Compare commits

..

33 Commits

Author SHA1 Message Date
c4d369369f Add error handling for self.stack when byte exceeding limit 2025-10-10 02:48:22 +00:00
a13f24980e Fix CI on the max length conversion 2025-10-10 02:48:22 +00:00
6869487ca4 Fix more byte output 2025-10-10 02:48:21 +00:00
5d9105f2ca Add support for byte in loggin stream 2025-10-10 02:48:21 +00:00
191e6bb367 Fix comment and CI again 2025-10-10 02:48:21 +00:00
a15a08725b Add linter 2025-10-10 02:48:21 +00:00
756ea14378 Fix linter thank you 2025-10-10 02:48:21 +00:00
d7c5ea03df Fix linter 2025-10-10 02:48:21 +00:00
d11e253ee3 Add linter 2025-10-10 02:48:21 +00:00
01d5211679 Fix more comment and CI 2025-10-10 02:48:21 +00:00
b496a04735 Fix comment and more CI 2025-10-10 02:48:21 +00:00
03be8d227b Fix comment 2025-10-10 02:48:21 +00:00
df1b8c3e41 Fix more CI 2025-10-10 02:48:21 +00:00
94f39d5749 Fix CI 2025-10-10 02:48:21 +00:00
2eb8b70d1b Fix more comments and the case where verbose is true 2025-10-10 02:48:21 +00:00
29680dd928 Fix comments and errors 2025-10-10 02:48:21 +00:00
69bcc97937 Add linter 2025-10-10 02:48:21 +00:00
babac1d561 Fix bytecode log to graph break with queue initialization with new tx 2025-10-10 02:48:21 +00:00
8594b98b0a Add user called graph break python version specific test 2025-10-10 02:48:21 +00:00
b3fc84229e Add user called graph break test on full graph true mode 2025-10-10 02:48:21 +00:00
e409e84a7a Add fullgraph testing for dynamo 2025-10-10 02:48:21 +00:00
9c3742e7a7 Add todo for the logging output of bytecode 2025-10-10 02:48:21 +00:00
664a137dbb Fix comments from github 2025-10-10 02:48:21 +00:00
4f5a0deb83 Revert "Update torch/_dynamo/symbolic_convert.py"
This reverts commit d3d658ba65c1d627076b79bbdbebfdb9fa0ad37c.
2025-10-10 02:48:21 +00:00
4752d8fec9 Revert "Update test/dynamo/test_exc.py"
This reverts commit 7996380dc95141bf855a30b5f9b7e2b21c384f88.
2025-10-10 02:48:21 +00:00
715f0a26d7 Revert "Update test/dynamo/test_error_messages.py"
This reverts commit 1b185d792048e875f48d0a3e0bc67d47a618e5a2.
2025-10-10 02:48:21 +00:00
e9e2553603 Update test/dynamo/test_error_messages.py
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-10 02:48:21 +00:00
43fac7f55d Update test/dynamo/test_exc.py
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-10 02:48:21 +00:00
a875f27482 Update torch/_dynamo/symbolic_convert.py
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-10 02:48:21 +00:00
f34e0a941a [dynamo] Add most recent bytecode to graph break with developer initiation
ghstack-source-id: 8b538f2e1ac703a4538468a758f08db0c89b91a7
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163720

Add most recent bytecode to dynamo graph break called by user

Fix other user-initiated graph break and issues

Fix linter
2025-10-10 02:48:21 +00:00
81dbeb06f4 CUDA aarch64 12.6 and 12.8 builds fix triton constraints (#165013)
Since we have introduced CUDA aarch64 builds for all cuda versions we need to remove this constraint.
This was missed by https://github.com/pytorch/pytorch/pull/162364

Proper constraint on triton should be:
```
Requires-Dist: triton==3.5.0; platform_system == "Linux"
```

not:
```
Requires-Dist: triton==3.5.0; platform_system == "Linux" and platform_machine == "x86_64"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165013
Approved by: https://github.com/Camyll, https://github.com/nWEIdia, https://github.com/tinglvv
2025-10-09 00:49:28 +00:00
7a1ead755f [DeviceMesh] Add a warning for slicing flattened dim from root mesh and types for _get_slice_mesh_layout (#164993)
As title, we want to add a deprecate warning for slicing flattened dim from root mesh. Also cosmetic changes for adding types for `_get_slice_mesh_layout`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164993
Approved by: https://github.com/fegin
ghstack dependencies: #164750, #164954
2025-10-09 00:47:08 +00:00
90b4e130d6 [Benchmark] cleanup torchbench models (#164816)
Prune models from TorchInductor dashboard to reduce ci cost. This PR prunes torchbench models according to the [doc](https://docs.google.com/document/d/1nLPNNAU-_M9Clx9FMrJ1ycdPxe-xRA54olPnsFzdpoU/edit?tab=t.0), which removes timm and huggingface models from torchbench.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164816
Approved by: https://github.com/anijain2305, https://github.com/seemethere, https://github.com/huydhn, https://github.com/malfet
2025-10-09 00:31:25 +00:00
56 changed files with 374 additions and 3006 deletions

View File

@ -29,9 +29,6 @@ env
# https://github.com/pytorch/pytorch/blob/0b6c0898e6c352c8ea93daec854e704b41485375/.ci/docker/common/install_cache.sh#L97
export PATH="/opt/cache/lib:$PATH"
# Turn off -MD / -MMD compiler flags to increase sccache hit rate
export COMPILE_NO_MD=1
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
# Use jemalloc during compilation to mitigate https://github.com/pytorch/pytorch/issues/116289
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2
@ -292,15 +289,8 @@ else
python -mpip install numpy==2.0.2
WERROR=1 python setup.py clean
sccache --stop-server
export SCCACHE_LOG_LEVEL=debug
export SCCACHE_ERROR_LOG=/tmp/sccache_errors.log
export SCCACHE_LOG=debug
export RUST_LOG=sccache::server=debug
sccache --start-server
WERROR=1 python -m build --wheel --no-isolation
mv /tmp/sccache_errors.log dist/
else
python setup.py clean
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then

View File

@ -2,8 +2,6 @@
# Required environment variables:
# $BUILD_ENVIRONMENT (should be set by your Docker image)
set -e -x -o pipefail
if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
# Save the absolute path in case later we chdir (as occurs in the gpu perf test)
script_dir="$( cd "$(dirname "${BASH_SOURCE[0]}")" || exit ; pwd -P )"
@ -47,14 +45,14 @@ if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
# explicitly
echo "Skipping sccache server initialization, setting environment variables"
export SCCACHE_IDLE_TIMEOUT=0
export SCCACHE_ERROR_LOG=/tmp/sccache_error.log
export RUST_LOG=sccache::server=debug
export SCCACHE_ERROR_LOG=~/sccache_error.log
export RUST_LOG=sccache::server=error
elif [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
SCCACHE_ERROR_LOG=/tmp/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
else
# increasing SCCACHE_IDLE_TIMEOUT so that extension_backend_test.cpp can build after this PR:
# https://github.com/pytorch/pytorch/pull/16645
SCCACHE_ERROR_LOG=/tmp/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 RUST_LOG=sccache::server=error sccache --start-server
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 RUST_LOG=sccache::server=error sccache --start-server
fi
# Report sccache stats for easier debugging. It's ok if this commands

View File

@ -256,7 +256,7 @@ test_torchbench_smoketest() {
local device=mps
local dtypes=(undefined float16 bfloat16 notset)
local dtype=${dtypes[$1]}
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
