp:43:5: note: in instantiation of function template specialization '(anonymous namespace)::check_containers_equal<(anonymous namespace)::ListItem>' requested here
   43 |     check_containers_equal(l, v);
      |     ^
libcxx/include/__iterator/reverse_iterator.h:51:7: note: add a deduction guide to suppress this warning
   51 | class reverse_iterator
      |       ^
1 error generated.

```

@haifeng-jin

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162223
Approved by: https://github.com/ezyang
2025-09-06 06:11:37 +00:00
c98ddaca6d Fixed comment to match logic in distributed_c10d.py (#162158)
inconsistent with the logic introduced in #162157  and modified in #142216.This update ensures the documentation matches the actual behavior of the code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162158
Approved by: https://github.com/wconstab
2025-09-06 05:37:49 +00:00
bc505977fb torch.zeros bound checks for symint (#161976)
Fixes #161490

I added a bounds check for negative symints to create a better error message.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161976
Approved by: https://github.com/ezyang
2025-09-06 05:37:42 +00:00
aac1a50a19 Add api info for torch._C._nn.pyi (#162148)
Fix part of #148404

APis involved are as followed:

- cross_entropy_loss
- hardsigmoid_
- hardswish
- hardswish_
- huber_loss
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162148
Approved by: https://github.com/FFFrog, https://github.com/ezyang
2025-09-06 05:21:40 +00:00
20b47acef8 [fx] fix qualified name for methods of torch.Tensor (#162224)
Fixes #160077, #154721

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162224
Approved by: https://github.com/ezyang
2025-09-06 05:16:19 +00:00
da4db4b33d Fix DeviceMesh._flatten docstring example (#162277)
Fix the `DeviceMesh._flatten` docstring example of use. Alternative fix would be to replace `mesh_3d["dp", "cp"]` with `mesh_3d["cp", "tp"]`.

(I verified the fix using the `gloo` backend)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162277
Approved by: https://github.com/ezyang
2025-09-06 05:00:00 +00:00
a3e5466002 Revert "Resize to 0 if not going to be used (#161730)"
This reverts commit 081cab045472ce045634548cc6c14a4870641e23.

Reverted https://github.com/pytorch/pytorch/pull/161730 on behalf of https://github.com/davidberard98 due to functorch/test_aotdispatch.py::TestAOTModuleSimplified::test_flex_attn_noncontiguous_tangents [GH job link](https://github.com/pytorch/pytorch/actions/runs/17506617662/job/49731934012) [HUD commit link](081cab0454) ([comment](https://github.com/pytorch/pytorch/pull/161730#issuecomment-3260492575))
2025-09-06 04:17:08 +00:00
c0983e6cc0 [Graph Partition] interface for custom cg wrapper (#162207)
This PR adds an interface to allow users to specify custom cudagraph wrapper. User example: [vllm](https://github.com/vllm-project/vllm/pull/24281)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162207
Approved by: https://github.com/zou3519, https://github.com/eellison, https://github.com/ProExpertProg
2025-09-06 03:13:01 +00:00
b2b4add0e7 Docs on export joint with descriptors (#159006)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159006
Approved by: https://github.com/SherlockNoMad
2025-09-06 03:02:58 +00:00
20629b1619 Add contiguous subgraph transformation threshold (#162192)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162192
Approved by: https://github.com/coconutruben
2025-09-06 02:48:00 +00:00
c3ceca2995 codebase structure documentation to include torchgen (#162261)
📚 The doc update

adding description about torchgen folder in code structure guide

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162261
Approved by: https://github.com/ezyang
2025-09-06 02:10:57 +00:00
145a3a7bda [CUDA 13][cuDNN] Bump CUDA 13 to cuDNN 9.13.0 (#162268)
Fixes some `d_qk` != `d_v` cases on Hopper that are broken by cuDNN 9.11-9.12

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162268
Approved by: https://github.com/drisspg, https://github.com/Skylion007
2025-09-06 01:59:03 +00:00
291cd11f2d [inductor] estimate peak memory in codegen only when buffer reuse (#162300)
As titled, this PR ensures peak memory is estimated only when buffer reuse is enabled. Without this config, some nodes' successor nodes are eliminated from memory estimation after inductor bucketing, which can cause errors.

The original codegen peak memory estimation code is from this PR: https://github.com/pytorch/pytorch/pull/159530

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162300
Approved by: https://github.com/eellison, https://github.com/v0i0
2025-09-06 01:30:38 +00:00
7f4ff79210 remove deprecated vllm test (#162306)
Fixes https://github.com/pytorch/pytorch/issues/162274

the test is removed from vllm side

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162306
Approved by: https://github.com/malfet
2025-09-06 01:27:13 +00:00
0f45aaf441 Disable autocast when running joint graph passes (#162304)
Fixes #159469. See https://github.com/pytorch/pytorch/issues/159469#issuecomment-3221474027 for root-cause analysis.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162304
Approved by: https://github.com/bdhirsh, https://github.com/zou3519, https://github.com/eellison
2025-09-06 00:57:58 +00:00
4f72d932fe re-land triton runtime implementation" (#162217)
Summary: original pr - https://github.com/pytorch/pytorch/pull/161798

Test Plan:
ci

Rollback Plan:

Differential Revision: D81724234

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162217
Approved by: https://github.com/SherlockNoMad
2025-09-06 00:52:29 +00:00
1463714833 [dynamo] Graph break on on user-defined class in compiled region (#161670)
Currently, user-defined classes inside of a compiled frame will cause the whole
frame to be skipped by dynamo.  This change defers the Unsupported exception
until the __build_class__ builtin is actually called, which allows a graph break
to be inserted.  Fixes #161562

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161670
Approved by: https://github.com/williamwen42, https://github.com/guilhermeleobas
2025-09-06 00:04:57 +00:00
081cab0454 Resize to 0 if not going to be used (#161730)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

* __->__ #161730
*  #161667

```Py
        with torch.cuda._DeviceGuard(0):
            torch.cuda.set_device(0)
            buf0 = empty_strided_cuda((2, 32, 1024), (32768, 1024, 1), torch.float32)
            buf1 = empty_strided_cuda((2, 32, 1024), (32768, 1024, 1), torch.float32)
            buf2 = empty_strided_cuda((2, 32, 1024, 64), (2097152, 65536, 64, 1), torch.float32)
            # Topologically Sorted Source Nodes: [flex_attention], Original ATen: []
            stream0 = get_raw_stream(0)
            triton_tem_fused_0.run(arg0_1, arg1_1, arg2_1, buf0, buf1, arg4_1, arg3_1, arg5_1, arg6_1, buf2, 8, 2, 32, stream=stream0)
            del arg0_1
            del arg1_1
            del arg2_1
            del arg3_1
            del arg4_1
            del arg5_1
            del arg6_1
            del buf0
            del buf1
        return (buf2, )
```

Vs

```Py
        with torch.cuda._DeviceGuard(0):
            torch.cuda.set_device(0)
            buf0 = empty_strided_cuda((2, 32, 1024), (32768, 1024, 1), torch.float32)
            buf1 = empty_strided_cuda((0, ), (1, ), torch.float32)
            buf2 = empty_strided_cuda((2, 32, 1024, 64), (2097152, 65536, 64, 1), torch.float32)
            # Topologically Sorted Source Nodes: [flex_attention], Original ATen: []
            stream0 = get_raw_stream(0)
            triton_tem_fused_0.run(arg0_1, arg1_1, arg2_1, buf0, buf1, arg4_1, arg3_1, arg5_1, arg6_1, buf2, 8, 2, 32, stream=stream0)
            del arg0_1
            del arg1_1
            del arg2_1
            del arg3_1
            del arg4_1
            del arg5_1
            del arg6_1
            del buf0
            del buf1
        return (buf2, )
```
<img width="428" height="145" alt="Screenshot 2025-08-28 at 12 37 11 PM" src="https://github.com/user-attachments/assets/240a7bca-97e1-40c4-bf93-f075fdc1a40d" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161730
Approved by: https://github.com/Skylion007, https://github.com/BoyuanFeng
ghstack dependencies: #161667
2025-09-05 23:21:46 +00:00
486b20b73c Add return-max-scores to flex-attention (#161667)
# Summary

### Update

API

```Py
class AuxRequest(NamedTuple):
    """Request which auxiliary outputs to compute from flex_attention.

    Each field is a boolean indicating whether that auxiliary output should be computed.
    """

    lse: bool = False
    max_scores: bool = False

class AuxOutput(NamedTuple):
    """Auxiliary outputs from flex_attention operation.

    Fields will be None if not requested, or contain the tensor if requested.
    """

    lse: Optional[Tensor] = None
    max_scores: Optional[Tensor] = None

  out_only = flex_attention(query, key, value, score_mod)
  out_max, aux_max = flex_attention(
      query,
      key,
      value,
      score_mod,
      return_aux=FlexAttentionAuxRequest(max_scores=True),
  )
  out_both, aux_both = flex_attention(
      query,
      key,
      value,
      score_mod,
      return_aux=FlexAttentionAuxRequest(lse=True, max_scores=True),
        )
```

Returns the max post mod scores from flex attention.

Not being able to break BC is kinda of annoying here since we end up with a combinatorial problem where if we need to add any more return vals we need to new kwargs that gate if they get returned by the function and need to support the 2**N additional args possible return groups.

Ideally there isn't much more we need to return, but we might want to think about how best to set this up for expansion in the future. I added kwarg only now

Maybe we make a `ExtraReturns` type kwarg that can grow and we don't need to keep adding new top level args.

We could also return a Struct that holds all the extra tensors and start deprecation cycle for logsumexp eventually returning just 1 `ExtraReturns` like struct with the tensors.

### Req Grad
I currently dont return a max_scores that supports backproping grads. I think this might be feasible  but since max is essentially 1 hot 	on the inputs and a reduction we would either need to save another `max_location` from the forward or find the max_score but also only apply to first occurence if there is multiple equivalent scores (need to check if thats we define for vanilla max op in torch).

For now no grad, we can re-visit if needed.

## Perf
I am going to disable for flex_decode. Since at least initially the motivation is for training. I also more hard than it should be to have ops return nuns or optional tensors, If return max is at the false, we should probably just create a tensor of size zero so that we don't slow down the hot path.

```Shell
🔝 Top 5 TFlops Deltas (by absolute %):
shape: (5, 7)
┌────────────────┬────────────────┬───────────────────────┬───────────────┬──────────────┬───────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta     ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                   ┆ ---           ┆ ---          ┆ ---       ┆ ---       │
│ str            ┆ str            ┆ str                   ┆ f64           ┆ f64          ┆ f64       ┆ f64       │
╞════════════════╪════════════════╪═══════════════════════╪═══════════════╪══════════════╪═══════════╪═══════════╡
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 2048, 16,     ┆ 249.514658    ┆ 243.078974   ┆ 6.435684  ┆ 2.647569  │
│                ┆                ┆ 2048, 64)             ┆               ┆              ┆           ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,     ┆ 57.971274     ┆ 56.633641    ┆ 1.337633  ┆ 2.361905  │
│                ┆                ┆ 1024, 64)             ┆               ┆              ┆           ┆           │
│ noop           ┆ torch.bfloat16 ┆ (4, 16, 1024, 16,     ┆ 244.052884    ┆ 248.65129    ┆ -4.598406 ┆ -1.849339 │
│                ┆                ┆ 1024, 64)             ┆               ┆              ┆           ┆           │
│ noop           ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,     ┆ 280.71254     ┆ 275.686991   ┆ 5.025549  ┆ 1.822918  │
│                ┆                ┆ 1024, 128)            ┆               ┆              ┆           ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 16384, 16,    ┆ 152.970031    ┆ 150.489109   ┆ 2.480923  ┆ 1.648573  │
│                ┆                ┆ 16384, 64)            ┆               ┆              ┆           ┆           │
└────────────────┴────────────────┴───────────────────────┴───────────────┴──────────────┴───────────┴───────────┘

🔺 Top 5 Positive TFlops Deltas (highest +%):
shape: (5, 7)
┌────────────────┬────────────────┬────────────────────────┬───────────────┬──────────────┬──────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D)  ┆ TFlops (base) ┆ TFlops (max) ┆ delta    ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                    ┆ ---           ┆ ---          ┆ ---      ┆ ---       │
│ str            ┆ str            ┆ str                    ┆ f64           ┆ f64          ┆ f64      ┆ f64       │
╞════════════════╪════════════════╪════════════════════════╪═══════════════╪══════════════╪══════════╪═══════════╡
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 2048, 16,      ┆ 249.514658    ┆ 243.078974   ┆ 6.435684 ┆ 2.647569  │
│                ┆                ┆ 2048, 64)              ┆               ┆              ┆          ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,      ┆ 57.971274     ┆ 56.633641    ┆ 1.337633 ┆ 2.361905  │
│                ┆                ┆ 1024, 64)              ┆               ┆              ┆          ┆           │
│ noop           ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,      ┆ 280.71254     ┆ 275.686991   ┆ 5.025549 ┆ 1.822918  │
│                ┆                ┆ 1024, 128)             ┆               ┆              ┆          ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 16384, 16,     ┆ 152.970031    ┆ 150.489109   ┆ 2.480923 ┆ 1.648573  │
│                ┆                ┆ 16384, 64)             ┆               ┆              ┆          ┆           │
│ causal         ┆ torch.bfloat16 ┆ (4, 16, 1024, 16,      ┆ 161.031318    ┆ 158.597808   ┆ 2.43351  ┆ 1.534391  │
│                ┆                ┆ 1024, 64)              ┆               ┆              ┆          ┆           │
└────────────────┴────────────────┴────────────────────────┴───────────────┴──────────────┴──────────┴───────────┘

🔻 Top 5 Negative TFlops Deltas (lowest -%):
shape: (5, 7)
┌────────────────┬────────────────┬───────────────────────┬───────────────┬──────────────┬───────────┬───────────┐
│ attn_type      ┆ dtype          ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta     ┆ pct_delta │
│ ---            ┆ ---            ┆ ---                   ┆ ---           ┆ ---          ┆ ---       ┆ ---       │
│ str            ┆ str            ┆ str                   ┆ f64           ┆ f64          ┆ f64       ┆ f64       │
╞════════════════╪════════════════╪═══════════════════════╪═══════════════╪══════════════╪═══════════╪═══════════╡
│ noop           ┆ torch.bfloat16 ┆ (4, 16, 1024, 16,     ┆ 244.052884    ┆ 248.65129    ┆ -4.598406 ┆ -1.849339 │
│                ┆                ┆ 1024, 64)             ┆               ┆              ┆           ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 4,      ┆ 175.546923    ┆ 177.81205    ┆ -2.265127 ┆ -1.273888 │
│                ┆                ┆ 1024, 128)            ┆               ┆              ┆           ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (4, 16, 16384, 4,     ┆ 156.282597    ┆ 158.209134   ┆ -1.926537 ┆ -1.217715 │
│                ┆                ┆ 16384, 64)            ┆               ┆              ┆           ┆           │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 2048, 16,     ┆ 232.542929    ┆ 235.140136   ┆ -2.597207 ┆ -1.104536 │
│                ┆                ┆ 2048, 128)            ┆               ┆              ┆           ┆           │
│ alibi          ┆ torch.bfloat16 ┆ (2, 16, 1024, 16,     ┆ 169.652791    ┆ 171.475986   ┆ -1.823195 ┆ -1.063236 │
│                ┆                ┆ 1024, 128)            ┆               ┆              ┆           ┆           │
└────────────────┴────────────────┴───────────────────────┴───────────────┴──────────────┴───────────┴───────────┘
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161667
Approved by: https://github.com/Chillee, https://github.com/BoyuanFeng
2025-09-05 23:21:46 +00:00
4d4abec80f allow user to pass in custom partitioner function (#157580)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157580
Approved by: https://github.com/bdhirsh
2025-09-05 22:49:39 +00:00
9c03d6be87 [CD][BE] Delete Python-3.9 case (#162265)
And raise error when building for an unsupported version
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162265
Approved by: https://github.com/clee2000, https://github.com/Skylion007, https://github.com/ZainRizvi
ghstack dependencies: #162297
2025-09-05 22:46:36 +00:00
8d50355d97 [CD][EZ] Update libtorch python version to 3.10 (#162297)
Not sure why it was at 3.9
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162297
Approved by: https://github.com/clee2000, https://github.com/atalman
2025-09-05 22:46:36 +00:00
e0a62b266c [aot-precompile] default-filter global guards (#162090)
if the user doesn't provide their own guard filter fn, we should by default filter global guards.

pytest test/dynamo/test_aot_compile.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162090
Approved by: https://github.com/zhxchen17
2025-09-05 22:44:55 +00:00
01ab325cc2 [DCP][Quantization] Fix the issue when scale vector is in a different SafeTensors file (#162214)
Summary: The current dequantization implementation assumes that the weight and scale tenors are in the same SafeTensors files. This diff fixes the issue to support the case when these could be in different files.

Test Plan:
buck test fbcode//caffe2/test/distributed/checkpoint\:test_quantized_hf_storage

Buck UI: https://www.internalfb.com/buck2/532bf151-bb40-41fd-b080-ff898675afe2
Test UI: https://www.internalfb.com/intern/testinfra/testrun/15199648851011082

Rollback Plan:

Differential Revision: D81718598

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162214
Approved by: https://github.com/wwwjn
2025-09-05 22:43:58 +00:00
79fcd5247a symbolic cpp channels_last_contiguous (#160402)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160402
Approved by: https://github.com/aorenste
2025-09-05 21:40:32 +00:00
70d36e047d Making batching rule for F.embedding DTensor-aware (#162117)
`vmap(F.embedding)(DTensor, DTensor)` was failing because F.embedding's
batching rule generates a new tensor via at::arange, at::arange
generates a regular tensor, and DTensor rightfully errors on mixed
DTensor-regular Tensor operations.

This PR fixes the problem by activating DTensor implicit replication on
just the at::arange and the subsequent add operation.

In order to accomplish this I move the DTensor implicit replication flag
to C++ (most batching rules are in C++).

Test Plan:
- new test

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162117
Approved by: https://github.com/bdhirsh
2025-09-05 21:40:14 +00:00
a00cdc1e41 [CD][BE] Get rid of SETUPTOOLS and PYYAML extra pins (#162266)
As those weren't really a pins to begin with, and requirments.txt
already has those
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162266
Approved by: https://github.com/clee2000, https://github.com/Skylion007, https://github.com/ZainRizvi
ghstack dependencies: #162263, #162264
2025-09-05 21:32:52 +00:00
c10195e723 [C10d][Gloo] Enable complex datatype support in ProcessGroupGloo (#156633)
- Enable communication of tensors with Complex datatype in ProcessGroupGloo, similar to how ProcessGroupNCCL handles it.
- Move a function, which checks if Complex datatype is supported by a reduce operation, from ProcessGroupNCCL.cpp into a new file to be shared with ProcessGroupGloo.

Fixes #156632

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156633
Approved by: https://github.com/d4l3k
2025-09-05 21:24:36 +00:00
771f369448 [Inductor] Improve RoPE (#161420)
This PR fuses ROPE from 2 kernels into 1 kernel.

Shape:
```
q: [B, Hq, S, D]
k: [B, Hkv, S, D]
```

`Hq=32, Hkv=8, D=128` following Llama3 setting.

<img width="980" height="624" alt="image" src="https://github.com/user-attachments/assets/652a8227-6f1d-465c-97fd-2b0af41f8ed9" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161420
Approved by: https://github.com/shunting314
2025-09-05 20:55:20 +00:00
92a43025e0 [cutlass backend] Add FP8 tests for multiple linears (#160782)
Adding a test that is closer to real use case. Thanks @mlazos for fixing a few issues so this test works for most cases.

We still have to skip the AOTI and dynamic case due to accuracy issues.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160782
Approved by: https://github.com/mlazos
2025-09-05 20:23:25 +00:00
2fa0520a64 [BE][pytree] cleanup parameterized pytree tests (#160842)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160842
Approved by: https://github.com/Skylion007
2025-09-05 20:15:29 +00:00
01edcd4df8 Make distributed modules importable even when backend not built (#159889)
This PR is greatly simplified now that it stacked on top of a PR that builds with distributed always. We only need to stub functions that may not be defined due to a backend not being enabled.

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159889
Approved by: https://github.com/wconstab
ghstack dependencies: #160449
2025-09-05 20:15:11 +00:00
de893e96c7 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-05 20:15:11 +00:00
6087ef41e5 [BE] Cleanup stale comments/copy from gemm (#162001)
Followup after https://github.com/pytorch/pytorch/pull/154012

Since the introduction of `gemm_no_downcast_stub` it's no longer necessary to allocate temporary array and then manually implement the `beta` logic in the codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162001
Approved by: https://github.com/drisspg
ghstack dependencies: #161999
2025-09-05 19:59:51 +00:00
a3c7f77e50 [EZ][CD] Update MacOS deployment platform to 11.0 (#162264)
Fixes following warning
```
MACOSX_DEPLOYMENT_TARGET is set to a lower value (10.15) than the version on which the Python interpreter was compiled (11.0)
```
Update deployment platform in `README.MD` as well
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162264
Approved by: https://github.com/clee2000, https://github.com/Skylion007, https://github.com/ZainRizvi
ghstack dependencies: #162263
2025-09-05 19:58:04 +00:00
3771380f83 [ONNX] Hide draft export under a flag (#162225)
Use `TORCH_ONNX_ENABLE_DRAFT_EXPORT` to control whether draft_export should be used as a strategy in onnx export.

Follow up of https://github.com/pytorch/pytorch/pull/161454

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162225
Approved by: https://github.com/xadupre, https://github.com/titaiwangms
2025-09-05 19:54:50 +00:00
adae7f66aa Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit c37103234afc832dcad307e9016230810957c9d5.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to Breaking internal build rules, see D81756619 ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3259430011))
2025-09-05 18:58:47 +00:00
70f865ac9b Revert "Make distributed modules importable even when backend not built (#159889)"
This reverts commit ef3be6726f7ff4b77c22db10cec5b686f9107ea9.

Reverted https://github.com/pytorch/pytorch/pull/159889 on behalf of https://github.com/jeanschmidt due to Breaking internal build rules, see D81756619 ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3259430011))
2025-09-05 18:58:47 +00:00
88d94d17e8 Add torch.Tensor._make_dtensor to accelerate DTensor.__new__ further (#161590)
This seems to be a (very very roughly) ~8% improvement on DTensor benchmark very similar to the benchmark from #160580 (120ish usec -> 110ish usec)

Differential Revision: [D81530105](https://our.internmc.facebook.com/intern/diff/D81530105)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161590
Approved by: https://github.com/albanD
ghstack dependencies: #161466, #161586
2025-09-05 18:43:41 +00:00
c321111499 [inductor][ez] V.choices.get_mm_configs returns list of ChoiceCallers (#161348)
\# why

- every callsite just executes the generator on the spot
- previous pr adds the ability to add an override before expensive
  generators are executed, so we don't need this generator anymore

\# what

- rather than yielding the ChoiceCaller, just return the list of all
  valid ChoiceCallers

\# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520574](https://our.internmc.facebook.com/intern/diff/D81520574)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161348
Approved by: https://github.com/eellison
ghstack dependencies: #162075, #161340, #161341, #161342, #161343, #161344, #161345, #161346, #161347
2025-09-05 18:02:53 +00:00
9a8d454c46 [inductor] add kernel template choice (ktc) (#161347)
# why

- gather everything up to make choices, without running
  potentially expensive generators
- enables overrides where we toss the entire list of configs
  from inductor, without having to enumrate it (expensive)

# what

- add a holding class that just gets all the components necessary
  to generate a ChoiceCaller
- use that class to generate ChoiceCallers
- this does not (yet) add the override function, but just prepares
  the scene

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520569](https://our.internmc.facebook.com/intern/diff/D81520569)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161347
Approved by: https://github.com/eellison
ghstack dependencies: #162075, #161340, #161341, #161342, #161343, #161344, #161345, #161346
2025-09-05 18:02:53 +00:00
e02e9edb55 [inductor] V.choice.get_mm_configs takes a stack of templates (#161346)
# why

- enables us to just gather relevant templates and get all
  choices at once
- that in turns allows us to make op wide override decisions

# what

- V.choice.get_mm_configs takes a stack of templates
- all callsites just provide a stack of size 1 right now
  but do not merge everything yet (other features pending)

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520583](https://our.internmc.facebook.com/intern/diff/D81520583)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161346
Approved by: https://github.com/eellison
ghstack dependencies: #162075, #161340, #161341, #161342, #161343, #161344, #161345
2025-09-05 18:02:46 +00:00
d63ad53a99 [inductor][ez] return choicecallers directly (#161345)
# why

- remove repeat patterns
- we have everything to make the choicecallers
  - templates
  - input_nodes
  - layouts
  - all the kwargs

# what

- yield a choicecaller directly from V.choices.get_mm_configs

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520577](https://our.internmc.facebook.com/intern/diff/D81520577)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161345
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341, #161342, #161343, #161344
2025-09-05 18:02:38 +00:00
031d79cb51 [inductor] move max-autotune logic inside V.choices.get_mm_configs (#161344)
# why

- heuristics providers know decide whether to (or which choices to add)
  in the max-autotune case
- enables an eventual override point to gracefully fallback to the
  standard behavior

# what

- max-autotune is determined inside V.choices.get_mm_configs
  because it's mm only right now, we can just do
  `config.max_autotune or config.max_autotune_gemm`
  a TODO indicates that this can change in the future when this
  expands to more templates

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520573](https://our.internmc.facebook.com/intern/diff/D81520573)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161344
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341, #161342, #161343
2025-09-05 18:02:30 +00:00
a301dc3b60 [inductor][ez] pass template rather than template.uid (#161343)
# why

- simpler interface
- enables future of extracting more things out of the template e.g. a
  hash

# what

V.choices.get_mm_configs now takes the whole template rather than just
the template.uid

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520576](https://our.internmc.facebook.com/intern/diff/D81520576)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161343
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341, #161342
2025-09-05 18:02:22 +00:00
af590cb729 [inductor][aten] treat like a template in GEMMs (#161342)
# why

- central point to analyze and override all generated choices

# what

- add a pseudo heuristic for aten that just yields a single, empty
  kwargs
- add a pseudo heuristic with the bias_addmm logic for it
- add an addmm specific heuristic that yields a single choice, but
  also expands it with alpha and beta kwargs

- replace all the aten.bind calls with V.choices.get_mm_configs
  using the now matching API for aten

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520580](https://our.internmc.facebook.com/intern/diff/D81520580)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161342
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341
2025-09-05 18:02:10 +00:00
4902c76c65 [inductor][ez] add template/externchoice uid (#161341)
# why

- to have a central registry of templates/externkernelchoice
  to match them to heuristics etc, they need unique names
- mm is both the triton template name and the aten_mm name

# what

- add a uid() to KernelTemplate/ExternKernelChoice that returns name
- override in ExternKernel to prepend "aten::"
- override in TritonTemplate to prepend "triton::"

This id is just use to find template heuristics, so it has no other
impact

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520579](https://our.internmc.facebook.com/intern/diff/D81520579)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161341
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #162075, #161340
2025-09-05 18:01:58 +00:00
9602590b15 [inductor] move scaled_mm input nodes logic (#161340)
# why

- a step towards a unified interface for all choices, where any
  adjustment to nodes (e.g. unsqueezing) happens as part of
  choice specific preprocessing, behind a common point

# what

- move the unsqueeze logic for triton nodes for scaled_mm inside
  the new hookup for adjusting the kernel inputs for template
  heuristics

