mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-14 06:07:55 +08:00
Compare commits
1 Commits
csl/remove
...
ciflow/tru
| Author | SHA1 | Date | |
|---|---|---|---|
| 5b63fda26f |
@ -13,4 +13,3 @@ exclude:
|
||||
- "**/benchmarks/**"
|
||||
- "**/test_*.py"
|
||||
- "**/*_test.py"
|
||||
- "tools/**"
|
||||
|
||||
@ -271,16 +271,6 @@ case "$tag" in
|
||||
# from pytorch/llvm:9.0.1 is x86 specific
|
||||
SKIP_LLVM_SRC_BUILD_INSTALL=yes
|
||||
;;
|
||||
pytorch-linux-jammy-aarch64-py3.10-clang21)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
CLANG_VERSION=21
|
||||
ACL=yes
|
||||
VISION=yes
|
||||
OPENBLAS=yes
|
||||
# snadampal: skipping llvm src build install because the current version
|
||||
# from pytorch/llvm:9.0.1 is x86 specific
|
||||
SKIP_LLVM_SRC_BUILD_INSTALL=yes
|
||||
;;
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
|
||||
@ -1 +1 @@
|
||||
bfeb066872bc1e8b2d2bc0a3b295b99dd77206e7
|
||||
7416ffcb92cdbe98d9f97e4e6f95247e46dfc9fd
|
||||
|
||||
@ -8,8 +8,8 @@ if [ -n "$CLANG_VERSION" ]; then
|
||||
# work around ubuntu apt-get conflicts
|
||||
sudo apt-get -y -f install
|
||||
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
|
||||
if [[ $CLANG_VERSION -ge 18 ]]; then
|
||||
apt-add-repository "deb http://apt.llvm.org/jammy/ llvm-toolchain-jammy-${CLANG_VERSION} main"
|
||||
if [[ $CLANG_VERSION == 18 ]]; then
|
||||
apt-add-repository "deb http://apt.llvm.org/jammy/ llvm-toolchain-jammy-18 main"
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
@ -10,7 +10,6 @@ git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION}" -
|
||||
|
||||
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
|
||||
OPENBLAS_BUILD_FLAGS="
|
||||
CC=gcc
|
||||
NUM_THREADS=128
|
||||
USE_OPENMP=1
|
||||
NO_SHARED=0
|
||||
|
||||
@ -149,7 +149,7 @@ FROM cpu_final as rocm_final
|
||||
ARG ROCM_VERSION=6.0
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
|
||||
ARG DEVTOOLSET_VERSION=13
|
||||
ARG DEVTOOLSET_VERSION=11
|
||||
ENV LDFLAGS="-Wl,-rpath=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64 -Wl,-rpath=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib"
|
||||
# Somewhere in ROCm stack, we still use non-existing /opt/rocm/hip path,
|
||||
# below workaround helps avoid error
|
||||
|
||||
@ -1 +1 @@
|
||||
3.5.1
|
||||
3.5.0
|
||||
|
||||
@ -6,8 +6,8 @@ set -eou pipefail
|
||||
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
|
||||
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
|
||||
|
||||
# https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
|
||||
# post merge of https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
|
||||
|
||||
# Folders for the build
|
||||
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
|
||||
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
|
||||
|
||||
# Fetch magma sources and verify checksum
|
||||
pushd ${PACKAGE_DIR}
|
||||
git clone https://github.com/jeffdaily/magma
|
||||
git clone https://github.com/icl-utk-edu/magma
|
||||
pushd magma
|
||||
git checkout ${MAGMA_VERSION}
|
||||
popd
|
||||
|
||||
@ -1653,7 +1653,7 @@ test_operator_microbenchmark() {
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/operator_benchmark
|
||||
|
||||
for OP_BENCHMARK_TESTS in matmul mm addmm bmm conv; do
|
||||
for OP_BENCHMARK_TESTS in matmul mm addmm bmm; do
|
||||
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
|
||||
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
|
||||
--benchmark-name "PyTorch operator microbenchmark" --use-compile
|
||||
|
||||
@ -60,11 +60,9 @@ performance-*,
|
||||
readability-container-size-empty,
|
||||
readability-delete-null-pointer,
|
||||
readability-duplicate-include,
|
||||
readability-named-parameter,
|
||||
readability-misplaced-array-index,
|
||||
readability-redundant*,
|
||||
readability-simplify-subscript-expr,
|
||||
readability-static-definition-in-anonymous-namespace
|
||||
readability-string-compare,
|
||||
-readability-redundant-access-specifiers,
|
||||
-readability-redundant-control-flow,
|
||||
|
||||
12
.github/actions/pytest-cache-download/action.yml
vendored
12
.github/actions/pytest-cache-download/action.yml
vendored
@ -38,9 +38,9 @@ runs:
|
||||
run: |
|
||||
python3 .github/scripts/pytest_cache.py \
|
||||
--download \
|
||||
--cache_dir "$GITHUB_WORKSPACE/$CACHE_DIR" \
|
||||
--pr_identifier "$GITHUB_REF" \
|
||||
--job_identifier "$JOB_IDENTIFIER" \
|
||||
--temp_dir "$RUNNER_TEMP" \
|
||||
--repo "$REPO" \
|
||||
--bucket "$BUCKET" \
|
||||
--cache_dir $GITHUB_WORKSPACE/$CACHE_DIR \
|
||||
--pr_identifier $GITHUB_REF \
|
||||
--job_identifier $JOB_IDENTIFIER \
|
||||
--temp_dir $RUNNER_TEMP \
|
||||
--repo $REPO \
|
||||
--bucket $BUCKET \
|
||||
|
||||
16
.github/actions/pytest-cache-upload/action.yml
vendored
16
.github/actions/pytest-cache-upload/action.yml
vendored
@ -47,11 +47,11 @@ runs:
|
||||
run: |
|
||||
python3 .github/scripts/pytest_cache.py \
|
||||
--upload \
|
||||
--cache_dir "$GITHUB_WORKSPACE/$CACHE_DIR" \
|
||||
--pr_identifier "$GITHUB_REF" \
|
||||
--job_identifier "$JOB_IDENTIFIER" \
|
||||
--sha "$SHA" \
|
||||
--test_config "$TEST_CONFIG" \
|
||||
--shard "$SHARD" \
|
||||
--repo "$REPO" \
|
||||
--temp_dir "$RUNNER_TEMP" \
|
||||
--cache_dir $GITHUB_WORKSPACE/$CACHE_DIR \
|
||||
--pr_identifier $GITHUB_REF \
|
||||
--job_identifier $JOB_IDENTIFIER \
|
||||
--sha $SHA \
|
||||
--test_config $TEST_CONFIG \
|
||||
--shard $SHARD \
|
||||
--repo $REPO \
|
||||
--temp_dir $RUNNER_TEMP \
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9
|
||||
df6798dfb931ce7c7fe5bed2447cd1092a5981af
|
||||
|
||||
125
.github/copilot-instructions.md
vendored
125
.github/copilot-instructions.md
vendored
@ -1,125 +0,0 @@
|
||||
# PyTorch Copilot Instructions
|
||||
|
||||
This is the PyTorch machine learning framework codebase. These instructions help AI agents navigate and contribute effectively.
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Core Components
|
||||
|
||||
- **c10/** - Core library (C++-10 compatible) for essential, binary-size-conscious functionality
|
||||
- **aten/** - ATen tensor library (C++), PyTorch's foundation without autograd
|
||||
- `aten/src/ATen/native/` - Modern operator implementations (CPU/CUDA/MPS/sparse)
|
||||
- `aten/src/ATen/native/native_functions.yaml` - **Critical**: Declarative operator registry
|
||||
- **torch/** - Python bindings and public API
|
||||
- `torch/csrc/` - C++ Python bindings (hand-written and generated)
|
||||
- `torch/csrc/autograd/` - Reverse-mode automatic differentiation
|
||||
- `torch/csrc/jit/` - TorchScript JIT compiler
|
||||
- **torchgen/** - Code generation tooling that reads `native_functions.yaml`
|
||||
- **tools/** - Build scripts, autograd derivatives, code generation
|
||||
|
||||
### The Code Generation Workflow
|
||||
|
||||
**Most operator changes require editing `native_functions.yaml`**, not direct C++ files. This YAML file:
|
||||
1. Declares operator signatures, variants (function/method), and dispatch behavior
|
||||
2. Gets processed by `torchgen/` to generate C++/Python bindings
|
||||
3. Produces headers in `build/aten/src/ATen/` during compilation
|
||||
|
||||
Example entry structure:
|
||||
```yaml
|
||||
- func: my_op(Tensor self, Scalar alpha=1) -> Tensor
|
||||
variants: function, method
|
||||
dispatch:
|
||||
CPU: my_op_cpu
|
||||
CUDA: my_op_cuda
|
||||
```
|
||||
|
||||
After editing `native_functions.yaml`, implement kernels in `aten/src/ATen/native/` (see `aten/src/ATen/native/README.md`).
|
||||
|
||||
## Development Workflows
|
||||
|
||||
### Building from Source
|
||||
|
||||
**Never run `setup.py` directly** - use pip with editable install:
|
||||
```bash
|
||||
python -m pip install --no-build-isolation -v -e .
|
||||
```
|
||||
|
||||
Speed up builds:
|
||||
- `DEBUG=1` - Debug symbols with `-g -O0`
|
||||
- `USE_CUDA=0` - Skip CUDA compilation
|
||||
- `BUILD_TEST=0` - Skip C++ test binaries
|
||||
- Install `ninja` (`pip install ninja`) for faster builds
|
||||
- Use `ccache` for incremental compilation caching
|
||||
|
||||
Rebuild specific targets: `(cd build && ninja <target>)`
|
||||
|
||||
### Testing
|
||||
|
||||
**Critical**: DO NOT run entire test suites. Run specific tests only:
|
||||
```bash
|
||||
python test/test_torch.py TestTorch.test_specific_case
|
||||
```
|
||||
|
||||
**Test structure**: All tests use `torch.testing._internal.common_utils`:
|
||||
```python
|
||||
from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class TestFeature(TestCase):
|
||||
def test_something(self):
|
||||
# Use self.assertEqual for tensor comparisons
|
||||
pass
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
```
|
||||
|
||||
**For bug fixes**: Create a standalone reproduction script first, verify it fails, then fix and add to appropriate test file.
|
||||
|
||||
### Linting
|
||||
|
||||
Run linter (not pre-commit): `lintrunner -a` (auto-applies fixes)
|
||||
|
||||
## Project-Specific Conventions
|
||||
|
||||
### Memory and Storage
|
||||
- **Storage is never nullptr** (but `StorageImpl.data` may be nullptr for unallocated outputs)
|
||||
- CUDA device info lives in storage objects
|
||||
|
||||
### Python-C++ Integration (`torch/csrc/`)
|
||||
- Always include `Python.h` **first** to avoid `_XOPEN_SOURCE` redefinition errors
|
||||
- Use `pybind11::gil_scoped_acquire` before calling Python API or using `THPObjectPtr`
|
||||
- Wrap entry points with `HANDLE_TH_ERRORS` / `END_HANDLE_TH_ERRORS` for exception conversion
|
||||
|
||||
### Dispatch System
|
||||
- PyTorch uses operator dispatch to route calls to backend-specific kernels
|
||||
- Prefer `CompositeExplicitAutograd` dispatch when writing device-agnostic compound ops
|
||||
- See `aten/src/ATen/native/README.md` for dispatch keyword guidance
|
||||
|
||||
## Git Workflow (AI Agent Specific)
|
||||
|
||||
When preparing PRs from this environment:
|
||||
```bash
|
||||
git stash -u
|
||||
git reset --hard $(cat /tmp/orig_work.txt) # Reset to LOCAL branch
|
||||
git stash pop
|
||||
# Resolve conflicts if necessary
|
||||
```
|
||||
|
||||
## Common Gotchas
|
||||
|
||||
1. **Editing generated files** - If it's in `build/`, don't edit it. Edit the source template or `native_functions.yaml`
|
||||
2. **NVCC template compilation** - NVCC is stricter about C++ than gcc/clang; code working on Linux may fail Windows CI
|
||||
3. **Windows symbol visibility** - Use `TORCH_API` macros for exported symbols (required on Windows, optional on Linux)
|
||||
4. **No internet access** - DO NOT attempt to install dependencies during development
|
||||
|
||||
## Key Files Reference
|
||||
|
||||
- `AGENTS.md` - Instructions specific to AI coding agents
|
||||
- `CONTRIBUTING.md` - Comprehensive human contributor guide
|
||||
- `GLOSSARY.md` - Terminology (ATen, kernels, operations, JIT, TorchScript)
|
||||
- `aten/src/ATen/native/README.md` - Operator implementation guide
|
||||
- `tools/autograd/derivatives.yaml` - Gradient definitions for autograd
|
||||
|
||||
## Performance Debugging
|
||||
|
||||
Use `TORCH_SHOW_CPP_STACKTRACES=1` for C++ traces in Python errors. For profiling, prefer `py-spy` over manual instrumentation.
|
||||
@ -28,7 +28,7 @@ CUDA_ARCHES_FULL_VERSION = {
|
||||
"12.6": "12.6.3",
|
||||
"12.8": "12.8.1",
|
||||
"12.9": "12.9.1",
|
||||
"13.0": "13.0.0",
|
||||
"13.0": "13.0.2",
|
||||
}
|
||||
CUDA_ARCHES_CUDNN_VERSION = {
|
||||
"12.6": "9",
|
||||
|
||||
4
.github/workflows/_rocm-test.yml
vendored
4
.github/workflows/_rocm-test.yml
vendored
@ -97,8 +97,8 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
ngpu=$(rocminfo | grep -c -E 'Name:.*\sgfx')
|
||||
if [[ $ngpu -lt 2 ]]; then #We are temporarily reducing this down to 2 from 4 so that we can run tests on nodes with less gpus.
