This is a cleaner implementation of opaque objects (https://github.com/pytorch/pytorch/pull/162660). Instead now we just need to do:
Call `register_opaque_type` to register the type as being "opaque" and allowed by custom ops. You also need to pass a unique name that maps to the type.
```python
class OpaqueQueue:
def __init__(self, queue: list[torch.Tensor], init_tensor_: torch.Tensor) -> None:
super().__init__()
self.queue = queue
self.init_tensor_ = init_tensor_
def push(self, tensor: torch.Tensor) -> None:
self.queue.append(tensor)
def pop(self) -> torch.Tensor:
if len(self.queue) > 0:
return self.queue.pop(0)
return self.init_tensor_
def size(self) -> int:
return len(self.queue)
register_opaque_type(OpaqueQueue, "_TestOpaqueObject_OpaqueQueue")
```
When creating the custom op, the schema will then use the unique name:
```python
self.lib = torch.library.Library("_TestOpaqueObject", "FRAGMENT")
torch.library.define(
"_TestOpaqueObject::queue_push",
"(_TestOpaqueObject_OpaqueQueue a, Tensor b) -> ()",
tags=torch.Tag.pt2_compliant_tag,
lib=self.lib,
)
@torch.library.impl(
"_TestOpaqueObject::queue_push", "CompositeExplicitAutograd", lib=self.lib
)
def push_impl(queue: OpaqueQueue, b: torch.Tensor) -> None:
assert isinstance(queue, OpaqueQueue)
queue.push(b)
```
Using the custom op:
```python
queue = OpaqueQueue([], torch.zeros(3))
torch.ops._TestOpaqueObject.queue_push(queue, torch.ones(3))
self.assertTrue(queue.size(), 1)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165004
Approved by: https://github.com/albanD
DebugMode reports tensor type, it shapes and placements while active. This change augments reporting to tensor attributes from configured set. This feature is intended to be used to ease understanding debug string when dealing with larger outputs. For example, before running forward pass of a model we can annotate each of parameters and buffers with their fully qualified names, so that we can see which ops are being executed against specific tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165109
Approved by: https://github.com/ezyang, https://github.com/pianpwk
Fixes#164814 - we update to include cases where we know symbolic expression is statically one. There are two errors here; first in graph capture, where a tensor with size 0 yet symbolic stride would attempt to keep the symbolic stride, resulting in a mismatch. The second is in inductor code gen, where we only checked in squeeze if size == 1, missing the case where a symbolic stride equals 1.
Also fixes#164924 (@bobrenjc93 for fuzzer finding an issue affecting users : )
### Test plan:
```
python test/dynamo/test_aot_autograd.py AotAutogradFallbackTests
```
Results in:
```
..
----------------------------------------------------------------------
Ran 49 tests in 45.622s
OK (expected failures=1)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164897
Approved by: https://github.com/laithsakka
Fixes #ISSUE_NUMBER
Failing due to memory leak, ex
https://github.com/pytorch/pytorch/actions/runs/18401518298/job/52434584458
```
2025-10-10T11:07:42.9485277Z _ TestSelectAlgorithmCudaCUDA.test_int8_woq_mm_cuda_batch_size_32_mid_dim_8_in_features_144_out_features_65_cuda_bfloat16 _
2025-10-10T11:07:42.9485389Z Traceback (most recent call last):
2025-10-10T11:07:42.9485869Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3278, in wrapper
2025-10-10T11:07:42.9485966Z method(*args, **kwargs)
2025-10-10T11:07:42.9486365Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3278, in wrapper
2025-10-10T11:07:42.9486454Z method(*args, **kwargs)
2025-10-10T11:07:42.9486849Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3277, in wrapper
2025-10-10T11:07:42.9486933Z with policy():
2025-10-10T11:07:42.9487380Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2654, in __exit__
2025-10-10T11:07:42.9487473Z raise RuntimeError(msg)
2025-10-10T11:07:42.9488533Z RuntimeError: CUDA driver API confirmed a leak in __main__.TestSelectAlgorithmCudaCUDA.test_int8_woq_mm_cuda_batch_size_32_mid_dim_8_in_features_144_out_features_65_cuda_bfloat16! Caching allocator allocated memory was 19456 and is now reported as 29184 on device 0. CUDA driver allocated memory was 356712448 and is now 358809600.
