mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-25 08:11:06 +08:00
Compare commits
33 Commits
csl/larger
...
DynamoFixG
| Author | SHA1 | Date | |
|---|---|---|---|
| c4d369369f | |||
| a13f24980e | |||
| 6869487ca4 | |||
| 5d9105f2ca | |||
| 191e6bb367 | |||
| a15a08725b | |||
| 756ea14378 | |||
| d7c5ea03df | |||
| d11e253ee3 | |||
| 01d5211679 | |||
| b496a04735 | |||
| 03be8d227b | |||
| df1b8c3e41 | |||
| 94f39d5749 | |||
| 2eb8b70d1b | |||
| 29680dd928 | |||
| 69bcc97937 | |||
| babac1d561 | |||
| 8594b98b0a | |||
| b3fc84229e | |||
| e409e84a7a | |||
| 9c3742e7a7 | |||
| 664a137dbb | |||
| 4f5a0deb83 | |||
| 4752d8fec9 | |||
| 715f0a26d7 | |||
| e9e2553603 | |||
| 43fac7f55d | |||
| a875f27482 | |||
| f34e0a941a | |||
| 81dbeb06f4 | |||
| 7a1ead755f | |||
| 90b4e130d6 |
@ -29,9 +29,6 @@ env
|
||||
# https://github.com/pytorch/pytorch/blob/0b6c0898e6c352c8ea93daec854e704b41485375/.ci/docker/common/install_cache.sh#L97
|
||||
export PATH="/opt/cache/lib:$PATH"
|
||||
|
||||
# Turn off -MD / -MMD compiler flags to increase sccache hit rate
|
||||
export COMPILE_NO_MD=1
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
# Use jemalloc during compilation to mitigate https://github.com/pytorch/pytorch/issues/116289
|
||||
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2
|
||||
@ -292,15 +289,8 @@ else
|
||||
python -mpip install numpy==2.0.2
|
||||
|
||||
WERROR=1 python setup.py clean
|
||||
sccache --stop-server
|
||||
export SCCACHE_LOG_LEVEL=debug
|
||||
export SCCACHE_ERROR_LOG=/tmp/sccache_errors.log
|
||||
export SCCACHE_LOG=debug
|
||||
export RUST_LOG=sccache::server=debug
|
||||
sccache --start-server
|
||||
|
||||
WERROR=1 python -m build --wheel --no-isolation
|
||||
mv /tmp/sccache_errors.log dist/
|
||||
else
|
||||
python setup.py clean
|
||||
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
|
||||
|
||||
@ -2,8 +2,6 @@
|
||||
# Required environment variables:
|
||||
# $BUILD_ENVIRONMENT (should be set by your Docker image)
|
||||
|
||||
set -e -x -o pipefail
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
|
||||
# Save the absolute path in case later we chdir (as occurs in the gpu perf test)
|
||||
script_dir="$( cd "$(dirname "${BASH_SOURCE[0]}")" || exit ; pwd -P )"
|
||||
@ -47,14 +45,14 @@ if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
|
||||
# explicitly
|
||||
echo "Skipping sccache server initialization, setting environment variables"
|
||||
export SCCACHE_IDLE_TIMEOUT=0
|
||||
export SCCACHE_ERROR_LOG=/tmp/sccache_error.log
|
||||
export RUST_LOG=sccache::server=debug
|
||||
export SCCACHE_ERROR_LOG=~/sccache_error.log
|
||||
export RUST_LOG=sccache::server=error
|
||||
elif [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
|
||||
SCCACHE_ERROR_LOG=/tmp/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
|
||||
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
|
||||
else
|
||||
# increasing SCCACHE_IDLE_TIMEOUT so that extension_backend_test.cpp can build after this PR:
|
||||
# https://github.com/pytorch/pytorch/pull/16645
|
||||
SCCACHE_ERROR_LOG=/tmp/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 RUST_LOG=sccache::server=error sccache --start-server
|
||||
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 RUST_LOG=sccache::server=error sccache --start-server
|
||||
fi
|
||||
|
||||
# Report sccache stats for easier debugging. It's ok if this commands
|
||||
|
||||
@ -256,7 +256,7 @@ test_torchbench_smoketest() {
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
|
||||
|
||||
for backend in eager inductor; do
|
||||
|
||||
@ -319,7 +319,7 @@ test_aoti_torchbench_smoketest() {
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
|
||||
|
||||
echo "Launching torchbench inference performance run for AOT Inductor and dtype ${dtype}"
|
||||
local dtype_arg="--${dtype}"
|
||||
|
||||
@ -838,7 +838,7 @@ test_dynamo_benchmark() {
|
||||
elif [[ "${suite}" == "timm_models" ]]; then
|
||||
export TORCHBENCH_ONLY_MODELS="inception_v3"
|
||||
elif [[ "${suite}" == "torchbench" ]]; then
|
||||
export TORCHBENCH_ONLY_MODELS="hf_Bert"
|
||||
export TORCHBENCH_ONLY_MODELS="BERT_pytorch"
|
||||
fi
|
||||
fi
|
||||
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
|
||||
@ -869,13 +869,13 @@ test_inductor_torchbench_smoketest_perf() {
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
|
||||
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
|
||||
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only BERT_pytorch \
|
||||
--output "$TEST_REPORTS_DIR/inductor_training_smoketest.csv"
|
||||
# The threshold value needs to be actively maintained to make this check useful
|
||||
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_training_smoketest.csv" -t 1.4
|
||||
|
||||
# Check memory compression ratio for a few models
|
||||
for test in hf_Albert timm_vision_transformer; do
|
||||
for test in BERT_pytorch yolov3; do
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --amp --training \
|
||||
--disable-cudagraphs --batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" \
|
||||
--only $test --output "$TEST_REPORTS_DIR/inductor_training_smoketest_$test.csv"
|
||||
|
||||
@ -71,14 +71,7 @@ export PYTORCH_BUILD_NUMBER=1
|
||||
|
||||
# Set triton version as part of PYTORCH_EXTRA_INSTALL_REQUIREMENTS
|
||||
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
|
||||
|
||||
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
|
||||
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
|
||||
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
fi
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
|
||||
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" && ! "$PYTORCH_BUILD_VERSION" =~ .*xpu.* ]]; then
|
||||
TRITON_REQUIREMENT="triton==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"
|
||||
|
||||
20
.github/workflows/pull.yml