|
||||
echo "Error: only $ngpu GPU(s) detected, at least 2 GPUs are needed for distributed jobs"
|
||||
if [[ $ngpu -lt 4 ]]; then
|
||||
echo "Error: only $ngpu GPU(s) detected, at least 4 GPUs are needed for distributed jobs"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
16
.github/workflows/_xpu-test.yml
vendored
16
.github/workflows/_xpu-test.yml
vendored
@ -344,21 +344,5 @@ jobs:
|
||||
if-no-files-found: ignore
|
||||
path: ./**/core.[1-9]*
|
||||
|
||||
- name: Authenticate with AWS
|
||||
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_upload-benchmark-results
|
||||
# The max duration enforced by the server side
|
||||
role-duration-seconds: 18000
|
||||
aws-region: us-east-1
|
||||
|
||||
- name: Upload the benchmark results
|
||||
uses: pytorch/test-infra/.github/actions/upload-benchmark-results@main
|
||||
with:
|
||||
benchmark-results-dir: test/test-reports
|
||||
dry-run: false
|
||||
schema-version: v3
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Teardown XPU
|
||||
uses: ./.github/actions/teardown-xpu
|
||||
|
||||
2
.github/workflows/docker-builds.yml
vendored
2
.github/workflows/docker-builds.yml
vendored
@ -79,8 +79,6 @@ jobs:
|
||||
include:
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-gcc11
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-clang21
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
timeout-minutes: 600
|
||||
|
||||
1
.github/workflows/docker-release.yml
vendored
1
.github/workflows/docker-release.yml
vendored
@ -8,7 +8,6 @@ on:
|
||||
- docker.Makefile
|
||||
- .github/workflows/docker-release.yml
|
||||
- .github/scripts/generate_docker_release_matrix.py
|
||||
- .github/scripts/generate_binary_build_matrix.py
|
||||
push:
|
||||
branches:
|
||||
- nightly
|
||||
|
||||
3
.github/workflows/inductor-rocm.yml
vendored
3
.github/workflows/inductor-rocm.yml
vendored
@ -1,10 +1,9 @@
|
||||
name: inductor-rocm
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 * * * *
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/inductor-rocm/*
|
||||
|
||||
8
.github/workflows/inductor-unittest.yml
vendored
8
.github/workflows/inductor-unittest.yml
vendored
@ -115,10 +115,10 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_amx", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "inductor_amx", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "inductor_avx2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.avx2" },
|
||||
{ config: "inductor_avx2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.avx2" },
|
||||
{ config: "inductor_amx", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "inductor_amx", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "inductor_avx2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.10xlarge.avx2" },
|
||||
{ config: "inductor_avx2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.10xlarge.avx2" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
14
.github/workflows/inductor.yml
vendored
14
.github/workflows/inductor.yml
vendored
@ -84,13 +84,13 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_inductor_torchbench", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "cpu_inductor_torchbench", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_huggingface", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_timm", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_timm", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_torchbench", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_torchbench", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge.amx" },
|
||||
{ config: "cpu_inductor_torchbench", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "cpu_inductor_torchbench", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_huggingface", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_timm", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_timm", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_torchbench", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "dynamic_cpu_inductor_torchbench", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
|
||||
{ config: "inductor_torchbench_cpu_smoketest_perf", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.24xl.spr-metal" },
|
||||
]}
|
||||
build-additional-packages: "vision audio torchao"
|
||||
|
||||
15
.github/workflows/lint.yml
vendored
15
.github/workflows/lint.yml
vendored
@ -76,12 +76,11 @@ jobs:
|
||||
|
||||
# NOTE: mypy needs its own job because it depends on --all-files, without assessing all files it sometimes
|
||||
# fails to find types when it should
|
||||
# NOTE: We should be able to disable this and consolidate with Pyrefly
|
||||
lintrunner-pyrefly:
|
||||
lintrunner-mypy:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
name: lintrunner-pyrefly-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
name: lintrunner-mypy-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
# Only run if there are changed files relevant to pyrefly
|
||||
# Only run if there are changed files relevant to mypy
|
||||
if: |
|
||||
github.repository_owner == 'pytorch' && (
|
||||
needs.get-changed-files.outputs.changed-files == '*' ||
|
||||
@ -99,8 +98,8 @@ jobs:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
script: |
|
||||
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
|
||||
echo "Running pyrefly"
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--take PYREFLY --all-files" .github/scripts/lintrunner.sh
|
||||
echo "Running mypy"
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--take MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
|
||||
|
||||
lintrunner-noclang:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
@ -119,9 +118,9 @@ jobs:
|
||||
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
|
||||
echo "Running all other linters"
|
||||
if [ "$CHANGED_FILES" = '*' ]; then
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,PYREFLY --all-files" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
|
||||
else
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
fi
|
||||
|
||||
quick-checks:
|
||||
|
||||
2
.github/workflows/nightly.yml
vendored
2
.github/workflows/nightly.yml
vendored
@ -41,7 +41,7 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
|
||||
build-environment: linux-jammy-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
|
||||
secrets: inherit
|
||||
|
||||
8
.github/workflows/pull.yml
vendored
8
.github/workflows/pull.yml
vendored
@ -66,10 +66,10 @@ jobs:
|
||||
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "docs_test", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "backwards_compat", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "backwards_compat", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "distributed", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "distributed", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "numpy_2_x", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "numpy_2_x", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
@ -167,8 +167,8 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-onnx
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
2
.github/workflows/rocm.yml
vendored
2
.github/workflows/rocm.yml
vendored
@ -3,13 +3,13 @@ name: rocm
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/rocm/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: 29 8 * * * # about 1:29am PDT
|
||||
- cron: 0 * * * *
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
|
||||
3
.github/workflows/trunk.yml
vendored
3
.github/workflows/trunk.yml
vendored
@ -204,7 +204,6 @@ jobs:
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "distributed", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.4" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
@ -222,7 +221,7 @@ jobs:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
|
||||
@ -121,6 +121,94 @@ command = [
|
||||
]
|
||||
is_formatter = true
|
||||
|
||||
[[linter]]
|
||||
code = 'MYPY'
|
||||
include_patterns = [
|
||||
'setup.py',
|
||||
'functorch/dim/**/*.py',
|
||||
'torch/**/*.py',
|
||||
'torch/**/*.pyi',
|
||||
'caffe2/**/*.py',
|
||||
'caffe2/**/*.pyi',
|
||||
'test/test_bundled_images.py',
|
||||
'test/test_bundled_inputs.py',
|
||||
'test/test_complex.py',
|
||||
'test/test_datapipe.py',
|
||||
'test/test_futures.py',
|
||||
'test/test_numpy_interop.py',
|
||||
'test/test_torch.py',
|
||||
'test/test_type_hints.py',
|
||||
'test/test_type_info.py',
|
||||
'test/test_utils.py',
|
||||
]
|
||||
exclude_patterns = [
|
||||
'**/fb/**',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/mypy_linter.py',
|
||||
'--config=mypy.ini',
|
||||
'--',
|
||||
'@{{PATHSFILE}}'
|
||||
]
|
||||
init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'mypy==1.16.0',
|
||||
'sympy==1.13.3',
|
||||
'types-requests==2.27.25',
|
||||
'types-pyyaml==6.0.2',
|
||||
'types-tabulate==0.8.8',
|
||||
'types-protobuf==5.29.1.20250403',
|
||||
'types-setuptools==79.0.0.20250422',
|
||||
'types-jinja2==2.11.9',
|
||||
'types-colorama==0.4.6',
|
||||
'filelock==3.18.0',
|
||||
'junitparser==2.1.1',
|
||||
'rich==14.1.0',
|
||||
'pyyaml==6.0.2',
|
||||
'optree==0.13.0',
|
||||
'dataclasses-json==0.6.7',
|
||||
'pandas==2.2.3',
|
||||
]
|
||||
|
||||
[[linter]]
|
||||
code = 'MYPYSTRICT'
|
||||
include_patterns = [
|
||||
'.github/**/*.py',
|
||||
'benchmarks/instruction_counts/**/*.py',
|
||||
'tools/**/*.py',
|
||||
'torchgen/**/*.py',
|
||||
'torch/utils/_pytree.py',
|
||||
'torch/utils/_cxx_pytree.py',
|
||||
'torch/utils/benchmark/utils/common.py',
|
||||
'torch/utils/benchmark/utils/timer.py',
|
||||
'torch/utils/benchmark/utils/valgrind_wrapper/**/*.py',
|
||||
]
|
||||
exclude_patterns = [
|
||||
# (linbinyu) copied from internal repo
|
||||
'**/fb/**',
|
||||
'tools/code_analyzer/gen_operators_yaml.py',
|
||||
'tools/dynamo/verify_dynamo.py',
|
||||
'tools/gen_vulkan_spv.py',
|
||||
'tools/test/gen_operators_yaml_test.py',
|
||||
'tools/test/gen_oplist_test.py',
|
||||
'tools/test/test_selective_build.py',
|
||||
'tools/experimental/torchfuzz/**',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/mypy_linter.py',
|
||||
'--config=mypy-strict.ini',
|
||||
'--code=MYPYSTRICT',
|
||||
'--',
|
||||
'@{{PATHSFILE}}'
|
||||
]
|
||||
|
||||
|
||||
[[linter]]
|
||||
code = 'PYREFLY'
|
||||
@ -142,7 +230,6 @@ init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'pyrefly==0.36.2',
|
||||
@ -211,6 +298,7 @@ exclude_patterns = [
|
||||
'**/*pb.h',
|
||||
'**/*inl.h',
|
||||
'aten/src/ATen/cpu/FlushDenormal.cpp',
|
||||
'aten/src/ATen/cpu/Utils.cpp',
|
||||
'aten/src/ATen/cpu/vml.h',
|
||||
'aten/src/ATen/CPUFixedAllocator.h',
|
||||
'aten/src/ATen/Parallel*.h',
|
||||
@ -229,6 +317,8 @@ exclude_patterns = [
|
||||
'c10/util/win32-headers.h',
|
||||
'c10/test/**/*.h',
|
||||
'third_party/**/*',
|
||||
'torch/csrc/api/include/torch/nn/modules/common.h',
|
||||
'torch/csrc/api/include/torch/linalg.h',
|
||||
'torch/csrc/autograd/generated/**',
|
||||
'torch/csrc/distributed/**/*.cu',
|
||||
'torch/csrc/distributed/c10d/WinSockUtils.hpp',
|
||||
@ -240,6 +330,7 @@ exclude_patterns = [
|
||||
'torch/csrc/utils/generated_serialization_types.h',
|
||||
'torch/csrc/utils/pythoncapi_compat.h',
|
||||
'torch/csrc/inductor/aoti_runtime/sycl_runtime_wrappers.h',
|
||||
'aten/src/ATen/ExpandBase.h',
|
||||
]
|
||||
init_command = [
|
||||
'python3',
|
||||
|
||||
@ -234,17 +234,7 @@ option(USE_COLORIZE_OUTPUT "Colorize output during compilation" ON)
|
||||
option(USE_ASAN "Use Address+Undefined Sanitizers" OFF)
|
||||
option(USE_LSAN "Use Leak Sanitizer" OFF)
|
||||
option(USE_TSAN "Use Thread Sanitizer" OFF)
|
||||
|
||||
# Track whether USE_CUDA was explicitly set by the user (before option() is called)
|
||||
# If USE_CUDA is already defined in cache, it means user explicitly set it
|
||||
if(DEFINED CACHE{USE_CUDA})
|
||||
set(_USE_CUDA_EXPLICITLY_SET TRUE)
|
||||
else()
|
||||
set(_USE_CUDA_EXPLICITLY_SET FALSE)
|
||||
endif()
|
||||
|
||||
option(USE_CUDA "Use CUDA" ON)
|
||||
|
||||
option(USE_XPU "Use XPU" ON)
|
||||
cmake_dependent_option(
|
||||
BUILD_LAZY_CUDA_LINALG "Build cuda linalg ops as separate library" ON
|
||||
|
||||
@ -18,7 +18,7 @@ aspects of contributing to PyTorch.
|
||||
- [Python Unit Testing](#python-unit-testing)
|
||||
- [Better local unit tests with `pytest`](#better-local-unit-tests-with-pytest)
|
||||
- [Local linting](#local-linting)
|
||||
- [Running `pyrefly`](#running-pyrefly)
|
||||
- [Running `mypy`](#running-mypy)
|
||||
- [C++ Unit Testing](#c-unit-testing)
|
||||
- [Run Specific CI Jobs](#run-specific-ci-jobs)
|
||||
- [Merging your Change](#merging-your-change)
|
||||
@ -281,7 +281,7 @@ dependencies as well as the nightly binaries into the repo directory.
|
||||
**Prerequisites**:
|
||||
The following packages should be installed with `pip`:
|
||||
- `expecttest` and `hypothesis` - required to run tests
|
||||
- `pyrefly` - recommended for type checking. [Pyrefly](https://pyrefly.org/)
|
||||
- `mypy` - recommended for linting
|
||||
- `pytest` - recommended to run tests more selectively
|
||||
Running
|
||||
```
|
||||
@ -350,32 +350,15 @@ make lint
|
||||
|
||||
Learn more about the linter on the [lintrunner wiki page](https://github.com/pytorch/pytorch/wiki/lintrunner)
|
||||
|
||||
#### Running `pyrefly`
|
||||
#### Running `mypy`
|
||||
|
||||
[Pyrefly](https://pyrefly.org/) is a high-performance static type checker for Python. It provides fast type checking along with IDE features like autocomplete and instant error feedback.
|
||||
|
||||
PyTorch uses Pyrefly for type checking across the codebase. The configuration is managed in `pyrefly.toml` at the root of the repository.
|
||||
|
||||
**Getting Started with Pyrefly:**
|
||||
|
||||
To run type checking on the PyTorch codebase:
|
||||
```bash
|
||||
pyrefly check
|
||||
```
|
||||
|
||||
For more detailed error information with summaries:
|
||||
```bash
|
||||
pyrefly check --summarize-errors
|
||||
```
|
||||
|
||||
**Learn More:**
|
||||
- [Pyrefly Configuration](https://pyrefly.org/en/docs/configuration/) - Detailed configuration options
|
||||
- [Pyrefly IDE Features](https://pyrefly.org/en/docs/IDE-features/) - Set up Pyrefly in your editor for real-time type checking
|
||||
- [Python Typing Tutorial](https://pyrefly.org/en/docs/typing-for-python-developers/) - Learn about Python type annotations
|
||||
`mypy` is an optional static type checker for Python. We have multiple `mypy`
|
||||
configs for the PyTorch codebase that are automatically validated against whenever the linter is run.
|
||||
|
||||
See [Guide for adding type annotations to
|
||||
PyTorch](https://github.com/pytorch/pytorch/wiki/Guide-for-adding-type-annotations-to-PyTorch)
|
||||
for PyTorch-specific guidance on how to set up `pyrefly` and tackle type annotation tasks in this codebase.
|
||||
for more information on how to set up `mypy` and tackle type annotation
|
||||
tasks.
|
||||
|
||||
### C++ Unit Testing
|
||||
|
||||
|
||||
20
SECURITY.md
20
SECURITY.md
@ -1,7 +1,7 @@
|
||||
# Security Policy
|
||||
|
||||
- [**Reporting a Vulnerability**](#reporting-a-vulnerability)
|
||||
- [**Using PyTorch Securely**](#using-pytorch-securely)
|
||||
- [**Using Pytorch Securely**](#using-pytorch-securely)
|
||||
- [Untrusted models](#untrusted-models)
|
||||
- [TorchScript models](#torchscript-models)
|
||||
- [Untrusted inputs](#untrusted-inputs)
|
||||
@ -10,28 +10,28 @@
|
||||
- [**CI/CD security principles**](#cicd-security-principles)
|
||||
## Reporting Security Issues
|
||||
|
||||
Beware that none of the topics under [Using PyTorch Securely](#using-pytorch-securely) are considered vulnerabilities of PyTorch.
|
||||
Beware that none of the topics under [Using Pytorch Securely](#using-pytorch-securely) are considered vulnerabilities of Pytorch.
|
||||
|
||||
However, if you believe you have found a security vulnerability in PyTorch, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
|
||||
|
||||
Please report security issues using https://github.com/pytorch/pytorch/security/advisories/new
|
||||
|
||||
All reports submitted through the security advisories mechanism would **either be made public or dismissed by the team within 90 days of the submission**. If advisory has been closed on the grounds that it is not a security issue, please do not hesitate to create an [new issue](https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml) as it is still likely a valid issue within the framework.
|
||||
All reports submitted thru the security advisories mechanism would **either be made public or dismissed by the team within 90 days of the submission**. If advisory has been closed on the grounds that it is not a security issue, please do not hesitate to create an [new issue](https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml) as it is still likely a valid issue within the framework.
|
||||
|
||||
Please refer to the following page for our responsible disclosure policy, reward guidelines, and those things that should not be reported:
|
||||
|
||||
https://www.facebook.com/whitehat
|
||||
|
||||
|
||||
## Using PyTorch Securely
|
||||
**PyTorch models are programs**, so treat its security seriously -- running untrusted models is equivalent to running untrusted code. In general we recommend that model weights and the python code for the model are distributed independently. That said, be careful about where you get the python code from and who wrote it (preferentially check for a provenance or checksums, do not run any pip installed package).
|
||||
## Using Pytorch Securely
|
||||
**Pytorch models are programs**, so treat its security seriously -- running untrusted models is equivalent to running untrusted code. In general we recommend that model weights and the python code for the model are distributed independently. That said, be careful about where you get the python code from and who wrote it (preferentially check for a provenance or checksums, do not run any pip installed package).
|
||||
|
||||
### Untrusted models
|
||||
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources[^data-poisoning-sources].
|
||||
|
||||
**Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing).
|
||||
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [Safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
|
||||
|
||||
Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs.
|
||||
|
||||
@ -43,7 +43,7 @@ Important Note: The trustworthiness of a model is not binary. You must always de
|
||||
|
||||
### TorchScript models
|
||||
|
||||
TorchScript models should be treated the same way as locally executable code from an unknown source. Only run TorchScript models if you trust the provider. Please note, that tools for introspecting TorchScript models (such as `torch.utils.model_dump`) may also execute partial or full code stored in those models, therefore they should be used only if you trust the provider of the binary you are about to load.
|
||||
TorchScript models should treated the same way as locally executable code from an unknown source. Only run TorchScript models if you trust the provider. Please note, that tools for introspecting TorchScript models (such as `torch.utils.model_dump`) may also execute partial or full code stored in those models, therefore they should be used only if you trust the provider of the binary you are about to load.
|
||||
|
||||
### Untrusted inputs during training and prediction
|
||||
|
||||
@ -59,9 +59,9 @@ If applicable, prepare your model against bad inputs and prompt injections. Some
|
||||
|
||||
### Data privacy
|
||||
|
||||
**Take special security measures if you train your models with sensitive data**. Prioritize [sandboxing](https://developers.google.com/code-sandboxing) your models and:
|
||||
- Do not feed sensitive data to an untrusted model (even if runs in a sandboxed environment)
|
||||
- If you consider publishing a model that was partially trained with sensitive data, be aware that data can potentially be recovered from the trained weights (especially if the model overfits).
|
||||
**Take special security measures if your model if you train models with sensitive data**. Prioritize [sandboxing](https://developers.google.com/code-sandboxing) your models and:
|
||||
- Do not feed sensitive data to untrusted model (even if runs in a sandboxed environment)
|
||||
- If you consider publishing a model that was partially trained with sensitive data, be aware that data can potentially be recovered from the trained weights (especially if model overfits).