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v -k "scale"
```

Differential Revision: [D81520582](https://our.internmc.facebook.com/intern/diff/D81520582)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161340
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #162075
2025-09-05 18:01:44 +00:00
2ef665ae19 [inductor][contigous mm] mild refactor (#162075)
# why

- use the new heuristics logic better to handle kwargs

# what

- move all checks into the heuristics to yield a single choice or not
  choices if the decomposition should not be used
- fix `hip` device type, which should be `cuda`
- let heuristics handle the kwarg passing

# testing

in ci

Differential Revision: [D81706776](https://our.internmc.facebook.com/intern/diff/D81706776)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162075
Approved by: https://github.com/exclamaforte, https://github.com/jansel
2025-09-05 18:01:07 +00:00
b18bb6796f Add const to stable amax (#162082)
Fixes https://github.com/pytorch/pytorch/issues/161826

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162082
Approved by: https://github.com/soulitzer
2025-09-05 17:37:49 +00:00
d711f27845 Revert "[ROCm] [CK] Composable Kernel integration for inductor backend (#158747)"
This reverts commit 019fed39aa6b2dd8c69347378d53423e5efae8d4.

Reverted https://github.com/pytorch/pytorch/pull/158747 on behalf of https://github.com/jithunnair-amd due to Broke linux-binary-manywheel-rocm / manywheel-py3_9-rocm6_4-test: 019fed39aa/1 ... PR didn't have this job run successfully due to CI outage ([comment](https://github.com/pytorch/pytorch/pull/158747#issuecomment-3259212343))
2025-09-05 17:27:45 +00:00
261a84a176 [CD][BE] Remove unnecessary checks for XCode version (#162263)
None of them have worked for a while, PyTorch for Mac is build with
XCode-15.4
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162263
Approved by: https://github.com/clee2000, https://github.com/Skylion007, https://github.com/ZainRizvi
2025-09-05 17:02:36 +00:00
98374612fc [Intel GPU] Update Intel triton commit pin to Triton 3.5.x (#161777)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161777
Approved by: https://github.com/EikanWang
2025-09-05 16:55:47 +00:00
c2a3024617 [cuBLASLt][FP8] cuBLASLt appears to support float8 rowwise-scaling on H100 (#161305)
Following #157905 I think the macro around
```
  TORCH_INTERNAL_ASSERT(use_rowwise == false, "rowwise scaled_gemm not supported with blaslt");
```
was never updated and this would cause `float8` tests to fail. Also it appears the `Lt` accepts two inputs with `e4m3` and `e5m2` dtypes simultaneously, so removing that check here as well...

CC @lw

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161305
Approved by: https://github.com/Skylion007, https://github.com/drisspg, https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-05 16:55:09 +00:00
b2c7b9ad2d [Intel GPU][FlexAttention] Enable TMA path on Intel GPU (#162138)
The existing `can_use_tma` has some conditions that are unnecessary for Intel GPUs.
We have removed these useless conditions on the Intel GPU path.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162138
Approved by: https://github.com/liangan1, https://github.com/EikanWang, https://github.com/jansel, https://github.com/etaf
2025-09-05 16:54:51 +00:00
f3cebec39e Revert "Rename propagate_tensor_meta to make private again (#161744)"
This reverts commit 734ce8eba9c69381f187359bf0fef1d71d84cd20.

Reverted https://github.com/pytorch/pytorch/pull/161744 on behalf of https://github.com/jeanschmidt due to seems to break internal tests, see D81657000 for more details ([comment](https://github.com/pytorch/pytorch/pull/161744#issuecomment-3258934519))
2025-09-05 16:20:29 +00:00
06da7c0730 [DCP][Quantization] Fix for FP8 multiplication during dequantization (#162202)
Summary:
Weight vector needs to be upcasted since some FP8 formats (like Float8_e4m3fn) don't have CPU implementations in PyTorch. Reference: https://docs.pytorch.org/docs/stable/tensors.html#id13

We will use FP32 for the scale vector multiplication and convert to the target dtype.

Upcasting helps with the following:

1.  **Full CPU support**: `float32` has complete CPU kernel implementations for all operations
2.  **Numerical stability**: `float32` provides more precision during intermediate calculations
3.  **Compatibility**: Works across all devices (CPU/GPU) and PyTorch versions

Test Plan:
UTs

Rollback Plan:

Differential Revision: D81711093

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162202
Approved by: https://github.com/wwwjn
2025-09-05 16:06:21 +00:00
2dd529df00 A basic CLAUDE.md based on bad things I see claude code doing (#162163)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162163
Approved by: https://github.com/albanD, https://github.com/Skylion007
2025-09-05 14:52:36 +00:00
a714437093 [ez][inductor] add a few outer dimension reduction cases for LOAF (#162028)
For the not able to fuse issue reported here: https://github.com/pytorch/pytorch/issues/93718 , LOAF can fuse the outer dimension softmax into a single kernel and brings 1.87x speedup for the example shape mentioned in the issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162028
Approved by: https://github.com/jansel, https://github.com/eellison
2025-09-05 09:30:13 +00:00
bffc7dd1f3 [CD] Add cuda 13.0 libtorch builds, remove CUDA 12.9 builds (#161916)
Related to https://github.com/pytorch/pytorch/issues/159779

Adding CUDA 13.0 libtorch builds, followup after https://github.com/pytorch/pytorch/pull/160956
Removing CUDA 12.9 builds, See https://github.com/pytorch/pytorch/issues/159980

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161916
Approved by: https://github.com/jeanschmidt, https://github.com/Skylion007

Co-authored-by: Ting Lu <tingl@nvidia.com>
2025-09-05 07:47:54 +00:00
5c473e9f5e [1/N] Port 5 _composable/fsdp distributed test cases to Intel GPU (#159118)
For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU.
We could enable Intel GPU with following methods and try the best to keep the original code styles:

- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- enabled XPU for some test path
- skip some test cases which Intel GPU does not support

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159118
Approved by: https://github.com/guangyey, https://github.com/d4l3k
2025-09-05 05:52:15 +00:00
5da573c42c [PGO] handle PGO profile merges (#162097)
Avoid merges from extra PGO key, if same source has different rank. Unlikely to happen (needs code hash match & source variable type to change), but being safe.

Differential Revision: D81299840

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162097
Approved by: https://github.com/bobrenjc93
2025-09-05 04:58:15 +00:00
494878a11b [audio hash update] update the pinned audio hash (#162114)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162114
Approved by: https://github.com/pytorchbot
2025-09-05 04:32:16 +00:00
3bbc2e3e4f [vllm hash update] update the pinned vllm hash (#162226)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vllm hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162226
Approved by: https://github.com/pytorchbot
2025-09-05 04:32:08 +00:00
b67c410398 [BE] [Inductor] Add Kernel name to all coor-desc tuning (#161409)
Summary: When running coordinate descent tuning the logging is difficult to parse if the results are parallelized at all. This includes the kernel name in each step so post-processing can unify the results, even if run in parallel.

Test Plan:
NFC. Just a logging change.

Rollback Plan:

Differential Revision: D80942794

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161409
Approved by: https://github.com/PaulZhang12
2025-09-05 02:53:13 +00:00
be5b03dde9 Allow for using a dedicated binary for the torch subproc pool. (#162093)
Summary:
The binary torch is running inside of can be larger than needed and in certain
situations, this can cause a loss of memory.

Test Plan:
We've manually run tests via
```
TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_WORKER_SUPPRESS_LOGGING=0
make mc8-train-publish-cint-datafm-toy -C
minimal_viable_ai/models/ifr_mtml/main_v1/ 2>&1 | tee ~/run_out
```
and overriding the binary used to be the built fbpkg in /packages.

We've also kicked off manual runs at
```
fire-feid-20250903-1051-ae8c6827
```

Which do show the binary running -  https://fburl.com/scuba/procprint/e6lwv32m

Rollback Plan:
steps:
  - jk.update:
      jk: pytorch/compiler:subproc_worker_binary
      constant_bool: null
      consistent_pass_rate: null
      fractional_host_rollout: null
      sampling_rate: null
  - manual.note:
      content: ''

Differential Revision: D81616624

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162093
Approved by: https://github.com/masnesral
2025-09-05 01:43:46 +00:00
73eb4511fb [B200][NVFP4] Fix argument passing in test_blockwise_mxfp8_nvfp4_mxfp4_numerics_ (#162185)
to unblock https://github.com/pytorch/pytorch/pull/159494

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162185
Approved by: https://github.com/Skylion007, https://github.com/drisspg
2025-09-05 01:24:59 +00:00
29280864d9 Add new parameter for gen_pyi.py to make it more configureable. (#161772)
This is a reposting of PR #128519.
This change is important to how we maintain PyTorch at Google.

From the previous PR:
"
This will make the script more flexible for the directory where it is executed.
...
We plan to use the deprecated_yaml from a blaze genrule that invokes pyi.py. As the input to the pyi.py, genrule requires the input file to be explicitly listed out. When we feed the value of tools/autograd/deprecated.yaml to genrule, it failed to resolve since tools/autograd is a package from blaze perspective. Any file under a blaze package will a proper blaze target to be access.
"

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161772
Approved by: https://github.com/albanD

Co-authored-by: Haifeng Jin <haifeng-jin@users.noreply.github.com>
2025-09-05 00:48:15 +00:00
5c67426d68 [dynamo] Add support for const prop on .item (#162204)
Fixes some of the errors in https://fb.workplace.com/groups/1028545332188949/permalink/1303030824740397/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162204
Approved by: https://github.com/williamwen42
2025-09-05 00:28:49 +00:00
d2d4c8e9b2 [BLAS] Avoid downcasts for fp16fp16->fp32 BLAS (#161999)
Followup after https://github.com/pytorch/pytorch/pull/154012

Fixes CPU part of https://github.com/pytorch/pytorch/issues/160841

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161999
Approved by: https://github.com/drisspg
2025-09-04 23:35:27 +00:00
c7e41071a0 [B200][MXFP8] Fix regex in test_blockwise_mxfp8_nvfp4_error_messages_recipe_mxfp8_cuda (#162180)
to unblock https://github.com/pytorch/pytorch/pull/159494

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162180
Approved by: https://github.com/Skylion007, https://github.com/drisspg, https://github.com/nWEIdia
2025-09-04 23:29:10 +00:00
9499c8761c [Inductor][Intel GPU] Register triton template heuristic for addmm tma. (#162132)
Fixes #162048

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162132
Approved by: https://github.com/jansel
2025-09-04 23:01:57 +00:00
3a207816cc Forward fix for user defined triton kernel grid calc (#162162)
Summary:

This change fixes the test: inductor:fxir_backend - test_custom_triton_autotune_dynamic which was broken by https://github.com/pytorch/pytorch/pull/160997

Test Plan:
inductor:fxir_backend - test_custom_triton_autotune_dynamic

Rollback Plan:

Differential Revision: D81679217

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162162
Approved by: https://github.com/eellison, https://github.com/jansel
2025-09-04 22:51:23 +00:00
09be1890d7 [export] Fix torch.export.load with storage offset (#162172)
Summary: As titled

Test Plan:
CI

Rollback Plan:

Differential Revision: D81687701

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162172
Approved by: https://github.com/angelayi
2025-09-04 22:50:33 +00:00
0d84ff3b78 [PGO] log add_extra_remote PGO to tlparse (#161751)
Summary: log when additional PGO profile is merged in, from added read key

Test Plan:
test_pgo

Rollback Plan:

Differential Revision: D81284190

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161751
Approved by: https://github.com/bobrenjc93
2025-09-04 22:47:03 +00:00
1ec2c15914 Revert "Fix Arm64 OSS pytorch build with FBGEMM (#161527)"
This reverts commit dbec08729fb9848bebed6048c63831b87170d061.

Reverted https://github.com/pytorch/pytorch/pull/161527 on behalf of https://github.com/malfet due to This breaks all Mac builds, see b04e922712/1 ([comment](https://github.com/pytorch/pytorch/pull/161527#issuecomment-3256034443))
2025-09-04 22:29:38 +00:00
b04e922712 Fix memory leak in AOTI when calling aoti_torch_as_strided (#162118)
Summary:
Fix memory leak in AOTI when calling `aoti_torch_as_strided`

If you have something like `AtenTensorHandle buf_handle`; and you allocated memory to it, you have to make it a `RAIIAtenTensorHandle` to release the ownership. Otherwise you have leaked the memory because even when the program ends, there's still a pointer pointing to the underlying storage of `buf_handle_restrided`, and the storage is never freed.

Test Plan:
```
buck run fbcode//mode/dev-nosan fbcode//caffe2/test/inductor:test_aot_inductor -- -r test_pad_non_zero_memory_leak
```

Also verified by looking at `print(f"Allocated memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB")`

Differential Revision: D81640339

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162118
Approved by: https://github.com/angelayi
2025-09-04 22:17:06 +00:00
0d71a9dd5b fix incorrect interaction between DDPOptimizer and donated buffers (#160745)
This should fix https://x.com/wightmanr/status/1953147089518772254?t=ng_R4t0-tRhO_qQE8NqOhw&s=19. Still working on adding a reasonable test.

You can see more of a description of the problem in the code comments. But the TLDR is that:

* When using DDPOptimizer, we partition the graph and compile several subgraphs. So 1 dynamo graphs becomes N AOT/inductor artifacts
* We have some existing logic to stash graph metadata (`fw_metadata`) in dynamo's TracingContext. When using DDPOptimizer, we generate one `fw_metadata` per **AOT** graph, and we stash it on the 1 TracingContext from dynamo. So we end up clobbering the `fw_metadata` for graph i-1 when AOT and inductor start compiling graph i
* This is normally ok, but it becomes a problem if inductor ever wants to read from this `fw_metadata` during **backward compilation**. Why? We (by default) compile the backwards lazily. So when using DDPOptimizer, we will compile backward graph N, then bw graph N-1, etc. But... at the time that we have stated compiling bw graph N-1, its corresponding fw_metadata has already been clobbered! So we end up reusing graph N's metadata for all of our backward graph compilations. With donated buffer metadata, that means we end up donated and writing into incorrect input buffers

The fix that I added was to add more dedicated DDPOptimizer metadata into the TracingContext, so we can properly switch between these N different `fw_metadata` objects in the backward.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160745
Approved by: https://github.com/ezyang, https://github.com/zou3519
2025-09-04 21:57:27 +00:00
89d41d3f61 [SymmMem] Feed tensor.data_ptr instead of handle.buffer_ptr into kernels (#162193)
After MemPool support, `get_buffer_ptrs` points to base address of allocation segment.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162193
Approved by: https://github.com/ngimel
2025-09-04 21:26:05 +00:00
9bdcee01f8 [SymmMem] Add root argument to broadcast op (#161090)
It was missing earlier. Also added range check.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161090
Approved by: https://github.com/fegin
2025-09-04 21:09:54 +00:00
b9ba612f7a [ROCm] Enabling several UTs (#161715)
All these UTs are working as is, just removing the skip
- test_p2p_ipc
- test_repros.py: working, added fp8 support
- test_activation_checkpointing.py
- test_content_store.py
- test_cuda_multigpu.py
- test_compute_comm_reordering.py
- test_segment_reductions.py
- test_dataloader.py
- test_math_ops.py
- test_loop_ordering.py
- test_control_flow.py
- distributed_test.py
- test_mem_tracker.py
- test_fsdp_optim_state.py
- test_fully_shard_mixed_precision.py: skippped for < ROCm7.0
- test_aot_inductor_custom_ops.py
- test_c10d_ops_nccl.py
- test_eager_transforms.py
- test_sparse_csr.py
- test_inductor_collectives.py
- test_fake_tensor.py
- test_cupy_as_tensor.py
- test_cuda.py: enable UTs that are working
- test_matmul_cuda.py: enable UTs that are working

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161715
Approved by: https://github.com/pruthvistony, https://github.com/jeffdaily
2025-09-04 20:43:03 +00:00
d5b38410b5 Revert "[SymmMem] Add root argument to broadcast op (#161090)"
This reverts commit 3c0ff1b569c45cfa6935ad8031a9d4cf1551aa3f.

Reverted https://github.com/pytorch/pytorch/pull/161090 on behalf of https://github.com/jeanschmidt due to breaks internal builds ([comment](https://github.com/pytorch/pytorch/pull/161090#issuecomment-3255574093))
2025-09-04 20:42:31 +00:00
48bedd753d Revert "Fix usage of forwarding references (#161094)"
This reverts commit 1ebd70d0c0d562d3be9abdee2a21906584af7d99.

Reverted https://github.com/pytorch/pytorch/pull/161094 on behalf of https://github.com/jeanschmidt due to checking if revert will fix https://github.com/pytorch/pytorch/actions/runs/17470601839/job/49621447581 ([comment](https://github.com/pytorch/pytorch/pull/161094#issuecomment-3255541480))
2025-09-04 20:35:41 +00:00
a3d72b09ae Apply Triton tensor descriptor for flex-decoding for performance (#161643)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161643
Approved by: https://github.com/drisspg
2025-09-04 20:10:41 +00:00
ef3be6726f Make distributed modules importable even when backend not built (#159889)
This PR is greatly simplified now that it stacked on top of a PR that builds with distributed always. We only need to stub functions that may not be defined due to a backend not being enabled.

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159889
Approved by: https://github.com/wconstab
ghstack dependencies: #160449
2025-09-04 20:05:50 +00:00
95ee0bfea9 Revert "[nativert] triton runtime implementation (#161798)"
This reverts commit 3dde5d7f9bf80dd6623a712bc429e9e4302464b5.

Reverted https://github.com/pytorch/pytorch/pull/161798 on behalf of https://github.com/jeanschmidt due to introducing linting failures ([comment](https://github.com/pytorch/pytorch/pull/161798#issuecomment-3255412085))
2025-09-04 20:05:24 +00:00
dbec08729f Fix Arm64 OSS pytorch build with FBGEMM (#161527)
Summary:
X-link: https://github.com/pytorch/FBGEMM/pull/4775

Without this change, Arm64 OSS pytorch build with FBGEMM failed with the following error.
Undefined symbols for architecture arm64:
  "fbgemm::FindMinMax(float const*, float*, float*, long long)", referenced from:
      at::native::fbgemm_linear_int8_weight_fp32_activation(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&, at::Tensor const&) in QuantizedLinear.cpp.o
      at::native::fbgemm_linear_quantize_weight(at::Tensor const&) in QuantizedLinear.cpp.o
      PackedConvWeight<2>::apply_dynamic(at::Tensor const&, bool) in qconv_dynamic.cpp.o
      PackedConvWeight<3>::apply_dynamic(at::Tensor const&, bool) in qconv_dynamic.cpp.o
      at::Tensor PackedLinearWeight::apply_dynamic_impl<false>(at::Tensor, bool) in qlinear_dynamic.cpp.o
      at::Tensor PackedLinearWeight::apply_dynamic_impl<true>(at::Tensor, bool) in qlinear_dynamic.cpp.o
ld: symbol(s) not found for architecture arm64

This change fixed the issue by moving FindMinMax's implementation from QuantUtilsAvx2.cc to QuantUtils.cc. FindMinMax is a platform-agnostic function with AVX2-specific optimizations so conceptually it can be put in QuantUtils.cc.

Test Plan:
With this change, Arm64 OSS pytorch built successfully with FBGEMM enabled.

Rollback Plan:

Reviewed By: q10

Differential Revision: D81052327

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161527
Approved by: https://github.com/q10
2025-09-04 20:01:13 +00:00
c3d54dea9f Revert "[BLAS] Avoid downcasts for fp16fp16->fp32 BLAS (#161999)"
This reverts commit 02c83f13348631d80aa23f57aaff6b7d1223bbdd.

Reverted https://github.com/pytorch/pytorch/pull/161999 on behalf of https://github.com/jeanschmidt due to break a few internal tests ([comment](https://github.com/pytorch/pytorch/pull/161999#issuecomment-3255381925))
2025-09-04 19:56:48 +00:00
afa6e5604d Revert "[BE] Cleanup stale comments/copy from gemm (#162001)"
This reverts commit b40d9432be44a6b5974ee62e7d19c3c61c5ece37.

Reverted https://github.com/pytorch/pytorch/pull/162001 on behalf of https://github.com/jeanschmidt due to break a few internal tests ([comment](https://github.com/pytorch/pytorch/pull/161999#issuecomment-3255381925))
2025-09-04 19:56:48 +00:00
9e5247f51d Revert "[MPS] enable cat op for sparse (#162007)"
This reverts commit 2c03f0acc53ed13fe8ebfe809129f25996e009a0.

Reverted https://github.com/pytorch/pytorch/pull/162007 on behalf of https://github.com/jeanschmidt due to Breaks internal builds see [D81588372](https://www.internalfb.com/diff/D81588372), @malfet may you help the author? ([comment](https://github.com/pytorch/pytorch/pull/162007#issuecomment-3255357336))
2025-09-04 19:49:44 +00:00
c37103234a Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-04 19:43:17 +00:00
3dde5d7f9b [nativert] triton runtime implementation (#161798)
Summary:
att
Test Plan:
ci
Rollback Plan:

Reviewed By: minjang

Differential Revision: D80828148

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161798
Approved by: https://github.com/minjang, https://github.com/SherlockNoMad
2025-09-04 19:00:15 +00:00
1f51056bd6 [BE]: Update cpp-httplib submodule to 0.26.0 (#162181)
Update cpp-httplib with better error handling, bugfixes, and performance. Header only library update.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162181
Approved by: https://github.com/jansel
2025-09-04 18:59:32 +00:00
6b1900c22f [dynamo][hops] Remove const outputs from the speculated subgraph (#161355)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161355
Approved by: https://github.com/zou3519
2025-09-04 18:52:01 +00:00
9480cdc0b6 Modified the docs to add example for torch.is_floating_point and torc… (#161951)
…h.is_complex.

The PR proposes adding a simple, self-explanatory example to the documentation page. The example demonstrates the function's output for tensors with various data types, showing both True and False return values.

Fixes #161859

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161951
Approved by: https://github.com/zou3519
2025-09-04 18:50:19 +00:00
eqy
6f7608d603 [cuDNN][SDPA] Enable cuDNN SDPA by default for SM 9.0, SM 10.0 (#162073)
for 2.9
🙏

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162073
Approved by: https://github.com/drisspg
2025-09-04 18:46:28 +00:00
d1a15abfdc export: add explicit decomposition for aten.expand_copy and unit test (#161688)
Fixes #161080
torch.export.export fails with TypeError: expand() got an unexpected keyword argument 'implicit' when calling torch.expand_copy(..., implicit=True). This happened because expand_copy = _make_copy_from_view(aten.expand) register aten. expand as the decomposition path for aten.expand_copy, which doesn’t accept the implicit argument.

I have added an explicit a decomposition for aten.expand_copy in torch/_decomp/decompositions.py to ignore the implicit argument, and a simple unit test to demonstrate the bug being fixed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161688
Approved by: https://github.com/angelayi, https://github.com/can-gaa-hou
2025-09-04 18:16:56 +00:00
33028597bf [dynamo] Make the MRO walk more narrow (#162105)
I dont have a failing test case but just saw an extra guard somewhere.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162105
Approved by: https://github.com/williamwen42, https://github.com/StrongerXi, https://github.com/jansel
2025-09-04 17:54:33 +00:00
9eadb37cdd enable float32 and float16 in torch._grouped_mm fallback (#162059)
Summary:

Enables `torch.float32` and `torch.float16` options in
`torch._grouped_mm`. Note that the fast path is only enabled if `mat_a`,
`mat_b`, and `out_dtype` are `torch.bfloat16`.

Saving for future PRs:
1. enabling testing on more platforms
2. supporting out_dtype != mat_a.dtype
3. opinfo
4. better compile support

Test Plan:

```bash
// on A100 and H100
pytest test/test_matmul_cuda.py -s -k test_grouped_gemm -x
// on H100
pytest test/test_matmul_cuda.py -s -k test_scaled_grouped_gemm -x
```

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162059
Approved by: https://github.com/ngimel, https://github.com/eqy
ghstack dependencies: #161407, #161717
2025-09-04 17:48:52 +00:00
61fb632cfb move _grouped_mm fallback to composite explicit autograd (#161717)
Summary:

Moves the `torch._grouped_mm` fallback from cuda-only code to a place
where it can be used by multiple backends. Specifically:
1. make the fallback path and util functions reusable and move them to
   `ATen/native/GroupedMMUtils.h`
2. register a backend-agnostic kernel to composite explicit autograd key
3. refactor the grouped_mm tests to their own test case and enable CPU

At the end of this PR, here is the support matrix:
* CUDA SM90+: fast path with test coverage (no change)
* CUDA SM80+: fallback with test coverage (no change)
* CPU: fallback works, but without test coverage (new in this PR)
* other SM versions and other backends: will probably already work, but
  let's leave this to future PRs
* float32/float16: will probably already work, but let's leave this to
  future PRs

Test Plan:

```bash
pytest test/test_matmul_cuda.py -s -k test_grouped_gemm -x
```

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161717
Approved by: https://github.com/ngimel, https://github.com/drisspg
ghstack dependencies: #161407
2025-09-04 17:48:52 +00:00
8a736fa1ea create torch._grouped_mm fallback path with for loops / bmm (#161407)
Summary:

Creates a fallback path for `torch._grouped_mm`, using the naive for
loop implementation (or bmm).

For the sake of keeping the PR small, this PR only enables SM80+ (CUDA
capability 8.0 and up), since I am testing this on an A100 machine. In
future PRs, we can increase the coverage of the fallback to:
1. float32 and float16, which will extend the GPU coverage
2. cpu

Test Plan:

```bash
pytest test/test_matmul_cuda.py -s -k test_grouped_gemm_2d_3d -x
pytest test/test_matmul_cuda.py -s -k test_grouped_gemm_3d_2d -x
pytest test/test_matmul_cuda.py -s -k test_grouped_gemm_2d_2d -x
pytest test/test_matmul_cuda.py -s -k test_grouped_gemm_3d_3d -x
```

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161407
Approved by: https://github.com/drisspg, https://github.com/eqy
2025-09-04 17:48:44 +00:00
8bb213b6d5 [SymmMem] Increase signal pad size for NVL72 (#162026)
so that the signal calls do not step on each other's foot.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162026
Approved by: https://github.com/ngimel
2025-09-04 17:41:38 +00:00
869cbcc16e [SymmMem] Add a helper API to distinguish intra- and inter- node (#161984)
Added a helper API to tell if the world is entirely within a P2P domain or crosses network.
This is mainly for nblocks tuning purpose. (In later PRs)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161984
Approved by: https://github.com/ngimel
ghstack dependencies: #161983
2025-09-04 17:37:59 +00:00
0c0e056a9e [CUDA] Reuse blocks with record_stream during CUDA Graph capture in the CUDACachingAllocator (#158352)
## Introduction

During CUDA Graph capture, the CUDA caching allocator currently defers reclaiming blocks until capture ends. This is because CUDA forbids querying events recorded during capture (the CUDA operation is not executed during the capture stage), so the allocator cannot use its normal event-based logic. However, capture records an DAG (we call it **capturing graph**) of work. We can use the capturing graph to determine when a block’s old lifetime is fully before future work, and safely reuse it within the same capture.

This PR adds an experimental flag `graph_capture_record_stream_reuse: True|False (default: False)`. When enabled, the allocator inserts lightweight free markers and uses capture ordering to decide if a freed block is safe to reuse during capture. If the proof cannot be established, we fall back to the existing post-capture path.

## Terms

* **Free marker**: A capture-legal no-op (created with `cudaGraphAddEmptyNode`) inserted after the last captured use of the block on each stream that used it.
* **Terminal**: The set of the lastest operations of the stream (or the capturing graph). Any newly captured op on that stream will attach after all nodes in this set. For a stream currently capturing, it is the set of nodes returned in `dependencies_out` by `cudaStreamGetCaptureInfo`.

## When can we reuse a block during capture?

### Strong Rule (Graph-Wide Safety)

This rule provides a universal guarantee that a block is safe for reuse by any stream in the graph.

> A block is safe to reuse if every free marker is a predecessor of every terminal of all active streams in the graph.

Why it's safe:

This rule establishes a strict global ordering. Since any new operation on any stream must be appended after that stream's terminals, this condition guarantees that the block's new lifetime begins only after its old lifetime has completely ended everywhere. This prevents lifetime overlaps when the graph is replayed, ensuring correctness.

### Per-stream Rule (A Practical Optimization)

The strong rule, while safe, is often unnecessarily restrictive. The `DeviceCachingAllocator` introduces a crucial constraint that allows for a simpler check.

In `DeviceCachingAllocator`, `get_free_block` only returns blocks whose `block->stream == p.stream()`. In other words, we never reuse a block on a stream different from the allocation stream. This means we don't need to verify safety across the entire graph. We only need to confirm that the block is safe to reuse from the perspective of its own allocation stream.

> Reuse a block for allocations on stream S if every free marker is a predecessor of every node in the terminal set of S.

In short, a block is considered **reusable** on stream S as long as all marker marking it "free" are guaranteed to complete before any new work that might need it on stream S begins.

## Implementation

* On `free(block)` during capture
  * For each stream in `block->stream_uses` and the allocation stream, insert a free marker (empty node) and make it that stream’s tail.
  * If we cannot place markers for all such streams (for example, a stream is not in capture), defer to the post-capture path.
  * Otherwise, store the marker handles and keep the block in the capture-private structures.
* On `allocate(stream)` during capture (attempt per-stream reclaim)
  * Query the allocation stream S’s terminal via `cudaStreamGetCaptureInfo`.
  * For each deferred block, check whether it is allocated on this stream, and each of its free markers is a predecessor of the terminal.
    * If yes, hand the block to S for immediate reuse within the same capture.
    * If no, keep it deferred; it will be reconsidered as capture progresses and S’s terminal advances.
* On capture end
  * Any still-deferred blocks follow the existing post-capture reclamation (event insertion/polling). External behavior remains unchanged if we cannot prove safety during capture.

## Examples (2 streams)

<img width="641" height="801" alt="pytorch-remove-cudagraph-defer-reclaiming (6)" src="https://github.com/user-attachments/assets/41adc835-d448-483b-99ba-b4341cb7d2a2" />

* Case 0 — Unsafe
The two frees are not ordered with respect to each other. For stream 1, the other stream’s free marker does not precede this stream’s terminal, so the per-stream condition fails.
Counterexample intuition for the unsafe setups: imagine `f2(x)` runs for a long time. If DeviceCachingAllocator reused block `x` on a stream whose terminal is not ordered after the free markers, the new lifetime could overlap the old one on replay, risking use-after-free or data corruption. The per-stream rule prevents exactly this.
* Case 1 — Reusable on stream 1
Stream 1’s terminal is after both frees, so every free marker precedes stream 1’s terminal. The block is reusable for allocations on stream 1.
* Case 2 — Not reusable on stream 2, but this cannot occur in `DeviceCachingAllocator`
This depicts reusing the block on stream 2 while stream 1’s free is not yet ordered before stream 2’s terminal. Though the block is not safe to reuse on stream 2, DeviceCachingAllocator will not choose that block for stream 2 anyway: `get_free_block` rejects blocks whose `stream != p.stream()`. So this case is unreachable.
* Case 3 — Safe (strong rule holds)
In this scenario, the terminal nodes of all streams are positioned after the block's free markers, satisfying the strong rule. This guarantees the block is safe for reuse by any stream in the capturing graph. However, since `DeviceCachingAllocator ` only reuses a block on its original allocation stream, verifying this strong condition is unnecessary. We only need to ensure the per-stream rule is met for the specific stream requesting the block.
* Case 4 — Freeing after a join
See the note below.

## Edge Case: Freeing after a join

Our current dependency tracking has a limitation in scenarios where a block is freed after a stream join, see @galv's [comments here](https://github.com/pytorch/pytorch/pull/158352#pullrequestreview-3112565198)).

In the case 4, we have a missed opportunity. Because the block's usage is not explicitly marked, we cannot determine that the block's actual last use may have occurred much earlier, long before the join. Then, we must wait for the subsequent join before the block can be reused.

## Thanks
Thanks to @galv for his great idea around graph parsing and empty nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158352
Approved by: https://github.com/ngimel, https://github.com/eqy

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-04 17:21:26 +00:00
f36f285953 [dynamo] change error_on_graph_break/fullgraph semantics (#161747)
This PR implements the semantics change to `torch._dynamo.error_on_graph_break`:
- ~`torch.compile` now has a new `error_on_graph_break` kwarg that serves as a lower-priority toggle for erroring/continuing on graph breaks~
- `error_on_graph_break` is a new internal `torch.compile `setting that is lower-priority than `fullgraph`. It allows the user to toggle erroring/continuing on graph breaks.
- `error_on_graph_break` does nothing when `fullgraph=True`
- `error_on_graph_break` does NOT guarantee a single graph

Followup [DONE]: need to change the programming model docs to reflect the 3 graph break modes for compilation:
- `fullgraph=True`: enforce one graph, no graph breaks, cannot be toggled
- `fullgraph=False, error_on_graph_break=True`: errors on graph breaks, latter can be toggled during compile time
- `fullgraph=False, error_on_graph_break=False`: resumes tracing on graph breaks, latter can be toggled during compile time

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161747
Approved by: https://github.com/mlazos
ghstack dependencies: #161739
2025-09-04 17:10:17 +00:00
ba7f546ccc Update torch-xpu-ops commit pin (#162062)
Update the torch-xpu-ops commit to [intel/torch-xpu-ops@83c5a5](83c5a5a551), includes:

- Revert "Disable xccl timer avoid drlm hang" because XPU time event issue has been fixed
- Fallback lu_factor kernel to CPU for single batch
- Enable aten::linalg_inv and aten::linalg_inv_ex on XPU
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162062
Approved by: https://github.com/EikanWang
2025-09-04 17:05:33 +00:00
43b7c86a2c Add dependency-groups.dev to pyproject.toml (#161216)
[PEP 735](https://peps.python.org/pep-0735) introduces the
[dependency-groups] table for a number of use-cases one of
which includes specifying development dependencies for projects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161216
Approved by: https://github.com/seemethere
2025-09-04 16:51:36 +00:00
019fed39aa [ROCm] [CK] Composable Kernel integration for inductor backend (#158747)
This is a part of our effort for integrating Composable Kernel library for Inductor backend. Currently we have a submodule, but would prefer to have commit pin control over the library as with Triton. We intentionally avoid putting all installation logic in CI scripts to allow locally built versions to have this functionality.

The idea is to have CK as a pytorch dependency in pytorch 2.9 release to allow people to use it with inductor and AOT inductor and then gradually step away from submodule usage. Right now CK usage in SDPA/Gemm is tied to submodule files.

This PR is a remake of due to branch error: https://github.com/pytorch/pytorch/pull/156192

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158747
Approved by: https://github.com/jeffdaily

Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
Co-authored-by: Jack Taylor <108682042+jataylo@users.noreply.github.com>
Co-authored-by: Max Podkorytov <4273004+tenpercent@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-04 16:51:06 +00:00
81aeefa657 Add torch.compile support for triton.constexpr_function (#162106)
Fixes #161868

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162106
Approved by: https://github.com/jansel, https://github.com/zou3519
2025-09-04 16:46:55 +00:00
248355faf5 Don't require FakeStore to be passed into fake backend (#162164)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162164
Approved by: https://github.com/bdhirsh, https://github.com/albanD, https://github.com/wconstab
2025-09-04 16:43:49 +00:00
1ebd70d0c0 Fix usage of forwarding references (#161094)
I found a number of places that seem to want forwarding
references but the type signature does not reflect that

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161094
Approved by: https://github.com/malfet
2025-09-04 16:34:39 +00:00
cc5bdd1240 Keep default CMAKE_PREFIX_PATH in test_aot_inductor_package (#161907)
`CMAKE_PREFIX_PATH` is a list of paths used to find dependencies. The test overwrites that with a single path causing dependencies such as protobuf or Abseil not being found.

Instead prepend the path to the existing value.

This fixes a test failure:
> pytorch-v2.7.1/test/inductor/test_aot_inductor_package.py", line 242, in test_compile_after_package
>    self.assertTrue(so_path.exists())
> AssertionError: False is not true

Caused by:
```
/software/binutils/2.42-GCCcore-13.3.0/bin/ld: cannot find -labsl::utility: No such file or directory
/software/binutils/2.42-GCCcore-13.3.0/bin/ld: cannot find -labsl::variant: No such file or directory
collect2: error: ld returned 1 exit status
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161907
Approved by: https://github.com/Skylion007
2025-09-04 16:27:57 +00:00
3a20a20e70 Fix largeTensorTest malfunction on XPU (#161988)
# Motivation
https://github.com/pytorch/pytorch/pull/143553/files#diff-6492991193449e118ff0c8d42ca544cc38a73604e505ff246a3c711aeab91748R1345 makes `largeTensorTest` malfunction on XPU. This PR aims to fix it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161988
Approved by: https://github.com/EikanWang, https://github.com/albanD
2025-09-04 16:10:03 +00:00
6b8b3ac440 Revert "[ROCm] Use MI325 (gfx942) runners for binary smoke testing (#162044)"
This reverts commit cd529b686d54bbaa443f5b310140de48422d96c7.

Reverted https://github.com/pytorch/pytorch/pull/162044 on behalf of https://github.com/jeffdaily due to mi200 backlog is purged, and mi300 runners are failing in GHA download ([comment](https://github.com/pytorch/pytorch/pull/162044#issuecomment-3254427869))
2025-09-04 16:06:30 +00:00
601ae8e483 [CUDAGraph] add config to error on skipping cudagraph (#161862)
Many users want a config to force all cuda ops captured by cudagraph. When not possible, pt2 should error.

This PR adds `torch._inductor.triton.cudagraph_or_error` for that (default as False). Also added an environment variable `TORCHINDUCTOR_CUDAGRAPH_OR_ERROR` to control.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161862
Approved by: https://github.com/ezyang, https://github.com/mlazos
2025-09-04 15:52:39 +00:00
b7dad7dd49 Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit 90b08643c3a6eb1f3265b7d1388bd76660759f46.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to Already discussed with @ezyang about the internal quirks and errors ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3254219358))
2025-09-04 15:25:07 +00:00
e532c9d4f1 Relax tolerance for test_quick_baddbmm_cpu_complex64 (#152424)
On Zen 2 (AMD EPYC) and Intel Sapphire Rapids this fails with small differences when compiled with native targeted optimizations. I.e. it fails with `-march=znver2` but succeeds with `-march=znver1`.

I assume some operator fusing is being used by GCC. Small differences like using `vmovdqa` can be seen in the minimized code of the baddbmm kernel: https://godbolt.org/z/jsxMa91Wb

The greatest differences are consistent and the same on both CPU architectures:
```
Greatest absolute difference: 3.43852152582258e-05 at index (1, 2, 1) (up to 1e-05 allowed)
Greatest relative difference: 3.6034286949870875e-06 at index (1, 2, 1) (up to 1.3e-06 allowed)
```

Hence I assume this is in the expected tolerances  especially as `complex128` and all other types pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152424
Approved by: https://github.com/malfet
2025-09-04 13:26:42 +00:00
34aa78274d Revert "Make distributed modules importable even when backend not built (#159889)"
This reverts commit 4ae57d448c0a7d37e4cfd5c27d977fad2cef4051.

Reverted https://github.com/pytorch/pytorch/pull/159889 on behalf of https://github.com/jeanschmidt due to Failing internal tests, probably typechecks. See D81588399 ([comment](https://github.com/pytorch/pytorch/pull/159889#issuecomment-3253651785))
2025-09-04 13:13:52 +00:00
040d00af04 [2/N]Port several test files under test/distributed to Intel GPU (#159473)
For https://github.com/pytorch/pytorch/issues/114850, we will port distributed tests to Intel GPU. This PR will work on some test files under test/distributed. We could enable Intel GPU with following methods and try the best to keep the original code styles:

- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- use requires_accelerator_dist_backend to allow both nccl and xccl test
- enabled XPU for some test path
- Change the hardcoded world_size according to device_count.
- Unify some common code under torch/testing/_internal for multiple backend, for example:
  Added xpu for Backend.backend_capability and dist.Backend.register_backend()

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159473
Approved by: https://github.com/guangyey, https://github.com/d4l3k
2025-09-04 12:53:17 +00:00
9c957723a0 Replace setup.py develop with pip install -e (#156710)
#156027 already replaced most use of `python setup.py develop`. This PR only adds a few more occurrences.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156710
Approved by: https://github.com/atalman
2025-09-04 11:07:44 +00:00
acece97c3a [Intel GPU] Upgrade OneDNN XPU Tag to v3.9.1 (#161932)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161932
Approved by: https://github.com/EikanWang, https://github.com/Skylion007, https://github.com/guangyey
2025-09-04 11:05:10 +00:00
ea1883dfd3 Fixes #154982: add missing to_result_dtype in vector_norm (#155111)
Fixes #154982
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155111
Approved by: https://github.com/isuruf, https://github.com/eellison
2025-09-04 10:49:08 +00:00
d67c29ad22 [inductor] Fix int64 from MutationOutput Buffer (#162020)
Summary:
When we have a user defined triton kernel, it marks the mutated outputs as `MutationOutput` with a NoneLayout. This MutationOutput may later be used as input to another inductor-generated triton kernel.

When we determine whether to use int32 or int64 for the inductor generated triton kernel, we need to look at the number of elements for all buffers involved. If one of the buffer is a MutationOutput, we should still consider it's number of elements, instead of skipping it.

To get a hint on the MutationOutput size, we look at the buffers corresponding to `mutation_names` in MutationOutput.

Test Plan:
```
buck run mode/opt  fbcode//caffe2/test/inductor:test_aot_inductor -- -r test_autotune_int64_user_defined_triton_kernel
```

Differential Revision: D81530083

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162020
Approved by: https://github.com/davidberard98, https://github.com/eellison
2025-09-04 09:47:57 +00:00
09587daf8c Adding missing example of torch.full_like Issue#161899 (#162051)
Fixes #161899

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162051
Approved by: https://github.com/zou3519
2025-09-04 08:45:49 +00:00
c024b1f5a1 [AMD] [Reland] Fix AMD User Defined Kernel Autotune (#161521)
Summary: This is a reland of D80285441, fixed the unit test.

Test Plan:
```
buck2 run mode/opt-amd-gpu -m rocm641 -c fbcode.split-dwarf=true -c fbcode.use_link_groups=true -c fbcode.enable_gpu_sections=true //hpc/new/models/feed/benchmark:feed_lower_benchmark -- --load=manifold://ads_storage_fblearner/tree/user/facebook/fblearner/predictor/894698382/0/gpu_lowering/new_input8 --skip-eager --skip-flop-estimation --sync-mode=0 --lower-backend=AOT_INDUCTOR

```
will succeed after this diff.

Rollback Plan:

Differential Revision: D80971224

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161521
Approved by: https://github.com/frank-wei
2025-09-04 08:41:18 +00:00
8fd3c9ce91 Optimize AMP custom_backend_name error message (#162037)
Print out amp target dtype and let custom backend easier find out expected dtype while integration.

## Test Result

### Before
```python
In [1]: import torch
   ...: import torch_openreg
   ...:
   ...: a = torch.randn(3, 4)
   ...: b = torch.randn(4, 2)
   ...: with torch.autocast("openreg", dtype=torch.float16):
   ...:     torch.mm(a, b)
   ...:
/home/coder/code/pytorch/torch/amp/autocast_mode.py:332: UserWarning: In openreg autocast, but the target dtype is not supported. Disabling autocast.
 openreg Autocast only supports dtypes of torch.float32 currently.
  warnings.warn(error_message
```

### After
```python
In [1]: import torch
   ...: import torch_openreg
   ...:
   ...: a = torch.randn(3, 4)
   ...: b = torch.randn(4, 2)
   ...: with torch.autocast("openreg", dtype=torch.float16):
   ...:     torch.mm(a, b)
   ...:

/home/coder/code/pytorch/torch/amp/autocast_mode.py:332: UserWarning: In openreg autocast, but the target dtype torch.float16 is not supported. Disabling autocast.
 openreg Autocast only supports dtypes of torch.float32 currently.
  warnings.warn(error_message)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162037
Approved by: https://github.com/zou3519
2025-09-04 08:27:56 +00:00
e19e02c84c port distributed tensor test files for Intel GPU (#161604)
In this pr, we port test/distributed/tensor test filesfor Intel GPU
We could enable Intel GPU with following methods and try the best to keep the original code styles:

Use torch.accelerator for general gpu
Skip the case if running on xpu which has known issues

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161604
Approved by: https://github.com/guangyey, https://github.com/d4l3k
2025-09-04 07:49:25 +00:00
69a25f6888 [ROCm] Enable USE_FBGEMM_GENAI (#160676)
Summary:
X-link: https://github.com/pytorch/FBGEMM/pull/4703

X-link: https://github.com/facebookresearch/FBGEMM/pull/1728

In this diff we enable the support for the new FBGEMM backed FP8 _scaled_grouped_mm on ROCm. For now we only enable support for `gfx942` as that is what we have thoroughly tested performance and correctness on.

Rollback Plan:

Differential Revision: D79564024

Test Plan:

Ensure builds with:
- `USE_FBGEMM_GENAI=1` and without gfx942
- `USE_FBGEMM_GENAI=1` and with gfx942
- `USE_FBGEMM_GENAI=1` and all current [`PYTORCH_ROCM_ARCH`](9491d289b3/.ci/docker/libtorch/build.sh (L48))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160676
Approved by: https://github.com/drisspg
2025-09-04 07:13:17 +00:00
890626632d [DLPACK] Optimize toDLPack Conversion Speed (#162111)
Previously in gh-83069, the toDLPack converter introduces a normalization step that changes the strides to 1 when shape[i] == 1

This step, however, calls as_strided during toDLPack, and can slow down the toDLPack about 3x. This causes PyTorch's DLPack conversion to be around 0.6 us overhead per call from the < 0.2us.

This PR updates the logic by adding a need_normalize_strides check, to first confirm if the strides normalization is necessary. In most common cases, when the tensor is continguous, such normalization is not necessary.

We confirmed that having this additional step would recover the speed of toDLPack to below 0.2us and can help significantly speedup eager mode integration of DLPack with PyTorch.

If we detect that there is normalization needs, the older path will be invoked.

Fixes #162113
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162111
Approved by: https://github.com/msaroufim
2025-09-04 05:27:05 +00:00
480c739112 Capture TypeError in CONTAINS_OP (#161069)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161069
Approved by: https://github.com/anijain2305
2025-09-04 04:49:09 +00:00
66f3b4a682 Contiguous subgraph decomposition (#161241)
## Summary

Adds a subgraph decomposition for addmm and mm that performs well on large `K` compared to `M` and `N`, and functions well as an alternative to `split-k` on AMD (transposed only), which does not support AMD currently.

## Background

On AMD (MI300x), for a matmul A * B, if B is non-contiguous, the resulting matmul is quite a bit slower.
For example:
```
  args[0]: TensorBox(StorageBox(
    InputBuffer(name='arg0_1', layout=FixedLayout('cuda:0', torch.float16, size=[1024, 178176], stride=[178176, 1]))
  ))
  args[1]: TensorBox(StorageBox(
    InputBuffer(name='arg1_1', layout=FixedLayout('cuda:0', torch.float16, size=[178176, 6144], stride=[1, 178176]))
  ))
```
is a lot slower than:
```
  args[0]: TensorBox(StorageBox(
    InputBuffer(name='arg0_1', layout=FixedLayout('cuda:0', torch.float16, size=[1024, 178176], stride=[178176, 1]))
  ))
  args[1]: TensorBox(StorageBox(
    InputBuffer(name='arg1_1', layout=FixedLayout('cuda:0', torch.float16, size=[178176, 6144], stride=[6144, 1]))
  ))
```
This PR adds a subgraph decomposition to test out whether making B contiguous is faster than just using the normal kernels.

## Data

I ran this on unique non-contiguous shapes from torchbench/huggingface and got these speedups:
```
Parsed 420 unique shapes from benchmark output
addmm improvements when best:
  addmm_16448x512x2048: +0.14%
  addmm_128x2048x2048: +0.01%
  addmm_128x768x1000: +0.75%
  addmm_12672x3072x768: +1.08%
  addmm_512x768x32000: +0.62%
  addmm_12608x384x384: +0.00%
  addmm_4160x1024x4096: +0.90%
  addmm_16x768x2: +0.56%
  addmm_12608x3072x768: +0.09%
  addmm_64x4096x1000: +2.77%
  addmm_256x1024x512: +1.99%
  addmm_30x256x256: +1.12%
  addmm_100480x128x384: +0.91%
  addmm_6400x2048x512: +0.25%
  addmm_61568x1024x256: +0.08%
  addmm_1x768x768: +0.93%
  addmm_12544x384x384: +0.19%
  addmm_128x512x1000: +0.77%
  addmm_2048x128x128: +1.32%
  addmm_128x3072x1000: +0.24%
  addmm_7936x512x2048: +0.07%
  addmm_8192x512x2048: +0.33%
  addmm_64x1024x1000: +1.43%
  addmm_128x2304x1000: +0.01%
  addmm_32768x256x2: +0.75%
  addmm_64x384x1152: +0.79%
  addmm_64x640x1000: +0.01%
  addmm_100480x128x128: +0.87%
  addmm_1152x3072x768: +1.13%
  addmm_8192x256x2048: +1.40%
  addmm_4096x128x768: +0.01%
  addmm_128x2560x1000: +0.01%
  addmm_12544x2048x512: +0.43%
  addmm_200704x24x96: +0.14%
  addmm_8448x512x2048: +0.96%
  addmm_50176x256x1024: +0.62%
  addmm_4160x4096x1024: +0.22%
  addmm_4096x768x768: +0.32%
  addmm_220x2048x512: +0.56%
  addmm_8x2048x1000: +1.12%
  addmm_256x197951x512: +26.99%
  addmm_401536x64x192: +0.60%
  addmm_2040x2048x512: +0.47%
  addmm_512x1024x256: +1.32%
  addmm_128x4096x1000: +1.67%
  addmm_12672x768x768: +0.34%
  addmm_128x368x1000: +0.77%
  addmm_96x1280x1000: +0.01%
  addmm_12544x512x2048: +0.41%
  addmm_6272x320x1280: +0.76%
  addmm_12544x3072x768: +0.09%
  addmm_64x384x1000: +0.39%
mm improvements when best:
  mm_200704x128x512: +1.29%
  mm_663552x16x16: +0.80%
  mm_4096x768x768: +0.51%
  mm_131072x64x31: +0.24%
  mm_12544x1152x384: +0.11%
  mm_128x2048x2: +0.46%
  mm_262144x16x23: +0.62%
  mm_50176x576x192: +0.37%
  mm_131072x16x31: +0.26%
================================================================================
BENCHMARK ANALYSIS RESULTS
================================================================================