vendored
20
.github/workflows/pull.yml
vendored
@ -1,16 +1,16 @@
|
||||
name: pull
|
||||
|
||||
on:
|
||||
# pull_request:
|
||||
# branches-ignore:
|
||||
# - nightly
|
||||
# push:
|
||||
# branches:
|
||||
# - main
|
||||
# - release/*
|
||||
# - landchecks/*
|
||||
# tags:
|
||||
# - ciflow/pull/*
|
||||
pull_request:
|
||||
branches-ignore:
|
||||
- nightly
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- release/*
|
||||
- landchecks/*
|
||||
tags:
|
||||
- ciflow/pull/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: 29 8 * * * # about 1:29am PDT
|
||||
|
||||
180
.github/workflows/trunk.yml
vendored
180
.github/workflows/trunk.yml
vendored
@ -47,6 +47,22 @@ jobs:
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
libtorch-linux-jammy-cuda12_8-py3_10-gcc11-debug-build:
|
||||
name: libtorch-linux-jammy-cuda12.8-py3.10-gcc11-debug
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: libtorch-linux-jammy-cuda12.8-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
build-generates-artifacts: false
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: "linux.4xlarge"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 1 },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-build:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
@ -69,3 +85,167 @@ jobs:
|
||||
{ config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-test:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs:
|
||||
- linux-jammy-cuda12_8-py3_10-gcc11-build
|
||||
- target-determination
|
||||
with:
|
||||
timeout-minutes: 360
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
# no-ops builds test USE_PER_OPERATOR_HEADERS=0 where ATen/ops is not generated
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-no-ops-build:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 1 },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
macos-py3-arm64-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: macos-py3-arm64
|
||||
uses: ./.github/workflows/_mac-build.yml
|
||||
with:
|
||||
sync-tag: macos-py3-arm64-build
|
||||
build-environment: macos-py3-arm64
|
||||
runner-type: macos-m1-stable
|
||||
build-generates-artifacts: true
|
||||
# To match the one pre-installed in the m1 runners
|
||||
python-version: 3.12.7
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 3, runner: "macos-m1-stable" },
|
||||
{ config: "default", shard: 2, num_shards: 3, runner: "macos-m1-stable" },
|
||||
{ config: "default", shard: 3, num_shards: 3, runner: "macos-m1-stable" },
|
||||
{ config: "mps", shard: 1, num_shards: 1, runner: "macos-m1-14" },
|
||||
{ config: "mps", shard: 1, num_shards: 1, runner: "macos-m2-15" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
macos-py3-arm64-test:
|
||||
name: macos-py3-arm64
|
||||
uses: ./.github/workflows/_mac-test.yml
|
||||
needs:
|
||||
- macos-py3-arm64-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: macos-py3-arm64
|
||||
# Same as the build job
|
||||
python-version: 3.12.7
|
||||
test-matrix: ${{ needs.macos-py3-arm64-build.outputs.test-matrix }}
|
||||
disable-monitor: false
|
||||
secrets: inherit
|
||||
|
||||
win-vs2022-cpu-py3-build:
|
||||
name: win-vs2022-cpu-py3
|
||||
uses: ./.github/workflows/_win-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: win-vs2022-cpu-py3
|
||||
cuda-version: cpu
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
win-vs2022-cpu-py3-test:
|
||||
name: win-vs2022-cpu-py3
|
||||
uses: ./.github/workflows/_win-test.yml
|
||||
needs:
|
||||
- win-vs2022-cpu-py3-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: win-vs2022-cpu-py3
|
||||
cuda-version: cpu
|
||||
test-matrix: ${{ needs.win-vs2022-cpu-py3-build.outputs.test-matrix }}
|
||||
disable-monitor: false
|
||||
secrets: inherit
|
||||
|
||||
win-vs2022-cuda12_6-py3-build:
|
||||
name: win-vs2022-cuda12.6-py3
|
||||
uses: ./.github/workflows/_win-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: win-vs2022-cuda12.6-py3
|
||||
cuda-version: "12.6"
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
name: inductor-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.12-gcc9-sm80
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
|
||||
cuda-arch-list: '8.0'
|
||||
secrets: inherit
|
||||
|
||||
verify-cachebench-cpu-build:
|
||||
name: verify-cachebench-cpu-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "verify_cachebench", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
verify-cachebench-cpu-test:
|
||||
name: verify-cachebench-cpu-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs:
|
||||
- verify-cachebench-cpu-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11
|
||||
docker-image: ${{ needs.verify-cachebench-cpu-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.verify-cachebench-cpu-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-py3-clang12-executorch-build:
|
||||
name: linux-jammy-py3-clang12-executorch
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3-clang12-executorch
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-executorch
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "executorch", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-py3-clang12-executorch-test:
|
||||
name: linux-jammy-py3-clang12-executorch
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: linux-jammy-py3-clang12-executorch-build
|
||||
with:
|
||||
build-environment: linux-jammy-py3-clang12-executorch
|
||||
docker-image: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
@ -420,14 +420,6 @@ if(USE_CCACHE)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Optionally disable -MD / -MMD if COMPILE_NO_MD is set in the environment
|
||||
if(DEFINED ENV{COMPILE_NO_MD})
|
||||
message(STATUS "COMPILE_NO_MD is set — disabling compiler dependency file flags (-MD/-MMD)")
|
||||
foreach(lang C CXX CUDA HIP ASM)
|
||||
set(CMAKE_DEPFILE_FLAGS_${lang} "")