for backend in eager inductor; do
@ -319,7 +319,7 @@ test_aoti_torchbench_smoketest() {
local device=mps
local dtypes=(undefined float16 bfloat16 notset)
local dtype=${dtypes[$1]}
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
echo "Launching torchbench inference performance run for AOT Inductor and dtype ${dtype}"
local dtype_arg="--${dtype}"

View File

@ -838,7 +838,7 @@ test_dynamo_benchmark() {
elif [[ "${suite}" == "timm_models" ]]; then
export TORCHBENCH_ONLY_MODELS="inception_v3"
elif [[ "${suite}" == "torchbench" ]]; then
export TORCHBENCH_ONLY_MODELS="hf_Bert"
export TORCHBENCH_ONLY_MODELS="BERT_pytorch"
fi
fi
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
@ -869,13 +869,13 @@ test_inductor_torchbench_smoketest_perf() {
mkdir -p "$TEST_REPORTS_DIR"
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only BERT_pytorch \
--output "$TEST_REPORTS_DIR/inductor_training_smoketest.csv"
# The threshold value needs to be actively maintained to make this check useful
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_training_smoketest.csv" -t 1.4
# Check memory compression ratio for a few models
for test in hf_Albert timm_vision_transformer; do
for test in BERT_pytorch yolov3; do
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --amp --training \
--disable-cudagraphs --batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" \
--only $test --output "$TEST_REPORTS_DIR/inductor_training_smoketest_$test.csv"

View File

@ -71,14 +71,7 @@ export PYTORCH_BUILD_NUMBER=1
# Set triton version as part of PYTORCH_EXTRA_INSTALL_REQUIREMENTS
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
TRITON_CONSTRAINT="platform_system == 'Linux'"
fi
TRITON_CONSTRAINT="platform_system == 'Linux'"
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" && ! "$PYTORCH_BUILD_VERSION" =~ .*xpu.* ]]; then
TRITON_REQUIREMENT="triton==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"

View File

@ -1,16 +1,16 @@
name: pull
on:
# pull_request:
# branches-ignore:
# - nightly
# push:
# branches:
# - main
# - release/*
# - landchecks/*
# tags:
# - ciflow/pull/*
pull_request:
branches-ignore:
- nightly
push:
branches:
- main
- release/*
- landchecks/*
tags:
- ciflow/pull/*
workflow_dispatch:
schedule:
- cron: 29 8 * * * # about 1:29am PDT

View File

@ -47,6 +47,22 @@ jobs:
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
libtorch-linux-jammy-cuda12_8-py3_10-gcc11-debug-build:
name: libtorch-linux-jammy-cuda12.8-py3.10-gcc11-debug
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: libtorch-linux-jammy-cuda12.8-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
build-generates-artifacts: false
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.4xlarge"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-build:
name: linux-jammy-cuda12.8-py3.10-gcc11
uses: ./.github/workflows/_linux-build.yml
@ -69,3 +85,167 @@ jobs:
{ config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-test:
name: linux-jammy-cuda12.8-py3.10-gcc11
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build
- target-determination
with:
timeout-minutes: 360
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
# no-ops builds test USE_PER_OPERATOR_HEADERS=0 where ATen/ops is not generated
linux-jammy-cuda12_8-py3_10-gcc11-no-ops-build:
name: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
macos-py3-arm64-build:
if: github.repository_owner == 'pytorch'
name: macos-py3-arm64
uses: ./.github/workflows/_mac-build.yml
with:
sync-tag: macos-py3-arm64-build
build-environment: macos-py3-arm64
runner-type: macos-m1-stable
build-generates-artifacts: true
# To match the one pre-installed in the m1 runners
python-version: 3.12.7
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 3, runner: "macos-m1-stable" },
{ config: "default", shard: 2, num_shards: 3, runner: "macos-m1-stable" },
{ config: "default", shard: 3, num_shards: 3, runner: "macos-m1-stable" },
{ config: "mps", shard: 1, num_shards: 1, runner: "macos-m1-14" },
{ config: "mps", shard: 1, num_shards: 1, runner: "macos-m2-15" },
]}
secrets: inherit
macos-py3-arm64-test:
name: macos-py3-arm64
uses: ./.github/workflows/_mac-test.yml
needs:
- macos-py3-arm64-build
- target-determination
with:
build-environment: macos-py3-arm64
# Same as the build job
python-version: 3.12.7
test-matrix: ${{ needs.macos-py3-arm64-build.outputs.test-matrix }}
disable-monitor: false
secrets: inherit
win-vs2022-cpu-py3-build:
name: win-vs2022-cpu-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2022-cpu-py3
cuda-version: cpu
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
]}
secrets: inherit
win-vs2022-cpu-py3-test:
name: win-vs2022-cpu-py3
uses: ./.github/workflows/_win-test.yml
needs:
- win-vs2022-cpu-py3-build
- target-determination
with:
build-environment: win-vs2022-cpu-py3
cuda-version: cpu
test-matrix: ${{ needs.win-vs2022-cpu-py3-build.outputs.test-matrix }}
disable-monitor: false
secrets: inherit
win-vs2022-cuda12_6-py3-build:
name: win-vs2022-cuda12.6-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2022-cuda12.6-py3
cuda-version: "12.6"
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
secrets: inherit
inductor-build:
name: inductor-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
cuda-arch-list: '8.0'
secrets: inherit
verify-cachebench-cpu-build:
name: verify-cachebench-cpu-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
test-matrix: |
{ include: [
{ config: "verify_cachebench", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
]}
secrets: inherit
verify-cachebench-cpu-test:
name: verify-cachebench-cpu-test
uses: ./.github/workflows/_linux-test.yml
needs:
- verify-cachebench-cpu-build
- target-determination
with:
build-environment: linux-jammy-py3.10-gcc11
docker-image: ${{ needs.verify-cachebench-cpu-build.outputs.docker-image }}
test-matrix: ${{ needs.verify-cachebench-cpu-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-py3-clang12-executorch-build:
name: linux-jammy-py3-clang12-executorch
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3-clang12-executorch
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-executorch
test-matrix: |
{ include: [
{ config: "executorch", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
]}
secrets: inherit
linux-jammy-py3-clang12-executorch-test:
name: linux-jammy-py3-clang12-executorch
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-py3-clang12-executorch-build
with:
build-environment: linux-jammy-py3-clang12-executorch
docker-image: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.test-matrix }}
secrets: inherit

View File

@ -420,14 +420,6 @@ if(USE_CCACHE)
endif()
endif()
# Optionally disable -MD / -MMD if COMPILE_NO_MD is set in the environment
if(DEFINED ENV{COMPILE_NO_MD})
message(STATUS "COMPILE_NO_MD is set — disabling compiler dependency file flags (-MD/-MMD)")
foreach(lang C CXX CUDA HIP ASM)
set(CMAKE_DEPFILE_FLAGS_${lang} "")
endforeach()
endif()
