mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-31 20:34:54 +08:00 
			
		
		
		
	Compare commits
	
		
			1 Commits
		
	
	
		
			cpp-docs-d
			...
			gh/dzmitry
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 23c8f19ef9 | 
| @ -113,7 +113,6 @@ case "$tag" in | ||||
|     UCX_COMMIT=${_UCX_COMMIT} | ||||
|     UCC_COMMIT=${_UCC_COMMIT} | ||||
|     TRITON=yes | ||||
|     INSTALL_MINGW=yes | ||||
|     ;; | ||||
|   pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11) | ||||
|     CUDA_VERSION=13.0.0 | ||||
| @ -362,7 +361,6 @@ docker build \ | ||||
|        --build-arg "OPENBLAS=${OPENBLAS:-}" \ | ||||
|        --build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \ | ||||
|        --build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \ | ||||
|        --build-arg "INSTALL_MINGW=${INSTALL_MINGW:-}" \ | ||||
|        -f $(dirname ${DOCKERFILE})/Dockerfile \ | ||||
|        -t "$tmp_tag" \ | ||||
|        "$@" \ | ||||
|  | ||||
| @ -83,6 +83,10 @@ function build_cpython { | ||||
|         py_suffix=${py_ver::-1} | ||||
|         py_folder=$py_suffix | ||||
|     fi | ||||
|     # Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4 | ||||
|     if [ "$py_suffix" == "3.14.0" ]; then | ||||
|         py_suffix="3.14.0rc2" | ||||
|     fi | ||||
|     wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz | ||||
|     do_cpython_build $py_ver Python-$py_suffix | ||||
|  | ||||
|  | ||||
| @ -1,10 +0,0 @@ | ||||
| #!/bin/bash | ||||
|  | ||||
| set -ex | ||||
|  | ||||
| # Install MinGW-w64 for Windows cross-compilation | ||||
| apt-get update | ||||
| apt-get install -y g++-mingw-w64-x86-64-posix | ||||
|  | ||||
| echo "MinGW-w64 installed successfully" | ||||
| x86_64-w64-mingw32-g++ --version | ||||
| @ -20,7 +20,7 @@ pip_install \ | ||||
|  | ||||
| pip_install coloredlogs packaging | ||||
| pip_install onnxruntime==1.23.0 | ||||
| pip_install onnxscript==0.5.4 | ||||
| pip_install onnxscript==0.5.3 | ||||
|  | ||||
| # Cache the transformers model to be used later by ONNX tests. We need to run the transformers | ||||
| # package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/ | ||||
|  | ||||
| @ -39,13 +39,9 @@ case ${DOCKER_TAG_PREFIX} in | ||||
|         DOCKER_GPU_BUILD_ARG="" | ||||
|         ;; | ||||
|     rocm*) | ||||
|         # we want the patch version of 7.0 instead | ||||
|         if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then | ||||
|             GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2" | ||||
|         fi | ||||
|         # we want the patch version of 6.4 instead | ||||
|         if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then | ||||
|             GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4" | ||||
|             GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2" | ||||
|         fi | ||||
|         BASE_TARGET=rocm | ||||
|         GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete | ||||
|  | ||||
| @ -75,13 +75,9 @@ case ${image} in | ||||
|         DOCKERFILE_SUFFIX="_cuda_aarch64" | ||||
|         ;; | ||||
|     manylinux2_28-builder:rocm*) | ||||
|         # we want the patch version of 7.0 instead | ||||
|         if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then | ||||
|             GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2" | ||||
|         fi | ||||
|         # we want the patch version of 6.4 instead | ||||
|         if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then | ||||
|             GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4" | ||||
|             GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2" | ||||
|         fi | ||||
|         TARGET=rocm_final | ||||
|         MANY_LINUX_VERSION="2_28" | ||||
|  | ||||
| @ -1,11 +1,15 @@ | ||||
| sphinx==7.2.6 | ||||
| sphinx==5.3.0 | ||||
| #Description: This is used to generate PyTorch docs | ||||
| #Pinned versions: 7.2.6 | ||||
| #Pinned versions: 5.3.0 | ||||
|  | ||||
| pytorch_sphinx_theme2==0.1.0 | ||||
| #Description: This is needed to generate PyTorch docs | ||||
| #Pinned versions: 0.1.0 | ||||
| standard-imghdr==3.13.0; python_version >= "3.13" | ||||
| #Description: This is needed by Sphinx, so it needs to be added here. | ||||
| # The reasons are as follows: | ||||
| # 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr); | ||||
| # 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13. | ||||
| # Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency. | ||||
|  | ||||
| -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2 | ||||
| # TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering | ||||
| # but it doesn't seem to work and hangs around idly. The initial thought that it is probably | ||||
| # something related to Docker setup. We can investigate this later. | ||||
| @ -32,17 +36,17 @@ tensorboard==2.18.0 ; python_version >= "3.13" | ||||
| #Description: This is used to generate PyTorch docs | ||||
| #Pinned versions: 2.13.0 | ||||
|  | ||||
| breathe==4.36.0 | ||||
| breathe==4.34.0 | ||||
| #Description: This is used to generate PyTorch C++ docs | ||||
| #Pinned versions: 4.36.0 | ||||
| #Pinned versions: 4.34.0 | ||||
|  | ||||
| exhale==0.3.7 | ||||
| exhale==0.2.3 | ||||
| #Description: This is used to generate PyTorch C++ docs | ||||
| #Pinned versions: 0.3.7 | ||||
| #Pinned versions: 0.2.3 | ||||
|  | ||||
| docutils==0.20 | ||||
| docutils==0.16 | ||||
| #Description: This is used to generate PyTorch C++ docs | ||||
| #Pinned versions: 0.20 | ||||
| #Pinned versions: 0.16 | ||||
|  | ||||
| bs4==0.0.1 | ||||
| #Description: This is used to generate PyTorch C++ docs | ||||
| @ -52,13 +56,13 @@ IPython==8.12.0 | ||||
| #Description: This is used to generate PyTorch functorch docs | ||||
| #Pinned versions: 8.12.0 | ||||
|  | ||||
| myst-nb==1.3.0 | ||||
| myst-nb==0.17.2 | ||||
| #Description: This is used to generate PyTorch functorch and torch.compile docs. | ||||
| #Pinned versions: 1.3.0 | ||||
| #Pinned versions: 0.17.2 | ||||
|  | ||||
| # The following are required to build torch.distributed.elastic.rendezvous.etcd* docs | ||||
| python-etcd==0.4.5 | ||||
| sphinx-copybutton==0.5.0 | ||||
| sphinx-design==0.6.1 | ||||
| sphinx-design==0.4.0 | ||||
| sphinxcontrib-mermaid==1.0.0 | ||||
| myst-parser==4.0.1 | ||||
| myst-parser==0.18.1 | ||||
|  | ||||
| @ -103,11 +103,6 @@ COPY ci_commit_pins/torchbench.txt torchbench.txt | ||||
| RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi | ||||
| RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt | ||||
|  | ||||
| ARG INSTALL_MINGW | ||||
| COPY ./common/install_mingw.sh install_mingw.sh | ||||
| RUN if [ -n "${INSTALL_MINGW}" ]; then bash ./install_mingw.sh; fi | ||||
| RUN rm install_mingw.sh | ||||
|  | ||||
| ARG TRITON | ||||
| ARG TRITON_CPU | ||||
|  | ||||
|  | ||||
| @ -57,8 +57,8 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules | ||||
|         logger.info("Successfully cloned %s", target) | ||||
|         return r, commit | ||||
|  | ||||
|     except GitCommandError: | ||||
|         logger.exception("Git operation failed") | ||||
|     except GitCommandError as e: | ||||
|         logger.error("Git operation failed: %s", e) | ||||
|         raise | ||||
|  | ||||
|  | ||||
|  | ||||
| @ -187,22 +187,19 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then | ||||
|             export USE_CUFILE=0 | ||||
|         else | ||||
|             DEPS_LIST+=( | ||||
|                 "/usr/local/cuda/lib64/libnvToolsExt.so.1" | ||||
|                 "/usr/local/cuda/lib64/libcublas.so.12" | ||||
|                 "/usr/local/cuda/lib64/libcublasLt.so.12" | ||||
|                 "/usr/local/cuda/lib64/libcudart.so.12" | ||||
|                 "/usr/local/cuda/lib64/libnvrtc.so.12" | ||||
|                 "/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12") | ||||
|             DEPS_SONAME+=( | ||||
|                 "libnvToolsExt.so.1" | ||||
|                 "libcublas.so.12" | ||||
|                 "libcublasLt.so.12" | ||||
|                 "libcudart.so.12" | ||||
|                 "libnvrtc.so.12" | ||||
|                 "libcupti.so.12") | ||||
|  | ||||
|             if [[ $CUDA_VERSION != 12.9* ]]; then | ||||
|                 DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1") | ||||
|                 DEPS_SONAME+=("libnvToolsExt.so.1") | ||||
|             fi | ||||
|         fi | ||||
|     else | ||||
|         echo "Using nvidia libs from pypi." | ||||
|  | ||||
| @ -102,18 +102,8 @@ if [ "$is_main_doc" = true ]; then | ||||
|     echo coverage output not found | ||||
|     exit 1 | ||||
|   elif [ $undocumented -gt 0 ]; then | ||||
|     echo "======================================" | ||||
|     echo "ERROR: $undocumented undocumented objects found!" | ||||
|     echo "======================================" | ||||
|     echo "" | ||||
|     echo "Full coverage report:" | ||||
|     echo undocumented objects found: | ||||
|     cat build/coverage/python.txt | ||||
|     echo "" | ||||
|     echo "======================================" | ||||
|     echo "Undocumented modules/objects (lines after TOTAL):" | ||||
|     tail -n +$((lines - undocumented + 1)) build/coverage/python.txt | ||||
|     echo "======================================" | ||||
|     echo "" | ||||
|     echo "Make sure you've updated relevant .rsts in docs/source!" | ||||
|     echo "You can reproduce locally by running 'cd docs && make coverage && cat build/coverage/python.txt'" | ||||
|     exit 1 | ||||
|  | ||||
| @ -485,22 +485,6 @@ test_inductor_aoti() { | ||||
|   /usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile | ||||
| } | ||||
|  | ||||
| test_inductor_aoti_cross_compile_for_windows() { | ||||
|  | ||||
|   TEST_REPORTS_DIR=$(pwd)/test/test-reports | ||||
|   mkdir -p "$TEST_REPORTS_DIR" | ||||
|  | ||||
|   # Set WINDOWS_CUDA_HOME environment variable | ||||
|   WINDOWS_CUDA_HOME="$(pwd)/win-torch-wheel-extracted" | ||||
|   export WINDOWS_CUDA_HOME | ||||
|  | ||||
|   echo "WINDOWS_CUDA_HOME is set to: $WINDOWS_CUDA_HOME" | ||||
|   echo "Contents:" | ||||
|   ls -lah "$(pwd)/win-torch-wheel-extracted/lib/x64/" || true | ||||
|  | ||||
|   python test/inductor/test_aoti_cross_compile_windows.py -k compile --package-dir "$TEST_REPORTS_DIR" --win-torch-lib-dir "$(pwd)/win-torch-wheel-extracted/torch/lib" | ||||
| } | ||||
|  | ||||
| test_inductor_cpp_wrapper_shard() { | ||||
|   if [[ -z "$NUM_TEST_SHARDS" ]]; then | ||||
|     echo "NUM_TEST_SHARDS must be defined to run a Python test shard" | ||||
| @ -916,7 +900,7 @@ test_inductor_set_cpu_affinity(){ | ||||
|   export LD_PRELOAD="$JEMALLOC_LIB":"$LD_PRELOAD" | ||||
|   export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1" | ||||
|  | ||||
|   if [[ "$(uname -m)" != "aarch64" ]]; then | ||||
|   if [[ "${TEST_CONFIG}" != *aarch64* ]]; then | ||||
|     # Use Intel OpenMP for x86 | ||||
|     IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so" | ||||
|     export LD_PRELOAD="$IOMP_LIB":"$LD_PRELOAD" | ||||
| @ -930,7 +914,7 @@ test_inductor_set_cpu_affinity(){ | ||||
|   cores=$((cpus / thread_per_core)) | ||||
|  | ||||
|   # Set number of cores to 16 on aarch64 for performance runs | ||||
|   if [[ "$(uname -m)" == "aarch64" && $cores -gt 16 ]]; then | ||||
|   if [[ "${TEST_CONFIG}" == *aarch64* && $cores -gt 16 ]]; then | ||||
|     cores=16 | ||||
|   fi | ||||
|   export OMP_NUM_THREADS=$cores | ||||
| @ -1631,7 +1615,6 @@ test_operator_benchmark() { | ||||
|   TEST_REPORTS_DIR=$(pwd)/test/test-reports | ||||
|   mkdir -p "$TEST_REPORTS_DIR" | ||||
|   TEST_DIR=$(pwd) | ||||
|   ARCH=$(uname -m) | ||||
|  | ||||
|   test_inductor_set_cpu_affinity | ||||
|  | ||||
| @ -1646,7 +1629,7 @@ test_operator_benchmark() { | ||||
|   pip_install pandas | ||||
|   python check_perf_csv.py \ | ||||
|       --actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \ | ||||
|       --expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv" | ||||
|       --expected "expected_ci_operator_benchmark_eager_float32_cpu.csv" | ||||
| } | ||||
|  | ||||
| test_operator_microbenchmark() { | ||||
| @ -1683,7 +1666,7 @@ if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then | ||||
|     python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0 | ||||
|   fi | ||||
|   python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py | ||||
| elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" == 'default' ]]; then | ||||
| elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then | ||||
|   test_linux_aarch64 | ||||
| elif [[ "${TEST_CONFIG}" == *backward* ]]; then | ||||
|   test_forward_backward_compatibility | ||||
| @ -1734,8 +1717,6 @@ elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then | ||||
|   test_inductor_triton_cpu | ||||
| elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then | ||||
|   test_inductor_micro_benchmark | ||||
| elif [[ "${TEST_CONFIG}" == *aoti_cross_compile_for_windows* ]]; then | ||||
|   test_inductor_aoti_cross_compile_for_windows | ||||
| elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then | ||||
|   install_torchvision | ||||
|   id=$((SHARD_NUMBER-1)) | ||||
|  | ||||
| @ -163,13 +163,8 @@ if [[ "$(uname)" != Darwin ]]; then | ||||
|   MEMORY_LIMIT_MAX_JOBS=12 | ||||
|   NUM_CPUS=$(( $(nproc) - 2 )) | ||||
|  | ||||
|   if [[ "$(uname)" == Linux ]]; then | ||||
|   # Defaults here for **binary** linux builds so they can be changed in one place | ||||
|   export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))} | ||||
|   else | ||||
|     # For other builds | ||||
|     export MAX_JOBS=${NUM_CPUS} | ||||
|   fi | ||||
|  | ||||
|   cat >>"$envfile" <<EOL | ||||
|   export MAX_JOBS="${MAX_JOBS}" | ||||
|  | ||||
							
								
								
									
										6
									
								
								.flake8
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								.flake8
									
									
									
									
									
								
							| @ -7,12 +7,16 @@ max-line-length = 120 | ||||
| # C408 ignored because we like the dict keyword argument syntax | ||||
| # E501 is not flexible enough, we're using B950 instead | ||||
| ignore = | ||||
|     E203,E305,E402,E501,E704,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824, | ||||
|     E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824, | ||||
|     # shebang has extra meaning in fbcode lints, so I think it's not worth trying | ||||
|     # to line this up with executable bit | ||||
|     EXE001, | ||||
|     # these ignores are from flake8-bugbear; please fix! | ||||
|     B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910 | ||||
|     # these ignores are from flake8-comprehensions; please fix! | ||||
|     C407, | ||||
|     # these ignores are from flake8-logging-format; please fix! | ||||
|     G100,G101,G200 | ||||
|     # these ignores are from flake8-simplify. please fix or ignore with commented reason | ||||
|     SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12, | ||||
|     # SIM104 is already covered by pyupgrade ruff | ||||
|  | ||||
							
								
								
									
										1
									
								
								.github/ISSUE_TEMPLATE/ci-sev.md
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/ISSUE_TEMPLATE/ci-sev.md
									
									
									
									
										vendored
									
									
								
							| @ -8,7 +8,6 @@ assignees: '' | ||||
| --- | ||||
|  | ||||
| > NOTE: Remember to label this issue with "`ci: sev`" | ||||
| >       If you want autorevert to be disabled, keep the ci: disable-autorevert label | ||||
|  | ||||
|  <!-- Add the `merge blocking` label to this PR to prevent PRs from being merged while this issue is open --> | ||||
|  | ||||
|  | ||||
							
								
								
									
										4
									
								
								.github/ISSUE_TEMPLATE/disable-autorevert.md
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.github/ISSUE_TEMPLATE/disable-autorevert.md
									
									
									
									
										vendored
									
									
								
							| @ -1,7 +1,7 @@ | ||||
| --- | ||||
| name: "D❌\U0001F519 ISABLE AUTOREVERT" | ||||
| name: DISABLE AUTOREVERT | ||||
| about: Disables autorevert when open | ||||
| title: "[DISABLE AUTOREVERT]" | ||||
| title: "❌\U0001F519 [DISABLE AUTOREVERT]" | ||||
| labels: 'ci: disable-autorevert' | ||||
| assignees: '' | ||||
|  | ||||
|  | ||||
| @ -65,7 +65,7 @@ runs: | ||||
|           cd .ci/lumen_cli | ||||
|           python3 -m pip install -e . | ||||
|         ) | ||||
|         MAX_JOBS="$(nproc --ignore=10)" | ||||
|         MAX_JOBS="$(nproc --ignore=6)" | ||||
|         export MAX_JOBS | ||||
|  | ||||
|         # Split the comma-separated list and build each target | ||||
|  | ||||
							
								
								
									
										2
									
								
								.github/ci_commit_pins/audio.txt
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/ci_commit_pins/audio.txt
									
									
									
									
										vendored
									
									
								
							| @ -1 +1 @@ | ||||
| 69bbe7363897764f9e758d851cd0340147d27f94 | ||||
| 8ad2aa5d354d1bf432339113860185d5a5d1abbd | ||||
|  | ||||
							
								
								
									
										2
									
								
								.github/ci_commit_pins/vision.txt
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/ci_commit_pins/vision.txt
									
									
									
									
										vendored
									
									
								
							| @ -1 +1 @@ | ||||
| faffd5cf673615583da6517275e361cb3dbc77e6 | ||||
| f5c6c2ec6490455e86f67b2a25c10390d60a27f7 | ||||
|  | ||||
							
								
								
									
										29
									
								
								.github/labeler.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										29
									
								
								.github/labeler.yml
									
									
									
									
										vendored
									
									
								
							| @ -133,32 +133,3 @@ | ||||
|  | ||||
| "ciflow/vllm": | ||||
| - .github/ci_commit_pins/vllm.txt | ||||
|  | ||||
| "ciflow/b200": | ||||
| - test/test_matmul_cuda.py | ||||
| - test/test_scaled_matmul_cuda.py | ||||
| - test/inductor/test_fp8.py | ||||
| - aten/src/ATen/native/cuda/Blas.cpp | ||||
| - torch/**/*cublas* | ||||
| - torch/_inductor/kernel/mm.py | ||||
| - test/inductor/test_max_autotune.py | ||||
| - third_party/fbgemm | ||||
|  | ||||
| "ciflow/h100": | ||||
| - test/test_matmul_cuda.py | ||||
| - test/test_scaled_matmul_cuda.py | ||||
| - test/inductor/test_fp8.py | ||||
| - aten/src/ATen/native/cuda/Blas.cpp | ||||
| - torch/**/*cublas* | ||||
| - torch/_inductor/kernel/mm.py | ||||
| - test/inductor/test_max_autotune.py | ||||
| - third_party/fbgemm | ||||
|  | ||||
| "ciflow/rocm": | ||||
| - test/test_matmul_cuda.py | ||||
| - test/test_scaled_matmul_cuda.py | ||||
| - test/inductor/test_fp8.py | ||||
| - aten/src/ATen/native/cuda/Blas.cpp | ||||
| - torch/_inductor/kernel/mm.py | ||||
| - test/inductor/test_max_autotune.py | ||||
| - third_party/fbgemm | ||||
|  | ||||
							
								
								
									
										5
									
								
								.github/pytorch-probot.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.github/pytorch-probot.yml
									
									
									
									
										vendored
									
									
								
							| @ -3,7 +3,6 @@ ciflow_tracking_issue: 64124 | ||||
| ciflow_push_tags: | ||||
| - ciflow/b200 | ||||
| - ciflow/b200-symm-mem | ||||
| - ciflow/b200-distributed | ||||
| - ciflow/binaries | ||||
| - ciflow/binaries_libtorch | ||||
| - ciflow/binaries_wheel | ||||
| @ -16,8 +15,7 @@ ciflow_push_tags: | ||||
| - ciflow/inductor-micro-benchmark | ||||
| - ciflow/inductor-micro-benchmark-cpu-x86 | ||||
| - ciflow/inductor-perf-compare | ||||
| - ciflow/inductor-perf-test-nightly-rocm-mi300 | ||||
| - ciflow/inductor-perf-test-nightly-rocm-mi355 | ||||
| - ciflow/inductor-perf-test-nightly-rocm | ||||
| - ciflow/inductor-perf-test-nightly-x86-zen | ||||
| - ciflow/inductor-periodic | ||||
| - ciflow/inductor-rocm | ||||
| @ -33,7 +31,6 @@ ciflow_push_tags: | ||||
| - ciflow/rocm | ||||
| - ciflow/rocm-mi300 | ||||
| - ciflow/rocm-mi355 | ||||
| - ciflow/rocm-navi31 | ||||
| - ciflow/s390 | ||||
| - ciflow/slow | ||||
| - ciflow/torchbench | ||||
|  | ||||
							
								
								
									
										2
									
								
								.github/scripts/filter_test_configs.py
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/scripts/filter_test_configs.py
									
									
									
									
										vendored
									
									
								
							| @ -512,8 +512,6 @@ def perform_misc_tasks( | ||||
|         "keep-going", | ||||
|         branch == MAIN_BRANCH | ||||
|         or bool(tag and re.match(r"^trunk/[a-f0-9]{40}$", tag)) | ||||
|         # Pattern for tags created via manual run on HUD | ||||
|         or bool(tag and re.match(r"^ciflow/[^/]+/[a-f0-9]{40}$", tag)) | ||||
|         or check_for_setting(labels, pr_body, "keep-going"), | ||||
|     ) | ||||
|     set_output( | ||||
|  | ||||
							
								
								
									
										42
									
								
								.github/scripts/generate_binary_build_matrix.py
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										42
									
								
								.github/scripts/generate_binary_build_matrix.py
									
									
									
									
										vendored
									
									
								
							| @ -79,21 +79,21 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = { | ||||
|         "nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'" | ||||
|     ), | ||||
|     "12.9": ( | ||||
|         "nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | " | ||||
|         "nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | " | ||||
|         "nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | " | ||||
|         "nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | " | ||||
|         "nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | " | ||||
|         "nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | " | ||||
|         "nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | " | ||||
|         "nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | " | ||||
|         "nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | " | ||||
|         "nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | " | ||||
|         "nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | " | ||||
|         "nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | " | ||||
|         "nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | " | ||||
|         "nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | " | ||||
|         "nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'" | ||||
|         "nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | " | ||||
|         "nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'" | ||||
|     ), | ||||
|     "13.0": ( | ||||
|         "nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | " | ||||
| @ -241,11 +241,7 @@ def generate_libtorch_matrix( | ||||
|             arches += CUDA_ARCHES | ||||
|             arches += ROCM_ARCHES | ||||
|         elif os == "windows": | ||||
|             # TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up | ||||
|             # in 2.10 | ||||
|             windows_cuda_arches = CUDA_ARCHES.copy() | ||||
|             windows_cuda_arches.remove("12.9") | ||||
|             arches += windows_cuda_arches | ||||
|             arches += CUDA_ARCHES | ||||
|     if libtorch_variants is None: | ||||
|         libtorch_variants = [ | ||||
|             "shared-with-deps", | ||||
| @ -309,11 +305,7 @@ def generate_wheels_matrix( | ||||
|         if os == "linux": | ||||
|             arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES | ||||
|         elif os == "windows": | ||||
|             # TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up | ||||
|             # in 2.10 | ||||
|             windows_cuda_arches = CUDA_ARCHES.copy() | ||||
|             windows_cuda_arches.remove("12.9") | ||||
|             arches += windows_cuda_arches + XPU_ARCHES | ||||
|             arches += CUDA_ARCHES + XPU_ARCHES | ||||
|         elif os == "linux-aarch64": | ||||
|             # Separate new if as the CPU type is different and | ||||
|             # uses different build/test scripts | ||||
|  | ||||
							
								
								
									
										6
									
								
								.github/scripts/trymerge.py
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										6
									
