Compare commits

..

165 Commits

Author SHA1 Message Date
17d5b05ae0 Enable dynamic shapes for CuTeDSL GroupGemm
[ghstack-poisoned]
2025-11-11 09:37:43 -08:00
4c3721fe70 allow sym_stride, and sym_size lowering in inductor to return ints (#167345)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167345
Approved by: https://github.com/eellison
2025-11-10 23:29:23 +00:00
8ef4099313 Revert "Add min/max support for barebones uint types (#166813)"
This reverts commit 9ffc480c5a928eaccb4ac0e1755a1c596674d884.

Reverted https://github.com/pytorch/pytorch/pull/166813 on behalf of https://github.com/jeanschmidt due to It was reverted internally 6 days ago, but not reverted on OSS, this is causing conflicts ([comment](https://github.com/pytorch/pytorch/pull/166813#issuecomment-3514328895))
2025-11-10 23:25:22 +00:00
de773364be Support AC in default partitioner when functionalization is enabled (#166610)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166610
Approved by: https://github.com/SherlockNoMad
ghstack dependencies: #166536
2025-11-10 23:09:01 +00:00
47da714b8b [inductor][determinism] type errors + use odc to dump imc on exit (#167136)
Summary: fix some type errors + instead of manually creating a filelock when dumping dcache's imc to file we simply use an odc (since this is the intended behavior of odc, anyways)

Test Plan:
```
buck test fbcode//mode/opt caffe2/test/inductor:caching
```

Differential Revision: D86345594

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167136
Approved by: https://github.com/aorenste
2025-11-10 22:51:03 +00:00
69ab1f93e4 Add shim for at::get_num_threads (#167362)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167362
Approved by: https://github.com/janeyx99
ghstack dependencies: #166579, #166694, #166695
2025-11-10 22:21:14 +00:00
232baa33b3 Redo add parallel_for to torch/csrc/stable (#166695)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166695
Approved by: https://github.com/malfet
ghstack dependencies: #166579, #166694
2025-11-10 22:21:14 +00:00
6f0182495f Add stable::Tensor.device() (#166694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166694
Approved by: https://github.com/janeyx99
ghstack dependencies: #166579
2025-11-10 22:21:14 +00:00
7da82b84e2 Add torch::stable::Device (#166579)
Prior to this PR, the IValue <-> StableIValue conversion for `DeviceObjType` (aka c10::Device) was to pack it into the leading bits of the StableIValue (which is a uint64_t)

After this PR, the IValue <-> StableIValue conversion for `DeviceObjType` expects DeviceType to be packed into the upper 32 bits of StableIValue and DeviceIndex to be packed into the lower 32 bits

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166579
Approved by: https://github.com/janeyx99
2025-11-10 22:21:14 +00:00
cda7604434 [ez] Remove spammy deprecation log (#167470)
"
/packages/pytorch_latest_sixlib_conda/conda/lib/python3.12/site-packages/torch/_dynamo/variables/user_defined.py:1815: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
  return ctor(*args, **kwargs)"

is too spammy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167470
Approved by: https://github.com/tugsbayasgalan
2025-11-10 21:49:23 +00:00
6ca8cc6edf Rework PyObject preservation (#166342)
Make the PyObject preservation scheme thread-safe with free threaded (nogil) Python. The general idea is:

* Python Tensor and Storage objects always hold a strong reference to their underlying c10 object
* c10 objects hold a strong reference to their Python objects if there's at least one other reference to the c10 object

This is implemented in `intrusive_ptr`:

* The top most bit (`kHasPyObject`) from the weakref count is now used to indicate if the `intrusive_ptr_target` has an associated PyObject. So `kHasPyObject` is one bit, the weakref count is now 31 bits and the strong refcount remains 32 bits.
* When the reference count increases from one to two and `kHasPyObject` is set, we incref the associated Python object to ensure that it's kept alive.
* When the reference count decreases from two to one (i.e., there are no C++ reference to the `intrusive_ptr_target` other than from the Python object), we decre the associated Python object to break the cycle.

Other benefits:

* We can delete a lot of the copypasta from Python internal `subtype_dealloc`
* This fixes the weakref and GC bugs we had in the previous scheme. Python weakrefs on Tensors and Storages should just work as expected now.

Risks:

* Extra branch for reference count operations on `intrusive_ptr<TensorImpl>`, `intrusive_ptr<StorageImpl>`, and the generic `intrusive_ptr<intrusive_ptr_target>` even when we're not using Python.
* It's a big change
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166342
Approved by: https://github.com/albanD
2025-11-10 21:47:53 +00:00
bb37483464 Use c7i.2xlarge for B200 build (#167078)
The build system is oversized for what is necessary. Reduce the size to optimize costs. The default workflow runner is `linux.c7i.2xlarge` so we are just removing the runner definition in the workflow so that it uses the default.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167078
Approved by: https://github.com/nWEIdia, https://github.com/seemethere
2025-11-10 21:45:45 +00:00
2751b1d3c3 Support repr on user defined objects (#167372)
Fixes: https://github.com/pytorch/pytorch/issues/167369

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167372
Approved by: https://github.com/anijain2305
2025-11-10 21:06:37 +00:00
fe0bb7cf60 [export, 3.14] handle patching methods with functools.partial correctly in non-strict export (#167396)
Note: dynamo is not affected by this since patching class methods are not supported right now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167396
Approved by: https://github.com/angelayi
ghstack dependencies: #167382, #167383, #167384, #167387
2025-11-10 20:52:05 +00:00
cf63b212e3 [3.14, dataloader] handle forkserver default mp start method in 3.14 (#167387)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167387
Approved by: https://github.com/malfet
ghstack dependencies: #167382, #167383, #167384
2025-11-10 20:52:05 +00:00
17e70ae459 [dynamo, 3.14] enable dynamo in 3.14 (#167384)
dynamo tests are passing in the CI PR above - so we could probably just enable dynamo right now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167384
Approved by: https://github.com/Skylion007, https://github.com/mlazos
ghstack dependencies: #167382, #167383
2025-11-10 20:52:05 +00:00
ad7db3617e [inductor, 3.14] catch pickle.PicklingError exceptions (#167383)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167383
Approved by: https://github.com/aorenste
ghstack dependencies: #167382
2025-11-10 20:52:04 +00:00
5320ca3725 [inductor, 3.14] fix itertools.product pickle error in test_cpu_repro (#167382)
`inductor/test_cpu_cpp_wrapper` was failing since it was attempting to pickle`itertools.product`, and that is no longer picklable in 3.14. We work around by eagerly generating a list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167382
Approved by: https://github.com/atalman, https://github.com/malfet
2025-11-10 20:52:04 +00:00
3e4faca130 [torch.export] Refactor placeholder_naming_pass to reduce CCN (#166600)
Summary: Reduced CCN from 37 to 28 of placeholder_naming_pass method

Test Plan: Existing tests

Differential Revision: D85820388

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166600
Approved by: https://github.com/angelayi
2025-11-10 20:44:18 +00:00
0c2f206ded Typo fix - baddbmm_strategy (#166963)
This is called by registration with decorator, so function not called directly. For clarity, add the "b" for "batch" in function name.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166963
Approved by: https://github.com/janeyx99
2025-11-10 20:35:42 +00:00
6cf21fa331 Fix -ffunction-sections, -fdata-sections not being added on aarch64. (#166407)
Preferred solution to #166380

Changes:

- Moved summary print to bottom of CMakeLists.txt
- Fix the problem 'add_compile_options' should be called before targets defined, so opted for `append_cxx_flag_if_supported` and `append_c_flag_if_supported` ( new ).
- Added extra verbosity so it can be seen when linker script added.

( unfortunately linker script has to be added per-target rather than globally due to ninja/cmake depdendency tracking ).

Also move summary print to bottom of CMakeLists.txt and improve logging
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166407
Approved by: https://github.com/Aidyn-A, https://github.com/atalman
2025-11-10 20:32:08 +00:00
cdc8460f2c Use c7i.2xlarge for H100 build (#167466)
The build system maybe oversized for what is necessary. Reduce the size to optimize costs. The default workflow runner is linux.c7i.2xlarge so we are just removing the runner definition in the workflow so that it uses the default.

Relates to pytorch/test-infra#7175.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167466
Approved by: https://github.com/seemethere
2025-11-10 20:20:54 +00:00
86130aa2ca Fix flaky memory profiler test [2] (#167268)
Fixes #167037

Move the module definition outside of the unit test so when we run the unit test multiple times, the module is not re-compiled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167268
Approved by: https://github.com/angelayi
2025-11-10 19:51:38 +00:00
9491830c79 move subgraph_has_impure_ops from node.is_impure into const_fold to unblock production (#167443)
Summary:
https://github.com/pytorch/pytorch/pull/166609 updates `node.is_impure` to consider a submodule as impure if submodule contains impure node. This in turn changes `graph.eliminate_dead_code()` function behavior, which does not eliminate nodes with side effects, see [pytorch documentation](https://docs.pytorch.org/docs/stable/fx.html#torch.fx.Graph.eliminate_dead_code)
> Remove all dead code from the graph, based on each node’s number of users, and whether the nodes have any side effects.

While this is correct that a submodule containing side-effectful ops is side-effectful and should not be dead code eliminated, some customers rely on the dead code elimination to eliminate submodules that contain impure ops which is the behavior before #166609 fix.

Due to production environment constraints, we have to revert https://github.com/pytorch/pytorch/pull/166609 and move the side-effectful submodule check logic to `const_fold.py`, which will correctly **not** const-fold a submodule that contains impure ops.

NOTE other call sites that use `node.is_impure()` to make decisions are still incorrectly eliminating side-effectful submodules, but we can't safely change that today.

## This pr
- move `_subgraph_has_impure_op` into `fx/experimental/const_fold.py`, check and prevent const-folding an impure submodule
- added a note in `node.is_impure` to highlight the incorrect behavior and context in case people go looking in the future.

Test Plan: run test_fx_const_fold and all tests pass

Differential Revision: D86641994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167443
Approved by: https://github.com/jfix71
2025-11-10 19:29:54 +00:00
04a85b4c21 [compile-on-one-rank] Step 1: DeviceId (#166680)
Add a "--virtual-local-rank" mode to torchrun. When used instead of passing the
local rank in LOCAL_RANK it uses a LOCAL_RANK of "0" and adjusts
CUDA_VISIBLE_DEVICES to reflect the desired GPU index.

Testing:
(tweaked run_train.sh to use `--log-dir`)
```
export NGPU=8
export CONFIG_FILE="./torchtitan/models/llama3/train_configs/debug_model.toml"
with-proxy ./run_train.sh --model.name compiler_toolkit.llama3 --compile.enable --parallelism.data_parallel_shard_degree=2 --parallelism.tensor_parallel_degree=4
```

And then comparing ranks:

Without --virtual-local-rank gives a lot of differences like:
```
 [rank#]:        mul_1: "f32[8, 512, 256]" = torch.ops.aten.mul.Tensor(mul, view_9);  mul = None
-[rank#]:        _to_copy_3: "bf16[8, 512, 256]" = torch.ops.aten._to_copy.default(mul_1, dtype = torch.bfloat16, layout = torch.strided, device = device(type='cuda', index=0));  mul_1 = None
+[rank#]:        _to_copy_3: "bf16[8, 512, 256]" = torch.ops.aten._to_copy.default(mul_1, dtype = torch.bfloat16, layout = torch.strided, device = device(type='cuda', index=1));  mul_1 = None
 [rank#]:        detach: "f32[8, 512, 1]" = torch.ops.aten.detach.default(rsqrt);  rsqrt = None
```

With --virtual-local-rank makes those differences go away.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166680
Approved by: https://github.com/ezyang
2025-11-10 18:47:31 +00:00
a4437d76f0 Add some labeler rules that used to be in the autolabel bot (#167330)
See https://github.com/pytorch/test-infra/pull/7446 for the paths

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167330
Approved by: https://github.com/huydhn
2025-11-10 18:38:42 +00:00
3ea829a337 Fix torch.cond HOP device in inductor (#167354)
Fixes #166918

The output device may not be on the same device as the predicate device.

```
python test/inductor/test_control_flow.py -k test_output_on_different_device
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167354
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2025-11-10 18:19:38 +00:00
3966b5ad05 [BE] Fix out-of-bounds index_put in test_mps.py (#167444)
Discovered while enabling assertions on out-of-bounds accesses. Otherwise test fails with
```
ERROR: test_sdpa_mask_fp16_L6_S17_NH23_HS121 (__main__.TestSDPA.test_sdpa_mask_fp16_L6_S17_NH23_HS121)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/Users/malfet/git/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 3334, in wrapper
    method(*args, **kwargs)
    ~~~~~~^^^^^^^^^^^^^^^^^
  File "/Users/malfet/git/pytorch/pytorch/build/../test/test_mps.py", line 9494, in test_sdpa_mask_fp16_L6_S17_NH23_HS121
    self._test_sdpa_mask(torch.float16, 7, 17, 23, 121)
    ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/malfet/git/pytorch/pytorch/build/../test/test_mps.py", line 9478, in _test_sdpa_mask
    y_ref = F.scaled_dot_product_attention(q.cpu(), k.cpu(), v.cpu(), attn_mask=mask.cpu(), dropout_p=0.0, is_causal=False)
                                           ~~~~~^^
torch.AcceleratorError: index out of range

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167444
Approved by: https://github.com/Skylion007, https://github.com/manuelcandales
2025-11-10 18:19:28 +00:00
f6a79b2a4a [inductor] Wrap pallas_call in jax.jit (#167441)
My understanding is this is needed for performance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167441
Approved by: https://github.com/oulgen
2025-11-10 17:29:56 +00:00
2fcf41dd8e Add the ruff rule and skip everything for now (#167360)
Part of https://github.com/pytorch/pytorch/issues/164878
We can start narrowing the skips and remove them as PRs keep landing.

This PR is just to setup the scaffolding, fix will be in follow up
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167360
Approved by: https://github.com/janeyx99
2025-11-10 17:10:15 +00:00
31ccd8f13e [AOTI] Fix a mixed-device bug for scatter_add (#167341)
Summary: Fix https://github.com/pytorch/pytorch/issues/166841. AOTI incorrectly generates a call to aoti_torch_cuda_scatter_reduce_two_out while the op should actually run on CPU. Fix by using the correct device when calling _generate_scatter_fallback in the wrapper codegen.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167341
Approved by: https://github.com/yushangdi
2025-11-10 16:59:44 +00:00
59307ca1bc [BE] adding documentation (#167334)
`torch.ao.quantization` and `torch.fx.experimental`

<img width="833" height="518" alt="Screenshot 2025-11-07 at 3 20 54 PM" src="https://github.com/user-attachments/assets/47b72f28-29bd-4bab-b41f-24d97419e411" />
<img width="892" height="560" alt="Screenshot 2025-11-07 at 3 20 45 PM" src="https://github.com/user-attachments/assets/129825ab-6706-41f2-964d-8774debab18c" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167334
Approved by: https://github.com/janeyx99
2025-11-10 14:46:42 +00:00
c28475db7c Update slow tests (#166844)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166844
Approved by: https://github.com/pytorchbot
2025-11-10 12:39:27 +00:00
74aec83841 [xla hash update] update the pinned xla hash (#167452)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned xla hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167452
Approved by: https://github.com/pytorchbot
2025-11-10 12:03:01 +00:00
52e744d68a [DTensor] Support convert StridedShard to shard order and vice versa (#166740)
We plan to use `StridedShard` to express `shard_order`. This PR adds the function to support the conversion between `StridedShard` and `shard_order`.

I moved some test related function into torch/testing/_internal/common_utils.py. We may only care about **_dtensor_spec.py** and **test_utils.py** in this PR for the review.

### How to convert shard order to StridedShard:
Considering the example:
- placements = $[x_0, x_1, x_2, x_3, x_4]$, all $x_?$ are shard on the same tensor dim.

Let's see how the shard order will impact the split_factor (sf). We loop from right to left in the placements to construct the split_factor by assuming different shard order. Starting from $x_4$, this should be a normal shard.

Then $x_3$. There are two possibilities, $x_3$'s order can be before $x_4$. If so, $x_3$'s sf=1, because $x_3$ is before $x_4$ in the placements. Else $x_3$'s order is after $x_4$, then the $x_3$'s sf should be the mesh dim size of $x_4$, which is $T(x_4)$:
<img width="820" height="431" alt="image" src="https://github.com/user-attachments/assets/f53b4b24-2523-42cc-ad6f-41f3c280db70" />

We can use this method to decide on the split factor for $x_2$, $x_1$ and so on.

### How to convert StridedShard to shard order:
This follows the same method above. We check all possible paths and use the real split_factor to see which path matchs the split_factor. If no such matches, the StridedShard is unable to be converted to shard order.

---

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166740
Approved by: https://github.com/ezyang
2025-11-10 09:35:10 +00:00
3cfbf98ea9 [xpu][feature] Add XPU support on torch.accelerator.get_memory_info (#162564)
# Motivation
Support XPU for `torch.accelerator.get_memory_info`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162564
Approved by: https://github.com/albanD
ghstack dependencies: #156812
2025-11-10 05:34:49 +00:00
47db55258b [MPS] sparse sparse mm (#167013)
Sparse sparse mm op implementation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167013
Approved by: https://github.com/malfet
2025-11-10 05:27:49 +00:00
50af6f3393 [MPS] erfinv for sparse mps (#166711)
Should be merged after #166708
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166711
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-11-10 05:25:31 +00:00
e545ba2d34 [DTensor] Fix Conv behavior for replicate stategy (#167402)
Pass `dim_map` to `_requires_data_exchange` and return False if both spatial and channels dimensions are replicated

Modify `test_conv1d` and `test_conv3d` to check values rather than just shape, and replicate `conv3d` across batch dimension

In general, feels like current Convolution implementation was written to work only if tensor is sharded across last dimention

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167402
Approved by: https://github.com/ezyang
2025-11-10 05:13:42 +00:00
a058bbdd6f [xpu][test] Enable profiler test for XPU (#165423)
Fixes #165130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165423
Approved by: https://github.com/EikanWang, https://github.com/atalman, https://github.com/mlazos
2025-11-10 04:02:59 +00:00
2c78080ec0 Register functorch XPU/HPU dispatch keys (#167095)
Fixes TestOperatorsXPU.test_data_write_errors_under_transform_xpu https://github.com/intel/torch-xpu-ops/issues/2237

Tests on other devices throw runtime error "_mutating directly with `.data` inside functorch transform is not allowed._", but XPU/HPU fails earlier on `_has_compatible_shallow_copy_type`. This check is not met only when calling tensor.data inside functorch call.

```cpp
bool _has_compatible_shallow_copy_type(const Tensor& self, const Tensor& from) {
  return self.unsafeGetTensorImpl()->has_compatible_shallow_copy_type(
      from.key_set());
}
```

### t.data
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `XPU, ADInplaceOrView, AutogradXPU, AutocastXPU` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU` |

### t.data inside functorch transform
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `ADInplaceOrView, AutogradOther, FuncTorchGradWrapper` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU, FuncTorchGradWrapper` |

### t.data inside functorch transform + XPU dispatch key
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `XPU, ADInplaceOrView, AutogradXPU, AutocastXPU, FuncTorchGradWrapper` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU, FuncTorchGradWrapper` |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167095
Approved by: https://github.com/guangyey, https://github.com/albanD
2025-11-10 03:10:22 +00:00
fe6615e397 Swap pallas test shard to 12.8 (#167428)
Getting some weird failures building cuda13, lets stick to what we know works
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167428
Approved by: https://github.com/jansel
2025-11-10 02:42:35 +00:00
abf31db2cc Introduce a new API torch.accelerator.get_memory_info (#156812)
# Motivation
`torch.cuda.mem_get_info` and `torch.xpu.mem_get_info` are widely used in other popular repos, such as
- 076313bd09/python/sglang/srt/utils.py (L378),
- 7ecc2d7f39/src/accelerate/utils/modeling.py (L822),
- 7ba34b1241/vllm/worker/worker.py (L150).
-
This PR introduces a unified API `torch.accelerator.get_memory_info` to cover this scenario.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156812
Approved by: https://github.com/albanD
2025-11-10 01:57:39 +00:00
a4c7856112 [Inductor][Grouped Gemm] Add Blackwell CuTeDSL Kernel (#167340)
Summary: This is a reland of https://github.com/pytorch/pytorch/pull/165036, which previously contained a minor bug in the logic that determined whether the kernel should be enabled. As a result, it was incorrectly activated on non-Blackwell GPUs.

Test Plan:
Inductor test (fbcode):
`INDUCTOR_TEST_DISABLE_FRESH_CACHE=1 TORCHINDUCTOR_CACHE_DIR=~/cutetest buck2 run mode/opt //caffe2/test/inductor:cutedsl_grouped_mm -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -m "ovr_config//third-party/pypi/nvidia-cutlass-dsl/constraints:4.2.1"`

Tritonbench (fbcode):
`clear; CUDA_VISIBLE_DEVICES=7 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 buck2 run mode/opt //pytorch/tritonbench:run -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -m "ovr_config//third-party/pypi/nvidia-cutlass-dsl/constraints:4.2.1" -- --op grouped_gemm --only aten_grouped_mm,preprocessed_pt2_cute_grouped_mm --precision bf16  --num-inputs 1 --metrics tflops,accuracy`

Tritonbench(oss):
`clear; CUDA_VISIBLE_DEVICES=2 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 python run.py --op grouped_gemm --only aten_grouped_mm,preprocessed_pt2_triton_grouped_mm --precision bf16  --num-inputs 1 --metrics tflops,accuracy`

Unit Tests(oss):
`clear; python test/inductor/test_cutedsl_grouped_mm.py`

Differential Revision: D86537373

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167340
Approved by: https://github.com/jananisriram
2025-11-10 00:29:07 +00:00
afb014541b Separately handle null data_ptr storages when creating unique ID (#167405)
## Summary
Previously fake/functionalized tensors that have `null` storage_ptr could segfault when checking for `.expired()` on weak storage ref, so handle `nullptr` storages separately, without checking their weakrefs.