|
||||
|
||||
### Using distributed features
|
||||
|
||||
|
||||
@ -260,7 +260,7 @@ IF(USE_FBGEMM_GENAI)
|
||||
if(USE_CUDA)
|
||||
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
|
||||
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
|
||||
set(FBGEMM_CUTLASS_KERNELS_REGEX ".*(mx8mx8bf16_grouped|f4f4bf16_grouped|f4f4bf16).*")
|
||||
set(FBGEMM_CUTLASS_KERNELS_REGEX ".*(mx8mx8bf16_grouped|f4f4bf16_grouped).*")
|
||||
file(GLOB_RECURSE fbgemm_genai_native_cuda_cu
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/*.cu"
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/**/*.cu")
|
||||
|
||||
@ -181,7 +181,7 @@ c10::intrusive_ptr<c10::TensorImpl> CPUGeneratorImpl::get_state() const {
|
||||
static const size_t size = sizeof(CPUGeneratorImplState);
|
||||
static_assert(std::is_standard_layout_v<CPUGeneratorImplState>, "CPUGeneratorImplState is not a PODType");
|
||||
|
||||
auto state_tensor = at::detail::empty_cpu({static_cast<int64_t>(size)}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
|
||||
auto state_tensor = at::detail::empty_cpu({(int64_t)size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
|
||||
auto rng_state = state_tensor.data_ptr();
|
||||
|
||||
// accumulate generator data to be copied into byte tensor
|
||||
|
||||
@ -23,6 +23,8 @@ C10_DIAGNOSTIC_POP()
|
||||
#endif
|
||||
namespace at {
|
||||
|
||||
namespace {
|
||||
|
||||
/*
|
||||
These const variables defined the fp32 precisions for different backend
|
||||
We have "generic", "cuda", "mkldnn" backend now and we can choose fp32
|
||||
@ -39,6 +41,16 @@ namespace at {
|
||||
->rnn
|
||||
*/
|
||||
|
||||
C10_ALWAYS_INLINE void warn_deprecated_fp32_precision_api(){
|
||||
TORCH_WARN_ONCE(
|
||||
"Please use the new API settings to control TF32 behavior, such as torch.backends.cudnn.conv.fp32_precision = 'tf32' "
|
||||
"or torch.backends.cuda.matmul.fp32_precision = 'ieee'. Old settings, e.g, torch.backends.cuda.matmul.allow_tf32 = True, "
|
||||
"torch.backends.cudnn.allow_tf32 = True, allowTF32CuDNN() and allowTF32CuBLAS() will be deprecated after Pytorch 2.9. Please see "
|
||||
"https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices"
|
||||
);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
Float32Backend str2backend(const std::string& name) {
|
||||
if (name == "generic")
|
||||
return Float32Backend::GENERIC;
|
||||
@ -194,6 +206,7 @@ bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
|
||||
} else {
|
||||
return float32Precision(Float32Backend::CUDA, op.value()) == Float32Precision::TF32;
|
||||
}
|
||||
warn_deprecated_fp32_precision_api();
|
||||
return allow_tf32_cudnn;
|
||||
}
|
||||
|
||||
@ -201,6 +214,7 @@ void Context::setAllowTF32CuDNN(bool b) {
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::RNN, b ? Float32Precision::TF32 : Float32Precision::NONE);
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::CONV, b ? Float32Precision::TF32 : Float32Precision::NONE);
|
||||
allow_tf32_cudnn = b;
|
||||
warn_deprecated_fp32_precision_api();
|
||||
}
|
||||
|
||||
void Context::setSDPPriorityOrder(const std::vector<int64_t>& order) {
|
||||
@ -209,7 +223,7 @@ void Context::setSDPPriorityOrder(const std::vector<int64_t>& order) {
|
||||
"setSDPPriority order expected ", sdp_priority_order.size() - 1, " but got ",
|
||||
at::num_sdp_backends, " unique backends specified in priority order.");
|
||||
for (uint32_t i = 0; i < order.size(); i++) {
|
||||
sdp_priority_order[i] = static_cast<at::SDPBackend>(order[i]);
|
||||
sdp_priority_order[i] = (at::SDPBackend) order[i];
|
||||
}
|
||||
}
|
||||
|
||||
@ -311,6 +325,7 @@ bool Context::allowTF32CuBLAS() const {
|
||||
"Current status indicate that you have used mix of the legacy and new APIs to set the TF32 status for cublas matmul. ",
|
||||
"We suggest only using the new API to set the TF32 flag. See also: ",
|
||||
"https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices");
|
||||
warn_deprecated_fp32_precision_api();
|
||||
return allow_tf32_new;
|
||||
}
|
||||
|
||||
@ -334,6 +349,7 @@ Float32MatmulPrecision Context::float32MatmulPrecision() const {
|
||||
"Current status indicate that you have used mix of the legacy and new APIs to set the matmul precision. ",
|
||||
"We suggest only using the new API for matmul precision. See also: ",
|
||||
"https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices");
|
||||
warn_deprecated_fp32_precision_api();
|
||||
return float32_matmul_precision;
|
||||
}
|
||||
|
||||
@ -361,6 +377,7 @@ Float32Precision Context::float32Precision(Float32Backend backend, Float32Op op)
|
||||
|
||||
void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
auto match = [this](const std::string & s_) {
|
||||
warn_deprecated_fp32_precision_api();
|
||||
// TODO: consider if CuDNN field needs to also be set for potential future CuDNN ops like multi-headed attention
|
||||
if (s_ == "highest") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::HIGHEST;
|
||||
|
||||
@ -197,7 +197,6 @@ inline at::ScalarType scalar_type(at::ScalarType s) {
|
||||
/* don't use TYPE again in case it is an expensive or side-effect op */ \
|
||||
at::ScalarType _st = ::detail::scalar_type(the_type); \
|
||||
RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
|
||||
switch (_st) { \
|
||||
__VA_ARGS__ \
|
||||
default: \
|
||||
@ -209,7 +208,6 @@ inline at::ScalarType scalar_type(at::ScalarType s) {
|
||||
toString(_st), \
|
||||
"'"); \
|
||||
} \
|
||||
C10_DIAGNOSTIC_POP() \
|
||||
}()
|
||||
|
||||
#define AT_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
|
||||
@ -252,13 +252,13 @@ MapAllocator::MapAllocator(WithFd /*unused*/, std::string_view filename, int fd,
|
||||
if (!(flags_ & ALLOCATOR_MAPPED_FROMFD)) {
|
||||
if (flags_ & ALLOCATOR_MAPPED_SHARED) {
|
||||
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
|
||||
if ((fd = open(filename_.c_str(), flags, static_cast<mode_t>(0600))) == -1) {
|
||||
if ((fd = open(filename_.c_str(), flags, (mode_t)0600)) == -1) {
|
||||
TORCH_CHECK(false, "unable to open file <", filename_, "> in read-write mode: ", c10::utils::str_error(errno), " (", errno, ")");
|
||||
}
|
||||
} else if (flags_ & ALLOCATOR_MAPPED_SHAREDMEM) {
|
||||
#ifdef HAVE_SHM_OPEN
|
||||
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
|
||||
if((fd = shm_open(filename_.c_str(), flags, static_cast<mode_t>(0600))) == -1) {
|
||||
if((fd = shm_open(filename_.c_str(), flags, (mode_t)0600)) == -1) {
|
||||
TORCH_CHECK(false, "unable to open shared memory object <", filename_, "> in read-write mode: ", c10::utils::str_error(errno), " (", errno, ")");
|
||||
}
|
||||
#else
|
||||
@ -503,7 +503,7 @@ RefcountedMapAllocator::RefcountedMapAllocator(WithFd /*unused*/, const char *fi
|
||||
|
||||
void RefcountedMapAllocator::initializeAlloc() {
|
||||
TORCH_CHECK(base_ptr_, "base_ptr_ is null");
|
||||
MapInfo *map_info = static_cast<MapInfo*>(base_ptr_);
|
||||
MapInfo *map_info = (MapInfo*)base_ptr_;
|
||||
|
||||
#ifdef _WIN32
|
||||
ReleaseContext* r_ctx = new ReleaseContext;
|
||||
@ -539,7 +539,7 @@ void RefcountedMapAllocator::close() {
|
||||
}
|
||||
#else /* _WIN32 */
|
||||
|
||||
MapInfo *info = static_cast<MapInfo*>(data);
|
||||
MapInfo *info = (MapInfo*)(data);
|
||||
if (--info->refcount == 0) {
|
||||
#ifdef HAVE_SHM_UNLINK
|
||||
if (shm_unlink(filename_.c_str()) == -1) {
|
||||
|
||||
@ -862,7 +862,7 @@ void TensorIteratorBase::narrow(int dim, int64_t start, int64_t size) {
|
||||
shape_[dim] = size;
|
||||
view_offsets_[dim] += start;
|
||||
for (auto& op : operands_) {
|
||||
op.data = (static_cast<char*>(op.data)) + op.stride_bytes[dim] * start;
|
||||
op.data = ((char*)op.data) + op.stride_bytes[dim] * start;
|
||||
}
|
||||
if (size == 1 && !is_reduction_) {
|
||||
coalesce_dimensions();
|
||||
@ -873,7 +873,7 @@ void TensorIteratorBase::select_all_keeping_dim(int start_dim, IntArrayRef indic
|
||||
TORCH_INTERNAL_ASSERT(start_dim <= ndim());
|
||||
for (const auto i : c10::irange(start_dim, ndim())) {
|
||||
for (auto& op : operands_) {
|
||||
op.data = (static_cast<char*>(op.data)) + op.stride_bytes[i] * indices[i - start_dim];
|
||||
op.data = ((char*)op.data) + op.stride_bytes[i] * indices[i - start_dim];
|
||||
}
|
||||
shape_[i] = 1;
|
||||
}
|
||||
|
||||
@ -41,7 +41,7 @@ inline void serial_for_each(
|
||||
IntArrayRef strides,
|
||||
char** base_ptrs,
|
||||
size_t ntensors,
|
||||
TensorIteratorBase::loop2d_t loop,
|
||||
typename TensorIteratorBase::loop2d_t loop,
|
||||
Range range) {
|
||||
const auto ndim = shape.size();
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
|
||||
@ -72,16 +72,10 @@ TORCH_LIBRARY_IMPL(aten, VmapMode, m) {
|
||||
m.impl("random_", unsupportedRandomOp_<Tensor&, std::optional<Generator>>);
|
||||
|
||||
m.impl("rand_like", unsupportedRandomOp<const Tensor&, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("rand_like.generator", unsupportedRandomOp<const Tensor&, std::optional<Generator>, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randn_like", unsupportedRandomOp<const Tensor&, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randn_like.generator", unsupportedRandomOp<const Tensor&, std::optional<Generator>, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
|
||||
m.impl("randint_like", unsupportedRandomOp<const Tensor&, int64_t, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randint_like.Tensor", unsupportedRandomOp<const Tensor&, const Tensor&, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randint_like.low_dtype", unsupportedRandomOp<const Tensor&, int64_t, int64_t, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randint_like.generator", unsupportedRandomOp<const Tensor&, int64_t, std::optional<Generator>, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randint_like.Tensor_generator", unsupportedRandomOp<const Tensor&, const Tensor&, std::optional<Generator>, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
m.impl("randint_like.low_generator_dtype", unsupportedRandomOp<const Tensor&, int64_t, int64_t, std::optional<Generator>, TENSOROPTIONS, std::optional<MemoryFormat>>);
|
||||
|
||||
m.impl("rand", unsupportedRandomOp<IntArrayRef, TENSOROPTIONS>);
|
||||
m.impl("rand.generator", unsupportedRandomOp<IntArrayRef, std::optional<Generator>, TENSOROPTIONS>);
|
||||
|
||||
@ -190,14 +190,12 @@ class IListRef;
|
||||
* it to a function (e.g. `ImplT::<dispatch-function>(this_)`).
|
||||
*/
|
||||
#define TORCH_ILISTREF_UNWRAP(TAG, BODY) \
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
|
||||
switch (TAG) { \
|
||||
TORCH_ILISTREF_FORALL_TAGS(TORCH_ILISTREF_UNWRAP_CASE, BODY) \
|
||||
break; \
|
||||
default: \
|
||||
TORCH_INTERNAL_ASSERT(false, "invalid IListRef tag."); \
|
||||
} \
|
||||
C10_DIAGNOSTIC_POP()
|
||||
}
|
||||
|
||||
enum class IListRefTag {
|
||||
#define DEFINE_TAG(tag, ...) tag,
|
||||
|
||||
@ -56,7 +56,7 @@ C10_HOST_DEVICE inline T uniform_int_full_range(V val) {
|
||||
* in this overloaded version
|
||||
*/
|
||||
template <typename T, typename V>
|
||||
C10_HOST_DEVICE inline std::enable_if_t<!std::is_floating_point_v<T>, T>uniform_int(V val) {
|
||||
C10_HOST_DEVICE inline std::enable_if_t<!(std::is_floating_point_v<T>), T>uniform_int(V val) {
|
||||
if constexpr (std::is_same_v<T, bool>) {
|
||||
return static_cast<bool>(val & 1);
|
||||
} else if constexpr (std::is_same_v<T, int64_t>) {
|
||||
|
||||
@ -114,25 +114,25 @@ inline typename remove_symint<T>::type unpackSymInt(T x) {
|
||||
}
|
||||
|
||||
template <>
|
||||
inline remove_symint<c10::SymInt>::type unpackSymInt(c10::SymInt x) {
|
||||
inline typename remove_symint<c10::SymInt>::type unpackSymInt(c10::SymInt x) {
|
||||
return x.guard_int(__FILE__, __LINE__);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline remove_symint<c10::SymIntArrayRef>::type unpackSymInt(
|
||||
inline typename remove_symint<c10::SymIntArrayRef>::type unpackSymInt(
|
||||
c10::SymIntArrayRef x) {
|
||||
return C10_AS_INTARRAYREF_SLOW(x);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline remove_symint<std::optional<c10::SymInt>>::type unpackSymInt(
|
||||
inline typename remove_symint<std::optional<c10::SymInt>>::type unpackSymInt(
|
||||
std::optional<c10::SymInt> x) {
|
||||
return x.has_value() ? std::make_optional(x->guard_int(__FILE__, __LINE__))
|
||||
: std::nullopt;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline remove_symint<at::OptionalSymIntArrayRef>::type unpackSymInt(
|
||||
inline typename remove_symint<at::OptionalSymIntArrayRef>::type unpackSymInt(
|
||||
at::OptionalSymIntArrayRef x) {
|
||||
return x.has_value() ? std::make_optional(C10_AS_INTARRAYREF_SLOW(*x))
|
||||
: std::nullopt;
|
||||
|
||||
@ -631,8 +631,8 @@ call_functor_with_args_from_stack_(
|
||||
Stack* stack,
|
||||
std::index_sequence<ivalue_arg_indices...> /*unused*/,
|
||||
guts::typelist::typelist<ArgTypes...>* /*unused*/) {
|
||||
(void)stack; // when sizeof...(ivalue_arg_indices) == 0, this argument would
|
||||
// be unused and we have to silence the compiler warning.
|
||||
(void)(stack); // when sizeof...(ivalue_arg_indices) == 0, this argument would
|
||||
// be unused and we have to silence the compiler warning.
|
||||
|
||||
// We're explicitly filtering out DispatchKeySet from the argument list.
|
||||
// Some kernels take a DispatchKeySet as their first argument in order to
|
||||
|
||||
@ -18,7 +18,6 @@ struct TORCH_API EnumType : public NamedType {
|
||||
TypePtr value,
|
||||
std::vector<EnumNameValue> enum_names_values,
|
||||
std::weak_ptr<::torch::jit::CompilationUnit> cu) {
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum")
|
||||
switch (value->kind()) {
|
||||
case TypeKind::IntType:
|
||||
case TypeKind::FloatType:
|
||||
@ -35,7 +34,6 @@ struct TORCH_API EnumType : public NamedType {
|
||||
value->str(),
|
||||
"', only int, float and string are supported");
|
||||
}
|
||||
C10_DIAGNOSTIC_POP()
|
||||
}
|
||||
|
||||
std::string str() const override {
|
||||
|
||||
@ -601,8 +601,8 @@ std::ostream& IValue::repr(
|
||||
double d = v.toDouble();
|
||||
int c = std::fpclassify(d);
|
||||
if ((c == FP_NORMAL || c == FP_ZERO ) && std::abs(d) < 1e10) {
|
||||
int64_t i = static_cast<int64_t>(d);
|
||||
if (static_cast<double>(i) == d) {
|
||||
int64_t i = int64_t(d);
|
||||
if (double(i) == d) {
|
||||
// -0.0 (signed zero) needs to be parsed as -0.