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
# Since TensorPipe does not support Windows, set it to OFF when WIN32 detected
|
||||
# On Windows platform, if user does not install libuv in build conda env and
|
||||
# does not set libuv_ROOT environment variable. Set USE_DISTRIBUTED to OFF.
|
||||
@ -1495,10 +1487,3 @@ else()
|
||||
]])
|
||||
endif()
|
||||
endif()
|
||||
|
||||
foreach(lang C CXX CUDA)
|
||||
foreach(flg "" "_DEBUG" "_RELEASE" "_RELWITHDEBINFO")
|
||||
string(REPLACE "-MD" "" CMAKE_${lang}_FLAGS${flg} "${CMAKE_${lang}_FLAGS${flg}}")
|
||||
string(REPLACE "-MMD" "" CMAKE_${lang}_FLAGS${flg} "${CMAKE_${lang}_FLAGS${flg}}")
|
||||
endforeach()
|
||||
endforeach()
|
||||
|
||||
@ -25,15 +25,6 @@ drq
|
||||
fambench_dlrm
|
||||
fambench_xlmr
|
||||
fastNLP_Bert
|
||||
hf_Albert
|
||||
hf_Bart
|
||||
hf_Bert
|
||||
hf_BigBird
|
||||
hf_DistilBert
|
||||
hf_GPT2
|
||||
hf_Longformer
|
||||
hf_Reformer
|
||||
hf_T5
|
||||
maml
|
||||
maml_omniglot
|
||||
mnasnet1_0
|
||||
@ -60,13 +51,6 @@ soft_actor_critic
|
||||
speech_transformer
|
||||
squeezenet1_1
|
||||
tacotron2
|
||||
timm_efficientdet
|
||||
timm_efficientnet
|
||||
timm_nfnet
|
||||
timm_regnet
|
||||
timm_resnest
|
||||
timm_vision_transformer
|
||||
timm_vovnet
|
||||
tts_angular
|
||||
vgg16
|
||||
vision_maskrcnn
|
||||
|
||||
@ -23,7 +23,6 @@ TORCHBENCH_MODELS: list[str] = [
|
||||
"resnet50",
|
||||
"moco",
|
||||
"llama",
|
||||
"hf_T5",
|
||||
]
|
||||
HUGGINGFACE_MODELS: list[str] = [
|
||||
"AllenaiLongformerBase",
|
||||
|
||||
@ -11,7 +11,6 @@ import pandas as pd
|
||||
flaky_models = {
|
||||
"yolov3",
|
||||
"detectron2_maskrcnn_r_101_c4",
|
||||
"timm_efficientnet", # see https://github.com/pytorch/pytorch/issues/148699
|
||||
"XGLMForCausalLM", # discovered in https://github.com/pytorch/pytorch/pull/128148
|
||||
"moondream", # discovered in https://github.com/pytorch/pytorch/pull/159291
|
||||
# discovered in https://github.com/pytorch/pytorch/issues/161419. Its not flaky but really hard to repro, so skipping it
|
||||
@ -40,13 +39,9 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
|
||||
"detectron2_fcos_r_50_fpn",
|
||||
"doctr_det_predictor",
|
||||
"doctr_reco_predictor",
|
||||
"hf_BigBird",
|
||||
"hf_Longformer",
|
||||
"hf_Reformer",
|
||||
"hf_Roberta_base",
|
||||
"hf_T5",
|
||||
"hf_T5_base",
|
||||
"hf_T5_generate",
|
||||
"dpn107",
|
||||
"fbnetv3_b",
|
||||
"levit_128",
|
||||
"llava",
|
||||
"microbench_unbacked_tolist_sum",
|
||||
"mnasnet1_0",
|
||||
@ -63,12 +58,7 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
|
||||
"squeezenet1_1",
|
||||
"stable_diffusion_text_encoder",
|
||||
"stable_diffusion_unet",
|
||||
"timm_efficientdet",
|
||||
"timm_efficientnet",
|
||||
"timm_nfnet",
|
||||
"timm_regnet",
|
||||
"timm_resnest",
|
||||
"timm_vovnet",
|
||||
"swsl_resnext101_32x16d",
|
||||
"torchrec_dlrm",
|
||||
"vgg16",
|
||||
# LLM
|
||||
|
||||
@ -36,12 +36,7 @@ def check_graph_breaks(actual_csv, expected_csv, expected_filename):
|
||||
"detectron2_fcos_r_50_fpn",
|
||||
"doctr_det_predictor",
|
||||
"doctr_reco_predictor",
|
||||
"hf_BigBird",
|
||||
"hf_Longformer",
|
||||
"hf_Reformer",
|
||||
"hf_Roberta_base",
|
||||
"hf_T5",
|
||||
"hf_T5_base",
|
||||
"levit_128",
|
||||
"llava",
|
||||
"microbench_unbacked_tolist_sum",
|
||||
"resnet50",
|
||||
@ -51,7 +46,6 @@ def check_graph_breaks(actual_csv, expected_csv, expected_filename):
|
||||
"stable_diffusion_text_encoder",
|
||||
"stable_diffusion_unet",
|
||||
"timm_efficientdet",
|
||||
"timm_nfnet",
|
||||
"torchrec_dlrm",
|
||||
"vgg16",
|
||||
# LLM
|
||||
|
||||
@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,20
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -250,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -118,62 +118,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_accuracy,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -314,30 +258,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -114,58 +114,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -278,38 +226,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -114,58 +114,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -278,38 +226,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,27
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,27
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,27
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,20
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -246,30 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -98,58 +98,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -262,38 +210,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -98,58 +98,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -262,38 +210,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -106,66 +106,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,27
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -286,38 +226,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -122,66 +122,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,25
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,8
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -302,38 +242,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,3
|
||||
|
||||
|
||||
|
||||
|
@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_accuracy,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,20
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -246,30 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,20
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -250,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -130,70 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_accuracy,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -342,30 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,62 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,20