Diagnosis and PR created by codex
------
[Codex Task](https://chatgpt.com/codex/tasks/task_e_690ea8790054832f90eaffb37ee0d8c8)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167405
Approved by: https://github.com/Skylion007
2025-11-09 23:13:56 +00:00
b91a2ab892 [2/N] Use context managers (#167404)
This PR fixes more context manager usage in Python code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167404
Approved by: https://github.com/mlazos
2025-11-09 13:38:14 +00:00
14a845a4ec [2/N] Use Python 3.10 typing (#167167)
This PR applies new `Union` and `Optional` typing syntax to some files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167167
Approved by: https://github.com/XuehaiPan, https://github.com/mlazos
2025-11-09 12:11:45 +00:00
5135ace3a3 Enable ruff UP035 rule (#167307)
This PR enables `UP035` rule of ruff.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167307
Approved by: https://github.com/Lucaskabela
2025-11-09 06:40:03 +00:00
e7c1905837 Fix test_fsdp_logging (#167312)
- The logger name in test_fully_shard_logging.py was wrong so the logs didn't happen.
- The `device` variable in test_fully_shard_logging is expected to be a string, so quote it
- `unittest.skipIf` is used so importing `unittest` instead of `unittest.mock` is required

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167312
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-11-09 05:38:11 +00:00
9cf623a209 Update inductor-unittest.yml (#167417)
i see failures like https://github.com/pytorch/pytorch/actions/runs/19189378182/job/54865171317?pr=167389

maybe this will fix it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167417
Approved by: https://github.com/yf225
2025-11-09 05:08:00 +00:00
06aa3ef3d3 Move types from typing_extensions to typing (#167185)
This PR moves some implemented types from typing_extensions to typing due to the recent update to Python 3.10.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167185
Approved by: https://github.com/janeyx99
2025-11-09 02:50:18 +00:00
0384104e23 Update pythoncapi_compat.h to 11cb80f2652cb2fe5231bf60b9dd98c83a4e25f4 (#167413)
Second attempt for https://github.com/pytorch/pytorch/pull/167138 with fixes for name conflicts in downstream packages.

Should slightly simplify https://github.com/pytorch/pytorch/pull/166342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167413
Approved by: https://github.com/Skylion007
2025-11-09 02:14:33 +00:00
325ec98009 [13/N] Apply ruff UP035 rule (#167048)
This PR continues to apply ruff UP035 rule to test code and some remaining torch files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167048
Approved by: https://github.com/Skylion007
2025-11-09 01:47:38 +00:00
47acdea74a another version of fixing CachingHostAllocatorImpl destructor (#167408)
Another version of #167347 that won't break xpu and should correctly handle runtime changes of `pinned_use_background_threads()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167408
Approved by: https://github.com/yingufan, https://github.com/Skylion007
2025-11-09 00:20:54 +00:00
71606b289c [BugFix] Fix compute_error in coo_mean_time and csr_mean_time (#166795)
The csr timing loop is nested inside the coo loop. duplicated and inconsistent measurements.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166795
Approved by: https://github.com/cyyever, https://github.com/ezyang
2025-11-08 23:57:15 +00:00
e342a7509a [pallas backend] add cpu backend and parametrize the tests (#167388)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167388
Approved by: https://github.com/jansel
2025-11-08 23:11:35 +00:00
27ac58bd70 Optimize global save-plan validation (#166820)
## Summary
- Fixes #163548 by replacing the quadratic chunk-overlap scan in `_validate_global_plan` with a sweep-line pass that sorts chunk intervals and keeps an active set via `bisect_right`, giving O(n log n) behavior for metadata validation.
- Add focused tests in `TestValidateGlobalPlan` covering overlapping and non-overlapping shard layouts to lock in the faster path.

## Testing
- python test/distributed/checkpoint/test_planner.py -k ValidateGlobalPlan

## Benchmarks
| chunks | old runtime | new runtime |
|--------|-------------|-------------|
| 1 024  | 0.121 s     | 0.0014 s    |
| 2 048  | 0.486 s     | 0.0027 s    |
| 4 096  | 2.474 s     | 0.0058 s    |
| 8 192  | 8.014 s     | 0.0126 s    |
| 16 384 | 32.740 s    | 0.026 s     |

@ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166820
Approved by: https://github.com/LucasLLC, https://github.com/Skylion007
2025-11-08 20:59:44 +00:00
406719c3da [MPS] SparseMps mv op (#166708)
Should be merged after #166561
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166708
Approved by: https://github.com/Skylion007
2025-11-08 20:03:49 +00:00
957570e4a3 [dynamo][guards] 1/N Guard selectively for DTensor (#165824)
A few internal jobs are observing very high guard overhead for DTensor.
Since we own DTensor, we can make those guards way faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165824
Approved by: https://github.com/Lucaskabela, https://github.com/bdhirsh
2025-11-08 19:28:28 +00:00
eeb6c96a89 [vision hash update] update the pinned vision hash (#167391)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vision hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167391
Approved by: https://github.com/pytorchbot
2025-11-08 05:58:11 +00:00
0b12e49795 [Inductor] Decouple flags for optimization and debug symbols (#167385)
Summary:
What: Decouple flags for optimization and debug symbols

Why: The current flag for debug symbols only compiles the .so binary in unoptimized mode

Differential Revision: D86363355

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167385
Approved by: https://github.com/hl475, https://github.com/jansel
2025-11-08 05:13:38 +00:00
87646e5db4 [dynamo][ac] Return all intermediates as outputs for AC Hop (#167192)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167192
Approved by: https://github.com/zou3519
2025-11-08 03:56:39 +00:00
29d6bb79e1 Use context managers (SIM115) (#166928)
This PR changes code to use context managers if possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166928
Approved by: https://github.com/Lucaskabela
2025-11-08 03:09:16 +00:00
c2924bbafa [dynamo] replace raise Unsupported(...) with unimplemented(...) (#167255)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167255
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos, https://github.com/zou3519
ghstack dependencies: #167150
2025-11-08 02:01:12 +00:00
a2f109dcc3 [dynamo] rename unimplemented_v2 -> unimplemented (#167150)
Also force the new `unimplemented`/old `unimplemented_v2` to explicitly specify the `gb_type`, `context`, `explanation`, and `hints` args.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167150
Approved by: https://github.com/mlazos, https://github.com/zou3519
2025-11-08 01:49:53 +00:00
ba5ffa2dca [5/N] Use key in dict for existence checks (#167311)
This PR uses `key in dict` expressions for existence checks of dict elements in Python code. This operation is more efficient than `key in dict.keys()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167311
Approved by: https://github.com/janeyx99, https://github.com/Lucaskabela
2025-11-08 01:43:12 +00:00
c131e4b390 Revert "[CP] Correctly compile create_cp_block_mask (#167153)"
This reverts commit 5a9ae7cefe679ff925a0aa7b9f5782fc93d4ef29.

Reverted https://github.com/pytorch/pytorch/pull/167153 on behalf of https://github.com/donigian due to breaking internal tests D86529123 ([comment](https://github.com/pytorch/pytorch/pull/167153#issuecomment-3505563239))
2025-11-08 01:33:13 +00:00
7fd15aa2bd Additional fix on top of D85172267 (#167267) (#167279)
Summary:

It seems
D80948073
has caused some issue on a lowering pkg built on trunk: https://fburl.com/mlhub/o6p60pno
error log: P2001933683
which we were able to lower successfully in older ien pkg: https://fburl.com/mlhub/1ro094zo

D85172267 fixed this issue for the if conditional, but issue still exists for the else conditional. Logic is moved right before if-else to cover both cases

Test Plan:
checkout D85605372

buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.platform=platform010 -c fbcode.nvcc_arch=a100,h100 -c fbcode.split-dwarf=true -c fbcode.dwp=true -c fbcode.enable_distributed_thinlto=true -c fbcode.use_link_groups=true fbcode//inference_enablement/model_processing/infra/components/lowering/re:re_cinder -- -r "$(cat ./fbcode/minimal_viable_ai/umia_v1/ig/ss_omni_exp/re_lower_aoti.json)"

with the diff, no issue was encountered.

Reviewed By: tissue3

Differential Revision: D86474796

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167279
Approved by: https://github.com/pianpwk
2025-11-08 01:28:49 +00:00
c45c966031 subproc_pool: Fix quiesce waitcounter (#167350)
Summary:
I was inspecting running jobs, and the quiesce waitcounter wasn't showing up.
Turns out this was a bad copy paste.

Test Plan: Primarily inspection

Reviewed By: masnesral

Differential Revision: D86457409

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167350
Approved by: https://github.com/aorenste, https://github.com/masnesral
2025-11-08 01:12:18 +00:00
d18c742779 [HOP][print]Add make_fx for the proxy with graph module print (#166920)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166920
Approved by: https://github.com/angelayi
ghstack dependencies: #166660
2025-11-08 00:34:24 +00:00
4957ae5838 Add API to annotate disjoint backward and handle in AC (#166536)
This adds zero-bubble / DualPipeV support for (S)AC

Before:
- AC will always retrigger recompute upon every distinct backward.

After:
- Any checkpointed regions encountered by backward under the same instance of this context manager will only trigger recompute at most once, even if there are multiple calls to backward.
- Backward calls under the same instance of this context manager must execute over non-overlapping regions of the backward graph even if retain_graph=True.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166536
Approved by: https://github.com/albanD
2025-11-08 00:21:25 +00:00
31d6d3ef5c [easy] Add new torch/csrc/stable/c/shim.h to existing nitpick (#167367)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167367
Approved by: https://github.com/janeyx99, https://github.com/malfet
2025-11-08 00:13:03 +00:00
2325c511e7 [dynamo] Make sym node vt creation via SymNodeVariable create (#167189)
This will help in the next PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167189
Approved by: https://github.com/williamwen42, https://github.com/zou3519
ghstack dependencies: #167160
2025-11-07 23:58:13 +00:00
d865156967 [dynamo][hops] Overwrite proxy of the original VT to the subgraph outputs (#167160)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167160
Approved by: https://github.com/zou3519
2025-11-07 23:58:13 +00:00
fbc0bd2e90 [DTensor][be] getting rid of unneccesary Partial check for norm functions (#167247)
**Summary:** While the implementation is correct, these checks are just a subset of the Partial placement checks that are done in https://github.com/pytorch/pytorch/pull/165962. This means for ops aten.linalg_vector_norm.default and aten._foreach_norm.Scalar, we're unnecessarily checking for Partial placements twice.

**Test Cases**
1. pytest test/distributed/tensor/test_math_ops.py -k test_vector_norm_partial
2. pytest test/distributed/tensor/test_math_ops.py -k test_foreach_norm_partial
3. pytest test/distributed/tensor/test_math_ops.py -k test_partial_reduction_ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167247
Approved by: https://github.com/XilunWu
2025-11-07 23:49:29 +00:00
70f5f55abf [Inductor-FX] Allocate tensors on device type instead of indexed device (#167358)
# Problem
The FX backend currently allocates tensors on an exact device index, such as `"cuda:0"`. In contrast, the Python backend allocates on a device type, such as `"cuda"`. This avoids edge cases where fake tensor propagation can fail due to mismatched devices.

# Fix
Allocate tensors on `device.type` instead of the device.

# Test plan
Added a CI test passing in sample inputs on an indexed device, and checking that the output device in the generated FX graph is not indexed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167358
Approved by: https://github.com/mlazos, https://github.com/nandesuka, https://github.com/eellison
2025-11-07 23:48:54 +00:00
69ecb562e7 [PT2 Compiler] Add annotation for dynamo disabled callables (#166341)
Summary: To make torch.export compatible with PT2 compile (which is done on top of exported model) we need to store torch._dynamo.disable attributes in exported model and later restore this after unflattening of exported model. This diff will add annotations to all nodes with torch._dynamo.disable, which will be preserved during exporting.

Test Plan:
```
buck test mode/opt caffe2/test:test_export -- 'test_dynamo_disable_annotations'
```
https://www.internalfb.com/intern/testinfra/testrun/6473924770741560

Differential Revision: D85302730

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166341
Approved by: https://github.com/williamwen42, https://github.com/angelayi
2025-11-07 23:28:00 +00:00
5062abe4e7 [CI][serialization] Fix exception regexes with Python-3.14 (#167333)
Not sure why, but running some tests (for example `test_weights_only_safe_globals_build`) with `pytest` in 3.14 makes global name `test_serialization.ClassThatUsesBuildInstruction` instead of expected `__main__.ClassThatUsesBuildInstruction`
Also, change expected exception type from `AttributeError` to `PicklingError`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167333
Approved by: https://github.com/atalman
2025-11-07 23:22:36 +00:00
c7007e7584 Update Kineto Submodule (#167343)
Summary: Title

Test Plan: CI

Differential Revision: D86538778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167343
Approved by: https://github.com/Skylion007, https://github.com/aaronenyeshi
2025-11-07 23:06:58 +00:00
09705ca9b2 [dynamo][guards] Fix mem leak in tensor subclass metadata guard (#167352)
Use cls instead of the object. Earlier the metadata guard was holding on
to the Dtensor causing mem leak.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167352
Approved by: https://github.com/Skylion007
2025-11-07 23:01:15 +00:00
ea6b0b5d0f add missing cpp standard lib in HeaderOnlyArrayRef.h (#167337)
Fixes #167315
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167337
Approved by: https://github.com/janeyx99
2025-11-07 23:00:08 +00:00
bbf852d87f Revert "Remove python workaround for ContextDecorator (#167049)"
This reverts commit 13d2cc7bd26e32cafff0377dda1c5ddc8d04c4ce.

Reverted https://github.com/pytorch/pytorch/pull/167049 on behalf of https://github.com/donigian due to breaking internal tests D86342845 ([comment](https://github.com/pytorch/pytorch/pull/167049#issuecomment-3505251296))
2025-11-07 22:32:45 +00:00
6392b986e7 Revert "[13/N] Apply ruff UP035 rule (#167048)"
This reverts commit ea44f12bce3eb05eaa9fa34943a3ffae04647fa5.

Reverted https://github.com/pytorch/pytorch/pull/167048 on behalf of https://github.com/donigian due to breaking internal tests D86342860 ([comment](https://github.com/pytorch/pytorch/pull/167048#issuecomment-3505232522))
2025-11-07 22:25:01 +00:00
32d30d96cf [ROCm][CI] unconditionally add gfx950, gfx115x to PYTORCH_ROCM_ARCH (#167299)
Included gfx950, gfx1150, and gfx1151 unconditionally in PYTORCH_ROCM_ARCH. Removed the ROCm 7.0 version check and refactored the architecture list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167299
Approved by: https://github.com/jeffdaily
2025-11-07 21:47:59 +00:00
46516efa85 [BE] use undeprecated from/to in libtorch_agnostic tests (#167126)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167126
Approved by: https://github.com/Skylion007
ghstack dependencies: #164991, #165152, #165153, #165953
2025-11-07 21:31:30 +00:00
84b2147b85 Introducing the StableIValue representation of list :D (#165953)
Some important notes:
a) Just like IValues steal the ownership of ArrayRefs and any std::vectors in order to convert the inner elements into IValues, we do the same thing with StableIValue. This O(N) traverse is ineluctable.
b) As a result, since StableIValues are owning and our contract is that to<T>(StableIValue) transfers ownership, you cannot ever convert from StableIValue to a nonowning HeaderOnlyArrayRef<V>.

We handle memory similar to AtenTensorHandle, but we have a StableListHandle!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165953
Approved by: https://github.com/malfet
ghstack dependencies: #164991, #165152, #165153
2025-11-07 21:31:30 +00:00
1727a71cb6 Create pallas test shard (#167143)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167143
Approved by: https://github.com/malfet
ghstack dependencies: #167243
2025-11-07 21:05:54 +00:00
fb9e10fe25 Revert "Update pythoncapi_compat.h (#167138)"
This reverts commit c90a976370945af052bb7b0db86240fa6f321cd6.

Reverted https://github.com/pytorch/pytorch/pull/167138 on behalf of https://github.com/donigian due to Sorry but this is breaking internally. See diff D86458778 for details. ([comment](https://github.com/pytorch/pytorch/pull/167138#issuecomment-3504895388))
2025-11-07 20:53:14 +00:00
4e277e6323 inductor: compile_worker - Fix potential race condition with quiesce waitcounters (#167025)
Summary:
If quiesce ends up called twice (which is likely not possible with the timer based implementation, but possible with either manual calls, or with the context manager implementation), this assertion fires.

Instead make this assertion tolerant to rentrant calling of quiesce

Test Plan: Added a explicit test which calls quiesce twice.

Differential Revision: D86251534

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167025
Approved by: https://github.com/masnesral
2025-11-07 20:49:34 +00:00
ba327b7a5c [BE][Typing][Dynamo] Type torch/_dynamo/variables/functions.py (#167103)
Provides type coverage to torch/_dynamo/variables/dicts.py

Coverage report:
`mypy torch/_dynamo/variables/functions.py --linecount-report /tmp/coverage_log`

Compare before to after - we go from 0 lines and 0 funcs covered to 2698 lines and 166 funcs covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167103
Approved by: https://github.com/mlazos, https://github.com/fxdawnn
2025-11-07 20:38:08 +00:00
8eb21304ab [DTensor] ignore fresh unbacked symbols in shard prop (#166989)
This fixes 2 issues with the DTensor data-dependent test case:

1) ShapeEnv not found when doing shard prop on data-dependent ops - fix was to detect the outer tracing fake mode. Maybe ShardingPropagator should just own a FakeMode & ShapeEnv for these purposes? The previous behavior was to initialize a new fake mode on every call.

2) Pending unbacked symbols not found. This happens because DTensor dispatch runs fake prop twice, once while figuring out the output sharding: 2bba37309b/torch/distributed/tensor/_sharding_prop.py (L175) and again to actually get the resulting local tensor: 2bba37309b/torch/distributed/tensor/_dispatch.py (L254-L255) With data-dependent ops, both calls will produce an unbacked symbol, but symbols in the first invocation are never surfaced, producing this error, so we ignore pending symbols from this site.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166989
Approved by: https://github.com/ezyang
2025-11-07 20:18:41 +00:00
b83a3f6e87 compile time comm benchmarking (#167100)
Adds an option to do compile time collective benchmarking for comms/compute overlap scheduling. As with the comm benchmarks, these are all gathered, and each rank uses the median result to ensure consistency. thanks to @ruisizhang123 who had done this previously.

We log the compile time benchmark, the inductor analytic result, and the nccl estimator result to tlparse.

TODO:
- mechanism to seed collective estimates with the existing tlparse (or perfetto) to use for deterministic, pgo'd estimates
- interpolate results between powers of 2, and also do the actual benchmarking for latency calculation. both of these need to be meta aware since reduce scatter needs to be divisible by group_size, not hard but leaving for a subsequent pr.

Example output tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/eellison/custom/rank_0/-_0_0_0/node_runtime_estimation_10.json?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167100
Approved by: https://github.com/IvanKobzarev
2025-11-07 20:13:37 +00:00
289b47e657 [MPS] empty matrix x vec mul fix (#166561)
Fixes empty matrix x vector. Discovered when implementing an op for sparse tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166561
Approved by: https://github.com/eqy, https://github.com/albanD
2025-11-07 20:05:46 +00:00
c20308b79e [Test CI] Bump ruff to 0.14.4 (#167286)
This PR bumps ruff to 0.14.4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167286
Approved by: https://github.com/janeyx99, https://github.com/Skylion007
2025-11-07 20:05:10 +00:00
4c41e9bde7 making TORCH_CHECK_{COND} non-fatal (#167004)
TORCH_CHECK is non-fatal by design, but TORCH_CHECK_{COND} macros are fatal. this is confusing, and we should limit fatality to the set of debug macros.

Differential Revision: D86168955

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167004
Approved by: https://github.com/malfet
2025-11-07 19:48:19 +00:00
2f5223564e [ez] Remove experiment for uploading all test runs (#167133)
reverts #165484

after #166988 they are just uploaded while its running
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167133
Approved by: https://github.com/malfet
2025-11-07 19:38:36 +00:00
28615a765d Fix: list index out of range with softmax when using 0 dim (#166547)
Fixes #163971

Problem:
PyTorch's inductor compiler crashed with IndexError: list index out of range when compiling code that uses  0-dimensional tensors with operations like torch.softmax(scalar_tensor, dim=0).

A 0-dim tensor has shape = torch.Size([]) (empty shape)

```
ndim = 0 (zero dimensions)

len(shape) = 0 (no indices to access)

# Line 972: Pad other_shape to match inp dimensions
other_shape = [1] * (inp_ndim - len(other_shape)) + list(other_shape)

# For scalar tensors:
# inp_ndim = 0  # as input is scalar
# other_shape = []
# Result: [1] * (0 - 0) + [] = [] (still empty!)

dim = match.kwargs["dim"]  # dim = 0
if isinstance(dim, int):
    dim = (dim,)

# crash is happening here!
return all(statically_known_true(other_shape[d] == 1) for d in dim)
#                                 ^^^^^^^^^^^^^^^^
#                                 Tries other_shape[0] but other_shape = [] (empty!)
#                                 → IndexError: list index out of range
```

The function _other_is_broadcasted_in_dim() is an optimization check for a softmax fusion pattern. It verifies whether it's safe to rewrite:

```
# From
scaled = inp * other
result = scaled - scaled.amax(dim, keepdim=True)

# To this more stable form:
result = (inp - inp.amax(dim, keepdim=True)) * other
```

The optimization is only valid if other is constant across the reduction dimension (i.e., broadcasted to size 1 in that dimension). Otherwise, scaling changes which element is the maximum.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166547
Approved by: https://github.com/jansel
2025-11-07 19:32:43 +00:00
d1446ad75c Register floor_divide.out for MTIA (#167280)
Differential Revision: D86468749

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167280
Approved by: https://github.com/albanD
2025-11-07 19:31:51 +00:00
e401a56b96 [ez] Remove some dead code from test artifact related files (#166966)
Remove circle ci path since it's no longer used

Remove function that is not used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166966
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-11-07 18:14:44 +00:00
22650c89fb [ROCm] Update skip_if_lt_x_gpu to work with MultiProcContinuous class (#167281)
- Since MultiProcContinuous class spawns one process per GPU and runs UT in each of the processes, we need to ensure we are propagating the exit code associated with skip all the way to the main worker thread that spawned all the child processes.
- This commit also updates several UTs that are meant for 4 GPUs but incorrectly calls skip_if_lt_x_gpu with 2 as an input. Examples:
    - test_replicate_with_fsdp.py
    - test_dtensor_resharding.py
    - test_state_dict.py
    - test_functional_api.py: Fix typo. multi-accelerator doesn't exit, replaced with multi-gpu
    - test_op_strategy.py: world_size was hardcoded
    - test_math_ops.py: UT written for 4 GPU, so skipping for anything less
    - test_schedule_multiproc.py: All UTs in this suite are required to run on 2+ GPUs, therefore, adding skips if less than 4 GPUs are supplied

Fixes https://github.com/pytorch/pytorch/issues/166875

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167281
Approved by: https://github.com/jeffdaily
2025-11-07 18:11:48 +00:00
c62a17a2fb [ez] Remove some unused vars in common_utils.py (#166453)
I can't find where these are used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166453
Approved by: https://github.com/malfet
2025-11-07 18:09:40 +00:00
713e289ae7 [dynamo][pytree] support more optree functions by polyfill the underlying CXX functions directly (#167292)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167292
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #167221, #167211
2025-11-07 18:09:19 +00:00
69784a0dbe [dynamo][pytree] add polyfills for optree path APIs (#167211)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167211
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #167221
2025-11-07 17:53:32 +00:00
3c2409c465 Refactor recursive call of collect_temp_source (#166714)
Recursive function call creates a reference cycle: closure <- function <- cell inside closure
Capturing self (PyCodegen instance) in same closure prolongs it's life until next gc.collect() which might result in worse resource management

After the introduction of e9209e0 OOM issues has been observed. Looking for reference cycles one has been uncovered that would result in the prolonging lifetime of tensors. As the result of that OOM issues might occur. Such a dependency chain has been uncovered:
<img width="1059" height="540" alt="image" src="https://github.com/user-attachments/assets/359a8534-e7cd-491f-be40-547c2af5cbbc" />

At the end of it a reference cycle can be found that consists of a closure for function collect_temp_source, the function itself, and a cell object inside closure that would point to the function due to the recursive call.