								
								.github/scripts/trymerge.py
									
									
									
									
										vendored
									
									
								
							| @ -1092,7 +1092,7 @@ class GitHubPR: | ||||
|         editor = node["editor"] | ||||
|         return GitHubComment( | ||||
|             body_text=node["bodyText"], | ||||
|             created_at=node.get("createdAt", ""), | ||||
|             created_at=node["createdAt"] if "createdAt" in node else "", | ||||
|             author_login=node["author"]["login"], | ||||
|             author_url=node["author"].get("url", None), | ||||
|             author_association=node["authorAssociation"], | ||||
| @ -2042,6 +2042,10 @@ def validate_revert( | ||||
|             f"[{', '.join(allowed_reverters)}], but instead is {author_association}." | ||||
|         ) | ||||
|  | ||||
|     # Raises exception if matching rule is not found, but ignores all status checks | ||||
|     find_matching_merge_rule( | ||||
|         pr, repo, skip_mandatory_checks=True, skip_internal_checks=True | ||||
|     ) | ||||
|     commit_sha = get_pr_commit_sha(repo, pr) | ||||
|     return (author_login, commit_sha) | ||||
|  | ||||
|  | ||||
| @ -26,8 +26,9 @@ name: !{{ build_environment }} | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "!{{ py_ver.strip('t') + ('.4' if '3.14' not in py_ver else '.0') }}" | ||||
|           python-version: "!{{ (py_ver.strip('t') + '.4') if '3.14' not in py_ver else '3.14.0-rc.2' }}" | ||||
|           freethreaded: !{{ "true" if py_ver.endswith('t') else "false" }} | ||||
| {%- endmacro %} | ||||
|  | ||||
|  | ||||
| @ -79,9 +79,9 @@ jobs: | ||||
|     runs-on: "windows-11-arm64-preview" | ||||
|     {%- else %} | ||||
|     {%- if branches == "nightly" %} | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     {%- else %} | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge.nonephemeral" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" | ||||
|     {%- endif %} | ||||
|     {%- endif %} | ||||
|     timeout-minutes: !{{ common.timeout_minutes_windows_binary }} | ||||
|  | ||||
							
								
								
									
										2
									
								
								.github/workflows/_linux-build.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/_linux-build.yml
									
									
									
									
										vendored
									
									
								
							| @ -37,7 +37,7 @@ on: | ||||
|       runner: | ||||
|         required: false | ||||
|         type: string | ||||
|         default: "linux.c7i.2xlarge" | ||||
|         default: "linux.2xlarge" | ||||
|         description: | | ||||
|           Label of the runner this job should run on. | ||||
|       test-matrix: | ||||
|  | ||||
							
								
								
									
										40
									
								
								.github/workflows/_linux-test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										40
									
								
								.github/workflows/_linux-test.yml
									
									
									
									
										vendored
									
									
								
							| @ -224,46 +224,6 @@ jobs: | ||||
|         continue-on-error: true | ||||
|         uses: ./.github/actions/download-td-artifacts | ||||
|  | ||||
|       - name: Download Windows torch wheel for cross-compilation | ||||
|         if: matrix.win_torch_wheel_artifact != '' | ||||
|         uses: seemethere/download-artifact-s3@1da556a7aa0a088e3153970611f6c432d58e80e6 # v4.2.0 | ||||
|         with: | ||||
|           name: ${{ matrix.win_torch_wheel_artifact }} | ||||
|           path: win-torch-wheel | ||||
|  | ||||
|       - name: Extract Windows wheel and setup CUDA libraries | ||||
|         if: matrix.win_torch_wheel_artifact != '' | ||||
|         shell: bash | ||||
|         run: | | ||||
|           set -x | ||||
|  | ||||
|           # Find the wheel file | ||||
|           WHEEL_FILE=$(find win-torch-wheel -name "*.whl" -type f | head -n 1) | ||||
|           if [ -z "$WHEEL_FILE" ]; then | ||||
|             echo "Error: No wheel file found in win-torch-wheel directory" | ||||
|             exit 1 | ||||
|           fi | ||||
|           echo "Found wheel file: $WHEEL_FILE" | ||||
|  | ||||
|           # Unzip the wheel file | ||||
|           unzip -q "$WHEEL_FILE" -d win-torch-wheel-extracted | ||||
|           echo "Extracted wheel contents" | ||||
|  | ||||
|           # Setup CUDA libraries (cuda.lib and cudart.lib) directory | ||||
|           mkdir -p win-torch-wheel-extracted/lib/x64 | ||||
|           if [ -f "win-torch-wheel/cuda.lib" ]; then | ||||
|             mv win-torch-wheel/cuda.lib win-torch-wheel-extracted/lib/x64/ | ||||
|             echo "Moved cuda.lib to win-torch-wheel-extracted/lib/x64/" | ||||
|           fi | ||||
|           if [ -f "win-torch-wheel/cudart.lib" ]; then | ||||
|             mv win-torch-wheel/cudart.lib win-torch-wheel-extracted/lib/x64/ | ||||
|             echo "Moved cudart.lib to win-torch-wheel-extracted/lib/x64/" | ||||
|           fi | ||||
|  | ||||
|           # Verify CUDA libraries are present | ||||
|           echo "CUDA libraries:" | ||||
|           ls -la win-torch-wheel-extracted/lib/x64/ || echo "No CUDA libraries found" | ||||
|  | ||||
|       - name: Parse ref | ||||
|         id: parse-ref | ||||
|         run: .github/scripts/parse_ref.py | ||||
|  | ||||
							
								
								
									
										25
									
								
								.github/workflows/_win-build.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										25
									
								
								.github/workflows/_win-build.yml
									
									
									
									
										vendored
									
									
								
							| @ -168,31 +168,6 @@ jobs: | ||||
|         run: | | ||||
|           .ci/pytorch/win-build.sh | ||||
|  | ||||
|       # Collect Windows torch libs and CUDA libs for cross-compilation | ||||
|       - name: Collect Windows CUDA libs for cross-compilation | ||||
|         if: steps.build.outcome != 'skipped' && inputs.cuda-version != 'cpu' | ||||
|         shell: bash | ||||
|         run: | | ||||
|           set -ex | ||||
|  | ||||
|           # Create directory structure if does not exist | ||||
|           mkdir -p /c/${{ github.run_id }}/build-results | ||||
|  | ||||
|           # Copy CUDA libs | ||||
|           CUDA_PATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${{ inputs.cuda-version }}" | ||||
|  | ||||
|           if [ -f "${CUDA_PATH}/lib/x64/cuda.lib" ]; then | ||||
|             cp "${CUDA_PATH}/lib/x64/cuda.lib" /c/${{ github.run_id }}/build-results/ | ||||
|           fi | ||||
|  | ||||
|           if [ -f "${CUDA_PATH}/lib/x64/cudart.lib" ]; then | ||||
|             cp "${CUDA_PATH}/lib/x64/cudart.lib" /c/${{ github.run_id }}/build-results/ | ||||
|           fi | ||||
|  | ||||
|           # List collected files | ||||
|           echo "Collected CUDA libs:" | ||||
|           ls -lah /c/${{ github.run_id }}/build-results/*.lib | ||||
|  | ||||
|       # Upload to github so that people can click and download artifacts | ||||
|       - name: Upload artifacts to s3 | ||||
|         if: steps.build.outcome != 'skipped' | ||||
|  | ||||
							
								
								
									
										62
									
								
								.github/workflows/b200-distributed.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										62
									
								
								.github/workflows/b200-distributed.yml
									
									
									
									
										vendored
									
									
								
							| @ -1,62 +0,0 @@ | ||||
| name: CI for distributed tests on B200 | ||||
|  | ||||
| on: | ||||
|   pull_request: | ||||
|     paths: | ||||
|       - .github/workflows/b200-distributed.yml | ||||
|   workflow_dispatch: | ||||
|   push: | ||||
|     tags: | ||||
|       - ciflow/b200-distributed/* | ||||
|   schedule: | ||||
|     - cron: 46 8 * * *  # about 1:46am PDT | ||||
|  | ||||
| concurrency: | ||||
|   group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }} | ||||
|   cancel-in-progress: true | ||||
|  | ||||
| permissions: | ||||
|   id-token: write | ||||
|   contents: read | ||||
|  | ||||
| jobs: | ||||
|  | ||||
|   get-label-type: | ||||
|     if: github.repository_owner == 'pytorch' | ||||
|     name: get-label-type | ||||
|     uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main | ||||
|     with: | ||||
|       triggering_actor: ${{ github.triggering_actor }} | ||||
|       issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }} | ||||
|       curr_branch: ${{ github.head_ref || github.ref_name }} | ||||
|       curr_ref_type: ${{ github.ref_type }} | ||||
|  | ||||
|   linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200: | ||||
|     name: linux-jammy-cuda12.8-py3.10-gcc11-build-distributed-b200 | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     needs: get-label-type | ||||
|     with: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       runner: linux.12xlarge.memory | ||||
|       build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11 | ||||
|       cuda-arch-list: '10.0' | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "distributed", shard: 1, num_shards: 2, runner: "linux.dgx.b200.8" }, | ||||
|           { config: "distributed", shard: 2, num_shards: 2, runner: "linux.dgx.b200.8" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   linux-jammy-cuda12_8-py3_10-gcc11-test-distributed-b200: | ||||
|     name: linux-jammy-cuda12.8-py3.10-gcc11-test-b200 | ||||
|     uses: ./.github/workflows/_linux-test.yml | ||||
|     needs: | ||||
|       - linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200 | ||||
|     with: | ||||
|       timeout-minutes: 1200 | ||||
|       build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200 | ||||
|       docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200.outputs.test-matrix }} | ||||
|       aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only | ||||
|     secrets: inherit | ||||
							
								
								
									
										19
									
								
								.github/workflows/build-vllm-wheel.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										19
									
								
								.github/workflows/build-vllm-wheel.yml
									
									
									
									
										vendored
									
									
								
							| @ -27,8 +27,9 @@ jobs: | ||||
|       fail-fast: false | ||||
|       matrix: | ||||
|         python-version: [ '3.12' ] | ||||
|         # TODO (huydhn): Add cu130 after https://github.com/vllm-project/vllm/issues/24464 is resolved | ||||
|         platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ] | ||||
|         device: [ 'cu128', 'cu129', 'cu130' ] | ||||
|         device: [ 'cu128', 'cu129' ] | ||||
|         include: | ||||
|           - platform: manylinux_2_28_x86_64 | ||||
|             device: cu128 | ||||
| @ -38,10 +39,6 @@ jobs: | ||||
|             device: cu129 | ||||
|             manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.9' | ||||
|             runner: linux.12xlarge.memory | ||||
|           - platform: manylinux_2_28_x86_64 | ||||
|             device: cu130 | ||||
|             manylinux-image: 'pytorch/manylinux2_28-builder:cuda13.0' | ||||
|             runner: linux.12xlarge.memory | ||||
|           - platform: manylinux_2_28_aarch64 | ||||
|             device: cu128 | ||||
|             manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.8' | ||||
| @ -50,11 +47,6 @@ jobs: | ||||
|             device: cu129 | ||||
|             manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.9' | ||||
|             runner: linux.arm64.r7g.12xlarge.memory | ||||
|         exclude: | ||||
|           # TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and | ||||
|           # xformers is update to support 13.0 | ||||
|           - platform: manylinux_2_28_aarch64 | ||||
|             device: cu130 | ||||
|     name: "Build ${{ matrix.device }} vLLM wheel on ${{ matrix.platform }}" | ||||
|     runs-on: ${{ matrix.runner }} | ||||
|     timeout-minutes: 480 | ||||
| @ -177,12 +169,7 @@ jobs: | ||||
|       fail-fast: false | ||||
|       matrix: | ||||
|         platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ] | ||||
|         device: [ 'cu128', 'cu129', 'cu130' ] | ||||
|         exclude: | ||||
|           # TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and | ||||
|           # xformers is update to support 13.0 | ||||
|           - platform: manylinux_2_28_aarch64 | ||||
|             device: cu130 | ||||
|         device: [ 'cu128', 'cu129' ] | ||||
|     env: | ||||
|       PLATFORM: ${{ matrix.platform }} | ||||
|       BUILD_DEVICE: ${{ matrix.device }} | ||||
|  | ||||
							
								
								
									
										14
									
								
								.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										14
									
								
								.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -224,7 +224,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_10-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
| @ -473,7 +473,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_11-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
| @ -722,7 +722,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_12-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
| @ -971,7 +971,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_13-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
| @ -1220,7 +1220,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_13t-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
| @ -1469,7 +1469,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_14-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
| @ -1718,7 +1718,7 @@ jobs: | ||||
|       ALPINE_IMAGE: "arm64v8/alpine" | ||||
|       build_name: manywheel-py3_14t-cuda-aarch64-12_9 | ||||
|       build_environment: linux-aarch64-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|       timeout-minutes: 420 | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|  | ||||
							
								
								
									
										14
									
								
								.github/workflows/generated-linux-binary-manywheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										14
									
								
								.github/workflows/generated-linux-binary-manywheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -259,7 +259,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_10-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_10-cuda12_9-test:  # Testing | ||||
| @ -925,7 +925,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_11-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_11-cuda12_9-test:  # Testing | ||||
| @ -1591,7 +1591,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_12-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_12-cuda12_9-test:  # Testing | ||||
| @ -2257,7 +2257,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_13-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_13-cuda12_9-test:  # Testing | ||||
| @ -2923,7 +2923,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_13t-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_13t-cuda12_9-test:  # Testing | ||||
| @ -3589,7 +3589,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_14-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_14-cuda12_9-test:  # Testing | ||||
| @ -4255,7 +4255,7 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build_name: manywheel-py3_14t-cuda12_9 | ||||
|       build_environment: linux-binary-manywheel | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' | ||||
|       PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64' | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|   manywheel-py3_14t-cuda12_9-test:  # Testing | ||||
|  | ||||
							
								
								
									
										1
									
								
								.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -63,6 +63,7 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.10.4" | ||||
|           freethreaded: false | ||||
|  | ||||
							
								
								
									
										11
									
								
								.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										11
									
								
								.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -59,6 +59,7 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.10.4" | ||||
|           freethreaded: false | ||||
| @ -168,6 +169,7 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.11.4" | ||||
|           freethreaded: false | ||||
| @ -277,6 +279,7 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.12.4" | ||||
|           freethreaded: false | ||||
| @ -386,6 +389,7 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.13.4" | ||||
|           freethreaded: false | ||||
| @ -495,6 +499,7 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.13.4" | ||||
|           freethreaded: true | ||||
| @ -604,8 +609,9 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.14.0" | ||||
|           python-version: "3.14.0-rc.2" | ||||
|           freethreaded: false | ||||
|       - name: Checkout PyTorch | ||||
|         uses: actions/checkout@v4 | ||||
| @ -713,8 +719,9 @@ jobs: | ||||
|       - name: Setup Python | ||||
|         uses: actions/setup-python@v6 | ||||
|         with: | ||||
|           # TODO: Removeme once 3.14 is out | ||||
|           # .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3 | ||||
|           python-version: "3.14.0" | ||||
|           python-version: "3.14.0-rc.2" | ||||
|           freethreaded: true | ||||
|       - name: Checkout PyTorch | ||||
|         uses: actions/checkout@v4 | ||||
|  | ||||
							
								
								
									
										258
									
								
								.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										258
									
								
								.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -44,7 +44,7 @@ jobs: | ||||
|   libtorch-cpu-shared-with-deps-debug-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
| @ -291,7 +291,7 @@ jobs: | ||||
|   libtorch-cuda12_6-shared-with-deps-debug-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
| @ -541,7 +541,7 @@ jobs: | ||||
|   libtorch-cuda12_8-shared-with-deps-debug-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
| @ -788,10 +788,260 @@ jobs: | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|     uses: ./.github/workflows/_binary-upload.yml | ||||
|   libtorch-cuda12_9-shared-with-deps-debug-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|       PACKAGE_TYPE: libtorch | ||||
|       # TODO: This is a legacy variable that we eventually want to get rid of in | ||||
|       #       favor of GPU_ARCH_VERSION | ||||
|       DESIRED_CUDA: cu129 | ||||
|       GPU_ARCH_VERSION: "12.9" | ||||
|       GPU_ARCH_TYPE: cuda | ||||
|       SKIP_ALL_TESTS: 1 | ||||
|       LIBTORCH_CONFIG: debug | ||||
|       LIBTORCH_VARIANT: shared-with-deps | ||||
|       # This is a dummy value for libtorch to work correctly with our batch scripts | ||||
|       # without this value pip does not get installed for some reason | ||||
|       DESIRED_PYTHON: "3.10" | ||||
|     steps: | ||||
|       # NOTE: These environment variables are put here so that they can be applied on every job equally | ||||
|       #       They are also here because setting them at a workflow level doesn't give us access to the | ||||
|       #       runner.temp variable, which we need. | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}" | ||||
|           echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}" | ||||
|           echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}" | ||||
|       - name: Display EC2 information | ||||
|         shell: bash | ||||
|         run: | | ||||
|           set -euo pipefail | ||||
|           function get_ec2_metadata() { | ||||
|             # Pulled from instance metadata endpoint for EC2 | ||||
|             # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html | ||||
|             category=$1 | ||||
|             curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}" | ||||
|           } | ||||
|           echo "ami-id: $(get_ec2_metadata ami-id)" | ||||
|           echo "instance-id: $(get_ec2_metadata instance-id)" | ||||
|           echo "instance-type: $(get_ec2_metadata instance-type)" | ||||
|           echo "system info $(uname -a)" | ||||
|       - name: "[FB EMPLOYEES] Enable SSH (Click me for login details)" | ||||
|         uses: pytorch/test-infra/.github/actions/setup-ssh@main | ||||
|         continue-on-error: true | ||||
|         with: | ||||
|           github-secret: ${{ secrets.GITHUB_TOKEN }} | ||||
|       - name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon | ||||
|         shell: bash | ||||
|         run: | | ||||
|           git config --global core.longpaths true | ||||
|           git config --global core.symlinks true | ||||
|  | ||||
|           # https://git-scm.com/docs/git-fsmonitor--daemon.  The daemon could lock | ||||
|           # the directory on Windows and prevent GHA from checking out as reported | ||||
|           # in https://github.com/actions/checkout/issues/1018 | ||||
|           git config --global core.fsmonitor false | ||||
|       # Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560 | ||||
|       - name: Enable long paths on Windows | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 | ||||
|       # Since it's just a defensive command, the workflow should continue even the command fails. This step can be | ||||
|       # removed once Windows Defender is removed from the AMI | ||||
|       - name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch | ||||
|         continue-on-error: true | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore | ||||
|           # Let's both exclude the path and disable Windows Defender completely just to be sure | ||||
|           # that it doesn't interfere | ||||
|           Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore | ||||
|       - name: Checkout PyTorch | ||||
|         uses: actions/checkout@v4 | ||||
|         with: | ||||
|           ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }} | ||||
|           submodules: recursive | ||||
|           path: pytorch | ||||
|           show-progress: false | ||||
|       - name: Clean PyTorch checkout | ||||
|         run: | | ||||
|           # Remove any artifacts from the previous checkouts | ||||
|           git clean -fxd | ||||
|         working-directory: pytorch | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh" | ||||
|       - name: Build PyTorch binary | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh" | ||||
|       - uses: actions/upload-artifact@v4.4.0 | ||||
|         if: always() | ||||
|         with: | ||||
|           name: libtorch-cuda12_9-shared-with-deps-debug | ||||
|           retention-days: 14 | ||||
|           if-no-files-found: error | ||||
|           path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}" | ||||
|       - name: Wait until all sessions have drained | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         timeout-minutes: 120 | ||||
|         run: | | ||||
|           .github\scripts\wait_for_ssh_to_drain.ps1 | ||||
|       - name: Kill active ssh sessions if still around (Useful if workflow was cancelled) | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         run: | | ||||
|           .github\scripts\kill_active_ssh_sessions.ps1 | ||||
|  | ||||
|   libtorch-cuda12_9-shared-with-deps-debug-test:  # Testing | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: | ||||
|       - libtorch-cuda12_9-shared-with-deps-debug-build | ||||
|       - get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|       PACKAGE_TYPE: libtorch | ||||
|       # TODO: This is a legacy variable that we eventually want to get rid of in | ||||
|       #       favor of GPU_ARCH_VERSION | ||||
|       DESIRED_CUDA: cu129 | ||||
|       GPU_ARCH_VERSION: "12.9" | ||||
|       GPU_ARCH_TYPE: cuda | ||||
|       SKIP_ALL_TESTS: 1 | ||||
|       LIBTORCH_CONFIG: debug | ||||
|       LIBTORCH_VARIANT: shared-with-deps | ||||
|       # This is a dummy value for libtorch to work correctly with our batch scripts | ||||
|       # without this value pip does not get installed for some reason | ||||
|       DESIRED_PYTHON: "3.10" | ||||
|     steps: | ||||
|       - name: Display EC2 information | ||||
|         shell: bash | ||||
|         run: | | ||||
|           set -euo pipefail | ||||
|           function get_ec2_metadata() { | ||||
|             # Pulled from instance metadata endpoint for EC2 | ||||
|             # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html | ||||
|             category=$1 | ||||
|             curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}" | ||||
|           } | ||||
|           echo "ami-id: $(get_ec2_metadata ami-id)" | ||||
|           echo "instance-id: $(get_ec2_metadata instance-id)" | ||||
|           echo "instance-type: $(get_ec2_metadata instance-type)" | ||||
|           echo "system info $(uname -a)" | ||||
|       - name: "[FB EMPLOYEES] Enable SSH (Click me for login details)" | ||||
|         uses: pytorch/test-infra/.github/actions/setup-ssh@main | ||||
|         continue-on-error: true | ||||
|         with: | ||||
|           github-secret: ${{ secrets.GITHUB_TOKEN }} | ||||
|       - name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon | ||||
|         shell: bash | ||||
|         run: | | ||||
|           git config --global core.longpaths true | ||||
|           git config --global core.symlinks true | ||||
|  | ||||
|           # https://git-scm.com/docs/git-fsmonitor--daemon.  The daemon could lock | ||||
|           # the directory on Windows and prevent GHA from checking out as reported | ||||
|           # in https://github.com/actions/checkout/issues/1018 | ||||
|           git config --global core.fsmonitor false | ||||
|       # Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560 | ||||
|       - name: Enable long paths on Windows | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 | ||||
|       # Since it's just a defensive command, the workflow should continue even the command fails. This step can be | ||||
|       # removed once Windows Defender is removed from the AMI | ||||
|       - name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch | ||||
|         continue-on-error: true | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore | ||||
|           # Let's both exclude the path and disable Windows Defender completely just to be sure | ||||
|           # that it doesn't interfere | ||||
|           Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore | ||||
|       - name: Checkout PyTorch | ||||
|         uses: actions/checkout@v4 | ||||
|         with: | ||||
|           ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }} | ||||
|           submodules: recursive | ||||
|           path: pytorch | ||||
|           show-progress: false | ||||
|       - name: Clean PyTorch checkout | ||||
|         run: | | ||||
|           # Remove any artifacts from the previous checkouts | ||||
|           git clean -fxd | ||||
|         working-directory: pytorch | ||||
|       # NOTE: These environment variables are put here so that they can be applied on every job equally | ||||
|       #       They are also here because setting them at a workflow level doesn't give us access to the | ||||
|       #       runner.temp variable, which we need. | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}" | ||||
|           echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}" | ||||
|           echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}" | ||||
|       - uses: actions/download-artifact@v4.1.7 | ||||
|         name: Download Build Artifacts | ||||
|         with: | ||||
|           name: libtorch-cuda12_9-shared-with-deps-debug | ||||
|           path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}" | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh" | ||||
|       - name: Test PyTorch binary | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh" | ||||
|       - name: Wait until all sessions have drained | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         timeout-minutes: 120 | ||||
|         run: | | ||||
|           .github\scripts\wait_for_ssh_to_drain.ps1 | ||||
|       - name: Kill active ssh sessions if still around (Useful if workflow was cancelled) | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         run: | | ||||
|           .github\scripts\kill_active_ssh_sessions.ps1 | ||||
|   libtorch-cuda12_9-shared-with-deps-debug-upload:  # Uploading | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|     needs: libtorch-cuda12_9-shared-with-deps-debug-test | ||||
|     with: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|       PACKAGE_TYPE: libtorch | ||||
|       # TODO: This is a legacy variable that we eventually want to get rid of in | ||||
|       #       favor of GPU_ARCH_VERSION | ||||
|       DESIRED_CUDA: cu129 | ||||
|       GPU_ARCH_VERSION: "12.9" | ||||
|       GPU_ARCH_TYPE: cuda | ||||
|       LIBTORCH_CONFIG: debug | ||||
|       LIBTORCH_VARIANT: shared-with-deps | ||||
|       # This is a dummy value for libtorch to work correctly with our batch scripts | ||||
|       # without this value pip does not get installed for some reason | ||||
|       DESIRED_PYTHON: "3.10" | ||||
|       build_name: libtorch-cuda12_9-shared-with-deps-debug | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|     uses: ./.github/workflows/_binary-upload.yml | ||||
|   libtorch-cuda13_0-shared-with-deps-debug-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|  | ||||
							
								
								