2025-10-10T11:07:42.9488543Z
2025-10-10T11:07:42.9488722Z To execute this test, run the following from the base repo dir:
2025-10-10T11:07:42.9489520Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=1 PYTORCH_TEST_WITH_SLOW_GRADCHECK=1 python test/inductor/test_cuda_select_algorithm.py TestSelectAlgorithmCudaCUDA.test_int8_woq_mm_cuda_batch_size_32_mid_dim_8_in_features_144_out_features_65_cuda_bfloat16
2025-10-10T11:07:42.9489525Z
2025-10-10T11:07:42.9489748Z This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
```
Got added in #161680
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165147
Approved by: https://github.com/bbeckca
- Introduce file_lock_timeout in config (defaults to current value of 600)
- Use the above config instead of hardcoded 600 config.
This is useful when running stress tests.
Differential Revision:
D84109142
Privacy Context Container: L1297311
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165030
Approved by: https://github.com/hl475
I found that running any compiled function under DebugMode more than once will trigger recompilations, e.g. with the really simple modified test case in `test_compile`:
```
[0/1] [__recompiles] Recompiling function f in /data/users/pianpwk/ptclone/pytorch/test/distributed/tensor/debug/test_debug_mode.py:268
[0/1] [__recompiles] triggered by the following guard failure(s):
[0/1] [__recompiles] - 0/0:
[0/2] [__recompiles] Recompiling function f in /data/users/pianpwk/ptclone/pytorch/test/distributed/tensor/debug/test_debug_mode.py:268
[0/2] [__recompiles] triggered by the following guard failure(s):
[0/2] [__recompiles] - 0/1:
[0/2] [__recompiles] - 0/0:
```
Digging deeper, the guard failures were due to TENSOR_MATCH guards failing on dispatch key set checks (seemingly on the Python dispatch key):
5a1fbf45ad/torch/csrc/dynamo/guards.cpp (L199-L203)
This seems to due to the `ignore_compile_internals=True` flag on custom dispatch modes being on, which causes these modes to "hide" themselves during compilation, making dynamo guard on the Python dispatch key being off.
The (maybe imperfect) solution is to mask out the Python keys for guard comparisons. This might be fine because custom dispatch modes won't appear here during compilation - `ignore_compile_internals=True` hides them, and `ignore_compile_internals=False` disables compile entirely?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164992
Approved by: https://github.com/williamwen42
The normal pytest/unittest failure patterns also match flaky tests (specifically I think tests that fail -> succeed on rerun in a new subprocess)
So print something specifically for log classifier that it can match against
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165163
Approved by: https://github.com/izaitsevfb
Summary: While saving state_dict tensors, deduping is done to reduce number of tensor data. For this storage point is used. But when the tensor is empty, storage pointer is 0. But dtype of the tensors could be different. Existing logic will consider all such tensor as same. This will fail the model later when different dtype is expected. This change will include dtype also while deduping. For non empty tensor, this should not affect as the storage point will be unique.
Test Plan: TBD
Differential Revision: D84243094
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165090
Approved by: https://github.com/yiming0416
https://github.com/pytorch/pytorch/issues/162858 The issue described the feature implemented.
This adds to the existing graph break log with the latest 20 (or viable user frame) bytecode instructions. The scenario is when the graph_break happens without errors. It happens during the case when user calling torch._dynamo.graph_break().
Meanwhile, in the testing, one can find that the generated frame based on step() is not deterministic as sometimes it reached the maximum amount, sometimes it generated the less than that. The bytecode generation is python version dependent. Thus, the testing plan excludes the bytecode output but generated the total bytecode line count.
This is a helpful process to understand bytecode transformation, symbolic convert, and convert frame. It is a helpful task to provide hands-on experience with dynamo workflow.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164422
Approved by: https://github.com/williamwen42, https://github.com/mlazos
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Splits the training and inference paths for aot stage2 compile.