This issue can either be resolved by removing recurrency or removing PyCodegen instance from the closure.
Another precaution that can be made is to explicitly empty f_locals dict. This way we cut the tensor from the chain leading to reference cycle.

Fixes #166721

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166714
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007, https://github.com/jeromean, https://github.com/williamwen42, https://github.com/mlazos
2025-11-07 17:52:54 +00:00
724cd32b0c [PT2 Compiler] Add flag in dynamo disable wrapper to indicate reursive disable (#165790)
Summary: After torch._dynamo.disable is applied, wrapped method does not have any flag to indicate whether it was disabled recursively or not. This flag is needed if to preserve dynamo disable methods in torch.export-ed model

Test Plan:
```
buck test mode/opt caffe2/test/dynamo:test_dynamo -- 'test_disable_recursive_flags'
````
https://www.internalfb.com/intern/testinfra/testrun/7599824674075603

Differential Revision: D84949143

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165790
Approved by: https://github.com/angelayi, https://github.com/williamwen42
2025-11-07 17:48:20 +00:00
b62935d1a5 fix alpha beta in decomp (#167317)
fix for https://github.com/pytorch/pytorch/issues/167313

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167317
Approved by: https://github.com/zou3519
ghstack dependencies: #161404
2025-11-07 17:42:13 +00:00
ccc8c117dc Codeowner/Labeler updates post-Blas-reorgs (#167130)
Summary:

Previous PRs have split out scaled/grouped Blas routines into
their own files. This updates the codeowners and labeler to reflect
those changes.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167130
Approved by: https://github.com/drisspg
2025-11-07 17:27:41 +00:00
86db4de10f [PP] PP Runtime Features for supporting Graph Based execution (#167277)
Allow overriding UNSHARD, RESHARD and REDUCE_GRAD actions.
Enable running pp backward without torch.grad.is_enabled().

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167277
Approved by: https://github.com/wconstab
2025-11-07 17:11:14 +00:00
12860892f8 Revert "[Inductor][Grouped Gemm] Add Blackwell CuTeDSL Kernel (#167182)"
This reverts commit 77b70970f70d53de71b9703ad4c3199d714c535a.

Reverted https://github.com/pytorch/pytorch/pull/167182 on behalf of https://github.com/NikhilAPatel due to breaks local source build ([comment](https://github.com/pytorch/pytorch/pull/167182#issuecomment-3503598156))
2025-11-07 16:45:23 +00:00
694592ac1e Move enrich_profiler_metadata config import out of gm.recompile() (#167114)
Fixes T243967987

Move `enrich_profiler_metadata` from `torch._dynamo.config` to `torch.fx.experimental._config`.

We cannot import anything inside recompile(), it made some perf regress internally. We move the config so we can import it at the top of `graph_module.py` without causing any circular import.

We also cannot delete the old config right now because some internal tests rely on copies of the old `graph_module.py` cpp file in unit tests. But I think we should be able to delete the old config soon after this PR lands.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167114
Approved by: https://github.com/angelayi
2025-11-07 16:12:47 +00:00
285748e838 fix the cpp_builder error under riscv (#167071)
**fix the cpp_builder error under riscv**

`g++: error: ‘-march=native’: ISA string must begin with rv32 or rv64`

(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]   File "/usr/local/lib64/python3.11/site-packages/torch/_inductor/cpp_builder.py", line 1718, in build
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]     run_compile_cmd(build_cmd, cwd=_build_tmp_dir)
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]   File "/usr/local/lib64/python3.11/site-packages/torch/_inductor/cpp_builder.py", line 401, in run_compile_cmd
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]     _run_compile_cmd(cmd_line, cwd)
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]   File "/usr/local/lib64/python3.11/site-packages/torch/_inductor/cpp_builder.py", line 396, in _run_compile_cmd
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]     raise exc.CppCompileError(cmd, output) from e
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] torch._inductor.exc.InductorError: CppCompileError: C++ compile error
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] Command:
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] g++ /tmp/tmpv8qz53jp/header.hpp -D TORCH_INDUCTOR_CPP_WRAPPER -D STANDALONE_TORCH_HEADER -D C10_USING_CUSTOM_GENERATED_MACROS -fPIC -O3 -DNDEBUG -fno-trapping-math -funsafe-math-optimizations -ffinite-math-only -fno-signed-zeros -fno-math-errno -fexcess-precision=fast -fno-finite-math-only -fno-unsafe-math-optimizations -ffp-contract=off -fno-tree-loop-vectorize -march=native -Wall -std=c++17 -Wno-unused-variable -Wno-unknown-pragmas -fopenmp -I/usr/include/python3.11 -I/usr/local/lib64/python3.11/site-packages/torch/include -I/usr/local/lib64/python3.11/site-packages/torch/include/torch/csrc/api/include -D_GLIBCXX_USE_CXX11_ABI=1 -E -P -o /tmp/tmpv8qz53jp/header.i
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] Output:
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] g++: error: ‘-march=native’: ISA string must begin with rv32 or rv64

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167071
Approved by: https://github.com/malfet
2025-11-07 16:01:30 +00:00
192034c41b [easy][dynamo][pytree] simplify pytree polyfill module by move out the guard-if (#167221)
Move the guard-if in `polyfills.pytree` to `polyfills.loader` and dedent the code in the if-branch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167221
Approved by: https://github.com/Lucaskabela
2025-11-07 15:23:03 +00:00
5bfce8f345 Unit test for torch.compile bmm dtype (#167140)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167140
Approved by: https://github.com/atalman, https://github.com/mlazos
2025-11-07 14:59:00 +00:00
edd611f3b0 [CI] Upgrade Ubuntu 24.04 for XPU CI tests (#162475)
As the title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162475
Approved by: https://github.com/EikanWang, https://github.com/atalman
2025-11-07 14:05:16 +00:00
aded2ebb90 [3/N] Add return types of Python functions (#167287)
This PR adds return types to some Python functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167287
Approved by: https://github.com/mlazos
2025-11-07 13:50:33 +00:00
5bda7afa05 [9/N] Fix unused loop variables in tests (#167290)
This PR fixes unused loop variables in tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167290
Approved by: https://github.com/mlazos
2025-11-07 11:45:31 +00:00
341e924981 [4/N] Use key in dict for existence checks (#167285)
This PR uses `key in dict` expressions for existence checks of dict elements in Python code. This operation is more efficient than `key in dict.keys()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167285
Approved by: https://github.com/mlazos
2025-11-07 09:47:17 +00:00
5a9ae7cefe [CP] Correctly compile create_cp_block_mask (#167153)
Currently we re-compile create_block_mask every time, which is not very efficient and the global compilation also causes some issues. This PR lazily compile the create_block_mask and does it only once.

Fixes https://github.com/pytorch/pytorch/issues/167064

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167153
Approved by: https://github.com/drisspg, https://github.com/XilunWu
2025-11-07 09:31:45 +00:00
3d59e8aadf [14/N] Apply ruff UP035 rule (#167208)
This PR continues to apply the `UP035` ruff rule and add `collections.abc` to dynamo checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167208
Approved by: https://github.com/mlazos
2025-11-07 09:21:51 +00:00
4cf1d1af22 [Inductor][Tritonparse] Ensure inductor meta has config_args (#167261)
Summary: Before calling the tritonparse hook with `config_args`, ensure that we set `config_args` within `inductor_meta`. This way, even if it is not set, the hook still gets run and we can at least get the launch arguments.

Test Plan: Tritonparse tests

Differential Revision: D86463732

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167261
Approved by: https://github.com/FindHao
2025-11-07 08:55:47 +00:00
05b8214e6a Added a couple of utils for Pallas TPU backend. (#167264)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167264
Approved by: https://github.com/oulgen
2025-11-07 08:23:02 +00:00
35d2da32bd [ROCm][CI] Separate out rocm from slow workflow (#167262)
Running slow.yml on every commit is straining our limited MI200 capacity. Reducing the frequency in line with other MI200-based workflows as per https://github.com/pytorch/pytorch/pull/167220

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167262
Approved by: https://github.com/jeffdaily

Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
2025-11-07 07:38:59 +00:00
0968e74266 [ROCm][CI] Run PR-Based workflow runs on mi300 nodes. (#167225)
This PR is meant to swap the PR-based ciflow tags from the mi200 nodes (less stable) to the mi300 nodes (more stable). This will ensure that developers see consistent testing on their PRs as well as on main. This PR does all of the following:

- Rename rocm.yml to rocm-mi200.yml : for clarity
- Add ciflow/rocm-mi200 trigger to rocm-mi200.yml : for devs who want to opt-in to single-GPU unit tests on MI200
- Move ciflow/rocm trigger from rocm-mi200.yml to rocm-mi300.yml : so PRs target MI300 runners by default

- Rename inductor-rocm.yml to inductor-rocm-mi200.yml : for clarity
- Remove ciflow/inductor-rocm trigger from inductor-rocm-mi200.yml : prevent MI200 inductor config unit tests being triggered by default
- Add ciflow/inductor-rocm-mi200 trigger to inductor-rocm-mi200.yml : for devs who want to opt-in to inductor config unit tests on MI200
- Move ciflow/periodic trigger from periodic-rocm-mi200.yml to periodic-rocm-mi300.yml : so PRs target MI300 runners by default

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167225
Approved by: https://github.com/jeffdaily, https://github.com/huydhn

Co-authored-by: Jithun Nair <jithun.nair@amd.com>
2025-11-07 07:37:34 +00:00
57dd6a0656 [OC][Torch] Extend autotune options for OC OBA 200x shapes (#166931)
Summary:
Add four best configs for shapes of the OC OBA 200x model:
```
M=2048 N=2048 K=12288
triton_mm_35 0.1526 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=64, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=True, kpack=2, matrix_instr_nonkdim=16, waves_per_eu=0, num_stages=2, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0

M=2048 N=52416 K=1536
triton_mm_12 0.4604 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=True, kpack=2, matrix_instr_nonkdim=16, waves_per_eu=0, num_stages=2, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0

M=2048 N=12288 K=2048
triton_mm_9 0.1444 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=256, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=True, kpack=2, matrix_instr_nonkdim=16, waves_per_eu=0, num_stages=2, num_warps=8, num_consumer_groups=0, num_buffers_warp_spec=0

M=2048 N=2048 K=52416
triton_mm_35 0.6505 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=128, BLOCK_M=64, BLOCK_N=128, EVEN_K=False, GROUP_M=8, USE_FAST_ACCUM=True, kpack=2, matrix_instr_nonkdim=16, waves_per_eu=0, num_stages=2, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
```

Test Plan:
Run tritonbench for torch fp8(_scaled_mm) for all above shapes, e.g.

```
TRITON_PRINT_AUTOTUNING=1 buck2 run mode/opt-amd-gpu -c fbcode.enable_gpu_sections=true //pytorch/tritonbench:run -- --op fp8_gemm --only pt2_fp8_gemm --metrics tflops,accuracy --m 2048 --n 2048 --k 12288
```

Differential Revision: D86158497

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166931
Approved by: https://github.com/jananisriram
2025-11-07 07:08:48 +00:00
7318ed627b [user-streams] Trace events with the new ops (#167177)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167177
Approved by: https://github.com/anijain2305
ghstack dependencies: #167175, #167176, #167180, #167195, #167260
2025-11-07 06:25:35 +00:00
5b2ad2d5dc [user-streams] Add fallbacks for record and wait event (#167260)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167260
Approved by: https://github.com/shunting314
ghstack dependencies: #167175, #167176, #167180, #167195
2025-11-07 06:25:35 +00:00
faba6e205f [pallas backend] use dlpack directly (#167243)
previous version does not work on jax 0.8

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167243
Approved by: https://github.com/yf225, https://github.com/jansel
2025-11-07 05:54:51 +00:00
3261149aa3 [dynamo] remove old unimplemented() call (#167149)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167149
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
ghstack dependencies: #167001, #167146, #167159
2025-11-07 05:30:40 +00:00
bd7e18bc57 [dynamo] unimplemented -> unimplemented_v2 in torch/_subclasses/meta_utils.py (#167159)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167159
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
ghstack dependencies: #167001, #167146
2025-11-07 05:30:40 +00:00
643b3bc8f3 [dynamo] unimplemented -> unimplemented_v2 in variables/higher_order_ops.py (#167146)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167146
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
ghstack dependencies: #167001
2025-11-07 05:30:40 +00:00
91b626e2ef [dynamo] unimplemented -> unimplemented_v2 for the rest of variables/misc.py (#167001)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167001
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
2025-11-07 05:30:40 +00:00
bf8297afe0 [inductor] let mix-order-red tune XBLOCK and num-stages (#167161)
A few improvements for autotuning
- while testing mix order reduction for internal workloads, Paul found that tuning num-stages could be very helpful for triton kernel. The idea is illustrated on his diff: https://www.internalfb.com/diff/D86341591
- when rnumel is small, larger XBLOCK could be helpful for perf

This PR adds the ability to autotune num-stages and XBLOCK. This brings further 19% speedup for RMSNorm BWD on B200.

Testing result:

  eager 11 data points
  compiled 11 data points, 17.07x speedup (was 14.39x before the PR. The PR brings further 19% speedup)
  quack 11 data points, 12.72x speedup
  liger 11 data points, 11.75x speedup
  compiled-no-fusion 11 data points, 9.93x speedup

<img width="3564" height="2368" alt="RMSNormBackward_bench" src="https://github.com/user-attachments/assets/3e415242-a988-42bf-8a47-4ed5f11148a3" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167161
Approved by: https://github.com/jansel
ghstack dependencies: #166669, #166938
2025-11-07 04:49:53 +00:00
3f03f84ce2 [inductor] fix dashbaord regression due to mix order reduction (#166938)
The PR includes a misc list of fixes for the regressions I see from the dashboard:
1. the dashboard may use very small shape for rmsnorm backward. The data set can be fully cached in L2 thus mix order reduction does not show much benefit and may even has worse perf. Disable mix order reduction for small workload
2. disable the autotuning of split size by default to avoid the compilation time hit
3. avoid mix order reduction if there is non-contiguous memory access. Previously the check is only done for shared buffers accessed by both reductions. It turns out to be necessary to expand the check for buffers only accessed by one reduction. Check test test_avoid_non_coalesced_access which is simplified from a TIMM model.  Note that larger XBLOCK could fix the perf problem and make mix order reduction still applicable. But I don't think that's high priority. With larger XBLOCK, the kernel would consume much more shared memory/registers. That could also cause perf issue.

Dashboard result [here](https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Wed%2C%2029%20Oct%202025%2003%3A40%3A22%20GMT&stopTime=Wed%2C%2005%20Nov%202025%2004%3A40%3A22%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/shunting314/257/head&lCommit=b6f4a24ea5f7574d6b1d3b854022aa09d70593db&rBranch=main&rCommit=22a745737a09b0600bb0b85b4c0bbb9fb627f137).

<img width="1484" height="531" alt="Screenshot 2025-11-04 at 10 58 48 PM" src="https://github.com/user-attachments/assets/60cda211-3cc4-4fe1-9eaf-d2fb2c7d15a1" />

- the perf drop for TIMM (default) is not real, it's due to one more model passed the accuracy test
- the perf drop for HF (cudagraphs) is not real. I checked each individual models that showed regressed on the dashboard. And they fall into the following categories
   - showed regressed, but absolute execution get reduced. e.g. OPTForCausalLM
   - showed regressed, but has slight speedup on h100 dev server: MobileBertForMaskedLM . speedup from 57.847709ms to 56.711640 ms
   - showed regressed, but the PR does not change the kernels generated (skip mix order reduction due to small workload or other reasons). e.g. XGLMForCausalLM, AlbertForMaskedLM .

Note that the neutral result on the dashboard is expected due to small workload size. For large workload,  we see about 1.5x geomean for rmsnorm/layernorm  backward on average and 2.2x for some shapes used by internal model. For 8GPU torchtitan training on llama3, we see 4% TPS (tokens per second) improvement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166938
Approved by: https://github.com/jansel
ghstack dependencies: #166669
2025-11-07 04:49:53 +00:00
8a72188828 Raise error for 1D (size > 1) -> 0D parameter loads (#166335)
Fixes #165873

# Title
Fix load_state_dict: raise error for 1D (size > 1) -> 0D parameter loads

## Summary
This PR fixes a bug where loading a 1D tensor (size > 1) into a scalar (0D) parameter would silently take the first element instead of raising an error. The fix preserves backward compatibility for 1D tensors of size 1 while catching genuine shape mismatches.

## Motivation
Previously, loading a 1D tensor like torch.randn(32000) into a 0D scalar parameter would silently slice the first element, leading to silent data loss and potential bugs. This change ensures users get a clear error when there's a genuine shape mismatch.

## Behavior change

Before:
1D tensor (any length) -> 0D scalar -> silently coerced using input_param[0]

After:
- 1D tensor (size == 1) -> 0D scalar -> allowed (backward compatibility)
- 1D tensor (size > 1) -> 0D scalar -> raises RuntimeError with size mismatch message

In torch/nn/modules/module.py, _load_from_state_dict, added input_param.shape[0] == 1 check to the backward compatibility condition to only allow single-element 1D tensors.

## Tests
Added test_scalar_param_1d_tensor_raises to verify that loading 1D tensors of size > 1 raises an error, while size 1 loads successfully.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166335
Approved by: https://github.com/mikaylagawarecki
2025-11-07 04:43:11 +00:00
d325aa1877 [vision hash update] update the pinned vision hash (#167032)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vision hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167032
Approved by: https://github.com/pytorchbot
2025-11-07 04:22:57 +00:00
7aedf3a576 Update torch-xpu-ops commit pin (#166945)
Update the torch-xpu-ops commit to [intel/torch-xpu-ops@9aac5a](9aac5a1ddf), includes:

- Enable FP8 concat/where/flip/index_put/index.Tensor on XPU backend
- Remove BUILD_SPLIT_KERNEL_LIB flag
- Fix the initialization order of ProcessGroupXCCL
- Separates communication initialization logic from getXCCLComm
- Fix segmentation fault in NLLLoss kernel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166945
Approved by: https://github.com/EikanWang
2025-11-07 03:49:42 +00:00
eaf4815c1f Remove workarounds for older Python (#167173)
This PR removes workarounds for older Python.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167173
Approved by: https://github.com/albanD
2025-11-07 03:37:56 +00:00
a913b2bb93 [2/N] Add return types of Python functions (#167203)
This PR adds return types of some Python functions. Most of them return `None`. The types were added automatically by ruff ANN rules.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167203
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-11-07 03:22:57 +00:00
1632876edf [3/N] Use key in dict for existence checks (#167214)
This PR uses `key in dict` expressions for existence checks of dict elements in Python code. This operation is more efficient than `key in dict.keys()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167214
Approved by: https://github.com/Lucaskabela
2025-11-07 02:49:15 +00:00
0e1f76f77e Add two new docker images with Python 3.11/3.12 (#167092)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167092
Approved by: https://github.com/malfet, https://github.com/atalman
2025-11-07 02:44:03 +00:00
ae67a5a9d3 [ROCm] Specialized binary elementwise broadcast kernel for mixed dtypes with float/bfloat16/half (#167233)
* `c10::fetch_and_cast` and `c10::cast_and_store` produce branchy code since it supports all datatypes
* So, we do special handling for binary elementwise broadcast with mixed dtypes of float/bfloat16/half
* This improves performance

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167233
Approved by: https://github.com/jeffdaily
2025-11-07 02:42:09 +00:00
292bd62c71 Introduce TEST_ACCELERATOR and TEST_MULTIACCELERATOR to simplify UT (#167196)
# Motivation
This PR aims to introduce two variables (`TEST_ACCELERATOR` and `TEST_MULTIACCELERATOR`) to simplify UT generalization. Since out-of-tree backends may be imported later, these variables are defined as lazy values.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167196
Approved by: https://github.com/albanD
2025-11-07 01:51:18 +00:00
0e512ee9f0 Make pyrefly installable by lintrunner on Python-3.14 (#167270)
By pinning numpy to 2.3.4 for 3.14

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167270
Approved by: https://github.com/huydhn
2025-11-07 01:43:25 +00:00
31ac764239 Revert "Move enrich_profiler_metadata config import out of gm.recompile() (#167114)"
This reverts commit d144382dc96f109a6254c38734779e0a09fb7134.

Reverted https://github.com/pytorch/pytorch/pull/167114 on behalf of https://github.com/jeffdaily due to broke rocm ([comment](https://github.com/pytorch/pytorch/pull/167114#issuecomment-3500057321))
2025-11-07 01:21:15 +00:00
b228f6d180 Revert "[ROCm] Enable StaticCudaLauncher for ROCm (#166492)"
This reverts commit ba2e6b0b4f1718767762d7b20558d4de943be71b.