Operation: addmm
----------------------------------------
Total shapes analyzed: 247
Average Subgraph placement: 3.38
Median Subgraph placement: 2.0
Subgraph is best choice: 52/247 shapes (21.1%)
Average improvement when best: 1.15%
Median improvement when best: 0.58%
Largest improvement when best: +26.99%

Operation: bmm
----------------------------------------
Total shapes analyzed: 85
Average Subgraph placement: 24.00
Median Subgraph placement: 21.0
Subgraph is best choice: 0/85 shapes (0.0%)
Average improvement when best: N/A (never best)
Median improvement when best: N/A (never best)
Largest improvement when best: N/A (never best)

Operation: mm
----------------------------------------
Total shapes analyzed: 88
Average Subgraph placement: 15.08
Median Subgraph placement: 4.0
Subgraph is best choice: 9/88 shapes (10.2%)
Average improvement when best: 0.52%
Median improvement when best: 0.46%
Largest improvement when best: +1.29%

```

## Results

The largest shape gain, `256,197951,512`, seemed to be driven by a case where the extern kernel is way faster than the best triton configs on the recursive autotune:
```
addmm,Extern,extern_kernels.addmm,256,197951,512,0.38024500012397766
addmm,Triton,256,197951,512,32,256,16,2,2,4,2.005444049835205
addmm,Triton,256,197951,512,32,128,32,2,4,8,2.04189395904541
addmm,Triton,256,197951,512,64,128,16,2,4,8,2.1911399364471436
addmm,Triton,256,197951,512,64,128,32,2,4,8,2.496040105819702
addmm,Triton,256,197951,512,64,128,64,2,8,16,2.9306790828704834
addmm,Triton,256,197951,512,64,64,32,2,4,8,3.0347819328308105
...
```
Compared to the non-transposed autotune:
```
addmm,Subgraph,contiguous_addmm_1384,256,197951,512,0.5024129748344421
addmm,Extern,extern_kernels.addmm,256,197951,512,0.6881489753723145
addmm,Triton,256,197951,512,32,256,16,2,2,4,2.5115010738372803
addmm,Triton,256,197951,512,32,128,32,2,4,8,2.5167479515075684
addmm,Triton,256,197951,512,64,128,16,2,4,8,2.9507460594177246
addmm,Triton,256,197951,512,64,256,64,2,8,4,2.9673290252685547
addmm,Triton,256,197951,512,64,128,64,2,8,16,3.3906331062316895
addmm,Triton,256,197951,512,64,128,32,2,4,8,3.496859073638916
```

It seems to perform really well for high values of `K` vs `N` and `M`.
Testing this hypothesis with some custom shapes:
```
Parsed 64 unique shapes from benchmark output
addmm improvements when best:
  addmm_128x16384x128: +0.18%
  addmm_128x262144x256: +38.24%
  addmm_128x200000x512: +14.76%
  addmm_256x800000x128: +0.06%
  addmm_131072x128x256: +0.27%
  addmm_128x256x131072: +0.25%
  addmm_2048x200000x64: +12.45%
mm improvements when best:
  mm_128x16384x128: +0.18%
  mm_128x262144x256: +38.05%
  mm_128x200000x512: +9.47%
  mm_256x800000x128: +0.99%
  mm_512x6400000x256: +3.17%
  mm_524288x64x64: +0.29%
  mm_2048x200000x64: +11.19%
  mm_8192x1000000x256: +34.14%
  mm_128x4096x100000: +0.40%
  mm_128x3072x150000: +0.27%
================================================================================
BENCHMARK ANALYSIS RESULTS
================================================================================

Operation: addmm
----------------------------------------
Total shapes analyzed: 33
Average Subgraph placement: 4.39
Median Subgraph placement: 2.0
Subgraph is best choice: 7/33 shapes (21.2%)
Average improvement when best: 9.46%
Median improvement when best: 0.27%
Largest improvement when best: +38.24%

Operation: mm
----------------------------------------
Total shapes analyzed: 30
Average Subgraph placement: 7.63
Median Subgraph placement: 2.0
Subgraph is best choice: 10/30 shapes (33.3%)
Average improvement when best: 9.81%
Median improvement when best: 2.08%
Largest improvement when best: +38.05%

```
## Conclusion
Contiguous Subgraph Decompositionseems worthwhile for `mm` and `addmm`, but not `bmm`, and has a very large improvment on low `M`, low `N`, and high `K` shapes.

Data gathering scripts:
https://gist.github.com/exclamaforte/4a896c064d301b27bf5ca0a4f8fc3866

## Test Plan:
New unit tests.

Differential Revision: D80771648

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161241
Approved by: https://github.com/eellison
2025-09-04 04:43:58 +00:00
302df2ac5d [vllm hash update] update the pinned vllm hash (#162115)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vllm hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162115
Approved by: https://github.com/pytorchbot
2025-09-04 04:26:34 +00:00
dec72ea4b0 [reland] Add inductor provenance mapping for cpp extern kernel (#161656) (#162069)
Summary:

Add inductor provenance mapping for cpp extern kernel

Test Plan:
```
buck run fbcode//caffe2/test/inductor:provenance_tracing --  -r test_cpu_extern_kernel
```

Differential Revision: D81598857

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162069
Approved by: https://github.com/angelayi
2025-09-04 04:18:43 +00:00
8975cda252 [pt] strip error messages in profile builds (#162076)
Summary: Profile builds should match production builds, and error messages result in large static initializers running. Omit them for profile builds too.

Test Plan:
Before:
```
$ buck build //xplat/caffe2:aten_native_cpuApple -c user.sandcastle_build_mode=profile --show-output
$ llvm-nm buck-out/v2/gen/fbsource/31fc3668aa0b4012/xplat/caffe2/__aten_native_cpuApple__/libaten_native_cpuApple.pic.a | grep ZN3c106detail12_str_wrapperIJPKcRKiS3_RKxS3_RKS3_S3_EE4callES9_S5_S9_S7_S9_S9_S9
0000000000003234 T __ZN3c106detail12_str_wrapperIJPKcRKiS3_RKxS3_RKS3_S3_EE4callES9_S5_S9_S7_S9_S9_S9_
```

After:
```
$ buck build //xplat/caffe2:aten_native_cpuApple -c user.sandcastle_build_mode=profile --show-output
$ llvm-nm buck-out/v2/gen/fbsource/31fc3668aa0b4012/xplat/caffe2/__aten_native_cpuApple__/libaten_native_cpuApple.pic.a | grep ZN3c106detail12_str_wrapperIJPKcRKiS3_RKxS3_RKS3_S3_EE4callES9_S5_S9_S7_S9_S9_S9
```

Rollback Plan:

Reviewed By: yury-dymov, abashyam

Differential Revision: D81599582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162076
Approved by: https://github.com/swolchok
2025-09-04 04:18:27 +00:00
d636c181f9 Fix range.__getitem__() (#161804)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161804
Approved by: https://github.com/anijain2305
ghstack dependencies: #161801, #161802, #161803
2025-09-04 02:33:03 +00:00
c8255c67cd redirect iter(range) to range.__iter__() (#161803)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161803
Approved by: https://github.com/anijain2305
ghstack dependencies: #161801, #161802
2025-09-04 02:33:03 +00:00
485a7bd82e Add range_count and range.__contains__ (#161802)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161802
Approved by: https://github.com/anijain2305
ghstack dependencies: #161801
2025-09-04 02:33:03 +00:00
1ef7efa592 Add range_equals (#161801)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161801
Approved by: https://github.com/anijain2305
2025-09-04 02:33:03 +00:00
57278d45f0 [Quant][Inductor][CPU] add qconv int8-mixed-bf16 patterns (#161487)
Summary:
Expand the patterns supported by qconv weight prepack, Specifically, expand the conv patterns of int8-mixed-bf16 datatype to support the following two cases:
Case 1:
the `out_dtype `of `dequantize_per_tensor  `is `torch.float32`

```
    dq_per_tensor  dq_per_channel
         |               |
    to_bf16           to_bf16
            \          /
             Conv2d
```

Case 2:
the `out_dtype `of `dequantize_per_tensor  `is `torch.bfloat16`

```
    dq_per_tensor  dq_per_channel
         \               |
                      to_bf16
                       /
             Conv2d
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161487
Approved by: https://github.com/Xia-Weiwen, https://github.com/CaoE, https://github.com/jansel
ghstack dependencies: #161486
2025-09-04 02:01:34 +00:00
cec0ff1228 [Quant][Inductor][CPU] add qlinear int8-mixed-bf16 patterns (#161486)
Summary:
Expand the patterns supported by qlinear weight prepack, Specifically, expand the linear patterns of int8-mixed-bf16 datatype to support the following two cases:
Case 1:
the `out_dtype` of `dequantize_per_tensor ` is `torch.float32`

    dq_per_tensor  dq_per_channel
         |               |
    to_bf16           to_bf16
         |               |
     OPT(reshape)     permute
            \          /
             addmm/mm
                    |
           OPT(reshape)

or

    dq_per_tensor  dq_per_channel
         |               |
    to_bf16           to_bf16
         |               |
       expand         permute
          \              |
                      expand
                       /
               bmm
                |
            OPT(add)

Case 2:
the `out_dtype` of `dequantize_per_tensor ` is `torch.bfloat16`

    dq_per_tensor  dq_per_channel
         |               |
                       to_bf16
                         |
     OPT(reshape)   permute
            \          /
             addmm/mm
                    |
           OPT(reshape)

or

    dq_per_tensor  dq_per_channel
         |                |
                        to_bf16
                          |
       expand          permute
          \               |
                        expand
                        /
               bmm
                |
            OPT(add)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161486
Approved by: https://github.com/Xia-Weiwen, https://github.com/jansel
2025-09-04 01:53:02 +00:00
65985937d9 expose number of outputs in native runtime for unified runtime (#161723)
This is only user outputs which is what we want. Spoke to @zhxchen17 though and it seems like nativeRT might have some bugs on propogating updates to things like input mutation or buffer mutation though. Something to take a look at in a follow up.

Also I have no idea where the nativeRT tests are. Any pointers @zhxchen17  @SherlockNoMad
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161723
Approved by: https://github.com/zhxchen17
2025-09-04 01:20:31 +00:00
fbf3d2027d use sym_or instead of any to avoid dde in calc_conv_nd_return_shape (#162084)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162084
Approved by: https://github.com/aorenste

Co-authored-by: Aaron Orenstein <aorenste@fb.com>
2025-09-04 01:20:22 +00:00
8678d831c4 [dynamo] rename set_fullgraph to error_on_graph_break (#161739)
Renaming `set_fullgraph` to `error_on_graph_break` for now. There are no semantic differences yet. In a followup PR, we will introduce a new `torch.compile` option `error_on_graph_break` that has lower priority than `fullgraph` so that `fullgraph` really returns 1 graph.

I could keep `set_fullgraph` as a deprecated alias for `error_on_graph_break` for now, but I'm hoping that won't be necessary since it's still private API (there are no internal callsites yet, and there are no significant OSS callsites yet).

 cc @albanD @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @Lucaskabela @mlazos @guilhermeleobas @xmfan as primary users for `set_fullgraph`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161739
Approved by: https://github.com/xmfan, https://github.com/Lucaskabela, https://github.com/anijain2305, https://github.com/mlazos
2025-09-04 01:15:06 +00:00
1281470155 [DCP][HuggingFace] Add Support for dequantization of SafeTensors checkpoints (#160682)
This PR introduces the QuantizedHuggingFaceReader component which enables the reading and dequantization of the quantized tensors in the SafeTensors checkpoint. Following capabilities are inrtoduced:
- Configuration the target DType and the block size.
- Multi threaded dequantization for efficiency

Test Plan:
buck test //caffe2/test/distributed/checkpoint\:test_quantized_hf_storage
```
Time elapsed: 2:34.1s
Tests finished: Pass 31. Fail 0. Fatal 0. Skip 0. Build failure 0
```

Differential Revision: D80174674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160682
Approved by: https://github.com/ankitageorge
2025-09-04 01:09:53 +00:00
9458d1ac3b [inductor] pdl inductor option (disabled by default) (#160928)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160928
Approved by: https://github.com/eellison
2025-09-04 00:35:23 +00:00
3c45af079a kill allow_complex_guards_as_runtime_asserts (#161794)
Summary:
[reland]
Since `allow_complex_guards_as_runtime_asserts` is now sync'd with `prefer_deferred_runtime_asserts_over_guards`, we can kill the former (especially since it was a export-only concept).

Test Plan:
updated tests

Rollback Plan:

Differential Revision: D81334984

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161794
Approved by: https://github.com/zhxchen17
2025-09-04 00:17:01 +00:00
aad96a2022 Revert "Contiguous subgraph decomposition (#161241)"
This reverts commit d64718503728001a1e78168fd7f2d4ff23e57285.

Reverted https://github.com/pytorch/pytorch/pull/161241 on behalf of https://github.com/jeffdaily due to breaks rocm mi300 tests ([comment](https://github.com/pytorch/pytorch/pull/161241#issuecomment-3251185098))
2025-09-04 00:14:22 +00:00
5f3cbc9442 fixed typo error (#162055)
Fixes #162054

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162055
Approved by: https://github.com/RajeshvShiyal, https://github.com/malfet
2025-09-04 00:06:58 +00:00
a918bbad6a [inductor] fix test output path 2 (#162085)
Fix test_output_path_2

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162085
Approved by: https://github.com/angelayi, https://github.com/jansel
2025-09-04 00:03:47 +00:00
8ec551bb35 [aot-compile] strip internal tracebacks for non-verbose graph breaks + include user file/lineno (#162005)
pytest test/dynamo/test_aot_compile.py -k test_aot_compile_graph_break_error_fmt

before
```
Traceback (most recent call last):
  File "/data/users/$USER/vllm-tests/graph-break.py", line 15, in <module>
    aot_compiled_fn = compiled.aot_compile((example_inputs, {}))
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/eval_frame.py", line 717, in aot_compile
    return aot_compile_fullgraph(
           ^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/aot_compile.py", line 132, in aot_compile_fullgraph
    capture_output = convert_frame.fullgraph_capture(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/convert_frame.py", line 947, in fullgraph_capture
    dynamo_output = compile_frame(
                    ^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/convert_frame.py", line 1020, in compile_frame
    bytecode, tracer_output = transform_code_object(code, transform)
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/bytecode_transformation.py", line 1592, in transform_code_object
    tracer_output = transformations(instructions, code_options)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/convert_frame.py", line 992, in transform
    tracer_output = trace_frame(
                    ^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/convert_frame.py", line 312, in _fn
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/convert_frame.py", line 821, in trace_frame
    run_tracer()
  File "/data/users/$USER/pytorch/torch/_dynamo/convert_frame.py", line 803, in run_tracer
    tracer.run()
  File "/data/users/$USER/pytorch/torch/_dynamo/symbolic_convert.py", line 1472, in run
    while self.step():
          ^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/symbolic_convert.py", line 1342, in step
    self.dispatch_table[inst.opcode](self, inst)
  File "/data/users/$USER/pytorch/torch/_dynamo/symbolic_convert.py", line 902, in wrapper
    return inner_fn(self, inst)
           ^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/symbolic_convert.py", line 3364, in CALL
    self._call(inst)
  File "/data/users/$USER/pytorch/torch/_dynamo/symbolic_convert.py", line 3358, in _call
    self.call_function(fn, args, kwargs)
  File "/data/users/$USER/pytorch/torch/_dynamo/symbolic_convert.py", line 1260, in call_function
    self.push(fn.call_function(self, args, kwargs))  # type: ignore[arg-type]
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/variables/lazy.py", line 212, in realize_and_forward
    return getattr(self.realize(), name)(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/variables/functions.py", line 1513, in call_function
    unimplemented_v2(
  File "/data/users/$USER/pytorch/torch/_dynamo/exc.py", line 596, in unimplemented_v2
    raise Unsupported(msg)
torch._dynamo.exc.Unsupported: Call to `torch._dynamo.graph_break()`
  Explanation: User-inserted graph break. Message: None
  Hint: Remove the `torch._dynamo.graph_break()` call.

  Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`

 For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html
```
after
```
Traceback (most recent call last):
  File "/data/users/$USER/vllm-tests/graph-break.py", line 15, in <module>
    aot_compiled_fn = compiled.aot_compile((example_inputs, {}))
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/eval_frame.py", line 737, in aot_compile
    raise e.with_traceback(None) from e.__cause__  # User compiler error
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch._dynamo.exc.Unsupported: Call to `torch._dynamo.graph_break()`
  Explanation: User-inserted graph break. Message: None
  Hint: Remove the `torch._dynamo.graph_break()` call.

  Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`

 For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html

from user code:
   File "/data/users/$USER/vllm-tests/graph-break.py", line 5, in foo
    torch._dynamo.graph_break()

Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"
```
consistent w/ std torch.compile
```
Traceback (most recent call last):
  File "/data/users/$USER/vllm-tests/graph-break.py", line 16, in <module>
    res = compiled(*example_inputs)
          ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/users/$USER/pytorch/torch/_dynamo/eval_frame.py", line 850, in compile_wrapper
    raise e.with_traceback(None) from e.__cause__  # User compiler error
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
torch._dynamo.exc.Unsupported: Call to `torch._dynamo.graph_break()`
  Explanation: User-inserted graph break. Message: None
  Hint: Remove the `torch._dynamo.graph_break()` call.

  Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`

 For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html

from user code:
   File "/data/users/$USER/vllm-tests/graph-break.py", line 5, in foo
    torch._dynamo.graph_break()

Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162005
Approved by: https://github.com/zhxchen17, https://github.com/tugsbayasgalan
2025-09-03 23:19:47 +00:00
36d207fcaa [CI] viable strict upgrade: Explicitly name which linux binary wheels should block (#162100)
Reason:
rocm binary builds should not block viable strict upgrade.  It is queuing/canceled so viable strict is 1.2 days old

Tested by mangling the workflow file to get to the actual call of the python script `python ../test-infra/tools/scripts/fetch_latest_green_commit.py --required-checks '["pull", "trunk", "lint", "^linux-binary-manywheel$", "^linux-binary-libtorch-release$", "linux-aarch64"]' --viable-strict-branch viable/strict --main-branch master`, which I then ran locally where I have credentials.  It returned d64718503728001a1e78168fd7f2d4ff23e57285 which is green.  Without this change, it returns 5e5870e858f60ff4bf87d03f3592097e934a9580, which is pretty old

The other solution would have been to mark it as unstable I think

Side note, why is it master and how is it working like that

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162100
Approved by: https://github.com/huydhn
2025-09-03 22:38:32 +00:00
99f356fa58 [ROCm] revamp miopen integration (#161687)
Update sources under ATen/miopen and ATen/native/miopen to align with best practices. Avoid reshape_ calls inside backward operations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161687
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-03 22:28:09 +00:00
0af70e2353 Modify ROCm MI2xx-based workflows to run on cron schedule (#162103)
To mitigate queueing on MI2xx runners since Cirrascale runners are offline. Match cron schedule of periodic.yml

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162103
Approved by: https://github.com/jeffdaily, https://github.com/seemethere
2025-09-03 21:51:03 +00:00
b1bb98ddeb [ROCm] TunableOp should use HIP version, not ROCm version (#162067)
Fixes #160874

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162067
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-03 21:42:23 +00:00
abc447174c [PP] Add profiling to schedule execution (#160753)
Profiling title will be `str(action)`

<img width="1545" height="694" alt="image" src="https://github.com/user-attachments/assets/60b3506b-b8d6-4ae0-8b32-0d51d45fa2f0" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160753
Approved by: https://github.com/wconstab
2025-09-03 21:31:50 +00:00
734ce8eba9 Rename propagate_tensor_meta to make private again (#161744)
Rename the wrapper `propagate_tensor_meta` added in #161334 to make it clearly private, and rename the existing LRU function to accommodate.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161744
Approved by: https://github.com/bdhirsh
2025-09-03 21:11:45 +00:00
98efc9e93d [ROCm] Bump AOTriton to 0.11b (#161754)
Notable new features/optimizations for SDPA operators on AMD systems from AOTriton 0.11b:

* Invoke AITER Assembly kernels on gfx942/gfx950 when inputs meet requirements
  - AITER ASM kernels deliver over 500TFLOPS training performance. See
    [AOTriton 0.11b Release Page](https://github.com/ROCm/aotriton/releases/tag/0.11b) for more
    details.
* Now returns natural based `logsumexp` tensor, matching CUDA's behavior
  - PR #156903 is reverted in this PR as well since it is not needed anymore.
* Enables `CausalVariant.LOWER_RIGHT`

The build system changes drastically along with new packaging scheme of
AOTriton 0.11

* AOTriton 0.11 packs GPU images separately from AOTriton runtime
* `aotriton.cmake` now selectively downloads image packs according to
  `PYTORCH_ROCM_ARCH`
* `aotriton.cmake` now only use pre-compiled runtime library that exactly
  matches the ROCM in the build environment. For PyTorch builds with ROCm
  versions not listed in the file, the build process will build AOTriton
  runtime without GPU images from source
  - This avoids any further ABI breaks like ROCM 6.4 -> 7.0
  - recursive git clone is disabled since building AOTriton runtime does not
    require submodules.

Bug fixes:

* Fix a kernel bug introduced when implementing SWA

Known Problems:

* gfx1100 target (Radeon RX 7000 Series) is moved back to experimental status
  due to accuracy issues. Triton compiler fixes are needed to restore the
  support status.
* Enabling TF32 tests affects accuracy for later non-TF32 tests on ROCM 7.0.
  This issue is under investigation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161754
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily
2025-09-03 20:45:44 +00:00
994f2a5dbc [SymmMem][CI] Make sure group names are consistent (#162035)
Unblocking #161741

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162035
Approved by: https://github.com/Skylion007, https://github.com/ngimel
2025-09-03 20:40:24 +00:00
d1706d9128 [Symmetric memory] set handle type for ROCm (#161741)
Fixes #161722

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161741
Approved by: https://github.com/kwen2501
2025-09-03 20:33:35 +00:00
1aa7476885 fix to segmentation fault when empty tensor is passed to choose_qpara… (#161966)
…ms_optimized

Fixes #153326

Minimal code to reproduce error:
```
import torch

tensor = torch.tensor([])

torch.choose_qparams_optimized(
    tensor,
    0,
    200,
    0.16,
    8
)
```

Previous Output:
`Segmentation fault`

Now Output:
```
Traceback (most recent call last):
  File "/home/amaitra/work/tests/issue_153326.py", line 5, in <module>
    torch.choose_qparams_optimized(
RuntimeError: input tensor is empty and has no data
```

Caused because `const float* input_row =input_tensor.const_data_ptr<float>();` becomes null
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161966
Approved by: https://github.com/Skylion007
2025-09-03 20:26:26 +00:00
8e23a1227b [ROCm/Windows] Fix build failures and support some BLAS calls (#161981)
* Support getrsBatched/geqrfBatched/gelsBatched on Windows ROCm (fixes https://github.com/ROCm/TheRock/issues/1367)
* Fix windows pytorch build with USE_DISTRIBUTED=ON by default

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161981
Approved by: https://github.com/ScottTodd, https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-03 20:26:14 +00:00
850e1382a9 [hipify] Replace cudaStreamCaptureStatusNone (#161992)
Replacing additional cuda symbols to hip symbols

Differential Revision: D81420086

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161992
Approved by: https://github.com/jeffdaily, https://github.com/Skylion007
2025-09-03 20:23:32 +00:00
3c0ff1b569 [SymmMem] Add root argument to broadcast op (#161090)
It was missing earlier. Also added range check.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161090
Approved by: https://github.com/fegin
2025-09-03 20:17:45 +00:00
c465b3d52c [2/n][export] Refactor PT2 Archive weight saving and loading (#161520)
Summary:
The saving (serialization) part of PT2 archive weight refactoring.
The loading (deserialization part) has been landed in D80035490

Test Plan:
CI

Rollback Plan:

bifferential Revision: D80970931

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161520
Approved by: https://github.com/SherlockNoMad
2025-09-03 20:12:49 +00:00
f4c33cd44a [pt2e] Avoid getting model device once per node (#159901)
**Summary:** Previously, we call `assert_and_get_unqiue_device` once per node in both prepare and convert. This is expensive and unnecessary since the model device is the same across all nodes, so we should just call this once in the beginning and reuse the same model device across all the nodes.

**Test Plan:**
python test/test_quantization.py -k TestQuantizePT2E

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159901
Approved by: https://github.com/jerryzh168
2025-09-03 19:29:00 +00:00
92576a594b Prototype for building non-strict leak detector (#160456)
Summary:
Our strategy for detecting fake tensor leakage in non-strict for outside scope (side effects happening outside of model.forward) is:
1. We do gc.collect() before export and get the alive fake tensors
2. We dump the proxy to fake tensor map from make_fx tracer
3. We query gc again to get alive fake tensors
4. We take the delta between (1) and (3)
5. Filter out fake tensors that are:
    1. Associated with `TrackedFake` (input tracking thing in symbolic_shapes)
    2. Associated with `gm.meta`
6. Do ID match with the proxies and emit their stacktraces.

We rely on (https://github.com/pytorch/pytorch/pull/159923) for other sources of leakages such as:
1. We failed to proxy an operator (like param.data)
2. We cache some tensor in model.forward (https://github.com/pytorch/pytorch/issues/155114)

In general, we notice `gc.collect()` and query-ing gc for live objects are kinda slow. So we turn on this feature under env variable. We should document on export public facing documents that if you run into weird errors regarding fake tensors, they should look into turning on this env variable for further analysis.

Test Plan:
Test plan

Rollback Plan:

Differential Revision: D80003204

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160456
Approved by: https://github.com/pianpwk
2025-09-03 19:21:27 +00:00
cd529b686d [ROCm] Use MI325 (gfx942) runners for binary smoke testing (#162044)
### Motivation

* MI250 Cirrascale runners are currently having network timeout leading to huge queueing of binary smoke test jobs:
<img width="483" height="133" alt="image" src="https://github.com/user-attachments/assets/17293002-78ad-4fc9-954f-ddd518bf0a43" />

* MI210 Hollywood runners (with runner names such as `pytorch-rocm-hw-*`) are not suitable for these jobs, because they seem to take much longer to download artifacts: https://github.com/pytorch/pytorch/pull/153287#issuecomment-2918420345 (this is why these jobs were specifically targeting Cirrascale runners). However, it doesn't seem like Cirrascale runners are necessarily doing much better either e.g. [this recent build](https://github.com/pytorch/pytorch/actions/runs/17332256791/job/49231006755).
* Moving to MI325 runners should address the stability part at least, while also reducing load on limited MI2xx runner capacity.
* However, I'm not sure if the MI325 runners will do any better on the artifact download part (this may need to be investigated more) cc @amdfaa

* Also removing `ciflow/binaries` and `ciflow/binaries_wheel` label/tag triggers for `generated-linux-binary-manywheel-rocm-main.yml` because we already trigger ROCm binary build/test jobs via these labels/tags in `generated-linux-binary-manywheel-nightly.yml`. And for developers who want to trigger ROCm binary build/test jobs on their PRs, they can use the `ciflow/rocm-mi300` label/tag as per this PR.

### TODOs (cc @amdfaa):
* Check that the workflow runs successfully on the MI325 runners in this PR. Note how long the test jobs take esp. the "Download Build Artifacts" step
* Once this PR is merged, clear the queue of jobs targeting `linux.rocm.gpu.mi250`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162044
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-03 18:34:07 +00:00
62c3f9a97f [inductor] Follow integer overflow rules in TypedExpr (#161922)
Fixes https://github.com/pytorch/pytorch/issues/161763

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161922
Approved by: https://github.com/jansel
2025-09-03 18:33:18 +00:00
8076a185c8 Offload set method execution to CPython when possible (#160763)
Reduces CPython `test_set.py` runtime from 63.477s to 40.298s

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160763
Approved by: https://github.com/anijain2305
2025-09-03 18:26:05 +00:00
f00445b43e [inductor][ez] add hook for heuristics to adjust kernel input nodes (#161339)
# why

- some templates e.g. scale_mm need to unsqueeze/squeeze the nodes
  for codegen and heuristics

- unified place where we can just adjust them for the template

# what

- inside get_mm_configs, return not the passed in kernel inputs,
  but allow the template heuristic to adjust them if necessary

- the default implementation right now just passes them back

this diff just adds the functionality, but does not exercise it
other than the default (passthrough)

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520572](https://our.internmc.facebook.com/intern/diff/D81520572)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161339
Approved by: https://github.com/eellison, https://github.com/jansel
ghstack dependencies: #161123, #161124, #161125, #161126, #161336, #161338
2025-09-03 18:23:22 +00:00
3559c354ce stop suggesting using guard_size_oblivious on data dependent errors (#160510)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160510
Approved by: https://github.com/ezyang
2025-09-03 18:07:59 +00:00
71992dd805 S390x: build nightly binaries for new pythons (#161920)
Enable python 3.13t, 3.14 and 3.14t on s390x for nightly binaries

Fixes #161515

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161920
Approved by: https://github.com/malfet
2025-09-03 17:38:38 +00:00
d647185037 Contiguous subgraph decomposition (#161241)
## Summary

Adds a subgraph decomposition for addmm and mm that performs well on large `K` compared to `M` and `N`, and functions well as an alternative to `split-k` on AMD (transposed only), which does not support AMD currently.

## Background

On AMD (MI300x), for a matmul A * B, if B is non-contiguous, the resulting matmul is quite a bit slower.
For example:
```
  args[0]: TensorBox(StorageBox(
    InputBuffer(name='arg0_1', layout=FixedLayout('cuda:0', torch.float16, size=[1024, 178176], stride=[178176, 1]))
  ))
  args[1]: TensorBox(StorageBox(
    InputBuffer(name='arg1_1', layout=FixedLayout('cuda:0', torch.float16, size=[178176, 6144], stride=[1, 178176]))
  ))
```
is a lot slower than:
```
  args[0]: TensorBox(StorageBox(
    InputBuffer(name='arg0_1', layout=FixedLayout('cuda:0', torch.float16, size=[1024, 178176], stride=[178176, 1]))
  ))
  args[1]: TensorBox(StorageBox(
    InputBuffer(name='arg1_1', layout=FixedLayout('cuda:0', torch.float16, size=[178176, 6144], stride=[6144, 1]))
  ))
```
This PR adds a subgraph decomposition to test out whether making B contiguous is faster than just using the normal kernels.

## Data

I ran this on unique non-contiguous shapes from torchbench/huggingface and got these speedups:
```
Parsed 420 unique shapes from benchmark output
addmm improvements when best:
  addmm_16448x512x2048: +0.14%
  addmm_128x2048x2048: +0.01%
  addmm_128x768x1000: +0.75%
  addmm_12672x3072x768: +1.08%
  addmm_512x768x32000: +0.62%
  addmm_12608x384x384: +0.00%
  addmm_4160x1024x4096: +0.90%
  addmm_16x768x2: +0.56%
  addmm_12608x3072x768: +0.09%
  addmm_64x4096x1000: +2.77%
  addmm_256x1024x512: +1.99%
  addmm_30x256x256: +1.12%
  addmm_100480x128x384: +0.91%
  addmm_6400x2048x512: +0.25%
  addmm_61568x1024x256: +0.08%
  addmm_1x768x768: +0.93%
  addmm_12544x384x384: +0.19%
  addmm_128x512x1000: +0.77%
  addmm_2048x128x128: +1.32%
  addmm_128x3072x1000: +0.24%
  addmm_7936x512x2048: +0.07%
  addmm_8192x512x2048: +0.33%
  addmm_64x1024x1000: +1.43%
  addmm_128x2304x1000: +0.01%
  addmm_32768x256x2: +0.75%
  addmm_64x384x1152: +0.79%
  addmm_64x640x1000: +0.01%
  addmm_100480x128x128: +0.87%
  addmm_1152x3072x768: +1.13%
  addmm_8192x256x2048: +1.40%
  addmm_4096x128x768: +0.01%
  addmm_128x2560x1000: +0.01%
  addmm_12544x2048x512: +0.43%
  addmm_200704x24x96: +0.14%
  addmm_8448x512x2048: +0.96%
  addmm_50176x256x1024: +0.62%
  addmm_4160x4096x1024: +0.22%
  addmm_4096x768x768: +0.32%
  addmm_220x2048x512: +0.56%
  addmm_8x2048x1000: +1.12%
  addmm_256x197951x512: +26.99%
  addmm_401536x64x192: +0.60%
  addmm_2040x2048x512: +0.47%
  addmm_512x1024x256: +1.32%
  addmm_128x4096x1000: +1.67%
  addmm_12672x768x768: +0.34%
  addmm_128x368x1000: +0.77%
  addmm_96x1280x1000: +0.01%
  addmm_12544x512x2048: +0.41%
  addmm_6272x320x1280: +0.76%
  addmm_12544x3072x768: +0.09%
  addmm_64x384x1000: +0.39%
mm improvements when best:
  mm_200704x128x512: +1.29%
  mm_663552x16x16: +0.80%
  mm_4096x768x768: +0.51%
  mm_131072x64x31: +0.24%
  mm_12544x1152x384: +0.11%
  mm_128x2048x2: +0.46%
  mm_262144x16x23: +0.62%
  mm_50176x576x192: +0.37%
  mm_131072x16x31: +0.26%
================================================================================
BENCHMARK ANALYSIS RESULTS
================================================================================

Operation: addmm
----------------------------------------
Total shapes analyzed: 247
Average Subgraph placement: 3.38
Median Subgraph placement: 2.0
Subgraph is best choice: 52/247 shapes (21.1%)
Average improvement when best: 1.15%
Median improvement when best: 0.58%
Largest improvement when best: +26.99%

Operation: bmm
----------------------------------------
Total shapes analyzed: 85
Average Subgraph placement: 24.00
Median Subgraph placement: 21.0
Subgraph is best choice: 0/85 shapes (0.0%)
Average improvement when best: N/A (never best)
Median improvement when best: N/A (never best)
Largest improvement when best: N/A (never best)

Operation: mm
----------------------------------------
Total shapes analyzed: 88
Average Subgraph placement: 15.08
Median Subgraph placement: 4.0
Subgraph is best choice: 9/88 shapes (10.2%)
Average improvement when best: 0.52%
Median improvement when best: 0.46%
Largest improvement when best: +1.29%

```

## Results

The largest shape gain, `256,197951,512`, seemed to be driven by a case where the extern kernel is way faster than the best triton configs on the recursive autotune:
```
addmm,Extern,extern_kernels.addmm,256,197951,512,0.38024500012397766
addmm,Triton,256,197951,512,32,256,16,2,2,4,2.005444049835205
addmm,Triton,256,197951,512,32,128,32,2,4,8,2.04189395904541
addmm,Triton,256,197951,512,64,128,16,2,4,8,2.1911399364471436
addmm,Triton,256,197951,512,64,128,32,2,4,8,2.496040105819702
addmm,Triton,256,197951,512,64,128,64,2,8,16,2.9306790828704834
addmm,Triton,256,197951,512,64,64,32,2,4,8,3.0347819328308105
...
```
Compared to the non-transposed autotune:
```
addmm,Subgraph,contiguous_addmm_1384,256,197951,512,0.5024129748344421
addmm,Extern,extern_kernels.addmm,256,197951,512,0.6881489753723145
addmm,Triton,256,197951,512,32,256,16,2,2,4,2.5115010738372803
addmm,Triton,256,197951,512,32,128,32,2,4,8,2.5167479515075684
addmm,Triton,256,197951,512,64,128,16,2,4,8,2.9507460594177246
addmm,Triton,256,197951,512,64,256,64,2,8,4,2.9673290252685547
addmm,Triton,256,197951,512,64,128,64,2,8,16,3.3906331062316895
addmm,Triton,256,197951,512,64,128,32,2,4,8,3.496859073638916
```

It seems to perform really well for high values of `K` vs `N` and `M`.
Testing this hypothesis with some custom shapes:
```
Parsed 64 unique shapes from benchmark output
addmm improvements when best:
  addmm_128x16384x128: +0.18%
  addmm_128x262144x256: +38.24%
  addmm_128x200000x512: +14.76%
  addmm_256x800000x128: +0.06%
  addmm_131072x128x256: +0.27%
  addmm_128x256x131072: +0.25%
  addmm_2048x200000x64: +12.45%
mm improvements when best:
  mm_128x16384x128: +0.18%
  mm_128x262144x256: +38.05%
  mm_128x200000x512: +9.47%
  mm_256x800000x128: +0.99%
  mm_512x6400000x256: +3.17%
  mm_524288x64x64: +0.29%
  mm_2048x200000x64: +11.19%
  mm_8192x1000000x256: +34.14%
  mm_128x4096x100000: +0.40%
  mm_128x3072x150000: +0.27%
================================================================================
BENCHMARK ANALYSIS RESULTS
================================================================================

Operation: addmm
----------------------------------------
Total shapes analyzed: 33
Average Subgraph placement: 4.39
Median Subgraph placement: 2.0
Subgraph is best choice: 7/33 shapes (21.2%)
Average improvement when best: 9.46%
Median improvement when best: 0.27%
Largest improvement when best: +38.24%