1. Split `aot_stage2_autograd` into `_aot_stage2a_partition`, `_aot_stage2b_fw_compile` and `_aot_stage2b_bw_compile`, and rest.
2. Split `aot_stage2_inference` into `_aot_stage2b_inference_compile` and rest.
I'm leaving these as functions with underscore names since the I/O interfaces and the exact boundaries of these splits are somewhat in the air.
Differential Revision: D84028203
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164808
Approved by: https://github.com/SherlockNoMad
Some more context at https://github.com/pytorch/pytorch/pull/164939
The basic point here is that Python decomps are guaranteed to be functional, whereas C++ ones are not. If we have a Python decomp, we should prefer it over the C++ one. This currently doesn't matter too much as CIA decomps will get functionalized, but it matters after the quoted PR because we now run these decompositions very late (to make it easy for things like aot_eager to get the fused versions of operators in proxy tensor).
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164970
Approved by: https://github.com/bdhirsh
Adding bf16 support for `torch._fake_quantize_learnable_per_channel_affine()` op by relaxing the type check on scale
TODO: need to add bf16 support to `per_tensor_affine_` as `torch._fake_quantize_learnable_per_tensor_affine_backward` gets called in the backward pass
**Test**
Modified unit test in `test_workflow_ops.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165098
Approved by: https://github.com/jerryzh168, https://github.com/andrewor14
This is follow-up of #165037. It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165142
Approved by: https://github.com/albanD
This PR enables a number of distributed unit tests and applies necessary fixes to ensure they pass on ROCm platforms. The changes have been successfully tested on both MI200 and MI300 hardware.
This work addresses the following issues:
**https://github.com/ROCm/frameworks-internal/issues/13586https://github.com/ROCm/frameworks-internal/issues/13578**
**Enabled Tests**
The following tests have been enabled and are now passing:
1. test_compiled_autograd_ctx
2. test_simple_mlp_fullgraph_backend_aot_eager
3. test_simple_mlp_fullgraph_backend_aot_eager_decomp_partition
4. test_simple_mlp_fullgraph_backend_inductor
5. test_nested_fully_shard_backend_aot_eager
6. test_nested_fully_shard_backend_aot_eager_decomp_partition
7. test_nested_fully_shard_backend_inductor_fullgraph_True
8. test_nested_fully_shard_backend_inductor_fullgraph_True_graph_partition
9. test_transformer_backend_aot_eager
10. test_transformer_backend_aot_eager_decomp_partition
11. test_storage_resize_zero_gpu
12. test_storage_resize_nonzero_gpu
13. test_fake_distributed_inductor
**Tests skipped due to upstream issues:**
1. test_nested_fully_shard_backend_inductor_fullgraph_False
2. test_transformer_backend_inductor_fullgraph_True
3. test_transformer_backend_inductor_fullgraph_True_graph_partition
4. test_transformer_backend_inductor_fullgraph_False
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165011
Approved by: https://github.com/jeffdaily
It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165037
Approved by: https://github.com/mlazos
## Description:
This PR refactors the autocast context manager in `autocast_mode.py` to simplify and centralize the logic for checking supported dtypes for each device. The previous implementation repeated similar checks for multiple device types. Now, a single mapping `device_supported_dtypes` is used to associate device types with their supported dtypes, and the validation logic is unified.
In my view, this makes the code easier to maintain and extend for new devices.
Please share any suggestions and comments with me.
BTW, in the original `xla` branch, the `supported_dtype` are `[torch.float16, torch.bfloat16]`, 5d8a226e23/torch/amp/autocast_mode.py (L358-L363) but the warning message has only `torch.bfloat16`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163446
Approved by: https://github.com/FFFrog, https://github.com/albanD
As title
In windows, we cannot modify the .dll to append weights at the end, the windows .dll loader will complain it's not a valid .dll file. So we store the weight blob as a separete file.