Reverted https://github.com/pytorch/pytorch/pull/166492 on behalf of https://github.com/jeffdaily due to test/inductor/test_ck_backend.py::TestCKBackend::test_max_autotune_precompile_matmul_dynamic_max_autotune_gemm_backends_CK_autotune_in_subproc_True [GH job link](https://github.com/pytorch/pytorch/actions/runs/19147453561/job/54731084387) [HUD commit link](ba2e6b0b4f) ([comment](https://github.com/pytorch/pytorch/pull/166492#issuecomment-3500049276))
2025-11-07 01:17:13 +00:00
e678450a69 [cuDNN][SDPA][Convolution] Expose cuDNN runtime version in CUDA hooks (#167111)
cuDNN dispatching heuristics rely on versions checks but currently only that compile-time version is exposed, if we want to allow users to resolve https://github.com/pytorch/pytorch/issues/166643 on their end by updating their cuDNN version locally we need to check the runtime version rather than compile-time version.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167111
Approved by: https://github.com/Skylion007
2025-11-07 01:15:18 +00:00
552c3f3e18 Add THO_DISPATCH_V2 macro (#166629)
The THO_DISPATCH_V2 macro is same as AT_DISPATCH_V2 but usable in headeronly context or stable ABI codes. The main difference is that AT_DISPATCH_V2 supports selective build while THO_DISPATCH_V2 does not.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166629
Approved by: https://github.com/janeyx99, https://github.com/albanD
ghstack dependencies: #165856
2025-11-07 01:13:55 +00:00
5b36e4e30f Move AT_DISPATCH_V2 helper macros to headeronly and add THO_DISPATCH_V2_TMPL (#165856)
Problem: the migration of `AT_DISPATCH_V2` macros to headeronly cannot be a simple copy-paste of macro definitions from one header file to another because the macros `AT_DISPATCH_SWITCH` and `AT_DISPATCH_CASE` may use functions that cannot be migrated to headeronly, e.g. when a selective build feature is enabled, there will be functions that are generated. On the other hand, when not using selective build, the dtype-dispatch macros are perfectly suitable for migrating to headeronly.

In this PR, the migration problem above is tackled by refactoring `AT_DISPATCH` related macros into headeronly macros and non-headeronly macros while preserving the current API and semantics. For instance, consider the current V2 macro definitions:
```c++
#define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
  AT_DISPATCH_SWITCH(TYPE, NAME, AT_AP_VAR(AT_WRAP(BODY), TYPE, __VA_ARGS__))
#define AT_AP_VAR(N, T, ...) \
  AT_EXPAND(AT_CONCAT(AT_AP, AT_NUM_ARGS(__VA_ARGS__))(AT_WRAP(N), __VA_ARGS__))
#define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
...
```
where the headeronly-migration-problematic parts are using AT_DISPATCH_SWITCH and AT_DISPATCH_CASE macros (defined in ATen/Dispatch.h). In this PR, we introduce parametric versions of `AT_DISPATCH_V2` and `AT_AP1` macros that have `_TMPL` suffices, have DISPATCH_SWITCH and DISPATCH_CASE arguments, and are define in `torch/headeronly/core/Dispatch_v2.h`:
```c++
#define THO_DISPATCH_V2_TMPL(                               \
    DISPATCH_SWITCH, DISPATCH_CASE, TYPE, NAME, BODY, ...) \
  DISPATCH_SWITCH(                                         \
      TYPE,                                                \
      NAME,                                                \
      THO_AP_VAR_TMPL(DISPATCH_CASE, AT_WRAP(BODY), TYPE, __VA_ARGS__))
#define THO_AP_VAR_TMPL(C, N, T, ...) \
  AT_EXPAND(                         \
      AT_CONCAT(THO_AP, AT_NUM_ARGS(__VA_ARGS__))(C, AT_WRAP(N), __VA_ARGS__))
#define THO_AP1(C, N, _1) C(_1, N)
...
```
so that original V2 macro definition, defined in ATen/Dispatch_v2.h,  becomes:
```c++
#define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
  THO_DISPATCH_V2_TMPL(                        \
      AT_DISPATCH_SWITCH,                     \
      AT_DISPATCH_CASE,                       \
      TYPE,                                   \
      NAME,                                   \
      AT_WRAP(BODY),                          \
      __VA_ARGS__)
```
that has exactly the same API and semantics as the original definition.

Note 1: ~we have changed the definition of `AT_AP1(N, _1) ...` to `AT_AP1(C, N, _1) ...` without renaming `AT_AP1` because `AT_AP1` is a helper macro that is not a part of public API (for instance, nothing in pytorch explicitly uses `AT_AP1`).~ UPDATE: restored the original `AT_AP` macros and introduced new `THO_AP` macros.

Note 2: this PR introduces a new API macro THO_DISPATCH_V2_TMPL that will be available for stable ABI users who can use it by providing custom versions of `AT_DISPATCH_SWITCH` and `AT_DISPATCH_CASE macros, say, with selective build features removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165856
Approved by: https://github.com/janeyx99
2025-11-07 01:13:55 +00:00
cd6d06a22b Revert "[BE][Typing][Dynamo] Type torch/_dynamo/variables/functions.py (#167103)"
This reverts commit 9a86ef763201e27f031469f0866c893707e9cf38.

Reverted https://github.com/pytorch/pytorch/pull/167103 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/167103#issuecomment-3500023910))
2025-11-07 01:06:34 +00:00
669cf21a6b Added Validation for batch_norm eps value (#166756)
Fixes #166405.
I've fixed this by adding epsilon validation in ```torch.nn.functional.batch_norm``` to reject non-positive values before they cause undefined behavior. Also added a test case ```test_batchnorm_invalid_eps``` to verify the fix works correctly.
While working on this, I noticed that ```layer_norm```, ```group_norm```, and ```instance_norm``` also don't validate epsilon and could have the same issue. Should I add validation for those in this PR as well?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166756
Approved by: https://github.com/mikaylagawarecki
2025-11-07 00:53:58 +00:00
9a86ef7632 [BE][Typing][Dynamo] Type torch/_dynamo/variables/functions.py (#167103)
Provides type coverage to torch/_dynamo/variables/dicts.py

Coverage report:
`mypy torch/_dynamo/variables/functions.py --linecount-report /tmp/coverage_log`

Compare before to after - we go from 0 lines and 0 funcs covered to 2698 lines and 166 funcs covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167103
Approved by: https://github.com/mlazos, https://github.com/fxdawnn
2025-11-07 00:40:49 +00:00
f47cadf75d [BE][Typing][Dynamo] Type torch/_dynamo/variables/lists.py (#167156)
Provides type coverage to torch/_dynamo/variables/dicts.py

Coverage report:
`mypy torch/_dynamo/variables/lists.py --linecount-report /tmp/coverage_log`