|
||||
if (i == 0 && std::signbit(d)) {
|
||||
return out << "-" << i << ".";
|
||||
@ -799,8 +799,8 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
double d = v.toDouble();
|
||||
int c = std::fpclassify(d);
|
||||
if (c == FP_NORMAL || c == FP_ZERO) {
|
||||
int64_t i = static_cast<int64_t>(d);
|
||||
if (static_cast<double>(i) == d) {
|
||||
int64_t i = int64_t(d);
|
||||
if (double(i) == d) {
|
||||
return out << i << ".";
|
||||
}
|
||||
}
|
||||
|
||||
@ -41,7 +41,7 @@ void standardizeVectorForUnion(std::vector<TypePtr>* to_flatten);
|
||||
inline bool is_contiguous_strides(
|
||||
const IntArrayRef sizes,
|
||||
const IntArrayRef strides) {
|
||||
size_t n_dim = sizes.size();
|
||||
int n_dim = static_cast<int>(sizes.size());
|
||||
if (n_dim == 0) {
|
||||
return true;
|
||||
}
|
||||
@ -50,7 +50,7 @@ inline bool is_contiguous_strides(
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = static_cast<int>(n_dim) - 2; i >= 0; i--) {
|
||||
for (int i = n_dim - 2; i >= 0; i--) {
|
||||
if (strides[i] != strides[i + 1] * sizes[i + 1]) {
|
||||
return false;
|
||||
}
|
||||
@ -922,7 +922,6 @@ struct TORCH_API DictType : public SharedType {
|
||||
if (auto dyn = key->castRaw<DynamicType>()) {
|
||||
kind = dyn->dynamicKind();
|
||||
}
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum")
|
||||
switch (kind) {
|
||||
case TypeKind::AnyType:
|
||||
case TypeKind::IntType:
|
||||
@ -939,7 +938,6 @@ struct TORCH_API DictType : public SharedType {
|
||||
key->str(),
|
||||
"', only int, float, complex, Tensor, device and string keys are supported");
|
||||
}
|
||||
C10_DIAGNOSTIC_POP()
|
||||
}
|
||||
|
||||
// aligned with the format in FunctionSchema
|
||||
@ -2373,7 +2371,7 @@ private:
|
||||
};
|
||||
|
||||
template<>
|
||||
inline detail::CastReturnType<NamedType>::type Type::cast<NamedType>() {
|
||||
inline typename detail::CastReturnType<NamedType>::type Type::cast<NamedType>() {
|
||||
if (kind() == TypeKind::TupleType || kind() == TypeKind::FunctionType ||
|
||||
kind() == TypeKind::ClassType || kind() == TypeKind::InterfaceType) {
|
||||
return std::static_pointer_cast<NamedType>(static_cast<NamedType *>(this)->shared_from_this());
|
||||
@ -2382,7 +2380,7 @@ inline detail::CastReturnType<NamedType>::type Type::cast<NamedType>() {
|
||||
}
|
||||
|
||||
template<>
|
||||
inline detail::CastConstReturnType<NamedType>::type Type::cast<NamedType>() const {
|
||||
inline typename detail::CastConstReturnType<NamedType>::type Type::cast<NamedType>() const {
|
||||
if (kind() == TypeKind::TupleType || kind() == TypeKind::FunctionType ||
|
||||
kind() == TypeKind::ClassType || kind() == TypeKind::InterfaceType) {
|
||||
return std::static_pointer_cast<const NamedType>(static_cast<const NamedType *>(this)->shared_from_this());
|
||||
|
||||
@ -191,7 +191,7 @@ class Vectorized<BFloat16> {
|
||||
auto vals = svreinterpret_u16_bf16(values);
|
||||
vals = sveor_u16_x(ptrue, vals, mask);
|
||||
return svreinterpret_bf16_u16(vals);
|
||||
}
|
||||
};
|
||||
Vectorized<BFloat16> round() const;
|
||||
Vectorized<BFloat16> tan() const;
|
||||
Vectorized<BFloat16> tanh() const;
|
||||
@ -349,47 +349,47 @@ Vectorized<BFloat16> inline Vectorized<BFloat16>::frac() const {
|
||||
return convert_float_bfloat16(v1, v2); \
|
||||
}
|
||||
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(isnan)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(angle)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(acos)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(acosh)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(asin)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(atan)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(atanh)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(atan2)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(copysign)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(erf)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(erfc)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(exp)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(exp2)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(expm1)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(fmod)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(hypot)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(i0)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(i0e)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(digamma)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(igamma)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(igammac)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(nextafter)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log2)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log10)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log1p)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(sin)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(sinh)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(cos)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(cosh)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(ceil)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(floor)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(round)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(tan)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(tanh)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(trunc)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(lgamma)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(sqrt)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(reciprocal)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(rsqrt)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(pow)
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(isnan);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(angle);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(acos);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(acosh);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(asin);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(atan);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(atanh);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(atan2);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(copysign);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(erf);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(erfc);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(exp);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(exp2);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(expm1);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(fmod);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(hypot);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(i0);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(i0e);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(digamma);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(igamma);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(igammac);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(nextafter);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log2);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log10);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(log1p);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(sin);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(sinh);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(cos);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(cosh);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(ceil);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(floor);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(round);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(tan);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(tanh);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(trunc);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(lgamma);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(sqrt);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(reciprocal);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT(rsqrt);
|
||||
DEFINE_BF16_FUNC_VIA_FLOAT_W_ARG(pow);
|
||||
|
||||
Vectorized<BFloat16> inline Vectorized<BFloat16>::operator==(
|
||||
const Vectorized<BFloat16>& other) const {
|
||||
|
||||
@ -191,37 +191,22 @@ inline void convert(const at::Half* src, bool* dst, int64_t n) {
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <typename to_type>
|
||||
inline void convertFromBf16Impl(
|
||||
const c10::BFloat16* __restrict src,
|
||||
to_type* __restrict dst,
|
||||
int64_t n) {
|
||||
const uint16_t* srcPtr = reinterpret_cast<const uint16_t*>(src);
|
||||
uint64_t len = static_cast<uint64_t>(n);
|
||||
for (uint64_t i = 0; i < len; i++) {
|
||||
uint32_t tmp = static_cast<uint32_t>(srcPtr[i]) << 16;
|
||||
float tmpF;
|
||||
__builtin_memcpy(&tmpF, &tmp, sizeof(float));
|
||||
dst[i] = static_cast<to_type>(tmpF);
|
||||
}
|
||||
}
|
||||
#define CONVERT_FROM_BF16_TEMPLATE(to_type) \
|
||||
template <> \
|
||||
inline void convert(const c10::BFloat16* src, to_type* dst, int64_t n) { \
|
||||
return convertFromBf16Impl<to_type>(src, dst, n); \
|
||||
}
|
||||
|
||||
CONVERT_FROM_BF16_TEMPLATE(uint8_t)
|
||||
CONVERT_FROM_BF16_TEMPLATE(int8_t)
|
||||
CONVERT_FROM_BF16_TEMPLATE(int16_t)
|
||||
CONVERT_FROM_BF16_TEMPLATE(int32_t)
|
||||
CONVERT_FROM_BF16_TEMPLATE(int64_t)
|
||||
CONVERT_FROM_BF16_TEMPLATE(float)
|
||||
CONVERT_FROM_BF16_TEMPLATE(double)
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
CONVERT_FROM_BF16_TEMPLATE(float16_t)
|
||||
#endif
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
CONVERT_TEMPLATE(bfloat16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int32_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int64_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, float)
|
||||
CONVERT_TEMPLATE(bfloat16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int32_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int64_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(float, bfloat16_t)
|
||||
CONVERT_TEMPLATE(double, bfloat16_t)
|
||||
|
||||
inline void convertBoolToBfloat16Impl(
|
||||
const bool* __restrict src,
|
||||
@ -262,6 +247,8 @@ inline void convert(const c10::BFloat16* src, bool* dst, int64_t n) {
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
|
||||
@ -514,7 +514,7 @@ struct Vectorized<c10::qint8> : public Vectorizedqi {
|
||||
|
||||
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
|
||||
using int_vec_return_type = std::array<Vectorized<c10::qint32>, kIntNumVecs>;
|
||||
using value_type = c10::qint8::underlying;
|
||||
using value_type = typename c10::qint8::underlying;
|
||||
|
||||
public:
|
||||
using Vectorizedqi::Vectorizedqi;
|
||||
@ -727,7 +727,7 @@ struct Vectorized<c10::quint8> : public Vectorizedqi {
|
||||
|
||||
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
|
||||
using int_vec_return_type = std::array<Vectorized<c10::qint32>, kIntNumVecs>;
|
||||
using value_type = c10::quint8::underlying;
|
||||
using value_type = typename c10::quint8::underlying;
|
||||
|
||||
public:
|
||||
using Vectorizedqi::Vectorizedqi;
|
||||
|
||||
@ -567,7 +567,7 @@ struct Vectorized<c10::qint8> : public Vectorizedqi {
|
||||
|
||||
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
||||
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
||||
using value_type = c10::qint8::underlying;
|
||||
using value_type = typename c10::qint8::underlying;
|
||||
|
||||
public:
|
||||
using Vectorizedqi::Vectorizedqi;
|
||||
@ -804,7 +804,7 @@ struct Vectorized<c10::quint8> : public Vectorizedqi {
|
||||
|
||||
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
||||
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
||||
using value_type = c10::quint8::underlying;
|
||||
using value_type = typename c10::quint8::underlying;
|
||||
|
||||
public:
|
||||
using Vectorizedqi::Vectorizedqi;
|
||||
|
||||
@ -672,7 +672,7 @@ struct Vectorized {
|
||||
return map(std::sqrt);
|
||||
}
|
||||
Vectorized<T> reciprocal() const {
|
||||
return map([](T x) { return (T)1 / x; });
|
||||
return map([](T x) { return (T)(1) / x; });
|
||||
}
|
||||
Vectorized<T> rsqrt() const {
|
||||
return map([](T x) { return (T)1 / std::sqrt(x); });
|
||||
|
||||
@ -46,7 +46,7 @@ inline void vrsqrt(scalar_t* out, scalar_t* in, int64_t size) {
|
||||
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) {
|
||||
map(
|
||||
[](const Vectorized<scalar_t>& x) {
|
||||
return Vectorized<scalar_t>((scalar_t)1) / x.sqrt();
|
||||
return Vectorized<scalar_t>((scalar_t)(1)) / x.sqrt();
|
||||
},
|
||||
out + begin,
|
||||
in + begin,
|
||||
|
||||
@ -194,8 +194,8 @@ void CUDAGeneratorState::unregister_graph(cuda::CUDAGraph* graph) {
|
||||
void CUDAGeneratorState::capture_prologue() {
|
||||
capturing_ = true;
|
||||
offset_intragraph_ = 0;
|
||||
seed_extragraph_.fill_(static_cast<int64_t>(seed_));
|
||||
offset_extragraph_.fill_(0);
|
||||
seed_extragraph_.fill_(int64_t(seed_));
|
||||
offset_extragraph_.fill_(int64_t(0));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -216,8 +216,8 @@ void CUDAGeneratorState::replay_prologue(uint64_t wholegraph_increment) {
|
||||
at::cuda::assertNotCapturing(
|
||||
"Cannot prepare for replay during capturing stage.");
|
||||
if (wholegraph_increment) {
|
||||
seed_extragraph_.fill_(static_cast<int64_t>(seed_));
|
||||
offset_extragraph_.fill_(static_cast<int64_t>(philox_offset_per_thread_));
|
||||
seed_extragraph_.fill_(int64_t(seed_));
|
||||
offset_extragraph_.fill_(int64_t(philox_offset_per_thread_));
|
||||
// Applies the total increment achieved during previous captures to update the
|
||||
// offset.
|
||||
increase(wholegraph_increment);
|
||||
@ -329,7 +329,7 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
|
||||
constexpr size_t offset_size = sizeof(int64_t);
|
||||
constexpr size_t total_size = seed_size + offset_size;
|
||||
|
||||
auto state_tensor = at::detail::empty_cpu({static_cast<int64_t>(total_size)}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
|
||||
auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
|
||||
auto rng_state = state_tensor.data_ptr<uint8_t>();
|
||||
auto current_seed = this->current_seed();
|
||||
auto offset = static_cast<int64_t>(this->philox_offset_per_thread()); // Note that old THCGeneratorState had offset as std::atomic<int64_t>
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
#include <ATen/cuda/CUDAGreenContext.h>
|
||||
|
||||
#if defined(CUDA_VERSION) && (CUDA_VERSION >= 12030) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
@ -155,8 +155,8 @@ size_t parseChosenWorkspaceSize() {
|
||||
while (next != end) {
|
||||
std::smatch match = *next;
|
||||
TORCH_CHECK(match.size() == 3, "Expected CUBLAS_WORKSPACE_SPACE_CONFIG match of size 3 (Format :SIZE:COUNT)");
|
||||
size_t curr_size = std::stoull(match.str(1));
|
||||
size_t count = std::stoull(match.str(2));
|
||||
size_t curr_size = (size_t) std::stoi(match.str(1));
|
||||
size_t count = (size_t) std::stoi(match.str(2));
|
||||
total_size += curr_size * 1024 * count;
|
||||
next++;
|
||||
}
|
||||
|
||||
@ -55,14 +55,6 @@ struct numeric_limits<int8_t> {
|
||||
static inline __host__ __device__ int8_t upper_bound() { return INT8_MAX; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct numeric_limits<uint16_t> {
|
||||
static inline __host__ __device__ uint16_t lowest() { return 0; }
|
||||
static inline __host__ __device__ uint16_t max() { return UINT16_MAX; }
|
||||
static inline __host__ __device__ uint16_t lower_bound() { return 0; }
|
||||
static inline __host__ __device__ uint16_t upper_bound() { return UINT16_MAX; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct numeric_limits<int16_t> {
|
||||
static inline __host__ __device__ int16_t lowest() { return INT16_MIN; }
|
||||
@ -71,14 +63,6 @@ struct numeric_limits<int16_t> {
|
||||
static inline __host__ __device__ int16_t upper_bound() { return INT16_MAX; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct numeric_limits<uint32_t> {
|
||||
static inline __host__ __device__ uint32_t lowest() { return 0; }
|
||||
static inline __host__ __device__ uint32_t max() { return UINT32_MAX; }
|
||||
static inline __host__ __device__ uint32_t lower_bound() { return 0; }
|
||||
static inline __host__ __device__ uint32_t upper_bound() { return UINT32_MAX; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct numeric_limits<int32_t> {
|
||||
static inline __host__ __device__ int32_t lowest() { return INT32_MIN; }
|
||||
@ -87,21 +71,6 @@ struct numeric_limits<int32_t> {
|
||||
static inline __host__ __device__ int32_t upper_bound() { return INT32_MAX; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct numeric_limits<uint64_t> {
|
||||
#ifdef _MSC_VER
|
||||
static inline __host__ __device__ uint64_t lowest() { return 0; }
|
||||
static inline __host__ __device__ uint64_t max() { return _UI64_MAX; }
|
||||
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
|
||||
static inline __host__ __device__ uint64_t upper_bound() { return _UI64_MAX; }
|
||||
#else
|
||||
static inline __host__ __device__ uint64_t lowest() { return 0; }
|
||||
static inline __host__ __device__ uint64_t max() { return UINT64_MAX; }
|
||||
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
|
||||
static inline __host__ __device__ uint64_t upper_bound() { return UINT64_MAX; }
|
||||
#endif
|
||||
};
|
||||
|
||||
template <>
|
||||
struct numeric_limits<int64_t> {
|
||||
#ifdef _MSC_VER
|
||||
|
||||
@ -3,7 +3,6 @@
|
||||
#include <ATen/ATen.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#include <array>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
@ -137,9 +136,9 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
|
||||
"Weight strides: ", t.strides(), "\n",
|
||||
"cuDNN suggested memory_format: ", memory_format);
|
||||
|
||||
std::array<int, CUDNN_DIM_MAX> size;
|
||||
int size[CUDNN_DIM_MAX];
|
||||
for (const auto i : c10::irange(dim)) {
|
||||
size[i] = static_cast<int>(t.size(i));
|
||||
size[i] = (int) t.size(i);
|
||||
}
|
||||
for (const auto i : c10::irange(dim, pad)) {
|
||||
size[i] = 1;
|
||||
@ -157,7 +156,7 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
|
||||
default:
|
||||
TORCH_INTERNAL_ASSERT(false, "unsupported memory_format for cuDNN filters");
|
||||
}
|
||||
set(getDataType(t), static_cast<int>(dim), size.data(), filter_format);
|
||||
set(getDataType(t), static_cast<int>(dim), size, filter_format);
|
||||
}
|
||||
|
||||
std::string cudnnMemoryFormatToString(cudnnTensorFormat_t tformat) {
|
||||
|
||||
@ -9,8 +9,8 @@
|
||||
|
||||
#include <c10/core/Allocator.h>
|
||||
|
||||
#include <ATen/detail/AcceleratorHooksInterface.h>
|
||||
#include <c10/util/python_stub.h>
|
||||
#include <ATen/detail/AcceleratorHooksInterface.h>
|
||||
|
||||
#include <string>
|
||||
namespace at {
|
||||
@ -26,7 +26,8 @@ constexpr const char* MTIA_HELP =
|
||||
struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
||||
// this fails the implementation if MTIAHooks functions are called, but
|
||||
// MTIA backend is not present.