1. We add the following API which allows passing in a pointer to the weight blob and get the size of the weight blob.
```cpp
AOTI_API AOTIRuntimeError AOTInductorModelContainerGetConstantsBlobSize(
AOTInductorModelContainerHandle container_handle,
uint64_t* ret_size);
// Load weights from a single blob in weight_blob_ptr
AOTI_API AOTIRuntimeError AOTInductorModelUpdateConstantsFromBlob(
AOTInductorModelContainerHandle container_handle,
const uint8_t* weight_blob_ptr);
```
2. We also add a method in ModelContainerRunner to load the weight:
If the runner see that there is a `.blob` file in the package, if will mmap the .blob file and use the content to load the constants.
3. We also add the `USE_MMAP_EXTERNAL` macro. When this macro is defined, the model expects to load the weights from external mmap'd weights.
Test Plan:
```
buck run @mode/dev-nosan caffe2/test/inductor:test_aot_inductor -- -r test_large_mmaped_weights_on_disk
```
Also tested for windows-cross compilation with 6542566585/demo/main_voxtral.cpp
```
Loaded model.dll
audio_encoder loaded
C:\Users\shangdiy\source\repos\torchnative\demo\token_embedding\data\aotinductor\model\model.wrapper.so
Loaded model.dll
token_embedding loaded
C:\Users\shangdiy\source\repos\torchnative\demo\text_decoder\data\aotinductor\model\model.wrapper.so
Loaded model.dll
Loading weights from C:\Users\shangdiy\source\repos\torchnative\demo\text_decoder\data\aotinductor\model\model.wrapper_weights.blob
text_decoder loaded
Load latency (ms):
audio_encoder: 1011.234
archive extraction: 0.000
.so loading: 1011.197
token_embedding: 525.773
archive extraction: 0.000
.so loading: 525.704
text_decoder: 3324.130
archive extraction: 0.000
.so loading: 3323.979
Run latency (ms):
audio_encoder: 285.958
audio_encoder output: dtype=bfloat16, shape=[1, 1125, 3072], numel=3456000
token_embedding: 6.676
token_embedding output: dtype=bfloat16, shape=[1, 1138, 3072], numel=3495936
text_decoder: 576.519
text_decoder output: dtype=bfloat16, shape=[1, 1138, 131072], numel=149159936
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164526
Approved by: https://github.com/desertfire
Instead of collecting local results using all_gather_object followed by local reduction, with this change we switch to using a single all_reduce with MIN reduction operation to compute the final equals result.
This change is needed to enable LocalTensor work (all_gather_object introduces challenges in for DTensor and LocalTensor integration).
topic: not user facing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164999
Approved by: https://github.com/ezyang
Context is in https://www.internalfb.com/excalidraw/EX519691 and https://docs.google.com/document/d/1qnuXLZk_GYt_PksHTwkn7L2ELRDnYlIRPkHAlXTyuhw/edit?tab=t.0.
So for Autoparallel initial trace, we want to trace the graph with global shapes initially. But, for the local_map region, we are forced to trace with the expected local tensors. To the tracers, this looks weird, because it's a plain tensor input (representing DTensor's full tensor .to_local()) that we need to "redistribute".