Compare before to after - we go from 0 lines and 0 funcs covered to 1759 lines and 102 funcs covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167156
Approved by: https://github.com/Skylion007, https://github.com/rtimpe
2025-11-07 00:15:40 +00:00
2923b02c6e [DTensor] add explicit mode (ExplicitRedistributionContext) (#166593)
usage:

```
dx = distribute_tensor(x, device_mesh, [Shard(0)])
dA = distribute_tensor(A, device_mesh, [Shard(0)])
with ExplicitRedistributionContext():
    with self.assertRaisesRegex(RuntimeError, "Implicit redistribution"):
        # Shard(0) @ Shard(0) requires a redistribution
        torch.matmul(dx, dA)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166593
Approved by: https://github.com/ezyang
2025-11-07 00:04:19 +00:00
4b9ba0fb26 [user-streams] Add requires cuda to all test cases (#167195)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167195
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #167175, #167176, #167180
2025-11-06 23:13:47 +00:00
106d34c80a [user-streams] add requires cuda decorator (#167180)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167180
Approved by: https://github.com/donigian, https://github.com/Lucaskabela, https://github.com/Skylion007
ghstack dependencies: #167175, #167176
2025-11-06 23:13:47 +00:00
0b06109412 [user-streams] Fix bug in object bytecode construction (#167176)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167176
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #167175
2025-11-06 23:13:47 +00:00
2073af5790 [user-streams] Refactor user object index in streams (#167175)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167175
Approved by: https://github.com/Lucaskabela
2025-11-06 23:13:47 +00:00
9b4ac45d2f Revert "[Inductor] addmm with bias -> unfuse bias if there is a pointwise/reduction consumer (#166165)"
This reverts commit eefa16342c9f322b56c7c0cd6d309c3ed8f0b882.

Reverted https://github.com/pytorch/pytorch/pull/166165 on behalf of https://github.com/jeanschmidt due to Breaking internal tests D86216934 ([comment](https://github.com/pytorch/pytorch/pull/166165#issuecomment-3499645688))
2025-11-06 22:34:48 +00:00
a45a17f65e Fix boxcox to return same result for same input in one batch (#166986)
Summary:
The SIMD path is using SLEEF version of pow which is slightly different from std::pow. The fix is to use the same vectorized code (with partial load and store) for the trailing data as well to ensure consistency between results.

Deploy:
Need to make a hotfix in waas to monitor release signals, since this diff can cause testing failures in veloski and waas release correctness tests.

Test Plan: Sandcastle.

Differential Revision: D86218207

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166986
Approved by: https://github.com/swolchok
2025-11-06 22:33:26 +00:00
c5593e75b3 Fix flaky memory profiler test (#167168)
Fixes #167037

Do not check the exact number of frames.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167168
Approved by: https://github.com/angelayi
2025-11-06 21:39:44 +00:00
c90a976370 Update pythoncapi_compat.h (#167138)
Update to commit 44c8e14bbbb5d5135ae90957036a61397e4df577.

Should slightly simplify https://github.com/pytorch/pytorch/pull/166342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167138
Approved by: https://github.com/albanD
2025-11-06 21:31:58 +00:00
d144382dc9 Move enrich_profiler_metadata config import out of gm.recompile() (#167114)
Fixes T243967987

Move `enrich_profiler_metadata` from `torch._dynamo.config` to `torch.fx.experimental._config`.

We cannot import anything inside recompile(), it made some perf regress internally. We move the config so we can import it at the top of `graph_module.py` without causing any circular import.

We also cannot delete the old config right now because some internal tests rely on copies of the old `graph_module.py` cpp file in unit tests. But I think we should be able to delete the old config soon after this PR lands.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167114
Approved by: https://github.com/angelayi
2025-11-06 21:21:40 +00:00
78827c5e00 Distributed Autotuning (#163369)
This is the initial prototype of distributed autotuning. It's intended to be a basis for iteration rather than the final end product.

Currently when we run a SPMD program we compile the ranks independently. As a result the autotuning is repeated on every rank. So for a 8-GPU program with 8 matmul operators we'll autotune 64 (8*8) times.

Distributed autotuning uses collectives to distribute the autotuning across the ranks so each rank autotunes 1/worldsize the total operators. So in our 8-GPU example we would only perform 8 autotunes total (one on each rank) rather than 64.

There are several advantages:
1. Faster autotuning times - each CPU/GPU does less work total
2. Better determinism - currently it's possible for two ranks to choose different algorithms for the same operator. With distributed autotuning we choose the algorithm once for the entire program.

Results:

In testing using llama3 8B on torchtitan max-autotune time was reduced from 52s -> 26s and exhaustive-autotuning was reduced from 2009s -> 613s.

Usage:

The feature is controlled by the environment variable TORCHINDUCTOR_DISTRIBUTED_AUTOTUNE.

Co-authored-by: @PaulZhang12

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163369
Approved by: https://github.com/PaulZhang12
2025-11-06 21:10:21 +00:00
ab1e734cd7 [ez] avoid log spam when random data is generated (#166919)
It's annoying to see full screen of this warning when running fx_graph_runnable files saved in tlparse.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166919
Approved by: https://github.com/eellison
2025-11-06 21:05:20 +00:00
888958ad6c Prevent torch._check causing graph breaks (#164676)
Handle `torch._check` in `TorchInGraphFunctionVariable.call_function`. Basically, it has two arguments - a predicate (bool) and a message (callable). If predicate is a constant, evaluate `torch._check`. If predicate is true, it just will compile and nothing happens. If predicate is false, `torch._check` will raise an exception.

If predicate is not constant, we manually emit a proxy. I tried to build as_proxy() inside NestedUserFunctionVariable, but failed to, that's why I create it here. I try to extract message. If it's a function, I retrieve it. If not, set it to None. Maybe we could extract it if message is a closure, but not sure how

Fixes #163668

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164676
Approved by: https://github.com/williamwen42, https://github.com/mlazos

Co-authored-by: William Wen <william.wen42@gmail.com>
2025-11-06 21:00:48 +00:00
574 changed files with 14559 additions and 6839 deletions

View File

@ -36,11 +36,7 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)

View File

@ -168,6 +168,18 @@ case "$tag" in
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.11-clang12)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=12
VISION=no
TRITON=no
;;
pytorch-linux-jammy-py3.12-clang12)
ANACONDA_PYTHON_VERSION=3.12
CLANG_VERSION=12
VISION=no
TRITON=no
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-jammy-rocm-n-py3-benchmarks | pytorch-linux-noble-rocm-n-py3)
if [[ $tag =~ "jammy" ]]; then
ANACONDA_PYTHON_VERSION=3.10
@ -195,9 +207,9 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
pytorch-linux-noble-xpu-n-py3 | pytorch-linux-noble-xpu-n-py3-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
GCC_VERSION=13
VISION=yes
XPU_VERSION=2025.2
NINJA_VERSION=1.9.0
@ -248,6 +260,12 @@ case "$tag" in
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-py3.12-pallas)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
PALLAS=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
@ -369,6 +387,7 @@ docker build \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "PALLAS=${PALLAS}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \

View File

@ -0,0 +1 @@
0.8.0

View File

@ -0,0 +1,40 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
# Get the pinned JAX version (same for all CUDA versions)
JAX_VERSION=$(get_pinned_commit /ci_commit_pins/jax)
function install_jax_12() {
echo "Installing JAX ${JAX_VERSION} with CUDA 12 support"
pip_install "jax[cuda12]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 12"
}
function install_jax_13() {
echo "Installing JAX ${JAX_VERSION} with CUDA 13 support"
pip_install "jax[cuda13]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 13"
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4|12.6|12.6.*|12.8|12.8.*|12.9|12.9.*) install_jax_12;
;;
13.0|13.0.*) install_jax_13;
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -9,7 +9,7 @@ set -xe
function install_ubuntu() {
. /etc/os-release
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
if [[ ! " jammy noble " =~ " ${VERSION_CODENAME} " ]]; then
echo "Ubuntu version ${VERSION_CODENAME} not supported"
exit
fi
@ -35,25 +35,24 @@ function install_ubuntu() {
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Compute and Media Runtimes
# Compute and Media Runtimes
if [[ " ${VERSION_CODENAME} " =~ " noble " ]]; then
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
else # rolling driver
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
else # jammy
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
fi
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
# Install Intel Support Packages
apt-get install -y ${XPU_PACKAGES}
@ -66,7 +65,7 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
@ -147,7 +146,7 @@ function install_sles() {
XPU_DRIVER_VERSION=""
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2350"
XPU_DRIVER_VERSION="/lts/2523"
fi
# Default use Intel® oneAPI Deep Learning Essentials 2025.1

View File

@ -49,11 +49,7 @@ case ${DOCKER_TAG_PREFIX} in
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -87,11 +87,7 @@ case ${image} in
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -143,6 +143,15 @@ COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG PALLAS
ARG CUDA_VERSION
# Install JAX with CUDA support (for Pallas)
COPY ./common/install_jax.sh install_jax.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/jax.txt /ci_commit_pins/jax.txt
RUN if [ -n "${PALLAS}" ]; then bash ./install_jax.sh ${CUDA_VERSION}; fi
RUN rm -f install_jax.sh common_utils.sh /ci_commit_pins/jax.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./

View File

@ -8,9 +8,11 @@ from abc import ABC, abstractmethod
try:
from typing import Any, Callable, Required, TypedDict # Python 3.11+
from collections.abc import Callable # Python 3.11+
from typing import Any, Required, TypedDict
except ImportError:
from typing import Any, Callable, TypedDict
from collections.abc import Callable
from typing import Any, TypedDict
from typing_extensions import Required # Fallback for Python <3.11

View File

@ -168,14 +168,16 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/umf/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Enable XCCL build
export USE_XCCL=1
export USE_MPI=0
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
export USE_KINETO=0
export TORCH_XPU_ARCH_LIST=pvc
fi

View File

@ -208,6 +208,8 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
fi
@ -824,6 +826,11 @@ test_inductor_halide() {
assert_git_not_dirty
}
test_inductor_pallas() {
python test/run_test.py --include inductor/test_pallas.py --verbose
assert_git_not_dirty
}
test_inductor_triton_cpu() {
python test/run_test.py --include inductor/test_triton_cpu_backend.py inductor/test_torchinductor_strided_blocks.py --verbose
assert_git_not_dirty
@ -1724,6 +1731,8 @@ elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
test_inductor_halide
elif [[ "${TEST_CONFIG}" == *inductor-pallas* ]]; then
test_inductor_pallas
elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then

View File

@ -1 +1 @@
cfbc5c2f1c798991715a6b06bb3ce46478c4487c
ccb801b88af136454798b945175c4c87e636ac33

View File

@ -1 +1 @@
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a

22
.github/labeler.yml vendored
View File

@ -138,7 +138,8 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -148,7 +149,8 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -158,7 +160,21 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/mps":
- aten/src/ATen/mps/**
- aten/src/ATen/native/mps/**
- torch/_inductor/codegen/mps.py
- test/test_mps.py
- test/inductor/test_mps_basic.py
"ciflow/h100-symm-mem":
- torch/csrc/distributed/c10d/symm_mem/**
- torch/distributed/_symmetric_memory/**
- test/distributed/**/*mem*
- test/distributed/**/*mem*/**

View File

@ -10,3 +10,4 @@
pathFilter:
- 'torch/csrc/inductor/aoti_torch/c/*'
- 'torch/csrc/inductor/aoti_torch/generated/*'
- 'torch/csrc/stable/c/*'

View File

@ -2,8 +2,8 @@ tracking_issue: 24422
ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-symm-mem
- ciflow/b200-distributed
- ciflow/b200-symm-mem
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
@ -22,6 +22,8 @@ ciflow_push_tags:
- ciflow/inductor-perf-test-nightly-xpu
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/inductor-rocm-mi200
- ciflow/inductor-rocm-mi300
- ciflow/linux-aarch64
- ciflow/mps
- ciflow/nightly
@ -33,11 +35,13 @@ ciflow_push_tags:
- ciflow/quantization-periodic
- ciflow/riscv64
- ciflow/rocm
- ciflow/rocm-mi200
- ciflow/rocm-mi300
- ciflow/rocm-mi355
- ciflow/rocm-navi31
- ciflow/s390
- ciflow/slow
- ciflow/slow-rocm-mi200
- ciflow/torchbench
- ciflow/triton_binaries
- ciflow/trunk

View File

@ -1,10 +1,11 @@
# Delete old branches
import os
import re
from collections.abc import Callable
from datetime import datetime
from functools import lru_cache
from pathlib import Path
from typing import Any, Callable
from typing import Any
from github_utils import gh_fetch_json_dict, gh_graphql
from gitutils import GitRepo

View File

@ -8,10 +8,11 @@ import re
import subprocess
import sys
import warnings
from collections.abc import Callable
from enum import Enum
from functools import cache
from logging import info
from typing import Any, Callable, Optional
from typing import Any, Optional
from urllib.request import Request, urlopen
import yaml

View File

@ -11,7 +11,8 @@ import sys
import time
import urllib
import urllib.parse
from typing import Any, Callable, Optional
from collections.abc import Callable
from typing import Any, Optional
from urllib.request import Request, urlopen

View File

@ -3,8 +3,9 @@
import json
import os
import warnings
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Callable, cast, Optional, Union
from typing import Any, cast, Optional, Union
from urllib.error import HTTPError
from urllib.parse import quote
from urllib.request import Request, urlopen

View File

@ -4,10 +4,10 @@ import os
import re
import tempfile
from collections import defaultdict
from collections.abc import Iterator
from collections.abc import Callable, Iterator
from datetime import datetime
from functools import wraps
from typing import Any, Callable, cast, Optional, TypeVar, Union
from typing import Any, cast, Optional, TypeVar, Union
T = TypeVar("T")

View File

@ -17,12 +17,12 @@ import re
import time
import urllib.parse
from collections import defaultdict
from collections.abc import Iterable
from collections.abc import Callable, Iterable
from dataclasses import dataclass
from functools import cache
from pathlib import Path
from re import Pattern
from typing import Any, Callable, cast, NamedTuple, Optional
from typing import Any, cast, NamedTuple, Optional
from warnings import warn
import yaml

View File

@ -37,7 +37,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'

View File

@ -37,7 +37,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'

View File

@ -56,6 +56,8 @@ jobs:
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9,
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.10-clang12,
pytorch-linux-jammy-py3.11-clang12,
pytorch-linux-jammy-py3.12-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-py3.14-clang12,
pytorch-linux-jammy-rocm-n-py3,
@ -65,9 +67,10 @@ jobs:
pytorch-linux-jammy-py3.10-gcc11,
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-cuda12.8-py3.12-pallas,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-jammy-xpu-n-py3,
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
pytorch-linux-noble-xpu-n-py3,
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,

View File

@ -37,7 +37,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.c7i.12xlarge"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'

View File

@ -83,8 +83,8 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3-inductor-benchmarks
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
@ -117,7 +117,7 @@ jobs:
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-xpu-n-py3.10
build-environment: linux-noble-xpu-n-py3.10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
@ -137,7 +137,7 @@ jobs:
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-xpu-n-py3.10
build-environment: linux-noble-xpu-n-py3.10
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}

View File

@ -7,7 +7,7 @@ on:
branches:
- release/*
tags:
- ciflow/inductor-rocm/*
- ciflow/inductor-rocm-mi200/*
workflow_dispatch:
concurrency:

View File

@ -7,6 +7,7 @@ on:
- release/*
tags:
- ciflow/inductor-rocm/*
- ciflow/inductor-rocm-mi300/*
workflow_dispatch:
concurrency:

View File

@ -81,6 +81,32 @@ jobs:
test-matrix: ${{ needs.inductor-halide-build.outputs.test-matrix }}
secrets: inherit
inductor-pallas-build:
name: inductor-pallas-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-py3.12-pallas
cuda-arch-list: '8.9'
runner: linux.8xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
test-matrix: |
{ include: [
{ config: "inductor-pallas", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.12xlarge.nvidia.gpu" },
]}
secrets: inherit
inductor-pallas-test:
name: inductor-pallas-test
uses: ./.github/workflows/_linux-test.yml
needs: inductor-pallas-build
with:
build-environment: linux-jammy-py3.12-gcc11
docker-image: ${{ needs.inductor-pallas-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-pallas-build.outputs.test-matrix }}
secrets: inherit
inductor-triton-cpu-build:
name: inductor-triton-cpu-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -11,7 +11,6 @@ on:
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi200/*
branches:
- release/*

View File

@ -11,6 +11,7 @@ on:
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi300/*
branches:
- release/*

View File

@ -342,16 +342,16 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# This should sync with the build in xpu.yml but xpu uses a larger runner
# sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },

View File

@ -5,7 +5,7 @@ on:
branches:
- release/*
tags:
- ciflow/rocm/*
- ciflow/rocm-mi200/*
workflow_dispatch:
schedule:
- cron: 29 8 * * * # about 1:29am PDT

View File

@ -6,6 +6,7 @@ on:
- main
- release/*
tags:
- ciflow/rocm/*
- ciflow/rocm-mi300/*
workflow_dispatch:
schedule:

81
.github/workflows/slow-rocm-mi200.yml vendored Normal file
View File

@ -0,0 +1,81 @@
# This workflow is dedicated to host slow jobs that are run only periodically because
# they are too slow to run in every commit. The list of slow tests can be found in
# https://github.com/pytorch/test-infra/blob/generated-stats/stats/slow-tests.json
name: slow-rocm-mi200
on:
push:
branches:
- release/*
tags:
- ciflow/slow/*
- ciflow/slow-rocm-mi200/*
schedule:
- cron: 0 */3 * * *
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
llm-td:
if: github.repository_owner == 'pytorch'
name: before-test
uses: ./.github/workflows/llm_td_retrieval.yml
permissions:
id-token: write
contents: read
target-determination:
name: before-test
uses: ./.github/workflows/target_determination.yml
needs: llm-td
permissions:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit

View File

@ -105,36 +105,6 @@ jobs:
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-py3_10-clang18-asan-build:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-build.yml

View File

@ -52,7 +52,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
@ -73,4 +72,4 @@ jobs:
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit
secrets: inherit

View File

@ -41,7 +41,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'

View File

@ -11,15 +11,16 @@ on:
- inductor
- unstable
- slow
- slow-rocm-mi200
- unstable-periodic
- inductor-periodic
- rocm
- rocm-mi200
- rocm-mi300
- rocm-mi355
- inductor-micro-benchmark
- inductor-micro-benchmark-x86
- inductor-cu124
- inductor-rocm
- inductor-rocm-mi200
- inductor-rocm-mi300
- mac-mps
- linux-aarch64

View File

@ -47,15 +47,15 @@ jobs:
]}
secrets: inherit
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
@ -74,17 +74,17 @@ jobs:
]}
secrets: inherit
linux-jammy-xpu-n-py3_10-test:
name: linux-jammy-xpu-n-py3.10
linux-noble-xpu-n-py3_10-test:
name: linux-noble-xpu-n-py3.10
uses: ./.github/workflows/_xpu-test.yml
needs: linux-jammy-xpu-n-py3_10-build
needs: linux-noble-xpu-n-py3_10-build
permissions:
id-token: write
contents: read
with:
build-environment: linux-jammy-xpu-n-py3.10
docker-image: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.test-matrix }}
build-environment: linux-noble-xpu-n-py3.10
docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
secrets: inherit
windows-xpu-n-1-build:

View File

@ -143,7 +143,8 @@ init_command = [
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12"',
'numpy==2.1.0 ; python_version >= "3.12" and python_version <= "3.13"',
'numpy==2.3.4 ; python_version >= "3.14"',
'expecttest==0.3.0',
'pyrefly==0.36.2',
'sympy==1.13.3',
@ -1401,7 +1402,7 @@ init_command = [
'--dry-run={{DRYRUN}}',
'usort==1.0.8.post1',
'isort==6.0.1',
'ruff==0.13.1', # sync with RUFF
'ruff==0.14.4', # sync with RUFF
]
is_formatter = true
@ -1536,7 +1537,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.13.1', # sync with PYFMT
'ruff==0.14.4', # sync with PYFMT
]
is_formatter = true

View File

@ -736,6 +736,44 @@ if(NOT DEFINED USE_BLAS)
set(USE_BLAS ON)
endif()
# Prioritized Text Linker Optimization
if(USE_PRIORITIZED_TEXT_FOR_LD)
set(LINKER_SCRIPT_FILE_IN "${CMAKE_SOURCE_DIR}/cmake/prioritized_text.txt")
set(LINKER_SCRIPT_FILE_OUT "${CMAKE_SOURCE_DIR}/cmake/linker_script.ld")
execute_process(
COMMAND ${Python_EXECUTABLE}
${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py
--filein "${LINKER_SCRIPT_FILE_IN}"
--fout "${LINKER_SCRIPT_FILE_OUT}"
RESULT_VARIABLE _gen_result
OUTPUT_VARIABLE _gen_output
ERROR_VARIABLE _gen_error
)
if(NOT _gen_result EQUAL 0)
message(FATAL_ERROR
"Failed to generate linker script:\n${_gen_output}\n${_gen_error}")
endif()
append_cxx_flag_if_supported("-ffunction-sections" CMAKE_CXX_FLAGS)
append_cxx_flag_if_supported("-fdata-sections" CMAKE_CXX_FLAGS)
append_c_flag_if_supported("-ffunction-sections" CMAKE_C_FLAGS)
append_c_flag_if_supported("-fdata-sections" CMAKE_C_FLAGS)
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -T${LINKER_SCRIPT_FILE_OUT}")
set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} -T${LINKER_SCRIPT_FILE_OUT}")
else()
if(LINUX AND CPU_AARCH64)
message(WARNING [[
It is strongly recommend to enable linker script optimization for all AArch64 Linux builds.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()
# Build libtorch mobile library, which contains ATen/TH ops and native support
# for TorchScript model, but doesn't contain not-yet-unified caffe2 ops;
if(INTERN_BUILD_MOBILE)
@ -1402,9 +1440,6 @@ if(BUILD_JNI)
add_subdirectory(android/pytorch_android)
endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()
# Parse custom debug info
if(DEFINED USE_CUSTOM_DEBINFO)
string(REPLACE ";" " " SOURCE_FILES "${USE_CUSTOM_DEBINFO}")
@ -1444,56 +1479,5 @@ if(BUILD_BUNDLE_PTXAS AND USE_CUDA)
DESTINATION "${CMAKE_INSTALL_BINDIR}")
endif()
if(USE_PRIORITIZED_TEXT_FOR_LD)
add_compile_options(
$<$<COMPILE_LANGUAGE:C,CXX>:-ffunction-sections>
$<$<COMPILE_LANGUAGE:C,CXX>:-fdata-sections>
)
set(LINKER_SCRIPT_FILE_OUT "${CMAKE_SOURCE_DIR}/cmake/linker_script.ld")
set(LINKER_SCRIPT_FILE_IN "${CMAKE_SOURCE_DIR}/cmake/prioritized_text.txt")
add_custom_command(
OUTPUT "${LINKER_SCRIPT_FILE_OUT}"
COMMAND ${Python_EXECUTABLE} ${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py --filein "${LINKER_SCRIPT_FILE_IN}" --fout "${LINKER_SCRIPT_FILE_OUT}"
DEPENDS ${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py "${LINKER_SCRIPT_FILE_IN}"
COMMENT "Generating prioritized text linker files"
VERBATIM
)
add_custom_target(generate_linker_script DEPENDS "${LINKER_SCRIPT_FILE_OUT}")
if(BUILD_PYTHON)
set(LINKER_OPT_TARGETS torch_python)
endif()
if(NOT BUILD_LIBTORCHLESS)
list(APPEND LINKER_OPT_TARGETS torch_cpu c10)
if(USE_CUDA)
list(APPEND LINKER_OPT_TARGETS torch_cuda c10_cuda)
endif()
if(USE_XPU)
list(APPEND LINKER_OPT_TARGETS torch_xpu c10_xpu)
endif()
if(USE_ROCM)
list(APPEND LINKER_OPT_TARGETS torch_hip c10_hip)
endif()
endif()
foreach(tgt IN LISTS LINKER_OPT_TARGETS)
if(TARGET ${tgt})
add_dependencies("${tgt}" generate_linker_script)
target_link_options_if_supported(${tgt} "-T,${LINKER_SCRIPT_FILE_OUT}")
set_property(TARGET ${tgt} APPEND PROPERTY LINK_DEPENDS "${LINKER_SCRIPT_FILE_OUT}")
else()
message(WARNING "Requested target '${tgt}' for linker script optimization was not found.")
endif()
endforeach()
else()
if(LINUX AND CPU_AARCH64)
message(WARNING [[
It is strongly recommend to enable linker script optimization for all AArch64 Linux builds.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()

View File

@ -210,8 +210,12 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision GEMMs
# Low Precision & Grouped GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/GroupedBlas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/ScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -174,6 +174,12 @@ class TORCH_API Context {
static long versionCuDNN() {
return detail::getCUDAHooks().versionCuDNN();
}
static long versionRuntimeCuDNN() {
return detail::getCUDAHooks().versionRuntimeCuDNN();
}
static long versionCuDNNFrontend() {
return detail::getCUDAHooks().versionCuDNNFrontend();
}
static bool hasCuSOLVER() {
return detail::getCUDAHooks().hasCuSOLVER();
}

View File

@ -94,6 +94,11 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
}
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
c10::DeviceIndex device_index) {
const auto device_type = getAccelerator(true).value();
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
}
} // namespace at::accelerator
namespace at {

View File

@ -6,6 +6,7 @@
#include <c10/util/Half.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/complex.h>
#include <torch/headeronly/core/Dispatch.h>
#ifdef __CUDACC__
#include <cuda.h> // For CUDA_VERSION
@ -61,12 +62,9 @@ TORCH_API void record_kernel_function_dtype(std::string name);
} \
} while (0)
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
case enum_type: { \
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
using HINT [[maybe_unused]] = c10::impl::ScalarTypeToCPPTypeT<enum_type>; \
return __VA_ARGS__(); \
}
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
THO_PRIVATE_CASE_TYPE_USING_HINT_TMPL( \
AT_PRIVATE_CHECK_SELECTIVE_BUILD, enum_type, HINT, __VA_ARGS__)
#define AT_DISPATCH_CASE(enum_type, ...) \
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
@ -95,14 +93,6 @@ TORCH_API void record_kernel_function_dtype(std::string name);
return __VA_ARGS__(); \
}
namespace detail {
inline at::ScalarType scalar_type(at::ScalarType s) {
return s;
}
} // namespace detail
// The AT_DISPATCH_* family of macros provides the ability to
// conveniently generate specializations of a kernel over all of the
// dtypes we care about in PyTorch. We call it "dispatch" because
@ -190,27 +180,13 @@ inline at::ScalarType scalar_type(at::ScalarType s) {
// but we're just being safe (and it doesn't hurt.) Note we must
// use it to shut up warnings about unused store.
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
[&] { \
const auto& the_type = TYPE; \
constexpr const char* at_dispatch_name = NAME; \
/* don't use TYPE again in case it is an expensive or side-effect op */ \
at::ScalarType _st = ::detail::scalar_type(the_type); \
RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
switch (_st) { \
__VA_ARGS__ \
default: \
TORCH_CHECK_NOT_IMPLEMENTED( \
false, \
'"', \
at_dispatch_name, \
"\" not implemented for '", \
toString(_st), \
"'"); \
} \
C10_DIAGNOSTIC_POP() \
}()
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
THO_DISPATCH_SWITCH_TMPL( \
RECORD_KERNEL_FUNCTION_DTYPE, \
TORCH_CHECK_NOT_IMPLEMENTED, \
TYPE, \
NAME, \
__VA_ARGS__)
#define AT_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \

View File

@ -1,3 +1,8 @@
#pragma once
#include <torch/headeronly/core/Dispatch_v2.h>
// Get AT_DISPATCH_SWITCH and AT_DISPATCH_CASE:
#include <ATen/Dispatch.h>
// This is a new implementation of the AT_DISPATCH macro family from
@ -74,41 +79,19 @@
// macro expansion occurs, mediated with AT_EXPAND and AT_GUARD. I mostly
// relied on GPT4 to help me get it right.
// Public API macros
// See documentation above
#define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, AT_AP_VAR(AT_WRAP(BODY), TYPE, __VA_ARGS__))
// This macro lets you pass an arbitrary expression that may contain internal
// commas to another macro without having the commas causing the expression
// to be interpreted as being multiple arguments
#define AT_WRAP(...) __VA_ARGS__
#define AT_FLOAT8_TYPES \
c10::kFloat8_e5m2, c10::kFloat8_e5m2fnuz, c10::kFloat8_e4m3fn, \
c10::kFloat8_e4m3fnuz, c10::kFloat8_e8m0fnu
#define AT_INTEGRAL_TYPES \
c10::kByte, c10::kChar, c10::kInt, c10::kLong, c10::kShort
#define AT_FLOATING_TYPES c10::kDouble, c10::kFloat
#define AT_BAREBONES_UNSIGNED_TYPES c10::kUInt16, c10::kUInt32, c10::kUInt64
#define AT_INTEGRAL_TYPES_V2 \
AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)
#define AT_COMPLEX_TYPES c10::kComplexDouble, c10::kComplexFloat
#define AT_QINT_TYPES c10::kQInt8, c10::kQUInt8, c10::kQInt32
// NB: not *actually* all types
#define AT_ALL_TYPES AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
#define AT_ALL_TYPES_AND_COMPLEX \
AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES)
// Helper macros
THO_DISPATCH_V2_TMPL( \
AT_DISPATCH_SWITCH, \
AT_DISPATCH_CASE, \
TYPE, \
NAME, \
AT_WRAP(BODY), \
__VA_ARGS__)
// Unused helper macros, kept for BC:
#define AT_AP_VAR(N, T, ...) \
AT_EXPAND(AT_CONCAT(AT_AP, AT_NUM_ARGS(__VA_ARGS__))(AT_WRAP(N), __VA_ARGS__))
#define AT_CONCAT(a, b) AT_CONCAT_AUX(a, b)
#define AT_CONCAT_AUX(a, b) a##b
#define AT_EXPAND(X) X
// Ensure we never have too many scalar types for the expansion here to
// support. To bump this, you must regenerate the macros below.
@ -119,12 +102,6 @@ static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 60);
num_args = 60
nums = ', '.join(str(i) for i in reversed(range(num_args+1)))
args = ', '.join(f'_{i}' for i in range(1, num_args+1))
print(f'#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, {nums}))')
print(f'#define AT_NUM_ARGS_AUX({args}, N, ...) N')
for i in range(1, num_args+1):
args = ', '.join(f'_{i}' for i in range(1, i+1))
cases = ' '.join([f'AT_DISPATCH_CASE(_{j}, N)' for j in range(1, i+1)])
@ -135,8 +112,6 @@ for i in range(1, num_args+1):
// Begin generated code
// clang-format off
#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
#define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, N, ...) N
#define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
#define AT_AP2(N, _1, _2) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N)
#define AT_AP3(N, _1, _2, _3) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N)

View File

@ -226,8 +226,8 @@ template <
typename B = HostBlock<S>>
struct CachingHostAllocatorImpl {
virtual ~CachingHostAllocatorImpl() {
active_ = false;
if (pinned_use_background_threads()) {
if (active_) {
active_ = false;
getBackgroundThreadPool()->waitWorkComplete();
}
}
@ -260,6 +260,7 @@ struct CachingHostAllocatorImpl {
if (pinned_use_background_threads()) {
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
active_ = true;
getBackgroundThreadPool()->run([&]() {
while (active_) {
process_events();
@ -683,9 +684,9 @@ struct CachingHostAllocatorImpl {
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
// Indicates whether the object is active.
// Indicates whether the event-processing thread pool is active.
// Set to false in the destructor to signal background threads to stop.
std::atomic<bool> active_{true};
std::atomic<bool> active_{false};
protected:
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
};

View File

@ -245,6 +245,9 @@ class TORCH_API TensorBase {
size_t weak_use_count() const noexcept {
return impl_.weak_use_count();
}
bool is_uniquely_owned() const noexcept {
return impl_.is_uniquely_owned();
}
std::string toString() const;

View File

@ -55,14 +55,6 @@ struct numeric_limits<int8_t> {
static inline __host__ __device__ int8_t upper_bound() { return INT8_MAX; }
};
template <>
struct numeric_limits<uint16_t> {
static inline __host__ __device__ uint16_t lowest() { return 0; }
static inline __host__ __device__ uint16_t max() { return UINT16_MAX; }
static inline __host__ __device__ uint16_t lower_bound() { return 0; }
static inline __host__ __device__ uint16_t upper_bound() { return UINT16_MAX; }
};
template <>
struct numeric_limits<int16_t> {
static inline __host__ __device__ int16_t lowest() { return INT16_MIN; }
@ -71,14 +63,6 @@ struct numeric_limits<int16_t> {
static inline __host__ __device__ int16_t upper_bound() { return INT16_MAX; }
};
template <>
struct numeric_limits<uint32_t> {
static inline __host__ __device__ uint32_t lowest() { return 0; }
static inline __host__ __device__ uint32_t max() { return UINT32_MAX; }
static inline __host__ __device__ uint32_t lower_bound() { return 0; }
static inline __host__ __device__ uint32_t upper_bound() { return UINT32_MAX; }
};
template <>
struct numeric_limits<int32_t> {
static inline __host__ __device__ int32_t lowest() { return INT32_MIN; }
@ -87,21 +71,6 @@ struct numeric_limits<int32_t> {
static inline __host__ __device__ int32_t upper_bound() { return INT32_MAX; }
};
template <>
struct numeric_limits<uint64_t> {
#ifdef _MSC_VER
static inline __host__ __device__ uint64_t lowest() { return 0; }
static inline __host__ __device__ uint64_t max() { return _UI64_MAX; }
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
static inline __host__ __device__ uint64_t upper_bound() { return _UI64_MAX; }
#else
static inline __host__ __device__ uint64_t lowest() { return 0; }
static inline __host__ __device__ uint64_t max() { return UINT64_MAX; }
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
static inline __host__ __device__ uint64_t upper_bound() { return UINT64_MAX; }
#endif
};
template <>
struct numeric_limits<int64_t> {
#ifdef _MSC_VER

View File

@ -21,6 +21,7 @@
#if AT_CUDNN_ENABLED()
#include <ATen/cudnn/cudnn-wrapper.h>