									
										258
									
								
								.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										258
									
								
								.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -44,7 +44,7 @@ jobs: | ||||
|   libtorch-cpu-shared-with-deps-release-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
| @ -291,7 +291,7 @@ jobs: | ||||
|   libtorch-cuda12_6-shared-with-deps-release-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
| @ -541,7 +541,7 @@ jobs: | ||||
|   libtorch-cuda12_8-shared-with-deps-release-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
| @ -788,10 +788,260 @@ jobs: | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|     uses: ./.github/workflows/_binary-upload.yml | ||||
|   libtorch-cuda12_9-shared-with-deps-release-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|       PACKAGE_TYPE: libtorch | ||||
|       # TODO: This is a legacy variable that we eventually want to get rid of in | ||||
|       #       favor of GPU_ARCH_VERSION | ||||
|       DESIRED_CUDA: cu129 | ||||
|       GPU_ARCH_VERSION: "12.9" | ||||
|       GPU_ARCH_TYPE: cuda | ||||
|       SKIP_ALL_TESTS: 1 | ||||
|       LIBTORCH_CONFIG: release | ||||
|       LIBTORCH_VARIANT: shared-with-deps | ||||
|       # This is a dummy value for libtorch to work correctly with our batch scripts | ||||
|       # without this value pip does not get installed for some reason | ||||
|       DESIRED_PYTHON: "3.10" | ||||
|     steps: | ||||
|       # NOTE: These environment variables are put here so that they can be applied on every job equally | ||||
|       #       They are also here because setting them at a workflow level doesn't give us access to the | ||||
|       #       runner.temp variable, which we need. | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}" | ||||
|           echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}" | ||||
|           echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}" | ||||
|       - name: Display EC2 information | ||||
|         shell: bash | ||||
|         run: | | ||||
|           set -euo pipefail | ||||
|           function get_ec2_metadata() { | ||||
|             # Pulled from instance metadata endpoint for EC2 | ||||
|             # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html | ||||
|             category=$1 | ||||
|             curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}" | ||||
|           } | ||||
|           echo "ami-id: $(get_ec2_metadata ami-id)" | ||||
|           echo "instance-id: $(get_ec2_metadata instance-id)" | ||||
|           echo "instance-type: $(get_ec2_metadata instance-type)" | ||||
|           echo "system info $(uname -a)" | ||||
|       - name: "[FB EMPLOYEES] Enable SSH (Click me for login details)" | ||||
|         uses: pytorch/test-infra/.github/actions/setup-ssh@main | ||||
|         continue-on-error: true | ||||
|         with: | ||||
|           github-secret: ${{ secrets.GITHUB_TOKEN }} | ||||
|       - name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon | ||||
|         shell: bash | ||||
|         run: | | ||||
|           git config --global core.longpaths true | ||||
|           git config --global core.symlinks true | ||||
|  | ||||
|           # https://git-scm.com/docs/git-fsmonitor--daemon.  The daemon could lock | ||||
|           # the directory on Windows and prevent GHA from checking out as reported | ||||
|           # in https://github.com/actions/checkout/issues/1018 | ||||
|           git config --global core.fsmonitor false | ||||
|       # Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560 | ||||
|       - name: Enable long paths on Windows | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 | ||||
|       # Since it's just a defensive command, the workflow should continue even the command fails. This step can be | ||||
|       # removed once Windows Defender is removed from the AMI | ||||
|       - name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch | ||||
|         continue-on-error: true | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore | ||||
|           # Let's both exclude the path and disable Windows Defender completely just to be sure | ||||
|           # that it doesn't interfere | ||||
|           Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore | ||||
|       - name: Checkout PyTorch | ||||
|         uses: actions/checkout@v4 | ||||
|         with: | ||||
|           ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }} | ||||
|           submodules: recursive | ||||
|           path: pytorch | ||||
|           show-progress: false | ||||
|       - name: Clean PyTorch checkout | ||||
|         run: | | ||||
|           # Remove any artifacts from the previous checkouts | ||||
|           git clean -fxd | ||||
|         working-directory: pytorch | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh" | ||||
|       - name: Build PyTorch binary | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh" | ||||
|       - uses: actions/upload-artifact@v4.4.0 | ||||
|         if: always() | ||||
|         with: | ||||
|           name: libtorch-cuda12_9-shared-with-deps-release | ||||
|           retention-days: 14 | ||||
|           if-no-files-found: error | ||||
|           path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}" | ||||
|       - name: Wait until all sessions have drained | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         timeout-minutes: 120 | ||||
|         run: | | ||||
|           .github\scripts\wait_for_ssh_to_drain.ps1 | ||||
|       - name: Kill active ssh sessions if still around (Useful if workflow was cancelled) | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         run: | | ||||
|           .github\scripts\kill_active_ssh_sessions.ps1 | ||||
|  | ||||
|   libtorch-cuda12_9-shared-with-deps-release-test:  # Testing | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: | ||||
|       - libtorch-cuda12_9-shared-with-deps-release-build | ||||
|       - get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|       PACKAGE_TYPE: libtorch | ||||
|       # TODO: This is a legacy variable that we eventually want to get rid of in | ||||
|       #       favor of GPU_ARCH_VERSION | ||||
|       DESIRED_CUDA: cu129 | ||||
|       GPU_ARCH_VERSION: "12.9" | ||||
|       GPU_ARCH_TYPE: cuda | ||||
|       SKIP_ALL_TESTS: 1 | ||||
|       LIBTORCH_CONFIG: release | ||||
|       LIBTORCH_VARIANT: shared-with-deps | ||||
|       # This is a dummy value for libtorch to work correctly with our batch scripts | ||||
|       # without this value pip does not get installed for some reason | ||||
|       DESIRED_PYTHON: "3.10" | ||||
|     steps: | ||||
|       - name: Display EC2 information | ||||
|         shell: bash | ||||
|         run: | | ||||
|           set -euo pipefail | ||||
|           function get_ec2_metadata() { | ||||
|             # Pulled from instance metadata endpoint for EC2 | ||||
|             # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html | ||||
|             category=$1 | ||||
|             curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}" | ||||
|           } | ||||
|           echo "ami-id: $(get_ec2_metadata ami-id)" | ||||
|           echo "instance-id: $(get_ec2_metadata instance-id)" | ||||
|           echo "instance-type: $(get_ec2_metadata instance-type)" | ||||
|           echo "system info $(uname -a)" | ||||
|       - name: "[FB EMPLOYEES] Enable SSH (Click me for login details)" | ||||
|         uses: pytorch/test-infra/.github/actions/setup-ssh@main | ||||
|         continue-on-error: true | ||||
|         with: | ||||
|           github-secret: ${{ secrets.GITHUB_TOKEN }} | ||||
|       - name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon | ||||
|         shell: bash | ||||
|         run: | | ||||
|           git config --global core.longpaths true | ||||
|           git config --global core.symlinks true | ||||
|  | ||||
|           # https://git-scm.com/docs/git-fsmonitor--daemon.  The daemon could lock | ||||
|           # the directory on Windows and prevent GHA from checking out as reported | ||||
|           # in https://github.com/actions/checkout/issues/1018 | ||||
|           git config --global core.fsmonitor false | ||||
|       # Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560 | ||||
|       - name: Enable long paths on Windows | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 | ||||
|       # Since it's just a defensive command, the workflow should continue even the command fails. This step can be | ||||
|       # removed once Windows Defender is removed from the AMI | ||||
|       - name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch | ||||
|         continue-on-error: true | ||||
|         shell: powershell | ||||
|         run: | | ||||
|           Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore | ||||
|           # Let's both exclude the path and disable Windows Defender completely just to be sure | ||||
|           # that it doesn't interfere | ||||
|           Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore | ||||
|       - name: Checkout PyTorch | ||||
|         uses: actions/checkout@v4 | ||||
|         with: | ||||
|           ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }} | ||||
|           submodules: recursive | ||||
|           path: pytorch | ||||
|           show-progress: false | ||||
|       - name: Clean PyTorch checkout | ||||
|         run: | | ||||
|           # Remove any artifacts from the previous checkouts | ||||
|           git clean -fxd | ||||
|         working-directory: pytorch | ||||
|       # NOTE: These environment variables are put here so that they can be applied on every job equally | ||||
|       #       They are also here because setting them at a workflow level doesn't give us access to the | ||||
|       #       runner.temp variable, which we need. | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}" | ||||
|           echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}" | ||||
|           echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}" | ||||
|       - uses: actions/download-artifact@v4.1.7 | ||||
|         name: Download Build Artifacts | ||||
|         with: | ||||
|           name: libtorch-cuda12_9-shared-with-deps-release | ||||
|           path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}" | ||||
|       - name: Populate binary env | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh" | ||||
|       - name: Test PyTorch binary | ||||
|         shell: bash | ||||
|         run: | | ||||
|           "${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh" | ||||
|       - name: Wait until all sessions have drained | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         timeout-minutes: 120 | ||||
|         run: | | ||||
|           .github\scripts\wait_for_ssh_to_drain.ps1 | ||||
|       - name: Kill active ssh sessions if still around (Useful if workflow was cancelled) | ||||
|         shell: powershell | ||||
|         working-directory: pytorch | ||||
|         if: always() | ||||
|         run: | | ||||
|           .github\scripts\kill_active_ssh_sessions.ps1 | ||||
|   libtorch-cuda12_9-shared-with-deps-release-upload:  # Uploading | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|     needs: libtorch-cuda12_9-shared-with-deps-release-test | ||||
|     with: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|       PACKAGE_TYPE: libtorch | ||||
|       # TODO: This is a legacy variable that we eventually want to get rid of in | ||||
|       #       favor of GPU_ARCH_VERSION | ||||
|       DESIRED_CUDA: cu129 | ||||
|       GPU_ARCH_VERSION: "12.9" | ||||
|       GPU_ARCH_TYPE: cuda | ||||
|       LIBTORCH_CONFIG: release | ||||
|       LIBTORCH_VARIANT: shared-with-deps | ||||
|       # This is a dummy value for libtorch to work correctly with our batch scripts | ||||
|       # without this value pip does not get installed for some reason | ||||
|       DESIRED_PYTHON: "3.10" | ||||
|       build_name: libtorch-cuda12_9-shared-with-deps-release | ||||
|     secrets: | ||||
|       github-token: ${{ secrets.GITHUB_TOKEN }} | ||||
|     uses: ./.github/workflows/_binary-upload.yml | ||||
|   libtorch-cuda13_0-shared-with-deps-release-build: | ||||
|     if: ${{ github.repository_owner == 'pytorch' }} | ||||
|     needs: get-label-type | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge" | ||||
|     runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge" | ||||
|     timeout-minutes: 360 | ||||
|     env: | ||||
|       PYTORCH_ROOT: ${{ github.workspace }}/pytorch | ||||
|  | ||||
							
								
								
									
										1736
									
								
								.github/workflows/generated-windows-binary-wheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										1736
									
								
								.github/workflows/generated-windows-binary-wheel-nightly.yml
									
									
									
										generated
									
									
										vendored
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @ -1,132 +0,0 @@ | ||||
| name: inductor-perf-nightly-rocm-mi300 | ||||
|  | ||||
| on: | ||||
|   push: | ||||
|     tags: | ||||
|       - ciflow/inductor-perf-test-nightly-rocm-mi300/* | ||||
|   schedule: | ||||
|     - cron: 15 0 * * * | ||||
|   # NB: GitHub has an upper limit of 10 inputs here, so before we can sort it | ||||
|   # out, let try to run torchao cudagraphs_low_precision as part of cudagraphs | ||||
|   workflow_dispatch: | ||||
|     inputs: | ||||
|       training: | ||||
|         description: Run training (on by default)? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: true | ||||
|       inference: | ||||
|         description: Run inference (on by default)? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: true | ||||
|       default: | ||||
|         description: Run inductor_default? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: false | ||||
|       dynamic: | ||||
|         description: Run inductor_dynamic_shapes? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: false | ||||
|       cppwrapper: | ||||
|         description: Run inductor_cpp_wrapper? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: false | ||||
|       cudagraphs: | ||||
|         description: Run inductor_cudagraphs? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: true | ||||
|       freezing_cudagraphs: | ||||
|         description: Run inductor_cudagraphs with freezing for inference? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: false | ||||
|       aotinductor: | ||||
|         description: Run aot_inductor for inference? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: false | ||||
|       maxautotune: | ||||
|         description: Run inductor_max_autotune? | ||||
|         required: false | ||||
|         type: boolean | ||||
|         default: false | ||||
|       benchmark_configs: | ||||
|         description: The list of configs used the benchmark | ||||
|         required: false | ||||
|         type: string | ||||
|         default: inductor_huggingface_perf_rocm_mi300,inductor_timm_perf_rocm_mi300,inductor_torchbench_perf_rocm_mi300 | ||||
|  | ||||
| concurrency: | ||||
|   group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }} | ||||
|   cancel-in-progress: true | ||||
|  | ||||
| permissions: read-all | ||||
|  | ||||
| jobs: | ||||
|   get-label-type: | ||||
|     name: get-label-type | ||||
|     uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main | ||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||
|     with: | ||||
|       triggering_actor: ${{ github.triggering_actor }} | ||||
|       issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }} | ||||
|       curr_branch: ${{ github.head_ref || github.ref_name }} | ||||
|       curr_ref_type: ${{ github.ref_type }} | ||||
|       opt_out_experiments: lf | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-inductor-benchmark-build: | ||||
|     if: github.repository_owner == 'pytorch' | ||||
|     name: rocm-py3_10-inductor-benchmark-build | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3_10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "inductor_huggingface_perf_rocm_mi300", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi300", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi300", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi300", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi300", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi300", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi300", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-inductor-benchmark-test: | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|     name: rocm-py3_10-inductor-benchmark-test | ||||
|     uses: ./.github/workflows/_rocm-test.yml | ||||
|     needs: linux-jammy-rocm-py3_10-inductor-benchmark-build | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3_10 | ||||
|       dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true | ||||
|       docker-image: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.test-matrix }} | ||||
|       timeout-minutes: 720 | ||||
|       # Disable monitor in perf tests for more investigation | ||||
|       disable-monitor: true | ||||
|       monitor-log-interval: 10 | ||||
|       monitor-data-collect-interval: 2 | ||||
|     secrets: inherit | ||||
| @ -1,11 +1,11 @@ | ||||
| name: inductor-perf-nightly-rocm-mi355 | ||||
| name: inductor-perf-nightly-rocm | ||||
| 
 | ||||
| on: | ||||
|   push: | ||||
|     tags: | ||||
|       - ciflow/inductor-perf-test-nightly-rocm-mi355/* | ||||
|       - ciflow/inductor-perf-test-nightly-rocm/* | ||||
|   schedule: | ||||
|     - cron: 15 0 * * * | ||||
|     - cron: 0 7 * * 0,3 | ||||
|   # NB: GitHub has an upper limit of 10 inputs here, so before we can sort it | ||||
|   # out, let try to run torchao cudagraphs_low_precision as part of cudagraphs | ||||
|   workflow_dispatch: | ||||
| @ -59,7 +59,7 @@ on: | ||||
|         description: The list of configs used the benchmark | ||||
|         required: false | ||||
|         type: string | ||||
|         default: inductor_huggingface_perf_rocm_mi355,inductor_timm_perf_rocm_mi355,inductor_torchbench_perf_rocm_mi355 | ||||
|         default: inductor_huggingface_perf_rocm,inductor_timm_perf_rocm,inductor_torchbench_perf_rocm | ||||
| 
 | ||||
| concurrency: | ||||
|   group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }} | ||||
| @ -88,27 +88,23 @@ jobs: | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
| 
 | ||||
							
								
								
									
										4
									
								
								.github/workflows/lint.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										4
									
								
								.github/workflows/lint.yml
									
									
									
									
										vendored
									
									
								
							| @ -118,9 +118,9 @@ jobs: | ||||
|         CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}" | ||||
|         echo "Running all other linters" | ||||
|         if [ "$CHANGED_FILES" = '*' ]; then | ||||
|           ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh | ||||
|           ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh | ||||
|         else | ||||
|           ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh | ||||
|           ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh | ||||
|         fi | ||||
|  | ||||
|   quick-checks: | ||||
|  | ||||
							
								
								
									
										49
									
								
								.github/workflows/operator_benchmark.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										49
									
								
								.github/workflows/operator_benchmark.yml
									
									
									
									
										vendored
									
									
								
							| @ -7,11 +7,9 @@ on: | ||||
|   workflow_dispatch: | ||||
|     inputs: | ||||
|       test_mode: | ||||
|         type: choice | ||||
|         options: | ||||
|           - 'short' | ||||
|           - 'long' | ||||
|           - 'all' | ||||
|         required: false | ||||
|         type: string | ||||
|         default: 'short' | ||||
|         description: tag filter for operator benchmarks, options from long, short, all | ||||
|   schedule: | ||||
|     # Run at 07:00 UTC every Sunday | ||||
| @ -30,49 +28,38 @@ permissions: | ||||
|   contents: read | ||||
|  | ||||
| jobs: | ||||
|   x86-opbenchmark-build: | ||||
|   opbenchmark-build: | ||||
|     if: github.repository_owner == 'pytorch' | ||||
|     name: x86-opbenchmark-build | ||||
|     name: opbenchmark-build | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     with: | ||||
|       build-environment: linux-jammy-py3.10-gcc11-build | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "cpu_operator_benchmark_${{ inputs.test_mode || 'short' }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" }, | ||||
|           { config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.12xlarge" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   x86-opbenchmark-test: | ||||
|     name: x86-opbenchmark-test | ||||
|     uses: ./.github/workflows/_linux-test.yml | ||||
|     needs: x86-opbenchmark-build | ||||
|     with: | ||||
|       build-environment: linux-jammy-py3.10-gcc11-build | ||||
|       docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }} | ||||
|     secrets: inherit | ||||
|  | ||||
|   aarch64-opbenchmark-build: | ||||
|     if: github.repository_owner == 'pytorch' | ||||
|     name: aarch64-opbenchmark-build | ||||
|   opbenchmark-on-demand-build: | ||||
|     if: ${{ github.event_name == 'workflow_dispatch' && github.repository_owner == 'pytorch' }} | ||||
|     name: opbenchmark-on-demand-build | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     with: | ||||
|       build-environment: linux-jammy-aarch64-py3.10 | ||||
|       runner: linux.arm64.m7g.4xlarge | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11 | ||||
|       build-environment: linux-jammy-py3.10-gcc11-build | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.arm64.m8g.4xlarge" }, | ||||
|           { config: "cpu_operator_benchmark_${{ inputs.test_mode }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   aarch64-opbenchmark-test: | ||||
|     name: aarch64-opbenchmark-test | ||||
|   opbenchmark-test: | ||||
|     name: opbenchmark-test | ||||
|     uses: ./.github/workflows/_linux-test.yml | ||||
|     needs: aarch64-opbenchmark-build | ||||
|     needs: opbenchmark-build | ||||
|     with: | ||||
|       build-environment: linux-jammy-aarch64-py3.10 | ||||
|       docker-image: ${{ needs.aarch64-opbenchmark-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.aarch64-opbenchmark-build.outputs.test-matrix }} | ||||
|       build-environment: linux-jammy-py3.10-gcc11-build | ||||
|       docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }} | ||||
|     secrets: inherit | ||||
|  | ||||
							
								
								
									
										12
									
								
								.github/workflows/rocm-mi355.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.github/workflows/rocm-mi355.yml
									
									
									
									
										vendored
									
									
								
							| @ -45,12 +45,12 @@ jobs: | ||||
|       sync-tag: rocm-build | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" }, | ||||
|           { config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" }, | ||||
|           { config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" }, | ||||
|           { config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" }, | ||||
|           { config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" }, | ||||
|           { config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|  | ||||
							
								
								
									
										63
									
								
								.github/workflows/rocm-navi31.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										63
									
								
								.github/workflows/rocm-navi31.yml
									
									
									
									
										vendored
									
									
								
							| @ -1,63 +0,0 @@ | ||||
| name: rocm-navi31 | ||||
|  | ||||
| on: | ||||
|   push: | ||||
|     tags: | ||||
|       - ciflow/rocm-navi31/* | ||||
|   workflow_dispatch: | ||||
|   schedule: | ||||
|     # We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs. | ||||
|     # Also run less frequently on weekends. | ||||
|     - cron: 45 */2 * * 1-5 | ||||
|     - cron: 45 4,12 * * 0,6 | ||||
|  | ||||
| concurrency: | ||||
|   group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }} | ||||
|   cancel-in-progress: true | ||||
|  | ||||
| permissions: read-all | ||||
|  | ||||
| jobs: | ||||
|   target-determination: | ||||
|     if: github.repository_owner == 'pytorch' | ||||
|     name: before-test | ||||
|     uses: ./.github/workflows/target_determination.yml | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-build: | ||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||
|     name: linux-jammy-rocm-py3.10 | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 | ||||
|       sync-tag: rocm-build | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" }, | ||||
|           { config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-test: | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|     name: linux-jammy-rocm-py3_10 | ||||
|     uses: ./.github/workflows/_rocm-test.yml | ||||
|     needs: | ||||
|       - linux-jammy-rocm-py3_10-build | ||||
|       - target-determination | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }} | ||||
|       tests-to-include: >- | ||||
|          ${{ github.event_name == 'schedule' && 'test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs | ||||
|          test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark | ||||
|          inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor | ||||
|          inductor/test_torchinductor inductor/test_decompose_mem_bound_mm | ||||
|          inductor/test_flex_attention inductor/test_max_autotune' || '' }} | ||||
|     secrets: inherit | ||||
							
								
								
									
										26
									
								
								.github/workflows/rocm.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										26
									
								
								.github/workflows/rocm.yml
									
									
									
									
										vendored
									
									
								
							| @ -59,3 +59,29 @@ jobs: | ||||
|       docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }} | ||||
|     secrets: inherit | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-gfx1100-test: | ||||
|     if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }} | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|     name: linux-jammy-rocm-py3_10-gfx1100 | ||||
|     uses: ./.github/workflows/_rocm-test.yml | ||||
|     needs: | ||||
|       - linux-jammy-rocm-py3_10-build | ||||
|       - target-determination | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }} | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" }, | ||||
|           { config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" }, | ||||
|         ]} | ||||
|       tests-to-include: > | ||||
|          test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs | ||||
|          test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark | ||||
|          inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor | ||||
|          inductor/test_torchinductor inductor/test_decompose_mem_bound_mm | ||||
|          inductor/test_flex_attention inductor/test_max_autotune | ||||
|     secrets: inherit | ||||
|  | ||||
							
								
								
									
										59
									
								
								.github/workflows/trunk.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										59
									
								
								.github/workflows/trunk.yml
									
									
									
									
										vendored
									
									
								
							| @ -180,50 +180,16 @@ jobs: | ||||
|       disable-monitor: false | ||||
|     secrets: inherit | ||||
|  | ||||
|   win-vs2022-cuda12_8-py3-build: | ||||
|     name: win-vs2022-cuda12.8-py3 | ||||
|   win-vs2022-cuda12_6-py3-build: | ||||
|     name: win-vs2022-cuda12.6-py3 | ||||
|     uses: ./.github/workflows/_win-build.yml | ||||
|     needs: get-label-type | ||||
|     with: | ||||
|       build-environment: win-vs2022-cuda12.8-py3 | ||||
|       cuda-version: "12.8" | ||||
|       build-environment: win-vs2022-cuda12.6-py3 | ||||
|       cuda-version: "12.6" | ||||
|       runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" | ||||
|     secrets: inherit | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-build: | ||||
|     if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }} | ||||
|     name: linux-jammy-rocm-py3.10 | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     needs: get-label-type | ||||
|     with: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 | ||||
|       sync-tag: rocm-build | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|           { config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-test: | ||||
|     if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }} | ||||
|     permissions: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|     name: linux-jammy-rocm-py3.10 | ||||
|     uses: ./.github/workflows/_rocm-test.yml | ||||
|     needs: | ||||
|       - linux-jammy-rocm-py3_10-build | ||||
|       - target-determination | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }} | ||||
|       test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }} | ||||
|       tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor" | ||||
|     secrets: inherit | ||||
|  | ||||
|   inductor-build: | ||||
|     name: inductor-build | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
| @ -234,23 +200,6 @@ jobs: | ||||
|       cuda-arch-list: '8.0' | ||||
|     secrets: inherit | ||||
|  | ||||
|   # Test cross-compiled models with Windows libs extracted from wheel | ||||
|   cross-compile-linux-test: | ||||
|     name: cross-compile-linux-test | ||||
|     uses: ./.github/workflows/_linux-test.yml | ||||
|     needs: | ||||
|       - linux-jammy-cuda12_8-py3_10-gcc11-build | ||||
|       - get-label-type | ||||
|       - win-vs2022-cuda12_8-py3-build | ||||
|     with: | ||||
|       build-environment: linux-jammy-cuda12.8-py3.10-gcc11 | ||||
|       docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }} | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" }, | ||||
|         ]} | ||||
|     secrets: inherit | ||||
|  | ||||
|   verify-cachebench-cpu-build: | ||||
|     name: verify-cachebench-cpu-build | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|  | ||||
							
								
								
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @ -374,7 +374,6 @@ third_party/ruy/ | ||||
| third_party/glog/ | ||||
|  | ||||
| # Virtualenv | ||||
| .venv/ | ||||
| venv/ | ||||
|  | ||||
| # Log files | ||||
| @ -396,4 +395,3 @@ android/pytorch_android_torchvision/.cxx | ||||
| CLAUDE.local.md | ||||
| /test_*.py | ||||
| /debug_*.py | ||||
| CLAUDE_CONTEXT/ | ||||
|  | ||||
| @ -209,46 +209,6 @@ command = [ | ||||
|     '@{{PATHSFILE}}' | ||||
| ] | ||||
|  | ||||
|  | ||||
| [[linter]] | ||||
| code = 'PYREFLY' | ||||
| include_patterns = [ | ||||
|     'torch/**/*.py', | ||||
|     'torch/**/*.pyi', | ||||
|     'torchgen/**/*.py', | ||||
|     'torchgen/**/*.pyi', | ||||
|     'functorch/**/*.py', | ||||
|     'functorch/**/*.pyi', | ||||
| ] | ||||
| exclude_patterns = [] | ||||
| command = [ | ||||
|     'python3', | ||||
|     'tools/linter/adapters/pyrefly_linter.py', | ||||
|     '--config=pyrefly.toml', | ||||
| ] | ||||
| init_command = [ | ||||
|     'python3', | ||||
|     'tools/linter/adapters/pip_init.py', | ||||
|     '--dry-run={{DRYRUN}}', | ||||
|     'numpy==2.1.0 ; python_version >= "3.12"', | ||||
|     'expecttest==0.3.0', | ||||
|     'pyrefly==0.36.2', | ||||
|     'sympy==1.13.3', | ||||
|     'types-requests==2.27.25', | ||||
|     'types-pyyaml==6.0.2', | ||||
|     'types-tabulate==0.8.8', | ||||
|     'types-protobuf==5.29.1.20250403', | ||||
|     'types-setuptools==79.0.0.20250422', | ||||
|     'types-jinja2==2.11.9', | ||||
|     'types-colorama==0.4.6', | ||||
|     'filelock==3.18.0', | ||||
|     'junitparser==2.1.1', | ||||
|     'rich==14.1.0', | ||||
|     'optree==0.17.0', | ||||
|     'types-openpyxl==3.1.5.20250919', | ||||
|     'types-python-dateutil==2.9.0.20251008' | ||||
| ] | ||||
|  | ||||
| [[linter]] | ||||
| code = 'CLANGTIDY' | ||||
| include_patterns = [ | ||||
|  | ||||
							