Operation: mm
----------------------------------------
Total shapes analyzed: 30
Average Subgraph placement: 7.63
Median Subgraph placement: 2.0
Subgraph is best choice: 10/30 shapes (33.3%)
Average improvement when best: 9.81%
Median improvement when best: 2.08%
Largest improvement when best: +38.05%

```
## Conclusion
Contiguous Subgraph Decompositionseems worthwhile for `mm` and `addmm`, but not `bmm`, and has a very large improvment on low `M`, low `N`, and high `K` shapes.

Data gathering scripts:
https://gist.github.com/exclamaforte/4a896c064d301b27bf5ca0a4f8fc3866

## Test Plan:
New unit tests.

Differential Revision: D80771648

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161241
Approved by: https://github.com/eellison
2025-09-03 17:02:59 +00:00
eb18d32bda Add range_iterator (#161800)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161800
Approved by: https://github.com/anijain2305
ghstack dependencies: #161799
2025-09-03 16:55:04 +00:00
889f01eb73 Add CPython test test_range (#161799)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161799
Approved by: https://github.com/anijain2305
2025-09-03 16:55:04 +00:00
451ed93156 [inductor] fix split_aot_inductor_output_path on Windows. (#162058)
fix split_aot_inductor_output_path on Windows.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162058
Approved by: https://github.com/angelayi
2025-09-03 16:53:38 +00:00
9491d289b3 Support generic dynamic shape with padding (#160997)
Summary:
Inductor has the following configurations:

config.comprehensive_padding
config.padding_alignment_bytes
config.padding_stride_threshold

In the case of static shape by enabling these three options Inductor will generate code for Flexible layout tensors that tries to pad up all stride dimension to be a multiple of config.padding_alignment_bytes for strides above: config.padding_stride_threshold. In the case where dynamic shapes is enabled no padding is done today.
This PR introduces the following configuration which allows the user to specify they wish to generated a padded stride even in the case of dynamic shape operations. This is mainly done so we don't break the previous behaviour of not padding up dynamic shape use cases. The config.padding_stride_threshold does not apply since the values of the strides are dynamic.

config.pad_dynamic_shapes

In addition to this a new mode "python_slow" has been added to launch grid calculation which achieves the same ceildiv behaviour that is generally applicable to integer division. This is done to prevent test regressions and make wrapper_fxir codegen more generic.

Test Plan:
CI

Rollback Plan:

Differential Revision: D80468808

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160997
Approved by: https://github.com/blaine-rister, https://github.com/jansel
2025-09-03 15:58:18 +00:00
c157cf6488 port distributed tensor parallel test files for Intel GPU (#161261)
In this pr, we port test/distributed/parallel 4 test files and test/distributed/debug 1 test file for Intel GPU
We could enable Intel GPU with following methods and try the best to keep the original code styles:

1. Use torch.accelerator for general gpu
2. Skip the case if running on xpu which has known issues

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161261
Approved by: https://github.com/guangyey, https://github.com/d4l3k
2025-09-03 15:03:32 +00:00
bb950284c7 Revert "[inductor][ez] add hook for heuristics to adjust kernel input nodes (#161339)"
This reverts commit 90f50f7e68e120d9574e6e3189e37b4280010ad9.

Reverted https://github.com/pytorch/pytorch/pull/161339 on behalf of https://github.com/jeanschmidt due to Breaks internal tests, check D81486248 for more details ([comment](https://github.com/pytorch/pytorch/pull/161339#issuecomment-3249600885))
2025-09-03 14:56:02 +00:00
f27985b7e7 Revert "[CUDAGraph] add config to error on skipping cudagraph (#161862)"
This reverts commit 204697f0e695d82894c5010fbec664c4391f90cc.

Reverted https://github.com/pytorch/pytorch/pull/161862 on behalf of https://github.com/jeanschmidt due to Breaks internal tests, see D81522732 for more details ([comment](https://github.com/pytorch/pytorch/pull/161862#issuecomment-3249582583))
2025-09-03 14:50:44 +00:00
0cd6c56bdf Revert "test: ensure editable cached wrapper is respected (#160943)"
This reverts commit bbedc71fd3267c639c38b4ec25eaa22f973d9c4d.

Reverted https://github.com/pytorch/pytorch/pull/160943 on behalf of https://github.com/jeanschmidt due to See [D81486248](https://www.internalfb.com/diff/D81486248) for details on broken test ([comment](https://github.com/pytorch/pytorch/pull/160943#issuecomment-3249565671))
2025-09-03 14:46:35 +00:00
b40d9432be [BE] Cleanup stale comments/copy from gemm (#162001)
Followup after https://github.com/pytorch/pytorch/pull/154012

Since the introduction of `gemm_no_downcast_stub` it's no longer necessary to allocate temporary array and then manually implement the `beta` logic in the codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162001
Approved by: https://github.com/drisspg
ghstack dependencies: #161999
2025-09-03 14:31:09 +00:00
02c83f1334 [BLAS] Avoid downcasts for fp16fp16->fp32 BLAS (#161999)
Followup after https://github.com/pytorch/pytorch/pull/154012

Fixes CPU part of https://github.com/pytorch/pytorch/issues/160841

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161999
Approved by: https://github.com/drisspg
2025-09-03 14:31:08 +00:00
aed33a8fcb [Inductor][Tritonparse] Get Inductor kernel params (#161953)
Summary: Save the config args that Inductor burns into `inductor_metadata` so we can optionally pass them to any Jit Hooks that are set. This allows us to pass them to Tritonparse.

Reviewed By: davidberard98, FindHao

Differential Revision: D80994791

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161953
Approved by: https://github.com/FindHao
2025-09-03 14:11:27 +00:00
b16d3f4c8c [AOTI] Fix a bug from load_constants (#161887)
Summary:
we have
```
std::vector<size_t> constants_internal_offset(
        num_constants - num_folded_constants);
```

but the for loop does not consider it
```
for (size_t i = 0; i < num_constants; i++) {
...
constants_internal_offset[i]
...
```
even in the for loop, it does
```
bool from_folded = this->constant_from_folded(i);
      if (from_folded) {
        continue;
      }
```
but `i` could still be wrong

Rollback Plan:

Differential Revision: D81425007

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161887
Approved by: https://github.com/angelayi
2025-09-03 07:45:16 +00:00
4ae57d448c Make distributed modules importable even when backend not built (#159889)
This PR is greatly simplified now that it stacked on top of a PR that builds with distributed always. We only need to stub functions that may not be defined due to a backend not being enabled.

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159889
Approved by: https://github.com/wconstab
ghstack dependencies: #160449
2025-09-03 07:33:55 +00:00
90b08643c3 Always build USE_DISTRIBUTED. (#160449)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
2025-09-03 07:33:55 +00:00
b0a3e58dd7 Add inline fast paths for SymInt operators (#161586)
If SymInt::maybe_as_int() returns non-empty, then we get an inline
fast path. The philosophy here (as with the previous PR) is to
preserve performance in the "plain old ints" case.

Observed time spent in SymInt functions in computeStorageNBytes to
drop (and not cost shift elsewhere in the function) after this change,
profiling detach() using code similar to the benchmark from #160580
and Linux perf.

Differential Revision: [D81530107](https://our.internmc.facebook.com/intern/diff/D81530107)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161586
Approved by: https://github.com/ezyang
ghstack dependencies: #161466
2025-09-03 06:54:47 +00:00
fa1514acf1 Outline SymInt::maybe_as_int_slow_path (#161466)
Keeps SymInt::maybe_as_int small enough to inline.

Differential Revision: [D81530097](https://our.internmc.facebook.com/intern/diff/D81530097)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161466
Approved by: https://github.com/ezyang
2025-09-03 06:54:47 +00:00
827f0d4054 Using get_paths() to get correct installation path for PYTHONPATY (#161947)
As the title stated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161947
Approved by: https://github.com/albanD
ghstack dependencies: #161845, #161903
2025-09-03 06:38:03 +00:00
2c03f0acc5 [MPS] enable cat op for sparse (#162007)
Enable cat op for sparse on MPS

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162007
Approved by: https://github.com/malfet
2025-09-03 06:31:35 +00:00
f8ffa9194e Perf nitpicks on python_arg_parser's is_int_or_symint_list (#161998)
This function has come up in DTensor perf work, and I had a nitpick on #160256 so here it is. I have neither compiled nor measured this, but am reasonably confident it's better nonetheless.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161998
Approved by: https://github.com/ezyang
2025-09-03 05:38:30 +00:00
50fc22dedf [Intel GPU] Fix XPU SDPA default priority_order UT fail (#161690)
Fixes #161483

When the whole `test/test_transformers.py` file is run, the case `test_default_priority_order` can pass because other xpu cases would call SDPA so that the priority order is set by eec876deb6/aten/src/ATen/native/mkldnn/xpu/Attention.cpp (L98-L112)

However, when the case `test_default_priority_order` is run separately, the priority order is unset so that this case would fail. This PR fix this case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161690
Approved by: https://github.com/guangyey, https://github.com/drisspg
2025-09-03 04:43:27 +00:00
e381d4b020 [DTensor] forbid view ops to redistribute when local split is impossible (#161950)
This PR is a followup to https://github.com/pytorch/pytorch/pull/149764.

In that PR, it only forbids illegal view due to `Flatten`; this PR also forbids illegal view caused by `Split`.

This PR also updates the error message to be less about internal implementation details, which users may find confusing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161950
Approved by: https://github.com/ezyang
2025-09-03 04:40:11 +00:00
8875d6e394 [vllm hash update] update the pinned vllm hash (#161929)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vllm hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161929
Approved by: https://github.com/pytorchbot
2025-09-03 04:26:38 +00:00
00636e0171 [Reland][Inductor] Prune configs that require more shared memory than the hardware limit. (#161996)
Summary:
This is a re-land of [PR161040](https://github.com/pytorch/pytorch/pull/161040), which had previously caused test failures on AMD GPUs. The tests are now configured to target only NVIDIA GPUs.

This diff removes configurations that exceed the hardware shared memory limit, which causes the following compilation error:
```
No valid triton configs. OutOfMemoryError: out of resource: triton_mm Required: 327680 Hardware limit:232448 Reducing block sizes or `num_stages` may help.
```

Test Plan:
```
pytest test/inductor/test_max_autotune.py
pytest test/inductor/test_triton_heuristics.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161996
Approved by: https://github.com/coconutruben
2025-09-03 04:23:09 +00:00
09d2f1b631 [audio hash update] update the pinned audio hash (#161928)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161928
Approved by: https://github.com/pytorchbot
2025-09-03 04:22:55 +00:00
dac8a4b91c Using pip3 install instead of python setup.py develop/install (#161903)
As the title stated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161903
Approved by: https://github.com/ezyang
ghstack dependencies: #161845
2025-09-03 03:12:18 +00:00
d789451ff6 [OpenReg] Migrate Accelerator Document from source/notes into source/accelerator (#161845)
As the tile stated.

As the document grows, the content will become more and more, so in order to make it easier for users to read and easier for developers to maintain, we have split this file into several separate files and placed them in a dedicated directory called "accelerator".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161845
Approved by: https://github.com/albanD
2025-09-03 03:12:18 +00:00
0447f2d99b build: Add fallback commands to setup.py (#162009)
Adds fallback commands for the following:
* python setup.py install
* python setup.py develop

Ideally these should just work and should provide backwards compat.

Thought process here is that multiple people rely on these commands and just because setuptools wants to drop support for this I don't think a lot of our downstream users who build from source are expecting these to be gone.

This should provide some room for developers to move away from these commands until we have a unified frontend for doing all of these commands that should abstract most of these away.

Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162009
Approved by: https://github.com/clee2000, https://github.com/atalman
2025-09-03 02:56:10 +00:00
d5643e8f3a [dynamo, nested graph breaks] support nested graph breaks that cause skipped frames (#160470)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160470
Approved by: https://github.com/anijain2305
ghstack dependencies: #159329, #159678, #159817, #160138, #159786
2025-09-03 02:47:07 +00:00
9b81fe281d [c10d] Lessen density of barrier warning (#162015)
Warnings are great, but too dense when there are many ranks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162015
Approved by: https://github.com/d4l3k, https://github.com/H-Huang
2025-09-03 02:20:54 +00:00
90f50f7e68 [inductor][ez] add hook for heuristics to adjust kernel input nodes (#161339)
# why

- some templates e.g. scale_mm need to unsqueeze/squeeze the nodes
  for codegen and heuristics

- unified place where we can just adjust them for the template

# what

- inside get_mm_configs, return not the passed in kernel inputs,
  but allow the template heuristic to adjust them if necessary

- the default implementation right now just passes them back

this diff just adds the functionality, but does not exercise it
other than the default (passthrough)

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520572](https://our.internmc.facebook.com/intern/diff/D81520572)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161339
Approved by: https://github.com/eellison, https://github.com/jansel
ghstack dependencies: #161123, #161124, #161125, #161126, #161336, #161338
2025-09-03 01:03:57 +00:00
877062c9d3 [inductor][choices][ez] pass through layout and input_nodes (#161338)
# why

- params already available in get_mm_configs
- simplifies the code
- adds a possibility to edit the nodes/layout in
  a centralized place

# what

- add layout and input_nodes into extra_kwargs
- no other modifications

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520575](https://our.internmc.facebook.com/intern/diff/D81520575)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161338
Approved by: https://github.com/jansel, https://github.com/eellison
ghstack dependencies: #161123, #161124, #161125, #161126, #161336
2025-09-03 01:03:57 +00:00
c31dee6fa5 [inductor][ez] ExternChoice with maybe_append_choice (#161336)
# why

- make the API for ExternChoice the same as KernelTemplate
- make it possible to use the same retrieval point as templates

# what

- add a maybe_append_choice to ExternChoice that under the hood
  invokes self.bind

This pr does not actuate the new path, but just exposes it

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py
```

Differential Revision: [D81520578](https://our.internmc.facebook.com/intern/diff/D81520578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161336
Approved by: https://github.com/jansel
ghstack dependencies: #161123, #161124, #161125, #161126
2025-09-03 01:03:57 +00:00
6cb13dd3cc [inductor] move scaled_mm template args into heuristics (#161126)
# why

- another step towards get_mm_configs providing
  all the kwargs needed to add a choice from
  a template. This in turn will allow us to send
  all templates through one single call, and handle modifications

# what

- use the infrastructure for template heuristics to provide extra kwargs
  that are fixed for a template/op pair to provide the suffix args
  and epilogue function/fn for scaled_mm

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D80670914](https://our.internmc.facebook.com/intern/diff/D80670914)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161126
Approved by: https://github.com/jansel
ghstack dependencies: #161123, #161124, #161125
2025-09-03 01:03:57 +00:00
cbf01c11ff [inductor] move addmm/baddbmm template args into heuristics (#161125)
# why

- another step towards get_mm_configs providing
  all the kwargs needed to add a choice from
  a template. This in turn will allow us to send
  all templates through one single call, and handle modifications

# what

- use the infrastructure for template heuristics to provide extra kwargs
  that are fixed for a template/op pair to provide the prefix args
  and epilogue function/fn for addmm/baddbmm

- expand kernelinputs to also be able to shuttle around non tensor
  inputs (scalars) as is needed for alpha and beta

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v -k addmm
```

Differential Revision: [D80670912](https://our.internmc.facebook.com/intern/diff/D80670912)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161125
Approved by: https://github.com/jansel
ghstack dependencies: #161123, #161124
2025-09-03 01:03:57 +00:00
7cdfa520a6 [inductor] move tma workspace in heuristics (#161124)
# why

- another step towards get_mm_configs providing
  all the kwargs needed to add a choice from
  a template. This in turn will allow us to send
  all templates through one single call, and handle modifications

# what

use the infrastructure for template heuristics to provide extra kwargs
that are fixed for a template/op pair to provide the workspace_arg for
all the tma templates

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v -k tma
```

Differential Revision: [D80670915](https://our.internmc.facebook.com/intern/diff/D80670915)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161124
Approved by: https://github.com/jansel
ghstack dependencies: #161123
2025-09-03 01:03:57 +00:00
1485ac3264 [inductor] add notion of extra_kwargs for mm_configs (#161123)
# why

- some kwargs are choice independent but rather
  always the same for a specific op or template
- this enables us to track those differently than the
  choice ones, and thus enables interception of them
  cleaner
- maybe_append_choices can then be simplified to
  just pass through the kwargs

# what

- hookup for template heuristics to have per template/op extra
  kwargs that are always the same, for all choices
- hookup for the called to get_mm_configs to provide template/op
  kwargs to override some of the template/choice kwargs

this pr does not use the new machinery, and everything is empty
for now. subsequent prs start using it to simplify ops

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D80670916](https://our.internmc.facebook.com/intern/diff/D80670916)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161123
Approved by: https://github.com/jansel
2025-09-03 01:03:57 +00:00
c5b8a10be5 Fix compiler errors in 3.14 stub definitions (#161792)
The functions here expect to return pointers, but currently aren't returning anything.  Make them return NULL.

The properties array wants an extra set of braces.  One pair for the array, another for the first item in the array.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161792
Approved by: https://github.com/Skylion007
2025-09-03 00:58:41 +00:00
a02ee4a816 [SymmMem] Use non-blocking version of getmem (#162006)
As titled, so that the `getmem` calls in the loop are non-blocking, so that we max out the issuance rate.
Also had a single `nvshmem_quiet()` at the end to make sure all the getmem calls complete.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162006
Approved by: https://github.com/ngimel
2025-09-02 23:55:22 +00:00
81b7b16618 Reland "[Fix XPU CI][Inductor UT] Fix test cases broken by community. (#161142)" (#161949)
This PR reland #161142 which is reverted to be able to revert other PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161949
Approved by: https://github.com/jansel
2025-09-02 23:43:27 +00:00
4cdaf8265d Revert "Update Kineto submodule (#161572)"
This reverts commit d33840c542b387ab08ba49aa6c45aa9567fd9be7.

Reverted https://github.com/pytorch/pytorch/pull/161572 on behalf of https://github.com/seemethere due to This appears as though its causing downstream build failures in inductor workflows and for developers working locally. Going to revert out of an abundance of caution. ([comment](https://github.com/pytorch/pytorch/pull/161572#issuecomment-3247121981))
2025-09-02 23:28:19 +00:00
874069fbe4 Log Const Folded Node (#161827)
Summary: Log folded nodes for easier debugging.

Test Plan:
sandcastle.

Rollback Plan:

Reviewed By: henryoier

Differential Revision: D81352098

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161827
Approved by: https://github.com/henryoier, https://github.com/yewentao256
2025-09-02 23:23:51 +00:00
ab643e4dbb [SymmMem] Increase minimum nthreads to cover sync needs in NVL72 (#161983)
`sync_remote_blocks` maps threads to peers. Previously min nthreads is warp size, which is too small to cover NVL72. Bumping it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161983
Approved by: https://github.com/ngimel
2025-09-02 23:18:08 +00:00
5a2da090ed [SymmMem] Make sure CUDA runtime is initialized before NVSHMEM init (#161232)
Previously, without calling `torch.empty` before NVSHMEM init, we see error below:
```
src/host/init/init.cu:nvshmemi_check_state_and_init:1117: nvshmem initialization failed, exiting
src/host/util/cs.cpp:21: non-zero status: 16: Device or resource busy, exiting... mutex destroy failed
```
Fixing it by calling a `cudaFree(nullptr)` to make sure CUDA runtime is initialized before NVSHMEM init.
Removing all `torch.empty(1)` calls from tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161232
Approved by: https://github.com/ngimel
ghstack dependencies: #161214
2025-09-02 22:53:28 +00:00
bd39e47fee [ONNX] Default to dynamo export (#159646)
Set dynamo=True and enable fallback.

1. Implemented the compatible behavior where BytesIO objects as `f` is accepted
2. Update tests to explicitly set dynamo=False

#151693

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159646
Approved by: https://github.com/titaiwangms
2025-09-02 22:45:55 +00:00
e4bd0ff4f8 [aot precompile] Handle closure variables. (#161990)
We previously assume aot precompile should only work on non closures. This is hard to enforce in practice because we will see a lot of cases with decorater (e.g. hugging face models)
```
def check_inputs(fn):
    def _fn(self, *args, **kwargs):
        for arg in args:
            assert arg.shape[0] > 1

        return fn(*args, **kwargs)
    return _fn

@check_inputs
def foo(x, y):
    a = x + x
    b = y + y
    c = a + b
    return c
```
It doesn't make sense to not support these cases since they are straightfowrad to do.

This PR adds the logic to handle closure and make sure they can be precompiled properly.

Differential Revision: [D81509535](https://our.internmc.facebook.com/intern/diff/D81509535/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161990
Approved by: https://github.com/angelayi
2025-09-02 22:26:04 +00:00
15c77a8cfd Revert "Add inductor provenance mapping for cpp extern kernel (#161656)"
This reverts commit 5e5870e858f60ff4bf87d03f3592097e934a9580.

Reverted https://github.com/pytorch/pytorch/pull/161656 on behalf of https://github.com/jeffdaily due to causing failures on ROCm MI300, will add label to PR ([comment](https://github.com/pytorch/pytorch/pull/161656#issuecomment-3246965676))
2025-09-02 22:19:19 +00:00
791eff96c8 [MPS] Add igamma/igammac ops (#161927)
Fixes #161725

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161927
Approved by: https://github.com/malfet
2025-09-02 20:52:02 +00:00
80dd397f19 Argsort doc stable kwargs (#161986)
Fixes #129311

Updated torch.argsort documentation to reflect that the 'stable' parameter is a keyword argument and not a normal parameter.

@albanD, @soulitzer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161986
Approved by: https://github.com/soulitzer
2025-09-02 20:42:53 +00:00
a75e8cd270 Add api info for torch._C._nn.pyi (#161958)
Fix part of #148404

APis involved are as followed:

- max_pool2d_with_indices
- max_pool3d_with_indices
- elu
- glu
- max_unpool2d
- max_unpool3d
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161958
Approved by: https://github.com/ezyang
2025-09-02 20:39:20 +00:00
4e42aa8ffc Revert "Always build USE_DISTRIBUTED. (#160449)"
This reverts commit b7034e9c924412bfbe8ee25a22d7e95239b5ca65.

Reverted https://github.com/pytorch/pytorch/pull/160449 on behalf of https://github.com/jeanschmidt due to Breaking internal builds, can't be landed with forward fix due to internal tooling problems ([comment](https://github.com/pytorch/pytorch/pull/160449#issuecomment-3246689684))
2025-09-02 20:28:42 +00:00
420c52ecf3 Revert "Make distributed modules importable even when backend not built (#159889)"
This reverts commit 626cb7df8161dd4ecb4fe43b60f37ce9076f56b1.

Reverted https://github.com/pytorch/pytorch/pull/159889 on behalf of https://github.com/jeanschmidt due to Breaking internal builds, can't be landed with forward fix due to internal tooling problems ([comment](https://github.com/pytorch/pytorch/pull/159889#issuecomment-3246677982))
2025-09-02 20:24:01 +00:00
82f63c8f6d Revert "[HOTFIX] Disable DISTRIBUTED_C10D_DIRECT_ACCESS for now (#161946)"
This reverts commit 5561e45758d59c94605873d5db48ed459c004c3b.

Reverted https://github.com/pytorch/pytorch/pull/161946 on behalf of https://github.com/jeanschmidt due to Need to be reverted so https://github.com/pytorch/pytorch/pull/159889 can be ([comment](https://github.com/pytorch/pytorch/pull/161946#issuecomment-3246663376))
2025-09-02 20:18:52 +00:00
b4ad38279b [AOTI] Add Windows-compatible implementation of the mmap-related funcs (#161805)
Add Windows-compatible implementation of the mmap-related functions.

These code was validated on the small developing project: https://github.com/xuhancn/cross_os_mmap?tab=readme-ov-file#cross_os_mmap

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161805
Approved by: https://github.com/angelayi
2025-09-02 20:07:41 +00:00
ef8aabd424 [CD][CUDA13][ARM] aarch64 binary seems to be missing Triton dependency (#161833)
Requires: filelock, fsspec, jinja2, networkx, setuptools, sympy, typing-extensions

Seems to be missing Triton.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161833
Approved by: https://github.com/tinglvv, https://github.com/Skylion007, https://github.com/atalman
2025-09-02 19:31:14 +00:00
dcf385395d [MPS] Move sparsemps testing from test_mps to test_sparse (#161852)
Moves Sparse MPS testing from test_mps to test_sparse. Lots of skips now but I expect to remove them iteratively once ops are implemented

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161852
Approved by: https://github.com/malfet
2025-09-02 19:04:11 +00:00
600c25e9a1 [dynamo] Graph break on torch.cuda.sychronize (#161925)
Today, AOTDispatcher ignores cuda.synchornize. Even if we wrap it in
some  HOP, we need it to be a barrier op to prevent any inductor
reordering. So graph breaking.

Fixes https://github.com/pytorch/pytorch/issues/160751

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161925
Approved by: https://github.com/zou3519, https://github.com/jansel, https://github.com/mlazos
2025-09-02 19:00:21 +00:00
f981a7fa52 [SymmMem] Add device guard before alloc (#161214)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161214
Approved by: https://github.com/ngimel
2025-09-02 18:53:45 +00:00
b7e207ca9f Make error message descriptive (#150627) (#159423)
Summary:

Adding the number of locals shards to error messages makes it easier to debug.

Test Plan: UT

Differential Revision: D72396478

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159423
Approved by: https://github.com/Saiteja64
2025-09-02 17:54:39 +00:00
5e5870e858 Add inductor provenance mapping for cpp extern kernel (#161656)
Summary: Add inductor provenance mapping for cpp extern kernel

Test Plan:

```
buck run fbcode//caffe2/test/inductor:provenance_tracing --  -r test_cpu_extern_kernel
```

Differential Revision: D81161751

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161656
Approved by: https://github.com/angelayi
2025-09-02 17:54:04 +00:00
a99d8d39bc Update torch-xpu-ops commit pin (#161919)
# Motivation
1. Fallback some linalg functionality such as `linalg_eig`, `linalg_householder_product`, `linalg_solve_triangular` to CPU;
2. Fix codegen dependency bug.

# Additional Context
This PR aims to fix https://github.com/pytorch/pytorch/issues/161498

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161919
Approved by: https://github.com/EikanWang
2025-09-02 17:09:07 +00:00
d6b74568e2 Revert "Add __init__.pyi to torch/linalg (#160750)"
This reverts commit 9a665ca3c472384e9d722bddba79e5a7680f1abd.

Reverted https://github.com/pytorch/pytorch/pull/160750 on behalf of https://github.com/jeanschmidt due to Seems that those errors are legitimate, and there is no test plan. I'll be proceeding with a revert ([comment](https://github.com/pytorch/pytorch/pull/160750#issuecomment-3246095383))
2025-09-02 16:53:55 +00:00
d33840c542 Update Kineto submodule (#161572)
Differential Revision: D81087601

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161572
Approved by: https://github.com/cyyever, https://github.com/aaronenyeshi
2025-09-02 16:31:55 +00:00
f0c391102b [ONNX] Remove private members from torch.onnx (#161546)
Remove import of two functions

- _run_symbolic_function
- _run_symbolic_method

to the `torch.onnx` namespace.

Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161546
Approved by: https://github.com/titaiwangms
ghstack dependencies: #161323, #161449
2025-09-02 16:31:23 +00:00
a8d6943d36 ROCm: Enable overload tests from test_matmul_cuda (#161540)
This patch enables hipblaslt backend tests for test_mm_bmm_dtype_overload and test_addmm_baddmm_dtype_overload.
Tests were disabled as part of #150812
Rocblas backend tests are not enabled yet, WIP.

Test command
PYTORCH_TEST_WITH_ROCM=1 pytest test/test_matmul_cuda.py -k 'test_mm_bmm_dtype_overload' -v PYTORCH_TEST_WITH_ROCM=1 pytest test/test_matmul_cuda.py -k 'test_addmm_baddmm_dtype_overload' -v

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161540
Approved by: https://github.com/jeffdaily
2025-09-02 16:27:42 +00:00
d11720efdb [ONNX] Remove unused logic from internal verification module (#161449)
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161449
Approved by: https://github.com/xadupre, https://github.com/titaiwangms
ghstack dependencies: #161323
2025-09-02 16:22:49 +00:00
9a1c5c0a07 Detect torch function in lists as well (#160256)
We basically follow the same pattern we do for tensor arguments. The major downside is we now have to traverse the entirety of the int list / etc where previously we didn't have. Benchmark suggests 2% regression for relevant things.

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160256
Approved by: https://github.com/albanD
2025-09-02 16:22:42 +00:00
524b78d4f6 [ONNX] Refactor torchscript based exporter (#161323)
Refactor torchscript based exporter logic to move them to a single (private) location for better code management. Original public module and method apis are preserved.

- Updated module paths in `torch/csrc/autograd/python_function.cpp` accordingly
- Removed `check_onnx_broadcast` from `torch/autograd/_functions/utils.py` because it is private&unused

@albanD / @soulitzer could you review changes in `torch/csrc/autograd/python_function.cpp` and
`torch/autograd/_functions/utils.py`? Thanks!

## BC Breaking
- **Deprecated members in `torch.onnx.verification` are removed**

Differential Revision: [D81236421](https://our.internmc.facebook.com/intern/diff/D81236421)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161323
Approved by: https://github.com/titaiwangms, https://github.com/angelayi
2025-09-02 16:10:30 +00:00
793fc12aff [CD] Fix setup-xpu action issue (#161934)
Fix XPU CD test failure, refer https://github.com/pytorch/pytorch/actions/runs/17370923627/job/49315624191
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161934
Approved by: https://github.com/atalman
2025-09-02 16:03:44 +00:00
204697f0e6 [CUDAGraph] add config to error on skipping cudagraph (#161862)
Many users want a config to force all cuda ops captured by cudagraph. When not possible, pt2 should error.

This PR adds `torch._inductor.triton.cudagraph_or_error` for that (default as False). Also added an environment variable `TORCHINDUCTOR_CUDAGRAPH_OR_ERROR` to control.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161862
Approved by: https://github.com/ezyang
2025-09-02 15:28:22 +00:00
789d494212 Defer loading hipify until it is needed (#160824)
Saves a few milliseconds when running a test case:

Before:
```
$ PYTORCH_TEST_WITH_DYNAMO=1 python test/dynamo/cpython/3_13/test_float.py GeneralFloatCases.test_float_pow
frames [('total', 1), ('ok', 1)]
inline_call []
.
----------------------------------------------------------------------
Ran 1 test in 1.497s
```

After:
```
$ PYTORCH_TEST_WITH_DYNAMO=1 python test/dynamo/cpython/3_13/test_float.py GeneralFloatCases.test_float_pow
frames [('total', 1), ('ok', 1)]
inline_call []
.
----------------------------------------------------------------------
Ran 1 test in 0.909s
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160824
Approved by: https://github.com/zou3519
2025-09-02 15:27:37 +00:00
bc4db2c27f CUDA 13 -- sm_120 -- Nvidia 5090 -- ptxas warning : Value of threads … (#161380)
bug fix:

i have opened a issue ( https://github.com/pytorch/pytorch/issues/161376 ) and i suggest this bug fix.

In this metod compile fine.

Fixes #161376

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161380
Approved by: https://github.com/eqy, https://github.com/malfet

Co-authored-by: Aidyn-A <31858918+Aidyn-A@users.noreply.github.com>
2025-09-02 13:27:57 +00:00
e304ea4e69 Revert "[BE] Update xpu driver repo for CD used almalinux 8.10 (#157356)"
This reverts commit c78bbdf4102d2c13bf6aa1abe4352aa7bca401ca.

Reverted https://github.com/pytorch/pytorch/pull/157356 on behalf of https://github.com/chuanqi129 due to This PR has performance regression on some workloads ([comment](https://github.com/pytorch/pytorch/pull/157356#issuecomment-3245319046))
2025-09-02 13:20:38 +00:00
1f820de639 [ci] Increase shards for linux-jammy-py3.10-clang18-asan on pull.yml to 7 (#161968)
[ci] Increase shards for linux-jammy-py3.10-clang18-asan to 7
2025-09-02 14:08:47 +02:00
fca2601c9d Improve error message for unsupported padding config (#160866)
Fixes #160053

The previous error message `Only 2D, 3D, 4D, 5D padding with non-constant  padding are supported for now`  was not clear

now we have

```
python3
Python 3.13.5 | packaged by conda-forge | (main, Jun 16 2025, 08:27:50) [GCC 13.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
... import torch.nn.functional as F
... a = torch.empty(2,2,2,2)
... F.pad(a, (1,1), mode="circular")
...
Traceback (most recent call last):
  File "<python-input-0>", line 4, in <module>
    F.pad(a, (1,1), mode="circular")
    ~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/rrathaur/Desktop/pytorch/torch/nn/functional.py", line 5294, in pad
    return torch._C._nn.pad(input, pad, mode, value)
           ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^
NotImplementedError: Padding size 2 is not supported for 4D input tensor.
Supported combinations for non-constant padding:
  - 2D or 3D input: padding size = 2 (pads last dimension)
  - 3D or 4D input: padding size = 4 (pads last 2 dimensions)
  - 4D or 5D input: padding size = 6 (pads last 3 dimensions)
>>>
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160866
Approved by: https://github.com/mikaylagawarecki
2025-09-02 07:15:59 +00:00
f8746b878d Add uuid to XPU device properties (#161392)
# Motivation
Fix https://github.com/intel/torch-xpu-ops/issues/1955
Refer to https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_intel_device_info.md#device-uuid, `ext::intel::info::device::uuid` returns `std::array<unsigned char, 16>` as the UUID.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161392
Approved by: https://github.com/EikanWang, https://github.com/albanD
2025-09-02 06:41:32 +00:00
8703debf66 [DTensor] select strategy with no redistribute when redistribute cost is 0 (#161882)
Before this PR, the `_select_strategy` always selects the first strategy with minimum redistribute cost. This causes unexpected behavior when
- multiple strategies have 0 redistribute costs
- the first one with 0 redistribute cost may perform local chunking

E.g. in memory efficient SDPA, the default orders of candidate strategies have a `Shard(2)` one before the `Replicate()` one. https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/_ops/_matrix_ops.py#L500-L512
When the input is `Replicate()`, `_select_strategy` will pick the `Shard(2)` strategy and do local chunking first, before local computation. This is clearly unexpected to users.

In this PR, we improve `_select_strategy` so that when multiple strategies have 0 redistribute cost, we prioritize the one which keeps input unchanged.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161882
Approved by: https://github.com/ezyang
2025-09-02 05:41:56 +00:00
1aeb421c34 Make pattern matcher resilient to ddes (#161843)
Motivated by the following discord support chat: https://discord.com/channels/1189498204333543425/1409578286186758195

```
import torch
@torch.compile(fullgraph=True, mode='reduce-overhead')
def get_mask(W: torch.Tensor, percentage_nonzeros: torch.Tensor):
    total_elements = W.numel()
    k = int(total_elements * percentage_nonzeros)
    top_k_indices = torch.topk(torch.abs(W).flatten(), k)[1]
    mask = torch.zeros(total_elements, dtype=torch.bool, device=W.device)
    mask.scatter_(0, top_k_indices, True)
    mask = mask.view(W.shape)
    return mask

x = torch.randn((128, 64), device='cuda')
p = torch.tensor(0.50, device='cuda')
get_mask(x, p)
```

Results in

```
InductorError: GuardOnDataDependentSymNode: Could not guard on data-dependent expression Eq(TruncToInt(zuf0), 1) (unhinted: Eq(TruncToInt(zuf0), 1)).  (Size-like symbols: none)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161843
Approved by: https://github.com/ezyang
2025-09-02 05:16:13 +00:00
5561e45758 [HOTFIX] Disable DISTRIBUTED_C10D_DIRECT_ACCESS for now (#161946)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161946
Approved by: https://github.com/msaroufim
2025-09-02 05:01:46 +00:00
8171d6052e Clear custom autograd Function ctx.to_save earlier (#161171)
Fixes https://github.com/pytorch/pytorch/issues/161186

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161171
Approved by: https://github.com/albanD
2025-09-02 03:26:31 +00:00
1155 changed files with 50026 additions and 33735 deletions

View File

@ -3,12 +3,13 @@ set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
if [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
# Set CUDA architecture lists to match x86 build_cuda.sh
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
fi
if [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0"
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
fi
# Compress the fatbin with -compress-mode=size for CUDA 13
@ -27,7 +28,7 @@ cd /
# on the mounted pytorch repo
git config --global --add safe.directory /pytorch
pip install -r /pytorch/requirements.txt
pip install auditwheel==6.2.0
pip install auditwheel==6.2.0 wheel
if [ "$DESIRED_CUDA" = "cpu" ]; then
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
@ -35,6 +36,16 @@ if [ "$DESIRED_CUDA" = "cpu" ]; then
else
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
export USE_SYSTEM_NCCL=1
# Check if we should use NVIDIA libs from PyPI (similar to x86 build_cuda.sh logic)
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling CUDA libraries with wheel for aarch64."
else
echo "Using nvidia libs from pypi for aarch64."
echo "Updated PYTORCH_EXTRA_INSTALL_REQUIREMENTS for aarch64: $PYTORCH_EXTRA_INSTALL_REQUIREMENTS"
export USE_NVIDIA_PYPI_LIBS=1
fi
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
fi