# Since TensorPipe does not support Windows, set it to OFF when WIN32 detected
# On Windows platform, if user does not install libuv in build conda env and
# does not set libuv_ROOT environment variable. Set USE_DISTRIBUTED to OFF.
@ -1495,10 +1487,3 @@ else()
]])
endif()
endif()
foreach(lang C CXX CUDA)
foreach(flg "" "_DEBUG" "_RELEASE" "_RELWITHDEBINFO")
string(REPLACE "-MD" "" CMAKE_${lang}_FLAGS${flg} "${CMAKE_${lang}_FLAGS${flg}}")
string(REPLACE "-MMD" "" CMAKE_${lang}_FLAGS${flg} "${CMAKE_${lang}_FLAGS${flg}}")
endforeach()
endforeach()

View File

@ -25,15 +25,6 @@ drq
fambench_dlrm
fambench_xlmr
fastNLP_Bert
hf_Albert
hf_Bart
hf_Bert
hf_BigBird
hf_DistilBert
hf_GPT2
hf_Longformer
hf_Reformer
hf_T5
maml
maml_omniglot
mnasnet1_0
@ -60,13 +51,6 @@ soft_actor_critic
speech_transformer
squeezenet1_1
tacotron2
timm_efficientdet
timm_efficientnet
timm_nfnet
timm_regnet
timm_resnest
timm_vision_transformer
timm_vovnet
tts_angular
vgg16
vision_maskrcnn

View File

@ -23,7 +23,6 @@ TORCHBENCH_MODELS: list[str] = [
"resnet50",
"moco",
"llama",
"hf_T5",
]
HUGGINGFACE_MODELS: list[str] = [
"AllenaiLongformerBase",

View File

@ -11,7 +11,6 @@ import pandas as pd
flaky_models = {
"yolov3",
"detectron2_maskrcnn_r_101_c4",
"timm_efficientnet", # see https://github.com/pytorch/pytorch/issues/148699
"XGLMForCausalLM", # discovered in https://github.com/pytorch/pytorch/pull/128148
"moondream", # discovered in https://github.com/pytorch/pytorch/pull/159291
# discovered in https://github.com/pytorch/pytorch/issues/161419. Its not flaky but really hard to repro, so skipping it
@ -40,13 +39,9 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
"detectron2_fcos_r_50_fpn",
"doctr_det_predictor",
"doctr_reco_predictor",
"hf_BigBird",
"hf_Longformer",
"hf_Reformer",
"hf_Roberta_base",
"hf_T5",
"hf_T5_base",
"hf_T5_generate",
"dpn107",
"fbnetv3_b",
"levit_128",
"llava",
"microbench_unbacked_tolist_sum",
"mnasnet1_0",
@ -63,12 +58,7 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
"squeezenet1_1",
"stable_diffusion_text_encoder",
"stable_diffusion_unet",
"timm_efficientdet",
"timm_efficientnet",
"timm_nfnet",
"timm_regnet",
"timm_resnest",
"timm_vovnet",
"swsl_resnext101_32x16d",
"torchrec_dlrm",
"vgg16",
# LLM

View File

@ -36,12 +36,7 @@ def check_graph_breaks(actual_csv, expected_csv, expected_filename):
"detectron2_fcos_r_50_fpn",
"doctr_det_predictor",
"doctr_reco_predictor",
"hf_BigBird",
"hf_Longformer",
"hf_Reformer",
"hf_Roberta_base",
"hf_T5",
"hf_T5_base",
"levit_128",
"llava",
"microbench_unbacked_tolist_sum",
"resnet50",
@ -51,7 +46,6 @@ def check_graph_breaks(actual_csv, expected_csv, expected_filename):
"stable_diffusion_text_encoder",
"stable_diffusion_unet",
"timm_efficientdet",
"timm_nfnet",
"torchrec_dlrm",
"vgg16",
# LLM

View File

@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -250,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,fail_accuracy,7
timm_regnet,pass,7
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
194
195
196
197
198
199

View File

@ -118,62 +118,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,fail_accuracy,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -314,30 +258,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
118
119
120
121
122
123
258
259
260
261
262
263

View File

@ -114,58 +114,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -278,38 +226,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
114
115
116
117
118
119
226
227
228
229
230
231

View File

@ -114,58 +114,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -278,38 +226,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
114
115
116
117
118
119
226
227
228
229
230
231

View File

@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,27
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
122
123
124
125
126
127
242
243
244
245
246
247

View File

@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,27
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
122
123
124
125
126
127
242
243
244
245
246
247

View File

@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,27
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
122
123
124
125
126
127
242
243
244
245
246
247

View File

@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -246,30 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,7
timm_regnet,pass,7
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
190
191
192
193
194
195

View File

@ -98,58 +98,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -262,38 +210,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
98
99
100
101
102
103
210
211
212
213
214
215

View File

@ -98,58 +98,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -262,38 +210,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
98
99
100
101
102
103
210
211
212
213
214
215

View File

@ -106,66 +106,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,27
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -286,38 +226,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
106
107
108
109
110
111
226
227
228
229
230
231

View File

@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,25
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,8
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_large,pass_due_to_skip,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,model_fail_to_load,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,3

1 name accuracy graph_breaks
122
123
124
125
126
127
242
243
244
245
246
247

View File