								
								
									
										14
									
								
								CODEOWNERS
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								CODEOWNERS
									
									
									
									
									
								
							| @ -201,17 +201,3 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A | ||||
| /torch/csrc/stable/ @janeyx99 @mikaylagawarecki | ||||
| /torch/headeronly/ @janeyx99 | ||||
| /torch/header_only_apis.txt @janeyx99 | ||||
|  | ||||
| # FlexAttention | ||||
| /torch/nn/attention/flex_attention.py @drisspg | ||||
| /torch/_higher_order_ops/flex_attention.py @drisspg | ||||
| /torch/_inductor/kernel/flex/ @drisspg | ||||
| /torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg | ||||
| /test/inductor/test_flex_attention.py @drisspg | ||||
| /test/inductor/test_flex_decoding.py @drisspg | ||||
|  | ||||
| # Low Precision GEMMs | ||||
| /aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58 | ||||
| /aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58 | ||||
| /aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58 | ||||
| /test/test_scaled_matmul_cuda.py @drisspg @slayton58 | ||||
|  | ||||
| @ -256,7 +256,6 @@ endif() | ||||
| IF(USE_FBGEMM_GENAI) | ||||
|   set(FBGEMM_THIRD_PARTY ${PROJECT_SOURCE_DIR}/third_party/fbgemm/external/) | ||||
|   set(FBGEMM_GENAI_SRCS ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize) | ||||
|  | ||||
|   if(USE_CUDA) | ||||
|     # To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build. | ||||
|     # If you want to integrate a kernel from FBGEMM into torch, you have to add it here. | ||||
| @ -293,18 +292,15 @@ IF(USE_FBGEMM_GENAI) | ||||
|       "${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/" | ||||
|     ) | ||||
|  | ||||
|     target_include_directories(fbgemm_genai PRIVATE | ||||
|     target_include_directories(fbgemm_genai PUBLIC | ||||
|       ${FBGEMM_THIRD_PARTY}/cutlass/include | ||||
|       ${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include | ||||
|       ${fbgemm_genai_mx8mx8bf16_grouped} | ||||
|       ${FBGEMM_GENAI_SRCS}/common/include/   # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp | ||||
|       ${FBGEMM_GENAI_SRCS}/include/          # includes fbgemm_gpu/torch_ops.h | ||||
|     ) | ||||
|  | ||||
|     # Add FBGEMM_GENAI include directories for torch_ops.h | ||||
|     list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include) | ||||
|     list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include) | ||||
|   elseif(USE_ROCM) | ||||
|   else() | ||||
|     if(USE_ROCM) | ||||
|       # Only include the kernels we want to build to avoid increasing binary size. | ||||
|       file(GLOB_RECURSE fbgemm_genai_native_rocm_hip | ||||
|         "${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip" | ||||
| @ -313,14 +309,13 @@ IF(USE_FBGEMM_GENAI) | ||||
|  | ||||
|       # Add additional HIPCC compiler flags for performance | ||||
|       set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS | ||||
|         -mllvm | ||||
|         -amdgpu-coerce-illegal-types=1 | ||||
|         -mllvm | ||||
|         -enable-post-misched=0 | ||||
|         -mllvm | ||||
|         -greedy-reverse-local-assignment=1 | ||||
|         -fhip-new-launch-api) | ||||
|     if(DEFINED ROCM_VERSION_DEV AND ROCM_VERSION_DEV VERSION_LESS "7.2.0") | ||||
|         list(PREPEND FBGEMM_GENAI_EXTRA_HIPCC_FLAGS -mllvm -amdgpu-coerce-illegal-types=1) | ||||
|       endif() | ||||
|  | ||||
|       # Only compile for gfx942 for now. | ||||
|       # This is rather hacky, I could not figure out a clean solution :( | ||||
| @ -339,7 +334,7 @@ IF(USE_FBGEMM_GENAI) | ||||
|       set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON) | ||||
|       target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES) | ||||
|  | ||||
|     target_include_directories(fbgemm_genai PRIVATE | ||||
|       target_include_directories(fbgemm_genai PUBLIC | ||||
|         # FBGEMM version of Composable Kernel is used due to some customizations | ||||
|         ${FBGEMM_THIRD_PARTY}/composable_kernel/include | ||||
|         ${FBGEMM_THIRD_PARTY}/composable_kernel/library/include | ||||
| @ -348,10 +343,7 @@ IF(USE_FBGEMM_GENAI) | ||||
|         ${FBGEMM_GENAI_SRCS}/common/include/   # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp | ||||
|         ${FBGEMM_GENAI_SRCS}/include/          # includes fbgemm_gpu/torch_ops.h | ||||
|       ) | ||||
|  | ||||
|     # Add FBGEMM_GENAI include directories for torch_ops.h | ||||
|     list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include) | ||||
|     list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include) | ||||
|     endif() | ||||
|   endif() | ||||
| endif() | ||||
|  | ||||
| @ -700,6 +692,12 @@ if(USE_CUDA AND NOT USE_ROCM) | ||||
|   list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/include) | ||||
|   list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/tools/util/include) | ||||
|  | ||||
|   # Add FBGEMM_GENAI include directories for torch_ops.h | ||||
|   if(USE_FBGEMM_GENAI) | ||||
|     list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include) | ||||
|     list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include) | ||||
|   endif() | ||||
|  | ||||
|   if($ENV{ATEN_STATIC_CUDA}) | ||||
|     if(CUDA_VERSION VERSION_LESS_EQUAL 12.9) | ||||
|       list(APPEND ATen_CUDA_DEPENDENCY_LIBS | ||||
|  | ||||
| @ -389,16 +389,37 @@ void fillVersion<DLManagedTensorVersioned>( | ||||
| // constructed out of ATen tensor | ||||
| template <class T> | ||||
| T* toDLPackImpl(const Tensor& src) { | ||||
|   auto view = src; | ||||
|  | ||||
|   // Detect whether there is need to normalize the strides | ||||
|   // Background: gh-83069 | ||||
|   // | ||||
|   // However, normalizing strides can come at a high-cost | ||||
|   // to slow down toDLPack conversion 3x, so we | ||||
|   // only normalize if needed. | ||||
|   // | ||||
|   // The following code detects whether the src follows | ||||
|   // a continuous pattern. If the src follows such pattern (common-case) | ||||
|   // then we do not need to normalize the strides. | ||||
|   bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1; | ||||
|   // less common case, try normalizing the strides | ||||
|   if (need_normalize_strides) { | ||||
|     // create a new tensor with possibly normalized strides | ||||
|     // gh-83069 | ||||
|     auto shape = src.sizes(); | ||||
|     view = src.as_strided(shape, {1}, src.storage_offset()); | ||||
|   } | ||||
|  | ||||
|   ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>); | ||||
|   atDLMTensor->handle = src; | ||||
|   atDLMTensor->handle = view; | ||||
|   atDLMTensor->tensor.manager_ctx = atDLMTensor; | ||||
|   atDLMTensor->tensor.deleter = &deleter<T>; | ||||
|   atDLMTensor->tensor.dl_tensor.data = src.data_ptr(); | ||||
|   atDLMTensor->tensor.dl_tensor.data = view.data_ptr(); | ||||
|   atDLMTensor->tensor.dl_tensor.device = torchDeviceToDLDevice(src.device()); | ||||
|   atDLMTensor->tensor.dl_tensor.ndim = static_cast<int32_t>(src.dim()); | ||||
|   atDLMTensor->tensor.dl_tensor.dtype = getDLDataType(src); | ||||
|   atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(src.sizes().data()); | ||||
|   atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(src.strides().data()); | ||||
|   atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(view.sizes().data()); | ||||
|   atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(view.strides().data()); | ||||
|   atDLMTensor->tensor.dl_tensor.byte_offset = 0; | ||||
|   fillVersion(&atDLMTensor->tensor); | ||||
|  | ||||
|  | ||||
| @ -52,16 +52,16 @@ struct DLPackTraits {}; | ||||
|  | ||||
| template <> | ||||
| struct DLPackTraits<DLManagedTensor> { | ||||
|   inline static constexpr const char* capsule = "dltensor"; | ||||
|   inline static constexpr const char* used = "used_dltensor"; | ||||
|   inline static const char* capsule = "dltensor"; | ||||
|   inline static const char* used = "used_dltensor"; | ||||
|   inline static auto toDLPack = at::toDLPack; | ||||
|   inline static auto fromDLPack = at::fromDLPack; | ||||
| }; | ||||
|  | ||||
| template <> | ||||
| struct DLPackTraits<DLManagedTensorVersioned> { | ||||
|   inline static constexpr const char* capsule = "dltensor_versioned"; | ||||
|   inline static constexpr const char* used = "used_dltensor_versioned"; | ||||
|   inline static const char* capsule = "dltensor_versioned"; | ||||
|   inline static const char* used = "used_dltensor_versioned"; | ||||
|   inline static auto toDLPack = at::toDLPackVersioned; | ||||
|   inline static auto fromDLPack = at::fromDLPackVersioned; | ||||
| }; | ||||
|  | ||||
| @ -42,14 +42,8 @@ const PythonTorchFunctionTLS& PythonTorchFunctionTLS::get_state() { | ||||
| } | ||||
|  | ||||
| bool torch_function_mode_enabled() { | ||||
|   // Manually flatten because gcc is refusing to inline here.  Note | ||||
|   // that we are still calling __tls_get_addr twice here with GCC, | ||||
|   // presumably because of | ||||
|   // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81501 (which says | ||||
|   // the fix ships in GCC 16), but forcing inlining still improves | ||||
|   // performance. | ||||
|   const auto& ptfs = pythonTorchFunctionState; | ||||
|   return ptfs.disabled_state_ != TorchFunctionDisabledState::ALL_DISABLED && !ptfs.stack_.empty(); | ||||
|   return PythonTorchFunctionTLS::get_disabled_state() != TorchFunctionDisabledState::ALL_DISABLED && | ||||
|          PythonTorchFunctionTLS::stack_len() > 0; | ||||
| } | ||||
|  | ||||
| // This is needed to disambiguate the ternary torch function disabled states | ||||
|  | ||||
| @ -27,7 +27,6 @@ struct TORCH_API PythonTorchFunctionTLS { | ||||
|   TorchFunctionDisabledState disabled_state_ = | ||||
|       TorchFunctionDisabledState::ENABLED; | ||||
|   std::vector<std::shared_ptr<c10::SafePyObject>> stack_; | ||||
|   friend TORCH_API bool torch_function_mode_enabled(); | ||||
| }; | ||||
|  | ||||
| TORCH_API bool torch_function_mode_enabled(); | ||||
|  | ||||
| @ -39,7 +39,7 @@ struct HostBlock { | ||||
| }; | ||||
|  | ||||
| template <typename B> | ||||
| struct alignas(hardware_destructive_interference_size) FreeBlockList { | ||||
| struct alignas(64) FreeBlockList { | ||||
|   std::mutex mutex_; | ||||
|   std::deque<B*> list_; | ||||
| }; | ||||
| @ -122,7 +122,7 @@ struct TORCH_API HostStats { | ||||
| // Struct containing memory allocator summary statistics for host, as they | ||||
| // are staged for reporting. This is a temporary struct that is used to | ||||
| // avoid locking the allocator while collecting stats. | ||||
| struct alignas(hardware_destructive_interference_size) HostStatsStaged { | ||||
| struct alignas(64) HostStatsStaged { | ||||
|   std::mutex timing_mutex_; | ||||
|   // COUNT: total allocations (active + free) | ||||
|   // LOCK: access to this stat is protected by the allocator's blocks_mutex_ | ||||
| @ -669,7 +669,7 @@ struct CachingHostAllocatorImpl { | ||||
|     TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for query_event"); | ||||
|   } | ||||
|  | ||||
|   alignas(hardware_destructive_interference_size) std::mutex blocks_mutex_; | ||||
|   alignas(64) std::mutex blocks_mutex_; | ||||
|   ska::flat_hash_set<B*> blocks_; // block list | ||||
|   ska::flat_hash_map<void*, B*> ptr_to_block_; | ||||
|  | ||||
| @ -677,17 +677,17 @@ struct CachingHostAllocatorImpl { | ||||
|   // size. This allows us to quickly find a free block of the right size. | ||||
|   // We use deque to store per size free list and guard the list with its own | ||||
|   // mutex. | ||||
|   alignas(hardware_destructive_interference_size) std::vector<FreeBlockList<B>> free_list_ = | ||||
|   alignas(64) std::vector<FreeBlockList<B>> free_list_ = | ||||
|       std::vector<FreeBlockList<B>>(MAX_SIZE_INDEX); | ||||
|  | ||||
|   alignas(hardware_destructive_interference_size) std::mutex events_mutex_; | ||||
|   alignas(64) std::mutex events_mutex_; | ||||
|   std::deque<std::pair<E, B*>> events_; // event queue paired with block | ||||
|  | ||||
|   // Indicates whether the object is active. | ||||
|   // Set to false in the destructor to signal background threads to stop. | ||||
|   std::atomic<bool> active_{true}; | ||||
| protected: | ||||
|   alignas(hardware_destructive_interference_size) HostStatsStaged stats_; | ||||
|   alignas(64) HostStatsStaged stats_; | ||||
| }; | ||||
|  | ||||
| struct TORCH_API HostAllocator : public at::Allocator { | ||||
|  | ||||
| @ -229,10 +229,10 @@ private: | ||||
|   } | ||||
|  | ||||
|  | ||||
|   static constexpr uint32_t kPhilox10A = 0x9E3779B9; | ||||
|   static constexpr uint32_t kPhilox10B = 0xBB67AE85; | ||||
|   static constexpr uint32_t kPhiloxSA = 0xD2511F53; | ||||
|   static constexpr uint32_t kPhiloxSB = 0xCD9E8D57; | ||||
|   static const uint32_t kPhilox10A = 0x9E3779B9; | ||||
|   static const uint32_t kPhilox10B = 0xBB67AE85; | ||||
|   static const uint32_t kPhiloxSA = 0xD2511F53; | ||||
|   static const uint32_t kPhiloxSB = 0xCD9E8D57; | ||||
| }; | ||||
|  | ||||
| typedef philox_engine Philox4_32; | ||||
|  | ||||
| @ -624,14 +624,7 @@ struct TORCH_API IValue final { | ||||
|   IValue(const c10::SymBool& i) { | ||||
|     if (auto mi = i.maybe_as_bool()) { | ||||
|       tag = Tag::Bool; | ||||
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ | ||||
|       payload.u.as_int = *mi; | ||||
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ | ||||
|       /* due to byteorder if value assigned as_int, as_bool actually is not set correctly */ | ||||
|       payload.u.as_bool = *mi; | ||||
| #else | ||||
| #error Unexpected or undefined __BYTE_ORDER__ | ||||
| #endif | ||||
|     } else { | ||||
|       tag = Tag::SymBool; | ||||
|       payload.u.as_intrusive_ptr = i.toSymNodeImpl().release(); | ||||
|  | ||||
| @ -8,7 +8,6 @@ | ||||
| #include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_float_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_half_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_int_aarch64.h> | ||||
| #endif | ||||
|  | ||||
| #include <ATen/cpu/vec/vec128/vec128_convert.h> | ||||
|  | ||||
| @ -1,794 +0,0 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include <ATen/cpu/vec/intrinsics.h> | ||||
| #include <ATen/cpu/vec/vec_base.h> | ||||
| #include <c10/macros/Macros.h> | ||||
| #include <c10/util/irange.h> | ||||
|  | ||||
| namespace at::vec { | ||||
| // Note [CPU_CAPABILITY namespace] | ||||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
| // This header, and all of its subheaders, will be compiled with | ||||
| // different architecture flags for each supported set of vector | ||||
| // intrinsics. So we need to make sure they aren't inadvertently | ||||
| // linked together. We do this by declaring objects in an `inline | ||||
| // namespace` which changes the name mangling, but can still be | ||||
| // accessed as `at::vec`. | ||||
| inline namespace CPU_CAPABILITY { | ||||
|  | ||||
| #define VEC_INT_NEON_TEMPLATE(vl, bit)                                        \ | ||||
|   template <>                                                                 \ | ||||
|   struct is_vec_specialized_for<int##bit##_t> : std::bool_constant<true> {};  \ | ||||
|                                                                               \ | ||||
|   template <>                                                                 \ | ||||
|   class Vectorized<int##bit##_t> {                                            \ | ||||
|     using neon_type = int##bit##x##vl##_t;                                    \ | ||||
|                                                                               \ | ||||
|    private:                                                                   \ | ||||
|     neon_type values;                                                         \ | ||||
|                                                                               \ | ||||
|    public:                                                                    \ | ||||
|     using value_type = int##bit##_t;                                          \ | ||||
|     using size_type = int;                                                    \ | ||||
|     static constexpr size_type size() {                                       \ | ||||
|       return vl;                                                              \ | ||||
|     }                                                                         \ | ||||
|     Vectorized() {                                                            \ | ||||
|       values = vdupq_n_s##bit(0);                                             \ | ||||
|     }                                                                         \ | ||||
|     Vectorized(neon_type v) : values(v) {}                                    \ | ||||
|     Vectorized(int##bit##_t val);                                             \ | ||||
|     template <                                                                \ | ||||
|         typename... Args,                                                     \ | ||||
|         typename = std::enable_if_t<(sizeof...(Args) == size())>>             \ | ||||
|     Vectorized(Args... vals) {                                                \ | ||||
|       __at_align__ int##bit##_t buffer[size()] = {vals...};                   \ | ||||
|       values = vld1q_s##bit(buffer);                                          \ | ||||
|     }                                                                         \ | ||||
|     operator neon_type() const {                                              \ | ||||
|       return values;                                                          \ | ||||
|     }                                                                         \ | ||||
|     static Vectorized<int##bit##_t> loadu(                                    \ | ||||
|         const void* ptr,                                                      \ | ||||
|         int64_t count = size());                                              \ | ||||
|     void store(void* ptr, int64_t count = size()) const;                      \ | ||||
|     template <int64_t mask>                                                   \ | ||||
|     static Vectorized<int##bit##_t> blend(                                    \ | ||||
|         const Vectorized<int##bit##_t>& a,                                    \ | ||||
|         const Vectorized<int##bit##_t>& b);                                   \ | ||||
|     static Vectorized<int##bit##_t> blendv(                                   \ | ||||
|         const Vectorized<int##bit##_t>& a,                                    \ | ||||
|         const Vectorized<int##bit##_t>& b,                                    \ | ||||
|         const Vectorized<int##bit##_t>& mask_) {                              \ | ||||
|       return vbslq_s##bit(vreinterpretq_u##bit##_s##bit(mask_.values), b, a); \ | ||||
|     }                                                                         \ | ||||
|     template <typename step_t>                                                \ | ||||
|     static Vectorized<int##bit##_t> arange(                                   \ | ||||
|         value_type base = 0,                                                  \ | ||||
|         step_t step = static_cast<step_t>(1));                                \ | ||||
|     static Vectorized<int##bit##_t> set(                                      \ | ||||
|         const Vectorized<int##bit##_t>& a,                                    \ | ||||
|         const Vectorized<int##bit##_t>& b,                                    \ | ||||
|         int64_t count = size());                                              \ | ||||
|     const int##bit##_t& operator[](int idx) const = delete;                   \ | ||||
|     int##bit##_t& operator[](int idx) = delete;                               \ | ||||
|     Vectorized<int##bit##_t> abs() const {                                    \ | ||||
|       return vabsq_s##bit(values);                                            \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> real() const {                                   \ | ||||
|       return values;                                                          \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> imag() const {                                   \ | ||||
|       return vdupq_n_s##bit(0);                                               \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> conj() const {                                   \ | ||||
|       return values;                                                          \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> neg() const {                                    \ | ||||
|       return vnegq_s##bit(values);                                            \ | ||||
|     }                                                                         \ | ||||
|     int##bit##_t reduce_add() const {                                         \ | ||||
|       return vaddvq_s##bit(values);                                           \ | ||||
|     }                                                                         \ | ||||
|     int##bit##_t reduce_max() const;                                          \ | ||||
|     Vectorized<int##bit##_t> operator==(                                      \ | ||||
|         const Vectorized<int##bit##_t>& other) const {                        \ | ||||
|       return Vectorized<value_type>(                                          \ | ||||
|           vreinterpretq_s##bit##_u##bit(vceqq_s##bit(values, other.values))); \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> operator!=(                                      \ | ||||
|         const Vectorized<int##bit##_t>& other) const;                         \ | ||||
|     Vectorized<int##bit##_t> operator<(                                       \ | ||||
|         const Vectorized<int##bit##_t>& other) const {                        \ | ||||
|       return Vectorized<value_type>(                                          \ | ||||
|           vreinterpretq_s##bit##_u##bit(vcltq_s##bit(values, other.values))); \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> operator<=(                                      \ | ||||
|         const Vectorized<int##bit##_t>& other) const {                        \ | ||||
|       return Vectorized<value_type>(                                          \ | ||||
|           vreinterpretq_s##bit##_u##bit(vcleq_s##bit(values, other.values))); \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> operator>(                                       \ | ||||
|         const Vectorized<int##bit##_t>& other) const {                        \ | ||||
|       return Vectorized<value_type>(                                          \ | ||||
|           vreinterpretq_s##bit##_u##bit(vcgtq_s##bit(values, other.values))); \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> operator>=(                                      \ | ||||
|         const Vectorized<int##bit##_t>& other) const {                        \ | ||||
|       return Vectorized<value_type>(                                          \ | ||||
|           vreinterpretq_s##bit##_u##bit(vcgeq_s##bit(values, other.values))); \ | ||||
|     }                                                                         \ | ||||
|     Vectorized<int##bit##_t> eq(const Vectorized<int##bit##_t>& other) const; \ | ||||
|     Vectorized<int##bit##_t> ne(const Vectorized<int##bit##_t>& other) const; \ | ||||
|     Vectorized<int##bit##_t> gt(const Vectorized<int##bit##_t>& other) const; \ | ||||
|     Vectorized<int##bit##_t> ge(const Vectorized<int##bit##_t>& other) const; \ | ||||
|     Vectorized<int##bit##_t> lt(const Vectorized<int##bit##_t>& other) const; \ | ||||
|     Vectorized<int##bit##_t> le(const Vectorized<int##bit##_t>& other) const; \ | ||||
|   };                                                                          \ | ||||
|   template <>                                                                 \ | ||||
|   Vectorized<int##bit##_t> inline operator+(                                  \ | ||||
|       const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \ | ||||
|     return vaddq_s##bit(a, b);                                                \ | ||||
|   }                                                                           \ | ||||
|   template <>                                                                 \ | ||||
|   Vectorized<int##bit##_t> inline operator-(                                  \ | ||||
|       const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \ | ||||
|     return vsubq_s##bit(a, b);                                                \ | ||||
|   }                                                                           \ | ||||
|   template <>                                                                 \ | ||||
|   Vectorized<int##bit##_t> inline operator&(                                  \ | ||||
|       const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \ | ||||
|     return vandq_s##bit(a, b);                                                \ | ||||
|   }                                                                           \ | ||||
|   template <>                                                                 \ | ||||
|   Vectorized<int##bit##_t> inline operator|(                                  \ | ||||
|       const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \ | ||||
|     return vorrq_s##bit(a, b);                                                \ | ||||
|   }                                                                           \ | ||||
|   template <>                                                                 \ | ||||
|   Vectorized<int##bit##_t> inline operator^(                                  \ | ||||
|       const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \ | ||||
|     return veorq_s##bit(a, b);                                                \ | ||||
|   }                                                                           \ | ||||
|   Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::eq(               \ | ||||
|       const Vectorized<int##bit##_t>& other) const {                          \ | ||||
|     return (*this == other) & Vectorized<int##bit##_t>(1);                    \ | ||||
|   }                                                                           \ | ||||
|   Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ne(               \ | ||||
|       const Vectorized<int##bit##_t>& other) const {                          \ | ||||
|     return (*this != other) & Vectorized<int##bit##_t>(1);                    \ | ||||
|   }                                                                           \ | ||||
|   Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::gt(               \ | ||||
|       const Vectorized<int##bit##_t>& other) const {                          \ | ||||
|     return (*this > other) & Vectorized<int##bit##_t>(1);                     \ | ||||
|   }                                                                           \ | ||||
|   Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ge(               \ | ||||
|       const Vectorized<int##bit##_t>& other) const {                          \ | ||||
|     return (*this >= other) & Vectorized<int##bit##_t>(1);                    \ | ||||
|   }                                                                           \ | ||||
|   Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::lt(               \ | ||||
|       const Vectorized<int##bit##_t>& other) const {                          \ | ||||
|     return (*this < other) & Vectorized<int##bit##_t>(1);                     \ | ||||
|   }                                                                           \ | ||||
|   Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::le(               \ | ||||
|       const Vectorized<int##bit##_t>& other) const {                          \ | ||||
|     return (*this <= other) & Vectorized<int##bit##_t>(1);                    \ | ||||
|   } | ||||
|  | ||||
| VEC_INT_NEON_TEMPLATE(2, 64) | ||||
| VEC_INT_NEON_TEMPLATE(4, 32) | ||||
| VEC_INT_NEON_TEMPLATE(8, 16) | ||||
| VEC_INT_NEON_TEMPLATE(16, 8) | ||||
|  | ||||
| inline int32_t Vectorized<int32_t>::reduce_max() const { | ||||
|   return vmaxvq_s32(values); | ||||
| } | ||||
|  | ||||
| inline int16_t Vectorized<int16_t>::reduce_max() const { | ||||
|   return vmaxvq_s16(values); | ||||
| } | ||||
|  | ||||
| inline int8_t Vectorized<int8_t>::reduce_max() const { | ||||
|   return vmaxvq_s8(values); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline operator*( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   return vmulq_s32(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline operator*( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   return vmulq_s16(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline operator*( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   return vmulq_s8(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline Vectorized<int64_t> operator~(const Vectorized<int64_t>& a) { | ||||
|   int64x2_t val = a; | ||||
|   return ~val; | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline Vectorized<int32_t> operator~(const Vectorized<int32_t>& a) { | ||||
|   return vmvnq_s32(a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline Vectorized<int16_t> operator~(const Vectorized<int16_t>& a) { | ||||
|   return vmvnq_s16(a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline Vectorized<int8_t> operator~(const Vectorized<int8_t>& a) { | ||||
|   return vmvnq_s8(a); | ||||
| } | ||||
|  | ||||
| inline Vectorized<int64_t> Vectorized<int64_t>::operator!=( | ||||
|     const Vectorized<int64_t>& other) const { | ||||
|   return ~(*this == other); | ||||
| } | ||||
|  | ||||
| inline Vectorized<int32_t> Vectorized<int32_t>::operator!=( | ||||
|     const Vectorized<int32_t>& other) const { | ||||
|   return ~(*this == other); | ||||
| } | ||||
|  | ||||
| inline Vectorized<int16_t> Vectorized<int16_t>::operator!=( | ||||
|     const Vectorized<int16_t>& other) const { | ||||
|   return ~(*this == other); | ||||
| } | ||||
|  | ||||
| inline Vectorized<int8_t> Vectorized<int8_t>::operator!=( | ||||
|     const Vectorized<int8_t>& other) const { | ||||
|   return ~(*this == other); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline minimum( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   return vminq_s32(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline minimum( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   return vminq_s16(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline minimum( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   return vminq_s8(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline maximum( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   return vmaxq_s32(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline maximum( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   return vmaxq_s16(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline maximum( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   return vmaxq_s8(a, b); | ||||