View File

@ -69,83 +69,186 @@ def replace_tag(filename) -> None:
f.writelines(lines)
def patch_library_rpath(
folder: str,
lib_name: str,
use_nvidia_pypi_libs: bool = False,
desired_cuda: str = "",
) -> None:
"""Apply patchelf to set RPATH for a library in torch/lib"""
lib_path = f"{folder}/tmp/torch/lib/{lib_name}"
if use_nvidia_pypi_libs:
# For PyPI NVIDIA libraries, construct CUDA RPATH
cuda_rpaths = [
"$ORIGIN/../../nvidia/cudnn/lib",
"$ORIGIN/../../nvidia/nvshmem/lib",
"$ORIGIN/../../nvidia/nccl/lib",
"$ORIGIN/../../nvidia/cusparselt/lib",
]
if "130" in desired_cuda:
cuda_rpaths.append("$ORIGIN/../../nvidia/cu13/lib")
else:
cuda_rpaths.extend(
[
"$ORIGIN/../../nvidia/cublas/lib",
"$ORIGIN/../../nvidia/cuda_cupti/lib",
"$ORIGIN/../../nvidia/cuda_nvrtc/lib",
"$ORIGIN/../../nvidia/cuda_runtime/lib",
"$ORIGIN/../../nvidia/cufft/lib",
"$ORIGIN/../../nvidia/curand/lib",
"$ORIGIN/../../nvidia/cusolver/lib",
"$ORIGIN/../../nvidia/cusparse/lib",
"$ORIGIN/../../nvidia/nvtx/lib",
"$ORIGIN/../../nvidia/cufile/lib",
]
)
# Add $ORIGIN for local torch libs
rpath = ":".join(cuda_rpaths) + ":$ORIGIN"
else:
# For bundled libraries, just use $ORIGIN
rpath = "$ORIGIN"
if os.path.exists(lib_path):
os.system(
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '{rpath}' --force-rpath {lib_name}"
)
def copy_and_patch_library(
src_path: str,
folder: str,
use_nvidia_pypi_libs: bool = False,
desired_cuda: str = "",
) -> None:
"""Copy a library to torch/lib and patch its RPATH"""
if os.path.exists(src_path):
lib_name = os.path.basename(src_path)
shutil.copy2(src_path, f"{folder}/tmp/torch/lib/{lib_name}")
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"""
Package the cuda wheel libraries
"""
folder = os.path.dirname(wheel_path)
wheelname = os.path.basename(wheel_path)
os.mkdir(f"{folder}/tmp")
os.system(f"unzip {wheel_path} -d {folder}/tmp")
# Common libraries for all CUDA versions
common_libs = [
# Non-NVIDIA system libraries
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
# Common CUDA libraries (same for all versions)
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
"/usr/local/cuda/lib64/libcusparse.so.12",
]
# Delete original wheel since it will be repackaged
os.system(f"rm {wheel_path}")
# CUDA version-specific libraries
if "130" in desired_cuda:
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
"/usr/local/cuda/lib64/libcublas.so.13",
"/usr/local/cuda/lib64/libcublasLt.so.13",
"/usr/local/cuda/lib64/libcudart.so.13",
"/usr/local/cuda/lib64/libcufft.so.12",
"/usr/local/cuda/lib64/libcusolver.so.12",
"/usr/local/cuda/lib64/libnvJitLink.so.13",
"/usr/local/cuda/lib64/libnvrtc.so.13",
"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.0",
]
elif "12" in desired_cuda:
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
"/usr/local/cuda/lib64/libcudart.so.12",
"/usr/local/cuda/lib64/libcufft.so.11",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
# Check if we should use PyPI NVIDIA libraries or bundle system libraries
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
if use_nvidia_pypi_libs:
print("Using nvidia libs from pypi - skipping CUDA library bundling")
# For PyPI approach, we don't bundle CUDA libraries - they come from PyPI packages
# We only need to bundle non-NVIDIA libraries
minimal_libs_to_copy = [
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
# Combine all libraries
libs_to_copy = common_libs + version_specific_libs
# Copy minimal libraries to unzipped_folder/torch/lib
for lib_path in minimal_libs_to_copy:
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
# Copy libraries to unzipped_folder/a/lib
for lib_path in libs_to_copy:
lib_name = os.path.basename(lib_path)
shutil.copy2(lib_path, f"{folder}/tmp/torch/lib/{lib_name}")
os.system(
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
)
# Patch torch libraries used for searching libraries
torch_libs_to_patch = [
"libtorch.so",
"libtorch_cpu.so",
"libtorch_cuda.so",
"libtorch_cuda_linalg.so",
"libtorch_global_deps.so",
"libtorch_python.so",
"libtorch_nvshmem.so",
"libc10.so",
"libc10_cuda.so",
"libcaffe2_nvrtc.so",
"libshm.so",
]
for lib_name in torch_libs_to_patch:
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
else:
print("Bundling CUDA libraries with wheel")
# Original logic for bundling system CUDA libraries
# Common libraries for all CUDA versions
common_libs = [
# Non-NVIDIA system libraries
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
# Common CUDA libraries (same for all versions)
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
"/usr/local/cuda/lib64/libcusparse.so.12",
]
# CUDA version-specific libraries
if "13" in desired_cuda:
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
"/usr/local/cuda/lib64/libcublas.so.13",
"/usr/local/cuda/lib64/libcublasLt.so.13",
"/usr/local/cuda/lib64/libcudart.so.13",
"/usr/local/cuda/lib64/libcufft.so.12",
"/usr/local/cuda/lib64/libcusolver.so.12",
"/usr/local/cuda/lib64/libnvJitLink.so.13",
"/usr/local/cuda/lib64/libnvrtc.so.13",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.{minor_version}",
]
elif "12" in desired_cuda:
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
"/usr/local/cuda/lib64/libcudart.so.12",
"/usr/local/cuda/lib64/libcufft.so.11",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
]
else:
raise ValueError(f"Unsupported CUDA version: {desired_cuda}.")
# Combine all libraries
libs_to_copy = common_libs + version_specific_libs
# Copy libraries to unzipped_folder/torch/lib
for lib_path in libs_to_copy:
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
# Make sure the wheel is tagged with manylinux_2_28
for f in os.scandir(f"{folder}/tmp/"):
@ -153,14 +256,8 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
replace_tag(f"{f.path}/WHEEL")
break
os.mkdir(f"{folder}/cuda_wheel")
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
shutil.move(
f"{folder}/cuda_wheel/{wheelname}",
f"{folder}/{wheelname}",
copy_function=shutil.copy2,
)
os.system(f"rm -rf {folder}/tmp/ {folder}/cuda_wheel/")
os.system(f"wheel pack {folder}/tmp/ -d {folder}")
os.system(f"rm -rf {folder}/tmp/")
def complete_wheel(folder: str) -> str:
@ -183,14 +280,7 @@ def complete_wheel(folder: str) -> str:
f"/{folder}/dist/{repaired_wheel_name}",
)
else:
repaired_wheel_name = wheel_name.replace(
"linux_aarch64", "manylinux_2_28_aarch64"
)
print(f"Renaming {wheel_name} wheel to {repaired_wheel_name}")
os.rename(
f"/{folder}/dist/{wheel_name}",
f"/{folder}/dist/{repaired_wheel_name}",
)
repaired_wheel_name = list_dir(f"/{folder}/dist")[0]
print(f"Copying {repaired_wheel_name} to artifacts")
shutil.copy2(
@ -232,6 +322,16 @@ if __name__ == "__main__":
if enable_cuda:
build_vars += "MAX_JOBS=5 "
# Handle PyPI NVIDIA libraries vs bundled libraries
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
if use_nvidia_pypi_libs:
print("Configuring build for PyPI NVIDIA libraries")
# Configure for dynamic linking (matching x86 logic)
build_vars += "ATEN_STATIC_CUDA=0 USE_CUDA_STATIC_LINK=0 USE_CUPTI_SO=1 "
else:
print("Configuring build for bundled NVIDIA libraries")
# Keep existing static linking approach - already configured above
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
desired_cuda = os.getenv("DESIRED_CUDA")
if override_package_version is not None:

View File

@ -56,9 +56,13 @@ ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
RUN mkdir ci_commit_pins
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/rocm-composable-kernel.txt ci_commit_pins/rocm-composable-kernel.txt
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
RUN rm install_rocm.sh common_utils.sh
RUN rm -r ci_commit_pins
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh ${ROCM_VERSION}
RUN rm install_rocm_magma.sh

View File

@ -0,0 +1 @@
7fe50dc3da2069d6645d9deb8c017a876472a977

View File

@ -1 +1 @@
d0e80f39c562c70986fc548fa6e5852ad86e16e7
1b0418a9a454b2b93ab8d71f40e59d2297157fae

View File

@ -1 +1 @@
f7888497a1eb9e98d4c07537f0d0bcfe180d1363
70cbcaca84471df49e81ddc56873c9241b671f8d

View File

@ -83,9 +83,9 @@ function build_cpython {
py_suffix=${py_ver::-1}
py_folder=$py_suffix
fi
# Only b3 is available now
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
if [ "$py_suffix" == "3.14.0" ]; then
py_suffix="3.14.0b3"
py_suffix="3.14.0rc2"
fi
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_suffix

View File

@ -147,7 +147,7 @@ function install_128 {
}
function install_130 {
CUDNN_VERSION=9.12.0.46
CUDNN_VERSION=9.13.0.50
echo "Installing CUDA 13.0 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 13.0 in the same container
install_cuda 13.0.0 cuda_13.0.0_580.65.06_linux

View File

@ -2,6 +2,11 @@
set -ex
# for pip_install function
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
ROCM_COMPOSABLE_KERNEL_VERSION="$(cat $(dirname $0)/../ci_commit_pins/rocm-composable-kernel.txt)"
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
@ -113,6 +118,8 @@ EOF
rm -rf HIP clr
fi
pip_install "git+https://github.com/rocm/composable_kernel@$ROCM_COMPOSABLE_KERNEL_VERSION"
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
@ -176,6 +183,8 @@ install_centos() {
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
done
pip_install "git+https://github.com/rocm/composable_kernel@$ROCM_COMPOSABLE_KERNEL_VERSION"
# Cleanup
yum clean all
rm -rf /var/cache/yum

View File

@ -65,10 +65,14 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.8"
fi
dnf install -y 'dnf-command(config-manager)'

View File

@ -74,6 +74,14 @@ RUN bash ./install_cuda.sh 13.0
RUN bash ./install_magma.sh 13.0
RUN ln -sf /usr/local/cuda-13.0 /usr/local/cuda
# Install libibverbs for libtorch and copy to CUDA directory
RUN apt-get update -y && \
apt-get install -y libibverbs-dev librdmacm-dev && \
cp /usr/lib/x86_64-linux-gnu/libmlx5.so* /usr/local/cuda/lib64/ && \
cp /usr/lib/x86_64-linux-gnu/librdmacm.so* /usr/local/cuda/lib64/ && \
cp /usr/lib/x86_64-linux-gnu/libibverbs.so* /usr/local/cuda/lib64/ && \
cp /usr/lib/x86_64-linux-gnu/libnl* /usr/local/cuda/lib64/
FROM cpu as rocm
ARG ROCM_VERSION
ARG PYTORCH_ROCM_ARCH

View File

@ -1 +1 @@
3.4.0
3.5.0

View File

@ -1 +1 @@
3.4.0
3.5.0

View File

@ -52,9 +52,13 @@ ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
RUN mkdir ci_commit_pins
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/rocm-composable-kernel.txt ci_commit_pins/rocm-composable-kernel.txt
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
RUN rm install_rocm.sh common_utils.sh
RUN rm -r ci_commit_pins
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh ${ROCM_VERSION}
RUN rm install_rocm_magma.sh

View File

@ -76,7 +76,6 @@ def sample_vllm_test_library():
),
"pytest -v -s entrypoints/llm/test_lazy_outlines.py",
"pytest -v -s entrypoints/llm/test_generate.py ",
"pytest -v -s entrypoints/llm/test_generate_multiple_loras.py",
"VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode",
],
},
@ -97,14 +96,24 @@ def sample_vllm_test_library():
"num_gpus": 4,
"steps": [
"pytest -v -s -x lora/test_chatglm3_tp.py",
"echo $VLLM_WORKER_MULTIPROC_METHOD",
"pytest -v -s -x lora/test_llama_tp.py",
"pytest -v -s -x lora/test_multi_loras_with_tp.py",
"pytest -v -s -x lora/test_llm_with_multi_loras.py",
],
},
"vllm_lora_280_failure_test": {
"title": "LoRA 280 failure test",
"id": "vllm_lora_280_failure_test",
"vllm_distributed_test_28_failure_test": {
"title": "Distributed Tests (2 GPUs) pytorch 2.8 release failure",
"id": "vllm_distributed_test_28_failure_test",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"num_gpus": 4,
"steps": [
"pytest -v -s distributed/test_sequence_parallel.py",
],
},
"vllm_lora_28_failure_test": {
"title": "LoRA pytorch 2.8 failure test",
"id": "vllm_lora_28_failure_test",
"steps": ["pytest -v lora/test_quant_model.py"],
},
"vllm_multi_model_processor_test": {
@ -115,6 +124,15 @@ def sample_vllm_test_library():
"pytest -v -s models/multimodal/processing --ignore models/multimodal/processing/test_tensor_schema.py",
],
},
"vllm_multi_model_test_28_failure_test": {
"title": "Multi-Model Test (Failed 2.8 release)",
"id": "vllm_multi_model_test_28_failure_test",
"package_install": ["git+https://github.com/TIGER-AI-Lab/Mantis.git"],
"steps": [
"pytest -v -s models/multimodal/generation/test_voxtral.py",
"pytest -v -s models/multimodal/pooling",
],
},
"vllm_pytorch_compilation_unit_tests": {
"title": "PyTorch Compilation Unit Tests",
"id": "vllm_pytorch_compilation_unit_tests",
@ -129,6 +147,28 @@ def sample_vllm_test_library():
"pytest -v -s compile/test_decorator.py",
],
},
"vllm_languagde_model_test_extended_generation_28_failure_test": {
"title": "Language Models Test (Extended Generation) 2.8 release failure",
"id": "vllm_languagde_model_test_extended_generation_28_failure_test",
"package_install": [
"--no-build-isolation",
"git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8",
],
"steps": [
"pytest -v -s models/language/generation/test_mistral.py",
],
},
"vllm_distributed_test_2_gpu_28_failure_test": {
"title": "Distributed Tests (2 GPUs) pytorch 2.8 release failure",
"id": "vllm_distributed_test_2_gpu_28_failure_test",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"num_gpus": 4,
"steps": [
"pytest -v -s distributed/test_sequence_parallel.py",
],
},
# TODO(elainewy):need to add g6 with 4 gpus to run this test
"vllm_lora_test": {
"title": "LoRA Test %N",

View File

@ -104,20 +104,26 @@ class VllmTestRunner(BaseRunner):
main function to run vllm test
"""
self.prepare()
with working_directory(self.work_directory):
if self.test_type == TestInpuType.TEST_PLAN:
if self.num_shards > 1:
run_test_plan(
self.test_plan,
"vllm",
sample_vllm_test_library(),
self.shard_id,
self.num_shards,
)
try:
with working_directory(self.work_directory):
if self.test_type == TestInpuType.TEST_PLAN:
if self.num_shards > 1:
run_test_plan(
self.test_plan,
"vllm",
sample_vllm_test_library(),
self.shard_id,
self.num_shards,
)
else:
run_test_plan(
self.test_plan, "vllm", sample_vllm_test_library()
)
else:
run_test_plan(self.test_plan, "vllm", sample_vllm_test_library())
else:
raise ValueError(f"Unknown test type {self.test_type}")
raise ValueError(f"Unknown test type {self.test_type}")
finally:
# double check the torches are not overridden by other packages
check_versions()
def _install_wheels(self, params: VllmTestParameters):
logger.info("Running vllm test with inputs: %s", params)

View File

@ -124,6 +124,7 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
fi
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
@ -133,16 +134,11 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcusparseLt.so.0"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
"/usr/local/cuda/lib64/libnvshmem_host.so.3"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so"
)
DEPS_SONAME+=(
@ -154,22 +150,56 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.12"
"libcublasLt.so.12"
"libcusparseLt.so.0"
"libcudart.so.12"
"libnvrtc.so.12"
"libnvrtc-builtins.so"
"libnvshmem_host.so.3"
"libcufile.so.0"
"libcufile_rdma.so.1"
"libcupti.so.12"
"libnvperf_host.so"
)
# Add libnvToolsExt only if CUDA version is not 12.9
if [[ $CUDA_VERSION != 12.9* ]]; then
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
DEPS_SONAME+=("libnvToolsExt.so.1")
if [[ $CUDA_VERSION == 13* ]]; then
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcublas.so.13"
"/usr/local/cuda/lib64/libcublasLt.so.13"
"/usr/local/cuda/lib64/libcudart.so.13"
"/usr/local/cuda/lib64/libnvrtc.so.13"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13"
"/usr/local/cuda/lib64/libibverbs.so.1"
"/usr/local/cuda/lib64/librdmacm.so.1"
"/usr/local/cuda/lib64/libmlx5.so.1"
"/usr/local/cuda/lib64/libnl-3.so.200"
"/usr/local/cuda/lib64/libnl-route-3.so.200")
DEPS_SONAME+=(
"libcublas.so.13"
"libcublasLt.so.13"
"libcudart.so.13"
"libnvrtc.so.13"
"libcupti.so.13"
"libibverbs.so.1"
"librdmacm.so.1"
"libmlx5.so.1"
"libnl-3.so.200"
"libnl-route-3.so.200")
export USE_CUPTI_SO=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUFILE=0
else
DEPS_LIST+=(
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
DEPS_SONAME+=(
"libnvToolsExt.so.1"
"libcublas.so.12"
"libcublasLt.so.12"
"libcudart.so.12"
"libnvrtc.so.12"
"libcupti.so.12")
fi
else
echo "Using nvidia libs from pypi."

View File

@ -258,11 +258,19 @@ function install_torchrec_and_fbgemm() {
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}" --recurse-submodules
python setup.py bdist_wheel \
--build-variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
# until the fbgemm_commit includes the tbb patch
patch <<'EOF'
--- a/FbgemmGpu.cmake
+++ b/FbgemmGpu.cmake
@@ -184,5 +184,6 @@ gpu_cpp_library(
fbgemm_gpu_tbe_cache
fbgemm_gpu_tbe_optimizers
fbgemm_gpu_tbe_utils
+ tbb
DESTINATION
fbgemm_gpu)
EOF
python setup.py bdist_wheel --build-variant=rocm
popd
# Save the wheel before cleaning up

View File

@ -35,10 +35,11 @@ fi
print_cmake_info
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
else
# NB: we always build with distributed; USE_DISTRIBUTED turns off all
# backends (specifically the gloo backend), so test that this case works too
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
fi
if which sccache > /dev/null; then

View File

@ -13,13 +13,9 @@ if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available(
fi
popd
python -mpip install -r requirements.txt
# enable debug asserts in serialization
export TORCH_SERIALIZATION_DEBUG=1
python -mpip install --no-input -r requirements.txt
setup_test_python() {
# The CircleCI worker hostname doesn't resolve to an address.
# This environment variable makes ProcessGroupGloo default to
@ -199,7 +195,7 @@ torchbench_setup_macos() {
git checkout "$(cat ../.github/ci_commit_pins/vision.txt)"
git submodule update --init --recursive
python setup.py clean
python setup.py develop
python -m pip install -e . -v --no-build-isolation
popd
pushd torchaudio
@ -208,7 +204,7 @@ torchbench_setup_macos() {
git submodule update --init --recursive
python setup.py clean
#TODO: Remove me, when figure out how to make TorchAudio find brew installed openmp
USE_OPENMP=0 python setup.py develop
USE_OPENMP=0 python -m pip install -e . -v --no-build-isolation
popd
checkout_install_torchbench

View File

@ -386,8 +386,8 @@ def smoke_test_compile(device: str = "cpu") -> None:
def smoke_test_nvshmem() -> None:
if not torch.cuda.is_available():
print("CUDA is not available, skipping NVSHMEM test")
if not torch.cuda.is_available() or target_os == "windows":
print("Windows platform or CUDA is not available, skipping NVSHMEM test")
return
# Check if NVSHMEM is compiled in current build
@ -396,7 +396,9 @@ def smoke_test_nvshmem() -> None:
except ImportError:
# Not built with NVSHMEM support.
# torch is not compiled with NVSHMEM prior to 2.9
if torch.__version__ < "2.9":
from torch.torch_version import TorchVersion
if TorchVersion(torch.__version__) < (2, 9):
return
else:
# After 2.9: NVSHMEM is expected to be compiled in current build

View File

@ -1,12 +1,20 @@
copy "%CUDA_PATH%\bin\cusparse*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cublas*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cudart*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\curand*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cufft*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cusolver*64_*.dll*" pytorch\torch\lib
if %CUDA_VERSION% geq 130 (
set "dll_path=bin\x64"
) else (
set "dll_path=bin"
)
copy "%CUDA_PATH%\%dll_path%\cusparse*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cublas*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cudart*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\curand*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cufft*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cusolver*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\nvrtc*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\nvJitLink_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cudnn*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\nvrtc*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\cupti64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\nvperf_host*.dll*" pytorch\torch\lib
@ -20,8 +28,3 @@ copy "%libuv_ROOT%\bin\uv.dll" pytorch\torch\lib
if exist "C:\Windows\System32\zlibwapi.dll" (
copy "C:\Windows\System32\zlibwapi.dll" pytorch\torch\lib
)
::copy nvJitLink dll is requires for cuda 12+
if exist "%CUDA_PATH%\bin\nvJitLink_*.dll*" (
copy "%CUDA_PATH%\bin\nvJitLink_*.dll*" pytorch\torch\lib
)

View File

@ -1,9 +1,9 @@
set WIN_DRIVER_VN=528.89
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe" & REM @lint-ignore
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe
set WIN_DRIVER_VN=580.88
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe" & REM @lint-ignore
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe
if errorlevel 1 exit /b 1
start /wait %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe -s -noreboot
start /wait %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe -s -noreboot
if errorlevel 1 exit /b 1
del %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe || ver > NUL
del %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe || ver > NUL

View File

@ -124,19 +124,15 @@ popd
export TH_BINARY_BUILD=1
export INSTALL_TEST=0 # dont install test binaries into site-packages
export MACOSX_DEPLOYMENT_TARGET=10.15
export MACOSX_DEPLOYMENT_TARGET=11.0
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
SETUPTOOLS_PINNED_VERSION="==70.1.0"
PYYAML_PINNED_VERSION="==5.3"
EXTRA_CONDA_INSTALL_FLAGS=""
CONDA_ENV_CREATE_FLAGS=""
RENAME_WHEEL=true
case $desired_python in
3.14t)
echo "Using 3.14 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="==2.1.0"
CONDA_ENV_CREATE_FLAGS="python-freethreading"
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge/label/python_rc -c conda-forge"
@ -145,8 +141,6 @@ case $desired_python in
;;
3.14)
echo "Using 3.14t deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="==2.1.0"
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge/label/python_rc -c conda-forge"
desired_python="3.14.0rc1"
@ -154,8 +148,6 @@ case $desired_python in
;;
3.13t)
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="==2.1.0"
CONDA_ENV_CREATE_FLAGS="python-freethreading"
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge"
@ -164,37 +156,23 @@ case $desired_python in
;;
3.13)
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="==2.1.0"
;;
3.12)
echo "Using 3.12 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="==2.0.2"
;;
3.11)
echo "Using 3.11 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="==2.0.2"
;;
3.10)
echo "Using 3.10 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="==2.0.2"
;;
3.9)
echo "Using 3.9 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="==2.0.2"
;;
*)
echo "Using default deps"
NUMPY_PINNED_VERSION="==1.11.3"
echo "Unsupported version $desired_python"
exit 1
;;
esac
@ -204,8 +182,6 @@ conda create ${EXTRA_CONDA_INSTALL_FLAGS} -yn "$tmp_env_name" python="$desired_p
source activate "$tmp_env_name"
PINNED_PACKAGES=(
"setuptools${SETUPTOOLS_PINNED_VERSION}"
"pyyaml${PYYAML_PINNED_VERSION}"
"numpy${NUMPY_PINNED_VERSION}"
)
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements-build.txt"
@ -213,8 +189,7 @@ pip install requests ninja typing-extensions
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
retry brew install libomp
# For USE_DISTRIBUTED=1 on macOS, this enables gloo, which needs libuv, which
# is build as part of tensorpipe submodule
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
export USE_DISTRIBUTED=1
export USE_MKLDNN=OFF
@ -224,7 +199,7 @@ export BUILD_TEST=OFF
pushd "$pytorch_rootdir"
echo "Calling setup.py bdist_wheel at $(date)"
python setup.py bdist_wheel -d "$whl_tmp_dir"
python setup.py bdist_wheel -d "$whl_tmp_dir" --plat-name ${mac_version}
echo "Finished setup.py bdist_wheel at $(date)"

View File

@ -75,8 +75,8 @@ TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
# CUDA 12.9 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]]; then
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
TRITON_CONSTRAINT="platform_system == 'Linux'"
fi

View File

@ -12,7 +12,9 @@ self-hosted-runner:
- linux.9xlarge.ephemeral
- am2.linux.9xlarge.ephemeral
- linux.12xlarge
- linux.12xlarge.memory
- linux.24xlarge
- linux.24xlarge.memory
- linux.24xlarge.ephemeral
- linux.24xlarge.amd
- linux.arm64.2xlarge

View File

@ -4,6 +4,11 @@ name: Build External packages
description: build external packages for PyTorch
inputs:
cuda-version:
description: CUDA version to use
type: string
required: true
default: '12.8.1'
cuda-arch-list:
description: TORCH_CUDA_ARCH_LIST (e.g., "8.0;8.9;9.0")
type: string
@ -44,11 +49,12 @@ runs:
env:
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
SCCACHE_REGION: us-east-1
CUDA_VERSION: ${{ inputs.cuda-version }}
TORCH_CUDA_ARCH_LIST: ${{ inputs.cuda-arch-list }}
BASE_IMAGE: ${{ inputs.docker-image }}
BUILD_TARGETS: ${{ inputs.build-targets }}
PARENT_OUTPUT_DIR: ${{ inputs.output-dir}}
PARENT_OUTPUT_DIR: ${{ inputs.output-dir }}
TORCH_WHEELS_PATH: ${{ inputs.torch-wheel-dir }}
shell: bash
run: |
set -euo pipefail
@ -69,7 +75,6 @@ runs:
export OUTPUT_DIR
echo "Building external package: $target in directory $OUTPUT_DIR"
python3 -m cli.run build external "$target"
done
END_TIME=$(date +%s)

View File

@ -1 +1 @@
1c66402d0fa47ea74d365dcaa468d397da481918
fa5142928ee157aa65137c4ecff2fe9b1a9e0648

View File

@ -1 +1 @@
7f1de94a4c2d14f59ad4ca84538c36084ea6b2c8
08ae0af1395c8d8471f4025deb6af9aef90b342f

View File

@ -1 +1,2 @@
752d2e1c364e4195093e4f3f2fc33e3ae1840707
f510715882304796a96e33028b4f6de1b026c2c7

View File

@ -1 +1 @@
763e5b78d4fcd74a9e812256656c075f99d9a781
6c5478ff7c3d50dd1e3047d72ec5909bea474073

View File

@ -12,54 +12,46 @@ ARG BUILD_BASE_IMAGE=torch-nightly-base
# by default, it uses devel-ubuntu22.04 official image.
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
# The logic is copied from https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
#################### TORCH NIGHTLY BASE IMAGE ####################
#################### TORCH NIGHTLY BASE IMAGE ####################
# A base image for building vLLM with devel ubuntu 22.04, this is mainly used to build vllm in vllm builtkite ci
From nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
ARG CUDA_VERSION=12.8.1
ARG PYTHON_VERSION=3.12
ARG TARGETPLATFORM
ENV DEBIAN_FRONTEND=noninteractive
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
ARG CUDA_VERSION
ARG PYTHON_VERSION
ARG GET_PIP_URL
# Install Python and other dependencies if it does not existed
RUN if ! command -v python3 >/dev/null || ! python3 --version | grep -q "${PYTHON_VERSION}"; then \
echo "Installing Python ${PYTHON_VERSION}..." && \
echo 'tzdata tzdata/Areas select America' | debconf-set-selections && \
echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections && \
apt-get update -y && \
apt-get install -y ccache software-properties-common git curl sudo && \
for i in 1 2 3; do \
add-apt-repository -y ppa:deadsnakes/ppa && break || \
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
done && \
apt-get update -y && \
apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv && \
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 && \
update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} && \
ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config && \
curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}; \
else \
echo "Python ${PYTHON_VERSION} already present, skipping setup."; \
fi \
&& python3 --version && python3 -m pip --version
# Install Python and other dependencies
RUN apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
&& add-apt-repository -y ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
# as it was causing spam when compiling the CUTLASS kernels
# Ensure gcc >= 10 to avoid CUTLASS issues (bug 92519)
RUN current_gcc_version=$(gcc -dumpversion | cut -f1 -d.) && \
if [ "$current_gcc_version" -lt 10 ]; then \
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
apt-get update && \
apt-get install -y gcc-10 g++-10 && \
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 && \
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
else \
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
fi && \
gcc --version && g++ --version
if command -v apt-get >/dev/null; then \
if [ "$current_gcc_version" -lt 10 ]; then \
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
apt-get update \
&& apt-get install -y gcc-10 g++-10 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 \
&& update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
else \
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
fi \
fi \
&& gcc --version && g++ --version
# install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/uv \
@ -79,6 +71,21 @@ ENV UV_LINK_MODE=copy
FROM ${BUILD_BASE_IMAGE} AS base
USER root
ARG CUDA_VERSION
ARG PYTHON_VERSION
# TODO (huydhn): Only work with PyTorch manylinux builder
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
# Install some system dependencies and double check python version
RUN if command -v apt-get >/dev/null; then \
apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim; \
else \
dnf install -y git curl wget sudo vim; \
fi \
&& python3 --version && python3 -m pip --version
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
@ -118,17 +125,15 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
echo "[INFO] Installing torch wheels to build vllm"; \
torch_whl=$(find /dist -maxdepth 1 -name 'torch-*.whl' -print -quit); \
vision_whl=$(find /dist/vision -name 'torchvision*.whl' | head -n1 | xargs); \
audio_whl=$(find /dist/audio -name 'torchaudio*.whl' | head -n1 | xargs); \
uv pip install --system "${torch_whl}[opt-einsum]"; \
uv pip install --system "${vision_whl}"; \
uv pip install --system "${audio_whl}"; \
vision_whl=$(find /dist -name 'torchvision*.whl' | head -n1 | xargs); \
audio_whl=$(find /dist -name 'torchaudio*.whl' | head -n1 | xargs); \
uv pip install --system "${torch_whl}[opt-einsum]" "${vision_whl}" "${audio_whl}" /dist/*.whl; \
elif [ -n "$PINNED_TORCH_VERSION" ]; then \
echo "[INFO] Installing pinned torch nightly version to build vllm: $PINNED_TORCH_VERSION"; \
uv pip install --system "$PINNED_TORCH_VERSION" --index-url https://download.pytorch.org/whl/nightly/cu128; \
uv pip install --system "$PINNED_TORCH_VERSION" --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
else \
echo "[INFO] Installing torch nightly with latest one to build vllm"; \
uv pip install --system torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128; \
uv pip install --system torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
fi
# Install numba 0.61.2 for cuda environment
@ -137,12 +142,11 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Install common dependencies from vllm common.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/common.txt
uv pip install --system -r requirements/common.txt
# Must put before installing xformers, so it can install the correct version of xfomrers.
ARG exformer_cuda_arch_list='7.5;8.0+PTX;9.0a'
ENV TORCH_CUDA_ARCH_LIST=${exformer_cuda_arch_list}
ARG xformers_cuda_arch_list='7.5;8.0+PTX;9.0a'
ENV TORCH_CUDA_ARCH_LIST=${xformers_cuda_arch_list}
ARG max_jobs=16
ENV MAX_JOBS=${max_jobs}
@ -153,8 +157,8 @@ RUN pip freeze | grep -E 'ninja'
# Build xformers with cuda and torch nightly/wheel
# following official xformers guidance: https://github.com/facebookresearch/xformers#build
# sha for https://github.com/facebookresearch/xformers/tree/v0.0.31
ARG XFORMERS_COMMIT=eb0946a363464da96ea40afd1a7f72a907c25497
# sha for https://github.com/facebookresearch/xformers/tree/v0.0.32.post2
ARG XFORMERS_COMMIT=5d4b92a5e5a9c6c6d4878283f47d82e17995b468
ENV CCACHE_DIR=/root/.cache/ccache
RUN --mount=type=cache,target=/root/.cache/ccache \
@ -188,11 +192,6 @@ RUN pip freeze | grep -E 'torch|xformers|torchvision|torchaudio'
FROM base AS build
ARG TARGETPLATFORM
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
COPY . .
RUN python3 use_existing_torch.py
@ -251,9 +250,9 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
python3 setup.py bdist_wheel --dist-dir=vllm-dist --py-limited-api=cp38; \
fi
RUN echo "[DEBUG] Listing current directory:" && \
RUN echo "[INFO] Listing current directory:" && \
ls -al && \
echo "[DEBUG] Showing torch_build_versions.txt content:" && \
echo "[INFO] Showing torch_build_versions.txt content:" && \
cat torch_build_versions.txt
#################### WHEEL BUILD IMAGE ####################
@ -263,42 +262,40 @@ RUN echo "[DEBUG] Listing current directory:" && \
# Setup clean environment for vLLM for test and api server using ubuntu22.04 with AOT flashinfer
FROM ${FINAL_BASE_IMAGE} AS vllm-base
USER root
ARG CUDA_VERSION
ARG PYTHON_VERSION
ARG GET_PIP_URL
# TODO (huydhn): Only work with PyTorch manylinux builder
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
# prepare for environment starts
WORKDIR /workspace
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
# Install Python and other dependencies if it does not existed
RUN if ! command -v python3 >/dev/null || ! python3 --version | grep -q "${PYTHON_VERSION}"; then \
echo "Installing Python ${PYTHON_VERSION}..." && \
echo 'tzdata tzdata/Areas select America' | debconf-set-selections && \
echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections && \
apt-get update -y && \
apt-get install -y ccache software-properties-common git curl sudo && \
for i in 1 2 3; do \
add-apt-repository -y ppa:deadsnakes/ppa && break || \
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
done && \
apt-get update -y && \
apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv && \
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 && \
update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} && \
ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config && \
curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}; \
else \
echo "Python ${PYTHON_VERSION} already present, skipping setup."; \
fi \
&& python3 --version && python3 -m pip --version
# Install Python and other dependencies
RUN if command -v apt-get >/dev/null; then \
apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
&& add-apt-repository -y ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION}; \
else \
dnf install -y git curl wget sudo vim; \
fi \
&& python3 --version && python3 -m pip --version
# Get the torch versions, and whls used in previous stagtes for consistency
COPY --from=base /workspace/torch_build_versions.txt ./torch_build_versions.txt
COPY --from=base /workspace/xformers-dist /wheels/xformers
COPY --from=build /workspace/vllm-dist /wheels/vllm
RUN echo "[DEBUG] Listing current directory before torch install step:" && \
RUN echo "[INFO] Listing current directory before torch install step:" && \
ls -al && \
echo "[DEBUG] Showing torch_build_versions.txt content:" && \
echo "[INFO] Showing torch_build_versions.txt content:" && \
cat torch_build_versions.txt
# Workaround for https://github.com/openai/triton/issues/2507 and
@ -307,7 +304,6 @@ RUN echo "[DEBUG] Listing current directory before torch install step:" && \
# or future versions of triton.
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
# Install uv for faster pip installs if not existed
RUN --mount=type=cache,target=/root/.cache/uv \
if ! python3 -m uv --version > /dev/null 2>&1; then \
@ -327,15 +323,13 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
--mount=type=cache,target=/root/.cache/uv \
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
torch_whl=$(find /dist -maxdepth 1 -name 'torch-*.whl' -print -quit); \
vision_whl=$(find /dist/vision -name 'torchvision*.whl' | head -n1 | xargs); \
audio_whl=$(find /dist/audio -name 'torchaudio*.whl' | head -n1 | xargs); \
vision_whl=$(find /dist -name 'torchvision*.whl' | head -n1 | xargs); \
audio_whl=$(find /dist -name 'torchaudio*.whl' | head -n1 | xargs); \
echo "[INFO] Use wheels to build : '${torch_whl}' '${audio_whl}' '${vision_whl}'"; \
uv pip install --system "${torch_whl}[opt-einsum]"; \
uv pip install --system "${vision_whl}"; \
uv pip install --system "${audio_whl}"; \
uv pip install --system "${torch_whl}[opt-einsum]" "${vision_whl}" "${audio_whl}" /dist/*.whl; \
else \
echo "[INFO] Installing torch versions from torch_build_versions.txt"; \
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu128; \
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
fi
# Install the vllm wheel from previous stage
@ -346,9 +340,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system /wheels/xformers/*.whl --verbose
# Build flashinfer from source.
ARG torch_cuda_arch_list='8.0;8.9;9.0a'
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
# install package for build flashinfer
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
@ -416,11 +409,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/nightly_torch_test.txt
# Workaround for #17068
# pinned commit for v2.2.4
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@95d8aba8a8c75aedcaa6143713b11e745e7cd0d9#egg=mamba-ssm"
# Logging to confirm the torch versions
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'

View File

@ -84,6 +84,7 @@ def build_triton(
["git", "checkout", f"release/{ver}.{rev}.x"], cwd=triton_basedir
)
else:
check_call(["git", "fetch", "origin", commit_hash], cwd=triton_basedir)
check_call(["git", "checkout", commit_hash], cwd=triton_basedir)
# change built wheel name and version

View File

@ -16,18 +16,16 @@ from typing import Optional
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
CUDA_ARCHES = ["12.6", "12.8", "13.0"]
CUDA_STABLE = "12.8"
CUDA_ARCHES_FULL_VERSION = {
"12.6": "12.6.3",
"12.8": "12.8.1",
"12.9": "12.9.1",
"13.0": "13.0.0",
}
CUDA_ARCHES_CUDNN_VERSION = {
"12.6": "9",
"12.8": "9",
"12.9": "9",
"13.0": "9",
}
@ -40,77 +38,60 @@ CPU_AARCH64_ARCH = ["cpu-aarch64"]
CPU_S390X_ARCH = ["cpu-s390x"]
CUDA_AARCH64_ARCHES = ["12.9-aarch64", "13.0-aarch64"]
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "13.0-aarch64"]
PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"12.6": (
"nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'"
"nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
"nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | "
"nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | "
"nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | "
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'"
),
"12.8": (
"nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"12.9": (
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
"nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | "
"nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
"nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | "
"nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | "
"nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | "
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
),
"13.0": (
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'"
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
"nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | "
"nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | "
"nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | "
"nvidia-cublas==13.0.0.19; platform_system == 'Linux' | "
"nvidia-cufft==12.0.0.15; platform_system == 'Linux' | "
"nvidia-curand==10.4.0.35; platform_system == 'Linux' | "
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "
"nvidia-cufile==1.15.0.42; platform_system == 'Linux'"
),
"xpu": (
"intel-cmplr-lib-rt==2025.2.1 | "
@ -240,8 +221,6 @@ def generate_libtorch_matrix(
if os == "linux":
arches += CUDA_ARCHES
arches += ROCM_ARCHES
if "13.0" in arches:
arches.remove("13.0")
elif os == "windows":
arches += CUDA_ARCHES
if libtorch_variants is None:
@ -330,19 +309,20 @@ def generate_wheels_matrix(
else arch_version
)
# TODO: Enable python 3.13t on cpu-s390x
if gpu_arch_type == "cpu-s390x" and python_version == "3.13t":
continue
# TODO: Enable python 3.14 for rest
if os not in ["linux", "linux-aarch64", "macos-arm64", "windows"] and (
python_version == "3.14" or python_version == "3.14t"
):
if os not in [
"linux",
"linux-aarch64",
"linux-s390x",
"macos-arm64",
"windows",
] and (python_version == "3.14" or python_version == "3.14t"):
continue
# cuda linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
if (
arch_version in ["13.0", "12.9", "12.8", "12.6"]
arch_version in ["13.0", "12.8", "12.6"]
and os == "linux"
or arch_version in CUDA_AARCH64_ARCHES
):
@ -406,6 +386,5 @@ def generate_wheels_matrix(
validate_nccl_dep_consistency("13.0")
validate_nccl_dep_consistency("12.9")
validate_nccl_dep_consistency("12.8")
validate_nccl_dep_consistency("12.6")

91
.github/scripts/prepare_vllm_wheels.sh vendored Executable file
View File

@ -0,0 +1,91 @@
#!/usr/bin/env bash
set -eux
torch_version=$(unzip -p torch-* '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
nightly=$(echo ${torch_version} | cut -d'.' -f4)
# Copied from .ci/manywheel/build_common.sh
make_wheel_record() {
fpath=$1
if echo $fpath | grep RECORD >/dev/null 2>&1; then
echo "$fpath,,"
else
fhash=$(openssl dgst -sha256 -binary $fpath | openssl base64 | sed -e 's/+/-/g' | sed -e 's/\//_/g' | sed -e 's/=//g')
fsize=$(ls -nl $fpath | awk '{print $5}')
echo "$fpath,sha256=$fhash,$fsize"
fi
}
change_wheel_version() {
local package=$1
local wheel=$2
local f_version=$3
local t_version=$4
# Extract the wheel
${PYTHON_EXECUTABLE} -mwheel unpack $wheel
mv "${package}-${f_version}" "${package}-${t_version}"
# Change the version from f_version to t_version in the dist-info dir
pushd "${package}-${t_version}"
mv "${package}-${f_version}.dist-info" "${package}-${t_version}.dist-info"
pushd "${package}-${t_version}.dist-info"
sed -i "s/${package}-${f_version}.dist-info/${package}-${t_version}.dist-info/g" RECORD
# Update the version in METADATA and its SHA256 hash
sed -i "s/Version: ${f_version}/Version: ${t_version}/g" METADATA
# then add PyTorch nightly dependency of vLLM
if [[ "${package}" == vllm ]] || [[ "${package}" == xformers ]]; then
sed -i "/License-File/a\Requires-Dist: torch==${torch_version}" METADATA
fi
sed -i '/METADATA,sha256/d' RECORD
popd
make_wheel_record "${package}-${t_version}.dist-info/METADATA" >> "${package}-${t_version}.dist-info/RECORD"
popd
# Repack the wheel
${PYTHON_EXECUTABLE} -mwheel pack "${package}-${t_version}"
# Clean up
rm -rf "${package}-${t_version}"
}
repackage_wheel() {
local package=$1
pushd $package
local orig_wheel=$(find . -name *${package//-/_}*)
local orig_version=$(unzip -p $orig_wheel '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
local version=""
if [[ "${package}" == vllm ]]; then
# Copied from vllm/.buildkite/scripts/upload-wheels.sh
version=1.0.0
else
version=$(echo $orig_version | tr '.+' '.' | cut -d'.' -f1-3)
fi
local nightly_version=$version.$nightly
# Use nightly version
change_wheel_version ${package//-/_} $orig_wheel $orig_version $nightly_version
# Clean up
rm "${orig_wheel}"
auditwheel repair --plat $PLATFORM *.whl \
--exclude libc10* --exclude libtorch* --exclude libcu* --exclude libnv*
local repair_wheel=$(find wheelhouse -name *${PLATFORM}*)
local repair_wheel=$(basename ${repair_wheel})
popd
cp ${package}/wheelhouse/${repair_wheel} .
rm -rf $package
}
pushd externals/vllm/wheels
for package in xformers flashinfer-python vllm; do
repackage_wheel $package
done
popd