@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,fail_accuracy,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -246,30 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,fail_accuracy,7
timm_regnet,pass,7
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
190
191
192
193
194
195

View File

@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -250,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,7
timm_regnet,pass,7
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
194
195
196
197
198
199

View File

@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,fail_accuracy,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -250,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,fail_accuracy,7
timm_regnet,pass,7
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
194
195
196
197
198
199

View File

@ -130,73 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,9
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,8
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -345,38 +278,6 @@ stable_diffusion_unet,model_fail_to_load,0
timm_efficientdet,pass,2
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,25
hf_Roberta_base,pass,6
hf_T5,pass,0
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -258,38 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,2
timm_efficientnet,pass,7
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
194
195
196
197
198
199

View File

@ -118,62 +118,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,fail_accuracy,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -314,34 +258,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
118
119
120
121
122
123
258
259
260
261
262
263

View File

@ -130,73 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,9
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,8
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -345,38 +278,6 @@ stable_diffusion_unet,model_fail_to_load,0
timm_efficientdet,pass,2
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,fail_to_run,3
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,25
hf_Roberta_base,pass,6
hf_T5,pass,0
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -254,38 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,2
timm_efficientnet,pass,7
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
190
191
192
193
194
195

View File

@ -130,74 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,fail_to_run,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,5
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -346,38 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,2
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,fail_to_run,3
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,10
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5,pass,5
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -254,38 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,8
timm_efficientnet,pass,7
timm_nfnet,pass,6
timm_regnet,pass,0
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
190
191
192
193
194
195

View File

@ -130,73 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,pass,9
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,8
hf_Roberta_base,pass,0
hf_T5,pass,0
hf_T5_base,pass,0
hf_T5_generate,pass,7
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -345,38 +278,6 @@ stable_diffusion_unet,model_fail_to_load,0
timm_efficientdet,pass,2
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
278
279
280
281
282
283

View File

@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,15
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Longformer,pass,4
hf_Reformer,pass,25
hf_Roberta_base,pass,6
hf_T5,pass,0
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -258,38 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,2
timm_efficientnet,pass,7
timm_nfnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
194
195
196
197
198
199

View File

@ -130,66 +130,6 @@ functorch_maml_omniglot,pass,0
hf_Albert,pass,0
hf_Bart,pass,0
hf_Bert,pass,0
hf_Bert_large,pass,0
hf_BigBird,fail_accuracy,0
hf_DistilBert,pass,0
hf_GPT2,pass,0
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,8
hf_T5,pass,0
hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,11
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,0
hf_distil_whisper,pass,0
lennard_jones,pass,0
@ -334,30 +274,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,0
timm_regnet,pass,0
timm_resnest,pass,0
timm_vision_transformer,pass,0
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,0
torch_multimodal_clip,pass,0

1 name accuracy graph_breaks
130
131
132
133
134
135
274
275
276
277
278
279

View File

@ -78,58 +78,6 @@ functorch_maml_omniglot,pass,7
hf_Albert,pass,6
hf_Bart,pass,6
hf_Bert,pass,6
hf_Bert_large,pass,6
hf_BigBird,pass,6
hf_DistilBert,pass,6
hf_GPT2,pass,8
hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,25
hf_T5_base,eager_2nd_run_OOM,0
hf_T5_large,pass_due_to_skip,0
hf_Whisper,pass,6
hf_distil_whisper,model_fail_to_load,0
lennard_jones,pass,7
@ -246,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientnet,pass,7
timm_regnet,pass,7
timm_resnest,pass,6
timm_vision_transformer,pass,6
timm_vision_transformer_large,pass_due_to_skip,0
timm_vovnet,pass,6
torch_multimodal_clip,pass,7

1 name accuracy graph_breaks
78
79
80
81
82
83
194
195
196
197
198
199

View File

@ -149,7 +149,6 @@ CI_SKIP_DYNAMIC_BATCH_ONLY = {
"detectron2_fasterrcnn_r_50_c4",
"detectron2_fasterrcnn_r_50_dc5",
"detectron2_fasterrcnn_r_50_fpn",
"hf_T5_generate",
"Reformer",
"llama",
}.union(INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY)
@ -176,13 +175,7 @@ BENCHMARK_USE_SGD = {
"speech_transformer",