| } | ||||
|  | ||||
| template <int64_t mask> | ||||
| Vectorized<int64_t> Vectorized<int64_t>::blend( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   // Build an array of flags: each bit of element is 1 if the corresponding bit | ||||
|   // in 'mask' is set, 0 otherwise. | ||||
|   uint64x2_t maskArray = { | ||||
|       (mask & 1LL) ? 0xFFFFFFFFFFFFFFFF : 0, | ||||
|       (mask & 2LL) ? 0xFFFFFFFFFFFFFFFF : 0}; | ||||
|   // Use BSL to select elements from b where the mask is 1, else from a | ||||
|   return vbslq_s64(maskArray, b.values, a.values); | ||||
| } | ||||
|  | ||||
| template <int64_t mask> | ||||
| Vectorized<int32_t> Vectorized<int32_t>::blend( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   // Build an array of flags: each bit of element is 1 if the corresponding bit | ||||
|   // in 'mask' is set, 0 otherwise. | ||||
|   uint32x4_t maskArray = { | ||||
|       (mask & 1LL) ? 0xFFFFFFFF : 0, | ||||
|       (mask & 2LL) ? 0xFFFFFFFF : 0, | ||||
|       (mask & 4LL) ? 0xFFFFFFFF : 0, | ||||
|       (mask & 8LL) ? 0xFFFFFFFF : 0}; | ||||
|   // Use BSL to select elements from b where the mask is 1, else from a | ||||
|   return vbslq_s32(maskArray, b.values, a.values); | ||||
| } | ||||
|  | ||||
| template <int64_t mask> | ||||
| Vectorized<int16_t> Vectorized<int16_t>::blend( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   // Build an array of flags: each bit of element is 1 if the corresponding bit | ||||
|   // in 'mask' is set, 0 otherwise. | ||||
|   uint16x8_t maskArray = { | ||||
|       (mask & 1LL) ? 0xFFFF : 0, | ||||
|       (mask & 2LL) ? 0xFFFF : 0, | ||||
|       (mask & 4LL) ? 0xFFFF : 0, | ||||
|       (mask & 8LL) ? 0xFFFF : 0, | ||||
|       (mask & 16LL) ? 0xFFFF : 0, | ||||
|       (mask & 32LL) ? 0xFFFF : 0, | ||||
|       (mask & 64LL) ? 0xFFFF : 0, | ||||
|       (mask & 128LL) ? 0xFFFF : 0}; | ||||
|   // Use BSL to select elements from b where the mask is 1, else from a | ||||
|   return vbslq_s16(maskArray, b.values, a.values); | ||||
| } | ||||
|  | ||||
| template <int64_t mask> | ||||
| Vectorized<int8_t> Vectorized<int8_t>::blend( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   // Build an array of flags: each bit of element is 1 if the corresponding bit | ||||
|   // in 'mask' is set, 0 otherwise. | ||||
|   uint8x16_t maskArray = { | ||||
|       (mask & 1LL) ? 0xFF : 0, | ||||
|       (mask & 2LL) ? 0xFF : 0, | ||||
|       (mask & 4LL) ? 0xFF : 0, | ||||
|       (mask & 8LL) ? 0xFF : 0, | ||||
|       (mask & 16LL) ? 0xFF : 0, | ||||
|       (mask & 32LL) ? 0xFF : 0, | ||||
|       (mask & 64LL) ? 0xFF : 0, | ||||
|       (mask & 128LL) ? 0xFF : 0, | ||||
|       (mask & 256LL) ? 0xFF : 0, | ||||
|       (mask & 512LL) ? 0xFF : 0, | ||||
|       (mask & 1024LL) ? 0xFF : 0, | ||||
|       (mask & 2048LL) ? 0xFF : 0, | ||||
|       (mask & 4096LL) ? 0xFF : 0, | ||||
|       (mask & 8192LL) ? 0xFF : 0, | ||||
|       (mask & 16384LL) ? 0xFF : 0, | ||||
|       (mask & 32768LL) ? 0xFF : 0}; | ||||
|   // Use BSL to select elements from b where the mask is 1, else from a | ||||
|   return vbslq_s8(maskArray, b.values, a.values); | ||||
| } | ||||
|  | ||||
| #define VEC_INT_NEON_OPS(vl, bit)                                             \ | ||||
|   inline Vectorized<int##bit##_t>::Vectorized(int##bit##_t val) {             \ | ||||
|     values = vdupq_n_s##bit(val);                                             \ | ||||
|   }                                                                           \ | ||||
|   inline Vectorized<int##bit##_t> Vectorized<int##bit##_t>::loadu(            \ | ||||
|       const void* ptr, int64_t count) {                                       \ | ||||
|     if (count == size()) {                                                    \ | ||||
|       return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(ptr));        \ | ||||
|     } else {                                                                  \ | ||||
|       __at_align__ int##bit##_t tmp_values[size()];                           \ | ||||
|       for (const auto i : c10::irange(size())) {                              \ | ||||
|         tmp_values[i] = 0;                                                    \ | ||||
|       }                                                                       \ | ||||
|       std::memcpy(                                                            \ | ||||
|           tmp_values,                                                         \ | ||||
|           reinterpret_cast<const int##bit##_t*>(ptr),                         \ | ||||
|           count * sizeof(int##bit##_t));                                      \ | ||||
|       return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(tmp_values)); \ | ||||
|     }                                                                         \ | ||||
|   }                                                                           \ | ||||
|   inline void Vectorized<int##bit##_t>::store(void* ptr, int64_t count)       \ | ||||
|       const {                                                                 \ | ||||
|     if (count == size()) {                                                    \ | ||||
|       vst1q_s##bit(reinterpret_cast<int##bit##_t*>(ptr), values);             \ | ||||
|     } else {                                                                  \ | ||||
|       int##bit##_t tmp_values[size()];                                        \ | ||||
|       vst1q_s##bit(reinterpret_cast<int##bit##_t*>(tmp_values), values);      \ | ||||
|       std::memcpy(ptr, tmp_values, count * sizeof(int##bit##_t));             \ | ||||
|     }                                                                         \ | ||||
|   } | ||||
|  | ||||
| VEC_INT_NEON_OPS(2, 64) | ||||
| VEC_INT_NEON_OPS(4, 32) | ||||
| VEC_INT_NEON_OPS(8, 16) | ||||
| VEC_INT_NEON_OPS(16, 8) | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline operator*( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   int64x2_t x = a; | ||||
|   int64x2_t y = b; | ||||
|   return x * y; | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline operator/( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   int64x2_t x = a; | ||||
|   int64x2_t y = b; | ||||
|   return x / y; | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline operator/( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   int32x4_t x = a; | ||||
|   int32x4_t y = b; | ||||
|   return x / y; | ||||
| } | ||||
|  | ||||
| inline int64_t Vectorized<int64_t>::reduce_max() const { | ||||
|   return std::max(values[0], values[1]); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline minimum( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   int64x2_t x = a; | ||||
|   int64x2_t y = b; | ||||
|   return {std::min(x[0], y[0]), std::min(x[1], y[1])}; | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline maximum( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   int64x2_t x = a; | ||||
|   int64x2_t y = b; | ||||
|   return {std::max(x[0], y[0]), std::max(x[1], y[1])}; | ||||
| } | ||||
|  | ||||
| template <typename step_t> | ||||
| inline Vectorized<int64_t> Vectorized<int64_t>::arange( | ||||
|     int64_t base, | ||||
|     step_t step) { | ||||
|   const Vectorized<int64_t> base_vec(base); | ||||
|   const Vectorized<int64_t> step_vec(step); | ||||
|   const int64x2_t step_sizes = {0, 1}; | ||||
|   return base_vec.values + step_sizes * step_vec.values; | ||||
| } | ||||
|  | ||||
| template <typename step_t> | ||||
| inline Vectorized<int32_t> Vectorized<int32_t>::arange( | ||||
|     int32_t base, | ||||
|     step_t step) { | ||||
|   const Vectorized<int32_t> base_vec(base); | ||||
|   const Vectorized<int32_t> step_vec(step); | ||||
|   const int32x4_t step_sizes = {0, 1, 2, 3}; | ||||
|   return vmlaq_s32(base_vec, step_sizes, step_vec); | ||||
| } | ||||
|  | ||||
| template <typename step_t> | ||||
| inline Vectorized<int16_t> Vectorized<int16_t>::arange( | ||||
|     int16_t base, | ||||
|     step_t step) { | ||||
|   const Vectorized<int16_t> base_vec(base); | ||||
|   const Vectorized<int16_t> step_vec(step); | ||||
|   const int16x8_t step_sizes = {0, 1, 2, 3, 4, 5, 6, 7}; | ||||
|   return vmlaq_s16(base_vec, step_sizes, step_vec); | ||||
| } | ||||
|  | ||||
| template <typename step_t> | ||||
| inline Vectorized<int8_t> Vectorized<int8_t>::arange(int8_t base, step_t step) { | ||||
|   const Vectorized<int8_t> base_vec(base); | ||||
|   const Vectorized<int8_t> step_vec(step); | ||||
|   const int8x16_t step_sizes = { | ||||
|       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; | ||||
|   return vmlaq_s8(base_vec, step_sizes, step_vec); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline operator>>( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   int64x2_t x = a; | ||||
|   int64x2_t y = b; | ||||
|   uint64x2_t u = vreinterpretq_u64_s64(y); | ||||
|   uint64x2_t z = {std::min(u[0], (uint64_t)63), std::min(u[1], (uint64_t)63)}; | ||||
|   return x >> vreinterpretq_s64_u64(z); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline operator>>( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   int32x4_t x = a; | ||||
|   int32x4_t y = b; | ||||
|   uint32x4_t bound = vdupq_n_u32(31); | ||||
|   uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound); | ||||
|   return x >> vreinterpretq_s32_u32(z); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline operator>>( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   int16x8_t x = a; | ||||
|   int16x8_t y = b; | ||||
|   uint16x8_t bound = vdupq_n_u16(15); | ||||
|   uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound); | ||||
|   return x >> vreinterpretq_s16_u16(z); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline operator>>( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   int8x16_t x = a; | ||||
|   int8x16_t y = b; | ||||
|   uint8x16_t bound = vdupq_n_u8(7); | ||||
|   int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound)); | ||||
|   return x >> z; | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline operator<<( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b) { | ||||
|   int64x2_t y = b; | ||||
|   uint64x2_t u = vreinterpretq_u64_s64(y); | ||||
|   uint64x2_t z = {std::min(u[0], (uint64_t)64), std::min(u[1], (uint64_t)64)}; | ||||
|   return vshlq_s64(a, vreinterpretq_s64_u64(z)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline operator<<( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b) { | ||||
|   int32x4_t y = b; | ||||
|   uint32x4_t bound = vdupq_n_u32(32); | ||||
|   uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound); | ||||
|   return vshlq_s32(a, vreinterpretq_s32_u32(z)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline operator<<( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   int16x8_t y = b; | ||||
|   uint16x8_t bound = vdupq_n_u16(16); | ||||
|   uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound); | ||||
|   return vshlq_s16(a, vreinterpretq_s16_u16(z)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline operator<<( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   int8x16_t y = b; | ||||
|   uint8x16_t bound = vdupq_n_u8(8); | ||||
|   int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound)); | ||||
|   return vshlq_s8(a, z); | ||||
| } | ||||
|  | ||||
| inline Vectorized<int64_t> Vectorized<int64_t>::set( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& b, | ||||
|     int64_t count) { | ||||
|   if (count == 0) { | ||||
|     return a; | ||||
|   } else if (count >= 2) { | ||||
|     return b; | ||||
|   } else { | ||||
|     int64x2_t c = {b.values[0], a.values[1]}; | ||||
|     return c; | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline Vectorized<int32_t> Vectorized<int32_t>::set( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& b, | ||||
|     int64_t count) { | ||||
|   if (count == 0) { | ||||
|     return a; | ||||
|   } else if (count >= 4) { | ||||
|     return b; | ||||
|   } else { | ||||
|     // Build an array of flags: each bit of element is 1 if the corresponding | ||||
|     // bit in 'mask' is set, 0 otherwise. | ||||
|     uint32x4_t maskArray = { | ||||
|         (count >= 1LL) ? 0xFFFFFFFF : 0, | ||||
|         (count >= 2LL) ? 0xFFFFFFFF : 0, | ||||
|         (count >= 3LL) ? 0xFFFFFFFF : 0, | ||||
|         0}; | ||||
|     // Use BSL to select elements from b where the mask is 1, else from a | ||||
|     return vbslq_s32(maskArray, b.values, a.values); | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline Vectorized<int16_t> Vectorized<int16_t>::set( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b, | ||||
|     int64_t count) { | ||||
|   if (count == 0) { | ||||
|     return a; | ||||
|   } else if (count >= 8) { | ||||
|     return b; | ||||
|   } else { | ||||
|     // Build an array of flags: each bit of element is 1 if the corresponding | ||||
|     // bit in 'mask' is set, 0 otherwise. | ||||
|     uint16x8_t maskArray = { | ||||
|         static_cast<uint16_t>((count >= 1LL) ? 0xFFFF : 0), | ||||
|         static_cast<uint16_t>((count >= 2LL) ? 0xFFFF : 0), | ||||
|         static_cast<uint16_t>((count >= 3LL) ? 0xFFFF : 0), | ||||
|         static_cast<uint16_t>((count >= 4LL) ? 0xFFFF : 0), | ||||
|         static_cast<uint16_t>((count >= 5LL) ? 0xFFFF : 0), | ||||
|         static_cast<uint16_t>((count >= 6LL) ? 0xFFFF : 0), | ||||
|         static_cast<uint16_t>((count >= 7LL) ? 0xFFFF : 0), | ||||
|         0}; | ||||
|     // Use BSL to select elements from b where the mask is 1, else from a | ||||
|     return vbslq_s16(maskArray, b.values, a.values); | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline Vectorized<int8_t> Vectorized<int8_t>::set( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b, | ||||
|     int64_t count) { | ||||
|   if (count == 0) { | ||||
|     return a; | ||||
|   } else if (count >= 16) { | ||||
|     return b; | ||||
|   } else { | ||||
|     // Build an array of flags: each bit of element is 1 if the corresponding | ||||
|     // bit in 'mask' is set, 0 otherwise. | ||||
|     uint8x16_t maskArray = { | ||||
|         static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0), | ||||
|         static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0), | ||||
|         0}; | ||||
|  | ||||
|     // Use BSL to select elements from b where the mask is 1, else from a | ||||
|     return vbslq_s8(maskArray, b.values, a.values); | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline operator/( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& b) { | ||||
|   Vectorized<int32_t> highBitsA = vmovl_high_s16(a); | ||||
|   Vectorized<int32_t> highBitsB = vmovl_high_s16(b); | ||||
|   Vectorized<int32_t> lowBitsA = vmovl_s16(vget_low_s16(a)); | ||||
|   Vectorized<int32_t> lowBitsB = vmovl_s16(vget_low_s16(b)); | ||||
|   int32x4_t highBitsResult = highBitsA / highBitsB; | ||||
|   int32x4_t lowBitsResult = lowBitsA / lowBitsB; | ||||
|   return vuzp1q_s16( | ||||
|       vreinterpretq_s16_s32(lowBitsResult), | ||||
|       vreinterpretq_s16_s32(highBitsResult)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline operator/( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& b) { | ||||
|   Vectorized<int16_t> highBitsA = vmovl_high_s8(a); | ||||
|   Vectorized<int16_t> highBitsB = vmovl_high_s8(b); | ||||
|   Vectorized<int16_t> lowBitsA = vmovl_s8(vget_low_s8(a)); | ||||
|   Vectorized<int16_t> lowBitsB = vmovl_s8(vget_low_s8(b)); | ||||
|   int16x8_t highBitsResult = highBitsA / highBitsB; | ||||
|   int16x8_t lowBitsResult = lowBitsA / lowBitsB; | ||||
|   return vuzp1q_s8( | ||||
|       vreinterpretq_s8_s16(lowBitsResult), | ||||
|       vreinterpretq_s8_s16(highBitsResult)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline clamp( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& min, | ||||
|     const Vectorized<int64_t>& max) { | ||||
|   return minimum(max, maximum(min, a)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline clamp( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& min, | ||||
|     const Vectorized<int32_t>& max) { | ||||
|   return minimum(max, maximum(min, a)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline clamp( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& min, | ||||
|     const Vectorized<int16_t>& max) { | ||||
|   return minimum(max, maximum(min, a)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline clamp( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& min, | ||||
|     const Vectorized<int8_t>& max) { | ||||
|   return minimum(max, maximum(min, a)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline clamp_max( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& max) { | ||||
|   return minimum(max, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline clamp_max( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& max) { | ||||
|   return minimum(max, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline clamp_max( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& max) { | ||||
|   return minimum(max, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline clamp_max( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& max) { | ||||
|   return minimum(max, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int64_t> inline clamp_min( | ||||
|     const Vectorized<int64_t>& a, | ||||
|     const Vectorized<int64_t>& min) { | ||||
|   return maximum(min, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int32_t> inline clamp_min( | ||||
|     const Vectorized<int32_t>& a, | ||||
|     const Vectorized<int32_t>& min) { | ||||
|   return maximum(min, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int16_t> inline clamp_min( | ||||
|     const Vectorized<int16_t>& a, | ||||
|     const Vectorized<int16_t>& min) { | ||||
|   return maximum(min, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<int8_t> inline clamp_min( | ||||
|     const Vectorized<int8_t>& a, | ||||
|     const Vectorized<int8_t>& min) { | ||||
|   return maximum(min, a); | ||||
| } | ||||
|  | ||||
| } // namespace CPU_CAPABILITY | ||||
| } // namespace at::vec | ||||
| @ -1377,7 +1377,7 @@ Vectorized<c10::quint8> inline maximum( | ||||
| #if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)) | ||||
| std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float( | ||||
|     at::vec::Vectorized<int8_t> src) { | ||||
|   auto s8x8 = vget_low_s8(src); | ||||
|   auto s8x8 = vld1_s8(src.operator const int8_t*()); | ||||
|   auto s16x8 = vmovl_s8(s8x8); | ||||
|  | ||||
|   auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8)); | ||||
| @ -1402,7 +1402,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float( | ||||
|  | ||||
| Vectorized<float> inline convert_int8_half_register_to_float( | ||||
|     at::vec::Vectorized<int8_t> src) { | ||||
|   auto s8x8 = vget_low_s8(src); | ||||
|   auto s8x8 = vld1_s8(src.operator const int8_t*()); | ||||
|   auto s16x8 = vmovl_s8(s8x8); | ||||
|  | ||||
|   auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8)); | ||||
|  | ||||
| @ -16,8 +16,6 @@ | ||||
| #include <c10/util/irange.h> | ||||
| #include <c10/core/ScalarType.h> | ||||
|  | ||||
| #include <ATen/cuda/detail/BLASConstants.h> | ||||
|  | ||||
| #ifdef USE_ROCM | ||||
| #include <c10/cuda/CUDAStream.h> | ||||
| #include <hipblaslt/hipblaslt-ext.hpp> | ||||
| @ -1956,15 +1954,13 @@ void scaled_gemm( | ||||
|     const void *result_scale_ptr, | ||||
|     int64_t result_ld, | ||||
|     ScalarType result_dtype, | ||||
|     bool use_fast_accum, | ||||
|     const std::optional<Tensor>& alpha) { | ||||
|     bool use_fast_accum) { | ||||
|   // Note: see `cublasCommonArgs` for various non-intuitive manupulations | ||||
|   // of input arguments to this function. | ||||
|   const auto computeType = CUBLAS_COMPUTE_32F; | ||||
|   const auto scaleType = CUDA_R_32F; | ||||
|   // Note: alpha_val may change later depending on user-passed argument | ||||
|   float alpha_val = 1.0; | ||||
|   float beta_val = 0.0; | ||||
|   const float alpha_val = 1.0; | ||||
|   const float beta_val = 0.0; | ||||
|   CuBlasLtMatmulDescriptor computeDesc(computeType, scaleType); | ||||
|   computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSA, _cublasOpFromChar(transa)); | ||||
|   computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, _cublasOpFromChar(transb)); | ||||
| @ -2035,33 +2031,6 @@ void scaled_gemm( | ||||
|     computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, CUBLASLT_EPILOGUE_BIAS); | ||||
|     computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE, ScalarTypeToCudaDataType(bias_dtype)); | ||||
|   } | ||||
|  | ||||
|   // Handle user-passed alpha | ||||
|   float *alpha_ptr = &alpha_val; | ||||
|   float *beta_ptr = &beta_val; | ||||
|  | ||||
|   if (alpha.has_value()) { | ||||
|     auto& a = alpha.value(); | ||||
|  | ||||
|     // if device-tensor | ||||
|     if (a.is_cuda()) { | ||||
|       // NOTE: there are lifetime requirements on device-side pointers for alpha/beta -- the value must be | ||||
|       //       valid & correct until the cublas call finishes (not is scheduled like host-side values). Thus | ||||
|       //       we need to use allocations for alpha/beta that have some guarantees on lifetime - a statically | ||||
|       //       managed 4B buffer for alpha that we'll copy the passed alpha value into, and constant memory | ||||
|       //       for beta respectively. | ||||
|       float *user_alpha_ptr = at::cuda::detail::get_user_alpha_ptr(); | ||||
|       at::Tensor user_alpha = at::from_blob(user_alpha_ptr, {1}, TensorOptions().device(kCUDA).dtype(kFloat)); | ||||
|       user_alpha.copy_(a); | ||||
|       // Tell cublasLt we're using device-side pointers for alpha/beta | ||||
|       auto pointer_mode = CUBLASLT_POINTER_MODE_DEVICE; | ||||
|       computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_POINTER_MODE, pointer_mode); | ||||
|       alpha_ptr = user_alpha.data_ptr<float>(); | ||||
|       beta_ptr = at::cuda::detail::get_cublas_device_zero(); | ||||
|     } else { | ||||
|       alpha_val = a.item<float>(); | ||||
|     } | ||||
|   } | ||||
|     // For other data types, use the get_scale_mode function based on scaling type | ||||
|     // The SCALE_MODE attrs only exist in cuBLAS 12.8+/ROCm 7.0 or in recent hipblaslt, | ||||
|     // but we must invoke get_scale_mode anyways to trigger the version checks. | ||||
| @ -2079,7 +2048,6 @@ void scaled_gemm( | ||||
|   cublasLtMatmulHeuristicResult_t heuristicResult = {}; | ||||
|   int returnedResult = 0; | ||||
|   cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle(); | ||||
|  | ||||
|   TORCH_CUDABLAS_CHECK(cublasLtMatmulAlgoGetHeuristic( | ||||
|       ltHandle, | ||||
|       computeDesc.descriptor(), | ||||
| @ -2120,10 +2088,10 @@ void scaled_gemm( | ||||
|         auto is_valid_status = hipblaslt_ext::matmulIsAlgoSupported( | ||||
|                 ltHandle, | ||||
|                 computeDesc.descriptor(), | ||||
|                 alpha_ptr, | ||||
|                 &alpha_val, | ||||
|                 Adesc.descriptor(), | ||||
|                 Bdesc.descriptor(), | ||||
|                 beta_ptr, | ||||
|                 &beta_val, | ||||
|                 Cdesc.descriptor(), | ||||
|                 Ddesc.descriptor(), | ||||
|                 all_algos[i].algo, | ||||
| @ -2142,14 +2110,17 @@ void scaled_gemm( | ||||
|   cublasStatus_t cublasStatus = cublasLtMatmul( | ||||
|       ltHandle, | ||||
|       computeDesc.descriptor(), | ||||
|       alpha_ptr, | ||||
|       &alpha_val, | ||||
|       mat1_ptr, | ||||
|       Adesc.descriptor(), | ||||
|       mat2_ptr, | ||||
|       Bdesc.descriptor(), | ||||
|       beta_ptr, | ||||
|       // NOTE: always use result_ptr here, because cuBLASLt w/device beta=0 can't handle nullptr either | ||||
|       &beta_val, | ||||
| #ifdef USE_ROCM | ||||
|       result_ptr, // unused, since beta_val is 0, but hipblaslt can't handle nullptr | ||||
| #else | ||||
|       nullptr, | ||||
| #endif // ifdef USE_ROCM | ||||
|       Cdesc.descriptor(), | ||||
|       result_ptr, | ||||
|       Ddesc.descriptor(), | ||||
|  | ||||
| @ -161,8 +161,7 @@ void scaled_gemm( | ||||
|     const void* result_scale_ptr, | ||||
|     int64_t result_ld, | ||||
|     ScalarType result_dtype, | ||||
|     bool use_fast_accum, | ||||
|     const std::optional<Tensor>& alpha); | ||||
|     bool use_fast_accum); | ||||
|  | ||||
| #define CUDABLAS_BGEMM_ARGTYPES(Dtype)  CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, Dtype) | ||||
|  | ||||
|  | ||||
| @ -325,9 +325,9 @@ uint64_t CUDAGeneratorImpl::seed() { | ||||
|  */ | ||||
| c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const { | ||||
|   // The RNG state comprises the seed, and an offset used for Philox. | ||||
|   constexpr size_t seed_size = sizeof(uint64_t); | ||||
|   constexpr size_t offset_size = sizeof(int64_t); | ||||
|   constexpr size_t total_size = seed_size + offset_size; | ||||
|   static const size_t seed_size = sizeof(uint64_t); | ||||
|   static const size_t offset_size = sizeof(int64_t); | ||||
|   static const size_t total_size = seed_size + offset_size; | ||||
|  | ||||
|   auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt); | ||||
|   auto rng_state = state_tensor.data_ptr<uint8_t>(); | ||||
| @ -346,9 +346,9 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const { | ||||
|  * and size of the internal state. | ||||
|  */ | ||||
| void CUDAGeneratorImpl::set_state(const c10::TensorImpl& new_state) { | ||||
|   constexpr size_t seed_size = sizeof(uint64_t); | ||||
|   constexpr size_t offset_size = sizeof(int64_t); | ||||
|   constexpr size_t total_size = seed_size + offset_size; | ||||
|   static const size_t seed_size = sizeof(uint64_t); | ||||
|   static const size_t offset_size = sizeof(int64_t); | ||||
|   static const size_t total_size = seed_size + offset_size; | ||||
|  | ||||
|   detail::check_rng_state(new_state); | ||||
|  | ||||
|  | ||||
| @ -183,6 +183,11 @@ struct CUDACachingHostAllocatorImpl | ||||
|     return true; | ||||
|   } | ||||
|  | ||||
|   bool pinned_use_background_threads() override { | ||||
|     return c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig:: | ||||
|         pinned_use_background_threads(); | ||||
|   } | ||||
|  | ||||
|   EventPool::Event create_event_internal(DeviceIndex idx) { | ||||
|     // Leak the event pool to avoid shutdown issue. | ||||
|     static auto* event_pool = new EventPool(); | ||||
|  | ||||
| @ -177,6 +177,7 @@ inline void segmented_sort_pairs( | ||||
|   } | ||||
| } | ||||
|  | ||||
| #if CUB_SUPPORTS_UNIQUE_BY_KEY() | ||||
| template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT> | ||||
| inline void unique_by_key( | ||||
|   KeysInputIteratorT keys_in, ValuesInputIteratorT values_in, | ||||
| @ -192,6 +193,7 @@ inline void unique_by_key( | ||||
|   CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey, | ||||
|     keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream()); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| namespace impl { | ||||
|  | ||||
| @ -577,6 +579,7 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #if CUB_SUPPORTS_SCAN_BY_KEY() | ||||
|  | ||||
| template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT> | ||||
| inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) { | ||||
| @ -604,6 +607,7 @@ inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT> | ||||
| void unique(InputIteratorT input, OutputIteratorT output, | ||||
|  | ||||
| @ -28,6 +28,22 @@ | ||||
| #define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false | ||||
| #endif | ||||
|  | ||||
| // cub support for UniqueByKey is added to cub 1.16 in: | ||||
| // https://github.com/NVIDIA/cub/pull/405 | ||||
| #if CUB_VERSION >= 101600 | ||||
| #define CUB_SUPPORTS_UNIQUE_BY_KEY() true | ||||
| #else | ||||
| #define CUB_SUPPORTS_UNIQUE_BY_KEY() false | ||||
| #endif | ||||
|  | ||||
| // cub support for scan by key is added to cub 1.15 | ||||
| // in https://github.com/NVIDIA/cub/pull/376 | ||||
| #if CUB_VERSION >= 101500 | ||||
| #define CUB_SUPPORTS_SCAN_BY_KEY() 1 | ||||
| #else | ||||
| #define CUB_SUPPORTS_SCAN_BY_KEY() 0 | ||||
| #endif | ||||
|  | ||||
| // cub support for cub::FutureValue is added to cub 1.15 in: | ||||
| // https://github.com/NVIDIA/cub/pull/305 | ||||
| #if CUB_VERSION >= 101500 | ||||
|  | ||||
| @ -1,54 +0,0 @@ | ||||
| #include <ATen/Functions.h> | ||||
| #include <ATen/Tensor.h> | ||||
| #include <ATen/cuda/Exceptions.h> | ||||
|  | ||||
| #include <mutex> | ||||
|  | ||||
| namespace at { | ||||
| namespace cuda { | ||||
| namespace detail { | ||||
|  | ||||
| __device__ __constant__ float cublas_one_device; | ||||
| __device__ __constant__ float cublas_zero_device; | ||||
|  | ||||
| float *get_cublas_device_one() { | ||||
|   static c10::once_flag init_flag; | ||||
|  | ||||
|   c10::call_once(init_flag, []() { | ||||
|     const float one = 1.f; | ||||
|     AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float))); | ||||
|   }); | ||||
|  | ||||
|   float *ptr; | ||||
|   AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device)); | ||||
|   return ptr; | ||||
| } | ||||
|  | ||||
| float *get_cublas_device_zero() { | ||||
|   static c10::once_flag init_flag; | ||||
|  | ||||
|   c10::call_once(init_flag, []() { | ||||
|     const float zero = 0.f; | ||||
|     AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float))); | ||||
|   }); | ||||
|  | ||||
|   float *ptr; | ||||
|   AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device)); | ||||
|   return ptr; | ||||
| } | ||||
|  | ||||
| float *get_user_alpha_ptr() { | ||||
|   static float *alpha_ptr; | ||||
|  | ||||
|   static c10::once_flag init_flag; | ||||
|  | ||||
|   c10::call_once(init_flag, []() { | ||||
|     AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float))); | ||||
|   }); | ||||
|  | ||||
|   return alpha_ptr; | ||||
| } | ||||
|  | ||||
| } // namespace detail | ||||
| } // namespace cuda | ||||
| } // namespace at | ||||
| @ -1,11 +0,0 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include <ATen/core/TensorBase.h> | ||||
|  | ||||
| namespace at::cuda::detail { | ||||
|  | ||||
| float *get_cublas_device_one(); | ||||
| float *get_cublas_device_zero(); | ||||
| float *get_user_alpha_ptr(); | ||||
|  | ||||
| } // namespace at::cuda::detail | ||||
| @ -13,7 +13,6 @@ | ||||
| #include <c10/core/ScalarType.h> | ||||
|  | ||||
| #include <ATen/cuda/tunable/TunableOp.h> | ||||
| #include <ATen/cuda/tunable/Tunable.h> | ||||
| #include <ATen/cuda/CUDABlas.h> | ||||
| #include <ATen/cuda/Exceptions.h> | ||||
| #include <c10/util/StringUtil.h> | ||||
| @ -151,7 +150,6 @@ inline std::string ScalarTypeToBLASType(c10::ScalarType scalar_type) { | ||||
|       BLASType = "unknown"; | ||||
|   } | ||||
|   return BLASType; | ||||
|  | ||||
| } | ||||
|  | ||||