View File

@ -135,7 +135,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4

View File

@ -68,11 +68,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
!{{ common.checkout(deep_clone=False, directory="pytorch") }}
- name: Populate binary env
run: |

View File

@ -33,7 +33,7 @@
{%- if is_windows %}
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
{%- endif %}
{%- else %}

View File

@ -47,12 +47,11 @@ jobs:
matrix:
include: [
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.9", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.8", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.6", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.3", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },

219
.github/workflows/build-vllm-wheel.yml vendored Normal file
View File

@ -0,0 +1,219 @@
name: Build vLLM wheels
on:
push:
branches:
- main
paths:
- .github/workflows/build-vllm-wheel.yml
- .github/ci_commit_pins/vllm.txt
workflow_dispatch:
pull_request:
paths:
- .github/workflows/build-vllm-wheel.yml
- .github/ci_commit_pins/vllm.txt
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
build-wheel:
if: github.repository_owner == 'pytorch'
strategy:
fail-fast: false
matrix:
python-version: [ '3.12' ]
# TODO (huydhn): Add cu130 https://github.com/pytorch/pytorch/pull/162000#issuecomment-3261541554
device: [ 'cu128', 'cu129' ]
runner: [ 'linux.12xlarge.memory' ]
include:
- device: cu128
manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.8'
- device: cu129
manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.9'
name: "Build ${{ matrix.device }} vLLM wheel"
runs-on: ${{ matrix.runner }}
timeout-minutes: 480
env:
PY_VERS: ${{ matrix.python-version }}
MANYLINUX_IMAGE: ${{ matrix.manylinux-image }}
PLATFORM: 'manylinux_2_28_x86_64'
BUILD_DEVICE: ${{ matrix.device }}
steps:
- name: Setup SSH (Click me for login details)
uses: pytorch/test-infra/.github/actions/setup-ssh@main
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
with:
submodules: false
- name: Setup Linux
uses: ./.github/actions/setup-linux
- name: Get latest PyTorch nightly
shell: bash
run: |
set -eux
# Determine python executable for given version (copied from build-triton-wheel)
case $PY_VERS in
3.10)
PYTHON_EXECUTABLE=/opt/python/cp310-cp310/bin/python
;;
3.11)
PYTHON_EXECUTABLE=/opt/python/cp311-cp311/bin/python
;;
3.12)
PYTHON_EXECUTABLE=/opt/python/cp312-cp312/bin/python
;;
3.13)
PYTHON_EXECUTABLE=/opt/python/cp313-cp313/bin/python
;;
3.13t)
PYTHON_EXECUTABLE=/opt/python/cp313-cp313t/bin/python
;;
3.14)
PYTHON_EXECUTABLE=/opt/python/cp314-cp314/bin/python
;;
3.14t)
PYTHON_EXECUTABLE=/opt/python/cp314-cp314t/bin/python
;;
*)
echo "Unsupported python version ${PY_VERS}"
exit 1
;;
esac
# Keep PyTorch nightly wheel here so that we can install it later during
# vLLM build process
mkdir -p "${RUNNER_TEMP}/artifacts/"
container_name=$(docker run \
--tty \
--detach \
-e PLATFORM \
-e PYTHON_EXECUTABLE="${PYTHON_EXECUTABLE}" \
-v "${GITHUB_WORKSPACE}:/pytorch" \
-v "${RUNNER_TEMP}/artifacts:/artifacts" \
-w /artifacts/ \
"${MANYLINUX_IMAGE}"
)
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -mpip install \
--pre torch torchvision torchaudio \
--index-url "https://download.pytorch.org/whl/nightly/${BUILD_DEVICE}"
# I wonder if there is a command to both download and install the wheels
# in one go
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -mpip download \
--pre torch torchvision torchaudio \
--index-url "https://download.pytorch.org/whl/nightly/${BUILD_DEVICE}"
# Save this for later
echo "container_name=${container_name}" >> "$GITHUB_ENV"
- name: Build vLLM wheel
uses: ./.github/actions/build-external-packages
with:
build-targets: vllm
docker-image: ${{ env.MANYLINUX_IMAGE }}
cuda-arch-list: '8.0;8.9;9.0;10.0;12.0'
torch-wheel-dir: ${{ runner.temp }}/artifacts
output-dir: ${{ runner.temp }}/artifacts/externals
- name: Prepare vLLM wheel
shell: bash
run: |
set -eux
# Get these wheels ready, the vllm renaming logic is copied from its .buildkite/scripts/upload-wheels.sh
docker exec -t "${container_name}" bash -c /pytorch/.github/scripts/prepare_vllm_wheels.sh
docker exec -t "${container_name}" chown -R 1000:1000 /artifacts
- uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
with:
name: vllm-wheel-${{ matrix.device }}-${{ matrix.python-version }}-${{ env.PLATFORM }}
if-no-files-found: error
path: ${{ runner.temp }}/artifacts/externals/vllm/wheels/*.whl
- name: Teardown Linux
uses: pytorch/test-infra/.github/actions/teardown-linux@main
if: always()
# Copied from build-triton-wheel workflow (mostly)
upload-wheel:
name: "Upload ${{ matrix.device }} vLLM wheel"
needs:
- build-wheel
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
device: [ 'cu128', 'cu129' ]
env:
BUILD_DEVICE: ${{ matrix.device }}
permissions:
id-token: write
contents: read
container:
image: continuumio/miniconda3:4.12.0
environment: ${{ (github.event_name == 'push' && github.event.ref == 'refs/heads/main') && 'nightly-wheel-upload' || '' }}
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Configure AWS credentials(PyTorch account) for main
if: ${{ github.event_name == 'push' && github.event.ref == 'refs/heads/main' }}
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: arn:aws:iam::749337293305:role/gha_workflow_nightly_build_wheels
aws-region: us-east-1
- name: Configure AWS credentials(PyTorch account) for RC builds
if: ${{ github.event_name == 'push' && (startsWith(github.event.ref, 'refs/tags/') && !startsWith(github.event.ref, 'refs/tags/ciflow/')) }}
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: arn:aws:iam::749337293305:role/gha_workflow_test_build_wheels
aws-region: us-east-1
- name: Download Build Artifacts
uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
with:
# Download all available artifacts
path: ${{ runner.temp }}/artifacts-all
- name: Select Wheel Artifacts
shell: bash
run: |
set -eux
mkdir -p "${RUNNER_TEMP}/artifacts/"
mv "${RUNNER_TEMP}"/artifacts-all/vllm-wheel-"${BUILD_DEVICE}"-*/* "${RUNNER_TEMP}/artifacts/"
- name: Set DRY_RUN (only for tagged pushes)
if: ${{ github.event_name == 'push' && (github.event.ref == 'refs/heads/main' || startsWith(github.event.ref, 'refs/tags/v')) }}
shell: bash
run: |
echo "DRY_RUN=disabled" >> "$GITHUB_ENV"
- name: Set UPLOAD_CHANNEL (only for tagged pushes)
if: ${{ github.event_name == 'push' && startsWith(github.event.ref, 'refs/tags/v') }}
shell: bash
run: |
set -ex
if [[ "${GITHUB_REF_NAME}" = *-rc[0-9]* ]]; then
echo "UPLOAD_CHANNEL=test" >> "$GITHUB_ENV"
fi
- name: Upload binaries
env:
PACKAGE_TYPE: wheel
UPLOAD_SUBFOLDER: ${{ env.BUILD_DEVICE }}
PKG_DIR: ${{ runner.temp }}/artifacts
shell: bash
run: |
set -ex
bash .circleci/scripts/binary_upload.sh

View File

@ -112,7 +112,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda-aarch64-12_9-build:
manywheel-py3_10-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -121,39 +121,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_name: manywheel-py3_10-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_10-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_10-cuda-aarch64-12_9-build
needs: manywheel-py3_10-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_name: manywheel-py3_10-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_10-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -178,7 +224,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -269,7 +315,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda-aarch64-12_9-build:
manywheel-py3_11-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -278,39 +324,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_name: manywheel-py3_11-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_11-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda-aarch64-12_9-build
needs: manywheel-py3_11-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_name: manywheel-py3_11-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -335,7 +427,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -426,7 +518,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda-aarch64-12_9-build:
manywheel-py3_12-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -435,39 +527,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_name: manywheel-py3_12-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_12-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_12-cuda-aarch64-12_9-build
needs: manywheel-py3_12-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_name: manywheel-py3_12-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_12-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -492,7 +630,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -583,7 +721,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda-aarch64-12_9-build:
manywheel-py3_13-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -592,39 +730,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_name: manywheel-py3_13-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_13-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13-cuda-aarch64-12_9-build
needs: manywheel-py3_13-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_name: manywheel-py3_13-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -649,7 +833,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -740,7 +924,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda-aarch64-12_9-build:
manywheel-py3_13t-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -749,39 +933,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_name: manywheel-py3_13t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_13t-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13t-cuda-aarch64-12_9-build
needs: manywheel-py3_13t-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_name: manywheel-py3_13t-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13t-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -806,7 +1036,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -897,7 +1127,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda-aarch64-12_9-build:
manywheel-py3_14-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -906,39 +1136,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_9
build_name: manywheel-py3_14-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_14-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14-cuda-aarch64-12_9-build
needs: manywheel-py3_14-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda-aarch64-12_9
build_name: manywheel-py3_14-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -963,7 +1239,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1054,7 +1330,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda-aarch64-12_9-build:
manywheel-py3_14t-cuda-aarch64-12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -1063,39 +1339,85 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
build_name: manywheel-py3_14t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda-aarch64-12_9-upload: # Uploading
manywheel-py3_14t-cuda-aarch64-12_6-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14t-cuda-aarch64-12_9-build
needs: manywheel-py3_14t-cuda-aarch64-12_6-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: "12.6-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
build_name: manywheel-py3_14t-cuda-aarch64-12_6
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda-aarch64-12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda-aarch64-12_8-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14t-cuda-aarch64-12_8-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda-aarch64-12_8
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
@ -1120,7 +1442,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -248,7 +248,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-release-build:
libtorch-cuda13_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -257,22 +257,22 @@ jobs:
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
DESIRED_CUDA: cu130
GPU_ARCH_VERSION: "13.0"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: libtorch-cuda12_9-shared-with-deps-release
build_name: libtorch-cuda13_0-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
libtorch-cuda13_0-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-release-build
- libtorch-cuda13_0-shared-with-deps-release-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
@ -280,38 +280,38 @@ jobs:
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
DESIRED_CUDA: cu130
GPU_ARCH_VERSION: "13.0"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-cuda12_9-shared-with-deps-release
build_name: libtorch-cuda13_0-shared-with-deps-release
build_environment: linux-binary-libtorch
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
libtorch-cuda13_0-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-release-test
needs: libtorch-cuda13_0-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
DESIRED_CUDA: cu130
GPU_ARCH_VERSION: "13.0"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-cuda12_9-shared-with-deps-release
build_name: libtorch-cuda13_0-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

View File

@ -60,7 +60,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_8-test: # Testing

View File

@ -127,7 +127,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_6-test: # Testing
@ -193,7 +193,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_8-test: # Testing
@ -241,72 +241,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_10-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_10-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -325,7 +259,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda13_0-test: # Testing
@ -638,7 +572,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4
@ -785,7 +719,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_6-test: # Testing
@ -851,7 +785,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_8-test: # Testing
@ -899,72 +833,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_11-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -983,7 +851,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda13_0-test: # Testing
@ -1296,7 +1164,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4
@ -1443,7 +1311,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_6-test: # Testing
@ -1509,7 +1377,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_8-test: # Testing
@ -1557,72 +1425,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_12-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_12-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1641,7 +1443,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda13_0-test: # Testing
@ -1954,7 +1756,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4
@ -2101,7 +1903,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_6-test: # Testing
@ -2167,7 +1969,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_8-test: # Testing
@ -2215,72 +2017,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_13-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -2299,7 +2035,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda13_0-test: # Testing
@ -2612,7 +2348,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4
@ -2759,7 +2495,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_6-test: # Testing
@ -2825,7 +2561,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_8-test: # Testing
@ -2873,72 +2609,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_13t-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13t-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -2957,7 +2627,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda13_0-test: # Testing
@ -3270,7 +2940,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4
@ -3417,7 +3087,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_6-test: # Testing
@ -3483,7 +3153,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_8-test: # Testing
@ -3531,72 +3201,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_14-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -3615,7 +3219,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda13_0-test: # Testing
@ -3928,7 +3532,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4
@ -4075,7 +3679,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_6-test: # Testing
@ -4141,7 +3745,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_8-test: # Testing
@ -4189,72 +3793,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_14t-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14t-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -4273,7 +3811,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda13_0
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu13==9.12.0.46; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand==10.4.0.35; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile==1.15.0.42; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda13_0-test: # Testing
@ -4586,7 +4124,7 @@ jobs:
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
uses: pytorch/pytorch/.github/actions/setup-xpu@main
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v4

View File

@ -302,3 +302,195 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cpu-s390x-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.13t"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
timeout-minutes: 420
build_name: manywheel-py3_13t-cpu-s390x
build_environment: linux-s390x-binary-manywheel
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cpu-s390x-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_13t-cpu-s390x-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cpu-s390x
build_environment: linux-s390x-binary-manywheel
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cpu-s390x-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13t-cpu-s390x-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cpu-s390x
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cpu-s390x-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.14"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
timeout-minutes: 420
build_name: manywheel-py3_14-cpu-s390x
build_environment: linux-s390x-binary-manywheel
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cpu-s390x-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_14-cpu-s390x-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cpu-s390x
build_environment: linux-s390x-binary-manywheel
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cpu-s390x-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14-cpu-s390x-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cpu-s390x
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cpu-s390x-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.14t"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
timeout-minutes: 420
build_name: manywheel-py3_14t-cpu-s390x
build_environment: linux-s390x-binary-manywheel
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cpu-s390x-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_14t-cpu-s390x-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cpu-s390x
build_environment: linux-s390x-binary-manywheel
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cpu-s390x-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14t-cpu-s390x-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cpu-s390x
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

View File

@ -46,7 +46,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -67,11 +67,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:

View File

@ -63,11 +63,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
@ -208,11 +203,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
@ -353,11 +343,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
@ -498,11 +483,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
@ -643,11 +623,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
@ -788,11 +763,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
@ -933,11 +903,6 @@ jobs:
chmod +x "${RUNNER_TEMP}/conda.sh"
/bin/bash "${RUNNER_TEMP}/conda.sh" -b -p "${RUNNER_TEMP}/anaconda"
echo "${RUNNER_TEMP}/anaconda/bin" >> "${GITHUB_PATH}"
if [ -d "/Applications/Xcode_14.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_14.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
elif [ -d "/Applications/Xcode_13.3.1.app" ]; then
echo "DEVELOPER_DIR=/Applications/Xcode_13.3.1.app/Contents/Developer" >> "${GITHUB_ENV}"
fi
- name: Checkout PyTorch
uses: actions/checkout@v4
with:

View File

@ -64,7 +64,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Populate binary env
shell: cmd
@ -141,7 +141,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Populate binary env
shell: cmd
@ -201,7 +201,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cpu-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -64,7 +64,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Populate binary env
shell: cmd
@ -141,7 +141,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Populate binary env
shell: cmd
@ -201,7 +201,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cpu-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -51,7 +51,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -166,7 +166,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash

View File

@ -58,7 +58,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -173,7 +173,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -283,7 +283,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cpu-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -306,7 +306,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -422,7 +422,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -533,7 +533,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_6-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -556,7 +556,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -672,7 +672,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -783,261 +783,11 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_8-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-debug
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-debug-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-debug
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-debug-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
build_name: libtorch-cuda12_9-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
@ -1056,7 +806,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -1172,7 +922,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -1283,7 +1033,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda13_0-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -51,7 +51,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -166,7 +166,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash

View File

@ -58,7 +58,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -173,7 +173,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -283,7 +283,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cpu-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -306,7 +306,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -422,7 +422,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -533,7 +533,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_6-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -556,7 +556,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -672,7 +672,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -783,261 +783,11 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_8-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-release
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-release-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-release
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-release-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
build_name: libtorch-cuda12_9-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
@ -1056,7 +806,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
@ -1172,7 +922,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
@ -1283,7 +1033,7 @@ jobs:
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda13_0-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

File diff suppressed because it is too large Load Diff

View File

@ -43,6 +43,11 @@ on:
required: false
type: boolean
default: false
freezing:
description: Run freezing?
required: false
type: boolean
default: true
benchmark_configs:
description: The list of configs used the benchmark
required: false
@ -102,7 +107,7 @@ jobs:
if: github.event.schedule == '0 7 * * *'
with:
build-environment: linux-jammy-py3.9-gcc11-build
dashboard-tag: training-false-inference-true-default-true-dynamic-true-cppwrapper-true-aotinductor-true
dashboard-tag: training-false-inference-true-default-true-dynamic-true-cppwrapper-true-aotinductor-true-freezing-true
docker-image: ${{ needs.inductor-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-build.outputs.test-matrix }}
timeout-minutes: 720
@ -116,10 +121,9 @@ jobs:
name: inductor-test
uses: ./.github/workflows/_linux-test.yml
needs: inductor-build
if: github.event_name == 'workflow_dispatch'
with:
build-environment: linux-jammy-py3.9-gcc11-build
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}
dashboard-tag: training-false-inference-true-default-true-dynamic-true-cppwrapper-true-aotinductor-true-freezing-true
docker-image: ${{ needs.inductor-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-build.outputs.test-matrix }}
timeout-minutes: 720

View File

@ -54,7 +54,7 @@ jobs:
- get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.9-gcc11
build-environment: linux-jammy-py3.10-gcc11
docker-image: ${{ needs.docs-build.outputs.docker-image }}
push: ${{ github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' || startsWith(github.event.ref, 'refs/tags/v') }}
run-doxygen: true

View File

@ -132,17 +132,17 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 2, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 3, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 4, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 5, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 6, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
]}
sync-tag: asan-build
secrets: inherit
linux-jammy-py3_10-clang18-asan-test:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-test.yml

View File

@ -23,7 +23,7 @@ jobs:
with:
repository: pytorch/pytorch
stable-branch: viable/strict
requires: '[\"pull\", \"trunk\", \"lint\", \"linux-binary\", \"linux-aarch64\"]'
requires: '[\"pull\", \"trunk\", \"lint\", \"^linux-binary-manywheel$\", \"^linux-binary-libtorch-release$\", \"linux-aarch64\"]'
secret-bot-token: ${{ secrets.MERGEBOT_TOKEN }}
clickhouse-url: ${{ secrets.CLICKHOUSE_URL }}
clickhouse-username: ${{ secrets.CLICKHOUSE_VIABLESTRICT_USERNAME }}

View File

@ -2,6 +2,9 @@ name: vllm-test
on:
push:
branches:
- main
- release/*
tags:
- ciflow/vllm/*
workflow_dispatch:
@ -45,14 +48,18 @@ jobs:
{ config: "vllm_basic_models_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_entrypoints_test", shard: 1, num_shards: 1,runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_regression_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_280_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_multi_model_processor_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_pytorch_compilation_unit_tests", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_multi_model_test_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
{ config: "vllm_languagde_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
{ config: "vllm_distributed_test_2_gpu_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_test", shard: 0, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_test", shard: 1, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_test", shard: 2, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_test", shard: 3, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_tp_test_distributed", shard: 1, num_shards: 1, runner: "linux.aws.h100.4"},
{ config: "vllm_lora_tp_test_distributed", shard: 1, num_shards: 1, runner: "linux.g6.12xlarge.nvidia.gpu"},
{ config: "vllm_distributed_test_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.12xlarge.nvidia.gpu"}
]}
secrets: inherit

View File

@ -1801,26 +1801,3 @@ command = [
"python3",
"tools/linter/adapters/gb_registry_linter.py",
]
[[linter]]
code = 'DISTRIBUTED_C10D_DIRECT_ACCESS'
include_patterns = ['**/*.py']
exclude_patterns = [
'torch/distributed/_distributed_c10d.py',
'fb/**',
'**/fb/**',
]
command = [
'python3',
'tools/linter/adapters/grep_linter.py',
'--pattern=torch\._C\._distributed_c10d',
'--linter-name=DISTRIBUTED_C10D_DIRECT_ACCESS',
'--error-name=direct access to torch._C._distributed_c10d',
"""--error-description=\
Never access torch._C._distributed_c10d directly in code. Always \
import from and use torch.distributed._distributed_c10d which is \
guaranteed to have all functions available\
""",
'--',
'@{{PATHSFILE}}'
]

View File

@ -22,6 +22,7 @@ COMMON_COPTS = [
"-DHAVE_SHM_UNLINK=1",
"-D_FILE_OFFSET_BITS=64",
"-DUSE_FBGEMM",
"-DUSE_DISTRIBUTED",
"-DAT_PER_OPERATOR_HEADERS",
"-DATEN_THREADING=NATIVE",
"-DNO_CUDNN_DESTROY_HANDLE",

15
CLAUDE.md Normal file
View File

@ -0,0 +1,15 @@
# Testing
Use our test class and test runner:
```
from torch.testing._internal.common_utils import run_tests, TestCase
class TestFeature(TestCase):
...
if __name__ == "__main__":
run_tests()
```
To test Tensor equality, use assertEqual.

View File

@ -181,9 +181,8 @@ elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(ppc64le)")
set(CPU_POWER ON)
endif()
# For non-supported platforms, turn USE_DISTRIBUTED off by default.
# NB: USE_DISTRIBUTED simply disables the backend; distributed code
# still gets built
# For non-supported platforms, turn USE_DISTRIBUTED off by default. It is not
# tested and likely won't work without additional changes.
if(NOT LINUX AND NOT WIN32)
set(USE_DISTRIBUTED
OFF
@ -234,6 +233,7 @@ cmake_dependent_option(INSTALL_TEST "Install test binaries if BUILD_TEST is on"
option(USE_CPP_CODE_COVERAGE "Compile C/C++ with code coverage flags" OFF)
option(USE_COLORIZE_OUTPUT "Colorize output during compilation" ON)
option(USE_ASAN "Use Address+Undefined Sanitizers" OFF)
option(USE_LSAN "Use Leak Sanitizer" OFF)
option(USE_TSAN "Use Thread Sanitizer" OFF)
option(USE_CUDA "Use CUDA" ON)
option(USE_XPU "Use XPU" ON)
@ -262,11 +262,11 @@ option(USE_PYTORCH_METAL "Use Metal for PyTorch iOS build" OFF)
option(USE_PYTORCH_METAL_EXPORT "Export Metal models on MacOSX desktop" OFF)
option(USE_NATIVE_ARCH "Use -march=native" OFF)
cmake_dependent_option(USE_MPS "Use MPS for macOS build" ON "MPS_FOUND" OFF)
option(USE_DISTRIBUTED "Enable default distributed backends" ON)
option(USE_DISTRIBUTED "Use distributed" ON)
cmake_dependent_option(USE_NCCL "Use NCCL" ON
"USE_DISTRIBUTED;USE_CUDA OR USE_ROCM;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_XCCL "Use XCCL" ON
"USE_DISTRIBUTED;USE_XPU;UNIX;NOT APPLE" OFF)
"USE_XPU;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON USE_NCCL OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON "USE_NCCL;NOT WIN32" OFF)
cmake_dependent_option(USE_STATIC_NCCL "Use static NCCL" OFF "USE_NCCL" OFF)
@ -431,10 +431,11 @@ if(WIN32)
PATH_SUFFIXES lib
NO_DEFAULT_PATH)
if(NOT libuv_tmp_LIBRARY)
set(USE_DISTRIBUTED OFF)
set(USE_GLOO OFF)
message(
WARNING
"Libuv is not installed in current conda env. Set USE_GLOO to OFF. "
"Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.39' to install libuv."
)
else()
@ -880,10 +881,21 @@ cmake_dependent_option(
USE_FBGEMM_GENAI
"Whether to build FBGEMM GenAI quantized GEMM kernels.\
Will be disabled if not supported by the platform"
OFF
"USE_CUDA OR USE_ROCM"
ON
"USE_ROCM"
OFF)
IF(USE_FBGEMM_GENAI AND USE_ROCM AND NOT "gfx942" IN_LIST PYTORCH_ROCM_ARCH)
message(WARNING "Unsupported ROCM arch for FBGEMM GenAI, will set USE_FBGEMM_GENAI to OFF")
set(USE_FBGEMM_GENAI off)
endif()
# Set USE_FBGEMM_GENAI to ON for CUDA build on SM100.
if(USE_CUDA AND "$ENV{TORCH_CUDA_ARCH_LIST}" MATCHES "10.0" AND CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8)
message(STATUS "Setting USE_FBGEMM_GENAI to ON, doing CUDA build for SM100a")
set(USE_FBGEMM_GENAI ON)
endif()
# CAVEAT: Again, Flash Attention2 will error while building for sm52 while Mem
# Eff Attention won't
cmake_dependent_option(