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -250,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -130,73 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,9
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,8
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -345,38 +278,6 @@ stable_diffusion_unet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,25
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -258,38 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -118,62 +118,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_accuracy,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -314,34 +258,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -130,73 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,9
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,8
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -345,38 +278,6 @@ stable_diffusion_unet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_to_run,3
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,25
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -254,38 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -130,74 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,5
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -346,38 +278,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_to_run,3
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,10
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,20
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,5
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -254,38 +190,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,8
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,6
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -130,73 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,9
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,8
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,0
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,7
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -345,38 +278,6 @@ stable_diffusion_unet,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,70 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,15
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Longformer,pass,4
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,25
|
||||
|
||||
|
||||
|
||||
hf_Roberta_base,pass,6
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -258,38 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientdet,pass,2
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_nfnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -130,66 +130,6 @@ functorch_maml_omniglot,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,0
|
||||
|
||||
|
||||
|
||||
hf_BigBird,fail_accuracy,0
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,0
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,8
|
||||
|
||||
|
||||
|
||||
hf_T5,pass,0
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_fail_to_run,0
|
||||
|
||||
|
||||
|
||||
hf_T5_generate,pass,11
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,0
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,pass,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,0
|
||||
|
||||
|
||||
@ -334,30 +274,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,0
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,0
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,0
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,0
|
||||
|
||||
|
||||
|
||||
|
@ -78,58 +78,6 @@ functorch_maml_omniglot,pass,7
|
||||
|
||||
|
||||
|
||||
hf_Albert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bart,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_Bert_large,pass,6
|
||||
|
||||
|
||||
|
||||
hf_BigBird,pass,6
|
||||
|
||||
|
||||
|
||||
hf_DistilBert,pass,6
|
||||
|
||||
|
||||
|
||||
hf_GPT2,pass,8
|
||||
|
||||
|
||||
|
||||
hf_GPT2_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Reformer,pass,25
|
||||
|
||||
|
||||
|
||||
hf_T5_base,eager_2nd_run_OOM,0
|
||||
|
||||
|
||||
|
||||
hf_T5_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
hf_Whisper,pass,6
|
||||
|
||||
|
||||
|
||||
hf_distil_whisper,model_fail_to_load,0
|
||||
|
||||
|
||||
|
||||
lennard_jones,pass,7
|
||||
|
||||
|
||||
@ -246,30 +194,6 @@ stable_diffusion_unet,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_efficientnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_regnet,pass,7
|
||||
|
||||
|
||||
|
||||
timm_resnest,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer,pass,6
|
||||
|
||||
|
||||
|
||||
timm_vision_transformer_large,pass_due_to_skip,0
|
||||
|
||||
|
||||
|
||||
timm_vovnet,pass,6
|
||||
|
||||
|
||||
|
||||
torch_multimodal_clip,pass,7
|
||||
|
||||
|
||||
|
||||
|
@ -149,7 +149,6 @@ CI_SKIP_DYNAMIC_BATCH_ONLY = {
|
||||
"detectron2_fasterrcnn_r_50_c4",
|
||||
"detectron2_fasterrcnn_r_50_dc5",
|
||||
"detectron2_fasterrcnn_r_50_fpn",
|
||||
"hf_T5_generate",
|
||||
"Reformer",
|
||||
"llama",
|
||||
}.union(INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY)
|
||||
@ -176,13 +175,7 @@ BENCHMARK_USE_SGD = {
|
||||
"speech_transformer",
|
||||
"squeezenet1_1",
|
||||
"stable_diffusion_text_encoder",
|
||||
"timm_efficientdet",
|
||||
"timm_nfnet",
|
||||
"timm_resnest",
|
||||
"timm_vision_transformer",
|
||||
"timm_vovnet",
|
||||
"vgg16",
|
||||
"hf_T5", # Fails dynamic https://github.com/pytorch/pytorch/issues/115968
|
||||
# HF
|
||||
"AlbertForMaskedLM",
|
||||
"BartForCausalLM",
|
||||
@ -216,8 +209,6 @@ CI_USE_SGD = {
|
||||
"detectron2_maskrcnn_r_101_fpn",
|
||||
"detectron2_maskrcnn_r_50_c4",
|