"squeezenet1_1",
"stable_diffusion_text_encoder",
"timm_efficientdet",
"timm_nfnet",
"timm_resnest",
"timm_vision_transformer",
"timm_vovnet",
"vgg16",
"hf_T5", # Fails dynamic https://github.com/pytorch/pytorch/issues/115968
# HF
"AlbertForMaskedLM",
"BartForCausalLM",
@ -216,8 +209,6 @@ CI_USE_SGD = {
"detectron2_maskrcnn_r_101_fpn",
"detectron2_maskrcnn_r_50_c4",
"detectron2_maskrcnn_r_50_fpn",
"hf_T5_base",
"hf_clip",
"llama_v2_7b_16h",
"mobilenet_v2_quantized_qat",
"phi_1_5 resnet50_quantized_qat",
@ -2031,8 +2022,6 @@ class BenchmarkRunner:
from diffusers.models.transformer_2d import Transformer2DModel
from torchbenchmark.models.nanogpt.model import Block
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from transformers.models.t5.modeling_t5 import T5Block
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
from torch.distributed.fsdp.wrap import (
ModuleWrapPolicy,
@ -2042,10 +2031,6 @@ class BenchmarkRunner:
# handcrafted wrap policy
MODEL_FSDP_WRAP = {
"stable_diffusion_unet": (Transformer2DModel,),
"hf_T5": (T5Block,),
"hf_T5_base": (T5Block,),
"hf_T5_large": (T5Block,),
"hf_Whisper": (WhisperEncoderLayer,),
"llama_v2_7b_16h": (LlamaDecoderLayer,),
"nanogpt": (Block,),
}
@ -3810,22 +3795,6 @@ def run(runner, args, original_dir=None):
global synchronize
synchronize = torch.cuda.synchronize if HAS_CUDA else torch.xpu.synchronize
if (
args.devices == ["cuda"]
and torch.cuda.get_device_properties(0).total_memory < 25 * 2**30
):
# OOM errors on an RTX 3090 with 24gb RAM
runner.skip_models.update(
{
# torchbench
"hf_Longformer",
"timm_nfnet",
"timm_efficientdet",
}
)
if args.training:
runner.skip_models.add("hf_T5")
if args.nnc:
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)

View File

@ -21,9 +21,6 @@ try:
except ImportError:
from torchbench import setup_torchbench_cwd
from transformers.models.bert.modeling_bert import BertLayer, BertLMPredictionHead
from transformers.models.t5.modeling_t5 import T5Block
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = os.getenv("MASTER_ADDR", "localhost")
@ -128,8 +125,6 @@ def fsdp_checkpointing_base(model, blocks):
MODEL_FSDP_WRAP = {
"toy_model": (MyModule,),
"hf_Bert": (BertLayer, BertLMPredictionHead),
"hf_T5": (T5Block,),
}

View File

@ -158,7 +158,7 @@ if __name__ == "__main__":
model_arg.add_argument(
"--torchbench-model",
"--torchbench_model",
help="name of torchbench model, e.g. hf_Bert",
help="name of torchbench model, e.g. BERT_pytorch",
)
model_arg.add_argument(
"--toy-model", "--toy_model", action="store_true", help="use toy model instead"

View File

@ -12,17 +12,6 @@ cuda,dlrm,1024,1.3421,3.2177,4.9493,1.0009
cuda,drq,1,1.0820,3.8157,8.0732,0.9687
cuda,fastNLP_Bert,6,1.4839,37.9050,32.7583,1.1563
cuda,functorch_dp_cifar10,64,1.5014,6.9596,14.1516,0.4432
cuda,hf_Albert,8,2.2452,30.6134,25.9036,1.3098
cuda,hf_Bart,4,1.7012,34.3999,37.9975,1.0128
cuda,hf_Bert,4,1.9003,23.3435,34.8196,1.0273
cuda,hf_Bert_large,4,1.6346,52.8525,62.3112,1.0726
cuda,hf_BigBird,2,1.9208,105.2672,101.4787,1.1415
cuda,hf_DistilBert,8,1.3988,22.5793,20.2386,1.0232
cuda,hf_GPT2,4,1.8075,27.5184,25.3428,1.1562
cuda,hf_GPT2_large,4,1.7716,118.7404,68.1618,1.1725
cuda,hf_Reformer,4,1.1744,70.4228,15.1152,0.9266
cuda,hf_T5,8,1.8778,93.3134,37.0046,1.2279
cuda,hf_T5_large,2,2.3623,101.5518,143.7982,1.1674
cuda,lennard_jones,1000,1.0649,1.5233,4.1119,0.9998
cuda,mnasnet1_0,32,1.1957,19.1993,27.2302,0.7758
cuda,mobilenet_v2,96,1.4876,32.3311,27.4719,1.1729
@ -42,14 +31,6 @@ cuda,shufflenet_v2_x1_0,128,1.3027,25.7017,27.9875,1.1015
cuda,soft_actor_critic,256,0.9965,2.2580,4.6661,0.9995
cuda,speech_transformer,32,1.8405,35.1645,33.3422,1.0888
cuda,squeezenet1_1,32,1.4191,7.3454,9.4751,1.1148
cuda,timm_efficientdet,1,1.6630,78.2697,150.9620,0.9904
cuda,timm_efficientnet,32,1.2689,28.5348,66.3911,0.9428
cuda,timm_nfnet,128,1.5319,79.5429,32.9961,1.1070
cuda,timm_regnet,32,1.0564,56.9897,53.0027,0.9500
cuda,timm_resnest,32,1.6485,14.3908,56.7240,0.9515
cuda,timm_vision_transformer,8,1.6100,18.7736,36.9495,0.7301
cuda,timm_vision_transformer_large,8,1.0842,170.9849,72.0604,0.9762
cuda,timm_vovnet,32,1.0472,25.4676,24.8428,0.8843
cuda,tts_angular,64,1.0366,6.9889,4.2683,0.9973
cuda,vgg16,64,1.2560,52.7072,7.3733,0.9884
cuda,yolov3,16,1.2600,54.2350,42.4711,1.0108

1 dev name batch_size speedup abs_latency compilation_latency compression_ratio
12 cuda drq 1 1.0820 3.8157 8.0732 0.9687
13 cuda fastNLP_Bert 6 1.4839 37.9050 32.7583 1.1563
14 cuda functorch_dp_cifar10 64 1.5014 6.9596 14.1516 0.4432
cuda hf_Albert 8 2.2452 30.6134 25.9036 1.3098
cuda hf_Bart 4 1.7012 34.3999 37.9975 1.0128
cuda hf_Bert 4 1.9003 23.3435 34.8196 1.0273
cuda hf_Bert_large 4 1.6346 52.8525 62.3112 1.0726
cuda hf_BigBird 2 1.9208 105.2672 101.4787 1.1415
cuda hf_DistilBert 8 1.3988 22.5793 20.2386 1.0232
cuda hf_GPT2 4 1.8075 27.5184 25.3428 1.1562
cuda hf_GPT2_large 4 1.7716 118.7404 68.1618 1.1725
cuda hf_Reformer 4 1.1744 70.4228 15.1152 0.9266
cuda hf_T5 8 1.8778 93.3134 37.0046 1.2279
cuda hf_T5_large 2 2.3623 101.5518 143.7982 1.1674
15 cuda lennard_jones 1000 1.0649 1.5233 4.1119 0.9998
16 cuda mnasnet1_0 32 1.1957 19.1993 27.2302 0.7758
17 cuda mobilenet_v2 96 1.4876 32.3311 27.4719 1.1729
31 cuda soft_actor_critic 256 0.9965 2.2580 4.6661 0.9995
32 cuda speech_transformer 32 1.8405 35.1645 33.3422 1.0888
33 cuda squeezenet1_1 32 1.4191 7.3454 9.4751 1.1148
cuda timm_efficientdet 1 1.6630 78.2697 150.9620 0.9904
cuda timm_efficientnet 32 1.2689 28.5348 66.3911 0.9428
cuda timm_nfnet 128 1.5319 79.5429 32.9961 1.1070