| // Similar to Compute Type in GemmRocblas.h | ||||
| @ -246,25 +244,33 @@ inline std::string to_string_epilogue(const at::cuda::blas::GEMMAndBiasActivatio | ||||
|  | ||||
| namespace detail { | ||||
|  | ||||
| static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size, const NumericalCheckConfig& config) { | ||||
|  | ||||
|   if (!config.enabled) { | ||||
|     return true; // skip when disabled | ||||
|   } | ||||
|  | ||||
| static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size) { | ||||
|   auto options = at::TensorOptions().dtype(dtype).device(at::kCUDA); | ||||
|   // comparison done as 1D tensor | ||||
|   at::Tensor ref = at::from_blob(c,       {size}, options); | ||||
|   at::Tensor oth = at::from_blob(other_c, {size}, options); | ||||
|   at::Tensor ref_float = ref.to(at::kFloat); | ||||
|   at::Tensor oth_float = oth.to(at::kFloat); | ||||
|  | ||||
|   const bool ok = at::allclose(ref_float, oth_float, config.rtol, config.atol); | ||||
|   if (ok) { | ||||
|     TUNABLE_LOG3("├──verify numerics: PASSED with atol=", config.atol, ", rtol=", config.rtol); | ||||
|   } else { | ||||
|     TUNABLE_LOG3("├──verify numerics: FAILED with atol=", config.atol, ", rtol=", config.rtol); | ||||
|   std::vector<double> atols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5}; | ||||
|   std::vector<double> rtols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5}; | ||||
|   double last_succeed_atol = 1; | ||||
|   double last_succeed_rtol = 1; | ||||
|   for (auto& atol : atols) { | ||||
|     for (auto& rtol : rtols) { | ||||
|       if (at::allclose(ref_float, oth_float, rtol, atol)) { | ||||
|         last_succeed_atol = atol; | ||||
|         last_succeed_rtol = rtol; | ||||
|       } | ||||
|   return ok; | ||||
|     } | ||||
|   } | ||||
|   if (last_succeed_atol == 1) { | ||||
|     return false; | ||||
|   } | ||||
|   else { | ||||
|     TUNABLE_LOG3("├──verify numerics: atol=", last_succeed_atol, ", rtol=", last_succeed_rtol); | ||||
|   } | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| } | ||||
| @ -349,10 +355,8 @@ struct GemmParams : OpParams { | ||||
|   } | ||||
|  | ||||
|   TuningStatus NumericalCheck(GemmParams<T> *other) { | ||||
|     auto* ctx = getTuningContext(); | ||||
|     auto cfg = ctx->GetNumericalCheckConfig(); | ||||
|     auto c_dtype = c10::CppTypeToScalarType<T>::value; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL; | ||||
|   } | ||||
|  | ||||
|   char transa{}; | ||||
| @ -445,10 +449,8 @@ struct GemmAndBiasParams : OpParams { | ||||
|   } | ||||
|  | ||||
|   TuningStatus NumericalCheck(GemmAndBiasParams<T> *other) { | ||||
|     auto* ctx = getTuningContext(); | ||||
|     auto cfg = ctx->GetNumericalCheckConfig(); | ||||
|     auto c_dtype = c10::CppTypeToScalarType<T>::value; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL; | ||||
|   } | ||||
|  | ||||
|   char transa{}; | ||||
| @ -544,10 +546,8 @@ struct GemmStridedBatchedParams : OpParams { | ||||
|   } | ||||
|  | ||||
|   TuningStatus NumericalCheck(GemmStridedBatchedParams<T> *other) { | ||||
|     auto* ctx = getTuningContext(); | ||||
|     auto cfg = ctx->GetNumericalCheckConfig(); | ||||
|     auto c_dtype = c10::CppTypeToScalarType<C_Dtype>::value; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL; | ||||
|   } | ||||
|  | ||||
|   char transa{}; | ||||
| @ -663,9 +663,7 @@ struct ScaledGemmParams : OpParams { | ||||
|   } | ||||
|  | ||||
|   TuningStatus NumericalCheck(ScaledGemmParams<T> *other) { | ||||
|     auto* ctx = getTuningContext(); | ||||
|     auto cfg = ctx->GetNumericalCheckConfig(); | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL; | ||||
|     return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL; | ||||
|   } | ||||
|  | ||||
|   char transa{}; | ||||
|  | ||||
| @ -145,7 +145,7 @@ programmatically since the settings become fixed. Use the C++ or Python APIs ins | ||||
| | PYTORCH_TUNABLEOP_VERBOSE | Default is 0. Set to 1 to enable basic logging. 2 for basic tuning status. 3 for full trace. | | ||||
| | PYTORCH_TUNABLEOP_VERBOSE_FILENAME | Default is "err" for stderr. Set to "out" for stdout or a filename for capturing verbose logging. | | ||||
| | PYTORCH_TUNABLEOP_FILENAME | Default is 'tunableop_results.csv'. | | ||||
| | PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is off. Set 'atol_rtol' to enable, for example "1e-5_1e-5". | | ||||
| | PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is 0. Set to 1 to enable. | | ||||
| | PYTORCH_TUNABLEOP_ROCBLAS_ENABLED | Default is 1. Set to 0 to disable rocblas being considered during tuning. | | ||||
| | PYTORCH_TUNABLEOP_HIPBLASLT_ENABLED | Default is 1. Set to 0 to disable hipblaslt being considered during tuning. | | ||||
| | PYTORCH_TUNABLEOP_MAX_TUNING_DURATION_MS | Default is 30. Unit is milliseconds. | | ||||
| @ -173,9 +173,10 @@ All python APIs exist in the `torch.cuda.tunable` module. | ||||
| | get_max_tuning_iterations() -> int | | | ||||
| | set_filename(filename: str, insert_device_ordinal: bool = False) -> None | | | ||||
| | get_filename() -> str | | | ||||
| | set_numerical_check_tolerances(enable: bool, atol: float, rtol: float) -> None | Enable or disable numerical checking; atol and rtol default to 1e-5. | ||||
| | get_results() -> Tuple[str, str, str, float] | | | ||||
| | get_validators() -> Tuple[str, str] | | | ||||
| | write_file_on_exit(val: bool) -> None | Default is True. | | ||||
| | write_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). | | ||||
| | read_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). | | ||||
| | tune_gemm_in_file(filename: str) -> None | read an untuned file and tune GEMMs in it. | | ||||
| | mgpu_tune_gemm_in_file(filename_pattern: str, num_gpus: int) -> None: -> None | read one or more untuned files and tune all unique GEMMs on one or more GPUs. | | ||||
|  | ||||
| @ -107,30 +107,14 @@ void TuningResultsManager::AddImpl(const std::string& op_signature, | ||||
| } | ||||
|  | ||||
| void TuningResultsManager::Add(const std::string& op_signature, const std::string& params_signature, ResultEntry best) { | ||||
|   bool is_new = false; | ||||
|   ResultEntry inserted = ResultEntry::Null(); | ||||
|  | ||||
|   // ---- mutate maps under results lock ---- | ||||
|   { | ||||
|   std::scoped_lock l{lock_}; | ||||
|     auto& km = results_[op_signature];  // creates if missing | ||||
|     is_new = (km.find(params_signature) == km.end()); | ||||
|     AddImpl(op_signature, params_signature, std::move(best), km); | ||||
|     if (is_new) { | ||||
|       inserted = km.at(params_signature);  // snapshot for I/O after unlocking | ||||
|     } | ||||
|   } | ||||
|    if (!is_new) return;  // only write once per unique (op, params) | ||||
|  | ||||
|    TuningContext* ctx = getTuningContext(); | ||||
|   if (ctx->IsTuningEnabled() && !ctx->IsRecordUntunedEnabled()) { | ||||
|     InitRealtimeAppend(ctx->GetFilename(), ctx->GetTuningResultsValidator().GetAllValidators()); | ||||
|  | ||||
|     if (is_new && realtime_out_ && realtime_out_->good()) { | ||||
|       AppendResultLine(op_signature, params_signature, inserted); | ||||
|     } | ||||
|   auto it = results_.find(op_signature); | ||||
|   if (it == results_.end()) { | ||||
|     it = results_.insert({op_signature, {}}).first; | ||||
|   } | ||||
|  | ||||
|   AddImpl(op_signature, params_signature, std::move(best), it->second); | ||||
| } | ||||
|  | ||||
| void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature, | ||||
| @ -166,77 +150,6 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std | ||||
|   } | ||||
| } | ||||
|  | ||||
| void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const std::unordered_map<std::string, std::string>& validators) { | ||||
|   std::scoped_lock fl{realtime_file_mutex_}; | ||||
|  | ||||
|   if (realtime_out_ && realtime_out_->good() && realtime_filename_ == filename) { | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   if (realtime_out_ && realtime_filename_ != filename) { | ||||
|     realtime_out_->flush(); | ||||
|     realtime_out_->close(); | ||||
|     realtime_out_.reset(); | ||||
|     validators_written_ = false; | ||||
|   } | ||||
|  | ||||
|   bool file_exists = false; | ||||
|   bool file_empty = true; | ||||
|  | ||||
|   { | ||||
|     std::ifstream check_file(filename); | ||||
|     if (check_file.good()) { | ||||
|       file_exists = true; | ||||
|       file_empty = (check_file.peek() == std::ifstream::traits_type::eof()); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   realtime_out_ = std::make_unique<std::ofstream>(filename, std::ios::out | std::ios::app); | ||||
|  | ||||
|   if (!realtime_out_->good()) { | ||||
|     TORCH_WARN("TunableOp realtime append: failed to open '", filename,"'"); | ||||
|     realtime_out_.reset(); | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   if(!file_exists || file_empty) { | ||||
|     for(const auto& [key, val] : validators) { | ||||
|       (*realtime_out_) << "Validator," << key << "," << val << std::endl; | ||||
|       realtime_out_->flush(); | ||||
|     } | ||||
|     validators_written_ = true; | ||||
|  | ||||
|     TUNABLE_LOG2("Wrote validators to realtime output file"); | ||||
|   } | ||||
|  | ||||
|   realtime_filename_ = filename; | ||||
| } | ||||
|  | ||||
| void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std::string& param_sig, const ResultEntry& result) { | ||||
|   std::scoped_lock fl{realtime_file_mutex_}; | ||||
|  | ||||
|   if(!realtime_out_ || !realtime_out_->good()) { | ||||
|     return; | ||||
|   } | ||||
|  | ||||
|   (*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl; | ||||
|   realtime_out_->flush(); //ensure immediate write to disk | ||||
|  | ||||
|   TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result); | ||||
| } | ||||
|  | ||||
| void TuningResultsManager::CloseRealtimeAppend() { | ||||
|   std::scoped_lock fl{realtime_file_mutex_}; | ||||
|  | ||||
|  | ||||
|   if(realtime_out_) { | ||||
|     realtime_out_->flush(); | ||||
|     realtime_out_->close(); | ||||
|     realtime_out_.reset(); | ||||
|     TUNABLE_LOG2("Closed realtime output file"); | ||||
|   } | ||||
| } | ||||
|  | ||||
| void TuningResultsManager::Delete(const std::string& op_signature, const std::string& params_signature) { | ||||
|   std::scoped_lock l{lock_}; | ||||
|  | ||||
| @ -483,6 +396,7 @@ TuningContext::TuningContext() : | ||||
|     tuning_enable_{true}, | ||||
|     record_untuned_enable_{false}, | ||||
|     manager_initialized_{false}, | ||||
|     write_file_on_exit_{true}, | ||||
|     numerics_check_enable_{false}, | ||||
|     max_tuning_duration_ms_{30}, | ||||
|     max_tuning_iterations_{100}, | ||||
| @ -503,8 +417,20 @@ TuningContext::~TuningContext() { | ||||
|     // but doesn't do any computation itself. | ||||
|     return; | ||||
|   } | ||||
|   TUNABLE_LOG1("Closing File"); | ||||
|   GetTuningResultsManager().CloseRealtimeAppend(); // Since, we do instant logging by default now. | ||||
|   auto filename = GetFilename(); | ||||
|   if (IsTunableOpEnabled() && IsTuningEnabled() && !filename.empty() && write_file_on_exit_) { | ||||
|     if (results_count_from_input_file_ < GetTuningResultsManager().GetSize()) { | ||||
|       if (results_count_from_input_file_ > 0) { | ||||
|         TUNABLE_LOG1("additional tuning results available, rewriting file ", filename); | ||||
|       } | ||||
|       else { | ||||
|         TUNABLE_LOG1("writing file ", filename); | ||||
|       } | ||||
|       if (!WriteFile(filename)) { | ||||
|         TUNABLE_LOG1("failed to write file ", filename); | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   if (untuned_file_.good()) { | ||||
|     untuned_file_.close(); | ||||
| @ -585,54 +511,20 @@ std::ofstream& TuningContext::GetUntunedFile(){ | ||||
|   return untuned_file_; | ||||
| } | ||||
|  | ||||
| void TuningContext::WriteFileOnExit(bool value) { | ||||
|   write_file_on_exit_ = value; | ||||
| } | ||||
|  | ||||
| void TuningContext::EnableNumericsCheck(bool value) { | ||||
|   numerics_check_enable_ = value; | ||||
| } | ||||
|  | ||||
| NumericalCheckConfig TuningContext::GetNumericalCheckConfig() const { | ||||
|   const auto env_opt = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK"); | ||||
|  | ||||
|   if (!env_opt.has_value()) { | ||||
|     return numerics_cfg_; | ||||
|   } | ||||
|  | ||||
|   const std::string& env = env_opt.value(); | ||||
|  | ||||
|   if (env == "0") { | ||||
|     return NumericalCheckConfig(false, 1e-5, 1e-5); | ||||
|   } | ||||
|  | ||||
|   const size_t underscore = env.find('_'); | ||||
|  | ||||
|   TORCH_CHECK( | ||||
|       underscore != std::string::npos, | ||||
|       "Invalid PYTORCH_TUNABLEOP_NUMERICAL_CHECK format. " | ||||
|       "Expected 'atol_rtol', got: ", | ||||
|       env); | ||||
|  | ||||
|   double atol = 0.0; | ||||
|   double rtol = 0.0; | ||||
|  | ||||
|   try { | ||||
|     atol = std::stod(env.substr(0, underscore)); | ||||
|     rtol = std::stod(env.substr(underscore + 1)); | ||||
|   } catch (const std::exception& e) { | ||||
|     TORCH_CHECK(false, "Failed to parse PYTORCH_TUNABLEOP_NUMERICAL_CHECK: ", e.what()); | ||||
|   } | ||||
|  | ||||
|   TORCH_CHECK( atol > 0.0 && rtol > 0.0, "Tolerance values must be positive. atol=", atol, ", rtol=", rtol); | ||||
|   return NumericalCheckConfig(true, atol, rtol); | ||||
| } | ||||
|  | ||||
| void TuningContext::SetNumericalCheckConfig(bool enabled, double atol, double rtol) { | ||||
|   TORCH_CHECK(atol > 0.0 && rtol > 0.0, "Numerical check tolerances must be positive"); | ||||
|   numerics_cfg_ = {enabled, atol, rtol}; | ||||
| } | ||||
|  | ||||
| bool TuningContext::IsNumericsCheckEnabled() const { | ||||
|   const auto cfg = GetNumericalCheckConfig(); | ||||
|   return cfg.enabled || numerics_check_enable_; | ||||
|   const auto env = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK"); | ||||
|   if (env == "1") { | ||||
|     return true; | ||||
|   } | ||||
|   return numerics_check_enable_; | ||||
| } | ||||
|  | ||||
| void TuningContext::SetMaxTuningDurationMs(int max_duration_ms) { | ||||
| @ -742,6 +634,11 @@ TuningResultsManager& TuningContext::GetTuningResultsManager() { | ||||
|     auto filename = GetFilename(); | ||||
|     if (!filename.empty() && !IsRecordUntunedEnabled()) { | ||||
|       ReadFile(filename); | ||||
|       // attempt immediately to open file for writing to catch errors early | ||||
|       std::ofstream file(filename, std::ios::out | std::ios::app); | ||||
|       if (!file.good()) { | ||||
|         TORCH_WARN("failed to open file '", filename, "' for writing; your tuning results will not be saved"); | ||||
|       } | ||||
|     } | ||||
|   }); | ||||
|   return manager_; | ||||
| @ -847,6 +744,27 @@ bool TuningContext::ReadFile(const std::string& filename_) { | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| bool TuningContext::WriteFile(const std::string& filename_) { | ||||
|   std::string filename = filename_.empty() ? GetFilename() : filename_; | ||||
|   std::ofstream file(filename, std::ios::out | std::ios::trunc); | ||||
|   if (!file.good()) { | ||||
|     TUNABLE_LOG1("error opening tuning results file for writing ", filename); | ||||
|     return false; | ||||
|   } | ||||
|   auto validators = GetTuningResultsValidator().GetAllValidators(); | ||||
|   for (const auto& [key, val] : validators) { | ||||
|     file << "Validator," << key << "," << val << std::endl; | ||||
|   } | ||||
|   auto results = GetTuningResultsManager().Dump(); | ||||
|   for (const auto& [op_sig, kernelmap] : results) { | ||||
|     for (const auto& [param_sig, result] : kernelmap) { | ||||
|       file << op_sig << "," << param_sig << "," << result << std::endl; | ||||
|     } | ||||
|   } | ||||
|   file.close(); | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| struct MaybeDelete { | ||||
|  | ||||
| @ -103,24 +103,10 @@ class TORCH_CUDA_CPP_API TuningResultsManager { | ||||
|  | ||||
|     void RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature, | ||||
|       const std::string& params_signature, const std::string& blas_signature); | ||||
|  | ||||
|     void InitRealtimeAppend( | ||||
|         const std::string& filename, | ||||
|         const std::unordered_map<std::string, std::string>& validators); | ||||
|  | ||||
|     void AppendResultLine(const std::string& op_sig, | ||||
|                          const std::string& param_sig, | ||||
|                          const ResultEntry& result); | ||||
|  | ||||
|     void CloseRealtimeAppend();  // For clean shutdown | ||||
|   private: | ||||
|     std::mutex lock_; | ||||
|     std::mutex realtime_file_mutex_; | ||||
|     std::unique_ptr<std::ofstream> realtime_out_; | ||||
|     std::string realtime_filename_; | ||||
|     ResultsMap results_; | ||||
|     UntunedMap untuned_results_; | ||||
|     bool validators_written_ = false; | ||||
|  | ||||
| }; | ||||
|  | ||||
| @ -148,16 +134,6 @@ class TORCH_CUDA_CPP_API TuningResultsValidator { | ||||
|     GetValidateFuncs validators_; | ||||
| }; | ||||
|  | ||||
| struct NumericalCheckConfig { | ||||
|   bool   enabled{false}; | ||||
|   double atol{1e-5}; | ||||
|   double rtol{1e-5}; | ||||
|  | ||||
|   NumericalCheckConfig() = default; | ||||
|   NumericalCheckConfig(bool e, double a, double r) : enabled(e), atol(a), rtol(r) {} | ||||
| }; | ||||
|  | ||||
|  | ||||
| class TORCH_CUDA_CPP_API TuningContext { | ||||
|   public: | ||||
|     TuningContext(); | ||||
| @ -179,8 +155,6 @@ class TORCH_CUDA_CPP_API TuningContext { | ||||
|  | ||||
|     void EnableNumericsCheck(bool value); | ||||
|     bool IsNumericsCheckEnabled() const; | ||||
|     void SetNumericalCheckConfig(bool enabled, double atol, double rtol); | ||||
|     NumericalCheckConfig GetNumericalCheckConfig() const; | ||||
|  | ||||
|     void SetMaxTuningDurationMs(int max_duration_ms); | ||||
|     int GetMaxTuningDurationMs() const; | ||||
| @ -211,7 +185,10 @@ class TORCH_CUDA_CPP_API TuningContext { | ||||
|     void SetFilename(const std::string& filename, bool insert_device_ordinal=false); | ||||
|     std::string GetFilename() const; | ||||
|  | ||||
|     void WriteFileOnExit(bool value); | ||||
|  | ||||
|     bool ReadFile(const std::string& filename={}); | ||||
|     bool WriteFile(const std::string& filename={}); | ||||
|  | ||||
|     template<class... Types> | ||||
|     void Log(int level, Types... args) { | ||||
| @ -230,6 +207,7 @@ class TORCH_CUDA_CPP_API TuningContext { | ||||
|     bool tuning_enable_; | ||||
|     bool record_untuned_enable_; | ||||
|     bool manager_initialized_; | ||||
|     bool write_file_on_exit_; | ||||
|     bool numerics_check_enable_; | ||||
|     int max_tuning_duration_ms_; | ||||
|     int max_tuning_iterations_; | ||||
| @ -244,8 +222,6 @@ class TORCH_CUDA_CPP_API TuningContext { | ||||
|     std::ofstream untuned_file_; | ||||
|     size_t results_count_from_input_file_; | ||||
|     bool is_shutting_down_; | ||||
|  | ||||
|     NumericalCheckConfig numerics_cfg_{}; | ||||
| }; | ||||
|  | ||||
| TORCH_CUDA_CPP_API TuningContext* getTuningContext(); | ||||
|  | ||||
| @ -109,8 +109,7 @@ class DefaultScaledGemmOp : public Callable<ScaledGemmParams<T>> { | ||||
|           params->c_scale_ptr, | ||||
|           params->ldc, | ||||
|           params->c_dtype, | ||||
|           params->use_fast_accum, | ||||
|           std::nullopt /* alpha */); | ||||
|           params->use_fast_accum); | ||||
|       return OK; | ||||
|     } | ||||
| }; | ||||
|  | ||||
| @ -267,11 +267,28 @@ class TunableOp { | ||||
|       for (size_t i = 0; i < op_names_.size(); i++) { | ||||
|         auto* candidate = ops_[op_names_[i]].get(); // borrow pointer | ||||
|  | ||||
|         if (do_numerics_check) { | ||||
|           ParamsT* numerical_params = params->DeepCopy(false); | ||||
|           auto status = candidate->Call(numerical_params); | ||||
|           if (status != OK) { | ||||
|             numerical_params->Delete(); | ||||
|             TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]); | ||||
|             continue; | ||||
|           } | ||||
|           status = reference_params->NumericalCheck(numerical_params); | ||||
|           numerical_params->Delete(); | ||||
|           if (status != OK) { | ||||
|             TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]); | ||||
|             continue; | ||||
|           } | ||||
|         } | ||||
|         else { | ||||
|           auto status = candidate->Call(reusable_params[0]); | ||||
|           if (status != OK) { | ||||
|             TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]); | ||||
|             continue; | ||||
|           } | ||||
|         } | ||||
|  | ||||
|         // collect a small profile | ||||
|         int approx_num_iter = 3; | ||||
| @ -293,22 +310,6 @@ class TunableOp { | ||||
|           continue; | ||||
|         } | ||||
|  | ||||
|         if (do_numerics_check) { | ||||
|           ParamsT* numerical_params = params->DeepCopy(false); | ||||
|           auto status = candidate->Call(numerical_params); | ||||
|           if (status != OK) { | ||||
|             numerical_params->Delete(); | ||||
|             TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]); | ||||
|             continue; | ||||
|           } | ||||
|           status = reference_params->NumericalCheck(numerical_params); | ||||
|           numerical_params->Delete(); | ||||
|           if (status != OK) { | ||||
|             TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]); | ||||
|             continue; | ||||
|           } | ||||
|         } | ||||
|  | ||||
|         // for warmup does user set max duration, max iters, or both? | ||||
|         // warmup is skipped by default, i.e. warmup_iter = 0 | ||||
|         // warmup will be set to the non-zero value of max_warmup_duration | ||||
|  | ||||
| @ -213,22 +213,40 @@ static cudnn_grid_sample_backward_batch_rule( | ||||
|   return grid_sample_backward_helper_out(std::move(bw_out), 0, 0, bdim_size); | ||||
| } | ||||
|  | ||||
| // uses functional formulation for one_hot under vmap to be compatible with | ||||
| // fakeTensor/dynamic shapes and compiled functorch transforms. | ||||
| // mirrors the meta path in aten/src/ATen/native/Onehot.cpp, | ||||
| // but requires explicit positive num_classes under vmap to avoid | ||||
| // data-dependent output shapes. | ||||
| // TODO: replace with targetable functionalization | ||||
| static Tensor one_hot_decomposition_hack(const Tensor &self, int64_t num_classes) { | ||||
|     TORCH_CHECK(self.dtype() == kLong, "one_hot is only applicable to index tensor."); | ||||
|     auto shape = self.sym_sizes().vec(); | ||||
|  | ||||
|     // empty tensor could be converted to one hot representation, | ||||
|     // but shape inference is not possible. | ||||
|     if (self.sym_numel() == 0) { | ||||
|         if (num_classes <= 0) { | ||||
|             TORCH_CHECK(false, "Can not infer total number of classes from empty tensor."); | ||||
|         } else { | ||||
|             shape.emplace_back(num_classes); | ||||
|             return at::empty_symint(shape, self.options()); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // disallow implicit inference under vmap; this would be data-dependent | ||||
|     // and is intentionally guarded by Dynamo in torch/_dynamo/variables/torch.py. | ||||
|     TORCH_CHECK(num_classes > 0, "When vmap-ing torch.nn.functional.one_hot, please " | ||||
|         "provide an explicit positive num_classes argument."); | ||||
|  | ||||
|     const auto options = self.options(); | ||||
|     at::Tensor index = at::arange(num_classes, options); | ||||
|     return at::eq(self.unsqueeze(-1), index).to(at::kLong); | ||||
|     // Disabling all of the following checks. This is OK because scatter has checks too. | ||||
|     // Maybe one_hot should be a primitive wrt autograd so we don't have to deal with this. | ||||
|     // // non-empty tensor | ||||
|     // if (self.device().type() != at::kCUDA) { | ||||
|     //   //for cuda, rely on device assert thrown by scatter | ||||
|     //   TORCH_CHECK(self.min().item().toLong() >= 0, "Class values must be non-negative."); | ||||
|     // } | ||||
|     // if (self.device().type() != at::kCUDA) { | ||||
|     //   //rely on device asserts from scatter to avoid sync here | ||||
|     //   TORCH_CHECK(num_classes > self.max().item().toLong(), "Class values must be smaller than num_classes."); | ||||
|     // } | ||||
|  | ||||
|     shape.emplace_back(num_classes); | ||||
|     Tensor ret = at::zeros_symint(shape, self.options()); | ||||
|     return ret.scatter(-1, self.unsqueeze(-1), 1); | ||||
| } | ||||
|  | ||||
| template <typename A, A a, typename C> | ||||
|  | ||||
| @ -160,10 +160,6 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({ | ||||
|   DispatchKey::CUDA, | ||||
|   DispatchKey::CPU, | ||||
|   DispatchKey::PrivateUse1, | ||||
|   DispatchKey::SparseCPU, | ||||
|   DispatchKey::SparseCUDA, | ||||
|   DispatchKey::SparseCsrCPU, | ||||
|   DispatchKey::SparseCsrCUDA, | ||||
| }); | ||||
|  | ||||
| inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) { | ||||
|  | ||||
| @ -240,8 +240,8 @@ TORCH_META_FUNC(gelu_backward) ( | ||||
|  | ||||
| namespace at::native { | ||||
|  | ||||
| static constexpr double SELU_ALPHA = 1.6732632423543772848170429916717; | ||||
| static constexpr double SELU_SCALE = 1.0507009873554804934193349852946; | ||||
| static const double SELU_ALPHA = 1.6732632423543772848170429916717; | ||||
| static const double SELU_SCALE = 1.0507009873554804934193349852946; | ||||
|  | ||||
| DEFINE_DISPATCH(elu_stub); | ||||
| DEFINE_DISPATCH(elu_backward_stub); | ||||
|  | ||||
| @ -286,7 +286,7 @@ template void scal_fast_path<scalar_t>(int *n, scalar_t *a, scalar_t *x, int *in | ||||
| #if AT_BUILD_WITH_BLAS() | ||||
| template <> | ||||
| bool scal_use_fast_path<double>(int64_t n, int64_t incx) { | ||||
|   auto constexpr intmax = std::numeric_limits<int>::max(); | ||||
|   auto intmax = std::numeric_limits<int>::max(); | ||||
|   return n <= intmax && incx <= intmax; | ||||
| } | ||||
|  | ||||
| @ -315,7 +315,7 @@ bool gemv_use_fast_path<float>( | ||||
|     int64_t incx, | ||||
|     [[maybe_unused]] float beta, | ||||
|     int64_t incy) { | ||||
|   auto constexpr intmax = std::numeric_limits<int>::max(); | ||||
|   auto intmax = std::numeric_limits<int>::max(); | ||||
|   return (m <= intmax) && (n <= intmax) && (lda <= intmax) && | ||||
|          (incx > 0) && (incx <= intmax) && (incy > 0) && (incy <= intmax); | ||||
| } | ||||
|  | ||||
| @ -658,7 +658,6 @@ static void check_shape_forward(const at::Tensor& input, | ||||
|   TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported"); | ||||
|   TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported"); | ||||
|   TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero"); | ||||
|   TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups); | ||||
|  | ||||
|   TORCH_CHECK(weight_dim == k, | ||||
|            "Expected ", weight_dim, "-dimensional input for ", weight_dim, | ||||
|  | ||||
| @ -1,6 +1,5 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include <array> | ||||
| #include <ATen/native/Math.h> | ||||
| #include <c10/macros/Macros.h> | ||||
| #include <c10/util/MathConstants.h> | ||||
| @ -128,7 +127,7 @@ C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, unifor | ||||
|  | ||||
| template<typename scalar_t> | ||||
| C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) { | ||||
|   constexpr static scalar_t kTailValues[] = { | ||||
|   const static scalar_t kTailValues[] = { | ||||
|     0.0810614667953272, | ||||
|     0.0413406959554092, | ||||
|     0.0276779256849983, | ||||
| @ -140,7 +139,7 @@ C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) { | ||||
|     0.00925546218271273, | ||||
|     0.00833056343336287 | ||||
|   }; | ||||
|   if (k < std::size(kTailValues)) { | ||||
|   if (k <= 9) { | ||||
|     return kTailValues[static_cast<size_t>(k)]; | ||||
|   } | ||||
|   scalar_t kp1sq = (k + 1) * (k + 1); | ||||
|  | ||||
| @ -3620,7 +3620,7 @@ Tensor& _int_mm_out_cpu(const Tensor& self, const Tensor& mat2, Tensor& result) | ||||
|     try { | ||||
|       mkldnn_matmul_i8i8i32(self, mat2, result); | ||||
|       dispatched = true; | ||||
|     } catch ([[maybe_unused]] const std::exception& e) { | ||||
|     } catch (const std::exception& e) { | ||||
|       TORCH_WARN(func_name, " failed, switching to BLAS gemm: ", e.what()); | ||||
|     } | ||||
|   } | ||||
|  | ||||
| @ -581,7 +581,7 @@ scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M, | ||||
| template <typename scalar_t> | ||||
| static scalar_t lanczos_sum_expg_scaled(scalar_t x) { | ||||
|   // lanczos approximation | ||||
|   static constexpr scalar_t lanczos_sum_expg_scaled_num[13] = { | ||||
|   static const scalar_t lanczos_sum_expg_scaled_num[13] = { | ||||
|     0.006061842346248906525783753964555936883222, | ||||
|     0.5098416655656676188125178644804694509993, | ||||
|     19.51992788247617482847860966235652136208, | ||||
| @ -596,7 +596,7 @@ static scalar_t lanczos_sum_expg_scaled(scalar_t x) { | ||||
|     103794043.1163445451906271053616070238554, | ||||
|     56906521.91347156388090791033559122686859 | ||||
|   }; | ||||
|   static constexpr scalar_t lanczos_sum_expg_scaled_denom[13] = { | ||||
|   static const scalar_t lanczos_sum_expg_scaled_denom[13] = { | ||||
|     1., | ||||
|     66., | ||||
|     1925., | ||||
| @ -712,7 +712,7 @@ static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) { | ||||
| template <typename scalar_t> | ||||
| static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) { | ||||
|   // Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1] | ||||
|   static constexpr scalar_t d[25][25] = | ||||
|   static const scalar_t d[25][25] = | ||||
|     {{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, | ||||
|       1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, | ||||
|       3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, | ||||
|  | ||||
| @ -62,7 +62,7 @@ | ||||
| #include <utility> | ||||
| #include <vector> | ||||
|  | ||||
| static constexpr int MIOPEN_DIM_MAX = 5; | ||||
| static const int MIOPEN_DIM_MAX = 5; | ||||
|  | ||||
| namespace at::meta { | ||||
|  | ||||
|  | ||||
| @ -34,16 +34,16 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) { | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     auto shape = self.sym_sizes().vec(); | ||||
|     auto shape = self.sizes().vec(); | ||||
|  | ||||
|     // empty tensor could be converted to one hot representation, | ||||
|     // but shape inference is not possible. | ||||
|     if (self.sym_numel() == 0) { | ||||
|     if (self.numel() == 0) { | ||||
|         if (num_classes <= 0) { | ||||
|             TORCH_CHECK(false, "Can not infer total number of classes from empty tensor."); | ||||
|         } else { | ||||
|             shape.emplace_back(num_classes); | ||||
|             return at::empty_symint(shape, self.options()); | ||||
|             shape.push_back(num_classes); | ||||