After hacking a miserable version that had cross-key dependencies, @ydwu4 proposed this simpler approach to override the fake key. This means the shape conversion will be invisible to all dispatch keys above fake, this covers all current tracing mechanisms. This manifests as the joint graph for the HOP body being traced with local shapes:
```python
# HOP forward, note local shapes (10, 80)
class GraphModule(torch.nn.Module):
def forward(self, primals_0: "f32[10, 80]"):
# No stacktrace found for following nodes
view: "f32[800]" = torch.ops.aten.view.default(primals_0, [-1]); primals_0 = None
add: "f32[800]" = torch.ops.aten.add.Tensor(view, 10); view = None
view_1: "f32[10, 80]" = torch.ops.aten.view.default(add, [10, 80]); add = None
return (view_1,)
# HOP backward, note local shapes (10, 80)
class GraphModule(torch.nn.Module):
def forward(self, tangents_0: "f32[10, 80]"):
# No stacktrace found for following nodes
clone: "f32[10, 80]" = torch.ops.aten.clone.default(tangents_0); tangents_0 = None
return (clone,)
```
while the rest of the graph is still traced with global shapes:
```python
# Parent graph joint, note global shapes (80, 80)
class inner_f(torch.nn.Module):
def forward(self, primals, tangents):
primals_1: "f32[80, 80]"; tangents_1: "f32[80, 80]";
primals_1, tangents_1, = fx_pytree.tree_flatten_spec([primals, tangents], self._in_spec)
# File: /home/xmfan/core/a/pytorch/test/higher_order_ops/test_local_map.py:597 in forward, code: return fn(x)
call_local_map = torch._higher_order_ops.local_map.call_local_map(primals_1); primals_1 = None
getitem: "f32[80, 80]" = call_local_map[0]; call_local_map = None
call_local_map_1 = torch._higher_order_ops.local_map.call_local_map(tangents_1); tangents_1 = None
getitem_1: "f32[80, 80]" = call_local_map_1[0]; call_local_map_1 = None
return pytree.tree_unflatten([getitem, getitem_1], self._out_spec)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164340
Approved by: https://github.com/ydwu4
ghstack dependencies: #164296, #164321, #164419, #164420
Reviewed GPT-5 Summary:
**Summary / Goal**
Add validation that partitioned forward/backward graphs respect placements.
**Details**
- Validates placement alignment in local_map.
- The HOP's autograd key gets called when we are tracing the joint, we need to validate:
- the inputs to the HOP's fwd gm (typically this is the dynamo rewritten inputs)
- the inputs to the HOP partitioned fwd/bwd gm
- the outputs of the HOP partitioned fwd/bwd gm
**Motivation**
Catch mismatch errors earlier, improve debugging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164420
Approved by: https://github.com/ezyang
ghstack dependencies: #164296, #164321, #164419
Reviewed GPT5 summary:
**Summary / Goal**
Fix inconsistent variable naming for forward/backward graphs.
**Details**
- Those methods are actually for both fw and bw graphs now that we reuse the same op for fw/bw
**Motivation**
Improves clarity, avoids confusion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164419
Approved by: https://github.com/bdhirsh
ghstack dependencies: #164296, #164321
Reviewed GPT5 summary:
**Summary / Goal**
Improve error reporting when local_map subgraph input/output counts mismatch placement info.
**Details**
- Adds descriptive runtime error messages.
**Motivation**
Helps debug local_map misalignments.
```python
AssertionError: Expecting 2 inputs to local_map function based on placements, but found 1. If the count matches for eager, Dynamo may have flattened inputs to the function or found additional tensors used via closures. Please adjust the input placements to match what the traced graph sees:
class GraphModule(torch.nn.Module):
def forward(self, l_args_0_: "f32[8, 8, 16]"):
# File: /home/xmfan/core/a/pytorch/test/higher_order_ops/test_local_map.py:523 in mismatch_input, code: return x + scalar, scalar
child: "f32[8, 8, 16]" = l_args_0_ + 10; l_args_0_ = None
return (child,)
.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164321
Approved by: https://github.com/ezyang, https://github.com/mlazos
ghstack dependencies: #164296
Reviewed GPT5 summary:
**Summary / Goal**
Add a utility to compute expected local tensor sizes and strides under *even sharding* in dtensor.
**Details**
- New function in `torch/distributed/tensor/_utils.py`.
- Computes local sizes/strides given global shape, mesh, and placements.
- Enforces divisibility of global dimension by mesh size (strict even sharding).
- Complements `compute_global_tensor_info`.