View File

@ -88,13 +88,13 @@ source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
* If you want to have no-op incremental rebuilds (which are fast), see [Make no-op build fast](#make-no-op-build-fast) below.
* When installing with `python -m pip install -e .` (in contrast to `python -m pip install .`) Python runtime will use
* When installing with `python -m pip install -e . -v --no-build-isolation` (in contrast to `python -m pip install . -v --no-build-isolation`) Python runtime will use
the current local source-tree when importing `torch` package. (This is done by creating [`.egg-link`](https://wiki.python.org/moin/PythonPackagingTerminology#egg-link) file in `site-packages` folder)
This way you do not need to repeatedly install after modifying Python files (`.py`).
However, you would need to reinstall if you modify Python interface (`.pyi`, `.pyi.in`) or non-Python files (`.cpp`, `.cc`, `.cu`, `.h`, ...).
One way to avoid running `python -m pip install -e .` every time one makes a change to C++/CUDA/ObjectiveC files on Linux/Mac,
One way to avoid running `python -m pip install -e . -v --no-build-isolation` every time one makes a change to C++/CUDA/ObjectiveC files on Linux/Mac,
is to create a symbolic link from `build` folder to `torch/lib`, for example, by issuing following:
```bash
pushd torch/lib; sh -c "ln -sf ../../build/lib/libtorch_cpu.* ."; popd
@ -116,7 +116,7 @@ source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
Next run `python setup.py clean`. After that, you can install in editable mode again.
* If you run into errors when running `python -m pip install -e .`, here are some debugging steps:
* If you run into errors when running `python -m pip install -e . -v --no-build-isolation`, here are some debugging steps:
1. Run `printf '#include <stdio.h>\nint main() { printf("Hello World");}'|clang -x c -; ./a.out` to make sure
your CMake works and can compile this simple Hello World program without errors.
2. Nuke your `build` directory. The `setup.py` script compiles binaries into the `build` folder and caches many
@ -129,10 +129,10 @@ source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
git clean -xdf
python setup.py clean
git submodule update --init --recursive
python -m pip install -r requirements.txt
python -m pip install --group dev
python -m pip install --no-build-isolation -v -e .
```
4. The main step within `python -m pip install -e .` is running `cmake --build build` from the `build` directory. If you want to
4. The main step within `python -m pip install -e . -v --no-build-isolation` is running `make` from the `build` directory. If you want to
experiment with some environment variables, you can pass them into the command:
```bash
ENV_KEY1=ENV_VAL1[, ENV_KEY2=ENV_VAL2]* CMAKE_FRESH=1 python -m pip install --no-build-isolation -v -e .
@ -259,6 +259,7 @@ dependencies as well as the nightly binaries into the repo directory.
support for PyTorch.
* [tools](tools) - Code generation scripts for the PyTorch library.
See [README](tools/README.md) of this directory for more details.
* [torchgen](torchgen) - contains the logic and tooling for generating PyTorch's low-level C++ and Python bindings from operator definitions, typically specified in native_functions.yaml
* [test](test) - Python unit tests for PyTorch Python frontend.
* [test_torch.py](test/test_torch.py) - Basic tests for PyTorch
functionality.
@ -294,7 +295,7 @@ The following packages should be installed with `pip`:
- `pytest` - recommended to run tests more selectively
Running
```
pip install -r requirements.txt
pip install --group dev
```
will install these dependencies for you.
@ -645,9 +646,9 @@ can be selected interactively with your mouse to zoom in on a particular part of
the program execution timeline. The `--native` command-line option tells
`py-spy` to record stack frame entries for PyTorch C++ code. To get line numbers
for C++ code it may be necessary to compile PyTorch in debug mode by prepending
your `python -m pip install -e .` call to compile PyTorch with `DEBUG=1`.
Depending on your operating system it may also be necessary to run `py-spy` with
root privileges.
your `python -m pip install -e . -v --no-build-isolation` call to compile
PyTorch with `DEBUG=1`. Depending on your operating system it may also be
necessary to run `py-spy` with root privileges.
`py-spy` can also work in an `htop`-like "live profiling" mode and can be
tweaked to adjust the stack sampling rate, see the `py-spy` readme for more
@ -655,10 +656,10 @@ details.
## Managing multiple build trees
One downside to using `python -m pip install -e .` is that your development
version of PyTorch will be installed globally on your account (e.g., if
you run `import torch` anywhere else, the development version will be
used).
One downside to using `python -m pip install -e . -v --no-build-isolation` is
that your development version of PyTorch will be installed globally on your
account (e.g., if you run `import torch` anywhere else, the development version
will be used).
If you want to manage multiple builds of PyTorch, you can make use of
[venv environments](https://docs.python.org/3/library/venv.html) to maintain
@ -719,7 +720,7 @@ options.
### Code completion and IDE support
When using `python -m pip install -e .`, PyTorch will generate
When using `python -m pip install -e . -v --no-build-isolation`, PyTorch will generate
a `compile_commands.json` file that can be used by many editors
to provide command completion and error highlighting for PyTorch's
C++ code. You need to `pip install ninja` to generate accurate

View File

@ -243,7 +243,7 @@ git submodule update --init --recursive
```bash
# Run this command from the PyTorch directory after cloning the source code using the “Get the PyTorch Source“ section above
pip install -r requirements.txt
pip install --group dev
```
**On Linux**
@ -394,7 +394,7 @@ On macOS
```bash
export CMAKE_PREFIX_PATH="${CONDA_PREFIX:-'$(dirname $(which conda))/../'}:${CMAKE_PREFIX_PATH}"
MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ CMAKE_ONLY=1 python setup.py build
MACOSX_DEPLOYMENT_TARGET=11.0 CMAKE_ONLY=1 python setup.py build
ccmake build # or cmake-gui build
```

View File

@ -50,6 +50,7 @@ Following is the Release Compatibility Matrix for PyTorch releases:
| PyTorch version | Python | C++ | Stable CUDA | Experimental CUDA | Stable ROCm |
| --- | --- | --- | --- | --- | --- |
| 2.9 | >=3.10, <=(3.14, 3.14t experimental) | C++17 | CUDA 12.6 (CUDNN 9.10.2.21), CUDA 12.8 (CUDNN 9.10.2.21) | CUDA 13.0 (CUDNN 9.13.0.50) | ROCm 6.4 |
| 2.8 | >=3.9, <=3.13, (3.13t experimental) | C++17 | CUDA 12.6 (CUDNN 9.10.2.21), CUDA 12.8 (CUDNN 9.10.2.21) | CUDA 12.9 (CUDNN 9.10.2.21) | ROCm 6.4 |
| 2.7 | >=3.9, <=3.13, (3.13t experimental) | C++17 | CUDA 11.8 (CUDNN 9.1.0.70), CUDA 12.6 (CUDNN 9.5.1.17) | CUDA 12.8 (CUDNN 9.7.1.26) | ROCm 6.3 |
| 2.6 | >=3.9, <=3.13, (3.13t experimental) | C++17 | CUDA 11.8, CUDA 12.4 (CUDNN 9.1.0.70) | CUDA 12.6 (CUDNN 9.5.1.17) | ROCm 6.2.4 |

View File

@ -16,6 +16,8 @@ However, if you believe you have found a security vulnerability in PyTorch, we e
Please report security issues using https://github.com/pytorch/pytorch/security/advisories/new
All reports submitted thru the security advisories mechanism would **either be made public or dismissed by the team within 90 days of the submission**. If advisory has been closed on the grounds that it is not a security issue, please do not hesitate to create an [new issue](https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml) as it is still likely a valid issue within the framework.
Please refer to the following page for our responsible disclosure policy, reward guidelines, and those things that should not be reported:
https://www.facebook.com/whitehat

View File

@ -252,47 +252,88 @@ if(USE_MEM_EFF_ATTENTION)
list(APPEND ATen_ATTENTION_KERNEL_SRCS ${mem_eff_attention_cuda_kernels_cu})
endif()
IF(USE_FBGEMM_GENAI AND USE_ROCM AND NOT "gfx942" IN_LIST PYTORCH_ROCM_ARCH)
message(WARNING "Unsupported ROCM arch for FBGEMM GenAI, will set USE_FBGEMM_GENAI to OFF")
set(USE_FBGEMM_GENAI off)
endif()
# FBGEMM GenAI
IF(USE_FBGEMM_GENAI)
set(FBGEMM_THIRD_PARTY ${PROJECT_SOURCE_DIR}/third_party/fbgemm/external/)
set(FBGEMM_GENAI_DIR ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize)
set(FBGEMM_GENAI_SRCS ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize)
if(USE_CUDA)
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
set(FBGEMM_CUTLASS_KERNELS_REGEX ".*mx8mx8bf16_grouped.*")
file(GLOB_RECURSE fbgemm_genai_native_cuda_cu
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/*.cu"
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/**/*.cu")
list(FILTER fbgemm_genai_native_cuda_cu INCLUDE REGEX ${FBGEMM_CUTLASS_KERNELS_REGEX})
if(USE_ROCM)
# Only include the kernels we want to build to avoid increasing binary size.
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
"${FBGEMM_GENAI_DIR}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
"${FBGEMM_GENAI_DIR}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
# PyTorch is not built for 10.0a in CI, due to lack of portability,
# so we need to explicitly build these files for 10.0a.
foreach(cu_file ${fbgemm_genai_native_cuda_cu})
_BUILD_FOR_ADDITIONAL_ARCHS(
"${cu_file}"
"100a")
endforeach()
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
file(GLOB_RECURSE fbgemm_genai_native_cuda_cpp
"${FBGEMM_GENAI_SRCS}/common/*.cpp"
)
# Combine all source files into a single list
list(APPEND fbgemm_genai_all_sources
${fbgemm_genai_native_cuda_cu}
${fbgemm_genai_native_cuda_cpp}
)
# Now, create the library and provide the sources at the same time
add_library(fbgemm_genai OBJECT ${fbgemm_genai_all_sources})
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
set(fbgemm_genai_mx8mx8bf16_grouped
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
)
target_include_directories(fbgemm_genai PUBLIC
# FBGEMM version of Composable Kernel is used due to some customizations
${FBGEMM_THIRD_PARTY}/composable_kernel/include
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
${FBGEMM_GENAI_DIR}/include/
${FBGEMM_GENAI_DIR}/common/include/
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${fbgemm_genai_mx8mx8bf16_grouped}
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
else()
if(USE_ROCM)
# Only include the kernels we want to build to avoid increasing binary size.
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
target_include_directories(fbgemm_genai PUBLIC
# FBGEMM version of Composable Kernel is used due to some customizations
${FBGEMM_THIRD_PARTY}/composable_kernel/include
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
endif()
endif()
endif()
@ -635,12 +676,26 @@ if(USE_CUDA AND NOT USE_ROCM)
add_definitions(-DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/include)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/tools/util/include)
# Add FBGEMM_GENAI include directories for torch_ops.h
if(USE_FBGEMM_GENAI)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
endif()
if($ENV{ATEN_STATIC_CUDA})
list(APPEND ATen_CUDA_DEPENDENCY_LIBS
${CUDA_LIBRARIES}
CUDA::cusparse_static
CUDA::cufft_static_nocallback
)
if(CUDA_VERSION VERSION_LESS_EQUAL 12.9)
list(APPEND ATen_CUDA_DEPENDENCY_LIBS
${CUDA_LIBRARIES}
CUDA::cusparse_static
CUDA::cufft_static_nocallback)
else()
list(APPEND ATen_CUDA_DEPENDENCY_LIBS
${CUDA_LIBRARIES}
CUDA::cusparse_static
CUDA::cufft_static)
endif()
if(NOT BUILD_LAZY_CUDA_LINALG)
list(APPEND ATen_CUDA_DEPENDENCY_LIBS
CUDA::cusolver_static

View File

@ -308,17 +308,44 @@ void fillVersion<DLManagedTensorVersioned>(
// constructed out of ATen tensor
template <class T>
T* toDLPackImpl(const Tensor& src) {
// create a new tensor with possibly normalized strides
// gh-83069
auto shape = src.sizes();
auto strides = src.strides().vec();
for (int i = 0; i < src.dim(); i++) {
if (shape[i] < 2) {
strides[i] = 1;
auto view = src;
// Detect whether there is need to normalize the strides
// Background: gh-83069
//
// However, normalizing strides can come at a high-cost
// to slow down toDLPack conversion 3x, so we
// only normalize if needed.
//
// The following code detects whether the src follows
// a continuous pattern. If the src follows such pattern (common-case)
// then we do not need to normalize the strides.
bool need_normalize_strides = false;
int64_t expected_stride = 1;
for (int i = src.dim() - 1; i >= 0; i--) {
// detect if we do not meet continuous pattern
// and the size is 1, so there is opportunity to normalize
if (src.stride(i) != expected_stride && src.size(i) == 1) {
need_normalize_strides = true;
break;
}
expected_stride *= src.size(i);
}
// less common case, try normalizing the strides
if (need_normalize_strides) {
// create a new tensor with possibly normalized strides
// gh-83069
auto shape = src.sizes();
auto strides = src.strides().vec();
for (int i = 0; i < src.dim(); i++) {
if (shape[i] < 2) {
strides[i] = 1;
}
}
view = src.as_strided(shape, strides, src.storage_offset());
}
auto view = src.as_strided(shape, strides, src.storage_offset());
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);
atDLMTensor->handle = view;
atDLMTensor->tensor.manager_ctx = atDLMTensor;

View File

@ -0,0 +1,17 @@
#include <ATen/DTensorState.h>
namespace at {
namespace {
thread_local bool kDTensorAllowImplicitReplication = false;
}
bool get_dtensor_allow_implicit_replication() {
return kDTensorAllowImplicitReplication;
}
void set_dtensor_allow_implicit_replication(bool enabled) {
kDTensorAllowImplicitReplication = enabled;
}
} // namespace at

View File

@ -0,0 +1,34 @@
#pragma once
#include <c10/macros/Macros.h>
namespace at {
TORCH_API bool get_dtensor_allow_implicit_replication();
TORCH_API void set_dtensor_allow_implicit_replication(bool enabled);
struct DTensorAllowImplicitReplication {
DTensorAllowImplicitReplication()
: prev_dtensor_allow_implicit_replication_(
get_dtensor_allow_implicit_replication()) {
set_dtensor_allow_implicit_replication(true);
}
DTensorAllowImplicitReplication(const DTensorAllowImplicitReplication&) =
delete;
DTensorAllowImplicitReplication& operator=(
const DTensorAllowImplicitReplication&) = delete;
DTensorAllowImplicitReplication(DTensorAllowImplicitReplication&&) = delete;
DTensorAllowImplicitReplication& operator=(
DTensorAllowImplicitReplication&&) = delete;
~DTensorAllowImplicitReplication() {
set_dtensor_allow_implicit_replication(
prev_dtensor_allow_implicit_replication_);
}
private:
bool prev_dtensor_allow_implicit_replication_;
};
} // namespace at

View File

@ -133,12 +133,12 @@ struct TORCH_API SparseTensorImpl : public TensorImpl {
"resize_ called on tensor with symbolic shape")
TORCH_CHECK(
sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
"number of dimensions must be sparse_dim (",
"'len(size) == sparse_dim + dense_dim' is not satisfied: len(size) = ",
size.size(),
", sparse_dim = ",
sparse_dim,
") + dense_dim (",
dense_dim,
"), but got ",
size.size());
", dense_dim = ",
dense_dim);
if (nnz() > 0) {
[[maybe_unused]] auto constexpr alt_options_msg =
"You could try the following options:\n\
@ -254,12 +254,12 @@ struct TORCH_API SparseTensorImpl : public TensorImpl {
"resize_and_clear_ called on tensor with symbolic shape")
TORCH_CHECK(
sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
"number of dimensions must be sparse_dim (",
"'len(size) == sparse_dim + dense_dim' is not satisfied: len(size) = ",
size.size(),
", sparse_dim = ",
sparse_dim,
") + dense_dim (",
dense_dim,
"), but got ",
size.size());
", dense_dim = ",
dense_dim);
set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
sparse_dim_ = sparse_dim;

View File

@ -8,6 +8,7 @@
#include <ATen/record_function.h>
#include <ATen/SavedTensorHooks.h>
#include <ATen/FunctionalTensorWrapper.h>
#include <ATen/DTensorState.h>
namespace at {
@ -19,6 +20,7 @@ ThreadLocalState::ThreadLocalState()
torch_dispatch_mode_state_(c10::impl::TorchDispatchModeTLS::get_state()), python_dispatcher_state_(c10::impl::PythonDispatcherTLS::get_state()),
python_torch_function_state_(at::impl::PythonTorchFunctionTLS::get_state()),
saved_tensors_default_hooks_state_(at::SavedTensorDefaultHooks::get_tls_state()), functionalization_reapply_views_state_(at::functionalization::impl::getFunctionalizationReapplyViewsTLS()),
dtensor_allow_implicit_replication_(at::get_dtensor_allow_implicit_replication()),
saved_objects_(at::impl::ThreadLocalPythonObjects::get_state()) {
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE) && !defined(BUILD_LITE_INTERPRETER)
for(size_t i=0; i<autocast_dtypes_.size(); i++) {
@ -52,6 +54,8 @@ void ThreadLocalState::setThreadLocalState(
c10::impl::PythonDispatcherTLS::set_state(state.python_dispatcher_state_);
at::set_dtensor_allow_implicit_replication(state.dtensor_allow_implicit_replication_);
c10::ThreadLocalDebugInfo::_forceCurrentDebugInfo(state.debug_info_);
c10::impl::_force_tls_local_dispatch_key_set(state.dispatch_key_);

View File

@ -75,6 +75,8 @@ class TORCH_API ThreadLocalState {
bool functionalization_reapply_views_state_;
bool dtensor_allow_implicit_replication_;
// TLS for arbitrary python objects that is registered via hooks
at::impl::ThreadLocalPythonObjects saved_objects_;

View File

@ -64,6 +64,7 @@ constexpr DynamicTypeBits kDynamicClassTypeBit = DYNAMIC_TYPE_BIT(10);
_(ScalarType, kDynamicIntTypeBit, 1) \
_(Layout, kDynamicIntTypeBit, 1) \
_(SymInt, kDynamicIntTypeBit, 1) \
_(SymBool, kDynamicIntTypeBit, 1) \
_(MemoryFormat, kDynamicIntTypeBit, 1)
#define FORWARD_DECL_TYPE(NAME, _, __) struct NAME ## Type;

View File

@ -644,6 +644,8 @@ inline void bgemm_internal_cublas_half_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYP
void * beta_ptr = &fbeta;
#ifdef USE_ROCM
int flag = 0;
rocblas_datatype c_type = std::is_same<C_Dtype, float>::value ? rocblas_datatype_f32_r : rocblas_datatype_f16_r;
rocblas_datatype d_type = c_type;
#if USE_GEMM_FLAGS_FP16_ALT_IMPL
flag = at::ROCmBackwardPassGuard::is_backward_pass() ? rocblas_gemm_flags_fp16_alt_impl : 0;
#endif
@ -652,8 +654,8 @@ inline void bgemm_internal_cublas_half_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYP
hipOperationToRocOperation(opb), (int)m, (int)n, (int)k,
(void*)alpha_ptr, a, rocblas_datatype_f16_r, (int)lda, stridea,
b, rocblas_datatype_f16_r, (int)ldb, strideb,
(void*)beta_ptr, c, rocblas_datatype_f16_r, (int)ldc, stridec,
c, rocblas_datatype_f16_r, (int)ldc, stridec,
(void*)beta_ptr, c, c_type, (int)ldc, stridec,
c, d_type, (int)ldc, stridec,
(int) num_batches, rocblas_datatype_f32_r, rocblas_gemm_algo_standard,
0, flag)));
#else
@ -996,9 +998,6 @@ void bgemm<at::BFloat16>(CUDABLAS_BGEMM_ARGTYPES(at::BFloat16)) {
template <>
void bgemm<at::Half, float>(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::Half, float)) {
#ifdef USE_ROCM
TORCH_CHECK(false, "bgemm input type at::Half and output type float is not supported for ROCm");
#endif
// TODO: Support tuning for Half inputs and FP32 output
bgemm_internal<at::Half, float>(CUDABLAS_BGEMM_ARGS(at::Half));
}
@ -1006,9 +1005,7 @@ void bgemm<at::Half, float>(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::Half, float)
template <>
void bgemm<at::BFloat16, float>(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::BFloat16, float)) {
#ifdef USE_ROCM
TORCH_CHECK(false, "bgemm input type at::BFloat16 and output type float is not supported for ROCm");
#else
#ifndef USE_ROCM
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
if (prop->major < 8)
@ -1101,6 +1098,8 @@ inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(
GEMM_CHECK_ARGVALUES(at::Half);
#ifdef USE_ROCM
int flag = 0;
rocblas_datatype c_type = std::is_same<C_Dtype, float>::value ? rocblas_datatype_f32_r : rocblas_datatype_f16_r;
rocblas_datatype d_type = c_type;
#if USE_GEMM_FLAGS_FP16_ALT_IMPL
flag = at::ROCmBackwardPassGuard::is_backward_pass() ? rocblas_gemm_flags_fp16_alt_impl : 0;
#endif
@ -1120,10 +1119,10 @@ inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(
ldb,
beta_ptr,
c,
rocblas_datatype_f16_r,
c_type,
ldc,
c,
rocblas_datatype_f16_r,
d_type,
ldc,
rocblas_datatype_f32_r,
rocblas_gemm_algo_standard,
@ -1513,9 +1512,6 @@ void gemm<at::BFloat16>(CUDABLAS_GEMM_ARGTYPES(at::BFloat16)) {
template <>
void gemm<at::Half, float>(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::Half, float)) {
#ifdef USE_ROCM
TORCH_CHECK(false, "gemm input type at::Half and output type float is not supported for ROCm");
#endif
// TODO: Support Tuning for fp16-fp32 gemm
gemm_internal<at::Half, float>(CUDABLAS_GEMM_ARGS(at::Half));
}
@ -1523,9 +1519,7 @@ void gemm<at::Half, float>(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::Half, float))
template <>
void gemm<at::BFloat16, float>(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::BFloat16, float)) {
#ifdef USE_ROCM
TORCH_CHECK(false, "gemm input type at::BFloat16 and output type float is not supported for ROCm");
#else
#ifndef USE_ROCM
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
if (prop->major < 8)
@ -1947,11 +1941,11 @@ void scaled_gemm(
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, _cublasOpFromChar(transb));
cublasLtMatmulDescAttributes_t matmulDescA = CUBLASLT_MATMUL_DESC_A_SCALE_POINTER;
cublasLtMatmulDescAttributes_t matmulDescB = CUBLASLT_MATMUL_DESC_B_SCALE_POINTER;
#if defined(USE_ROCM) && !defined(HIPBLASLT_OUTER_VEC) && defined(HIPBLASLT_VEC_EXT)
// hipblaslt supported row-wise before cublas, and did so their own way (via
// the SCALE_POINTERSs), but then migrated to match how cublas does it (via
// the SCALE_MODEs). Here we check for this early custom mode.
bool use_rowwise = (mat1_scaling_type == ScalingType::RowWise && mat2_scaling_type == ScalingType::RowWise);
#if defined(USE_ROCM) && !defined(HIPBLASLT_OUTER_VEC) && defined(HIPBLASLT_VEC_EXT)
if (use_rowwise) {
matmulDescA = HIPBLASLT_MATMUL_DESC_A_SCALE_POINTER_VEC_EXT;
matmulDescB = HIPBLASLT_MATMUL_DESC_B_SCALE_POINTER_VEC_EXT;
@ -1966,8 +1960,12 @@ void scaled_gemm(
}
#endif
}
#else
// rowwise isn't supported using cublaslt or older hipblaslt
#elif (CUDA_VERSION < 12090) && !defined(USE_ROCM)
// hipblaslt supported row-wise before cublas, and did so their own way (via
// the SCALE_POINTERSs), but then migrated to match how cublas does it (via
// the SCALE_MODEs). Here we check for this early custom mode.
bool use_rowwise = (mat1_scaling_type == ScalingType::RowWise && mat2_scaling_type == ScalingType::RowWise);
// rowwise isn't supported using older cublaslt or older hipblaslt
TORCH_INTERNAL_ASSERT(use_rowwise == false, "rowwise scaled_gemm not supported with blaslt");
#endif // if defined(USE_ROCM) && !defined(HIPBLASLT_OUTER_VEC) && defined(HIPBLASLT_VEC_EXT)
computeDesc.setAttribute(matmulDescA, mat1_scale_ptr);
@ -2583,8 +2581,6 @@ void vdot<c10::complex<double>>(CUDABLAS_DOT_ARGTYPES(c10::complex<double>)) {
reinterpret_cast<cuDoubleComplex*>(result)));
}
// HIP on Windows does not support
#if !(defined(USE_ROCM) && defined(_MSC_VER))
template <>
void getrsBatched<float>(CUDABLAS_GETRS_ARGTYPES(float)) {
TORCH_CUDABLAS_CHECK(cublasSgetrsBatched(
@ -2783,6 +2779,5 @@ void gelsBatched<c10::complex<float>>(CUDABLAS_GELS_BATCHED_ARGTYPES(c10::comple
devInfoArray,
batchSize));
}
#endif // !(defined(USE_ROCM) && defined(_MSC_VER))
} // namespace at::cuda::blas

View File

@ -343,9 +343,6 @@ void vdot<c10::complex<double>>(CUDABLAS_DOT_ARGTYPES(c10::complex<double>));
int m, int n, int nrhs, Dtype** dA_array, int ldda, \
Dtype** dC_array, int lddc, int* info, int *devInfoArray, int batchSize
// HIP on Windows does not support getrs, geqrf, getrf, gels
#if !(defined(USE_ROCM) && defined(_MSC_VER))
template<class Dtype>
void getrsBatched(CUDABLAS_GETRS_ARGTYPES(Dtype)) {
static_assert(false&&sizeof(Dtype),"at::cuda::blas::getrsBatched: not implemented");
@ -400,28 +397,4 @@ TORCH_CUDA_CU_API void gelsBatched<c10::complex<double>>(CUDABLAS_GELS_BATCHED_A
template<>
TORCH_CUDA_CU_API void gelsBatched<c10::complex<float>>(CUDABLAS_GELS_BATCHED_ARGTYPES(c10::complex<float>));
#else // !(defined(USE_ROCM) && defined(_MSC_VER))
template<class Dtype>
void getrsBatched(CUDABLAS_GETRS_ARGTYPES(Dtype)) {
TORCH_CHECK(false, "at::cuda::blas::getrsBatched: not supported for HIP on Windows");
}
template <class Dtype>
void geqrfBatched(CUDABLAS_GEQRF_BATCHED_ARGTYPES(Dtype)) {
TORCH_CHECK(false, "at::cuda::blas::geqrfBatched: not supported for HIP on Windows");
}
template<class Dtype>
void getrfBatched(CUDABLAS_GETRF_ARGTYPES(Dtype)) {
TORCH_CHECK(false, "at::cuda::blas::getrfBatched: not supported for HIP on Windows");
}
template <class Dtype>
void gelsBatched(CUDABLAS_GELS_BATCHED_ARGTYPES(Dtype)) {
TORCH_CHECK(false, "at::cuda::blas::gelsBatched: not supported for HIP on Windows");
}
#endif // !(defined(USE_ROCM) && defined(_MSC_VER))
} // namespace at::cuda::blas

View File

@ -45,6 +45,24 @@ struct OffsetCalculator {
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
offset_type offsets;
#if defined(USE_ROCM)
if ((dims > 0) && (dims <= 2)) {
auto divmod = sizes_[0].divmod(linear_idx);
#pragma unroll
for (int arg = 0; arg < NARGS; arg++)
offsets[arg] = divmod.mod * strides_[0][arg];
if (dims >= 2) {
divmod = sizes_[1].divmod(divmod.div);
#pragma unroll
for (int arg = 0; arg < NARGS; arg++)
offsets[arg] += divmod.mod * strides_[1][arg];
}
// [...]
return offsets;
}
#endif
#pragma unroll
for (int arg = 0; arg < NARGS; arg++) {
offsets[arg] = 0;

View File

@ -117,6 +117,8 @@ namespace at::cuda {
_(nvrtcGetPTXSize) \
_(nvrtcGetPTX) \
_(cuModuleLoadData) \
_(cuModuleLoad) \
_(cuGetErrorString) \
_(cuModuleGetFunction) \
_(HIPOCCUPANCYMAXACTIVEBLOCKSPERMULTIPROCESSOR) \
_(nvrtcGetErrorString) \

View File

@ -220,19 +220,17 @@ TuningResultsValidator::TuningResultsValidator() {
[]() { return GetPyTorchVersion(); },
[this](auto&& k) { return ValidatePyTorchVersion(std::forward<decltype(k)>(k)); });
#ifdef USE_ROCM
// rocm
// hip
{
#ifdef _WIN32
std::string rocm_version = HIP_VERSION_BUILD_NAME;
#else
std::string rocm_version = ROCM_BUILD_INFO;
#endif
// HIP version is more accurate than ROCm version. User's environment could be a stock
// ROCm install but with a mix of newer components, making ROCm version meaningless.
std::string hip_version = c10::str(TORCH_HIP_VERSION);
RegisterValidator(
"ROCM_VERSION",
[rocm_version]() { return rocm_version; },
[rocm_version](auto&& k) {
TUNABLE_LOG1("ROCM_VERSION validation: expect ", k, " to match ", rocm_version);
return rocm_version == k ? OK : FAIL;
"HIP_VERSION",
[hip_version]() { return hip_version; },
[hip_version](auto&& k) {
TUNABLE_LOG1("HIP_VERSION validation: expect ", k, " to match ", hip_version);
return hip_version == k ? OK : FAIL;
});
}
// gfx arch

View File

@ -38,6 +38,7 @@ inline int dataSize(cudnnDataType_t dataType)
}
}
// NOTE [ cudnn fixSizeOneDimStride ]
// The stride for a size-1 dimensions is not uniquely determined; in
// fact, it can be anything you want, because the fact that the
// tensor is size 1 at this dimension means that you will never actually

View File

@ -7,6 +7,7 @@
#include <ATen/functorch/BatchRulesHelper.h>
#include <ATen/functorch/PlumbingHelper.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <ATen/DTensorState.h>
#include <utility>
@ -44,8 +45,13 @@ static std::tuple<Tensor, std::optional<int64_t>> embedding_batch_rule(
const auto weight_ = reshape_dim_into(*weight_bdim, 0, weight);
auto indices_ = moveBatchDimToFront(indices, indices_bdim);
const auto range = getStepTensor(indices, batch_size, num_embeddings);
indices_ = indices_ + range;
{
// getStepTensor returns a regular Tensor. If indices_ is a DTensor
// we want to allow this mixed DTensor-Tensor operation.
at::DTensorAllowImplicitReplication guard;
const auto range = getStepTensor(indices, batch_size, num_embeddings);
indices_ = indices_ + range;
}
auto result = at::embedding_symint(weight_, indices_, std::move(padding_idx), scale_grad_by_freq, sparse);
return std::make_tuple(std::move(result), 0);
}

View File

@ -19,31 +19,37 @@ inline miopenDataType_t getDataType(const at::Tensor& t) {
} else {
TORCH_CHECK(
false,
"TensorDescriptor only supports float, half and bfloat16 tensors");
"TensorDescriptor does not support ", scalar_type);
}
}
} // anonymous namespace
void TensorDescriptor::set(const at::Tensor &t, size_t pad) {
set(getDataType(t), t.sizes(), t.strides(), pad);
}
constexpr size_t MIOPEN_DIM_MAX = 5;
void TensorDescriptor::set(const at::Tensor &t, at::MemoryFormat memory_format, size_t pad) {
set(getDataType(t), t.sizes(), t.strides(), pad,
memory_format == at::MemoryFormat::ChannelsLast ||
memory_format == at::MemoryFormat::ChannelsLast3d);
}
void TensorDescriptor::set(const at::Tensor &t, size_t pad) {
auto memory_format = t.suggest_memory_format();
set(getDataType(t), t.sizes(), t.strides(), pad,
memory_format == at::MemoryFormat::ChannelsLast ||
memory_format == at::MemoryFormat::ChannelsLast3d);
}
void TensorDescriptor::set(miopenDataType_t datatype, IntArrayRef t_sizes, IntArrayRef t_strides, size_t pad) {
set(datatype, t_sizes, t_strides, pad,
is_channels_last_strides_2d(t_sizes, t_strides) ||
is_channels_last_strides_3d(t_sizes, t_strides));
}
void TensorDescriptor::set(miopenDataType_t datatype, IntArrayRef t_sizes, IntArrayRef t_strides, size_t pad, bool nhwc) {
size_t dim = t_sizes.size();
if (dim > MIOPEN_DIM_MAX || pad > MIOPEN_DIM_MAX)
#define _STR(X) #X
#define STR(X) _STR(X)
TORCH_CHECK(
false,
"MIOpen supports only up to ",
STR(MIOPEN_DIM_MAX),
" dimensions");
#undef _STR
#undef STR
TORCH_CHECK(false, "MIOpen supports only up to ", MIOPEN_DIM_MAX, " dimensions");
int size[MIOPEN_DIM_MAX];
int stride[MIOPEN_DIM_MAX];
for (const auto i : c10::irange(dim)) {
@ -54,7 +60,7 @@ void TensorDescriptor::set(miopenDataType_t datatype, IntArrayRef t_sizes, IntAr
size[i] = 1;
stride[i] = 1;
}
set(datatype, static_cast<int>(std::max(dim, pad)), size, stride);
set(datatype, static_cast<int>(std::max(dim, pad)), size, stride, nhwc);
}
std::string miopenTypeToString(miopenDataType_t dtype) {
@ -74,10 +80,11 @@ std::string miopenTypeToString(miopenDataType_t dtype) {
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
int nbDims = 4;
int nbDims = 0;
int dimA[MIOPEN_DIM_MAX];
int strideA[MIOPEN_DIM_MAX];
miopenDataType_t dtype;
miopenGetTensorDescriptorSize(d.desc(), &nbDims);
miopenGetTensorDescriptor(d.desc(), &dtype, dimA, strideA);
out << " type = " << miopenTypeToString(dtype) << "\n";
out << " nbDims = " << nbDims << "\n";
@ -99,19 +106,17 @@ void TensorDescriptor::print() { std::cout << *this; }
void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad) {
auto dim = t.ndimension();
if (dim > static_cast<int64_t>(MIOPEN_DIM_MAX) || pad > static_cast<int64_t>(MIOPEN_DIM_MAX)) {
#define _STR(X) #X
#define STR(X) _STR(X)
TORCH_CHECK(
false,
"MIOpen supports only up to ",
STR(MIOPEN_DIM_MAX),
" dimensions");
#undef _STR
#undef STR
}
if (dim > MIOPEN_DIM_MAX || pad > MIOPEN_DIM_MAX)
TORCH_CHECK(false, "MIOpen supports only up to ", MIOPEN_DIM_MAX, " dimensions");
// NB: It is possible for this test to be insufficient, because the
// Tensor passed in to set the filter descriptor may not be the actual
// Tensor whose data pointer is passed to cuDNN. Nevertheless,
// that is the common case, so we can catch most client errors with this test.
TORCH_CHECK(t.is_contiguous(memory_format),
"MIOpen filters (a.k.a. weights) must be contiguous");
"MIOpen filters (a.k.a. weights) must be contiguous in desired memory_format\n",
"Weight sizes: ", t.sizes(), "\n",
"Weight strides: ", t.strides(), "\n",
"cuDNN suggested memory_format: ", memory_format);
int size[MIOPEN_DIM_MAX];
int stride[MIOPEN_DIM_MAX];
@ -131,7 +136,9 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
}
dim = std::max<int64_t>(dim, pad);
set(getDataType(t), (int) dim, size, stride);
set(getDataType(t), static_cast<int>(dim), size, stride,
memory_format == at::MemoryFormat::ChannelsLast ||
memory_format == at::MemoryFormat::ChannelsLast3d);
}
}}

View File

@ -9,6 +9,8 @@
namespace at { namespace native {
std::string miopenTypeToString(miopenDataType_t dtype);
inline int dataSize(miopenDataType_t dataType)
{
switch (dataType) {
@ -19,6 +21,32 @@ inline int dataSize(miopenDataType_t dataType)
}
}
// See NOTE [ cudnn fixSizeOneDimStride ] in aten/src/ATen/cudnn/Descriptors.h
template <typename T>
static inline void fixSizeOneDimStride(int dim, const T *size, T *stride, bool nhwc) {
int64_t z = 1;
int index = 0;
std::vector<int> permutation(dim);
if (nhwc) {
permutation[index++] = 1;
}
for (int d = dim-1; d > 1; d--) {
permutation[index++] = d;
}
if (!nhwc) {
permutation[index++] = 1;
}
permutation[index++] = 0;
for (int d : permutation) {
if (size[d] == 1) {
stride[d] = z;
} else {
z *= size[d];
}
}
}
template <typename T, miopenStatus_t (*dtor)(T*)>
struct DescriptorDeleter {
void operator()(T* x) {
@ -75,14 +103,20 @@ class TORCH_HIP_CPP_API TensorDescriptor : public Descriptor<
set(t, pad);
}
// See Note [CuDNN broadcast padding]
void set(const at::Tensor &t, size_t pad = 0);
void set(const at::Tensor &t, at::MemoryFormat memory_format, size_t pad = 0);
void set(miopenDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad = 0);
void print();
private:
void set(miopenDataType_t dataType, int dim, int* size, int* stride) {
MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, stride));
void set(miopenDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad, bool nhwc);
void set(miopenDataType_t dataType, int dim, int* size, int* stride, bool nhwc) {
std::vector<int> strides_copy(stride, stride + dim);
fixSizeOneDimStride<int>(dim, size, strides_copy.data(), nhwc);
MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, strides_copy.data()));
}
};
@ -100,8 +134,10 @@ class TORCH_HIP_CPP_API FilterDescriptor : public Descriptor<
void set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad = 0);
private:
void set(miopenDataType_t dataType, int dim, int* size, int* stride) {
MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, stride));
void set(miopenDataType_t dataType, int dim, int* size, int* stride, bool nhwc) {
std::vector<int> strides_copy(stride, stride + dim);
fixSizeOneDimStride<int>(dim, size, strides_copy.data(), nhwc);
MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, strides_copy.data()));
}
};
@ -166,4 +202,4 @@ union Constant
}
};
}} // namespace
}} // namespace

View File

@ -9,6 +9,7 @@
#include <ATen/native/mkldnn/Matmul.h>
#include <ATen/native/mkldnn/Linear.h>
#include <ATen/native/Resize.h>
#include <ATen/native/GroupedMMUtils.h>
#if !defined(__s390x__) && !defined(__powerpc__)
#include <cpuinfo.h>
#endif
@ -332,4 +333,23 @@ _scaled_mm_cpu(const Tensor& mat_a, const Tensor& mat_b,
return _scaled_mm_out_cpu(mat_a, mat_b, scale_a, scale_b, bias, scale_result, out_dtype, use_fast_accum, out);
}
// TODO(vasiliy, future PR): figure out why we need to declare this function, when
// other functions that live in ATen/native/*.cpp without declarations
// or headers work just fine.
Tensor _grouped_mm(const Tensor& mat_a, const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& bias,
std::optional<c10::ScalarType> out_dtype);
Tensor _grouped_mm(const Tensor& mat_a, const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& bias,
std::optional<c10::ScalarType> out_dtype) {
_grouped_mm_validate_inputs(mat_a, mat_b, offs, bias, out_dtype);
const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype);
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
_grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out);
return out;
}
} // namespace at::native

View File

@ -457,24 +457,9 @@ void gemm(
return;
}
#endif
// for the fallback path, first compute gemm with beta = 0,
// and then add c in full precision.
int64_t c_size = n * m;
std::vector<float> float_c(c_size, 0.f);
gemm_no_downcast_stub(
at::kCPU, at::kBFloat16,
transa, transb, m, n, k, alpha, a, lda, b, ldb, 0.f, float_c.data(), m);
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
auto offset = j * ldc + i;
// beta == 0 won't propagate NaN from C
if (beta == 0.f) {
c[offset] = float_c[j * m + i];
} else {
c[offset] = beta * c[offset] + float_c[j * m + i];
}
}
}
transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
void gemm(
@ -493,24 +478,9 @@ void gemm(
return;
}
#endif
// for the fallback path, first compute gemm with beta = 0,
// and then add c in full precision.
int64_t c_size = n * m;
std::vector<at::Half> float16_c(c_size, 0.f);
gemm_stub(
gemm_no_downcast_stub(
at::kCPU, at::kHalf,
transa, transb, m, n, k, alpha, a, lda, b, ldb, 0.f, float16_c.data(), m);
for (const auto j : c10::irange(n)) {
for (const auto i : c10::irange(m)) {
auto offset = j * ldc + i;
// beta == 0 won't propagate NaN from C
if (beta == 0.f) {
c[offset] = c10::convert<float>(float16_c[j * m + i]);
} else {
c[offset] = beta * c[offset] + c10::convert<float>(float16_c[j * m + i]);
}
}
}
transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
}
void gemm(

View File

@ -353,19 +353,21 @@ TORCH_API void _cudnn_set_conv_benchmark_empty_cache(bool enable);
TORCH_API bool _cudnn_get_conv_benchmark_empty_cache();
inline bool miopen_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
inline at::MemoryFormat miopen_conv_suggest_memory_format(const at::Tensor& input, const at::Tensor& weight) {
// disable NHWC for float64 input.
if (!at::detail::getCUDAHooks().compiledWithMIOpen() ||
input.scalar_type() == at::kDouble ||
weight.scalar_type() == at::kDouble) {
return false;
return at::MemoryFormat::Contiguous;
}
// TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
// See #64427
static std::optional<bool> PYTORCH_MIOPEN_SUGGEST_NHWC = c10::utils::check_env("PYTORCH_MIOPEN_SUGGEST_NHWC");
static bool suggest_nhwc = PYTORCH_MIOPEN_SUGGEST_NHWC && *PYTORCH_MIOPEN_SUGGEST_NHWC;
// See https://github.com/pytorch/pytorch/issues/64427.
// non static variable is used to be able to change environment variable in runtime for testing
// enabled by default for ROCm >= 7.0.0 with miopen 3.5
int miopen_version = detail::getCUDAHooks().compiledWithMIOpen() ? detail::getCUDAHooks().versionMIOpen() : 0;
bool is_miopen_3_5 = miopen_version >= 30500; // ROCm 7.0
bool suggest_nhwc = c10::utils::check_env("PYTORCH_MIOPEN_SUGGEST_NHWC").value_or(is_miopen_3_5);
auto input_memory_format = input.suggest_memory_format();
auto weight_memory_format = weight.suggest_memory_format();
@ -375,13 +377,24 @@ inline bool miopen_conv_use_channels_last(const at::Tensor& input, const at::Ten
(input_memory_format == at::MemoryFormat::ChannelsLast) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast)
);
if (can_use_miopen_channels_last_2d) {
return at::MemoryFormat::ChannelsLast;
}
bool can_use_miopen_channels_last_3d = suggest_nhwc && (weight_ndim == 5) && (
(input_memory_format == at::MemoryFormat::ChannelsLast3d) ||
(weight_memory_format == at::MemoryFormat::ChannelsLast3d)
);
if (can_use_miopen_channels_last_3d) {
return at::MemoryFormat::ChannelsLast3d;
}
return can_use_miopen_channels_last_2d || can_use_miopen_channels_last_3d;
return at::MemoryFormat::Contiguous;
}
// deprecated, but to remove would be BC-breaking
inline bool miopen_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {
return miopen_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous;
}
inline bool mkldnn_conv_use_channels_last(const at::Tensor& input, const at::Tensor& weight) {

View File

@ -14,6 +14,7 @@
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <c10/macros/Macros.h>
#include <algorithm>
#include <limits>
#include <utility>
@ -300,67 +301,50 @@ struct ConvParams {
bool allow_tf32{};
bool is_strided() const {
bool is_strided = false;
for (const auto& s : stride) {
is_strided |= (s != 1);
}
return is_strided;
return std::any_of(
stride.cbegin(), stride.cend(), [](const T& s) { return s != 1; });
}
bool is_dilated() const {
bool is_dilated = false;
for (const auto& d : dilation) {
is_dilated |= (d != 1);
}
return is_dilated;
return std::any_of(
dilation.cbegin(), dilation.cend(), [](const T& d) { return d != 1; });
}
bool is_padded() const {
bool is_padded = false;
for (auto p : padding) {
is_padded |= (p != 0);
}
return is_padded;
return std::any_of(
padding.cbegin(), padding.cend(), [](const T& p) { return p != 0; });
}
bool is_output_padding_neg() const {
bool is_non_neg = false;
for (const auto& p : output_padding) {
is_non_neg |= (p < 0);
}
return is_non_neg;