|             return at::empty(shape, self.options()); | ||||
|         } | ||||
|     } | ||||
|  | ||||
| @ -66,8 +66,8 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) { | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     shape.emplace_back(num_classes); | ||||
|     Tensor ret = at::zeros_symint(shape, self.options()); | ||||
|     shape.push_back(num_classes); | ||||
|     Tensor ret = at::zeros(shape, self.options()); | ||||
|     ret.scatter_(-1, self.unsqueeze(-1), 1); | ||||
|     return ret; | ||||
| } | ||||
|  | ||||
| @ -1906,9 +1906,11 @@ Tensor& index_fill_( | ||||
|         "This also applies to advanced indexing e.g. tensor[mask] = scalar"); | ||||
|   } | ||||
|  | ||||
|   if (!self.is_complex() && source.isComplex()) { | ||||
|     TORCH_CHECK( | ||||
|       self.is_complex() || !source.isComplex(), | ||||
|         false, | ||||
|         "index_fill_(): Converting complex Scalar to non-complex type is not supported"); | ||||
|   } | ||||
|  | ||||
|   // Handle the case when `self` is 0-dim | ||||
|   Tensor self_nonzero_dim = (self.dim() == 0) ? self.unsqueeze(-1) : self; | ||||
|  | ||||
| @ -77,7 +77,7 @@ inline AdvancedIndex make_info(Tensor self, IOptTensorListRef orig) { | ||||
|   // next broadcast all index tensors together | ||||
|   try { | ||||
|     indices = expand_outplace(indices); | ||||
|   } catch (std::exception&) { | ||||
|   } catch (std::exception& e) { | ||||
|     TORCH_CHECK_INDEX( | ||||
|         false, | ||||
|         "shape mismatch: indexing tensors could not be broadcast together" | ||||
|  | ||||
| @ -120,7 +120,7 @@ static void pow_tensor_scalar_kernel( | ||||
|   } else if (dtype == ScalarType::Half) { | ||||
|     [&]() { | ||||
|       using scalar_t = | ||||
|           c10::impl::ScalarTypeToCPPTypeT<ScalarType::Half>; | ||||
|           decltype(c10::impl::ScalarTypeToCPPType<ScalarType::Half>::t); | ||||
|       const auto exp = exp_scalar.to<scalar_t>(); | ||||
|       using Vec = Vectorized<scalar_t>; | ||||
|       cpu_kernel_vec(iter, | ||||
|  | ||||
| @ -1038,7 +1038,7 @@ struct HelperInterpNearest : public HelperInterpBase { | ||||
|   // We keep this structure for BC and consider as deprecated. | ||||
|   // See HelperInterpNearestExact as replacement | ||||
|  | ||||
|   static constexpr int interp_size = 1; | ||||
|   static const int interp_size = 1; | ||||
|  | ||||
|   static inline void init_indices_weights( | ||||
|     at::ScalarType output_type, | ||||
| @ -1155,7 +1155,7 @@ struct HelperInterpNearestExact : public HelperInterpNearest { | ||||
|  | ||||
| struct HelperInterpLinear : public HelperInterpBase { | ||||
|  | ||||
|   static constexpr int interp_size = 2; | ||||
|   static const int interp_size = 2; | ||||
|  | ||||
|   // Compute indices and weights for each interpolated dimension | ||||
|   // indices_weights = { | ||||
| @ -1275,7 +1275,7 @@ struct HelperInterpLinear : public HelperInterpBase { | ||||
|  | ||||
| struct HelperInterpCubic : public HelperInterpBase { | ||||
|  | ||||
|   static constexpr int interp_size = 4; | ||||
|   static const int interp_size = 4; | ||||
|  | ||||
|   // Compute indices and weights for each interpolated dimension | ||||
|   // indices_weights = { | ||||
|  | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @ -856,13 +856,9 @@ struct type_specialized_kernel_launcher { | ||||
|       out_calc_t output_offset_calculator, | ||||
|       loader_t loader, | ||||
|       storer_t storer) { | ||||
|     constexpr ScalarType sret_t = rt_binary_specializations[arg_index][0]; | ||||
|     constexpr ScalarType sarg0_t = rt_binary_specializations[arg_index][1]; | ||||
|     constexpr ScalarType sarg1_t = rt_binary_specializations[arg_index][2]; | ||||
|     if (ret_t == sret_t && arg0_t == sarg0_t && arg1_t == sarg1_t) { | ||||
|       using cret_t = c10::impl::ScalarTypeToCPPTypeT<sret_t>; | ||||
|       using carg0_t = c10::impl::ScalarTypeToCPPTypeT<sarg0_t>; | ||||
|       using carg1_t = c10::impl::ScalarTypeToCPPTypeT<sarg1_t>; | ||||
|     if (ret_t == rt_binary_specializations[arg_index][0] && | ||||
|         arg0_t == rt_binary_specializations[arg_index][1] && | ||||
|         arg1_t == rt_binary_specializations[arg_index][2]) | ||||
|       launch_vectorized_templated_kernel< | ||||
|           func_t, | ||||
|           array_t, | ||||
| @ -870,9 +866,12 @@ struct type_specialized_kernel_launcher { | ||||
|           out_calc_t, | ||||
|           loader_t, | ||||
|           storer_t, | ||||
|           cret_t, | ||||
|           carg0_t, | ||||
|           carg1_t>( | ||||
|           decltype(c10::impl::ScalarTypeToCPPType< | ||||
|                    rt_binary_specializations[arg_index][0]>::t), | ||||
|           decltype(c10::impl::ScalarTypeToCPPType< | ||||
|                    rt_binary_specializations[arg_index][1]>::t), | ||||
|           decltype(c10::impl::ScalarTypeToCPPType< | ||||
|                    rt_binary_specializations[arg_index][2]>::t)>( | ||||
|           numel, | ||||
|           f, | ||||
|           data, | ||||
| @ -881,7 +880,6 @@ struct type_specialized_kernel_launcher { | ||||
|           loader, | ||||
|           storer); | ||||
|   } | ||||
|   } | ||||
| }; | ||||
|  | ||||
| } // namespace | ||||
|  | ||||
| @ -38,41 +38,12 @@ __device__ inline int min(int a, int b) { | ||||
| #define BLOCK_STRIDE_BWD 2 // increasing block_stride to lower # of blocks launched | ||||
| #endif | ||||
|  | ||||
| template <typename index_t> | ||||
| static __device__ inline index_t p_start(index_t size, int pad, int kernel, int dilation, int stride) { | ||||
|   const auto kernel_extent = static_cast<index_t>((kernel - 1) * dilation + 1); | ||||
|   return (size + pad < kernel_extent) ? index_t(0) : (size + pad - kernel_extent) / stride + 1; | ||||
| static __device__ inline int p_start(int size, int pad, int kernel, int dilation, int stride) { | ||||
|   return (size + pad < ((kernel - 1) * dilation + 1)) ? 0 : (size + pad - ((kernel - 1) * dilation + 1)) / stride + 1; | ||||
| } | ||||
|  | ||||
| template <typename index_t> | ||||
| static __device__ inline index_t p_end(index_t size, int pad, index_t pooled_size, int stride) { | ||||
|   return std::min((size + pad) / stride + 1, pooled_size); | ||||
| } | ||||
|  | ||||
| static inline bool can_use_int32_nhwc( | ||||
|     int64_t nbatch, int64_t channels, | ||||
|     int64_t height, int64_t width, | ||||
|     int64_t pooled_height, int64_t pooled_width, | ||||
|     int64_t in_stride_n, int64_t in_stride_c, | ||||
|     int64_t in_stride_h, int64_t in_stride_w) | ||||
| { | ||||
|   constexpr int64_t int_max = std::numeric_limits<int>::max(); | ||||
|  | ||||
|   int64_t max_intra_batch = | ||||
|       (height ? (height - 1) * in_stride_h : 0) + | ||||
|       (width ? (width - 1) * in_stride_w : 0) + | ||||
|       (channels? (channels - 1) * in_stride_c : 0); | ||||
|  | ||||
|   int64_t max_input_offset = (nbatch ? (nbatch - 1) * in_stride_n : 0) + max_intra_batch; | ||||
|  | ||||
|   if (max_input_offset > int_max) return false; | ||||
|  | ||||
|   int64_t out_batch_stride = pooled_height * pooled_width * channels; | ||||
|   if ((nbatch ? (nbatch - 1) * out_batch_stride : 0) > int_max) return false; | ||||
|  | ||||
|   if (height * width > int_max) return false; | ||||
|  | ||||
|   return true; | ||||
| static __device__ inline int p_end(int size, int pad, int pooled_size, int stride) { | ||||
|   return min((size + pad) / stride + 1, pooled_size); | ||||
| } | ||||
|  | ||||
| // kernels borrowed from Caffe | ||||
| @ -114,25 +85,21 @@ __global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <typename scalar_t, typename index_t> | ||||
| template <typename scalar_t> | ||||
| C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS) | ||||
| __global__ void max_pool_forward_nhwc( | ||||
|     const scalar_t* bottom_data, | ||||
|     const int nbatch, | ||||
|     const index_t channels, const index_t height, const index_t width, | ||||
|     const index_t pooled_height, const index_t pooled_width, | ||||
| __global__ void max_pool_forward_nhwc(const scalar_t* bottom_data, const int nbatch, | ||||
|                                    const int64_t channels, const int64_t height, | ||||
|                                    const int64_t width, const int pooled_height, const int pooled_width, | ||||
|                                    const int kernel_h, const int kernel_w, const int stride_h, | ||||
|                                    const int stride_w, const int pad_h, const int pad_w, | ||||
|                                    const int dilation_h, const int dilation_w, | ||||
|     const index_t in_stride_n, const index_t in_stride_c, | ||||
|     const index_t in_stride_h, const index_t in_stride_w, | ||||
|                                    const int in_stride_n, const int in_stride_c, | ||||
|                                    const int in_stride_h, const int in_stride_w, | ||||
|                                    const int kernel_stride_C, const int kernel_size_C, | ||||
|                                    scalar_t* top_data, int64_t* top_mask) { | ||||
|  | ||||
|   extern __shared__ unsigned char smem_raw[]; | ||||
|   index_t *out_mask_cached = reinterpret_cast<index_t*>(smem_raw); | ||||
|   scalar_t *out_cached = reinterpret_cast<scalar_t*>( | ||||
|       out_mask_cached + kernel_size_C*blockDim.x*blockDim.y*blockDim.z); | ||||
|   extern __shared__ int smem[]; | ||||
|   int *out_mask_cached = smem; | ||||
|   scalar_t *out_cached = reinterpret_cast<scalar_t*>(&out_mask_cached[kernel_size_C*blockDim.x*blockDim.y*blockDim.z]); | ||||
|  | ||||
|   // flattening cta for pre-computation & smem initialization; | ||||
|   int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z); | ||||
| @ -151,26 +118,26 @@ __global__ void max_pool_forward_nhwc( | ||||
|   int channel_id = blockIdx.x / nbatch; | ||||
|   int channel_offset = threadIdx.x + channel_id * blockDim.x; | ||||
|  | ||||
|   top_data = top_data + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels); | ||||
|   top_mask = top_mask + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels); | ||||
|   bottom_data = bottom_data + static_cast<index_t>(batch_id) * in_stride_n; | ||||
|   top_data = top_data + batch_id * pooled_height * pooled_width * channels; | ||||
|   top_mask = top_mask + batch_id * pooled_height * pooled_width * channels; | ||||
|   bottom_data = bottom_data + batch_id * in_stride_n; | ||||
|  | ||||
|   out_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x; | ||||
|   out_mask_cached  += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x; | ||||
|   out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x]; | ||||
|   out_mask_cached = &out_mask_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x]; | ||||
|  | ||||
|   int oH = (static_cast<int>(pooled_height) + gridDim.z - 1) / gridDim.z; | ||||
|   int oW = (static_cast<int>(pooled_width)  + gridDim.y - 1) / gridDim.y; | ||||
|   int oH = (pooled_height + gridDim.z-1) / gridDim.z; | ||||
|   int oW = (pooled_width + gridDim.y-1) / gridDim.y; | ||||
|   int ostartH = threadIdx.z + blockIdx.z*oH; | ||||
|   int oendH = ::min(ostartH+oH, static_cast<int>(pooled_height)); | ||||
|   int oendH = ::min(ostartH+oH, pooled_height); | ||||
|   int ostartW = threadIdx.y + blockIdx.y*oW; | ||||
|   int oendW = ::min(ostartW+oW, static_cast<int>(pooled_width)); | ||||
|   int oendW = ::min(ostartW+oW, pooled_width); | ||||
|  | ||||
|   for (int oh = ostartH; oh < oendH; oh+=blockDim.z) { | ||||
|     index_t hstart = static_cast<index_t>(oh) * stride_h - pad_h; | ||||
|     index_t hend = std::min(hstart + static_cast<index_t>((kernel_h - 1) * dilation_h + 1), height); | ||||
|     int hstart = oh * stride_h - pad_h; | ||||
|     int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height); | ||||
|     for (int ow = ostartW; ow < oendW; ow+=blockDim.y) { | ||||
|       index_t wstart = static_cast<index_t>(ow) * stride_w - pad_w; | ||||
|       index_t wend = std::min(wstart + static_cast<index_t>((kernel_w - 1) * dilation_w + 1), width); | ||||
|       int wstart = ow * stride_w - pad_w; | ||||
|       int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width); | ||||
|       while(hstart < 0) | ||||
|         hstart += dilation_h; | ||||
|       while(wstart < 0) | ||||
| @ -218,11 +185,11 @@ __global__ void max_pool_forward_nhwc( | ||||
|       // Else do it Non-Prefetch... | ||||
|       else | ||||
| #endif | ||||
|       for (index_t ih = hstart; ih < hend; ih += dilation_h) { | ||||
|         for (index_t iw = wstart; iw < wend; iw += dilation_w) { | ||||
|       for (int ih = hstart; ih < hend; ih += dilation_h) { | ||||
|         for (int iw = wstart; iw < wend; iw += dilation_w) { | ||||
|           int cached_index = threadIdx.x; | ||||
|           const scalar_t *ptr_input = bottom_data + ih * in_stride_h + iw * in_stride_w; | ||||
|           for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) { | ||||
|           for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) { | ||||
|             scalar_t val = ptr_input[c*in_stride_c]; | ||||
|             if ((val > out_cached[cached_index]) || at::_isnan(val)) { | ||||
|               out_cached[cached_index] = val; | ||||
| @ -233,15 +200,15 @@ __global__ void max_pool_forward_nhwc( | ||||
|         } | ||||
|       } | ||||
|  | ||||
|       scalar_t *ptr_output_data = top_data + (static_cast<index_t>(oh) * pooled_width + ow) * channels; | ||||
|       int64_t *ptr_output_mask = top_mask + (static_cast<index_t>(oh) * pooled_width + ow) * channels; | ||||
|       scalar_t *ptr_output_data = top_data + (oh * pooled_width + ow) * channels; | ||||
|       int64_t *ptr_output_mask = top_mask + (oh * pooled_width + ow) * channels; | ||||
|  | ||||
|       int cached_index = threadIdx.x; | ||||
|       for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) { | ||||
|       for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) { | ||||
|         ptr_output_data[c] = out_cached[cached_index]; | ||||
|         ptr_output_mask[c] = static_cast<int64_t>(out_mask_cached[cached_index]); | ||||
|         ptr_output_mask[c] = out_mask_cached[cached_index]; | ||||
|         out_cached[cached_index] = at::numeric_limits<scalar_t>::lower_bound(); | ||||
|         out_mask_cached[cached_index] = index_t(0); | ||||
|         out_mask_cached[cached_index] = 0; | ||||
|         cached_index += blockDim.x; | ||||
|       } | ||||
|     } | ||||
| @ -249,7 +216,7 @@ __global__ void max_pool_forward_nhwc( | ||||
| } | ||||
|  | ||||
|  | ||||
| static constexpr int BLOCK_THREADS = 256; | ||||
| static const int BLOCK_THREADS = 256; | ||||
|  | ||||
| template <typename scalar_t, typename accscalar_t> | ||||
| #if defined (USE_ROCM) | ||||
| @ -495,11 +462,6 @@ const Tensor& indices) { | ||||
|               maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z)); | ||||
|           const dim3 block(block_x, block_y, block_z); | ||||
|  | ||||
|           bool use_int32 = can_use_int32_nhwc( | ||||
|               nbatch, nInputPlane, inputHeight, inputWidth, | ||||
|               outputHeight, outputWidth, | ||||
|               in_stride_n, in_stride_c, in_stride_h, in_stride_w); | ||||
|  | ||||
|           int kernel_stride_C = ceil_div( | ||||
|               safe_downcast<int, int64_t>(nInputPlane), block_x * 4); | ||||
|           int kernel_size_C = ceil_div( | ||||
| @ -514,41 +476,18 @@ const Tensor& indices) { | ||||
|               ceil_div(safe_downcast<int, int64_t>(outputHeight), block_z*BLOCK_STRIDE_FWD)); | ||||
|           const dim3 grid(grid_x, grid_y, grid_z); | ||||
|  | ||||
|           size_t shmem_size; | ||||
|           size_t mask_elems = static_cast<size_t>(kernel_size_C) * block_x * block_y * block_z; | ||||
|           size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * (sizeof(int) + sizeof(scalar_t)); | ||||
|           AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock); | ||||
|  | ||||
|           if (use_int32) { | ||||
|             shmem_size = mask_elems * (sizeof(int32_t) + sizeof(scalar_t)); | ||||
|             TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock, | ||||
|                         "shared memory too small"); | ||||
|             max_pool_forward_nhwc<scalar_t, int32_t> | ||||
|           max_pool_forward_nhwc<scalar_t> | ||||
|           <<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>( | ||||
|                 input_data, static_cast<int>(nbatch), | ||||
|                 static_cast<int32_t>(nInputPlane), | ||||
|                 static_cast<int32_t>(inputHeight), | ||||
|                 static_cast<int32_t>(inputWidth), | ||||
|                 static_cast<int32_t>(outputHeight), | ||||
|                 static_cast<int32_t>(outputWidth), | ||||
|                 kH, kW, dH, dW, padH, padW, dilationH, dilationW, | ||||
|                 static_cast<int32_t>(in_stride_n), | ||||
|                 static_cast<int32_t>(in_stride_c), | ||||
|                 static_cast<int32_t>(in_stride_h), | ||||
|                 static_cast<int32_t>(in_stride_w), | ||||
|                 kernel_stride_C, kernel_size_C, | ||||
|                 output_data, indices_data); | ||||
|           } else { | ||||
|             shmem_size = mask_elems * (sizeof(int64_t) + sizeof(scalar_t)); | ||||
|             TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock, | ||||
|                         "shared memory too small"); | ||||
|             max_pool_forward_nhwc<scalar_t, int64_t> | ||||
|               <<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>( | ||||
|                 input_data, static_cast<int>(nbatch), | ||||
|               input_data, nbatch, | ||||
|                   nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, | ||||
|                   kH, kW, dH, dW, padH, padW, dilationH, dilationW, | ||||
|                 in_stride_n, in_stride_c, in_stride_h, in_stride_w, | ||||
|                   in_stride_n, in_stride_c, | ||||
|                   in_stride_h, in_stride_w, | ||||
|                   kernel_stride_C, kernel_size_C, | ||||
|                   output_data, indices_data); | ||||
|           } | ||||
|           C10_CUDA_KERNEL_LAUNCH_CHECK(); | ||||
|           break; | ||||
|         } | ||||
|  | ||||
| @ -15,7 +15,9 @@ | ||||
| #include <ATen/native/cuda/block_reduce.cuh> | ||||
| #include <ATen/native/cuda/thread_constants.h> | ||||
|  | ||||
| #if CUB_SUPPORTS_SCAN_BY_KEY() | ||||
| #include <thrust/iterator/reverse_iterator.h> | ||||
| #endif | ||||
|  | ||||
| #ifndef AT_PER_OPERATOR_HEADERS | ||||
| #include <ATen/Functions.h> | ||||
| @ -34,9 +36,9 @@ namespace at::native { | ||||
| namespace { | ||||
|  | ||||
| #if defined(USE_ROCM) | ||||
| static constexpr int BLOCKDIMY = 16; | ||||
| static const int BLOCKDIMY = 16; | ||||
| #else | ||||
| static constexpr int BLOCKDIMY = 32; | ||||
| static const int BLOCKDIMY = 32; | ||||
| #endif | ||||
|  | ||||
| template | ||||
| @ -238,6 +240,10 @@ __global__ void renorm_kernel( | ||||
|  | ||||
| } // anonymous namespace | ||||
|  | ||||
| #if !CUB_SUPPORTS_SCAN_BY_KEY() | ||||
| template<typename index_t> | ||||
| void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count); | ||||
| #endif | ||||
|  | ||||
| Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices_, | ||||
|                                int64_t num_weights, int64_t padding_idx, | ||||
| @ -300,6 +306,7 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice | ||||
|  | ||||
|   if (scale_grad_by_freq) { | ||||
|     count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT); | ||||
| #if CUB_SUPPORTS_SCAN_BY_KEY() | ||||
|     AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () { | ||||
|       cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | ||||
|  | ||||
| @ -326,6 +333,11 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice | ||||
|         num_indices | ||||
|       ); | ||||
|     }); | ||||
| #else | ||||
|     AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () { | ||||
|       embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count); | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   return embedding_backward_cuda_kernel(grad, orig_indices, | ||||
|  | ||||
| @ -10,7 +10,9 @@ | ||||
|  | ||||
| #include <c10/macros/Macros.h> | ||||
|  | ||||
| #if CUB_SUPPORTS_UNIQUE_BY_KEY() | ||||
| #include <thrust/iterator/counting_iterator.h> | ||||
| #endif | ||||
|  | ||||
| #ifndef AT_PER_OPERATOR_HEADERS | ||||
| #include <ATen/Functions.h> | ||||
| @ -194,9 +196,18 @@ __global__ void compute_num_of_partial_segments(const index_t *partials_per_segm | ||||
|             partials_per_segment_offset[num_of_segments-1]; | ||||
| } | ||||
|  | ||||
| #if !CUB_SUPPORTS_UNIQUE_BY_KEY() | ||||
| __global__ void write_num_of_segments_for_legacy_thrust_path(int64_t *num_of_segments_ptr, int64_t num_of_segments) { | ||||
|   *num_of_segments_ptr = num_of_segments; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| } // anon namespace | ||||
|  | ||||
| #if !CUB_SUPPORTS_UNIQUE_BY_KEY() | ||||
| template<typename index_t> | ||||
| int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets); | ||||
| #endif | ||||
|  | ||||
| Tensor embedding_backward_cuda_kernel( | ||||
|         const Tensor &grad, | ||||
| @ -223,12 +234,20 @@ Tensor embedding_backward_cuda_kernel( | ||||
|   auto segment_offsets = at::empty({numel}, orig_indices.options()); | ||||
|   auto num_of_segments_tensor = at::empty({}, grad.options().dtype(kLong)); | ||||
|   int64_t *num_of_segments_ptr = num_of_segments_tensor.mutable_data_ptr<int64_t>(); | ||||
| #if !CUB_SUPPORTS_UNIQUE_BY_KEY() | ||||
|   AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () { | ||||
|     int64_t num_of_segments = embedding_backward_cuda_kernel_unique_by_key<index_t>(sorted_indices, segment_offsets); | ||||
|     write_num_of_segments_for_legacy_thrust_path<<<1, 1, 0, c10::cuda::getCurrentCUDAStream()>>>(num_of_segments_ptr, num_of_segments); | ||||
|     C10_CUDA_KERNEL_LAUNCH_CHECK(); | ||||
|   }); | ||||
| #else | ||||
|   AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () { | ||||
|     cuda::cub::unique_by_key( | ||||
|       sorted_indices.const_data_ptr<index_t>(), thrust::make_counting_iterator(0), | ||||
|       segment_offsets.mutable_data_ptr<index_t>(), | ||||
|       num_of_segments_ptr, sorted_indices.numel()); | ||||
|   }); | ||||
| #endif | ||||
|  | ||||
|   int64_t max_segments = std::min<int64_t>(numel, num_weights); | ||||
|  | ||||
|  | ||||
| @ -31,10 +31,16 @@ | ||||
|  | ||||
| #include <c10/macros/Macros.h> | ||||
|  | ||||
| #if CUB_SUPPORTS_SCAN_BY_KEY() | ||||
| #include <thrust/iterator/reverse_iterator.h> | ||||
| #endif | ||||
|  | ||||
| namespace at::native { | ||||
|  | ||||
| #if !CUB_SUPPORTS_SCAN_BY_KEY() | ||||
| template<typename index_t> | ||||
| void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count); | ||||
| #endif | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| @ -193,6 +199,7 @@ Tensor embedding_bag_backward_cuda_sum_avg( | ||||
|  | ||||
|   if (scale_grad_by_freq) { | ||||
|     count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT); | ||||
| #if CUB_SUPPORTS_SCAN_BY_KEY() | ||||
|     AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () { | ||||
|       cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | ||||
|  | ||||
| @ -219,6 +226,11 @@ Tensor embedding_bag_backward_cuda_sum_avg( | ||||
|         num_indices | ||||
|       ); | ||||
|     }); | ||||
| #else | ||||
|     AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () { | ||||
|       embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count); | ||||
|     }); | ||||
| #endif | ||||
|   } | ||||
|   return embedding_backward_cuda_kernel(grad, orig_indices, sorted_indices, | ||||
|       count, num_weights, padding_idx, mode == EmbeddingBagMode::MEAN, offset2bag, | ||||
|  | ||||
| @ -82,7 +82,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) { | ||||
|   // lanczos approximation | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|  | ||||
|   constexpr accscalar_t lanczos_sum_expg_scaled_num[13] = { | ||||
|   static const accscalar_t lanczos_sum_expg_scaled_num[13] = { | ||||
|     0.006061842346248906525783753964555936883222, | ||||
|     0.5098416655656676188125178644804694509993, | ||||
|     19.51992788247617482847860966235652136208, | ||||
| @ -97,7 +97,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) { | ||||
|     103794043.1163445451906271053616070238554, | ||||
|     56906521.91347156388090791033559122686859 | ||||
|   }; | ||||
|   constexpr accscalar_t lanczos_sum_expg_scaled_denom[13] = { | ||||
|   static const accscalar_t lanczos_sum_expg_scaled_denom[13] = { | ||||
|     1., | ||||
|     66., | ||||
|     1925., | ||||
| @ -126,10 +126,10 @@ __host__ __device__ scalar_t _igam_helper_fac(scalar_t a, scalar_t x) { | ||||
|  | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|   accscalar_t ax, fac, res, num, numfac; | ||||
|   constexpr accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ? | ||||
|   static const accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ? | ||||
|     7.09782712893383996843E2 : 88.72283905206835; | ||||
|   constexpr accscalar_t EXP1 = 2.718281828459045; | ||||
|   constexpr accscalar_t lanczos_g = 6.024680040776729583740234375; | ||||
|   static const accscalar_t EXP1 = 2.718281828459045; | ||||
|   static const accscalar_t lanczos_g = 6.024680040776729583740234375; | ||||
|  | ||||
|   if (::fabs(a - x) > 0.4 * ::fabs(a)) { | ||||
|     ax = a * ::log(x) - x - ::lgamma(a); | ||||
| @ -158,9 +158,9 @@ __host__ __device__ scalar_t _igam_helper_series(scalar_t a, scalar_t x) { | ||||
|   // Compute igam using DLMF 8.11.4. [igam1] | ||||
|  | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|   constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|   static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|     1.11022302462515654042E-16 : 5.9604644775390625E-8; | ||||
|   constexpr int MAXITER = 2000; | ||||
|   static const int MAXITER = 2000; | ||||
|  | ||||
|   int i; | ||||
|   accscalar_t ans, ax, c, r; | ||||
| @ -196,8 +196,8 @@ __host__ __device__ scalar_t _igamc_helper_series(scalar_t a, scalar_t x) { | ||||
|   accscalar_t fac = 1; | ||||
|   accscalar_t sum = 0; | ||||
|   accscalar_t term, logx; | ||||
|   constexpr int MAXITER = 2000; | ||||
|   constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|   static const int MAXITER = 2000; | ||||
|   static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|     1.11022302462515654042E-16 : 5.9604644775390625E-8; | ||||
|  | ||||
|   for (n = 1; n < MAXITER; n++) { | ||||
| @ -219,7 +219,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t | ||||
|   // Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1] | ||||
|  | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|   constexpr accscalar_t d[25][25] = | ||||
|   static const accscalar_t d[25][25] = | ||||
|     {{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9, 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10, -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11, -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13, -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16, -1.9752288294349443e-15}, | ||||
|     {-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3, -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7, -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6, 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8, 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9, 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14, 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13, -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14, -4.13125571381061e-15}, | ||||
|     {4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4, 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5, -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6, -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10, -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9, 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11, 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12, 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17, 8.8592218725911273e-15}, | ||||
| @ -248,7 +248,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t | ||||
|  | ||||
|   int k, n, sgn; | ||||
|   int maxpow = 0; | ||||
|   constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|   static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|     1.11022302462515654042E-16 : 5.9604644775390625E-8; | ||||
|   accscalar_t lambda = x / a; | ||||
|   accscalar_t sigma = (x - a) / a; | ||||
| @ -314,12 +314,12 @@ __host__ __device__ scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar | ||||
|   int i; | ||||
|   accscalar_t ans, ax, c, yc, r, t, y, z; | ||||
|   accscalar_t pk, pkm1, pkm2, qk, qkm1, qkm2; | ||||
|   constexpr int MAXITER = 2000; | ||||
|   constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|   static const int MAXITER = 2000; | ||||
|   static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ? | ||||
|     1.11022302462515654042E-16 : 5.9604644775390625E-8; | ||||
|   constexpr accscalar_t BIG = std::is_same_v<accscalar_t,double> ? | ||||
|   static const accscalar_t BIG = std::is_same_v<accscalar_t,double> ? | ||||
|     4.503599627370496e15 : 16777216.; | ||||
|   constexpr accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ? | ||||
|   static const accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ? | ||||
|     2.22044604925031308085e-16 : 5.9604644775390625E-8; | ||||
|  | ||||
|   ax = _igam_helper_fac(a, x); | ||||
| @ -385,10 +385,10 @@ __noinline__ __host__ __device__ scalar_t calc_igammac(scalar_t a, scalar_t x) { | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|   accscalar_t absxma_a; | ||||
|  | ||||
|   constexpr accscalar_t SMALL = 20.0; | ||||
|   constexpr accscalar_t LARGE = 200.0; | ||||
|   constexpr accscalar_t SMALLRATIO = 0.3; | ||||
|   constexpr accscalar_t LARGERATIO = 4.5; | ||||
|   static const accscalar_t SMALL = 20.0; | ||||
|   static const accscalar_t LARGE = 200.0; | ||||
|   static const accscalar_t SMALLRATIO = 0.3; | ||||
|   static const accscalar_t LARGERATIO = 4.5; | ||||
|  | ||||
|   if ((x < 0) || (a < 0)) { | ||||
|     // out of defined-region of the function | ||||
| @ -467,10 +467,10 @@ __noinline__ __host__ __device__ scalar_t calc_igamma(scalar_t a, scalar_t x) { | ||||
|  | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|   accscalar_t absxma_a; | ||||
|   constexpr accscalar_t SMALL = 20.0; | ||||
|   constexpr accscalar_t LARGE = 200.0; | ||||
|   constexpr accscalar_t SMALLRATIO = 0.3; | ||||
|   constexpr accscalar_t LARGERATIO = 4.5; | ||||
|   static const accscalar_t SMALL = 20.0; | ||||
|   static const accscalar_t LARGE = 200.0; | ||||
|   static const accscalar_t SMALLRATIO = 0.3; | ||||
|   static const accscalar_t LARGERATIO = 4.5; | ||||
|  | ||||
|   // boundary values following SciPy | ||||
|   if ((x < 0) || (a < 0)) { | ||||
|  | ||||
							