**Motivation**
Ensures correctness for stride/layout computations in distributed tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164296
Approved by: https://github.com/ezyang
This PR fixes the condition
```
if arg_signatures is None and self.kernel_type == "cpp" or "extern"
```
which is interpreted as
```
if (arg_signatures is None and self.kernel_type == "cpp") or ("extern"):
```
and it is always evaluated to `True`. According to the context the intention was
```
if arg_signatures is None and (self.kernel_type == "cpp" or self.kernel_type == "extern"):
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165033
Approved by: https://github.com/Skylion007
## TODO
Check on multi indices
```Python
@cute.jit
def score_mod(tSrS_ssa, b_idx, h_idx, q_idx, kv_idx, buffers):
in_ptr4 = buffers[0]
tmp0 = tSrS_ssa
tmp1 = b_idx
tmp2 = h_idx
tmp3 = cute.make_fragment(1, cutlass.Int32)
tmp4 = tmp3.store(32*tmp1 + tmp2)
tmp5 = cute.make_fragment(1, cutlass.BFloat16)
tmp6 = tmp3[0]
tmp7 = tmp5[0] = (in_ptr4[tmp6])
tmp8 = (tmp5.load()).to(cutlass.Float32)
tmp9 = (tmp0 + tmp8)
tSrS_ssa = tmp9
return tSrS_ssa
```
I dont think that
```
tmp4 = tmp3.store(32*tmp1 + tmp2)
tmp5 = cute.make_fragment(1, cutlass.BFloat16)
tmp6 = tmp3[0]
tmp7 = tmp5[0] = (in_ptr4[tmp6]
```
is right since this tmp6 value will be larger than the actual index dim int his case its B -> see if its possible to 1d index
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162031
Approved by: https://github.com/v0i0
ghstack dependencies: #161118
This fixes AOTAutograd rms_norm not being bitwise equivalent to
eager, because it avoids a decomposition. You can force the
decomposition by having the decomposition in the dispatch table,
but if eager mode wouldn't have decomposed (because it went to the fused
one), we now default to preserving the fused call by default.
This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel.
Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939
Approved by: https://github.com/bdhirsh
Previously when torch.are_deterministic_algorithms_enabled() is True Inductor will
- skip autotuning pointwise kernels
- pick a fixed (and quite arbitrary) config for reduction
This PR change the behavior to
- for pointwise kernels, we still do autotuning
- for reduction kernels, we use the recent added heuristic to pick a config
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164905
Approved by: https://github.com/jansel, https://github.com/v0i0
ghstack dependencies: #164801, #164532, #164904
Verify the deterministic mode with torch.compile benchmark scripts.
Here is what my testing script does (pasted in the end):
- run a model in default mode, save it's result
- run the model again in default mode, but distort the benchmarking results. Compare it with the saved result.
- Do the above again in deterministic mode.
I tried to test a few modes
- BertForMaskedLM and GoogleFnet: I can repro the numeric change by distorting the benchnmark result in the default mode. The non-determinism is gone in the deterministic mode
- DistillGPT2: I can not repro the numeric change by distorting the benchmarking result in the default mode. It does not surprise me much. Reduction order change does not always cause numeric change.
```
model=GoogleFnet
export TORCHINDUCTOR_WRITE_ARE_DETERMINISTIC_ALGORITHMS_ENABLED=0
export TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 # disable autotune cache
export TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE=0
export TORCHINDUCTOR_FX_GRAPH_CACHE=0
export TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_shunting/
export TORCHINDUCTOR_BENCHMARK_KERNEL=1
export TORCHINDUCTOR_UNIQUE_KERNEL_NAMES=1
export INDUCTOR_TEST_DISABLE_FRESH_CACHE=1
# Non deterministic mode
# --float32 rather than --amp to make it easier to repro non-deterministic
echo "Save results for non-deterministic mode"
python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --save-model-outputs-to=/tmp/saved-non-deterministic.pkl
echo "Compare results with distorted benchmarking in non-deterministic mode"
TORCHINDUCTOR_DISTORT_BENCHMARKING_RESULT=inverse python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --compare-model-outputs-with=/tmp/saved-non-deterministic.pkl
echo "Save results for deterministic mode"
TORCHINDUCTOR_DETERMINISTIC=1 python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --save-model-outputs-to=/tmp/saved-deterministic.pkl
echo "Compare results with distorted benchmarking in deterministic mode"
TORCHINDUCTOR_DETERMINISTIC=1 TORCHINDUCTOR_DISTORT_BENCHMARKING_RESULT=inverse python benchmarks/dynamo/huggingface.py --backend inductor --float32 --accuracy --only $model --training --disable-cudagraphs --compare-model-outputs-with=/tmp/saved-deterministic.pkl
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164904
Approved by: https://github.com/jansel, https://github.com/v0i0
ghstack dependencies: #164801, #164532
After lean export, we might want to be able to restore the original fqn. This PR refactors one util function in export that sort of does this. Note that strict_export has some complicated logic of updating the graph signature as well which we don't want. I think we can gradually make this util more refined by handling constants, non persistent buffers etc and change how strict_export does it today.