cuda timm_regnet 32 1.0564 56.9897 53.0027 0.9500
cuda timm_resnest 32 1.6485 14.3908 56.7240 0.9515
cuda timm_vision_transformer 8 1.6100 18.7736 36.9495 0.7301
cuda timm_vision_transformer_large 8 1.0842 170.9849 72.0604 0.9762
cuda timm_vovnet 32 1.0472 25.4676 24.8428 0.8843
34 cuda tts_angular 64 1.0366 6.9889 4.2683 0.9973
35 cuda vgg16 64 1.2560 52.7072 7.3733 0.9884
36 cuda yolov3 16 1.2600 54.2350 42.4711 1.0108

View File

@ -1,29 +1,16 @@
#name,backend,data_type,shape,wrapper,perf_speedup_target_c7i_metal_24xl
#timm_vision_transformer,inductor,float32,static,default,1.039510755
phlippe_densenet,inductor,float32,static,default,1.46474287
basic_gnn_edgecnn,inductor,float32,dynamic,default,1.30092957
llama_v2_7b_16h,inductor,float32,dynamic,default,1.23234331
resnet50,inductor,float32,dynamic,default,1.67742767
#timm_efficientnet,inductor,float32,static,cpp,
mobilenet_v3_large,inductor,float32,static,cpp,2.63311706
timm_resnest,inductor,float32,dynamic,cpp,1.7321529
functorch_maml_omniglot,inductor,float32,dynamic,cpp,1.126799
#hf_GPT2,inductor,float32,dynamic,cpp,
yolov3,export-aot-inductor,float32,static,default,1.40687424
mobilenet_v2,export-aot-inductor,float32,static,default,2.90375357
resnext50_32x4d,export-aot-inductor,float32,dynamic,default,1.49299689
hf_Albert,export-aot-inductor,float32,dynamic,default,1.261471
resnext50_32x4d,inductor,amp,static,default,1.47023111
vgg16,inductor,amp,static,default,1.2692454
hf_Longformer,inductor,amp,dynamic,default,1.22015225
hf_Bert_large,inductor,amp,dynamic,default,1.18572179
llama,inductor,amp,static,default,1.33157028
timm_regnet,inductor,amp,static,cpp,1.12734073
mnasnet1_0,inductor,amp,static,cpp,2.1296814
#hf_T5_generate,inductor,amp,dynamic,cpp,
timm_vovnet,inductor,amp,dynamic,cpp,1.10851009
#mobilenet_v2,inductor,amp,dynamic,cpp,2.27774577 # https://github.com/pytorch/pytorch/issues/131693
hf_GPT2,export-aot-inductor,amp,static,default,1.4432794
densenet121,export-aot-inductor,amp,static,default,1.25591385
hf_DistilBert,export-aot-inductor,amp,dynamic,default,1.2926442
hf_Bart,export-aot-inductor,amp,dynamic,default,1.19515416

1 #name backend data_type shape wrapper perf_speedup_target_c7i_metal_24xl
#timm_vision_transformer inductor float32 static default 1.039510755
2 phlippe_densenet inductor float32 static default 1.46474287
3 basic_gnn_edgecnn inductor float32 dynamic default 1.30092957
4 llama_v2_7b_16h inductor float32 dynamic default 1.23234331
5 resnet50 inductor float32 dynamic default 1.67742767
#timm_efficientnet inductor float32 static cpp
6 mobilenet_v3_large inductor float32 static cpp 2.63311706
timm_resnest inductor float32 dynamic cpp 1.7321529
7 functorch_maml_omniglot inductor float32 dynamic cpp 1.126799
#hf_GPT2 inductor float32 dynamic cpp
8 yolov3 export-aot-inductor float32 static default 1.40687424
9 mobilenet_v2 export-aot-inductor float32 static default 2.90375357
10 resnext50_32x4d export-aot-inductor float32 dynamic default 1.49299689
hf_Albert export-aot-inductor float32 dynamic default 1.261471
11 resnext50_32x4d inductor amp static default 1.47023111
12 vgg16 inductor amp static default 1.2692454
hf_Longformer inductor amp dynamic default 1.22015225
hf_Bert_large inductor amp dynamic default 1.18572179
13 llama inductor amp static default 1.33157028
timm_regnet inductor amp static cpp 1.12734073
14 mnasnet1_0 inductor amp static cpp 2.1296814
#hf_T5_generate inductor amp dynamic cpp
timm_vovnet inductor amp dynamic cpp 1.10851009
15 #mobilenet_v2 inductor amp dynamic cpp 2.27774577 # https://github.com/pytorch/pytorch/issues/131693
hf_GPT2 export-aot-inductor amp static default 1.4432794
16 densenet121 export-aot-inductor amp static default 1.25591385
hf_DistilBert export-aot-inductor amp dynamic default 1.2926442
hf_Bart export-aot-inductor amp dynamic default 1.19515416

View File

@ -75,29 +75,7 @@ def setup_torchbench_cwd():
return original_dir
def process_hf_reformer_output(out):
assert isinstance(out, list)
# second output is unstable
return [elem for i, elem in enumerate(out) if i != 1]
def process_hf_whisper_output(out):
out_ret = []
for i, elem in enumerate(out):
if i == 0:
if elem is not None:
assert isinstance(elem, dict)
out_ret.append({k: v for k, v in elem.items() if k != "logits"})
elif i != 1:
out_ret.append(elem)
return out_ret
process_train_model_output = {
"hf_Reformer": process_hf_reformer_output,
"hf_Whisper": process_hf_whisper_output,
}
process_train_model_output = {}
class TorchBenchmarkRunner(BenchmarkRunner):
@ -227,12 +205,10 @@ class TorchBenchmarkRunner(BenchmarkRunner):
"drq",
"hf_Reformer",
"DALLE2_pytorch",
"hf_BigBird",
"detectron2_maskrcnn_r_50_fpn",
"detectron2_maskrcnn_r_101_fpn",
"vision_maskrcnn",
"doctr_reco_predictor",
"hf_T5_generate",
}
def load_model(
@ -395,8 +371,6 @@ class TorchBenchmarkRunner(BenchmarkRunner):
and hasattr(model.config, "use_cache")
):
model.config.use_cache = False
if model_name == "hf_T5_generate":
model.model.config.use_cache = False
self.validate_model(model, example_inputs)
return device, benchmark.name, model, example_inputs, batch_size

View File

@ -5,8 +5,6 @@ batch_size:
demucs: 4
dlrm: 1024
densenet121: 4
hf_Reformer: 4
hf_T5_base: 4
timm_efficientdet: 1
llama_v2_7b_16h: 1
# reduced from 16 due to cudagraphs OOM in TorchInductor dashboard
@ -30,7 +28,6 @@ tolerance:
- alexnet
- attention_is_all_you_need_pytorch
- densenet121
- hf_Albert
- vgg16
- mobilenet_v3_large
- nvidia_deeprecommender
@ -40,20 +37,16 @@ tolerance:
- soft_actor_critic
- tacotron2
- yolov3
- timm_efficientdet
- timm_efficientnet