#include <cudnn_frontend.h>
#endif
#if AT_MAGMA_ENABLED()
@ -351,6 +352,26 @@ long CUDAHooks::versionCuDNN() const {
#endif
}
long CUDAHooks::versionRuntimeCuDNN() const {
#if AT_CUDNN_ENABLED()
#ifndef USE_STATIC_CUDNN
return cudnnGetVersion();
#else
return CUDNN_VERSION;
#endif
#else
TORCH_CHECK(false, "Cannot query CuDNN version if ATen_cuda is not built with CuDNN");
#endif
}
long CUDAHooks::versionCuDNNFrontend() const {
#if AT_CUDNN_ENABLED()
return CUDNN_FRONTEND_VERSION;
#else
TORCH_CHECK(false, "Cannot query CuDNN Frontend version if ATen_cuda is not built with CuDNN");
#endif
}
long CUDAHooks::versionMIOpen() const {
#if AT_ROCM_ENABLED()
return MIOPEN_VERSION_MAJOR * 10000 +

View File

@ -49,6 +49,8 @@ struct CUDAHooks : public at::CUDAHooksInterface {
bool hasCUDART() const override;
long versionCUDART() const override;
long versionCuDNN() const override;
long versionRuntimeCuDNN() const override;
long versionCuDNNFrontend() const override;
long versionMIOpen() const override;
std::string showConfig() const override;
double batchnormMinEpsilonCuDNN() const override;

View File

@ -174,6 +174,14 @@ struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionRuntimeCuDNN() const {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionCuDNNFrontend() const {
TORCH_CHECK(false, "Cannot query cuDNN Frontend version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionMIOpen() const {
TORCH_CHECK(false, "Cannot query MIOpen version without ATen_cuda library. ", CUDA_HELP);
}

View File

@ -157,6 +157,8 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::Negative,
DispatchKey::Conjugate,
DispatchKey::XLA,
DispatchKey::XPU,
DispatchKey::HPU,
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,

View File

@ -409,7 +409,7 @@ struct ConvParams {
if (!detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda() || !cudnn_enabled) {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
static long cudnn_version = detail::getCUDAHooks().versionRuntimeCuDNN();
// broken on cuDNN 9.8 - 9.14
if (cudnn_version >= 90800 && cudnn_version < 91500) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
@ -453,7 +453,7 @@ struct ConvParams {
}
// native kernel doesn't support 64-bit non-splittable case
if (!(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionCuDNN() : -1;
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionRuntimeCuDNN() : -1;
// TODO(eqy): remove this once cuDNN fixes 64-bit depthwise support, first broken in 9.11x
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
if (cudnn_version < 0 || cudnn_version > 91000) {

View File

@ -5,7 +5,6 @@
#include <ATen/native/ReduceOpsUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <ATen/OpMathType.h>
@ -79,12 +78,12 @@ void min_all_kernel_impl(Tensor& result, const Tensor& input) {
reduce_all_impl<int64_t>(result, input, upper_bound<int64_t>(),
[=](int64_t a, int64_t b) -> int64_t { return min_impl(a, b); });
} else {
AT_DISPATCH_V2(input.scalar_type(), "min_all", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "min_all", [&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
reduce_all_impl_vec<scalar_t>(result, input, upper_bound<scalar_t>(),
[=] (scalar_t a , scalar_t b) -> scalar_t { return min_impl(a, b); },
[=](Vec a, Vec b) -> Vec { return minimum(a, b); });
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
});
}
}
@ -104,12 +103,12 @@ void max_all_kernel_impl(Tensor& result, const Tensor& input) {
reduce_all_impl<int64_t>(result, input, lower_bound<int64_t>(),
[=](int64_t a, int64_t b) -> int64_t { return max_impl(a, b); });
} else {
AT_DISPATCH_V2(input.scalar_type(), "max_all", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "max_all", [&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
reduce_all_impl_vec<scalar_t>(result, input, lower_bound<scalar_t>(),
[=] (scalar_t a , scalar_t b) -> scalar_t { return max_impl(a, b); },
[=](Vec a, Vec b) -> Vec { return maximum(a, b); });
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
});
}
}
@ -200,7 +199,7 @@ void aminmax_allreduce_kernel(
}
);
} else {
AT_DISPATCH_V2(input.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, input.scalar_type(), "aminmax_cpu", [&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
using scalar_t_pair = std::pair<scalar_t, scalar_t>;
reduce_all_impl_vec_two_outputs<scalar_t>(
@ -215,7 +214,7 @@ void aminmax_allreduce_kernel(
[=](Vec a, Vec b) -> Vec { return minimum(a, b); },
[=](Vec a, Vec b) -> Vec { return maximum(a, b); }
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
});
}
}

View File

@ -3,7 +3,6 @@
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/OpMathType.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
@ -348,35 +347,34 @@ struct MinValuesOps: public at::native::MinOps<scalar_t> {
};
void min_values_kernel_impl(TensorIterator& iter) {
// This case is special because of Vectorized<int64_t> does not
// handle upper_bound<int64_t>().
// See: https://github.com/pytorch/pytorch/issues/43254
if (iter.dtype() == kLong || iter.dtype() == kUInt64) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
binary_kernel_reduce(
iter,
MinValuesOps<scalar_t>{},
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
}), kLong, kUInt64);
if (iter.dtype() == kLong) {
// This case is special because of Vectorized<int64_t> does not
// handle upper_bound<int64_t>().
// See: https://github.com/pytorch/pytorch/issues/43254
using scalar_t = int64_t;
binary_kernel_reduce(
iter,
MinValuesOps<scalar_t>{},
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
return;
}
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cpu", [&iter] {
binary_kernel_reduce_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t { return min_impl(a, b); },
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return minimum(a, b); },
static_cast<double>(upper_bound<scalar_t>()));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void max_values_kernel_impl(TensorIterator& iter) {
AT_DISPATCH_V2(iter.dtype(), "max_values_cpu", AT_WRAP([&iter] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cpu", [&iter] {
binary_kernel_reduce_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t { return max_impl(a, b); },
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return maximum(a, b); },
lower_bound<scalar_t>());
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void argmax_kernel_impl(TensorIterator &iter) {

View File

@ -11,7 +11,6 @@
#include <vector>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/NumericUtils.h>
#include <ATen/TensorIterator.h>
@ -107,7 +106,7 @@ void min_kernel_impl(
bool keepdim) {
int64_t self_dim_size = ensure_nonempty_size(self, dim);
AT_DISPATCH_V2(self.scalar_type(), "min_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "min_cpu", [&] {
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
scalar_t* result_data, int64_t* indice_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -129,7 +128,7 @@ void min_kernel_impl(
*indice_data = index;
}
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
});
}
void max_kernel_impl(
@ -140,7 +139,7 @@ void max_kernel_impl(
bool keepdim) {
int64_t self_dim_size = ensure_nonempty_size(self, dim);
AT_DISPATCH_V2(self.scalar_type(), "max_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "max_cpu", [&] {
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
scalar_t* result_data, int64_t* indice_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -162,7 +161,7 @@ void max_kernel_impl(
*indice_data = index;
}
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
});
}
void aminmax_kernel(
@ -187,7 +186,7 @@ void aminmax_kernel(
return;
}
AT_DISPATCH_V2(self.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half, self.scalar_type(), "aminmax_cpu", [&] {
compare_base_kernel<scalar_t, scalar_t>(min_result, max_result, self, wrap_dim, keepdim, [&] (
scalar_t* min_result_data, scalar_t* max_result_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -210,7 +209,7 @@ void aminmax_kernel(
*max_result_data = max_number;
}
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half);
});
}
void where_kernel_impl(TensorIterator &iter) {

View File

@ -884,6 +884,69 @@ struct type_specialized_kernel_launcher {
}
};
template <int arg_index>
struct type_specialized_broadcast_kernel_launcher {
template <
typename func_t,
typename array_t,
typename dtypes_t,
typename calc_t>
static void apply(
int64_t numel,
func_t f,
array_t data,
dtypes_t dtypes,
calc_t offset_calc) {
using traits = function_traits<func_t>;
using ret_t = typename traits::result_type;
using arg0_t = typename traits::template arg<0>::type;
using arg1_t = typename traits::template arg<1>::type;
if (dtypes[0] == rt_binary_specializations[arg_index][0] &&
dtypes[1] == rt_binary_specializations[arg_index][1] &&
dtypes[2] == rt_binary_specializations[arg_index][2]) {
using ret_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][0]>;
using arg0_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][1]>;
using arg1_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][2]>;
constexpr int grp_sz = 128;
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
if (unrl) {
auto offsets0 = offset_calc.get(idx);
auto offsets1 = offset_calc.get(idx + grp_sz);
auto offsets2 = offset_calc.get(idx + grp_sz * 2);
auto offsets3 = offset_calc.get(idx + grp_sz * 3);
void* out0 = data[0] + offsets0[0];
void* out1 = data[0] + offsets1[0];
void* out2 = data[0] + offsets2[0];
void* out3 = data[0] + offsets3[0];
auto u = c10::load<arg0_cpp_t>(data[1] + offsets0[1]);
auto v = c10::load<arg1_cpp_t>(data[2] + offsets0[2]);
ret_t result0 = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
auto u1 = c10::load<arg0_cpp_t>(data[1] + offsets1[1]);
auto v1 = c10::load<arg1_cpp_t>(data[2]+ offsets1[2]);
ret_t result1 = f(c10::convert<arg0_t>(u1), c10::convert<arg1_t>(v1));
auto u2 = c10::load<arg0_cpp_t>(data[1] + offsets2[1]);
auto v2 = c10::load<arg1_cpp_t>(data[2] + offsets2[2]);
ret_t result2 = f(c10::convert<arg0_t>(u2), c10::convert<arg1_t>(v2));
auto u3 = c10::load<arg0_cpp_t>(data[1] + offsets3[1]);
auto v3 = c10::load<arg1_cpp_t>(data[2] + offsets3[2]);
ret_t result3 = f(c10::convert<arg0_t>(u3), c10::convert<arg1_t>(v3));
*(ret_cpp_t*)out0 = c10::convert<ret_cpp_t>(result0);
*(ret_cpp_t*)out1 = c10::convert<ret_cpp_t>(result1);
*(ret_cpp_t*)out2 = c10::convert<ret_cpp_t>(result2);
*(ret_cpp_t*)out3 = c10::convert<ret_cpp_t>(result3);
} else {
auto offsets = offset_calc.get(idx);
void* out = data[0] + offsets[0];
auto u = c10::load<arg0_cpp_t>(data[1] + offsets[1]);
auto v = c10::load<arg1_cpp_t>(data[2] + offsets[2]);
ret_t result = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
*(ret_cpp_t*)out = c10::convert<ret_cpp_t>(result);
}
});
}
}
};
} // namespace
#endif
@ -1002,6 +1065,32 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
}
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
#ifdef USE_ROCM
if (check_binary_rt_types_for_specialization(iter)) {
// constexpr to reduce the amount of kernels generated for
// broadcast elementwise with mexed dtypes and limit which functors are actually
// applied to the load and store at compile time.
using func_tuple = typename traits::ArgsTuple;
if constexpr (
std::is_same_v<float, arg0_t> && traits::arity == 2 &&
check_binary_functor_types_for_specialization<
func_tuple,
float,
float,
traits::arity,
/*arg_num=*/0>::check()) {
memory::detail::static_unroll<
type_specialized_broadcast_kernel_launcher,
rt_binary_specializations.size()>::with_args(
numel,
f,
data,
dtypes,
offset_calc
);
return;
}
}
constexpr int grp_sz = 128;
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
if (unrl) {

View File

@ -1,6 +1,5 @@
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/ReduceAllOps.h>
@ -29,22 +28,22 @@ void _min_max_values_kernel_cuda_impl(TensorIterator& iter) {
}
void aminmax_allreduce_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.input_dtype(), "aminmax_all_cuda", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "aminmax_all_cuda", [&] {
_min_max_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void aminmax_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.input_dtype(), "aminmax_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "aminmax_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinMaxOps<scalar_t, scalar_t, int32_t>{},
thrust::pair<scalar_t, scalar_t>(
at::numeric_limits<scalar_t>::upper_bound(),
at::numeric_limits<scalar_t>::lower_bound()));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
} // namespace at::native

View File

@ -1,6 +1,5 @@
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/ReduceAllOps.h>
@ -34,27 +33,27 @@ void max_values_kernel_cuda_impl(TensorIterator& iter) {
}
void max_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.dtype(), "max_values_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cuda", [&]() {
max_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void max_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.input_dtype(), "max_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "max_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MaxOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(
at::numeric_limits<scalar_t>::lower_bound(), 0));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void max_all_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "max_all_cuda", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "max_all_cuda", [&] {
max_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
REGISTER_DISPATCH(max_values_stub, &max_values_kernel_cuda)

View File

@ -12,7 +12,6 @@
#include <ATen/NumericUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/cuda/NumericLimits.cuh>
@ -34,24 +33,24 @@ void min_values_kernel_cuda_impl(TensorIterator& iter) {
}
void min_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cuda", [&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void min_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "min_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "min_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::upper_bound(), 0));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void min_all_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "min_all_cuda", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "min_all_cuda", [&] {
min_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
REGISTER_DISPATCH(min_values_stub, &min_values_kernel_cuda)

View File

@ -133,7 +133,7 @@ at::Tensor quantized_convolution(
// supported in conv.
mask_weight = weight_zero_points.numel() > 1 ? 1 : 0;
if (groups > 1 && weight_zero_points.numel() > 1)
mask_weight = (2 ^ 0) | (2 ^ 1); // 2^0 (group) | 2^1 (output channel)
mask_weight = (1 << 0) | (1 << 1); // 2^0 (group) | 2^1 (output channel)
dnnl::primitive_attr pattr;
bool src_need_zp = (act_zero_point != 0);

View File

@ -141,6 +141,9 @@ static Tensor& addmv_out_mps_impl(const Tensor& self,
};
MPSStream* stream = at::mps::getCurrentMPSStream();
if (result.numel() == 0) {
return result;
}
Tensor matMulVec = at::mm(mat, vec.unsqueeze(1)).squeeze(1);
@autoreleasepool {

View File

@ -2803,7 +2803,7 @@
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA, MPS: floor_divide_out
CPU, CUDA, MPS, MTIA: floor_divide_out
SparseCPU, SparseCUDA, SparseMPS: floor_divide_out_sparse_zerodim
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
@ -4292,6 +4292,7 @@
dispatch:
SparseCPU: sparse_sparse_matmul_cpu
SparseCUDA: sparse_sparse_matmul_cuda
SparseMPS: sparse_sparse_matmul_mps
autogen: _sparse_sparse_matmul.out
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
@ -4383,7 +4384,7 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: mv
SparseCPU, SparseCUDA: mv_sparse
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
@ -9832,7 +9833,7 @@
structured_delegate: erfinv.out
variants: method, function
dispatch:
SparseCPU, SparseCUDA: erfinv_sparse
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr
tags: pointwise
@ -9841,7 +9842,7 @@
structured_delegate: erfinv.out
variants: method
dispatch:
SparseCPU, SparseCUDA: erfinv_sparse_
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_
tags: pointwise
@ -9851,7 +9852,7 @@
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: erfinv_out
SparseCPU, SparseCUDA: erfinv_sparse_out
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_out
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out
tags: pointwise

View File

@ -10,6 +10,10 @@
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_coalesce_native.h>
#include <ATen/ops/repeat_interleave_native.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/_sparse_sparse_matmul_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/add_native.h>
@ -888,5 +892,114 @@ static void sparse_mask_intersection_out_mps_kernel(
/*coalesce_mask=*/false);
}
Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
TORCH_CHECK(mat1_.is_sparse() && mat2_.is_sparse(),
"sparse_sparse_matmul_mps: both inputs must be sparse COO tensors");
TORCH_CHECK(mat1_.is_mps() && mat2_.is_mps(),
"sparse_sparse_matmul_mps: both inputs must be on MPS device");
TORCH_CHECK(mat1_.dim() == 2 && mat2_.dim() == 2,
"sparse_sparse_matmul_mps: both inputs must be 2D matrices");
TORCH_CHECK(mat1_.dense_dim() == 0 && mat2_.dense_dim() == 0,
"sparse_sparse_matmul_mps: only scalar values supported (dense_dim == 0)");
TORCH_CHECK(mat1_.size(1) == mat2_.size(0),
"mat1 and mat2 shapes cannot be multiplied (", mat1_.size(0), "x", mat1_.size(1), " and ", mat2_.size(0), "x", mat2_.size(1), ")");
TORCH_CHECK(mat1_.scalar_type() == mat2_.scalar_type(),
"sparse_sparse_matmul_mps: mat1 dtype ", mat1_.scalar_type(),
" does not match mat2 dtype ", mat2_.scalar_type());
const auto device = mat1_.device();
auto A = mat1_.coalesce();
auto B = mat2_.coalesce();
const auto I = A.size(0);
const auto K = A.size(1);
const auto N = B.size(1);
const auto nnzA = A._nnz();
const auto nnzB = B._nnz();
// Early empty result, return an empty, coalesced tensor
if (I == 0 || N == 0 || K == 0 || nnzA == 0 || nnzB == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
const auto computeDtype = at::result_type(mat1_, mat2_);
auto A_idx = A._indices().contiguous();
auto A_val = A._values().to(computeDtype).contiguous();
auto A_i = A_idx.select(0, 0).contiguous();
auto A_k = A_idx.select(0, 1).contiguous();
auto B_idx = B._indices().contiguous();
auto B_val = B._values().to(computeDtype).contiguous();
auto B_k = B_idx.select(0, 0).contiguous();
auto B_j = B_idx.select(0, 1).contiguous();
// csr-style row pointers for B by k (the shared dimension)
Tensor row_ptr_B;
{
auto batch_ptr = at::tensor({0LL, nnzB}, at::device(device).dtype(at::kLong));
row_ptr_B = at::empty({K + 1}, at::device(device).dtype(at::kLong));
build_row_ptr_per_batch_mps(B_k, batch_ptr, /*B=*/1, /*I=*/K, row_ptr_B);
}
auto row_ptr_B_lo = row_ptr_B.narrow(0, 0, K);
auto row_ptr_B_hi = row_ptr_B.narrow(0, 1, K);
auto deg_B = row_ptr_B_hi.sub(row_ptr_B_lo);
auto counts = deg_B.index_select(0, A_k);
const int64_t P = counts.sum().item<int64_t>();
if (P == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
auto group_ids = repeat_interleave_mps(counts);
// exclusive cumsum of counts
auto offsets = cumsum(counts, /*dim=*/0).sub(counts);
auto offsets_gather = offsets.index_select(0, group_ids);
auto within = at::arange(P, at::device(device).dtype(at::kLong)).sub(offsets_gather);
// Map each output element to its source B row and position
auto k_per_out = A_k.index_select(0, group_ids);
auto start_in_B = row_ptr_B.index_select(0, k_per_out);
auto seg_index = start_in_B.add(within);
// Assemble candidate coo pairs and values
auto i_out = A_i.index_select(0, group_ids).contiguous();
auto j_out = B_j.index_select(0, seg_index).contiguous();
auto vA_out = A_val.index_select(0, group_ids).contiguous();
auto vB_out = B_val.index_select(0, seg_index).contiguous();
auto v_out = vA_out.mul(vB_out);
// build (2, P) indices
auto out_indices = at::empty({2, P}, at::device(device).dtype(at::kLong)).contiguous();
out_indices.select(0, 0).copy_(i_out);
out_indices.select(0, 1).copy_(j_out);
auto result = _sparse_coo_tensor_unsafe(
out_indices, v_out, {I, N}, mat1_.options().dtype(computeDtype));
result = result.coalesce();
if (result.scalar_type() != mat1_.scalar_type()) {
auto cast_vals = result._values().to(mat1_.scalar_type());
auto out = _sparse_coo_tensor_unsafe(result._indices(), cast_vals, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
return result;
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -478,7 +478,7 @@ bool check_cudnn_tensor_shapes(sdp_params const& params, bool debug) {
const auto s_k = params.key.sym_size(2);
const auto d_qk = params.query.sym_size(3);
const auto d_v = params.value.sym_size(3);
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
long cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
if (cudnn_version < 8903) {
if (debug) {
TORCH_WARN("SDPA fprop requires cudnn 8.9.3 or higher");
@ -709,7 +709,7 @@ bool can_use_cudnn_attention(const sdp_params& params, bool debug) {
return false;
#endif
#if defined(CUDNN_VERSION)
static auto cudnn_version = cudnnGetVersion();
static auto cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
if (params.dropout > 0.0 && cudnn_version > 91100 && cudnn_version < 91400) {
if (debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version does not support droppout in SDPA (9.11 - 9.13).");

View File

@ -10,6 +10,13 @@
...
}
{
ignore_empty_generic_uninitialised_conditional_jump
Memcheck:Cond
fun:_ZN2at6detail13empty_genericEN3c108ArrayRefIlEEPNS1_9AllocatorENS1_14DispatchKeySetENS1_10ScalarTypeESt8optionalINS1_12MemoryFormatEE
...
}
{
Cond_cuda
Memcheck:Cond

View File

@ -52,19 +52,18 @@ def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time

View File

@ -1,6 +1,8 @@
#pragma once
#include <c10/core/SafePyObject.h>
#include <c10/macros/Export.h>
#include <optional>
namespace c10 {
@ -15,7 +17,8 @@ struct C10_API AutogradState {
bool inference_mode,
bool fw_grad_mode,
bool multithreading_enabled)
: grad_mode_(grad_mode),
: graph_exec_group_(std::nullopt),
grad_mode_(grad_mode),
inference_mode_(inference_mode),
fw_grad_mode_(fw_grad_mode),
multithreading_enabled_(multithreading_enabled),
@ -41,6 +44,10 @@ struct C10_API AutogradState {
view_replay_enabled_ = view_replay_enabled;
}
void set_graph_exec_group(std::optional<SafePyObject> group) {
graph_exec_group_ = std::move(group);
}
bool get_grad_mode() const {
return grad_mode_;
}
@ -61,7 +68,12 @@ struct C10_API AutogradState {
return view_replay_enabled_;
}
const std::optional<SafePyObject>& get_graph_exec_group() const {
return graph_exec_group_;
}
private:
std::optional<SafePyObject> graph_exec_group_;
bool grad_mode_ : 1;
bool inference_mode_ : 1;
bool fw_grad_mode_ : 1;

View File

@ -96,6 +96,10 @@ struct C10_API DeviceAllocator : public c10::Allocator {
// Resets peak memory usage statistics for the specified device
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
// Return the free memory size and total memory size in bytes for the
// specified device.
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) = 0;
};
// This function is used to get the DeviceAllocator for a specific device type

View File

@ -44,7 +44,7 @@ struct C10_API SafePyObject {
(*other.pyinterpreter_)->incref(other.data_);
}
if (data_ != nullptr) {
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
(*pyinterpreter_)->decref(data_);
}
data_ = other.data_;
pyinterpreter_ = other.pyinterpreter_;
@ -53,7 +53,7 @@ struct C10_API SafePyObject {
~SafePyObject() {
if (data_ != nullptr) {
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
(*pyinterpreter_)->decref(data_);
}
}

View File

@ -48,6 +48,30 @@ void warnDeprecatedDataPtr() {
TORCH_CHECK(false, "Cannot access data pointer of Storage that is invalid.");
}
void StorageImpl::incref_pyobject() const {
// Because intrusive_ptr incref uses relaxed memory order, we need to
// do an acquire fence to ensure that the kHasPyObject bit was
// observed before the load of the PyObject* below.
// NB: This is a no-op on x86/x86-64
std::atomic_thread_fence(std::memory_order_acquire);
PyObject* obj = pyobj_slot_.load_pyobj();
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
}
void StorageImpl::decref_pyobject() const {
PyObject* obj = pyobj_slot_.load_pyobj();
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
}
bool StorageImpl::try_incref_pyobject() const {
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
if (C10_UNLIKELY(!interp)) {
return false;
}
return (*interp)->try_incref(pyobj_slot_);
}
void SetStorageImplCreate(DeviceType t, StorageImplCreateHelper fptr) {
// Allowlist verification.
// Only if the devicetype is in the allowlist,

View File

@ -105,6 +105,12 @@ struct C10_API StorageImpl : public c10::intrusive_ptr_target {
data_ptr_.clear();
}
void incref_pyobject() const override final;
void decref_pyobject() const override final;
bool try_incref_pyobject() const override final;
size_t nbytes() const {
// OK to do this instead of maybe_as_int as nbytes is guaranteed positive
TORCH_CHECK(!size_bytes_is_heap_allocated_);
@ -370,4 +376,14 @@ C10_API c10::intrusive_ptr<c10::StorageImpl> make_storage_impl(
bool resizable,
std::optional<at::Device> device_opt);
namespace detail {
template <class T>
struct TargetTraits<
T,
std::enable_if_t<
std::is_base_of_v<c10::StorageImpl, std::remove_cv_t<T>>>> {
static constexpr bool can_have_pyobject = true;
};
} // namespace detail
} // namespace c10

View File

@ -277,7 +277,6 @@ void TensorImpl::release_resources() {
if (storage_) {
storage_ = {};
}
pyobj_slot_.maybe_destroy_pyobj();
}
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
@ -989,6 +988,30 @@ void TensorImpl::empty_tensor_restride_symint(MemoryFormat memory_format) {
}
}
void TensorImpl::incref_pyobject() const {
// Because intrusive_ptr incref uses relaxed memory order, we need to
// do an acquire fence to ensure that the kHasPyObject bit was
// observed before the load of the PyObject* below.
// NB: This is a no-op on x86/x86-64
std::atomic_thread_fence(std::memory_order_acquire);
PyObject* obj = pyobj_slot_.load_pyobj();
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
}
void TensorImpl::decref_pyobject() const {
PyObject* obj = pyobj_slot_.load_pyobj();
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
}
bool TensorImpl::try_incref_pyobject() const {
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
if (C10_UNLIKELY(!interp)) {
return false;
}
return (*interp)->try_incref(pyobj_slot_);
}
namespace impl {
namespace {

View File

@ -2176,6 +2176,12 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
return &pyobj_slot_;
}
void incref_pyobject() const override final;
void decref_pyobject() const override final;
bool try_incref_pyobject() const override final;
private:
// See NOTE [std::optional operator usage in CUDA]
// We probably don't want to expose this publicly until
@ -3077,6 +3083,17 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
friend class C10_TensorImpl_Size_Check_Dummy_Class;
};
namespace detail {
template <class T>
struct TargetTraits<
T,
std::enable_if_t<std::is_base_of_v<c10::TensorImpl, std::remove_cv_t<T>>>> {
static constexpr bool can_have_pyobject = true;
};
} // namespace detail
// Note [TensorImpl size constraints]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Changed the size of TensorImpl? If the size went down, good for

View File

@ -11,8 +11,11 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
void incref(PyObject* pyobj) const override {} // do nothing
void decref(PyObject* pyobj, bool has_pyobj_slot) const override {
} // do nothing
void decref(PyObject* pyobj) const override {} // do nothing
bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const override {
return false;
}
#define PANIC(m) \
TORCH_INTERNAL_ASSERT( \
@ -20,6 +23,10 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
"attempted to call " #m \
" on a Tensor with nontrivial PyObject after corresponding interpreter died")
size_t refcnt(PyObject* pyobj) const override {
PANIC(refcnt);
}
c10::intrusive_ptr<TensorImpl> detach(const TensorImpl* self) const override {
PANIC(detach);
}

View File

@ -18,6 +18,9 @@ namespace c10 {
struct IValue;
class OperatorHandle;
struct TensorImpl;
namespace impl {
struct PyObjectSlot;
} // namespace impl
} // namespace c10
namespace torch::jit {
@ -126,9 +129,12 @@ struct C10_API PyInterpreterVTable {
// Run Py_INCREF on a PyObject.
virtual void incref(PyObject* pyobj) const = 0;
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call
// See NOTE [PyInterpreter::decref takes a `has_pyobj_slot` arg]
virtual void decref(PyObject* pyobj, bool has_pyobj_slot) const = 0;
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call.
virtual void decref(PyObject* pyobj) const = 0;
// Run PyUnstable_TryIncRef on a PyObject if it's not NULL.
virtual bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const = 0;
// Run Py_REFCNT on a PyObject.
virtual size_t refcnt(PyObject* pyobj) const = 0;
// Perform a detach by deferring to the __torch_dispatch__ implementation of
// detach, which will also arrange for the PyObject to get copied in this

View File

@ -1,56 +0,0 @@
#include <c10/core/impl/PyObjectSlot.h>
namespace c10::impl {
PyObjectSlot::PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
PyObjectSlot::~PyObjectSlot() {
maybe_destroy_pyobj();
}
void PyObjectSlot::maybe_destroy_pyobj() {
if (owns_pyobj()) {
TORCH_INTERNAL_ASSERT(pyobj_interpreter_ != nullptr);
TORCH_INTERNAL_ASSERT(pyobj_ != nullptr);
(*pyobj_interpreter_.load(std::memory_order_acquire))
->decref(_unchecked_untagged_pyobj(), /*has_pyobj_slot*/ true);
// NB: this destructor can only be entered when there are no
// references to this C++ object (obviously), NOR any references
// to the PyObject (if there are references to the PyObject,
// then the PyObject holds an owning reference to the tensor).
// So it is OK to clear pyobj_ here as it is impossible for it to
// be used again (modulo weak reference races)
pyobj_ = nullptr; // for safety
}
}
PyInterpreter* PyObjectSlot::pyobj_interpreter() {
return pyobj_interpreter_.load(std::memory_order_acquire);
}
PyObject* PyObjectSlot::_unchecked_untagged_pyobj() const {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
return reinterpret_cast<PyObject*>(
reinterpret_cast<uintptr_t>(pyobj_) & ~0x1ULL);
}
PyInterpreter& PyObjectSlot::load_pyobj_interpreter() const {
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
if (interpreter) {
return *interpreter;
}
TORCH_CHECK(false, "cannot access PyObject for Tensor - no interpreter set");
}
bool PyObjectSlot::owns_pyobj() {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
return reinterpret_cast<uintptr_t>(pyobj_) & 1;
}
void PyObjectSlot::set_owns_pyobj(bool b) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
pyobj_ = reinterpret_cast<PyObject*>(
reinterpret_cast<uintptr_t>(_unchecked_untagged_pyobj()) | b);
}
} // namespace c10::impl

View File

@ -8,117 +8,70 @@
#include <atomic>
namespace torch::utils {
class PyObjectPreservation;
}
namespace c10::impl {
struct C10_API PyObjectSlot {
public:
PyObjectSlot();
~PyObjectSlot();
void maybe_destroy_pyobj();
// Associate the TensorImpl with the specified PyObject, and, if necessary,
// also tag the interpreter.
//
// NB: This lives in a header so that we can inline away the switch on status
//
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
// PyObject if necessary!
void init_pyobj(PyObject* pyobj) {
pyobj_interpreter_.store(
getGlobalPyInterpreter(), std::memory_order_relaxed);
pyobj_ = pyobj;
}
PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
// Query the PyObject interpreter. This may return null if there is no
// interpreter. This is racy!
PyInterpreter* pyobj_interpreter();
PyObject* _unchecked_untagged_pyobj() const;
// Test the interpreter tag. If tagged for the current interpreter, return
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
// returns a nullopt. If it is definitely invalid, raises an error.
//
// If `ignore_hermetic_tls` is false and this function is called from a
// hermetic context (ie, `HermeticPyObjectTLS::get_state()` is true), then
// nullopt is returned. If `ignore_hermetic_tls` is true, then the hermetic
// context is ignored, allowing you to check the interpreter tag of a
// nonhermetic PyObject from within a hermetic context. This is necessary
// because there are some cases where the deallocator function of a
// nonhermetic PyObject is called from within a hermetic context, so it must
// be properly treated as a nonhermetic PyObject.
//
// NB: this lives in header so that we can avoid actually creating the
// std::optional
// @todo alban: I'm not too sure what's going on here, we can probably delete
// it but it's worthwhile making sure
std::optional<PyObject*> check_pyobj(bool ignore_hermetic_tls = false) const {
impl::PyInterpreter* interpreter =
pyobj_interpreter_.load(std::memory_order_acquire);
if (interpreter == nullptr) {
return std::nullopt;
}
if (!ignore_hermetic_tls && c10::impl::HermeticPyObjectTLS::get_state()) {
return std::nullopt;
} else {
return _unchecked_untagged_pyobj();
}
// interpreter.
PyInterpreter* pyobj_interpreter() const {
return pyobj_interpreter_.load(std::memory_order_acquire);
}
PyInterpreter& load_pyobj_interpreter() const;
PyInterpreter& load_pyobj_interpreter() const {
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
TORCH_INTERNAL_ASSERT(
interpreter, "cannot access PyObject for Tensor - no interpreter set");
return *interpreter;
}
bool owns_pyobj();
PyObject* load_pyobj() const {
return pyobj_.load(std::memory_order_acquire);
}
void set_owns_pyobj(bool b);
bool has_unique_reference() const {
PyObject* pyobj = load_pyobj();
return pyobj != nullptr && load_pyobj_interpreter()->refcnt(pyobj) == 1;
}
void clear() {
pyobj_.store(nullptr, std::memory_order_relaxed);
pyobj_interpreter_.store(nullptr, std::memory_order_relaxed);
}
// Non thread-safe swap
void swap(PyObjectSlot& other) noexcept {
PyInterpreter* tmp_interpreter =
pyobj_interpreter_.load(std::memory_order_relaxed);
pyobj_interpreter_.store(
other.pyobj_interpreter_.load(std::memory_order_relaxed),
std::memory_order_relaxed);
other.pyobj_interpreter_.store(tmp_interpreter, std::memory_order_relaxed);
PyObject* tmp_pyobj = pyobj_.load(std::memory_order_relaxed);
pyobj_.store(
other.pyobj_.load(std::memory_order_relaxed),
std::memory_order_relaxed);
other.pyobj_.store(tmp_pyobj, std::memory_order_relaxed);
}
private:
// This field contains the interpreter tag for this object. See
// Note [Python interpreter tag] for general context
//
// Note [Memory ordering on Python interpreter tag]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What memory_order do we need when accessing this atomic? We don't
// need a single total modification order (as provided by
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