Differential Revision: [D83687844](https://www.internalfb.com/diff/D83687844)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164401
Approved by: https://github.com/avikchaudhuri
Previously we hardcoded the assumption in cuDNN that the inputs would be dense which breaks when e.g., the user is chunking tensors yielding noncontig inputs
New test added to check this when `TORCH_CUDNN_SDPA_NESTED_TENSOR_ENABLED=1` is set in `test/test_transformers.py`
One issue I noticed was that the old gating of nested tensor in `sdp_utils.cpp` seems to be a no-op? All of the inputs are reported as "dense" by the time that function is called in the nested tensor tests in `test/test_nestedtensor.py -k sdpa`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164958
Approved by: https://github.com/Skylion007, https://github.com/drisspg
Summary: We have an internal user where caching broke because the paths that are unzipped are probably different per host. We can't think of a use case where a path change matters when the file content has not changed, so removing this part
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165020
Approved by: https://github.com/oulgen
In aot_stage2_autograd:
Before calling fw_compiler, we run pre_compile for the following wrappers:
* FakifiedOutWrapper
* FunctionalizedRngRuntimeWrapper
After, we run post_compile for the following wrappers:
* EffectTokensWrapper
* AOTDispatchSubclassWrapper
* FunctionalizedRngRuntimeWrapper
* FakifiedOutWrapper
In aot_stage2_inference:
Before calling inference compiler, we run pre_compile for the following wrappers (same as above):
* FakifiedOutWrapper
* FunctionalizedRngRuntimeWrapper
After, we run post_compile for the following wrappers (different than above):
* FunctionalizedRngRuntimeWrapper
* FakifiedOutWrapper
* EffectTokensWrapper
* AOTDispatchSubclassWrapper
This PR makes both do the post_compiles in the same order.
Differential Revision: D84213657
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165016
Approved by: https://github.com/zhxchen17, https://github.com/bdhirsh
This commit makes several cleanup changes to MHA.cpp, the main
one of which is removal of shared_ptr from MHAGraphCache as the
cache does not actually intend to share ownership. The changes are:
1. Remove shared_ptr from MHAGraphCache
2. Remove template arguments from MHAGraphCache
3. Remove unnecessary optional<shared_ptr<...>> vars
4. Change some functions with auto return type to the actual type
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164895
Approved by: https://github.com/eqy
The windows cpp tests take ~1 hour according to logs. Each has run_test called on them individually, so I tried batching them together so it's just one run_test call for all of them. I believe it now takes 30min. I turned off TD since I don't think cpp tests are included in TD stuff.
As always with batch, I'm not sure if the errorlevel/error surfacing stuff is correct
This code is written with a lot of help from chatgpu and copilot
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164861
Approved by: https://github.com/huydhn
This PR updates build jobs that currently use linux.12xlarge to the
c7i varient which should increase build times by 15% - 20% depending
on the job and reduce costs of these jobs by 10% - 15%.
Signed-off-by: Thanh Ha <thanh.ha@linuxfoundation.org>
Summary:
* Add `torch.nn.functional.scaled_mm` as an abstraction around the C++
methods
* Wraps `torch._scaled_mm_v2` API by default, but user can force use of
the older `torch._scaled_mm` interface.