||||
"detectron2_maskrcnn_r_50_fpn",
|
||||
"hf_T5_base",
|
||||
"hf_clip",
|
||||
"llama_v2_7b_16h",
|
||||
"mobilenet_v2_quantized_qat",
|
||||
"phi_1_5 resnet50_quantized_qat",
|
||||
@ -2031,8 +2022,6 @@ class BenchmarkRunner:
|
||||
from diffusers.models.transformer_2d import Transformer2DModel
|
||||
from torchbenchmark.models.nanogpt.model import Block
|
||||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
|
||||
|
||||
from torch.distributed.fsdp.wrap import (
|
||||
ModuleWrapPolicy,
|
||||
@ -2042,10 +2031,6 @@ class BenchmarkRunner:
|
||||
# handcrafted wrap policy
|
||||
MODEL_FSDP_WRAP = {
|
||||
"stable_diffusion_unet": (Transformer2DModel,),
|
||||
"hf_T5": (T5Block,),
|
||||
"hf_T5_base": (T5Block,),
|
||||
"hf_T5_large": (T5Block,),
|
||||
"hf_Whisper": (WhisperEncoderLayer,),
|
||||
"llama_v2_7b_16h": (LlamaDecoderLayer,),
|
||||
"nanogpt": (Block,),
|
||||
}
|
||||
@ -3810,22 +3795,6 @@ def run(runner, args, original_dir=None):
|
||||
global synchronize
|
||||
synchronize = torch.cuda.synchronize if HAS_CUDA else torch.xpu.synchronize
|
||||
|
||||
if (
|
||||
args.devices == ["cuda"]
|
||||
and torch.cuda.get_device_properties(0).total_memory < 25 * 2**30
|
||||
):
|
||||
# OOM errors on an RTX 3090 with 24gb RAM
|
||||
runner.skip_models.update(
|
||||
{
|
||||
# torchbench
|
||||
"hf_Longformer",
|
||||
"timm_nfnet",
|
||||
"timm_efficientdet",
|
||||
}
|
||||
)
|
||||
if args.training:
|
||||
runner.skip_models.add("hf_T5")
|
||||
|
||||
if args.nnc:
|
||||
torch._C._jit_override_can_fuse_on_cpu(True)
|
||||
torch._C._jit_override_can_fuse_on_gpu(True)
|
||||
|
||||
@ -21,9 +21,6 @@ try:
|
||||
except ImportError:
|
||||
from torchbench import setup_torchbench_cwd
|
||||
|
||||
from transformers.models.bert.modeling_bert import BertLayer, BertLMPredictionHead
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
|
||||
|
||||
def setup(rank, world_size):
|
||||
os.environ["MASTER_ADDR"] = os.getenv("MASTER_ADDR", "localhost")
|
||||
@ -128,8 +125,6 @@ def fsdp_checkpointing_base(model, blocks):
|
||||
|
||||
MODEL_FSDP_WRAP = {
|
||||
"toy_model": (MyModule,),
|
||||
"hf_Bert": (BertLayer, BertLMPredictionHead),
|
||||
"hf_T5": (T5Block,),
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -158,7 +158,7 @@ if __name__ == "__main__":
|
||||
model_arg.add_argument(
|
||||
"--torchbench-model",
|
||||
"--torchbench_model",
|
||||
help="name of torchbench model, e.g. hf_Bert",
|
||||
help="name of torchbench model, e.g. BERT_pytorch",
|
||||
)
|
||||
model_arg.add_argument(
|
||||
"--toy-model", "--toy_model", action="store_true", help="use toy model instead"
|
||||
|
||||
@ -12,17 +12,6 @@ cuda,dlrm,1024,1.3421,3.2177,4.9493,1.0009
|
||||
cuda,drq,1,1.0820,3.8157,8.0732,0.9687
|
||||
cuda,fastNLP_Bert,6,1.4839,37.9050,32.7583,1.1563
|
||||
cuda,functorch_dp_cifar10,64,1.5014,6.9596,14.1516,0.4432
|
||||
cuda,hf_Albert,8,2.2452,30.6134,25.9036,1.3098
|
||||
cuda,hf_Bart,4,1.7012,34.3999,37.9975,1.0128
|
||||
cuda,hf_Bert,4,1.9003,23.3435,34.8196,1.0273
|
||||
cuda,hf_Bert_large,4,1.6346,52.8525,62.3112,1.0726
|
||||
cuda,hf_BigBird,2,1.9208,105.2672,101.4787,1.1415
|
||||
cuda,hf_DistilBert,8,1.3988,22.5793,20.2386,1.0232
|
||||
cuda,hf_GPT2,4,1.8075,27.5184,25.3428,1.1562
|
||||
cuda,hf_GPT2_large,4,1.7716,118.7404,68.1618,1.1725
|
||||
cuda,hf_Reformer,4,1.1744,70.4228,15.1152,0.9266
|
||||
cuda,hf_T5,8,1.8778,93.3134,37.0046,1.2279
|
||||
cuda,hf_T5_large,2,2.3623,101.5518,143.7982,1.1674
|
||||
cuda,lennard_jones,1000,1.0649,1.5233,4.1119,0.9998
|
||||
cuda,mnasnet1_0,32,1.1957,19.1993,27.2302,0.7758
|
||||
cuda,mobilenet_v2,96,1.4876,32.3311,27.4719,1.1729
|
||||
@ -42,14 +31,6 @@ cuda,shufflenet_v2_x1_0,128,1.3027,25.7017,27.9875,1.1015
|
||||
cuda,soft_actor_critic,256,0.9965,2.2580,4.6661,0.9995
|
||||
cuda,speech_transformer,32,1.8405,35.1645,33.3422,1.0888
|
||||
cuda,squeezenet1_1,32,1.4191,7.3454,9.4751,1.1148
|
||||
cuda,timm_efficientdet,1,1.6630,78.2697,150.9620,0.9904
|
||||
cuda,timm_efficientnet,32,1.2689,28.5348,66.3911,0.9428
|
||||
cuda,timm_nfnet,128,1.5319,79.5429,32.9961,1.1070
|
||||
cuda,timm_regnet,32,1.0564,56.9897,53.0027,0.9500
|
||||
cuda,timm_resnest,32,1.6485,14.3908,56.7240,0.9515
|
||||
cuda,timm_vision_transformer,8,1.6100,18.7736,36.9495,0.7301
|
||||
cuda,timm_vision_transformer_large,8,1.0842,170.9849,72.0604,0.9762
|
||||
cuda,timm_vovnet,32,1.0472,25.4676,24.8428,0.8843
|
||||
cuda,tts_angular,64,1.0366,6.9889,4.2683,0.9973
|
||||
cuda,vgg16,64,1.2560,52.7072,7.3733,0.9884
|
||||
cuda,yolov3,16,1.2600,54.2350,42.4711,1.0108
|
||||
|
||||
|
@ -1,29 +1,16 @@
|
||||
#name,backend,data_type,shape,wrapper,perf_speedup_target_c7i_metal_24xl
|
||||
#timm_vision_transformer,inductor,float32,static,default,1.039510755
|
||||
phlippe_densenet,inductor,float32,static,default,1.46474287
|
||||
basic_gnn_edgecnn,inductor,float32,dynamic,default,1.30092957
|
||||
llama_v2_7b_16h,inductor,float32,dynamic,default,1.23234331
|
||||
resnet50,inductor,float32,dynamic,default,1.67742767
|
||||
#timm_efficientnet,inductor,float32,static,cpp,
|
||||
mobilenet_v3_large,inductor,float32,static,cpp,2.63311706
|
||||
timm_resnest,inductor,float32,dynamic,cpp,1.7321529
|
||||
functorch_maml_omniglot,inductor,float32,dynamic,cpp,1.126799
|
||||
#hf_GPT2,inductor,float32,dynamic,cpp,
|
||||
yolov3,export-aot-inductor,float32,static,default,1.40687424
|
||||
mobilenet_v2,export-aot-inductor,float32,static,default,2.90375357
|
||||
resnext50_32x4d,export-aot-inductor,float32,dynamic,default,1.49299689
|
||||
hf_Albert,export-aot-inductor,float32,dynamic,default,1.261471
|
||||
resnext50_32x4d,inductor,amp,static,default,1.47023111
|
||||
vgg16,inductor,amp,static,default,1.2692454