|
||||
#define FAIL_MTIAHOOKS_FUNC(func) TORCH_CHECK(false, "Cannot execute ", func, "() without MTIA backend.");
|
||||
#define FAIL_MTIAHOOKS_FUNC(func) \
|
||||
TORCH_CHECK(false, "Cannot execute ", func, "() without MTIA backend.");
|
||||
|
||||
~MTIAHooksInterface() override = default;
|
||||
|
||||
@ -91,7 +92,7 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
||||
return c10::Stream::unpack3(-1, 0, c10::DeviceType::MTIA);
|
||||
}
|
||||
|
||||
virtual void setCurrentStream(const c10::Stream& /*stream*/) const {
|
||||
virtual void setCurrentStream(const c10::Stream& /*stream*/ ) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
@ -123,9 +124,11 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual void recordMemoryHistory(const std::optional<std::string>& /*enabled*/,
|
||||
const std::string& /*stacks*/,
|
||||
size_t /*max_entries*/) const {
|
||||
|
||||
virtual void recordMemoryHistory(
|
||||
const std::optional<std::string>& /*enabled*/,
|
||||
const std::string& /*stacks*/,
|
||||
size_t /*max_entries*/) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
@ -156,10 +159,6 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
||||
return -1;
|
||||
}
|
||||
|
||||
virtual void mtiagraphDestroy(int64_t handle) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual void mtiagraphCaptureBegin(int64_t handle, MempoolId_t pool) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
@ -188,7 +187,8 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
||||
struct TORCH_API MTIAHooksArgs {};
|
||||
|
||||
TORCH_DECLARE_REGISTRY(MTIAHooksRegistry, MTIAHooksInterface, MTIAHooksArgs);
|
||||
#define REGISTER_MTIA_HOOKS(clsname) C10_REGISTER_CLASS(MTIAHooksRegistry, clsname, clsname)
|
||||
#define REGISTER_MTIA_HOOKS(clsname) \
|
||||
C10_REGISTER_CLASS(MTIAHooksRegistry, clsname, clsname)
|
||||
|
||||
namespace detail {
|
||||
TORCH_API const MTIAHooksInterface& getMTIAHooks();
|
||||
|
||||
@ -198,7 +198,7 @@ static void autogradBasedTransformSendToNext(
|
||||
}
|
||||
|
||||
// Step 6
|
||||
stack->erase(stack->end() - static_cast<std::ptrdiff_t>(args_size + ret_size), stack->end() - static_cast<std::ptrdiff_t>(ret_size));
|
||||
stack->erase(stack->end() - std::ptrdiff_t(args_size + ret_size), stack->end() - std::ptrdiff_t(ret_size));
|
||||
}
|
||||
|
||||
void GradInterpreterPtr::processImpl(
|
||||
|
||||
@ -443,14 +443,14 @@ static bool has_same_shape(
|
||||
if (!tensor.defined()) {
|
||||
return true;
|
||||
}
|
||||
if (rankWithoutBatchDim(tensor, tensor_bdim) != static_cast<int64_t>(normalized_shape.size())) {
|
||||
if (rankWithoutBatchDim(tensor, tensor_bdim) != (int64_t) normalized_shape.size()) {
|
||||
return false;
|
||||
}
|
||||
const auto tensor_shape = tensor.sizes();
|
||||
for (const auto i : c10::irange(normalized_shape.size())) {
|
||||
auto j = i;
|
||||
// (0, 1, 2), 1 -> (0, 2, 3)
|
||||
if (tensor_bdim.has_value() && static_cast<int64_t>(i) >= tensor_bdim.value()) {
|
||||
if (tensor_bdim.has_value() && (int64_t)i >= tensor_bdim.value()) {
|
||||
j = j + 1;
|
||||
}
|
||||
if (normalized_shape[i] != tensor_shape[j]) {
|
||||
|
||||
@ -135,7 +135,7 @@ static void boxed_reduction_batch_rule(const c10::OperatorHandle& op, torch::jit
|
||||
reduction_case = ReductionCase::DimArray;
|
||||
dims = arguments[dim_arg_pos].toIntList().vec();
|
||||
if (dims.empty()) {
|
||||
auto all_dims = range(0, std::max(static_cast<int64_t>(1), logical_dim));
|
||||
auto all_dims = range(0, std::max((int64_t)1, logical_dim));
|
||||
dims = std::vector<int64_t>(all_dims.begin(), all_dims.end());
|
||||
}
|
||||
} else if (arguments[dim_arg_pos].isInt()) {
|
||||
|
||||
@ -432,7 +432,7 @@ namespace {
|
||||
// Eg. Given `indexed_shape.size()` is 5 and
|
||||
// shape of `values` is (N, 2, 3), then following block
|
||||
// will reshape `values` to (N, 1, 1, 2, 3).
|
||||
if ( static_cast<int64_t>(indexed_shape.size()) > values_.dim()) {
|
||||
if ( (int64_t) indexed_shape.size() > values_.dim()) {
|
||||
auto values_sizes = values_.sym_sizes();
|
||||
|
||||
// number of unit dims (for broadcasting value to indexed_shape)
|
||||
|
||||
@ -109,7 +109,7 @@ std::tuple<Tensor, std::optional<int64_t>> repeat_batch_rule(
|
||||
SymDimVector sizes_with_bdim = { sizes.begin(), sizes.end() };
|
||||
sizes_with_bdim.insert(sizes_with_bdim.begin(), 1);
|
||||
auto self_ = moveBatchDimToFront(self, self_bdim);
|
||||
while (self_.dim() < static_cast<int64_t>(sizes_with_bdim.size())) {
|
||||
while (self_.dim() < (int64_t)sizes_with_bdim.size()) {
|
||||
self_ = self_.unsqueeze(1);
|
||||
}
|
||||
return std::make_tuple(self_.repeat_symint(sizes_with_bdim), 0);
|
||||
|
||||
@ -191,7 +191,7 @@ static void batchedTensorInplaceForLoopFallback(const c10::OperatorHandle& op, t
|
||||
// simplicity. When that is not the case, this code should be updated.
|
||||
const auto& argument = (*stack)[arguments_begin + arg_idx];
|
||||
if (batched_tensor_inputs_pos_iter == batched_tensor_inputs_position.end()
|
||||
|| static_cast<int64_t>(arg_idx) != *batched_tensor_inputs_pos_iter) {
|
||||
|| (int64_t)arg_idx != *batched_tensor_inputs_pos_iter) {
|
||||
// argument isn't a BatchedTensor
|
||||
torch::jit::push(stack, argument);
|
||||
continue;
|
||||
@ -345,7 +345,7 @@ void batchedTensorForLoopFallback(const c10::OperatorHandle& op, torch::jit::Sta
|
||||
// simplicity. When that is not the case, this code should be updated.
|
||||
const auto& argument = (*stack)[arguments_begin + arg_idx];
|
||||
if (batched_tensor_inputs_pos_iter == batched_tensor_inputs_position.end()
|
||||
|| static_cast<int64_t>(arg_idx) != *batched_tensor_inputs_pos_iter) {
|
||||
|| (int64_t)arg_idx != *batched_tensor_inputs_pos_iter) {
|
||||
// argument isn't a BatchedTensor
|
||||
torch::jit::push(stack, argument);
|
||||
continue;
|
||||
@ -473,7 +473,7 @@ void batchedNestedTensorForLoopFallback(const c10::OperatorHandle& op, torch::ji
|
||||
// simplicity. When that is not the case, this code should be updated.
|
||||
const auto& argument = (*stack)[arguments_begin + arg_idx];
|
||||
if (batched_tensor_inputs_pos_iter == batched_tensor_inputs_position.end()
|
||||
|| static_cast<int64_t>(arg_idx) != *batched_tensor_inputs_pos_iter) {
|
||||
|| (int64_t)arg_idx != *batched_tensor_inputs_pos_iter) {
|
||||
// argument isn't a BatchedTensor
|
||||
torch::jit::push(stack, argument);
|
||||
continue;
|
||||
|
||||
@ -157,7 +157,7 @@ Tensor& squeeze__batching_rule(Tensor& self) {
|
||||
const auto physical_shape = batched->value().sizes();
|
||||
auto how_many_dims_of_size_1_before_bdim = 0;
|
||||
for (const auto i : c10::irange(0, physical_shape.size())) {
|
||||
if (static_cast<int64_t>(i) == bdim) {
|
||||
if ((int64_t)i == bdim) {
|
||||
break;
|
||||
}
|
||||
if (physical_shape[i] == 1) {
|
||||
@ -573,7 +573,7 @@ Tensor cat_batching_rule(const ITensorListRef& tensors, int64_t dim) {
|
||||
}
|
||||
|
||||
auto new_dim = bdim_size.has_value() ? dim + 1 : dim;
|
||||
std::optional<int64_t> new_bdim = bdim_size.has_value() ? std::make_optional(static_cast<int64_t>(0)) : std::nullopt;
|
||||
std::optional<int64_t> new_bdim = bdim_size.has_value() ? std::make_optional((int64_t)0) : std::nullopt;
|
||||
auto result = at::cat(tensors_to_cat, new_dim);
|
||||
return makeBatched(result, new_bdim, get_current_level());
|
||||
}
|
||||
|
||||
@ -198,9 +198,9 @@ void avg_pool3d_out_frame(
|
||||
int64_t hend = std::min(hstart + kH, iheight + padH);
|
||||
int64_t wend = std::min(wstart + kW, iwidth + padW);
|
||||
int64_t pool_size = (tend - tstart) * (hend - hstart) * (wend - wstart);
|
||||
tstart = std::max(tstart, static_cast<int64_t>(0));
|
||||
hstart = std::max(hstart, static_cast<int64_t>(0));
|
||||
wstart = std::max(wstart, static_cast<int64_t>(0));
|
||||
tstart = std::max(tstart, (int64_t) 0);
|
||||
hstart = std::max(hstart, (int64_t) 0);
|
||||
wstart = std::max(wstart, (int64_t) 0);
|
||||
tend = std::min(tend, itime);
|
||||
hend = std::min(hend, iheight);
|
||||
wend = std::min(wend, iwidth);
|
||||
@ -377,9 +377,9 @@ void avg_pool3d_backward_out_frame(
|
||||
int64_t hend = std::min(hstart + kH, iheight + padH);
|
||||
int64_t wend = std::min(wstart + kW, iwidth + padW);
|
||||
int64_t pool_size = (tend -tstart) * (hend - hstart) * (wend - wstart);
|
||||
tstart = std::max(tstart, static_cast<int64_t>(0));
|
||||
hstart = std::max(hstart, static_cast<int64_t>(0));
|
||||
wstart = std::max(wstart, static_cast<int64_t>(0));
|
||||
tstart = std::max(tstart, (int64_t) 0);
|
||||
hstart = std::max(hstart, (int64_t) 0);
|
||||
wstart = std::max(wstart, (int64_t) 0);
|
||||
tend = std::min(tend, itime);
|
||||
hend = std::min(hend, iheight);
|
||||
wend = std::min(wend, iwidth);
|
||||
|
||||
@ -2917,7 +2917,9 @@ static Tensor& linalg_eig_make_complex_eigenvectors(Tensor& complex_vectors, con
|
||||
DEFINE_DISPATCH(linalg_eig_stub);
|
||||
|
||||
static std::tuple<Tensor&, Tensor&> linalg_eig_out_info(const Tensor& input, Tensor& values, Tensor& vectors, Tensor& infos, bool compute_eigenvectors) {
|
||||
auto options = input.options();
|
||||
// MAGMA doesn't have GPU interface for GEEV routine, it requires inputs to be on CPU
|
||||
// therefore we create all intermediate tensors on CPU
|
||||
auto options = input.options().device(at::kCPU);
|
||||
|
||||
// These internal asserts make explicit the assumptions in the implementation
|
||||
// Error check with the actual error messages are done on the higher level of the hierarchy of calls
|
||||
@ -2926,13 +2928,16 @@ static std::tuple<Tensor&, Tensor&> linalg_eig_out_info(const Tensor& input, Ten
|
||||
|
||||
// for real-valued 'input', eigenvalues can be real-valued or complex-valued
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY((toComplexType(input.scalar_type()) == values.scalar_type()) || (input.scalar_type() == values.scalar_type()));
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(values.device() == at::kCPU);
|
||||
|
||||
// for real-valued 'input', eigenvectors can be real-valued or complex-valued
|
||||
if (compute_eigenvectors) {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY((toComplexType(input.scalar_type()) == vectors.scalar_type()) || (input.scalar_type() == vectors.scalar_type()));
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(vectors.device() == at::kCPU);
|
||||
}
|
||||
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.scalar_type() == at::kInt);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.device() == at::kCPU);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.numel() == std::max<int64_t>(1, batchCount(input)));
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(infos.is_contiguous());
|
||||
|
||||
@ -2981,7 +2986,15 @@ static std::tuple<Tensor&, Tensor&> linalg_eig_out_info(const Tensor& input, Ten
|
||||
}
|
||||
}
|
||||
|
||||
linalg_eig_stub(input.device().type(), real_imag_values, maybe_complex_vectors, infos, input, compute_eigenvectors);
|
||||
// MAGMA uses a hybrid CPU-GPU algorithm that performs well only for large matrices
|
||||
// See: https://github.com/pytorch/pytorch/pull/52491#issuecomment-795685687
|
||||
// Here we call CPU path for matrices smaller than 2048x2048
|
||||
// that should be in general significantly faster than calling MAGMA
|
||||
if (input.size(-1) <= 2048) {
|
||||
linalg_eig_stub(at::kCPU, real_imag_values, maybe_complex_vectors, infos, input.to(kCPU), compute_eigenvectors);
|
||||
} else {
|
||||
linalg_eig_stub(input.device().type(), real_imag_values, maybe_complex_vectors, infos, input, compute_eigenvectors);
|
||||
}
|
||||
|
||||
// if input is not complex we need to do some post-processing
|
||||
if (!input.is_complex()) {
|
||||
@ -3006,14 +3019,7 @@ static std::tuple<Tensor&, Tensor&> linalg_eig_out_info(const Tensor& input, Ten
|
||||
}
|
||||
if (compute_eigenvectors) {
|
||||
if (vectors.is_complex()) {
|
||||
// We move to the CPU because linalg_eig_make_complex_eigenvectors requires it.
|
||||
// Performance note: this function could be implemented via a TensorIterator,
|
||||
// which would avoid an explicit host-device synchronization.
|
||||
auto vectors_cpu = vectors.cpu();
|
||||
auto values_cpu = values.cpu();
|
||||
auto maybe_complex_vectors_cpu = maybe_complex_vectors.cpu();
|
||||
vectors_cpu = linalg_eig_make_complex_eigenvectors(vectors_cpu, values_cpu, maybe_complex_vectors_cpu);
|
||||
vectors.copy_(vectors_cpu);
|
||||
vectors = linalg_eig_make_complex_eigenvectors(vectors, values, maybe_complex_vectors);
|
||||
} else {
|
||||
TORCH_CHECK(false, "torch.linalg.eig: imaginary part of eigenvectors is non-zero, can't safely cast eigenvectors to non-complex dtype.")