- squeezenet1_1
higher_fp16:
- doctr_reco_predictor
- drq
- hf_Whisper
- phlippe_resnet
higher_bf16:
- doctr_reco_predictor
- drq
- hf_Whisper
# These models need higher tolerance for xpu devices with bf16
higher_bf16_xpu:
@ -71,16 +64,9 @@ tolerance:
require_larger_multiplier_for_smaller_tensor:
- yolov3
- timm_efficientnet
# These benchmarks took >600s on an i9-11900K CPU
very_slow: &VERY_SLOW_MODELS
# 3339s
- hf_BigBird
# 3062s
- hf_Longformer
# 930s
- hf_T5
# These benchmarks took >60s on an i9-11900K CPU
@ -92,18 +78,6 @@ slow:
- demucs
# 242s
- fastNLP_Bert
# 221s
- hf_Albert
# 400s
- hf_Bart
# 334s
- hf_Bert
# 187s
- hf_DistilBert
# 470s
- hf_GPT2
# 141s
- hf_Reformer
# 317s
- speech_transformer
# 99s
@ -187,11 +161,36 @@ skip:
- hf_clip
# multi gpu not always available in benchmark runners
- simple_gpt_tp_manual
# skip hf and timm models in torchbench since
# there are already separate benchmarks for them
- hf_Albert
- hf_Bart
- hf_Bert
- hf_BigBird
- hf_DistilBert
- hf_GPT2
- hf_Longformer
- hf_Reformer
- hf_T5
- timm_efficientdet
- timm_efficientnet
- timm_nfnet
- timm_regnet
- timm_resnest
- timm_vision_transformer
- timm_vovnet
- hf_Bert_large
- hf_GPT2_large
- hf_Roberta_base
- hf_T5_base
- hf_T5_generate
- hf_T5_large
- hf_Whisper
- hf_distil_whisper
- timm_vision_transformer_large
device:
cpu:
# OOMs
- hf_T5_generate
# model is CUDA only
- cm3leon_generate
# timeout
@ -208,16 +207,12 @@ skip:
- torchrec_dlrm
- simple_gpt
# works on cuda, accuracy failure on cpu
- hf_Whisper
- stable_diffusion_text_encoder
- llava
- moco
# Skip these additional models when running on aarch64
cpu_aarch64:
# timeout on aarch64
- timm_regnet
- timm_nfnet
cpu_aarch64: []
cuda: []
@ -235,7 +230,6 @@ skip:
- sam_fast
# Model's DEFAULT_TRAIN_BSIZE is not implemented
- cm3leon_generate
- hf_T5_generate
- doctr_det_predictor
- doctr_reco_predictor
- moondream
@ -247,9 +241,6 @@ skip:
- cm3leon_generate
- detectron2_fcos_r_50_fpn
- fastNLP_Bert
- hf_Longformer
- hf_Reformer
- hf_T5_generate
- opacus_cifar10
- speech_transformer
@ -286,9 +277,6 @@ accuracy:
# Models too large to have eager, dynamo and fp64_numbers simultaneosuly
# even for 40 GB machine. We have tested accuracy for smaller version of
# these models
- hf_GPT2_large
- hf_T5_large
- timm_vision_transformer_large
# accuracy https://github.com/pytorch/pytorch/issues/93847
- maml
- llama_v2_7b_16h
@ -300,5 +288,4 @@ accuracy:
- pytorch_unet
max_batch_size:
hf_GPT2: 2
pytorch_unet: 2

View File

@ -4,11 +4,6 @@ LearningToPaint,1024
alexnet,1024
dcgan,1024
densenet121,64
hf_Albert,32
hf_Bart,16
hf_Bert,16
hf_GPT2,16
hf_T5,4
mnasnet1_0,256
mobilenet_v2,128
mobilenet_v3_large,256
@ -19,10 +14,4 @@ resnet50,128
resnext50_32x4d,128
shufflenet_v2_x1_0,512
squeezenet1_1,512
timm_nfnet,256
timm_efficientnet,128
timm_regnet,128
timm_resnest,256
timm_vision_transformer,256
timm_vovnet,128
vgg16,128

View File

@ -6,18 +6,6 @@ densenet121,512
dlrm,2048
fastNLP_Bert,8
functorch_dp_cifar10,1024
hf_Albert,8
hf_Bart,8
hf_Bert,8
hf_Bert_large,8
hf_DistilBert,8
hf_GPT2,8
hf_GPT2_large,1
hf_Longformer,4
hf_Reformer,8
hf_T5,4
hf_T5_base,1
hf_T5_large,1
LearningToPaint,96
lennard_jones,1024
mnasnet1_0,32
@ -35,13 +23,6 @@ shufflenet_v2_x1_0,64
speech_transformer,1024
squeezenet1_1,16
Super_SloMo,1024
timm_efficientnet,64
timm_nfnet,128
timm_regnet,32
timm_resnest,32
timm_vision_transformer,16
timm_vision_transformer_large,8
timm_vovnet,32
tts_angular,1024
vgg16,64
vision_maskrcnn,1

View File

@ -14,7 +14,7 @@ import torch._dynamo.config
import torch._dynamo.test_case
import torch.utils._pytree as python_pytree
from torch._dynamo.exc import ResumePrologueTracingError, Unsupported
from torch._dynamo.testing import skipIfNotPy312
from torch._dynamo.testing import skipIfNotPy312, skipIfOnlyNotPy312
from torch._dynamo.utils import counters
from torch.testing._internal.common_utils import (
IS_FBCODE,
@ -1015,6 +1015,7 @@ Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especiall
"<Internal traceback>\n",
msg,
)
self.assertExpectedInline(
msg,
"""\
@ -1051,7 +1052,6 @@ from user code:
torch.compile(fn, backend="eager")(torch.randn(3))
# check the log for the 2nd torch._dynamo.graph_break()
self.assertExpectedInline(
munge_exc(records[-1].getMessage(), skip=0),
"""\
@ -1075,6 +1075,104 @@ User code traceback:
""",
)
@torch._dynamo.config.patch(verbose=True)
@make_logging_test(graph_breaks=True)
def test_latest_bytecode_to_graph_break_fullgraph(self, records):
def fn(x):
y = x + 1
z = x + y
torch._dynamo.graph_break()
return z
self.assertExpectedInlineMunged(
Unsupported,
lambda: torch.compile(fn, backend="eager", fullgraph=True)(torch.randn(3)),
"""\
Call to `torch._dynamo.graph_break()`
Explanation: User-inserted graph break. Message: None
Hint: Remove the `torch._dynamo.graph_break()` call.
Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html
from user code:
File "test_error_messages.py", line N, in fn
torch._dynamo.graph_break()
""",
)
@skipIfOnlyNotPy312
@torch._dynamo.config.patch(verbose=True)
@make_logging_test(graph_breaks=True)
def test_latest_bytecode_to_graph_break_python_versioning(self, records):
@torch.compile(backend="eager")
def fn(x):
y = x + 1
z = x + y
torch._dynamo.graph_break()
return z
fn(torch.ones(3))
s = munge_exc(records[0].getMessage(), skip=0)
self.assertExpectedInline(
s,
"""\
Graph break in user code at test_error_messages.py:N
Graph Break Reason: Call to `torch._dynamo.graph_break()`
Explanation: User-inserted graph break. Message: None
Hint: Remove the `torch._dynamo.graph_break()` call.
Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html
User code traceback:
File "test_error_messages.py", line N, in test_latest_bytecode_to_graph_break_python_versioning
fn(torch.ones(3))
========== most recent `torch.compile` tracing attempt started here ==========
File "test_error_messages.py", line N, in fn
torch._dynamo.graph_break()
NOTE: the most recent `torch.compile` tracing attempt might not be where you applied `torch.compile`! This is due to how graph breaks are implemented - the optimized code object returned by Dynamo will call another Dynamo-generated resume function and tracing is re-enabled by calling the resume function as a normal Python function, which Dynamo intercepts as a top-level frame.
Most recent bytecode instructions traced (max 20):
TRACE RESUME 0 []
TRACE LOAD_FAST 'x' []
TRACE LOAD_CONST 1 [LazyVariableTracker()]
TRACE BINARY_OP 0 [LazyVariableTracker(), ConstantVariable(int: 1)]
TRACE STORE_FAST 'y' [TensorVariable()]
TRACE LOAD_FAST 'x' []
TRACE LOAD_FAST 'y' [TensorVariable()]
TRACE BINARY_OP 0 [TensorVariable(), TensorVariable()]
TRACE STORE_FAST 'z' [TensorVariable()]
TRACE LOAD_GLOBAL 'torch' []
TRACE LOAD_ATTR '_dynamo' [LazyVariableTracker()]
TRACE LOAD_ATTR 'graph_break' [LazyVariableTracker()]
TRACE CALL 0 [NullVariable, LazyVariableTracker()]""",
)
@torch._dynamo.config.patch(verbose=True)
@make_logging_test(graph_breaks=True)
def test_latest_bytecode_to_graph_break(self, records):
@torch.compile(backend="eager")
def fn(x):
y = x + 1
z = x + y
torch._dynamo.graph_break()
return z
fn(torch.ones(3))
pattern = r"TRACE.*"
s = munge_exc(records[0].getMessage(), skip=0)
matches = re.findall(pattern, s)
self.assertEqual((len(matches) > 10), True)
self.assertEqual((len(matches) <= 20), True)
self.assertIn("Most recent bytecode instructions traced (max 20):", s)
@torch._dynamo.config.patch(verbose=True)
@make_logging_test(graph_breaks=True)
def test_graph_break_traceback_above_dynamo_shows_user_code(self, records):

View File

@ -43,6 +43,7 @@ import threading
import traceback
import types
import weakref
from collections import deque
from traceback import StackSummary
from typing import Any, Callable, cast, NoReturn, Optional, TYPE_CHECKING, Union
from typing_extensions import TypeAlias, TypeIs
@ -544,6 +545,7 @@ def log_graph_break(
reason: str = "",
exc_info: bool = False,
user_stack: Optional[StackSummary] = None,
latest_bytecode_log: Optional[str] = None,
) -> None:
if user_stack is None:
user_stack = torch._guards.TracingContext.extract_stack()
@ -606,6 +608,10 @@ def log_graph_break(
# This log line MUST contain the string "Graph break in user code",
# This log line is exercised from
# python test/dynamo/test_exc.py -k test_graph_break_log
if latest_bytecode_log and config.verbose:
user_stack_trace += "Most recent bytecode instructions traced (max 20):\n"
user_stack_trace += latest_bytecode_log
graph_break_log.debug(
user_stack_trace,
)
@ -933,6 +939,7 @@ def break_graph_if_unsupported(
exc_info=True,
reason=str(excp),
user_stack=excp.real_stack,
latest_bytecode_log="\n".join(self.latest_bytecode_queue),
)
if self.maybe_has_backedge():
@ -1184,6 +1191,8 @@ class InstructionTranslatorBase(
parent: Optional[InstructionTranslatorBase]
debug_locals: list[tuple[VariableTracker, list[VariableTracker]]]
package: Optional[CompilePackage]
latest_bytecode_queue: deque[str]
# Store the latest bytecode before graph_break() call by user
def mark_inconsistent_side_effects(self) -> None:
"""
@ -1351,6 +1360,17 @@ class InstructionTranslatorBase(
"TRACE %s %s %s", inst.opname, inst.argval, self.stack
)
# Store the latest 20 bytecode execution for the process,
# Used repr for byte processing and limiting the length to 2048
try:
stack_repr = repr(self.stack)
except ValueError:
# Handle large integers that exceed sys.int_info.str_digits_check_threshold
stack_repr = "<self.stack repr truncated due to large integer>"
self.latest_bytecode_queue.append(
f"TRACE {inst.opname} {repr(inst.argval)} {stack_repr}"
)
self.update_block_stack(inst)
try:
@ -4083,6 +4103,7 @@ class InstructionTranslatorBase(
self.accept_prefix_inst = True
self.prefix_insts = []
self.exn_vt_stack = exn_vt_stack
self.latest_bytecode_queue = deque(maxlen=20)
# Properties of the input/output code
self.instructions: list[Instruction] = instructions

View File

@ -506,6 +506,12 @@ def skipIfNotPy312(fn: Callable[_P, _T]) -> Callable[_P, _T]:
return unittest.skip("Requires Python 3.12+")(fn)
def skipIfOnlyNotPy312(fn: Callable[_P, _T]) -> Callable[_P, _T]:
if sys.version_info >= (3, 13) or sys.version_info < (3, 12):
return unittest.skip("Requires Python 3.12")(fn)
return fn
def xfailIfPy312(fn: Callable[_P, _T]) -> Callable[_P, _T]:
if sys.version_info >= (3, 12):
return unittest.expectedFailure(fn)

View File

@ -239,7 +239,9 @@ else:
)
return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name))
def _get_slice_mesh_layout(self, device_mesh, mesh_dim_names) -> _MeshLayout:
def _get_slice_mesh_layout(
self, device_mesh: "DeviceMesh", mesh_dim_names: tuple[str, ...]
) -> _MeshLayout:
"""
Validate whether the mesh_dim_names is valid for slicing the given device_mesh.
If valid, return dim indexes of the slice mesh in the device mesh.
@ -266,7 +268,7 @@ else:
else {}
)
valid_mesh_dim_names = [
*device_mesh.mesh_dim_names,
*not_none(device_mesh.mesh_dim_names),
*flatten_name_to_root_layout,
]
@ -281,11 +283,17 @@ else:
layout_sliced = []
for name in mesh_dim_names:
if name in device_mesh.mesh_dim_names:
if name in not_none(device_mesh.mesh_dim_names):
layout_sliced.append(
device_mesh._layout[device_mesh.mesh_dim_names.index(name)]
device_mesh._layout[
not_none(device_mesh.mesh_dim_names).index(name)
]
)
elif name in flatten_name_to_root_layout:
warnings.warn(
"Slicing a flattened dim from root mesh will be deprecated in PT 2.11. "
"Users need to bookkeep the flattened mesh directly. "
)
layout_sliced.append(flatten_name_to_root_layout[name])
sliced_sizes = tuple(l.sizes for l in layout_sliced)