* Scaled MM tests now run on the new API
Test Plan:
`pytest test/test_scaled_matmul_cuda.py`
Reviewers:
Subscribers:
Tasks:
Tags:
Signed-off-by: Simon Layton <simonlaytonmeta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164142
Approved by: https://github.com/drisspg
ghstack dependencies: #164141
Summary:
* Add new scaled-MM API to future-proof / clean-up existing code.
* Scaling is explicitly described rather than infer
* Swizzling of scaled must now be defined (vs. inferred)
* Adds API support for multi-level scaling
* Refactor dispatch logic to make it easier to add new implementations
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
Signed-off-by: Simon Layton <simonlaytonmeta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164141
Approved by: https://github.com/drisspg
This PR includes a couple of changes to extend FlightRecorder dump by PyTorch watchdog
- New knobs to control FR dump as suggested in the public documentation even for watchdog
(TORCH_INCLUDE_STACK_TRACE, TORCH_INCLUDE_ONLY_ACTIVE)
- Trigger the flight recorder dump on exceptions which could be triggered by any CUDA / host side error
(TORCH_NCCL_EXTRA_DUMP_ON_EXEC)
-> Can be used as a snapshot of the workload progress for post-mortem analysis
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164591
Approved by: https://github.com/fduwjj
This fixes AOTAutograd rms_norm not being bitwise equivalent to
eager, because it avoids a decomposition. You can force the
decomposition by having the decomposition in the dispatch table,
but if eager mode wouldn't have decomposed (because it went to the fused
one), we now default to preserving the fused call by default.
This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel.
Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939
Approved by: https://github.com/bdhirsh
ghstack dependencies: #164573
In https://github.com/pytorch/pytorch/pull/106824, export decided to slow-path for MultiHeadAttention module (look into the PR description as to why). But that PR eventually caused a divergence between Dynamo and export.
Today, strict-export does not inline into builtin modules (like MultiHeadAttention), and therefore make_fx sees the original nn.Module and takes the slow path. But compile inlines into the nn module, and at this time the condition `_is_make_fx_tracing` is False. As a result, Dynamo takes a fast path, resulting in a different op being called.
This divergence is undesirable. There are 2 ways to fix it
1) Make export take the fast path - As explained in the https://github.com/pytorch/pytorch/pull/106824 , this might be difficult. So, we go to (2)
2) Make compile as well take the slow path - This is easy to implement. The con here is that Pytorch eager and compile will use different operators, which can cause numerics issues etc.
Since (2) is easy to do, we will follow this path. We are tracking the issue in https://github.com/pytorch/pytorch/issues/164062
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164721
Approved by: https://github.com/avikchaudhuri, https://github.com/tugsbayasgalan
Summary: Noticed sometimes the combo kernel partition will contain empty group. Skip kernel generation in this case to unblock head model launching. The change in this diff is safe, but it's better to root cause why empty group is being created.
Test Plan:
Lowering passed after applying the diff
Differential Revision: D84134471
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164918
Approved by: https://github.com/mlazos
We also want to have a python side API for users to reset FR recording for FR entries. We don't need to reset the PGNCCL's member counter since we are creating new PGNCCL anyway. FR is a global ring buffer, so we need to reset it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164988
Approved by: https://github.com/tushar00jain
ghstack dependencies: #164752
throwstd::runtime_error("vmap: We do not support batching operators that can support dynamic shape. Attempting to batch over indexing with a boolean mask.");
// Currently some computation is being duplicated across forward and backward.
// TODO: Cache indices in forward pass to reuse in backward
@ -548,7 +548,7 @@ REGISTER_VSX_DISPATCH(
REGISTER_ZVECTOR_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel)
REGISTER_SVE_DISPATCH(
REGISTER_SVE256_DISPATCH(
_segment_reduce_lengths_backward_stub,
&_segment_reduce_cpu_lengths_backward_kernel)
@ -568,7 +568,7 @@ REGISTER_VSX_DISPATCH(
REGISTER_ZVECTOR_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel)
REGISTER_SVE_DISPATCH(
REGISTER_SVE256_DISPATCH(
_segment_reduce_offsets_backward_stub,
&_segment_reduce_cpu_offsets_backward_kernel)
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.