|
||||
hf_Longformer,inductor,amp,dynamic,default,1.22015225
|
||||
hf_Bert_large,inductor,amp,dynamic,default,1.18572179
|
||||
llama,inductor,amp,static,default,1.33157028
|
||||
timm_regnet,inductor,amp,static,cpp,1.12734073
|
||||
mnasnet1_0,inductor,amp,static,cpp,2.1296814
|
||||
#hf_T5_generate,inductor,amp,dynamic,cpp,
|
||||
timm_vovnet,inductor,amp,dynamic,cpp,1.10851009
|
||||
#mobilenet_v2,inductor,amp,dynamic,cpp,2.27774577 # https://github.com/pytorch/pytorch/issues/131693
|
||||
hf_GPT2,export-aot-inductor,amp,static,default,1.4432794
|
||||
densenet121,export-aot-inductor,amp,static,default,1.25591385
|
||||
hf_DistilBert,export-aot-inductor,amp,dynamic,default,1.2926442
|
||||
hf_Bart,export-aot-inductor,amp,dynamic,default,1.19515416
|
||||
|
||||
|
@ -75,29 +75,7 @@ def setup_torchbench_cwd():
|
||||
return original_dir
|
||||
|
||||
|
||||
def process_hf_reformer_output(out):
|
||||
assert isinstance(out, list)
|
||||
# second output is unstable
|
||||
return [elem for i, elem in enumerate(out) if i != 1]
|
||||
|
||||
|
||||
def process_hf_whisper_output(out):
|
||||
out_ret = []
|
||||
for i, elem in enumerate(out):
|
||||
if i == 0:
|
||||
if elem is not None:
|
||||
assert isinstance(elem, dict)
|
||||
out_ret.append({k: v for k, v in elem.items() if k != "logits"})
|
||||
elif i != 1:
|
||||
out_ret.append(elem)
|
||||
|
||||
return out_ret
|
||||
|
||||
|
||||
process_train_model_output = {
|
||||
"hf_Reformer": process_hf_reformer_output,
|
||||
"hf_Whisper": process_hf_whisper_output,
|
||||
}
|
||||
process_train_model_output = {}
|
||||
|
||||
|
||||
class TorchBenchmarkRunner(BenchmarkRunner):
|
||||
@ -227,12 +205,10 @@ class TorchBenchmarkRunner(BenchmarkRunner):
|
||||
"drq",
|
||||
"hf_Reformer",
|
||||
"DALLE2_pytorch",
|
||||
"hf_BigBird",
|
||||
"detectron2_maskrcnn_r_50_fpn",
|
||||
"detectron2_maskrcnn_r_101_fpn",
|
||||
"vision_maskrcnn",
|
||||
"doctr_reco_predictor",
|
||||
"hf_T5_generate",
|
||||
}
|
||||
|
||||
def load_model(
|
||||
@ -395,8 +371,6 @@ class TorchBenchmarkRunner(BenchmarkRunner):
|
||||
and hasattr(model.config, "use_cache")
|
||||
):
|
||||
model.config.use_cache = False
|
||||
if model_name == "hf_T5_generate":
|
||||
model.model.config.use_cache = False
|
||||
|
||||
self.validate_model(model, example_inputs)
|
||||
return device, benchmark.name, model, example_inputs, batch_size
|
||||
|
||||
@ -5,8 +5,6 @@ batch_size:
|
||||
demucs: 4
|
||||
dlrm: 1024
|
||||
densenet121: 4
|
||||
hf_Reformer: 4
|
||||
hf_T5_base: 4
|
||||
timm_efficientdet: 1
|
||||
llama_v2_7b_16h: 1
|
||||
# reduced from 16 due to cudagraphs OOM in TorchInductor dashboard
|
||||
@ -30,7 +28,6 @@ tolerance:
|
||||
- alexnet
|
||||
- attention_is_all_you_need_pytorch
|
||||
- densenet121
|
||||
- hf_Albert
|
||||
- vgg16
|
||||
- mobilenet_v3_large
|
||||
- nvidia_deeprecommender
|
||||
@ -40,20 +37,16 @@ tolerance:
|
||||
- soft_actor_critic
|
||||
- tacotron2
|
||||
- yolov3
|
||||
- timm_efficientdet
|
||||
- timm_efficientnet
|
||||
- squeezenet1_1
|
||||
|
||||
higher_fp16:
|
||||
- doctr_reco_predictor
|
||||
- drq
|
||||
- hf_Whisper
|
||||
- phlippe_resnet
|
||||
|
||||
higher_bf16:
|
||||
- doctr_reco_predictor
|
||||
- drq
|
||||
- hf_Whisper
|
||||
|
||||
# These models need higher tolerance for xpu devices with bf16
|
||||
higher_bf16_xpu:
|
||||
@ -71,16 +64,9 @@ tolerance:
|
||||
|
||||
require_larger_multiplier_for_smaller_tensor:
|
||||
- yolov3
|
||||
- timm_efficientnet
|
||||
|
||||
# These benchmarks took >600s on an i9-11900K CPU
|
||||
very_slow: &VERY_SLOW_MODELS
|
||||
# 3339s
|
||||
- hf_BigBird
|
||||
# 3062s
|
||||
- hf_Longformer
|
||||
# 930s
|
||||
- hf_T5
|
||||
|
||||
|
||||
# These benchmarks took >60s on an i9-11900K CPU
|
||||
@ -92,18 +78,6 @@ slow:
|
||||
- demucs
|
||||
# 242s
|
||||
- fastNLP_Bert
|
||||
# 221s
|
||||
- hf_Albert
|
||||
# 400s
|
||||
- hf_Bart
|
||||
# 334s
|
||||
- hf_Bert
|
||||
# 187s
|
||||
- hf_DistilBert
|
||||
# 470s
|
||||
- hf_GPT2
|
||||
# 141s
|
||||
- hf_Reformer
|
||||
# 317s
|
||||
- speech_transformer
|
||||
# 99s
|
||||
@ -187,11 +161,36 @@ skip:
|
||||
- hf_clip
|
||||
# multi gpu not always available in benchmark runners
|
||||
- simple_gpt_tp_manual
|
||||
# skip hf and timm models in torchbench since
|
||||
# there are already separate benchmarks for them
|
||||
- hf_Albert
|
||||
- hf_Bart
|
||||
- hf_Bert
|
||||
- hf_BigBird
|
||||
- hf_DistilBert
|
||||
- hf_GPT2
|
||||
- hf_Longformer
|
||||
- hf_Reformer
|
||||
- hf_T5
|
||||
- timm_efficientdet
|
||||
- timm_efficientnet
|
||||
- timm_nfnet
|
||||
- timm_regnet
|
||||
- timm_resnest
|
||||
- timm_vision_transformer
|
||||
- timm_vovnet
|
||||
- hf_Bert_large
|
||||
- hf_GPT2_large
|
||||
- hf_Roberta_base
|
||||
- hf_T5_base
|
||||
- hf_T5_generate
|
||||
- hf_T5_large
|
||||
- hf_Whisper
|
||||
- hf_distil_whisper
|
||||
- timm_vision_transformer_large
|
||||
|
||||
device:
|
||||
cpu:
|
||||
# OOMs
|
||||
- hf_T5_generate
|
||||
# model is CUDA only
|
||||
- cm3leon_generate
|
||||
# timeout
|
||||
@ -208,16 +207,12 @@ skip:
|
||||
- torchrec_dlrm
|
||||
- simple_gpt
|
||||
# works on cuda, accuracy failure on cpu
|
||||
- hf_Whisper
|
||||
- stable_diffusion_text_encoder
|
||||
- llava
|
||||
- moco
|
||||
|
||||
# Skip these additional models when running on aarch64
|
||||
cpu_aarch64:
|
||||
# timeout on aarch64
|
||||
- timm_regnet
|
||||
- timm_nfnet
|
||||
cpu_aarch64: []
|
||||
|
||||
cuda: []
|
||||
|
||||
@ -235,7 +230,6 @@ skip:
|
||||
- sam_fast
|
||||
# Model's DEFAULT_TRAIN_BSIZE is not implemented
|
||||
- cm3leon_generate
|
||||
- hf_T5_generate
|
||||
- doctr_det_predictor
|
||||
- doctr_reco_predictor
|
||||
- moondream