|
||||
}
|
||||
@ -3033,7 +3039,8 @@ std::tuple<Tensor&, Tensor&> linalg_eig_out(const Tensor& input, Tensor& values,
|
||||
checkSameDevice("torch.linalg.eig", values, input, "eigenvalues");
|
||||
checkSameDevice("torch.linalg.eig", vectors, input, "eigenvectors");
|
||||
|
||||
auto options = input.options();
|
||||
// MAGMA doesn't have GPU interface for GEEV routine, it requires inputs to be on CPU
|
||||
auto options = input.options().device(at::kCPU);
|
||||
auto infos = at::zeros({std::max<int64_t>(1, batchCount(input))}, options.dtype(kInt));
|
||||
|
||||
// if result is not empty and not in batched column major format we have to allocate a temporary tensor
|
||||
@ -3122,7 +3129,8 @@ Tensor& linalg_eigvals_out(const Tensor& input, Tensor& values) {
|
||||
checkLinalgCompatibleDtype("torch.linalg.eigvals", values.scalar_type(), toComplexType(input.scalar_type()), "eigenvalues");
|
||||
checkSameDevice("torch.linalg.eigvals", values, input, "eigenvalues");
|
||||
|
||||
auto options = input.options();
|
||||
// MAGMA doesn't have GPU interface for GEEV routine, it requires inputs to be on CPU
|
||||
auto options = input.options().device(at::kCPU);
|
||||
auto infos = at::zeros({std::max<int64_t>(1, batchCount(input))}, options.dtype(kInt));
|
||||
|
||||
bool values_expected_type = (values.scalar_type() == toComplexType(input.scalar_type()));
|
||||
@ -3151,7 +3159,6 @@ Tensor& linalg_eigvals_out(const Tensor& input, Tensor& values) {
|
||||
}
|
||||
|
||||
Tensor vectors;
|
||||
vectors = at::empty({0}, input.options());
|
||||
if (values_tmp_needed) {
|
||||
Tensor values_tmp = at::empty({0}, options.dtype(values_type));
|
||||
std::tie(values_tmp, std::ignore) = linalg_eig_out_info(input, values_tmp, vectors, infos, /*compute_eigenvectors=*/false);
|
||||
|
||||
@ -946,10 +946,10 @@ void apply_lu_factor(const Tensor& input, const Tensor& pivots, const Tensor& in
|
||||
}
|
||||
};
|
||||
// avoid overflow
|
||||
auto matrix_rank = std::min(m, n);
|
||||
float matrix_rank = float(std::min(m, n));
|
||||
// A heuristic tested on a 32 core/socket ICX system
|
||||
// https://github.com/pytorch/pytorch/pull/93037#discussion_r1090112948
|
||||
int64_t chunk_size_per_thread = static_cast<int64_t>(
|
||||
int64_t chunk_size_per_thread = int64_t(
|
||||
std::min(1.0, 3200.0 / (matrix_rank * matrix_rank * matrix_rank)));
|
||||
int64_t grain_size = chunk_size_per_thread * at::get_num_threads();
|
||||
at::parallel_for(0, batch_size, grain_size, loop);
|
||||
|
||||
@ -267,7 +267,7 @@ _scaled_mm_out_cpu_emulated(const Tensor& mat1, const Tensor& mat2,
|
||||
|
||||
float input_scale = scale_a.item<float>();
|
||||
float weight_scale = scale_b.item<float>();
|
||||
float output_scale = 1.0f;
|
||||
float output_scale = float(1.0);
|
||||
if (scale_result.has_value() &&
|
||||
(*out_dtype == ScalarType::Float8_e4m3fn ||
|
||||
*out_dtype == ScalarType::Float8_e5m2)) {
|
||||
|
||||
@ -331,7 +331,7 @@ bool gemv_use_fast_path<double>(
|
||||
[[maybe_unused]] double beta,
|
||||
int64_t incy) {
|
||||
return gemv_use_fast_path<float>(
|
||||
trans, m, n, static_cast<float>(alpha), lda, incx, static_cast<float>(beta), incy);
|
||||
trans, m, n, (float)alpha, lda, incx, (float)beta, incy);
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -523,8 +523,8 @@ static inline void scal(int64_t n, scalar_t a, scalar_t *x, int64_t incx)
|
||||
if (n == 1) incx = 1;
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if (blas_impl::scal_use_fast_path<scalar_t>(n, incx)) {
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
blas_impl::scal_fast_path<scalar_t>(&i_n, &a, x, &i_incx);
|
||||
return;
|
||||
}
|
||||
@ -545,11 +545,11 @@ void gemv(char trans, int64_t m, int64_t n, scalar_t alpha, const scalar_t *a, i
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if (blas_impl::gemv_use_fast_path<scalar_t>(trans, m, n, alpha, lda, incx, beta, incy)) {
|
||||
TORCH_CHECK(lda >= std::max<int64_t>(1L, m), "lda should be at least max(1,", m, "), but have ", lda);
|
||||
int i_m = static_cast<int>(m);
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_lda = static_cast<int>(lda);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_m = (int)m;
|
||||
int i_n = (int)n;
|
||||
int i_lda = (int)lda;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
blas_impl::gemv_fast_path<scalar_t>(&trans, &i_m, &i_n, &alpha, a, &i_lda, x, &i_incx, &beta, y, &i_incy);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -680,9 +680,9 @@ void axpy(int64_t n, double a, const double *x, int64_t incx, double *y, int64_t
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
|
||||
{
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_daxpy(i_n, a, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -705,9 +705,9 @@ void axpy(int64_t n, float a, const float *x, int64_t incx, float *y, int64_t in
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
|
||||
{
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_saxpy(i_n, a, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -730,9 +730,9 @@ void axpy(int64_t n, c10::complex<double> a, const c10::complex<double> *x, int6
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
|
||||
{
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_zaxpy(i_n, &a, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -755,9 +755,9 @@ void axpy(int64_t n, c10::complex<float> a, const c10::complex<float> *x, int64_
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
|
||||
{
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_caxpy(i_n, &a, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -781,9 +781,9 @@ void copy(int64_t n, const double *x, int64_t incx, double *y, int64_t incy) {
|
||||
}
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_dcopy(i_n, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -805,9 +805,9 @@ void copy(int64_t n, const float *x, int64_t incx, float *y, int64_t incy) {
|
||||
}
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_scopy(i_n, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -829,9 +829,9 @@ void copy(int64_t n, const c10::complex<double> *x, int64_t incx, c10::complex<d
|
||||
}
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_zcopy(i_n, x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -853,9 +853,9 @@ void copy(int64_t n, const c10::complex<float> *x, int64_t incx, c10::complex<fl
|
||||
}
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
|
||||
int i_n = static_cast<int>(n);
|
||||
int i_incx = static_cast<int>(incx);
|
||||
int i_incy = static_cast<int>(incy);
|
||||
int i_n = (int)n;
|
||||
int i_incx = (int)incx;
|
||||
int i_incy = (int)incy;
|
||||
#if C10_IOS
|
||||
cblas_ccopy(i_n, &x, i_incx, y, i_incy);
|
||||
#else
|
||||
@ -1082,7 +1082,7 @@ struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
1,
|
||||
int64_t(1),
|
||||
ld_a,
|
||||
ld_b,
|
||||
ld_c,
|
||||
@ -1096,7 +1096,7 @@ struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
1,
|
||||
int64_t(1),
|
||||
ld_a,
|
||||
ld_b,
|
||||
ld_c,
|
||||
|
||||
@ -487,17 +487,17 @@ static Tensor _grid_sampler_2d_cpu_quantized(
|
||||
int64_t out_sC = output.stride(1);
|
||||
int64_t out_sH = output.stride(2);
|
||||
int64_t out_sW = output.stride(3);
|
||||
const uint8_t* inp_ptr = input.const_data_ptr<uint8_t>();
|
||||
uint8_t* out_ptr = output.data_ptr<uint8_t>();
|
||||
const float* grid_ptr = grid.const_data_ptr<float>();
|
||||
uint8_t* inp_ptr = (uint8_t*)input.data_ptr<quint8>();
|
||||
uint8_t* out_ptr = (uint8_t*)output.data_ptr<quint8>();
|
||||
float* grid_ptr = grid.data_ptr<float>();
|
||||
at::parallel_for(0, N, 0, [&](int64_t start, int64_t end) {
|
||||
for (const auto n : c10::irange(start, end)) {
|
||||
const float* grid_ptr_N = grid_ptr + n * grid_sN;
|
||||
const uint8_t* inp_ptr_N = inp_ptr + n * inp_sN;
|
||||
float* grid_ptr_N = grid_ptr + n * grid_sN;
|
||||
uint8_t* inp_ptr_N = inp_ptr + n * inp_sN;
|
||||
for (const auto h : c10::irange(out_H)) {
|
||||
for (const auto w : c10::irange(out_W)) {
|
||||
// get the corresponding input x, y, z coordinates from grid
|
||||
const float* grid_ptr_NHW = grid_ptr_N + h * grid_sH + w * grid_sW;
|
||||
float* grid_ptr_NHW = grid_ptr_N + h * grid_sH + w * grid_sW;
|
||||
float x = *grid_ptr_NHW;
|
||||
float y = grid_ptr_NHW[grid_sCoor];
|
||||
|
||||
@ -527,7 +527,7 @@ static Tensor _grid_sampler_2d_cpu_quantized(
|
||||
float se = (ix - ix_nw) * (iy - iy_nw);
|
||||
|
||||
// calculate bilinear weighted pixel value and set output pixel
|
||||
const uint8_t* inp_ptr_NC = inp_ptr_N;
|
||||
uint8_t* inp_ptr_NC = inp_ptr_N;
|
||||
uint8_t* out_ptr_NCHW =
|
||||
out_ptr + n * out_sN + h * out_sH + w * out_sW;
|
||||
for (int64_t c = 0; c < C;
|
||||
|
||||
@ -318,7 +318,7 @@ static std::vector<Tensor>& histogramdd_bin_edges_out(const Tensor& self, IntArr
|
||||
|
||||
const int64_t N = self.size(-1);
|
||||
const int64_t M = std::accumulate(self.sizes().begin(), self.sizes().end() - 1,
|
||||
static_cast<int64_t>(1), std::multiplies<int64_t>());
|
||||
(int64_t)1, std::multiplies<int64_t>());
|
||||
Tensor reshaped_self = self.reshape({ M, N });
|
||||
|
||||
auto outer_bin_edges = select_outer_bin_edges(reshaped_self, range);
|
||||
|
||||
@ -40,7 +40,7 @@ Tensor do_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) {
|
||||
// When dx is constant, the above formula simplifies
|
||||
// to dx * [(\sum_{i=1}^n y_i) - (y_1 + y_n)/2]
|
||||
Tensor do_trapezoid(const Tensor& y, double dx, int64_t dim) {
|
||||
return (y.sum(dim) - (y.select(dim, 0) + y.select(dim, -1)) * 0.5) * dx;
|
||||
return (y.sum(dim) - (y.select(dim, 0) + y.select(dim, -1)) * (0.5)) * dx;
|
||||
}
|
||||
|
||||
Tensor zeros_like_except(const Tensor& y, int64_t dim) {
|
||||
|
||||
@ -201,7 +201,7 @@ static Tensor sumproduct_pair(const Tensor& left_, const Tensor& right_, IntArra
|
||||
out_size.reserve(out_num_dim);
|
||||
for (auto& d : lro) out_size.push_back(left.sym_size(d));
|
||||
for (auto& d : lo) out_size.push_back(left.sym_size(d));
|
||||
for (auto& d : sum_dims_) { out_size.emplace_back(1); (void)d; }; // avoid warning about not using d
|
||||
for (auto& d : sum_dims_) { out_size.emplace_back(1); (void)(d); }; // avoid warning about not using d
|
||||
for (auto& d : ro) out_size.push_back(right.sym_size(d));
|
||||
|
||||
std::vector<int64_t> lpermutation(lro);
|
||||
@ -805,7 +805,7 @@ Tensor tensordot(const Tensor& input1, const Tensor& input2, IntArrayRef dims1,
|
||||
std::vector<SymInt> rsizes; // rsizes: sizes of the result
|
||||
p1.reserve(input1.dim());
|
||||
p2.reserve(input2.dim());
|
||||
rsizes.reserve(input1.dim() + input2.dim() - static_cast<int64_t>(dims1.size()));
|
||||
rsizes.reserve(input1.dim() + input2.dim() - (int64_t) dims1.size());
|
||||
SymInt size1 = 1; // number of non-contracted elements in input1
|
||||
SymInt size2 = 1; // number of non-contracted elements in input2
|
||||
|
||||
|
||||
@ -1655,7 +1655,7 @@ static inline void baddbmm_cpu_kernel(const Tensor& result, const Tensor& self,
|
||||
auto s0 = self.accessor<const scalar_t, 3>();
|
||||
auto m0 = mat2.accessor<const scalar_t, 3>();
|
||||
|
||||
int64_t grain_size = std::max(internal::GRAIN_SIZE / (is * js * ks), static_cast<int64_t>(1));
|
||||
int64_t grain_size = std::max(internal::GRAIN_SIZE / (is * js * ks), (int64_t)1);
|
||||
using opmath_t = at::opmath_type<scalar_t>;
|
||||
parallel_for(0, bs, grain_size, [&](int64_t b_begin, int64_t b_end) {
|
||||
for (const auto b : c10::irange(b_begin, b_end)) {
|
||||
|
||||
@ -235,7 +235,7 @@ void nll_loss_out_frame(
|
||||
|
||||
constexpr int64_t cascade_sum_num_levels = 8;
|
||||
const int64_t level_power =
|
||||
std::max(static_cast<int64_t>(4), utils::CeilLog2(batch_size) / cascade_sum_num_levels);
|
||||
std::max(int64_t(4), utils::CeilLog2(batch_size) / cascade_sum_num_levels);
|
||||
const int64_t level_step = (1 << level_power);
|
||||
const int64_t level_mask = level_step - 1;
|
||||
|
||||
|
||||
@ -129,7 +129,7 @@ void nll_loss2d_forward_out_frame(
|
||||
for (const auto b : c10::irange(start, end)) {
|
||||
for (const auto h : c10::irange(H)) {
|
||||
for (const auto w : c10::irange(W)) {
|
||||
const int64_t cur_target = target_acc[b][h][w];
|
||||
const int64_t cur_target = (int64_t)target_acc[b][h][w];
|
||||
|
||||
if (cur_target == ignore_index) {
|
||||
output_acc[b][h][w] = static_cast<scalar_t>(0);
|
||||
@ -188,7 +188,7 @@ void nll_loss2d_forward_out_frame(
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
scalar_t loss_partial_sums[cascade_sum_num_levels] = {0};
|
||||
const int64_t level_power =
|
||||
std::max(static_cast<int64_t>(4), utils::CeilLog2(numiter) / cascade_sum_num_levels);
|
||||
std::max(int64_t(4), utils::CeilLog2(numiter) / cascade_sum_num_levels);
|
||||
const int64_t level_step = (1 << level_power);
|
||||
const int64_t level_mask = level_step - 1;
|
||||
|
||||
|
||||
@ -192,7 +192,7 @@ Date: February 1996
|
||||
x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(c10::pi<double>)))*std::exp(-x*x));
|
||||
x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(c10::pi<double>)))*std::exp(-x*x));
|
||||
|
||||
return x;
|
||||
return(x);
|
||||
}
|
||||
|
||||
#undef CENTRAL_RANGE
|
||||
@ -3819,7 +3819,7 @@ inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_v_forward(T x, int64_t n)
|
||||
|
||||
if ((n > 6) && (std::abs(x + x - T(1.0)) < T(1.0))) {
|
||||
if (std::sin(std::acos(x + x - T(1.0)) / T(2.0)) != T(1.0)) {
|
||||
return std::cos((n + T(0.5)) * std::acos(x + x - T(1.0))) / std::cos(std::acos(x + x - T(1.0)) / T(2.0));
|
||||
return std::cos(((n) + T(0.5)) * std::acos(x + x - T(1.0))) / std::cos(std::acos(x + x - T(1.0)) / T(2.0));
|
||||
}
|
||||
|
||||
if (n % 2 == 0) {
|
||||
|
||||
@ -193,22 +193,22 @@ Tensor _nnpack_spatial_convolution(
|
||||
const size_t input_channels = input.size(1);
|
||||
const size_t output_channels = weight.size(0);
|
||||
const struct nnp_size input_size = {
|
||||
.width = static_cast<size_t>(input.size(3)),
|
||||
.height = static_cast<size_t>(input.size(2)),
|
||||
.width = (size_t)input.size(3),
|
||||
.height = (size_t)input.size(2),
|
||||
};
|
||||
const struct nnp_padding input_padding = {
|
||||
.top = static_cast<size_t>(padding[0]),
|
||||