return std::any_of(
output_padding.cbegin(),
output_padding.cend(),
[](const T& p) { return p < 0; });
}
bool is_output_padding_big() const {
bool is_big = false;
// Revisit this with std::views::zip at C++20.
for (auto i: c10::irange(output_padding.size())) {
is_big |= (output_padding[i] >= stride[i]);
if (output_padding[i] >= stride[i]) {
return true;
}
}
return is_big;
return false;
}
bool is_padding_neg() const {
bool is_non_neg = false;
for (const auto& p : padding) {
is_non_neg |= (p < 0);
}
return is_non_neg;
return std::any_of(
padding.cbegin(), padding.cend(), [](const T& p) { return p < 0; });
}
bool is_dilation_neg() const {
bool is_non_neg = false;
for (const auto& p : dilation) {
is_non_neg |= (p < 0);
}
return is_non_neg;
return std::any_of(
dilation.cbegin(), dilation.cend(), [](const T& d) { return d < 0; });
}
bool is_stride_nonpos() const {
bool is_nonpos = false;
for (const auto& s : stride) {
is_nonpos |= (s <= 0);
}
return is_nonpos;
return std::any_of(
stride.cbegin(), stride.cend(), [](const T& s) { return s <= 0; });
}
void view1d_as_2d() {
@ -459,6 +443,9 @@ struct ConvParams {
// Use cudnn for FP16 depthwise convolutions
bool use_cudnn_depthwise(const at::Tensor& input, const at::Tensor& weight) const {
if (!detail::getCUDAHooks().compiledWithCuDNN()) {
return false;
}
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous && use_cudnn(input, weight)) {
// always use cudnn_depthwise for channels_last format
return true;
@ -1419,10 +1406,8 @@ static inline at::MemoryFormat determine_backend_memory_format(
case ConvBackend::Miopen:
case ConvBackend::MiopenDepthwise:
case ConvBackend::MiopenTranspose:
if (detail::getCUDAHooks().compiledWithMIOpen() && miopen_conv_use_channels_last(input, weight)) {
TORCH_INTERNAL_ASSERT((k == 4 || k == 5),
"Expected 4D or 5D input for miopen memory format selection in determine_backend_memory_format()");
backend_memory_format = (k == 5) ? at::MemoryFormat::ChannelsLast3d : at::MemoryFormat::ChannelsLast;
if (detail::getCUDAHooks().compiledWithMIOpen()) {
backend_memory_format = miopen_conv_suggest_memory_format(input, weight);
}
break;
case ConvBackend::Mkldnn:

View File

@ -0,0 +1,167 @@
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/TensorUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/CPUFunctions.h>
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/bmm.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_strided.h>
#include <ATen/ops/mm.h>
#endif
namespace at::native {
inline bool check_valid_strides_and_return_transposed(const Tensor& mat) {
IntArrayRef tensor_strides = mat.strides();
IntArrayRef tensor_sizes = mat.sizes();
int end_dim = mat.dim() - 1;
int alignment = 16 / mat.element_size();
TORCH_CHECK(uint64_t(mat.data_ptr()) % 16 ==0, "expected data_ptr to be aligned to 16 bytes\n");
if ((tensor_strides[end_dim - 1] == 1) && (tensor_strides[end_dim] >= std::max<int64_t>(1, tensor_sizes[end_dim - 1]))) {
TORCH_CHECK(tensor_strides[end_dim] % alignment == 0, "strides should be multiple of 16 bytes");
return true;
} else if ((tensor_strides[end_dim] == 1) && (tensor_strides[end_dim - 1] >= std::max<int64_t>(1, tensor_sizes[end_dim]))) {
TORCH_CHECK(tensor_strides[end_dim - 1] % alignment == 0, "strides should be multiple of 16 bytes");
return false;
} else {
TORCH_CHECK(false, "Invalid strides/sizes, got ", mat.strides(), " for strides and ", mat.sizes(), " for sizes");
}
}
inline at::Tensor create_grouped_gemm_output_tensor(const Tensor& mat_a,
const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
c10::ScalarType out_dtype
) {
c10::SmallVector<int64_t, 3> out_size;
const bool a_is_2d = mat_a.dim() == 2;
const bool b_is_2d = mat_b.dim() == 2;
if (a_is_2d) {
if (b_is_2d) {
out_size = {offs->size(0), mat_a.size(0), mat_b.size(1)};
} else {
TORCH_CHECK(offs->size(0) == mat_b.size(0), "matrix batch sizes have to match");
out_size = {mat_a.size(0), mat_b.size(-1)};
}
} else {
if (b_is_2d) {
// this case is not actually encountered for MoE gemms
TORCH_CHECK(offs->size(0) == mat_a.size(0), "matrix batch sizes have to match");
out_size = {mat_a.size(1), mat_b.size(1)};
} else { // regular bmm
TORCH_CHECK(mat_a.size(0) == mat_b.size(0), "batched dimension has to match");
out_size = {mat_a.size(0), mat_a.size(1), mat_b.size(-1)};
}
}
#ifndef USE_ROCM
// For TMA transfers, strides of output tensor have to be either
// 1, or aligned to 16 bytes.
const auto last_dim = out_size.size() - 1;
const auto alignment = 16 / c10::elementSize(out_dtype);
const int64_t size_padded = (out_size[last_dim] + alignment - 1) / alignment * alignment;
std::vector<int64_t> out_stride;
if (a_is_2d != b_is_2d) {
out_stride = {size_padded, 1};
} else {
out_stride = {out_size[1] * size_padded, size_padded, 1};
}
return at::empty_strided(out_size, out_stride, mat_a.options().dtype(out_dtype));
#else
return at::empty(out_size, mat_a.options().dtype(out_dtype));
#endif
}
inline void _grouped_mm_validate_inputs(const Tensor& mat_a, const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& bias,
std::optional<c10::ScalarType> out_dtype) {
TORCH_CHECK((mat_a.dtype() == at::kBFloat16) || (mat_a.dtype() == at::kFloat) || (mat_a.dtype() == at::kHalf), "Expected mat_a to be Float32, BFloat16 or Float16 matrix, got ", mat_a.scalar_type());
TORCH_CHECK((mat_b.dtype() == at::kBFloat16) || (mat_b.dtype() == at::kFloat) || (mat_b.dtype() == at::kHalf), "Expected mat_b to be Float32, BFloat16 or Float16 matrix, got ", mat_b.scalar_type());
TORCH_CHECK(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d");
TORCH_CHECK(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d");
const bool a_is_2d = mat_a.dim() == 2;
const bool b_is_2d = mat_b.dim() == 2;
if (!a_is_2d || !b_is_2d) {
TORCH_CHECK(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match");
}
// check that the strides are valid, the fn will throw an error if not
check_valid_strides_and_return_transposed(mat_a);
check_valid_strides_and_return_transposed(mat_b);
TORCH_CHECK(offs.has_value() == (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix, or no offset if both matrices are 3d");
if (offs.has_value()) {
TORCH_CHECK(offs->dim() == 1, "offs has to be 1D");
TORCH_CHECK(offs->dtype() == at::kInt, "Offsets have to be int32");
}
TORCH_CHECK(!bias.has_value(), "Bias not supported yet");
}
inline c10::ScalarType _resolve_grouped_mm_out_dtype(const Tensor& mat_a, const Tensor& mat_b,
std::optional<c10::ScalarType> out_dtype) {
const auto out_dtype_ = out_dtype.value_or(mat_a.scalar_type());
// TODO(future PR): enable float32 output dtype for bfloat16 and float16 inputs
TORCH_CHECK(out_dtype_ == mat_a.dtype(), "Grouped gemm output dtype must match `mat_a` dtype");
return out_dtype_;
}
inline void _grouped_mm_fallback(const Tensor& mat_a, const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& bias,
std::optional<c10::ScalarType> out_dtype,
Tensor out) {
LOG(INFO) << "fallback path for `torch._grouped_mm`, performance may not be optimal";
const bool a_is_2d = mat_a.dim() == 2;
const bool b_is_2d = mat_b.dim() == 2;
if (a_is_2d && !b_is_2d) {
// 2d x 3d with offsets
int group_start_idx = 0;
auto offs_cpu = offs.value().cpu();
for (int group_idx = 0; group_idx < offs_cpu.size(0); group_idx++) {
int group_end_idx = offs_cpu[group_idx].item<int>();
auto mat_a_slice = mat_a.slice(0, group_start_idx, group_end_idx);
auto out_slice = out.slice(0, group_start_idx, group_end_idx);
at::mm_out(out_slice, mat_a_slice, mat_b[group_idx]);
group_start_idx = group_end_idx;
}
} else if (!a_is_2d && b_is_2d) {
// 3d x 2d with offsets
int group_start_idx = 0;
auto offs_cpu = offs.value().cpu();
for (int group_idx = 0; group_idx < offs_cpu.size(0); group_idx++) {
int group_end_idx = offs_cpu[group_idx].item<int>();
auto mat_b_slice = mat_b.slice(1, group_start_idx, group_end_idx);
auto out_slice = out.slice(1, group_start_idx, group_end_idx);
at::mm_out(out_slice, mat_a[group_idx], mat_b_slice);
group_start_idx = group_end_idx;
}
} else if (a_is_2d && b_is_2d) {
// 2d x 2d with offsets
int group_start_idx = 0;
auto offs_cpu = offs.value().cpu();
for (int group_idx = 0; group_idx < offs_cpu.size(0); group_idx++) {
int group_end_idx = offs_cpu[group_idx].item<int>();
auto mat_a_slice = mat_a.slice(1, group_start_idx, group_end_idx);
auto mat_b_slice = mat_b.slice(0, group_start_idx, group_end_idx);
auto out_slice = out[group_idx];
at::mm_out(out_slice, mat_a_slice, mat_b_slice);
group_start_idx = group_end_idx;
}
} else {
// 3d x 3d without offsets - regular bmm
at::bmm_out(out, mat_a, mat_b);
}
}
} // namespace at::native

View File

@ -47,10 +47,14 @@ TORCH_META_FUNC(nll_loss_forward)
TORCH_CHECK(
target.dim() <= 1,
"0D or 1D target tensor expected, multi-target not supported");
auto no_batch_dim = self.dim() == 1 && target.dim() == 0;
if (self.dim() == 1 && target.dim() == 1) {
TORCH_CHECK_VALUE(
target.size(0) == 1,
"For 1D input, 1D target must have size 1, but got target size: ",
target.size(0));
}
TORCH_CHECK(
no_batch_dim || (self.size(0) == target.size(0)),
self.dim() == 1 || (self.size(0) == target.size(0)),
"size mismatch (got input: ",
self.sizes(),
", target: ",

View File

@ -624,7 +624,9 @@ std::tuple<Tensor, Tensor, Tensor, Tensor, int64_t> _batch_norm_impl_index(
if (backend == BatchNormBackend::Miopen) {
return std::tuple_cat(
at::miopen_batch_norm(
input.contiguous(), weight.contiguous(), bias.contiguous(),
input.contiguous(input.suggest_memory_format()),
weight.contiguous(),
bias.contiguous(),
running_mean.defined() ? running_mean.contiguous() : running_mean,
running_var.defined() ? running_var.contiguous() : running_var,
training, momentum, eps),

View File

@ -1,5 +1,6 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/DTensorState.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -24,8 +25,13 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) {
if (num_classes == -1) {
num_classes = self.max().item().toLong() + 1;
}
at::Tensor index = at::arange(num_classes, self.options());
return at::eq(self.unsqueeze(-1), index).to(kLong);
{
// If `self` is a DTensor, then allow implicit replication
// of the `index` Tensor.
at::DTensorAllowImplicitReplication guard;
at::Tensor index = at::arange(num_classes, self.options());
return at::eq(self.unsqueeze(-1), index).to(kLong);
}
}
auto shape = self.sizes().vec();

View File

@ -240,8 +240,15 @@ Tensor _pad_enum_symint(const Tensor &self, c10::SymIntArrayRef pad, int64_t mod
default: {}
}
}
C10_THROW_ERROR(NotImplementedError,
"Only 2D, 3D, 4D, 5D padding with non-constant padding are supported for now");
std::ostringstream error_msg;
error_msg << "Padding size " << pad.size() << " is not supported for " << input_dim << "D input tensor.\n";
error_msg << "Supported combinations for non-constant padding:\n";
error_msg << " - 2D or 3D input: padding size = 2 (pads last dimension)\n";
error_msg << " - 3D or 4D input: padding size = 4 (pads last 2 dimensions)\n";
error_msg << " - 4D or 5D input: padding size = 6 (pads last 3 dimensions)";
C10_THROW_ERROR(NotImplementedError, error_msg.str());
}
Tensor pad_symint(const Tensor &self, c10::SymIntArrayRef pad, std::string_view mode, std::optional<double> value) {

View File

@ -1640,6 +1640,9 @@ Tensor zeros_symint(
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
for (const auto& dim_size : size) {
TORCH_CHECK(dim_size >= 0, "zeros: Dimension size must be non-negative.");
}
Layout layout_ = layout.value_or(Layout::Strided);
if (at::sparse_csr::is_sparse_compressed(layout_)) {
return zeros_sparse_compressed_symint(

View File

@ -18,6 +18,7 @@
#include <ATen/ops/is_set_to_native.h>
#include <ATen/ops/size_native.h>
#include <ATen/ops/stride_native.h>
#include <ATen/ops/sym_is_contiguous_native.h>
#include <ATen/ops/sym_numel_native.h>
#include <ATen/ops/sym_size_native.h>
#include <ATen/ops/sym_storage_offset_native.h>
@ -57,6 +58,12 @@ c10::SymInt sym_size(const Tensor& self, int64_t dim) {
return self.sym_size(dim);
}
c10::SymBool sym_is_contiguous(
const Tensor& self,
c10::MemoryFormat memory_format) {
return self.sym_is_contiguous(memory_format);
}
c10::SymInt sym_stride(const Tensor& self, int64_t dim) {
return self.sym_stride(dim);
}

View File

@ -16,6 +16,7 @@
#include <ATen/cuda/tunable/TunableGemm.h>
#include <ATen/native/Resize.h>
#include <c10/util/MaybeOwned.h>
#include <ATen/native/GroupedMMUtils.h>
#include <ATen/native/cuda/RowwiseScaledMM.h>
#include <ATen/native/cuda/ScaledGroupMM.h>
#include <ATen/native/cuda/GroupMM.h>
@ -1540,71 +1541,8 @@ _scaled_mm_out_cuda(const Tensor& mat1, const Tensor& mat2,
}
namespace {
at::Tensor create_grouped_gemm_output_tensor(const Tensor& mat_a,
const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
std::optional<c10::ScalarType> out_dtype
) {
c10::SmallVector<int64_t, 3> out_size;
const bool a_is_2d = mat_a.dim() == 2;
const bool b_is_2d = mat_b.dim() == 2;
if (a_is_2d) {
if (b_is_2d) {
out_size = {offs->size(0), mat_a.size(0), mat_b.size(1)};
} else {
TORCH_CHECK(offs->size(0) == mat_b.size(0), "matrix batch sizes have to match");
out_size = {mat_a.size(0), mat_b.size(-1)};
}
} else {
if (b_is_2d) {
// this case is not actually encountered for MoE gemms
TORCH_CHECK(offs->size(0) == mat_a.size(0), "matrix batch sizes have to match");
out_size = {mat_a.size(1), mat_b.size(1)};
} else { // regular bmm
TORCH_CHECK(mat_a.size(0) == mat_b.size(0), "batched dimension has to match");
out_size = {mat_a.size(0), mat_a.size(1), mat_b.size(-1)};
}
}
const auto out_dtype_ = out_dtype.value_or(kBFloat16);
TORCH_CHECK(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm");
#ifndef USE_ROCM
// For TMA transfers, strides of output tensor have to be either
// 1, or aligned to 16 bytes.
const auto last_dim = out_size.size() - 1;
const auto alignment = 16 / c10::elementSize(out_dtype_);
const int64_t size_padded = (out_size[last_dim] + alignment - 1) / alignment * alignment;
std::vector<int64_t> out_stride;
if (a_is_2d != b_is_2d) {
out_stride = {size_padded, 1};
} else {
out_stride = {out_size[1] * size_padded, size_padded, 1};
}
return at::empty_strided(out_size, out_stride, mat_a.options().dtype(out_dtype_));
#else
return at::empty(out_size, mat_a.options().dtype(out_dtype_));
#endif
}
bool check_valid_strides_and_return_transposed(const Tensor& mat) {
IntArrayRef tensor_strides = mat.strides();
IntArrayRef tensor_sizes = mat.sizes();
int end_dim = mat.dim() - 1;
int alignment = 16 / mat.element_size();
TORCH_CHECK(uint64_t(mat.data_ptr()) % 16 ==0, "expected data_ptr to be aligned to 16 bytes\n");
if ((tensor_strides[end_dim - 1] == 1) && (tensor_strides[end_dim] >= std::max<int64_t>(1, tensor_sizes[end_dim - 1]))) {
TORCH_CHECK(tensor_strides[end_dim] % alignment == 0, "strides should be multiple of 16 bytes");
return true;
} else if ((tensor_strides[end_dim] == 1) && (tensor_strides[end_dim - 1] >= std::max<int64_t>(1, tensor_sizes[end_dim]))) {
TORCH_CHECK(tensor_strides[end_dim - 1] % alignment == 0, "strides should be multiple of 16 bytes");
return false;
} else {
TORCH_CHECK(false, "Invalid strides/sizes, got ", mat.strides(), " for strides and ", mat.sizes(), " for sizes");
}
}
void check_scale(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
void _check_scales_fp8_rowwise(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
// Checks scales for 2d or 3d target tensors (`mat`).
if (mat.dim() == 2) {
TORCH_CHECK(
scale.dim() == 1,
@ -1638,9 +1576,66 @@ namespace {
"scale must have the same first dimension as mat for arg ",
arg_idx);
}
}
}
void _check_scales_mxfp8(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx) {
// Checks scales for 2d or 3d target tensors (`mat`).
if (mat.dim() == 2) {
// For MXFP8, 2d tensors have variable size groups represented as subtensors,
// that are converted to blocked padded format individually,
// so we can't check the scale sizes without doing a d2h sync to get the group sizes here.
TORCH_CHECK(
scale.dim() == mat.dim(),
"for mxfp8, scale must have same number of dimensions as parent tensor, but got mat.dim() = ", mat.dim(), " and scale.dim() = ", scale.dim(), " for arg ", arg_idx);
// LHS mat shape (M, total_K) -> scale shape (rounded_up(M, 128), rounded_up_per_group(K/32, 4))
// RHS mat shape (total_K, N) -> scale shape (rounded_up(N, 128), rounded_up_per_group(K/32, 4))
// * weight is transposed prior to the call, scale stays non-transposed.
bool LHS = arg_idx == 0;
int scale_dim_to_check = 0;
int mat_dim_to_check = LHS ? 0 : 1;
TORCH_CHECK(
scale.size(scale_dim_to_check) >= mat.size(mat_dim_to_check),
"for mxfp8, arg ", arg_idx, " tensor shape (", mat.size(0), ", ", mat.size(1), ") ",
"must have scale.shape[", scale_dim_to_check, "] >= ", mat.size(mat_dim_to_check), " but got scale.shape=(", scale.size(0), ", ", scale.size(1), ")");
} else {
// For MXFP8, 3d tensors have static group sizes (stack of 2d tensors),
// so we can check the exact expected scale sizes here without a d2h sync.
auto round_up = [](auto x, auto y) {
return ((x + y - 1) / y) * y;
};
// TODO: this is for 3d tensor in 2d-3d case specifically.
// We'll need to support 3d-3d and 3d-2d cases once mxfp8 grouped gemm supports them.
int64_t G = mat.size(0);
int64_t K = mat.size(1);
int64_t N = mat.size(2);
int64_t blocked_scale_K = round_up(K/32, 4);
int64_t blocked_scale_N = round_up(N, 128);
// fbgemm expects stack of flattened blocked scales for 3d tensor, shape (G, blocked_scale_K * blocked_scale_N).
TORCH_CHECK(
scale.dim() == mat.dim() - 1,
"for mxfp8 2d-3d grouped GEMM, the 3d tensor of shape (G,K,N) must have a 2d scale of shape (G, blocked_scale_K * blocked_scale_N), but scale is ", scale.dim(), "D for arg ", arg_idx
);
TORCH_CHECK(
scale.size(0) == G && scale.size(1) == blocked_scale_K * blocked_scale_N,
"for mxfp8, the tensor shape (", G, ", ", K, ", ", N, ") must have scale shape (", G, ",", blocked_scale_K, ",", blocked_scale_N, ") for arg ", arg_idx
);
}
}
void check_scale(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
bool using_fp8_rowwise = scale.scalar_type() == kFloat;
bool using_mxfp8 = scale.scalar_type() == at::kFloat8_e8m0fnu;
if (using_fp8_rowwise) {
_check_scales_fp8_rowwise(mat, scale, dim, arg_idx, scale_multiplier);
} else if (using_mxfp8) {
_check_scales_mxfp8(mat, scale, dim, arg_idx);
} else {
TORCH_CHECK(false, "scale must be float32 or float8_e8m0fnu, but got ", scale.dtype());
}
}
}
Tensor
@ -1665,8 +1660,8 @@ const std::optional<at::Tensor>& bias,
const std::optional<at::Tensor>& scale_result,
std::optional<c10::ScalarType> out_dtype,
bool use_fast_accum) {
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/false);
TORCH_CHECK(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = 9.0, or ROCm MI300+");
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true);
TORCH_CHECK(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+");
TORCH_CHECK(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed");
TORCH_CHECK(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed");
@ -1699,16 +1694,47 @@ bool use_fast_accum) {
TORCH_CHECK(offs->dtype() == at::kInt, "Offsets have to be int32");
}
// Both Per-Tensor and Row-wise scaling expect fp32 tensors
// FP8 per-tensor and per-row scaling expect fp32 scales.
// MXFP8 expects float8_e8m0fnu scales.
TORCH_CHECK(
scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat,
"Both scale_a and scale_b must be float (fp32) tensors.");
(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat) ||
(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu),
"For FP8 tensorwise and rowwise, both scales must both be float32 tensors. For MXFP8, scales must both be float8_e8m0fnu tensors.");
const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1;
check_scale(mat_a, scale_a, 0 ,0, scale_multiplier);
check_scale(mat_b, scale_b, 1, 1, scale_multiplier);
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype);
const auto out_dtype_ = out_dtype.value_or(kBFloat16);
TORCH_CHECK(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm");
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
#if defined(USE_FBGEMM_GENAI) && defined(USE_CUDA) && !defined(USE_ROCM)
// MXFP8 grouped GEMM dispatching
bool is_mx8mx8bf16 = (
mat_a.scalar_type() == at::kFloat8_e4m3fn && mat_b.scalar_type() == at::kFloat8_e4m3fn &&
scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu
);
TORCH_CHECK(out_dtype == at::kBFloat16, "Only bf16 out_dtype is supported for MXFP8 grouped gemm");
if (is_mx8mx8bf16) {
bool b_is_3d = mat_b.dim() == 3;
bool is_2d_2d = a_is_2d && b_is_2d;
bool is_2d_3d = a_is_2d && b_is_3d;
TORCH_CHECK(is_2d_2d || is_2d_3d, "MXFP8 grouped GEMM currently only supports 2d-2d and 2d-3d cases");
TORCH_CHECK(offs.has_value(), "MXFP8 2d-2d and 2d-3d grouped GEMMs requires offsets");
fbgemm_gpu::mx8mx8bf16_grouped_mm(
mat_a,
mat_b,
scale_a,
scale_b,
offs.value(),
out);
return out;
}
#endif
#ifndef USE_ROCM
TORCH_CHECK(mat_a.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_a.scalar_type());
@ -1741,6 +1767,7 @@ bool use_fast_accum) {
#else
TORCH_CHECK(false, "grouped gemm is not supported without USE_FBGEMM_GENAI on ROCM")
#endif
#endif
}
@ -1749,38 +1776,28 @@ Tensor _grouped_mm_cuda(const Tensor& mat_a, const Tensor& mat_b,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& bias,
std::optional<c10::ScalarType> out_dtype) {
_grouped_mm_validate_inputs(mat_a, mat_b, offs, bias, out_dtype);
bool a_b_and_out_are_bf16 = (
mat_a.dtype() == at::kBFloat16 &&
mat_b.dtype() == at::kBFloat16 &&
out_dtype.value_or(at::kBFloat16) == at::kBFloat16
);
#ifndef USE_ROCM
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true);
TORCH_CHECK(allowed_device, "torch._grouped_mm is only supported on CUDA devices with compute capability = 9.0, 10.0");
TORCH_CHECK(mat_a.dtype() == at::kBFloat16, "Expected mat_a to be BFloat16 matrix got ", mat_a.scalar_type());
TORCH_CHECK(mat_b.dtype() == at::kBFloat16, "Expected mat_a to be BFloat16 matrix got ", mat_b.scalar_type());
TORCH_CHECK(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d");
TORCH_CHECK(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d");
const bool a_is_2d = mat_a.dim() == 2;
const bool b_is_2d = mat_b.dim() == 2;
if (!a_is_2d || !b_is_2d) {
TORCH_CHECK(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match");
}
// check that the strides are valid, the fn will throw an error if not
check_valid_strides_and_return_transposed(mat_a);
check_valid_strides_and_return_transposed(mat_b);
TORCH_CHECK(offs.has_value() == (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix, or no offset if both matrices are 3d");
if (offs.has_value()) {
TORCH_CHECK(offs->dim() == 1, "offs has to be 1D");
TORCH_CHECK(offs->dtype() == at::kInt, "Offsets have to be int32");
}
TORCH_CHECK(!bias.has_value(), "Bias not supported yet");
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype);
at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out);
return out;
bool use_fast_path = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true) && a_b_and_out_are_bf16;
#else
TORCH_CHECK(false, "grouped gemm is not supported on ROCM")
// _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used.
// the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm
bool use_fast_path = false;
#endif
const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype);
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
if (use_fast_path) {
// fast path, no d2h sync needed
at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out);
} else {
_grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out);
}
return out;
}
Tensor _bmm_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype) {

View File

@ -226,38 +226,6 @@ __global__ void CatArrayBatchedCopy_contig(
}
}
template <typename T, typename IndexType, int Dims, int batch_size, int stride_size, int alignment, int elems_per_vec>
__global__ void CatArrayBatchedCopy_vectorized(
char* output,
CatArrInputTensorMetadata<T, IndexType, batch_size, stride_size> inputs,
TensorSizeStride<IndexType, CAT_ARRAY_MAX_INPUT_DIMS> os,
const int concatDim,
IndexType trailingSize) {
IndexType tid = blockIdx.x * blockDim.x + threadIdx.x;
IndexType nElements = inputs.nElements[blockIdx.y] / elems_per_vec;
if(tid >= nElements) return;
const char * data = (char*)inputs.input[blockIdx.y];
IndexType offset = inputs.offset[blockIdx.y] * trailingSize / elems_per_vec;
IndexType dimSize = inputs.dimSize[blockIdx.y] * trailingSize / elems_per_vec;
IndexType dataOffset = offset * alignment; // in bytes
IndexType stride = gridDim.x * blockDim.x;
while( tid < nElements){
IndexType elementOffset = CatArrIndexToOffset<IndexType, Dims>::compute(
os.tensorSize, os.tensorStride, dimSize, concatDim, tid) * alignment; // in bytes
auto vec = at::native::memory::ld_vec<alignment>(data + alignment * tid);
at::native::memory::st_vec<alignment>(output + dataOffset + elementOffset, vec);
tid += stride;
}
}
/*
Specialized implementation of the CatArrayBatchedCopy written to generate wide memory loads
to improve memory bandwidth throughput.
@ -328,27 +296,12 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
scalar_t *data = (scalar_t *)(out.mutable_data_ptr());
CatArrInputTensorMetadata<scalar_t, unsigned int, batch_size, stride_size> catMetaData;
TensorSizeStride<unsigned int, CAT_ARRAY_MAX_INPUT_DIMS> outputParam;
// If all batches are contiguous we can call a specialized implementation
// which requires the input tensor addresses to be aligned to a
// 16 Byte boundary.
constexpr bool isContig = stride_size == 1;
bool isAligned = true;
constexpr int alignment = 16;
// Next, let's initialize the size, stride arrays for the output Tensor.
// for contig case, we'll canonicalize output strides, so that
// we don't have arbitrary strides for dims of size 0
size_t stride0 = 1;
if (memory_format == c10::MemoryFormat::Contiguous) {
for (int i = nDims - 1; i >= 0; --i) {
for (int i = 0; i < nDims; ++i) {
outputParam.tensorSize[i] = out.size(i);
if (isContig) {
outputParam.tensorStride[i] = stride0;
stride0 *= out.size(i);
} else {
outputParam.tensorStride[i] = out.stride(i);
}
outputParam.tensorStride[i] = out.stride(i);
}
} else if (memory_format == c10::MemoryFormat::ChannelsLast || memory_format == c10::MemoryFormat::ChannelsLast3d) {
// permute the semantics of dims from NCHW to NHWC so that the input
@ -367,15 +320,12 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
// If all batches are contiguous we can call a specialized implementation
// which requires the input tensor addresses to be aligned to a
// 16 Byte boundary.
// for channels last computing slice size correctly is much more involved, so we never send it
// on the fully vectorized path
// we need output stride in cat dimension to be multiple of alignment,
// if we ever use it to compute offsets
// for catting in 0th dimension it doesn't matter
bool isInOutAligned = isContig && at::native::memory::get_alignment(data) >= alignment &&
memory_format == c10::MemoryFormat::Contiguous && (dimension == 0 ||
outputParam.tensorStride[dimension - 1] * sizeof(scalar_t) % alignment == 0);
bool isContig = true;
bool isAligned = true;
unsigned int max_elements_per_tensor = 0;
// Now we loop
@ -391,16 +341,6 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
// high-dimensional tensor
if (inputs[i+batchCounter].get().numel() > 0) {
dimSize = inputs[i+batchCounter].get().size(dimension);
if (isInOutAligned) {
auto t = inputs[i+batchCounter].get();
// similarly to output stride, we cannot trust stride value to
// determine slice size if the corresponding dimension is 1
// we have to multiply all the subsequent sizes
int64_t slice_size = dimension == 0 ? t.numel() : t.sizes()[dimension - 1] != 1 ?
t.strides()[dimension - 1] : c10::multiply_integers(t.sizes().begin() + dimension, t.sizes().end());
slice_size *= sizeof(scalar_t);
isInOutAligned &= (slice_size % alignment == 0);
}
}
catMetaData.input[batchCounter] = (scalar_t*)(inputs[i+batchCounter].get().const_data_ptr());
@ -411,12 +351,10 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
#ifdef USE_ROCM
// On ROCm, CatArrayBatchedCopy_contig is faster
isAligned = false;
isInOutAligned = false;
#else
// If at least one of the inputs is not aligned, we can't call the
// CatArrayBatchedCopy_alignedK_contig
isAligned &= is_aligned_vec4(catMetaData.input[batchCounter]);
isInOutAligned &= at::native::memory::get_alignment(catMetaData.input[batchCounter]) >= alignment;
#endif
if (stride_size > 1) {
@ -427,6 +365,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
catMetaData.tensorStride[batchCounter].tensorStride[j] = strides[j];
}
catMetaData.isContiguous[batchCounter] = false;
isContig = false;
} else {
catMetaData.isContiguous[batchCounter] = true;
}
@ -449,13 +388,10 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
max_elements_per_tensor, batchCounter);
#else
dim3 applyBlock, catGrid;
if (isInOutAligned) {
std::tie(catGrid, applyBlock) = getCatGridContig<scalar_t, alignment>(
max_elements_per_tensor, batchCounter);
} else if (isContig && isAligned && sizeof(scalar_t) > 2) {
if (isContig && sizeof(scalar_t) > 2) {
std::tie(catGrid, applyBlock) = getCatGridContig<scalar_t, ALIGNED_VEC_LOAD_BYTES_16>(
max_elements_per_tensor, batchCounter);
} else if (isContig && isAligned && sizeof(scalar_t) == 2) {
} else if (isContig && sizeof(scalar_t) == 2) {
std::tie(catGrid, applyBlock) = getCatGridContig<scalar_t, ALIGNED_VEC_LOAD_BYTES_8>(
max_elements_per_tensor, batchCounter);
} else {
@ -463,30 +399,6 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
getCatGrid(batchCounter, catGrid);
}
#endif
int32_t trailingSize;
TensorSizeStride<unsigned int, CAT_ARRAY_MAX_INPUT_DIMS> kernelOutputParam;
if (isInOutAligned) {
// in this case we can and should flatten the tensors after the cat dim
// we want to view the tensors as if consisting of `alignment`-sized elements
// however, we might not be able to cleanly divide just the last dim -
// it might not be the multiple of alignment.
// however, we know that the full concatted slice is multiple of alignment,
// so if we flatten all the dims after and including concat dim,
// it will be divisible by alignment
// then we need to divide last out size by elems_per_vec,
// and divide all strides except last by elems_per_vec (last stride is 1 always)
// for input, we will fix up the sizes and strides in the kernel directly
kernelOutputParam = outputParam;
nDims = dimension + 1;
constexpr auto elems_per_vec = alignment / sizeof(scalar_t);
auto out_size = dimension == 0 ? out.numel() : kernelOutputParam.tensorStride[dimension-1];
kernelOutputParam.tensorSize[dimension] = out_size / elems_per_vec;
trailingSize = outputParam.tensorStride[dimension];
kernelOutputParam.tensorStride[dimension] = 1;
for (int i = 0; i < dimension; ++i) {
kernelOutputParam.tensorStride[i] /= elems_per_vec;
}
}
if (memory_format != c10::MemoryFormat::Contiguous) {
switch (dimension) {
@ -501,12 +413,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
}
// Template Declarations for dim = 1, 2, 3, 4
#define HANDLE_CASE(DIMS) \
if (isInOutAligned) {\
constexpr auto elems_per_vec = alignment / sizeof(scalar_t); \
CatArrayBatchedCopy_vectorized<scalar_t, unsigned int, DIMS, batch_size, stride_size, alignment, elems_per_vec><<<\
catGrid, applyBlock, 0, stream.stream()>>>(\
(char*)data, catMetaData, kernelOutputParam, dimension, trailingSize);\
} else if (isContig && isAligned && sizeof(scalar_t) > 2 && sizeof(scalar_t) <= 8) {\
if (isContig && isAligned && sizeof(scalar_t) > 2 && sizeof(scalar_t) <= 8) {\
CatArrayBatchedCopy_alignedK_contig<scalar_t, unsigned int, DIMS, batch_size, stride_size, ALIGNED_VEC_LOAD_BYTES_16><<<\
catGrid, applyBlock, 0, stream.stream()>>>(\
data, catMetaData, outputParam, dimension, outputParam.tensorStride[dimension]);\

View File

@ -146,7 +146,7 @@ namespace native {
namespace fe = cudnn_frontend;
#define MAX_MHA_DIM 4
constexpr uint8_t MAX_MHA_DIM = 4;
// Whether we will use ragged offsets in the dense (non-nested) path
// to avoid recompilation
@ -238,7 +238,8 @@ void setMHAParams(
const std::optional<Tensor>& attn_bias,
double dropout_probability,
bool is_causal,
bool return_softmaxstats) {
bool return_softmaxstats,
bool is_nested) {
memset(&params, 0, sizeof(MHAParams));
params.device_id = at::cuda::current_device();
params.dataType = fe::DataType_t::HALF;
@ -255,23 +256,24 @@ void setMHAParams(
params.is_causal = is_causal;
params.return_softmaxstats = return_softmaxstats;
params.has_attn_bias = attn_bias.has_value();
// Expect 4D dense tensor, 3D nested case (THD)
TORCH_INTERNAL_ASSERT(
q.sizes().size() == MAX_MHA_DIM,
q.sizes().size() == (uint8_t)(MAX_MHA_DIM - (uint8_t)is_nested),
"Q tensor has unexpected number of dims, please report a bug to PyTorch.");
TORCH_INTERNAL_ASSERT(
q.strides().size() == MAX_MHA_DIM,
q.strides().size() == (uint8_t)(MAX_MHA_DIM - (uint8_t)is_nested),
"Q tensor has unexpected number of dims, please report a bug to PyTorch.");
TORCH_INTERNAL_ASSERT(
k.sizes().size() == MAX_MHA_DIM,
k.sizes().size() == (uint8_t)(MAX_MHA_DIM - (uint8_t)is_nested),
"K tensor has unexpected number of dims, please report a bug to PyTorch.");
TORCH_INTERNAL_ASSERT(
k.strides().size() == MAX_MHA_DIM,
k.strides().size() == (uint8_t)(MAX_MHA_DIM - (uint8_t)is_nested),
"K tensor has unexpected number of dims, please report a bug to PyTorch.");
TORCH_INTERNAL_ASSERT(
v.sizes().size() == MAX_MHA_DIM,
v.sizes().size() == (uint8_t)(MAX_MHA_DIM - (uint8_t)is_nested),
"V tensor has unexpected number of dims, please report a bug to PyTorch.");
TORCH_INTERNAL_ASSERT(
v.strides().size() == MAX_MHA_DIM,
v.strides().size() == (uint8_t)(MAX_MHA_DIM - (uint8_t)is_nested),
"V tensor has unexpected number of dims, please report a bug to PyTorch.");
std::copy(q.sizes().begin(), q.sizes().end(), params.q_dim.begin());
std::copy(q.strides().begin(), q.strides().end(), params.q_stride.begin());
@ -320,7 +322,8 @@ struct MHACacheKeyWrapper : ParamsWrapper<MHAParams> {
const std::optional<Tensor>& attn_bias,
double dropout_probability,
bool is_causal,
bool return_softmaxstats) {
bool return_softmaxstats,
bool is_nested) {
setMHAParams(
this->pod,
b,
@ -335,7 +338,8 @@ struct MHACacheKeyWrapper : ParamsWrapper<MHAParams> {
attn_bias,
dropout_probability,
is_causal,
return_softmaxstats);
return_softmaxstats,
is_nested);
}
};
@ -478,7 +482,7 @@ auto build_graph(
auto scaled_dot_product_flash_attention_options =
fe::graph::SDPA_attributes()
.set_name("CUDNN_SDPA")
.set_is_inference(return_softmaxstats == false)
.set_generate_stats(return_softmaxstats)
.set_causal_mask(is_causal)
.set_attn_scale(attn_scale);
if (use_ragged_in_dense(q, k, v, o, attn_bias.has_value())) {
@ -698,7 +702,7 @@ auto build_graph_nestedtensor(
auto scaled_dot_product_flash_attention_options =
fe::graph::SDPA_attributes()
.set_name("CUDNN_SDPA_NESTEDTENSOR")
.set_is_inference(return_softmaxstats == false)
.set_generate_stats(return_softmaxstats)
.set_causal_mask(is_causal)
.set_attn_scale(attn_scale)
.set_seq_len_q(SEQ_LEN_Q_)
@ -1386,7 +1390,8 @@ void run_cudnn_SDP_fprop(
attn_bias,
dropout_probability,
is_causal,
return_softmaxstats);
return_softmaxstats,
false);
auto graph_ptr = getMHAGraphCache_().find(key);
std::shared_ptr<fe::graph::Graph> mha_graph;
if (graph_ptr) {
@ -1484,30 +1489,53 @@ void run_cudnn_SDP_fprop_nestedtensor(
if (return_softmaxstats && !softmaxstats.defined()) {
softmaxstats = at::empty({q.size(0), h_q, 1}, q.options().dtype(kFloat));
}
auto mha_graph = build_graph_nestedtensor(
auto key = MHACacheKeyWrapper(
b,
h_q,
h_k,
h_v,
s_q,
s_kv,
s_q, // max-seqlen-q
s_kv, // max-seqlen-kv
d_qk,
d_v,
scaling_factor,
return_softmaxstats,
is_causal,
dropout_probability,
cum_seqlen_q,
cum_seqlen_kv,
q,
k,
v,
attn_bias,
softmaxstats,
o,
dropoutseed,
dropoutoffset,
handle);
dropout_probability,
is_causal,
return_softmaxstats,
true);
auto graph_ptr = getMHAGraphCache_().find(key);
std::shared_ptr<fe::graph::Graph> mha_graph;
if (graph_ptr) {
mha_graph = *graph_ptr;
} else {
mha_graph = build_graph_nestedtensor(
b,
h_q,
h_k,
h_v,
s_q,
s_kv,
d_qk,
d_v,
scaling_factor,
return_softmaxstats,
is_causal,
dropout_probability,
cum_seqlen_q,
cum_seqlen_kv,
q,
k,
v,
attn_bias,
softmaxstats,
o,
dropoutseed,
dropoutoffset,
handle);
}
auto seqlen_q = at::diff(cum_seqlen_q, 1, 0);
auto seqlen_kv = at::diff(cum_seqlen_kv, 1, 0);
auto rag_q_off = cum_seqlen_q.mul(h_q * d_qk);
@ -1636,7 +1664,8 @@ void run_cudnn_SDP_bprop(
attn_bias,
dropout_probability,
is_causal,
true);
true,
false);
auto graph_backward_ptr = getMHAGraphBackwardCache_().find(key);
std::shared_ptr<fe::graph::Graph> mha_graph;
if (graph_backward_ptr) {
@ -1761,33 +1790,55 @@ void run_cudnn_SDP_bprop_nestedtensor(
cudnnHandle_t handle = getCudnnHandle();
auto mha_graph = build_graph_backward_nestedtensor(
auto key = MHACacheKeyWrapper(
b,
h_q,
h_k,
h_v,
s_q,
s_kv,
s_q, // max-seqlen-q
s_kv, // max-seqlen-kv
d_qk,
d_v,
scaling_factor,
is_causal,
dropout_probability,
cum_seqlen_q,
cum_seqlen_kv,
q,
k,
v,
attn_bias,
o,
dO_,
softmaxstats,
dQ,
dK,
dV,
dropoutseed,
dropoutoffset,
handle);
dropout_probability,
is_causal,
true,
true);
auto graph_ptr = getMHAGraphCache_().find(key);
std::shared_ptr<fe::graph::Graph> mha_graph;
if (graph_ptr) {
mha_graph = *graph_ptr;
} else {
mha_graph = build_graph_backward_nestedtensor(
b,
h_q,
h_k,
h_v,
s_q,
s_kv,
d_qk,
d_v,
scaling_factor,
is_causal,
dropout_probability,
cum_seqlen_q,
cum_seqlen_kv,
q,
k,
v,
attn_bias,
o,
dO_,
softmaxstats,
dQ,
dK,
dV,
dropoutseed,
dropoutoffset,
handle);
}
std::unordered_map<int64_t, void*> variant_pack = {
// inputs

View File

@ -7,6 +7,7 @@
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#include <ATen/ops/miopen_batch_norm_native.h>
#include <ATen/ops/miopen_batch_norm_backward_native.h>
#endif
@ -102,7 +103,7 @@ std::tuple<Tensor, Tensor, Tensor> miopen_batch_norm(
mode = miopenBNSpatial;
}
auto output_t = at::empty(input->sizes(), input->options());
auto output_t = at::empty_like(input_t, input_t.options(), input_t.suggest_memory_format());
TensorArg output{ output_t, "output", 0 };
auto handle = getMiopenHandle();
@ -170,20 +171,15 @@ std::tuple<Tensor, Tensor, Tensor> miopen_batch_norm_backward(
const std::optional<Tensor>& save_var_t_opt,
double epsilon) {
// See [Note: hacky wrapper removal for optional tensor]
const Tensor& running_mean =
running_mean_opt.value_or(Tensor());
const Tensor& running_var =
running_var_opt.value_or(Tensor());
const Tensor& save_mean_t =
save_mean_t_opt.value_or(Tensor());
const Tensor& save_var_t =
save_var_t_opt.value_or(Tensor());
const Tensor& save_mean_t = save_mean_t_opt.value_or(Tensor());
const Tensor& save_var_t = save_var_t_opt.value_or(Tensor());
TensorArg input{ input_t, "input", 1 },
grad_output{ grad_output_t, "grad_output", 2 },
weight{ weight_t, "weight", 3 },
save_mean{ save_mean_t, "save_mean", 4 },
save_var{ save_var_t, "save_var", 5 };
auto grad_output_contig =
grad_output_t.contiguous(input_t.suggest_memory_format());
TensorArg input{input_t, "input", 1},
grad_output{grad_output_contig, "grad_output", 2},
weight{weight_t, "weight", 3}, save_mean{save_mean_t, "save_mean", 4},
save_var{save_var_t, "save_var", 5};
CheckedFrom c = "miopen_batch_norm_backward";
checkAllDefined(c, {input, grad_output, weight, save_mean, save_var});
@ -195,7 +191,11 @@ std::tuple<Tensor, Tensor, Tensor> miopen_batch_norm_backward(
}
checkAllSameType(c, {input, grad_output});
checkAllSameType(c, {weight, save_mean, save_var});
checkAllContiguous(c, {input, grad_output, save_mean, save_var});
// TODO: is weight required to be contiguous?
checkAllContiguous(c, {save_mean, save_var});
// TODO: TensorArg check should start handle memory format
TORCH_CHECK(input->is_contiguous(input->suggest_memory_format()));
TORCH_CHECK(grad_output->is_contiguous(input->suggest_memory_format()));
checkDimRange(c, input, 2, 6 /* exclusive */);
checkSameSize(c, input, grad_output);
auto num_features = input->size(1);
@ -210,7 +210,7 @@ std::tuple<Tensor, Tensor, Tensor> miopen_batch_norm_backward(
mode = miopenBNSpatial;
}
auto grad_input_t = at::empty(input->sizes(), input->options());
auto grad_input_t = at::empty(input->sizes(), input->options(), input->suggest_memory_format());
auto grad_weight_t = at::empty(weight->sizes(), weight->options());
auto grad_bias_t = at::empty(weight->sizes(), weight->options());

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More