// transition from -1 to some positive integer and never changes afterwards.
// Because there is only one modification, it trivially already has a total
// modification order (e.g., we don't need fences or locked instructions on
// x86)
//
// In fact, one could make a reasonable argument that relaxed reads are OK,
// due to the presence of external locking (GIL) to ensure that interactions
// with other data structures are still correctly synchronized, so that
// we fall in the "Single-Location Data Structures" case as described in
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
// as I get the same assembly in both cases. So I just use the more
// conservative acquire (which will impede compiler optimizations but I don't
// care)
// This is now always the global interpreter if the PyObject is set.
// Maybe we can remove this field some day...
std::atomic<PyInterpreter*> pyobj_interpreter_;
// This field contains a reference to a PyObject representing this Tensor.
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
// PyObject for it and set this field. This field does not have to be
// protected by an atomic as it is only allowed to be accessed when you hold
// the GIL, or during destruction of the tensor.
//
// When a PyObject dies, you are obligated to clear this field
// (otherwise, you will try to use-after-free the pyobj); this currently
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
//
// NB: Ordinarily, this should not be a strong reference, as if the
// PyObject owns the Tensor, this would create a reference cycle.
// However, sometimes this ownership flips. To track who owns
// who, this has a single pointer tag indicating whether or not the
// C++ object owns the PyObject (the common case, zero, means PyObject
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
// or check_pyobj for checked access. See references to PyObject
// resurrection in torch/csrc/autograd/python_variable.cpp
PyObject* pyobj_;
// The PyObject representing this Tensor or nullptr. Ownership is managed
// by intrusive_ptr. By the time the PyObjectSlot is destroyed, this
// reference is already dead.
std::atomic<PyObject*> pyobj_;
friend class torch::utils::PyObjectPreservation;
};
} // namespace c10::impl

View File

@ -345,6 +345,13 @@ class CUDAAllocator : public DeviceAllocator {
c10::DeviceIndex device,
std::shared_ptr<AllocatorState> pps) = 0;
virtual std::string name() = 0;
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
c10::DeviceGuard device_guard({at::kCUDA, device});
size_t free = 0;
size_t total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
return {free, total};
}
};
// Allocator object, statically initialized

View File

@ -66,6 +66,15 @@ def define_targets(rules):
],
)
rules.cc_test(
name = "util/nofatal_test",
srcs = ["util/nofatal_test.cpp"],
deps = [
"//c10/util:base",
"@com_google_googletest//:gtest_main",
],
)
rules.cc_test(
name = "util/ssize_test",
srcs = ["util/ssize_test.cpp"],

View File

@ -0,0 +1,53 @@
#include <gtest/gtest.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
namespace {
template <typename T>
inline void expectThrowsEq(T&& fn, const char* expected_msg) {
try {
std::forward<T>(fn)();
} catch (const c10::Error& e) {
EXPECT_TRUE(
std::string(e.what_without_backtrace()).find(expected_msg) !=
std::string::npos);
return;
}
ADD_FAILURE() << "Expected to throw exception with message \"" << expected_msg
<< "\" but didn't throw";
}
} // namespace
TEST(NofatalTest, TorchCheckComparisons) {
// quick make sure that no-op works as expected
TORCH_CHECK_EQ(1, 1) << "i am a silly message " << 1;
expectThrowsEq(
[]() { TORCH_CHECK_EQ(1, 2) << "i am a silly message " << 1; },
"Check failed: 1 == 2 (1 vs. 2). i am a silly message 1");
expectThrowsEq(
[]() { TORCH_CHECK_NE(2, 2); }, "Check failed: 2 != 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LT(2, 2); }, "Check failed: 2 < 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LE(3, 2); }, "Check failed: 3 <= 2 (3 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GT(2, 2); }, "Check failed: 2 > 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GE(2, 3); }, "Check failed: 2 >= 3 (2 vs. 3).");
expectThrowsEq(
[]() {
void* p = nullptr;
TORCH_CHECK_NOTNULL(p);
},
"Check failed: 'p' must be non NULL.");
#if GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
// if dbg build, DCHECK should result in deth
EXPECT_DEATH(TORCH_DCHECK_EQ(1, 2), "Check failed");
#else
TORCH_DCHECK_EQ(1, 2); // no-op
#endif
#endif // GTEST_HAS_DEATH_TEST
}

View File

@ -702,6 +702,98 @@ namespace c10::detail {
#define TORCH_CHECK_ARG(cond, argN, ...) \
TORCH_CHECK(cond, "invalid argument ", argN, ": ", __VA_ARGS__)
#ifndef FATAL_IF
#ifdef C10_USE_GLOG
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::google::GLOG_FATAL) \
.stream()
#else
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL).stream()
#endif
#endif
#ifndef NON_FATAL_IF
#ifdef C10_USE_GLOG
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger( \
__FILE__, __LINE__, ::google::GLOG_FATAL, false) \
.stream()
#else
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL, false) \
.stream()
#endif
#endif
// Binary comparison check macros
#define TORCH_CHECK_OP(val1, val2, op) \
NON_FATAL_IF(((val1)op(val2))) \
<< "Check failed: " #val1 " " #op " " #val2 " (" << (val1) << " vs. " \
<< (val2) << "). "
#define TORCH_DCHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << "). "
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
// Debug versions of TORCH_CHECK_OP macros
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_DCHECK_OP(val1, val2, >)
#else // !NDEBUG
// Optimized versions - generate no code
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >)
#endif // NDEBUG
// Null pointer check macro
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), false)
#ifndef NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), true)
#else // !NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ----------------------------------------------------------------------------
// Deprecated macros
// ----------------------------------------------------------------------------

View File

@ -291,6 +291,32 @@ namespace c10 {
using fLB::FLAGS_logtostderr;
using fLI::FLAGS_minloglevel;
using fLI::FLAGS_v;
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: stream_(), severity_(severity), exit_on_fatal_(exit_on_fatal) {}
MessageLogger::~MessageLogger() noexcept(false) {
if (severity_ == ::google::GLOG_FATAL) {
DealWithFatal();
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
LOG(FATAL) << stream_.str();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
C10_DEFINE_int(
@ -412,17 +438,16 @@ void ShowLogInfoToStderr() {
FLAGS_caffe2_log_level = GLOG_INFO;
}
MessageLogger::MessageLogger(const char* file, int line, int severity)
: severity_(severity) {
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: severity_(severity), exit_on_fatal_(exit_on_fatal) {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
}
#ifdef ANDROID
tag_ = "native";
#else // !ANDROID
tag_ = "";
#endif // ANDROID
time_t rawtime = 0;
time(&rawtime);
@ -458,7 +483,7 @@ MessageLogger::MessageLogger(const char* file, int line, int severity)
}
// Output the contents of the stream to the proper channel on destruction.
MessageLogger::~MessageLogger() {
MessageLogger::~MessageLogger() noexcept(false) {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
@ -498,6 +523,18 @@ MessageLogger::~MessageLogger() {
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
abort();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
#endif // !C10_USE_GLOG

View File

@ -12,6 +12,10 @@ template <typename, typename...>
class class_;
}
namespace torch::utils {
class PyObjectPreservation;
}
namespace c10 {
class intrusive_ptr_target;
namespace raw {
@ -33,6 +37,8 @@ constexpr uint64_t kImpracticallyHugeWeakReferenceCount =
constexpr uint64_t kReferenceCountOne = 1;
constexpr uint64_t kWeakReferenceCountOne = (kReferenceCountOne << 32);
constexpr uint64_t kUniqueRef = (kReferenceCountOne | kWeakReferenceCountOne);
// Indicates whether the object has a PyObject wrapper.
constexpr uint64_t kHasPyObject = (uint64_t(1) << 63);
template <class TTarget>
struct intrusive_target_default_null_type final {
@ -55,7 +61,11 @@ inline uint32_t refcount(uint64_t combined_refcount) {
}
inline uint32_t weakcount(uint64_t combined_refcount) {
return static_cast<uint32_t>(combined_refcount >> 32);
return static_cast<uint32_t>((combined_refcount & ~kHasPyObject) >> 32);
}
inline bool has_pyobject(uint64_t combined_refcount) {
return (combined_refcount & kHasPyObject) != 0;
}
// The only requirement for refcount increment is that it happens-before
@ -66,12 +76,6 @@ inline uint64_t atomic_combined_refcount_increment(
return combined_refcount.fetch_add(inc, std::memory_order_relaxed) + inc;
}
inline uint32_t atomic_refcount_increment(
std::atomic<uint64_t>& combined_refcount) {
return detail::refcount(atomic_combined_refcount_increment(
combined_refcount, kReferenceCountOne));
}
inline uint32_t atomic_weakcount_increment(
std::atomic<uint64_t>& combined_refcount) {
return detail::weakcount(atomic_combined_refcount_increment(
@ -99,6 +103,11 @@ inline uint32_t atomic_weakcount_decrement(
combined_refcount, kWeakReferenceCountOne));
}
template <class T, class = void>
struct TargetTraits {
static constexpr bool can_have_pyobject = false;
};
} // namespace detail
/**
@ -155,6 +164,23 @@ class C10_API intrusive_ptr_target {
// we can atomically operate on both at the same time for performance
// and defined behaviors.
//
// Note [PyObject preservation for Tensor and Storages]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// intrusive_ptr has special support for preserving PyObject wrappers
// for TensorImpl and StorageImpl. The most significant bit (kHasPyObject) of
// the combined_refcount_ is used to indicate whether the object has a
// PyObject wrapper.
//
// - The PyObject, if it exists, holds a strong reference to the
// intrusive_ptr_target.
//
// - When the refcount goes from 1 to 2, we incref the PyObject.
//
// - When the refcount goes from 2 to 1, we decref the PyObject.
//
// In other words, the intrusive_ptr keeps the PyObject alive as long as there
// are other C++ references to the intrusive_ptr_target.
mutable std::atomic<uint64_t> combined_refcount_;
static_assert(sizeof(std::atomic<uint64_t>) == 8);
static_assert(alignof(std::atomic<uint64_t>) == 8);
@ -172,6 +198,8 @@ class C10_API intrusive_ptr_target {
template <typename T>
friend struct ExclusivelyOwnedTensorTraits;
friend class torch::utils::PyObjectPreservation;
protected:
// protected destructor. We never want to destruct intrusive_ptr_target*
// directly.
@ -255,6 +283,16 @@ class C10_API intrusive_ptr_target {
*/
virtual void release_resources() {}
/**
* These two methods are called when the refcount transitions between one
* and two and the object has a PyObject wrapper.
*/
virtual void incref_pyobject() const {}
virtual void decref_pyobject() const {}
virtual bool try_incref_pyobject() const {
return false;
}
uint32_t refcount(std::memory_order order = std::memory_order_relaxed) const {
return detail::refcount(combined_refcount_.load(order));
}
@ -265,6 +303,15 @@ class C10_API intrusive_ptr_target {
}
};
namespace detail {
template <>
struct TargetTraits<c10::intrusive_ptr_target> {
// A generic intrusive_ptr<intrusive_ptr_target> may actually be a TensorImpl
// or StorageImpl, so we have to allow for PyObject support.
static constexpr bool can_have_pyobject = true;
};
} // namespace detail
template <class TTarget, class NullType>
class weak_intrusive_ptr;
@ -314,18 +361,34 @@ class intrusive_ptr final {
void retain_() {
if (target_ != NullType::singleton()) {
uint32_t new_refcount =
detail::atomic_refcount_increment(target_->combined_refcount_);
uint64_t combined = detail::atomic_combined_refcount_increment(
target_->combined_refcount_, detail::kReferenceCountOne);
uint32_t new_refcount = detail::refcount(combined);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
new_refcount != 1,
"intrusive_ptr: Cannot increase refcount after it reached zero.");
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
// If the refcount transitioned from 1 to 2, we need to incref the
// PyObject. In other words, we need to ensure that the PyObject stays
// alive now that we have a C++ reference to this object in addition to
// the PyObject itself.
if (C10_UNLIKELY(
detail::has_pyobject(combined) &&
detail::refcount(combined) == 2)) {
target_->incref_pyobject();
}
} else {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
!detail::has_pyobject(combined),
"TargetTraits indicates that type cannot have PyObject, but refcount has PyObject bit set.");
}
}
}
void reset_() noexcept {
if (target_ != NullType::singleton()) {
if (target_->combined_refcount_.load(std::memory_order_acquire) ==
detail::kUniqueRef) {
if (is_uniquely_owned()) {
// Both counts are 1, so there are no weak references and
// we are releasing the last strong reference. No other
// threads can observe the effects of this target_ deletion
@ -337,9 +400,10 @@ class intrusive_ptr final {
auto combined_refcount = detail::atomic_combined_refcount_decrement(
target_->combined_refcount_, detail::kReferenceCountOne);
if (detail::refcount(combined_refcount) == 0) {
bool should_delete =
(combined_refcount == detail::kWeakReferenceCountOne);
uint32_t new_refcount = detail::refcount(combined_refcount);
bool has_pyobject = detail::has_pyobject(combined_refcount);
if (new_refcount == 0) {
bool should_delete = detail::weakcount(combined_refcount) == 1;
// See comment above about weakcount. As long as refcount>0,
// weakcount is one larger than the actual number of weak references.
// So we need to decrement it here.
@ -356,6 +420,18 @@ class intrusive_ptr final {
if (should_delete) {
delete target_;
}
} else if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
// If the refcount transitioned from 2 to 1, we need to decref the
// PyObject. In other words, we don't want to keep the PyObject alive if
// there are no C++ references to this object other than the PyObject
// itself.
if (C10_UNLIKELY(has_pyobject && new_refcount == 1)) {
target_->decref_pyobject();
}
} else {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
!has_pyobject,
"TargetTraits indicates that type cannot have PyObject, but refcount has PyObject bit set.");
}
}
}
@ -522,6 +598,16 @@ class intrusive_ptr final {
return use_count() == 1;
}
/**
* Stronger than unique() in that it must not have any weakrefs as well.
*/
bool is_uniquely_owned() const noexcept {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(target_ != NullType::singleton());
uint64_t combined =
target_->combined_refcount_.load(std::memory_order_acquire);
return (combined & ~detail::kHasPyObject) == detail::kUniqueRef;
}
/**
* Returns an owning (!) pointer to the underlying object and makes the
* intrusive_ptr instance invalid. That means the refcount is not decreased.
@ -932,6 +1018,7 @@ class weak_intrusive_ptr final {
if (target_ == NullType::singleton()) {
return intrusive_ptr<TTarget, NullType>();
} else {
bool increfed = false;
auto combined_refcount =
target_->combined_refcount_.load(std::memory_order_relaxed);
do {
@ -940,12 +1027,31 @@ class weak_intrusive_ptr final {
// Return nullptr.
return intrusive_ptr<TTarget, NullType>();
}
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
if (detail::has_pyobject(combined_refcount) &&
detail::refcount(combined_refcount) == 1 && !increfed) {
// Object has a python wrapper with no other C++ references.
// We need to to incref the Python object before we acquire a
// strong reference to the C++ object to avoid a situation
// where the Python object is deallocated concurrently.
if (!target_->try_incref_pyobject()) {
return intrusive_ptr<TTarget, NullType>();
}
increfed = true;
}
}
} while (!target_->combined_refcount_.compare_exchange_weak(
combined_refcount,
combined_refcount + detail::kReferenceCountOne,
std::memory_order_acquire,
std::memory_order_relaxed));
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
if (increfed && detail::refcount(combined_refcount) != 1) {
target_->decref_pyobject();
}
}
return intrusive_ptr<TTarget, NullType>(
target_, raw::DontIncreaseRefcount{});
}
@ -1060,7 +1166,14 @@ namespace intrusive_ptr {
// NullType::singleton to this function
inline void incref(intrusive_ptr_target* self) {
if (self) {
detail::atomic_refcount_increment(self->combined_refcount_);
uint64_t combined = detail::atomic_combined_refcount_increment(
self->combined_refcount_, detail::kReferenceCountOne);
if (C10_UNLIKELY(
detail::has_pyobject(combined) &&
detail::refcount(combined) == 2)) {
self->incref_pyobject();
}
}
}

74
c10/util/logging_common.h Normal file
View File

@ -0,0 +1,74 @@
#ifndef C10_UTIL_LOGGING_COMMON_H_
#define C10_UTIL_LOGGING_COMMON_H_
#include <c10/macros/Export.h>
#include <sstream>
namespace c10 {
// MessageLogger that throws exceptions instead of aborting (glog version)
// or logs and may abort (non-glog version).
class C10_API MessageLogger {
public:
MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal = true);
~MessageLogger() noexcept(false);
// Return the stream associated with the logger object.
std::stringstream& stream();
private:
// When there is a fatal log, and fatal == true, we abort
// otherwise, we throw.
void DealWithFatal();
#if defined(ANDROID) && !defined(C10_USE_GLOG)
const char* tag_{"native"};
#endif
std::stringstream stream_;
int severity_;
bool exit_on_fatal_;
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class C10_API LoggerVoidify {
public:
LoggerVoidify() = default;
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const std::ostream& s [[maybe_unused]]) {}
};
// Forward declarations for CheckNotNull functions
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal = true);
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal = true);
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal = true);
} // namespace c10
#endif // C10_UTIL_LOGGING_COMMON_H_

View File

@ -47,57 +47,53 @@ INSTANTIATE_FOR_CONTAINER(set)
#endif
#include <c10/util/logging_common.h>
#include <glog/logging.h>
// Additional macros on top of glog
#define TORCH_CHECK_EQ(val1, val2) CHECK_EQ(val1, val2)
#define TORCH_CHECK_NE(val1, val2) CHECK_NE(val1, val2)
#define TORCH_CHECK_LE(val1, val2) CHECK_LE(val1, val2)
#define TORCH_CHECK_LT(val1, val2) CHECK_LT(val1, val2)
#define TORCH_CHECK_GE(val1, val2) CHECK_GE(val1, val2)
#define TORCH_CHECK_GT(val1, val2) CHECK_GT(val1, val2)
namespace c10 {
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) DCHECK_EQ(val1, val2)
#define TORCH_DCHECK_NE(val1, val2) DCHECK_NE(val1, val2)
#define TORCH_DCHECK_LE(val1, val2) DCHECK_LE(val1, val2)
#define TORCH_DCHECK_LT(val1, val2) DCHECK_LT(val1, val2)
#define TORCH_DCHECK_GE(val1, val2) DCHECK_GE(val1, val2)
#define TORCH_DCHECK_GT(val1, val2) DCHECK_GT(val1, val2)
#else // !NDEBUG
// These versions generate no code in optimized mode.
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
DCHECK_EQ(val1, val2)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
DCHECK_NE(val1, val2)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
DCHECK_LE(val1, val2)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
DCHECK_LT(val1, val2)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
DCHECK_GE(val1, val2)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
DCHECK_GT(val1, val2)
#endif // NDEBUG
[[noreturn]] void ThrowEnforceNotMet(
const char* file,
const int line,
const char* condition,
const std::string& msg,
const void* caller);
// Check that a pointer is not null.
#define TORCH_CHECK_NOTNULL(val) CHECK_NOTNULL(val)
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
if (t == nullptr) {
MessageLogger(file, line, ::google::GLOG_FATAL, fatal).stream()
<< "Check failed: '" << names << "' must be non NULL. ";
}
return t;
}
#ifndef NDEBUG
// Debug only version of TORCH_CHECK_NOTNULL
#define TORCH_DCHECK_NOTNULL(val) DCHECK_NOTNULL(val)
#else // !NDEBUG
// Optimized version - generates no code.
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
DCHECK_NOTNULL(val)
#endif // NDEBUG
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
} // namespace c10
// Log with source location information override (to be used in generic
// warning/error handlers implemented as functions, not macros)

View File

@ -13,6 +13,7 @@
#include <vector>
#include <c10/util/Flags.h>
#include <c10/util/logging_common.h>
const char CAFFE2_SEVERITY_PREFIX[] = "FEWIV";
@ -24,61 +25,40 @@ const int GLOG_ERROR = 2;
const int GLOG_WARNING = 1;
const int GLOG_INFO = 0;
class C10_API MessageLogger {
public:
MessageLogger(const char* file, int line, int severity);
~MessageLogger();
// Return the stream associated with the logger object.
std::stringstream& stream() {
return stream_;
}
private:
// When there is a fatal log, we simply abort.
void DealWithFatal() {
abort();
}
const char* tag_;
std::stringstream stream_;
int severity_;
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class C10_API LoggerVoidify {
public:
LoggerVoidify() = default;
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const std::ostream& s [[maybe_unused]]) {}
};
// Log a message and terminate.
template <class T>
void LogMessageFatal(const char* file, int line, const T& message) {
MessageLogger(file, line, GLOG_FATAL).stream() << message;
}
// Helpers for TORCH_CHECK_NOTNULL(). Two are necessary to support both raw
// pointers and smart pointers.
template <typename T>
T& CheckNotNullCommon(const char* file, int line, const char* names, T& t) {
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
if (t == nullptr) {
LogMessageFatal(file, line, std::string(names));
MessageLogger(file, line, GLOG_FATAL, fatal).stream()
<< "Check failed: '" << names << "' must be non NULL. ";
}
return t;
}
template <typename T>
T* CheckNotNull(const char* file, int line, const char* names, T* t) {
return CheckNotNullCommon(file, line, names, t);
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
template <typename T>
T& CheckNotNull(const char* file, int line, const char* names, T& t) {
return CheckNotNullCommon(file, line, names, t);
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
} // namespace c10
@ -136,65 +116,6 @@ static_assert(
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_##n).stream()
#endif // NDEBUG
#define TORCH_CHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << ") "
// TORCH_CHECK_OP macro definitions
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
#ifndef NDEBUG
// Debug only versions of TORCH_CHECK_OP macros.
#define TORCH_DCHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
#else // !NDEBUG
// These versions generate no code in optimized mode.
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, >)
#endif // NDEBUG
// Check that a pointer is not null.
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull( \
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
#ifndef NDEBUG
// Debug only version of TORCH_CHECK_NOTNULL
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull( \
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
#else // !NDEBUG
// Optimized version - generates no code.
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ---------------------- Support for std objects --------------------------
// These are adapted from glog to support a limited set of logging capability
// for STL objects.

View File

@ -926,15 +926,14 @@ class DeviceCachingAllocator {
(release_cached_blocks() && alloc_block(params, true));
}
if (!block_found) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device);
auto device_total = device_prop.global_mem_size;
const auto& raw_device = c10::xpu::get_raw_device(device);
const auto device_total =
raw_device.get_info<sycl::info::device::global_mem_size>();
// Estimate the available device memory when the SYCL runtime does not
// support the corresponding aspect (ext_intel_free_memory).
size_t device_free = device_prop.global_mem_size -
size_t device_free = device_total -
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
.current;
auto& raw_device = c10::xpu::get_raw_device(device);
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
// affected devices.
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
@ -1052,21 +1051,37 @@ class DeviceCachingAllocator {
}
}
std::pair<size_t, size_t> getMemoryInfo() {
const auto& device = c10::xpu::get_raw_device(device_index);
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
TORCH_CHECK(
device.has(sycl::aspect::ext_intel_free_memory),
"The device (",
device.get_info<sycl::info::device::name>(),
") doesn't support querying the available free memory. ",
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
"to help us prioritize its implementation.");
const size_t free =
device.get_info<sycl::ext::intel::info::device::free_memory>();
return {free, total};
}
double getMemoryFraction() {
if (!set_fraction) {
return 1.0;
}
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
return static_cast<double>(allowed_memory_maximum) /
static_cast<double>(device_prop.global_mem_size);
static_cast<double>(device_total);
}
void setMemoryFraction(double fraction) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
auto device_total = device_prop.global_mem_size;
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
set_fraction = true;
}
@ -1240,6 +1255,11 @@ class XPUAllocator : public DeviceAllocator {
c10::xpu::get_raw_device(dev_to_access));
}
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
assertValidDevice(device);
return device_allocators[device]->getMemoryInfo();
}
double getMemoryFraction(DeviceIndex device) {
assertValidDevice(device);
return device_allocators[device]->getMemoryFraction();

View File

@ -1941,6 +1941,7 @@ if(BUILD_TEST)
foreach(test_src ${Caffe2_XPU_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
torch_compile_options(${test_name})
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})

View File

@ -73,6 +73,19 @@ void box_cox_zero_lambda(
}
}
template <typename T>
at::vec::Vectorized<T> box_cox_nonzero_lambda_impl(
at::vec::Vectorized<T> data,
at::vec::Vectorized<T> lambda1,
at::vec::Vectorized<T> lambda2,
at::vec::Vectorized<T> k_eps) {
auto sum = data + lambda2;
auto max = at::vec::max(sum, k_eps);
auto lambda_over_1 = at::vec::fast_recieprocal(lambda1);
auto pow = max.pow(lambda1);
return at::vec::fmsub(pow, lambda_over_1, lambda_over_1);
}
template <typename T>
void box_cox_nonzero_lambda(
int64_t D,
@ -88,21 +101,18 @@ void box_cox_nonzero_lambda(
auto k_eps_vec = Vec(k_eps);
for(; j + VLEN < D; j += VLEN) {
auto data = Vec::loadu(data_ptr + j);
auto lambda2 = Vec::loadu(lambda2_ptr + j);
auto sum = data + lambda2;
auto max = at::vec::max(sum, k_eps_vec);
auto lambda1 = Vec::loadu(lambda1_ptr + j);
auto lambda_over_1 = at::vec::fast_recieprocal(lambda1);
auto pow = max.pow(lambda1);
auto res = at::vec::fmsub(pow, lambda_over_1, lambda_over_1);
auto lambda2 = Vec::loadu(lambda2_ptr + j);
auto res = box_cox_nonzero_lambda_impl(data, lambda1, lambda2, k_eps_vec);
res.store(out + j);
}
for ( ;j < D; ++j) {
auto sum = data_ptr[j] + lambda2_ptr[j];
auto max = std::max(sum, k_eps);
auto lambda_over_1 = at::vec::fast_recieprocal(lambda1_ptr[j]);
auto pow = std::pow(max, lambda1_ptr[j]);
out[j] = pow * lambda_over_1 - lambda_over_1;
if (j < D) {
auto remaining = D - j;
auto data = Vec::loadu(data_ptr + j, remaining);
auto lambda1 = Vec::loadu(lambda1_ptr + j, remaining);
auto lambda2 = Vec::loadu(lambda2_ptr + j, remaining);
auto res = box_cox_nonzero_lambda_impl(data, lambda1, lambda2, k_eps_vec);
res.store(out + j, remaining);
}
}
#else

View File

@ -478,6 +478,7 @@ function(torch_update_find_cuda_flags)
endfunction()
include(CheckCXXCompilerFlag)
include(CheckCCompilerFlag)
include(CheckLinkerFlag)
##############################################################################
@ -501,6 +502,24 @@ function(append_cxx_flag_if_supported flag outputvar)
endif()
endfunction()
function(append_c_flag_if_supported flag outputvar)
string(TOUPPER "HAS${flag}" _FLAG_NAME)
string(REGEX REPLACE "[=-]" "_" _FLAG_NAME "${_FLAG_NAME}")
# GCC silences unknown -Wno-XXX flags, so test the corresponding -WXXX.
if(CMAKE_C_COMPILER_ID STREQUAL "GNU")
string(REGEX REPLACE "^Wno-" "W" new_flag "${flag}")
else()
set(new_flag "${flag}")
endif()
check_c_compiler_flag("${new_flag}" ${_FLAG_NAME})
if(${_FLAG_NAME})
string(APPEND ${outputvar} " ${flag}")
set(${outputvar} "${${outputvar}}" PARENT_SCOPE)
endif()
endfunction()
function(target_compile_options_if_supported target flag)
set(_compile_options "")
append_cxx_flag_if_supported("${flag}" _compile_options)

View File

@ -40,6 +40,7 @@
:nosignatures:
empty_cache
get_memory_info
max_memory_allocated
max_memory_reserved
memory_allocated

View File

@ -382,20 +382,6 @@ coverage_ignore_functions = [
# torch.ao.quantization.backend_config.tensorrt
"get_tensorrt_backend_config",
"get_tensorrt_backend_config_dict",
# torch.ao.quantization.backend_config.utils
"entry_to_pretty_str",
"get_fused_module_classes",
"get_fuser_method_mapping",
"get_fusion_pattern_to_extra_inputs_getter",
"get_fusion_pattern_to_root_node_getter",
"get_module_to_qat_module",
"get_pattern_to_dtype_configs",
"get_pattern_to_input_type_to_index",
"get_qat_module_classes",
"get_root_module_to_quantized_reference_module",
"pattern_to_human_readable",
"remove_boolean_dispatch_from_name",
# torch.ao.quantization.backend_config.x86
"get_x86_backend_config",
# torch.ao.quantization.fuse_modules
"fuse_known_modules",
@ -426,25 +412,6 @@ coverage_ignore_functions = [
"insert_observers_for_model",
"prepare",
"propagate_dtypes_for_known_nodes",
# torch.ao.quantization.fx.utils
"all_node_args_except_first",
"all_node_args_have_no_tensors",
"assert_and_get_unique_device",
"collect_producer_nodes",
"create_getattr_from_value",
"create_node_from_old_node_preserve_meta",
"get_custom_module_class_keys",
"get_linear_prepack_op_for_dtype",
"get_new_attr_name_with_prefix",
"get_non_observable_arg_indexes_and_types",
"get_qconv_prepack_op",
"get_skipped_module_name_and_classes",
"graph_module_from_producer_nodes",
"maybe_get_next_module",
"node_arg_is_bias",
"node_arg_is_weight",
"return_arg_list",
# torch.ao.quantization.pt2e.graph_utils
"bfs_trace_with_node_process",
"find_sequential_partitions",
"get_equivalent_types",
@ -860,80 +827,10 @@ coverage_ignore_functions = [
"get_latency_of_one_partition",
"get_latency_of_partitioned_graph",
"get_partition_to_latency_mapping",
# torch.fx.experimental.proxy_tensor
"decompose",
"disable_autocast_cache",
"disable_proxy_modes_tracing",
"dispatch_trace",
"extract_val",
"fake_signature",
"fetch_sym_proxy",
"fetch_object_proxy",
"get_innermost_proxy_mode",
"get_isolated_graphmodule",
"get_proxy_slot",
"get_torch_dispatch_modes",
"has_proxy_slot",
"is_sym_node",
"maybe_handle_decomp",
"proxy_call",
"set_meta",
"set_original_aten_op",
"set_proxy_slot",
"snapshot_fake",
"thunkify",
"track_tensor",
"track_tensor_tree",
"wrap_key",
"wrapper_and_args_for_make_fx",
# torch.fx.experimental.recording
"record_shapeenv_event",
"replay_shape_env_events",
"shape_env_check_state_equal",
# torch.fx.experimental.sym_node
"ceil_impl",
"floor_ceil_helper",
"floor_impl",
"method_to_operator",
"sympy_is_channels_last_contiguous_2d",
"sympy_is_channels_last_contiguous_3d",
"sympy_is_channels_last_strides_2d",
"sympy_is_channels_last_strides_3d",
"sympy_is_channels_last_strides_generic",
"sympy_is_contiguous",
"sympy_is_contiguous_generic",
"to_node",
"wrap_node",
"sym_sqrt",
# torch.fx.experimental.symbolic_shapes
"bind_symbols",
"cast_symbool_to_symint_guardless",
"create_contiguous",
"error",
"eval_guards",
"eval_is_non_overlapping_and_dense",
"expect_true",
"find_symbol_binding_fx_nodes",
"free_symbols",
"free_unbacked_symbols",
"fx_placeholder_targets",
"fx_placeholder_vals",
"guard_bool",
"guard_float",
"guard_int",
"guard_scalar",
"has_hint",
"has_symbolic_sizes_strides",
"is_channels_last_contiguous_2d",
"is_channels_last_contiguous_3d",
"is_channels_last_strides_2d",
"is_channels_last_strides_3d",
"is_contiguous",
"is_non_overlapping_and_dense_indicator",
"is_nested_int",
"is_symbol_binding_fx_node",
"is_symbolic",
# torch.fx.experimental.unification.core
"reify",
# torch.fx.experimental.unification.match
"edge",
@ -971,24 +868,6 @@ coverage_ignore_functions = [
"reverse_dict",
# torch.fx.experimental.unification.multipledispatch.variadic
"isvariadic",
# torch.fx.experimental.unification.unification_tools
"assoc",
"assoc_in",
"dissoc",
"first",
"get_in",
"getter",
"groupby",
"itemfilter",
"itemmap",
"keyfilter",
"keymap",
"merge",
"merge_with",
"update_in",
"valfilter",
"valmap",
# torch.fx.experimental.unification.utils
"freeze",
"hashable",
"raises",

View File

@ -12,6 +12,37 @@ These APIs are experimental and subject to change without notice.
.. autoclass:: torch.fx.experimental.sym_node.DynamicInt
```
## torch.fx.experimental.sym_node
```{eval-rst}
.. currentmodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. automodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
is_channels_last_contiguous_2d
is_channels_last_contiguous_3d
is_channels_last_strides_2d
is_channels_last_strides_3d
is_contiguous
is_non_overlapping_and_dense_indicator
method_to_operator
sympy_is_channels_last_contiguous_2d
sympy_is_channels_last_contiguous_3d
sympy_is_channels_last_strides_2d
sympy_is_channels_last_strides_3d
sympy_is_channels_last_strides_generic
sympy_is_contiguous
sympy_is_contiguous_generic
```
## torch.fx.experimental.symbolic_shapes
```{eval-rst}
@ -69,6 +100,25 @@ These APIs are experimental and subject to change without notice.
rebind_unbacked
resolve_unbacked_bindings
is_accessor_node
cast_symbool_to_symint_guardless
create_contiguous
error
eval_guards
eval_is_non_overlapping_and_dense
find_symbol_binding_fx_nodes
free_symbols
free_unbacked_symbols
fx_placeholder_targets
fx_placeholder_vals
guard_bool
guard_float
guard_int
guard_scalar
has_hint
has_symbolic_sizes_strides
is_nested_int
is_symbol_binding_fx_node
is_symbolic
```
## torch.fx.experimental.proxy_tensor
@ -91,4 +141,46 @@ These APIs are experimental and subject to change without notice.
get_proxy_mode
maybe_enable_thunkify
maybe_disable_thunkify
decompose
disable_autocast_cache
disable_proxy_modes_tracing
extract_val
fake_signature
fetch_object_proxy
fetch_sym_proxy
has_proxy_slot
is_sym_node
maybe_handle_decomp
proxy_call
set_meta
set_original_aten_op
set_proxy_slot
snapshot_fake
```
## torch.fx.experimental.unification.unification_tools
```{eval-rst}
.. currentmodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. automodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
assoc
assoc_in
dissoc
first
keyfilter
keymap
merge
merge_with
update_in
valfilter
valmap