.right = static_cast<size_t>(padding[1]),
|
||||
.bottom = static_cast<size_t>(padding[0]),
|
||||
.left = static_cast<size_t>(padding[1]),
|
||||
.top = (size_t)padding[0],
|
||||
.right = (size_t)padding[1],
|
||||
.bottom = (size_t)padding[0],
|
||||
.left = (size_t)padding[1],
|
||||
};
|
||||
const struct nnp_size kernel_size = {
|
||||
.width = static_cast<size_t>(weight.size(3)),
|
||||
.height = static_cast<size_t>(weight.size(2)),
|
||||
.width = (size_t)weight.size(3),
|
||||
.height = (size_t)weight.size(2),
|
||||
};
|
||||
const struct nnp_size output_size = {
|
||||
.width = static_cast<size_t>(output.size(3)),
|
||||
.height = static_cast<size_t>(output.size(2)),
|
||||
.width = (size_t)output.size(3),
|
||||
.height = (size_t)output.size(2),
|
||||
};
|
||||
const nnp_size output_subsample = {
|
||||
.width = static_cast<std::size_t>(stride[1]),
|
||||
|
||||
@ -248,8 +248,8 @@ void slow_conv_transpose3d_out_cpu_template(
|
||||
Tensor weight = weight_.contiguous();
|
||||
Tensor bias = bias_.defined() ? bias_.contiguous() : bias_;
|
||||
|
||||
const auto n_input_plane = weight.size(0);
|
||||
const auto n_output_plane = weight.size(1);
|
||||
const int n_input_plane = (int)weight.size(0);
|
||||
const int n_output_plane = (int)weight.size(1);
|
||||
|
||||
bool is_batch = false;
|
||||
if (input.dim() == 4) {
|
||||
|
||||
@ -84,8 +84,8 @@ static std::vector<int64_t> aligned_size(
|
||||
DimnameList aligned_names,
|
||||
bool is_aligning_two_tensors) {
|
||||
std::vector<int64_t> expanded_sizes(aligned_names.size(), 1);
|
||||
ptrdiff_t dim = static_cast<ptrdiff_t>(tensor_sizes.size()) - 1;
|
||||
ptrdiff_t idx = static_cast<ptrdiff_t>(aligned_names.size()) - 1;
|
||||
ptrdiff_t dim = (ptrdiff_t)tensor_sizes.size() - 1;
|
||||
ptrdiff_t idx = (ptrdiff_t)aligned_names.size() - 1;
|
||||
for (; idx >= 0 && dim >= 0; --idx) {
|
||||
if (tensor_names[dim] != aligned_names[idx]) {
|
||||
continue;
|
||||
|
||||
@ -25,7 +25,7 @@ std::tuple<Tensor, Tensor> _rowwise_prune_helper(
|
||||
auto mask_contig = mask.contiguous();
|
||||
auto mask_data = mask_contig.data_ptr<bool>();
|
||||
for (const auto i : c10::irange(mask.numel())) {
|
||||
num_non_masked_rows += ((mask_data[i] == true) ? 1 : 0);
|
||||
num_non_masked_rows += (((mask_data[i] == true)) ? 1 : 0);
|
||||
}
|
||||
int num_cols = weights.size(1);
|
||||
auto pruned_2d_tensor = at::empty({num_non_masked_rows, num_cols},
|
||||
|
||||
@ -176,7 +176,7 @@ void host_softmax(
|
||||
scalar_t* input_data_base = input.data_ptr<scalar_t>();
|
||||
scalar_t* output_data_base = output.data_ptr<scalar_t>();
|
||||
bool* mask_data_base = mask;
|
||||
int64_t grain_size = std::min(internal::GRAIN_SIZE / dim_size, static_cast<int64_t>(1));
|
||||
int64_t grain_size = std::min(internal::GRAIN_SIZE / dim_size, (int64_t)1);
|
||||
parallel_for(
|
||||
0, outer_size * inner_size, grain_size,
|
||||
[&](int64_t begin, int64_t end) {
|
||||
@ -265,7 +265,7 @@ void host_softmax_backward(
|
||||
scalar_t* output_data_base = output.data_ptr<scalar_t>();
|
||||
scalar_t* gradOutput_data_base = grad.data_ptr<scalar_t>();
|
||||
bool* mask_data_base = mask;
|
||||
int64_t grain_size = std::min(internal::GRAIN_SIZE / dim_size, static_cast<int64_t>(1));
|
||||
int64_t grain_size = std::min(internal::GRAIN_SIZE / dim_size, (int64_t)1);
|
||||
parallel_for(
|
||||
0, outer_size * inner_size, grain_size, [&](int64_t begin, int64_t end) {
|
||||
for (const auto i : c10::irange(begin, end)) {
|
||||
|
||||
@ -1701,13 +1701,13 @@ Tensor& index_select_out_cpu_(
|
||||
TORCH_CHECK_INDEX(
|
||||
(self_i >= 0) && (self_i < self_dim_size),
|
||||
"index out of range in self");
|
||||
auto self_data = const_cast<char*>(static_cast<const char*>(
|
||||
selfSlice_data)) +
|
||||
auto self_data = static_cast<const char*>(selfSlice_data) +
|
||||
self_i * self_stride_bytes;
|
||||
auto result_data = static_cast<char*>(resultSlice_data) +
|
||||
i * result_stride_bytes;
|
||||
sub_iter.unsafe_replace_operand(0, result_data);
|
||||
sub_iter.unsafe_replace_operand(1, self_data);
|
||||
sub_iter.unsafe_replace_operand(
|
||||
1, const_cast<char*>(self_data));
|
||||
copy_stub(sub_iter.device_type(), sub_iter, false);
|
||||
};
|
||||
});
|
||||
|
||||
@ -11,7 +11,6 @@
|
||||
#include <ATen/SparseCsrTensorUtils.h>
|
||||
#include <ATen/TensorOperators.h>
|
||||
#include <ATen/TracerMode.h>
|
||||
#include <ATen/core/Generator.h>
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/native/UnaryOps.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
@ -1090,7 +1089,6 @@ Tensor& rand_out(
|
||||
|
||||
Tensor rand_like(
|
||||
const Tensor& self,
|
||||
std::optional<Generator> generator,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
@ -1102,24 +1100,7 @@ Tensor rand_like(
|
||||
pin_memory);
|
||||
|
||||
auto result = at::empty_like(self, options, optional_memory_format);
|
||||
return result.uniform_(0, 1, std::move(generator));
|
||||
}
|
||||
|
||||
Tensor rand_like(
|
||||
const Tensor& self,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
return native::rand_like(
|
||||
self,
|
||||
static_cast<std::optional<Generator>>(std::nullopt),
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
return result.uniform_(0, 1, std::nullopt);
|
||||
}
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ randint ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -1216,9 +1197,7 @@ Tensor& randint_out(
|
||||
|
||||
Tensor randint_like(
|
||||
const Tensor& self,
|
||||
int64_t low,
|
||||
int64_t high,
|
||||
std::optional<Generator> generator,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
@ -1230,7 +1209,29 @@ Tensor randint_like(
|
||||
pin_memory);
|
||||
|
||||
auto result = at::empty_like(self, options, optional_memory_format);
|
||||
return result.random_(low, high, std::move(generator));
|
||||
return result.random_(0, high, std::nullopt);
|
||||
}
|
||||
|
||||
Tensor randint_like(
|
||||
const Tensor& self,
|
||||
const Tensor& high,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
TORCH_CHECK(
|
||||
high.numel() == 1 && high.ndimension() == 0 && high.device().is_cpu(),
|
||||
"high must be a scalar tensor and on CPU");
|
||||
int64_t high_scalar = high.item<int64_t>();
|
||||
return at::native::randint_like(
|
||||
self,
|
||||
high_scalar,
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
}
|
||||
|
||||
Tensor randint_like(
|
||||
@ -1242,108 +1243,13 @@ Tensor randint_like(
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
return native::randint_like(
|
||||
self,
|
||||
low,
|
||||
high,
|
||||
static_cast<std::optional<Generator>>(std::nullopt),
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
}
|
||||
|
||||
Tensor randint_like(
|
||||
const Tensor& self,
|
||||
int64_t high,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
// See [Note: hacky wrapper removal for TensorOptions]
|
||||
return native::randint_like(
|
||||
self,
|
||||
0,
|
||||
high,
|
||||
static_cast<std::optional<Generator>>(std::nullopt),
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
}
|
||||
TensorOptions options =
|
||||
TensorOptions().dtype(dtype).layout(layout).device(device).pinned_memory(
|
||||
pin_memory);
|
||||
|
||||
Tensor randint_like(
|
||||
const Tensor& self,
|
||||
int64_t high,
|
||||
std::optional<Generator> generator,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
// See [Note: hacky wrapper removal for TensorOptions]
|
||||
return native::randint_like(
|
||||
self,
|
||||
0,
|
||||
high,
|
||||
generator,
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
}
|
||||
|
||||
Tensor randint_like(
|
||||
const Tensor& self,
|
||||
const Tensor& high,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
TORCH_CHECK(
|
||||
high.numel() == 1 && high.ndimension() == 0 && high.device().is_cpu(),
|
||||
"high must be a scalar tensor and on CPU");
|
||||
int64_t high_scalar = high.item<int64_t>();
|
||||
return at::native::randint_like(
|
||||
self,
|
||||
0,
|
||||
high_scalar,
|
||||
static_cast<std::optional<Generator>>(std::nullopt),
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
}
|
||||
|
||||
Tensor randint_like(
|
||||
const Tensor& self,
|
||||
const Tensor& high,
|
||||
std::optional<Generator> generator,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
TORCH_CHECK(
|
||||
high.numel() == 1 && high.ndimension() == 0 && high.device().is_cpu(),
|
||||
"high must be a scalar tensor and on CPU");
|
||||
int64_t high_scalar = high.item<int64_t>();
|
||||
return at::native::randint_like(
|
||||
self,
|
||||
0,
|
||||
high_scalar,
|
||||
generator,
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
auto result = at::empty_like(self, options, optional_memory_format);
|
||||
return result.random_(low, high, std::nullopt);
|
||||
}
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ randn ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -1421,7 +1327,6 @@ Tensor& normal_out(
|
||||
|
||||
Tensor randn_like(
|
||||
const Tensor& self,
|
||||
std::optional<Generator> generator,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
@ -1433,24 +1338,7 @@ Tensor randn_like(
|
||||
pin_memory);
|
||||
|
||||
auto result = at::empty_like(self, options, optional_memory_format);
|
||||
return result.normal_(0, 1, std::move(generator));
|
||||
}
|
||||
|
||||
Tensor randn_like(
|
||||
const Tensor& self,
|
||||
std::optional<ScalarType> dtype,
|
||||
std::optional<Layout> layout,
|
||||
std::optional<Device> device,
|
||||
std::optional<bool> pin_memory,
|
||||
std::optional<c10::MemoryFormat> optional_memory_format) {
|
||||
return native::randn_like(
|
||||
self,
|
||||
static_cast<std::optional<Generator>>(std::nullopt),
|
||||
dtype,
|
||||
layout,
|
||||
device,
|
||||
pin_memory,
|
||||
optional_memory_format);
|
||||
return result.normal_(0, 1, std::nullopt);
|
||||
}
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ randperm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -1494,7 +1382,7 @@ void randperm_cpu(Tensor& result, int64_t n, CPUGeneratorImpl* generator) {
|
||||
// use no-initialization Fischer-Yates variant
|
||||
// https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_.22inside-out.22_algorithm
|
||||
for (int64_t i = 0; i < n; i++) {
|
||||
int64_t z = static_cast<int64_t>(generator->random64() % (i + 1));
|
||||
int64_t z = (int64_t)(generator->random64() % (i + 1));
|
||||
r__data[i * r__stride_0] = i;
|
||||
r__data[i * r__stride_0] = r__data[z * r__stride_0];
|
||||
r__data[z * r__stride_0] = i;
|
||||
|
||||
@ -40,7 +40,7 @@ at::Tensor PackedLinearWeightQnnp::apply_dynamic_impl<false>(
|
||||
"quantized_sparse_linear(): Input tensor rank should be >= 2");
|
||||
|
||||
const auto rows_input = c10::multiply_integers(input.sizes().begin(), input.sizes().end() - 1);
|
||||
const auto cols_input = input.size(input.dim() - 1);
|
||||
const auto cols_input = static_cast<int64_t>(input.size(input.dim() - 1));
|
||||
TORCH_CHECK(
|
||||
cols_input == input_channels_,
|
||||
"quantized_sparse_linear: Input tensor's last and weight tensor's"
|
||||
|
||||
@ -65,8 +65,8 @@ LinearPackedSerializationType PackedLinearWeight::unpack() {
|
||||
#ifdef USE_PYTORCH_QNNPACK
|
||||
|
||||
LinearPackedSerializationType PackedLinearWeightQnnp::unpack() {
|
||||
const int64_t N = output_channels_;
|
||||
const int64_t K = input_channels_;
|
||||
const int64_t N = static_cast<int64_t>(output_channels_);
|
||||
const int64_t K = static_cast<int64_t>(input_channels_);
|
||||
|
||||
float* w_scales_ptr = w_scales_.data_ptr<float>();
|
||||
|
||||
|
||||
@ -998,7 +998,7 @@ void softplus_backward_kernel(TensorIteratorBase& iter, const Scalar& beta_, con
|
||||
auto threshold = threshold_.to<float>();
|
||||
const Vec beta_vec(beta);
|
||||
const Vec threshold_vec(threshold);
|
||||
const Vec one_vec(1.0f);
|
||||
const Vec one_vec(static_cast<float>(1.0));
|
||||
cpu_kernel_vec(
|
||||
iter,
|
||||
[beta, threshold](scalar_t a, scalar_t b) -> scalar_t {
|
||||
|
||||
@ -17,7 +17,7 @@ static inline void cpu_atomic_add_float(float* dst, float fvalue)
|
||||
} uf32_t;
|
||||
|
||||
uf32_t new_value, old_value;
|
||||
std::atomic<unsigned>* dst_intV = (std::atomic<unsigned>*)dst;
|
||||
std::atomic<unsigned>* dst_intV = (std::atomic<unsigned>*)(dst);
|
||||
|
||||
old_value.floatV = *dst;
|
||||
new_value.floatV = old_value.floatV + fvalue;
|
||||
|
||||
@ -851,7 +851,7 @@ void sigmoid_backward_kernel(TensorIteratorBase& iter) {
|
||||
});
|
||||
});
|
||||
} else if (iter.dtype() == kBFloat16) {
|
||||
auto one_vec = Vectorized<float>((float)1);
|
||||
auto one_vec = Vectorized<float>((float)(1));
|
||||
cpu_kernel_vec(
|
||||
iter,
|
||||
[=](BFloat16 a, BFloat16 b) -> BFloat16 {
|
||||
|
||||
@ -77,7 +77,9 @@ static void reduced_float_copy_kernel(TensorIteratorBase &iter, bool requires_ne
|
||||
|
||||
int64_t grain_size = at::internal::GRAIN_SIZE;
|
||||
|
||||
auto loop = [strides_in, requires_neg](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
|
||||
auto loop = [strides_in, requires_neg](char** base, const int64_t* strides, int64_t size0, int64_t size1) {
|
||||
std::array<char*, 2> data;
|
||||
std::copy_n(base, 2, data.data());
|
||||
const int64_t *outer_strides = &strides[2];
|
||||
|
||||
for ([[maybe_unused]] const auto it : c10::irange(size1)) {
|
||||
@ -144,7 +146,9 @@ static void reduced_float_copy_kernel(TensorIteratorBase &iter, bool requires_ne
|
||||
|
||||
int64_t grain_size = at::internal::GRAIN_SIZE;
|
||||
|
||||
auto loop = [strides_in, requires_neg](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
|
||||
auto loop = [strides_in, requires_neg](char** base, const int64_t* strides, int64_t size0, int64_t size1) {
|
||||
std::array<char*, 2> data;
|
||||
std::copy_n(base, 2, data.data());
|
||||
const int64_t *outer_strides = &strides[2];
|
||||
|
||||
for ([[maybe_unused]] const auto it : c10::irange(size1)) {
|
||||
|
||||
@ -293,7 +293,7 @@ struct ComputeLocationBase<scalar_t, /*align_corners=*/false> {
|
||||
, empty(size <= 0) {}
|
||||
|
||||
inline Vec unnormalize(const Vec &in) const {
|
||||
return (in + Vec(static_cast<scalar_t>(1))) * Vec(scaling_factor) - Vec(static_cast<scalar_t>(0.5));
|
||||
return (in + Vec(1)) * Vec(scaling_factor) - Vec(0.5);
|
||||
}