|
||||
@ -247,9 +241,6 @@ skip:
|
||||
- cm3leon_generate
|
||||
- detectron2_fcos_r_50_fpn
|
||||
- fastNLP_Bert
|
||||
- hf_Longformer
|
||||
- hf_Reformer
|
||||
- hf_T5_generate
|
||||
- opacus_cifar10
|
||||
- speech_transformer
|
||||
|
||||
@ -286,9 +277,6 @@ accuracy:
|
||||
# Models too large to have eager, dynamo and fp64_numbers simultaneosuly
|
||||
# even for 40 GB machine. We have tested accuracy for smaller version of
|
||||
# these models
|
||||
- hf_GPT2_large
|
||||
- hf_T5_large
|
||||
- timm_vision_transformer_large
|
||||
# accuracy https://github.com/pytorch/pytorch/issues/93847
|
||||
- maml
|
||||
- llama_v2_7b_16h
|
||||
@ -300,5 +288,4 @@ accuracy:
|
||||
- pytorch_unet
|
||||
|
||||
max_batch_size:
|
||||
hf_GPT2: 2
|
||||
pytorch_unet: 2
|
||||
|
||||
@ -4,11 +4,6 @@ LearningToPaint,1024
|
||||
alexnet,1024
|
||||
dcgan,1024
|
||||
densenet121,64
|
||||
hf_Albert,32
|
||||
hf_Bart,16
|
||||
hf_Bert,16
|
||||
hf_GPT2,16
|
||||
hf_T5,4
|
||||
mnasnet1_0,256
|
||||
mobilenet_v2,128
|
||||
mobilenet_v3_large,256
|
||||
@ -19,10 +14,4 @@ resnet50,128
|
||||
resnext50_32x4d,128
|
||||
shufflenet_v2_x1_0,512
|
||||
squeezenet1_1,512
|
||||
timm_nfnet,256
|
||||
timm_efficientnet,128
|
||||
timm_regnet,128
|
||||
timm_resnest,256
|
||||
timm_vision_transformer,256
|
||||
timm_vovnet,128
|
||||
vgg16,128
|
||||
|
||||
@ -6,18 +6,6 @@ densenet121,512
|
||||
dlrm,2048
|
||||
fastNLP_Bert,8
|
||||
functorch_dp_cifar10,1024
|
||||
hf_Albert,8
|
||||
hf_Bart,8
|
||||
hf_Bert,8
|
||||
hf_Bert_large,8
|
||||
hf_DistilBert,8
|
||||
hf_GPT2,8
|
||||
hf_GPT2_large,1
|
||||
hf_Longformer,4
|
||||
hf_Reformer,8
|
||||
hf_T5,4
|
||||
hf_T5_base,1
|
||||
hf_T5_large,1
|
||||
LearningToPaint,96
|
||||
lennard_jones,1024
|
||||
mnasnet1_0,32
|
||||
@ -35,13 +23,6 @@ shufflenet_v2_x1_0,64
|
||||
speech_transformer,1024
|
||||
squeezenet1_1,16
|
||||
Super_SloMo,1024
|
||||
timm_efficientnet,64
|
||||
timm_nfnet,128
|
||||
timm_regnet,32
|
||||
timm_resnest,32
|
||||
timm_vision_transformer,16
|
||||
timm_vision_transformer_large,8
|
||||
timm_vovnet,32
|
||||
tts_angular,1024
|
||||
vgg16,64
|
||||
vision_maskrcnn,1
|
||||
|
||||
@ -14,7 +14,7 @@ import torch._dynamo.config
|
||||
import torch._dynamo.test_case
|
||||
import torch.utils._pytree as python_pytree
|
||||
from torch._dynamo.exc import ResumePrologueTracingError, Unsupported
|
||||
from torch._dynamo.testing import skipIfNotPy312
|
||||
from torch._dynamo.testing import skipIfNotPy312, skipIfOnlyNotPy312
|
||||
from torch._dynamo.utils import counters
|
||||
from torch.testing._internal.common_utils import (
|
||||
IS_FBCODE,
|
||||
@ -1015,6 +1015,7 @@ Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especiall
|
||||
"<Internal traceback>\n",
|
||||
msg,
|
||||
)
|
||||
|
||||
self.assertExpectedInline(
|
||||
msg,
|
||||
"""\
|
||||
@ -1051,7 +1052,6 @@ from user code:
|
||||
|
||||
torch.compile(fn, backend="eager")(torch.randn(3))
|
||||
|
||||
# check the log for the 2nd torch._dynamo.graph_break()
|
||||
self.assertExpectedInline(
|
||||
munge_exc(records[-1].getMessage(), skip=0),
|
||||
"""\
|
||||
@ -1075,6 +1075,104 @@ User code traceback:
|
||||
""",
|
||||
)
|
||||
|
||||
@torch._dynamo.config.patch(verbose=True)
|
||||
@make_logging_test(graph_breaks=True)
|
||||
def test_latest_bytecode_to_graph_break_fullgraph(self, records):
|
||||
def fn(x):
|
||||
y = x + 1
|
||||
z = x + y
|
||||
torch._dynamo.graph_break()
|
||||
return z
|
||||
|
||||
self.assertExpectedInlineMunged(
|
||||
Unsupported,
|
||||
lambda: torch.compile(fn, backend="eager", fullgraph=True)(torch.randn(3)),
|
||||
"""\
|
||||
Call to `torch._dynamo.graph_break()`
|
||||
Explanation: User-inserted graph break. Message: None
|
||||
Hint: Remove the `torch._dynamo.graph_break()` call.
|
||||
|
||||
Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`
|
||||
|
||||
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html
|
||||
|
||||
from user code:
|
||||
File "test_error_messages.py", line N, in fn
|
||||
torch._dynamo.graph_break()
|
||||
""",
|
||||
)
|
||||
|
||||
@skipIfOnlyNotPy312
|
||||
@torch._dynamo.config.patch(verbose=True)
|
||||
@make_logging_test(graph_breaks=True)
|
||||
def test_latest_bytecode_to_graph_break_python_versioning(self, records):
|
||||
@torch.compile(backend="eager")
|
||||
def fn(x):
|
||||
y = x + 1
|
||||
z = x + y
|
||||
torch._dynamo.graph_break()
|
||||
return z
|
||||
|
||||
fn(torch.ones(3))
|
||||
|
||||
s = munge_exc(records[0].getMessage(), skip=0)
|
||||
|
||||
self.assertExpectedInline(
|
||||
s,
|
||||
"""\
|
||||
Graph break in user code at test_error_messages.py:N
|
||||
Graph Break Reason: Call to `torch._dynamo.graph_break()`
|
||||
Explanation: User-inserted graph break. Message: None
|
||||
Hint: Remove the `torch._dynamo.graph_break()` call.
|
||||
|
||||
Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`
|
||||
|
||||
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0025.html
|
||||
User code traceback:
|
||||
File "test_error_messages.py", line N, in test_latest_bytecode_to_graph_break_python_versioning
|
||||
fn(torch.ones(3))
|
||||
|
||||
========== most recent `torch.compile` tracing attempt started here ==========
|
||||
|
||||
File "test_error_messages.py", line N, in fn
|
||||
torch._dynamo.graph_break()
|
||||
|
||||
NOTE: the most recent `torch.compile` tracing attempt might not be where you applied `torch.compile`! This is due to how graph breaks are implemented - the optimized code object returned by Dynamo will call another Dynamo-generated resume function and tracing is re-enabled by calling the resume function as a normal Python function, which Dynamo intercepts as a top-level frame.