View File

@ -1134,7 +1134,6 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.refinement_types
.. py:module:: torch.fx.experimental.rewriter
.. py:module:: torch.fx.experimental.schema_type_annotation
.. py:module:: torch.fx.experimental.sym_node
.. py:module:: torch.fx.experimental.unification.core
.. py:module:: torch.fx.experimental.unification.dispatch
.. py:module:: torch.fx.experimental.unification.match
@ -1144,7 +1143,6 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.unification.multipledispatch.dispatcher
.. py:module:: torch.fx.experimental.unification.multipledispatch.utils
.. py:module:: torch.fx.experimental.unification.multipledispatch.variadic
.. py:module:: torch.fx.experimental.unification.unification_tools
.. py:module:: torch.fx.experimental.unification.utils
.. py:module:: torch.fx.experimental.unification.variable
.. py:module:: torch.fx.experimental.unify_refinements

View File

@ -134,6 +134,23 @@ Quantization to work with this as well.
ObservationType
```
## torch.ao.quantization.backend_config.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.backend_config.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
entry_to_pretty_str
pattern_to_human_readable
remove_boolean_dispatch_from_name
```
## torch.ao.quantization.fx.custom_config
This module contains a few CustomConfig classes that's used in both eager mode and FX graph mode quantization
@ -154,6 +171,30 @@ This module contains a few CustomConfig classes that's used in both eager mode a
StandaloneModuleConfigEntry
```
## torch.ao.quantization.fx.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.fx.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
all_node_args_except_first
all_node_args_have_no_tensors
collect_producer_nodes
create_getattr_from_value
create_node_from_old_node_preserve_meta
graph_module_from_producer_nodes
maybe_get_next_module
node_arg_is_bias
node_arg_is_weight
return_arg_list
```
## torch.ao.quantization.quantizer
```{eval-rst}

View File

@ -172,9 +172,9 @@ ignore = [
"SIM102", "SIM103", "SIM112", # flake8-simplify code styles
"SIM105", # these ignores are from flake8-simplify. please fix or ignore with commented reason
"SIM108", # SIM108 ignored because we prefer if-else-block instead of ternary expression
"SIM110",
"SIM110", # Checks for for loops that can be replaced with a builtin function, like any or all.
"SIM114", # Combine `if` branches using logical `or` operator
"SIM115",
"SIM115", # Checks for cases where files are opened without using a context manager.
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
@ -184,7 +184,6 @@ ignore = [
"TC006",
# TODO: Remove Python-3.10 specific suppressions
"B905",
"UP035",
]
select = [
"B",
@ -261,6 +260,7 @@ select = [
"TRY401", # verbose-log-message
"UP",
"YTT",
"S101",
]
[tool.ruff.lint.pyupgrade]
@ -340,6 +340,39 @@ keep-runtime-typing = true
"tools/linter/**" = [
"LOG015" # please fix
]
"benchmarks/**" = [
"S101"
]
"test/**" = [
"S101"
]
"torchgen/**" = [
"S101"
]
"torch/**" = [
"S101"
]
"tools/**" = [
"S101"
]
"setup.py" = [
"S101"
]
"functorch/**" = [
"S101"
]
"docs/**" = [
"S101"
]
"android/**" = [
"S101"
]
".github/**" = [
"S101"
]
".ci/**" = [
"S101"
]
[tool.codespell]
ignore-words = "tools/linter/dictionary.txt"

Some files were not shown because too many files have changed in this diff Show More