|
||||
|
||||
inline Vec clip_coordinates(const Vec &in) const {
|
||||
@ -831,7 +831,7 @@ struct ApplyGridSample<scalar_t, 2, GridSamplerInterpolation::Bicubic,
|
||||
|
||||
// constant used in cubic convolution
|
||||
// could be -0.5 or -0.75, use the same value in UpSampleBicubic2d.h
|
||||
const Vec A = Vec(static_cast<scalar_t>(-0.75));
|
||||
const Vec A = Vec(-0.75);
|
||||
|
||||
ApplyGridSample(const TensorAccessor<const scalar_t, 4>& input)
|
||||
: inp_H(input.size(2))
|
||||
|
||||
@ -493,33 +493,40 @@ void cpu_hflip_vec(at::TensorIterator& iter) {
|
||||
|
||||
for ([[maybe_unused]] const auto j : c10::irange(size1)) {
|
||||
// vectorized loop with negative stride for output
|
||||
char** C10_RESTRICT data_ = data_arr.data();
|
||||
int64_t n = size0;
|
||||
|
||||
char* C10_RESTRICT data[ntensors];
|
||||
for (const auto arg : c10::irange(ntensors)) {
|
||||
data[arg] = data_[arg];
|
||||
}
|
||||
|
||||
int64_t i = 0;
|
||||
|
||||
// data_arr[0] unaligned pre-pass
|
||||
// data[0] unaligned pre-pass
|
||||
int64_t offset = (j * n + (n - i - Vec::size())) % 32;
|
||||
offset = (offset >= n) ? n : offset;
|
||||
for (; i < offset; i++) {
|
||||
scalar_t* out_ptr = (scalar_t*)(data_arr[0] - i * stride);
|
||||
*out_ptr = c10::load((scalar_t *)(data_arr[1] + i * stride));
|
||||
scalar_t* out_ptr = (scalar_t*)(data[0] - i * stride);
|
||||
*out_ptr = c10::load((scalar_t *)(data[1] + i * stride));
|
||||
}
|
||||
// Empirically found that it is faster to process 3 data items together vs 2 or 4
|
||||
for (; i <= n - 3 * Vec::size(); i += 3 * Vec::size()) {
|
||||
auto out1 = Vec::loadu(data_arr[1] + i * stride);
|
||||
auto out2 = Vec::loadu(data_arr[1] + (i + Vec::size()) * stride);
|
||||
auto out3 = Vec::loadu(data_arr[1] + (i + 2 * Vec::size()) * stride);
|
||||
auto out1 = Vec::loadu(data[1] + i * stride);
|
||||
auto out2 = Vec::loadu(data[1] + (i + Vec::size()) * stride);
|
||||
auto out3 = Vec::loadu(data[1] + (i + 2 * Vec::size()) * stride);
|
||||
// flip the vector: 1234 -> 4321
|
||||
out1 = flip(out1);
|
||||
out2 = flip(out2);
|
||||
out3 = flip(out3);
|
||||
out1.store(data_arr[0] - (i + Vec::size() - 1) * stride);
|
||||
out2.store(data_arr[0] - (i + 2 * Vec::size() - 1) * stride);
|
||||
out3.store(data_arr[0] - (i + 3 * Vec::size() - 1) * stride);
|
||||
out1.store(data[0] - (i + Vec::size() - 1) * stride);
|
||||
out2.store(data[0] - (i + 2 * Vec::size() - 1) * stride);
|
||||
out3.store(data[0] - (i + 3 * Vec::size() - 1) * stride);
|
||||
}
|
||||
if (i < n) {
|
||||
for (; i < n; i++) {
|
||||
scalar_t* out_ptr = (scalar_t*)(data_arr[0] - i * stride);
|
||||
*out_ptr = c10::load((scalar_t *)(data_arr[1] + i * stride));
|
||||
scalar_t* out_ptr = (scalar_t*)(data[0] - i * stride);
|
||||
*out_ptr = c10::load((scalar_t *)(data[1] + i * stride));
|
||||
}
|
||||
}
|
||||
|
||||
@ -553,8 +560,15 @@ void cpu_vflip_memcpy(at::TensorIterator& iter) {
|
||||
const int64_t stride = strides[0];
|
||||
|
||||
for ([[maybe_unused]] const auto j : c10::irange(size1)) {
|
||||
char** C10_RESTRICT data_ = data_arr.data();
|
||||
int64_t n = size0;
|
||||
memcpy(data_arr[0], data_arr[1], n * stride);
|
||||
|
||||
char* C10_RESTRICT data[ntensors];
|
||||
for (const auto arg : c10::irange(ntensors)) {
|
||||
data[arg] = data_[arg];
|
||||
}
|
||||
|
||||
memcpy(data[0], data[1], n * stride);
|
||||
|
||||
// advance:
|
||||
for (const auto arg : c10::irange(data_arr.size())) {
|
||||
|
||||
@ -92,8 +92,7 @@ void addcdiv_cpu_kernel(TensorIteratorBase& iter, const Scalar& value) {
|
||||
|
||||
void smooth_l1_backward_cpu_kernel(TensorIterator& iter, const Scalar& norm, double beta) {
|
||||
ScalarType dtype = iter.dtype(0);
|
||||
if (at::isReducedFloatingType(dtype)) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(dtype, "smooth_l1_backward_cpu_out", [&]() {
|
||||
if (dtype == kBFloat16) {
|
||||
auto norm_val = norm.to<float>();
|
||||
float beta_val(beta);
|
||||
auto norm_val_vec = Vectorized<float>(norm_val);
|
||||
@ -102,9 +101,9 @@ void smooth_l1_backward_cpu_kernel(TensorIterator& iter, const Scalar& norm, dou
|
||||
const auto zero_vec = Vectorized<float>(0);
|
||||
const auto pos_1_vec = Vectorized<float>(1);
|
||||
cpu_kernel_vec(iter,
|
||||
[=](scalar_t input, scalar_t target, scalar_t grad_output) -> scalar_t {
|
||||
[=](BFloat16 input, BFloat16 target, BFloat16 grad_output) -> BFloat16 {
|
||||
const auto x = float(input) - float(target);
|
||||
if (x <= -beta) {
|
||||
if (x <= -beta){
|
||||
return -norm_val * float(grad_output);
|
||||
}else if (x >= beta){
|
||||
return norm_val * float(grad_output);
|
||||
@ -113,14 +112,14 @@ void smooth_l1_backward_cpu_kernel(TensorIterator& iter, const Scalar& norm, dou
|
||||
}
|
||||
},
|
||||
[norm_val_vec, beta_val_vec, neg_1_vec, zero_vec, pos_1_vec](
|
||||
Vectorized<scalar_t> input, Vectorized<scalar_t> target, Vectorized<scalar_t> grad_output) -> Vectorized<scalar_t> {
|
||||
Vectorized<BFloat16> input, Vectorized<BFloat16> target, Vectorized<BFloat16> grad_output) -> Vectorized<BFloat16> {
|
||||
// using two blendv calls to simulate the 3 cases
|
||||
// 1 if x >= beta
|
||||
// -1 if x <= -beta
|
||||
// x / beta if |x| < beta
|
||||
auto [input0, input1] = convert_to_float(input);
|
||||
auto [target0, target1] = convert_to_float(target);
|
||||
auto [grad_output0, grad_output1] = convert_to_float(grad_output);
|
||||
auto [input0, input1] = convert_bfloat16_float(input);
|
||||
auto [target0, target1] = convert_bfloat16_float(target);
|
||||
auto [grad_output0, grad_output1] = convert_bfloat16_float(grad_output);
|
||||
auto x = input0 - target0;
|
||||
auto pos_or_neg_1_vec = Vectorized<float>::blendv(
|
||||
neg_1_vec, pos_1_vec, x > zero_vec);
|
||||
@ -136,12 +135,11 @@ void smooth_l1_backward_cpu_kernel(TensorIterator& iter, const Scalar& norm, dou
|
||||
output = Vectorized<float>::blendv(
|
||||
x / beta_val_vec, pos_or_neg_1_vec, x_abs >= beta_val_vec);
|
||||
input1 = norm_val_vec * output * grad_output1;
|
||||
return convert_from_float<scalar_t>(input0, input1);
|
||||
return convert_float_bfloat16(input0, input1);
|
||||
}
|
||||
);
|
||||
});
|
||||
} else {
|
||||
AT_DISPATCH_ALL_TYPES(dtype, "smooth_l1_backward_cpu_out", [&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND(kHalf, dtype, "smooth_l1_backward_cpu_out", [&] {
|
||||
auto norm_val = norm.to<scalar_t>();
|
||||
scalar_t beta_val(beta);
|
||||
auto norm_val_vec = Vectorized<scalar_t>(norm_val);
|
||||
|
||||
@ -247,8 +247,8 @@ void binary_kernel_reduce(TensorIteratorBase& iter, ops_t ops, init_t init) {
|
||||
});
|
||||
}
|
||||
|
||||
template <typename func_t, typename vec_func_t, typename ident_t = double>
|
||||
void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, ident_t ident = static_cast<ident_t>(0)) {
|
||||
template <typename func_t, typename vec_func_t>
|
||||
void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, double ident = 0) {
|
||||
using traits = binary_function_traits<func_t>;
|
||||
static_assert(
|
||||
all_same<
|
||||
|
||||
@ -5,7 +5,6 @@
|
||||
#include <ATen/native/ReduceOpsUtils.h>
|
||||
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/Dispatch_v2.h>
|
||||
#include <ATen/Parallel.h>
|
||||
#include <ATen/TensorIterator.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
@ -79,12 +78,12 @@ void min_all_kernel_impl(Tensor& result, const Tensor& input) {
|
||||
reduce_all_impl<int64_t>(result, input, upper_bound<int64_t>(),
|
||||
[=](int64_t a, int64_t b) -> int64_t { return min_impl(a, b); });
|
||||
} else {
|
||||
AT_DISPATCH_V2(input.scalar_type(), "min_all", AT_WRAP([&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "min_all", [&] {
|
||||
using Vec = Vectorized<opmath_type<scalar_t>>;
|
||||
reduce_all_impl_vec<scalar_t>(result, input, upper_bound<scalar_t>(),
|
||||
[=] (scalar_t a , scalar_t b) -> scalar_t { return min_impl(a, b); },
|
||||
[=](Vec a, Vec b) -> Vec { return minimum(a, b); });
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@ -104,12 +103,12 @@ void max_all_kernel_impl(Tensor& result, const Tensor& input) {
|
||||
reduce_all_impl<int64_t>(result, input, lower_bound<int64_t>(),
|
||||
[=](int64_t a, int64_t b) -> int64_t { return max_impl(a, b); });
|
||||
} else {
|
||||
AT_DISPATCH_V2(input.scalar_type(), "max_all", AT_WRAP([&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "max_all", [&] {
|
||||
using Vec = Vectorized<opmath_type<scalar_t>>;
|
||||
reduce_all_impl_vec<scalar_t>(result, input, lower_bound<scalar_t>(),
|
||||
[=] (scalar_t a , scalar_t b) -> scalar_t { return max_impl(a, b); },
|
||||
[=](Vec a, Vec b) -> Vec { return maximum(a, b); });
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@ -200,7 +199,7 @@ void aminmax_allreduce_kernel(
|
||||
}
|
||||
);
|
||||
} else {
|
||||
AT_DISPATCH_V2(input.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, input.scalar_type(), "aminmax_cpu", [&] {
|
||||
using Vec = Vectorized<opmath_type<scalar_t>>;
|
||||
using scalar_t_pair = std::pair<scalar_t, scalar_t>;
|
||||
reduce_all_impl_vec_two_outputs<scalar_t>(
|
||||
@ -215,7 +214,7 @@ void aminmax_allreduce_kernel(
|
||||
[=](Vec a, Vec b) -> Vec { return minimum(a, b); },
|
||||
[=](Vec a, Vec b) -> Vec { return maximum(a, b); }
|
||||
);
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -3,7 +3,6 @@
|
||||
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/Dispatch_v2.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/cpu/vec/vec.h>
|
||||
#include <ATen/cpu/vec/functional.h>
|
||||
@ -339,24 +338,43 @@ void or_kernel_impl(TensorIterator& iter) {
|
||||
}
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
struct MinValuesOps: public at::native::MinOps<scalar_t> {
|
||||
using arg_t = typename MinOps<scalar_t>::arg_t;
|
||||
static scalar_t project(arg_t arg) {
|
||||
return arg.first;
|
||||
}
|
||||
};
|
||||
|
||||
void min_values_kernel_impl(TensorIterator& iter) {
|
||||
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
|
||||
if (iter.dtype() == kLong) {
|
||||
// This case is special because of Vectorized<int64_t> does not
|
||||
// handle upper_bound<int64_t>().
|
||||
// See: https://github.com/pytorch/pytorch/issues/43254
|
||||
using scalar_t = int64_t;
|
||||
binary_kernel_reduce(
|
||||
iter,
|
||||
MinValuesOps<scalar_t>{},
|
||||
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
|
||||
return;
|
||||
}
|
||||
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cpu", [&iter] {
|
||||
binary_kernel_reduce_vec(
|
||||
iter,
|
||||
[](scalar_t a, scalar_t b) -> scalar_t { return min_impl(a, b); },
|
||||
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return minimum(a, b); },
|
||||
upper_bound<scalar_t>());
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
|
||||
static_cast<double>(upper_bound<scalar_t>()));
|
||||
});
|
||||
}
|
||||
|
||||
void max_values_kernel_impl(TensorIterator& iter) {
|
||||
AT_DISPATCH_V2(iter.dtype(), "max_values_cpu", AT_WRAP([&iter] {
|
||||
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cpu", [&iter] {
|
||||
binary_kernel_reduce_vec(
|
||||
iter,
|
||||
[](scalar_t a, scalar_t b) -> scalar_t { return max_impl(a, b); },
|
||||
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return maximum(a, b); },
|
||||
lower_bound<scalar_t>());
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
|
||||
});
|
||||
}
|
||||
|
||||
void argmax_kernel_impl(TensorIterator &iter) {
|
||||
|
||||
@ -11,7 +11,6 @@
|
||||
#include <vector>
|
||||
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/Dispatch_v2.h>
|
||||
#include <ATen/Parallel.h>
|
||||
#include <ATen/NumericUtils.h>
|
||||
#include <ATen/TensorIterator.h>
|
||||
@ -107,7 +106,7 @@ void min_kernel_impl(
|
||||
bool keepdim) {
|
||||
int64_t self_dim_size = ensure_nonempty_size(self, dim);
|
||||
|
||||
AT_DISPATCH_V2(self.scalar_type(), "min_cpu", AT_WRAP([&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "min_cpu", [&] {
|
||||
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
|
||||
scalar_t* result_data, int64_t* indice_data,
|
||||
const scalar_t* self_data, auto self_dim_stride) {
|
||||
@ -129,7 +128,7 @@ void min_kernel_impl(
|
||||
*indice_data = index;
|
||||
}
|
||||
);
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
|
||||
});
|
||||
}
|
||||
|
||||
void max_kernel_impl(
|
||||
@ -140,7 +139,7 @@ void max_kernel_impl(
|
||||
bool keepdim) {
|
||||
int64_t self_dim_size = ensure_nonempty_size(self, dim);
|
||||
|
||||
AT_DISPATCH_V2(self.scalar_type(), "max_cpu", AT_WRAP([&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "max_cpu", [&] {
|
||||
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
|
||||
scalar_t* result_data, int64_t* indice_data,
|
||||
const scalar_t* self_data, auto self_dim_stride) {
|
||||
@ -162,7 +161,7 @@ void max_kernel_impl(
|
||||
*indice_data = index;
|
||||
}
|
||||
);
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
|
||||
});
|
||||
}
|
||||
|
||||
void aminmax_kernel(
|
||||
@ -187,7 +186,7 @@ void aminmax_kernel(
|
||||
return;
|
||||
}
|
||||
|
||||
AT_DISPATCH_V2(self.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
|
||||
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half, self.scalar_type(), "aminmax_cpu", [&] {
|
||||
compare_base_kernel<scalar_t, scalar_t>(min_result, max_result, self, wrap_dim, keepdim, [&] (
|
||||
scalar_t* min_result_data, scalar_t* max_result_data,
|
||||
const scalar_t* self_data, auto self_dim_stride) {
|
||||
@ -210,7 +209,7 @@ void aminmax_kernel(
|
||||
*max_result_data = max_number;
|
||||
}
|
||||
);
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half);
|
||||
});
|
||||
}
|
||||
|
||||
void where_kernel_impl(TensorIterator &iter) {
|
||||
|
||||
@ -298,7 +298,7 @@ void unfolded2d_copy(
|
||||
memcpy(
|
||||
dst + (size_t)y * output_width + x,
|
||||
src + (size_t)iy * input_width + ix,
|
||||
sizeof(scalar_t) * 1);
|
||||
sizeof(scalar_t) * (1));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -317,7 +317,7 @@ void unfolded2d_copy(
|
||||
memcpy(
|
||||
dst + (size_t)y * output_width + x,
|
||||
src + (size_t)iy * input_width + ix + x * dW,
|
||||
sizeof(scalar_t) * 1);
|
||||
sizeof(scalar_t) * (1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user