|
||||
Most recent bytecode instructions traced (max 20):
|
||||
TRACE RESUME 0 []
|
||||
TRACE LOAD_FAST 'x' []
|
||||
TRACE LOAD_CONST 1 [LazyVariableTracker()]
|
||||
TRACE BINARY_OP 0 [LazyVariableTracker(), ConstantVariable(int: 1)]
|
||||
TRACE STORE_FAST 'y' [TensorVariable()]
|
||||
TRACE LOAD_FAST 'x' []
|
||||
TRACE LOAD_FAST 'y' [TensorVariable()]
|
||||
TRACE BINARY_OP 0 [TensorVariable(), TensorVariable()]
|
||||
TRACE STORE_FAST 'z' [TensorVariable()]
|
||||
TRACE LOAD_GLOBAL 'torch' []
|
||||
TRACE LOAD_ATTR '_dynamo' [LazyVariableTracker()]
|
||||
TRACE LOAD_ATTR 'graph_break' [LazyVariableTracker()]
|
||||
TRACE CALL 0 [NullVariable, LazyVariableTracker()]""",
|
||||
)
|
||||
|
||||
@torch._dynamo.config.patch(verbose=True)
|
||||
@make_logging_test(graph_breaks=True)
|
||||
def test_latest_bytecode_to_graph_break(self, records):
|
||||
@torch.compile(backend="eager")
|
||||
def fn(x):
|
||||
y = x + 1
|
||||
z = x + y
|
||||
torch._dynamo.graph_break()
|
||||
return z
|
||||
|
||||
fn(torch.ones(3))
|
||||
|
||||
pattern = r"TRACE.*"
|
||||
s = munge_exc(records[0].getMessage(), skip=0)
|
||||
matches = re.findall(pattern, s)
|
||||
self.assertEqual((len(matches) > 10), True)
|
||||
self.assertEqual((len(matches) <= 20), True)
|
||||
self.assertIn("Most recent bytecode instructions traced (max 20):", s)
|
||||
|
||||
@torch._dynamo.config.patch(verbose=True)
|
||||
@make_logging_test(graph_breaks=True)
|
||||
def test_graph_break_traceback_above_dynamo_shows_user_code(self, records):
|
||||
|
||||
@ -43,6 +43,7 @@ import threading
|
||||
import traceback
|
||||
import types
|
||||
import weakref
|
||||
from collections import deque
|
||||
from traceback import StackSummary
|
||||
from typing import Any, Callable, cast, NoReturn, Optional, TYPE_CHECKING, Union
|
||||
from typing_extensions import TypeAlias, TypeIs
|
||||
@ -544,6 +545,7 @@ def log_graph_break(
|
||||
reason: str = "",
|
||||
exc_info: bool = False,
|
||||
user_stack: Optional[StackSummary] = None,
|
||||
latest_bytecode_log: Optional[str] = None,
|
||||
) -> None:
|
||||
if user_stack is None:
|
||||
user_stack = torch._guards.TracingContext.extract_stack()
|
||||
@ -606,6 +608,10 @@ def log_graph_break(
|
||||
# This log line MUST contain the string "Graph break in user code",
|
||||
# This log line is exercised from
|
||||
# python test/dynamo/test_exc.py -k test_graph_break_log
|
||||
if latest_bytecode_log and config.verbose:
|
||||
user_stack_trace += "Most recent bytecode instructions traced (max 20):\n"
|
||||
user_stack_trace += latest_bytecode_log
|
||||
|
||||
graph_break_log.debug(
|
||||
user_stack_trace,
|
||||
)
|
||||
@ -933,6 +939,7 @@ def break_graph_if_unsupported(
|
||||
exc_info=True,
|
||||
reason=str(excp),
|
||||
user_stack=excp.real_stack,
|
||||
latest_bytecode_log="\n".join(self.latest_bytecode_queue),
|
||||
)
|
||||
|
||||
if self.maybe_has_backedge():
|
||||
@ -1184,6 +1191,8 @@ class InstructionTranslatorBase(
|
||||
parent: Optional[InstructionTranslatorBase]
|
||||
debug_locals: list[tuple[VariableTracker, list[VariableTracker]]]
|
||||
package: Optional[CompilePackage]
|
||||
latest_bytecode_queue: deque[str]
|
||||
# Store the latest bytecode before graph_break() call by user
|
||||
|
||||
def mark_inconsistent_side_effects(self) -> None:
|
||||
"""
|
||||
@ -1351,6 +1360,17 @@ class InstructionTranslatorBase(
|
||||
"TRACE %s %s %s", inst.opname, inst.argval, self.stack
|
||||
)
|
||||
|
||||
# Store the latest 20 bytecode execution for the process,
|
||||
# Used repr for byte processing and limiting the length to 2048
|
||||
try:
|
||||
stack_repr = repr(self.stack)
|
||||
except ValueError:
|
||||
# Handle large integers that exceed sys.int_info.str_digits_check_threshold
|
||||
stack_repr = "<self.stack repr truncated due to large integer>"
|
||||
self.latest_bytecode_queue.append(
|
||||
f"TRACE {inst.opname} {repr(inst.argval)} {stack_repr}"
|
||||
)
|
||||
|
||||
self.update_block_stack(inst)
|
||||
|
||||
try:
|
||||
@ -4083,6 +4103,7 @@ class InstructionTranslatorBase(
|
||||
self.accept_prefix_inst = True
|
||||
self.prefix_insts = []
|
||||
self.exn_vt_stack = exn_vt_stack
|
||||
self.latest_bytecode_queue = deque(maxlen=20)
|
||||
|
||||
# Properties of the input/output code
|
||||
self.instructions: list[Instruction] = instructions
|
||||
|
||||
@ -506,6 +506,12 @@ def skipIfNotPy312(fn: Callable[_P, _T]) -> Callable[_P, _T]:
|
||||
return unittest.skip("Requires Python 3.12+")(fn)
|
||||
|
||||
|
||||
def skipIfOnlyNotPy312(fn: Callable[_P, _T]) -> Callable[_P, _T]:
|
||||
if sys.version_info >= (3, 13) or sys.version_info < (3, 12):
|
||||
return unittest.skip("Requires Python 3.12")(fn)
|
||||
return fn
|
||||
|
||||
|
||||
def xfailIfPy312(fn: Callable[_P, _T]) -> Callable[_P, _T]:
|
||||
if sys.version_info >= (3, 12):
|
||||
return unittest.expectedFailure(fn)
|
||||
|
||||
@ -239,7 +239,9 @@ else:
|
||||
)
|
||||
return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name))
|
||||
|
||||
def _get_slice_mesh_layout(self, device_mesh, mesh_dim_names) -> _MeshLayout:
|
||||
def _get_slice_mesh_layout(
|
||||
self, device_mesh: "DeviceMesh", mesh_dim_names: tuple[str, ...]
|
||||
) -> _MeshLayout:
|
||||
"""
|
||||
Validate whether the mesh_dim_names is valid for slicing the given device_mesh.
|
||||
If valid, return dim indexes of the slice mesh in the device mesh.
|
||||
@ -266,7 +268,7 @@ else:
|
||||
else {}
|
||||
)
|
||||
valid_mesh_dim_names = [
|
||||
*device_mesh.mesh_dim_names,
|
||||
*not_none(device_mesh.mesh_dim_names),
|
||||
*flatten_name_to_root_layout,
|
||||
]
|
||||
|
||||
@ -281,11 +283,17 @@ else:
|
||||
|
||||
layout_sliced = []
|
||||
for name in mesh_dim_names:
|
||||
if name in device_mesh.mesh_dim_names:
|
||||
if name in not_none(device_mesh.mesh_dim_names):
|
||||
layout_sliced.append(
|
||||
device_mesh._layout[device_mesh.mesh_dim_names.index(name)]
|
||||
device_mesh._layout[
|
||||
not_none(device_mesh.mesh_dim_names).index(name)
|
||||
]
|
||||
)
|
||||
elif name in flatten_name_to_root_layout:
|
||||
warnings.warn(
|
||||
"Slicing a flattened dim from root mesh will be deprecated in PT 2.11. "
|
||||
"Users need to bookkeep the flattened mesh directly. "
|
||||
)
|
||||
layout_sliced.append(flatten_name_to_root_layout[name])
|
||||
|
||||
sliced_sizes = tuple(l.sizes for l in layout_sliced)
|
||||
|
||||
Reference in New Issue
Block a user