								
								
									
										90
									
								
								aten/src/ATen/native/cuda/LegacyThrustHelpers.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								aten/src/ATen/native/cuda/LegacyThrustHelpers.cu
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,90 @@ | ||||
| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS | ||||
| #include <ATen/core/Tensor.h> | ||||
| #include <ATen/native/cuda/SortingCommon.cuh> | ||||
| #include <ATen/cuda/cub_definitions.cuh> | ||||
|  | ||||
| #ifndef AT_PER_OPERATOR_HEADERS | ||||
| #include <ATen/Functions.h> | ||||
| #else | ||||
| #include <ATen/ops/empty_like.h> | ||||
| #endif | ||||
|  | ||||
| #include <ATen/cuda/ThrustAllocator.h> | ||||
| #include <thrust/device_ptr.h> | ||||
| #include <thrust/execution_policy.h> | ||||
| #include <thrust/sort.h> | ||||
| #include <thrust/unique.h> | ||||
| #include <thrust/device_ptr.h> | ||||
| #include <thrust/iterator/constant_iterator.h> | ||||
|  | ||||
| namespace at::native { | ||||
|  | ||||
| #if !CUB_SUPPORTS_SCAN_BY_KEY() | ||||
|  | ||||
| template<typename index_t> | ||||
| void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count) { | ||||
|   cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | ||||
|   at::cuda::ThrustAllocator allocator; | ||||
|   auto policy = thrust::cuda::par(allocator).on(stream); | ||||
|  | ||||
|   auto num_indices = count.numel(); | ||||
|  | ||||
|   // Compute an increasing sequence per unique item in sortedIndices: | ||||
|   // sorted: 2 5 5 5 7 7 8 9 9 | ||||
|   //  count: 1 1 2 3 1 2 1 1 2 | ||||
|   auto sorted_data = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>()); | ||||
|   auto count_data = thrust::device_ptr<index_t>(count.mutable_data_ptr<index_t>()); | ||||
|   thrust::inclusive_scan_by_key( | ||||
|     policy, | ||||
|     sorted_data, | ||||
|     sorted_data + num_indices, | ||||
|     thrust::make_constant_iterator(1), | ||||
|     count_data | ||||
|   ); | ||||
|  | ||||
|   // Take the maximum of each count per unique key in reverse: | ||||
|   // sorted: 2 5 5 5 7 7 8 9 9 | ||||
|   //  count: 1 3 3 3 2 2 1 2 2 | ||||
|   thrust::inclusive_scan_by_key( | ||||
|     policy, | ||||
|     thrust::make_reverse_iterator(sorted_data + num_indices), | ||||
|     thrust::make_reverse_iterator(sorted_data), | ||||
|     thrust::make_reverse_iterator(count_data + num_indices), | ||||
|     thrust::make_reverse_iterator(count_data + num_indices), | ||||
|     thrust::equal_to<index_t>(), | ||||
|     thrust::maximum<index_t>() | ||||
|   ); | ||||
| } | ||||
|  | ||||
| template | ||||
| void embedding_dense_backward_cuda_scan<int>(Tensor &sorted_indices, Tensor &count); | ||||
| template | ||||
| void embedding_dense_backward_cuda_scan<int64_t>(Tensor &sorted_indices, Tensor &count); | ||||
|  | ||||
| #endif | ||||
|  | ||||
| template<typename index_t> | ||||
| int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets) { | ||||
|   auto stream = at::cuda::getCurrentCUDAStream(); | ||||
|   at::cuda::ThrustAllocator allocator; | ||||
|   auto policy = thrust::cuda::par(allocator).on(stream); | ||||
|   const ptrdiff_t numel = sorted_indices.numel(); | ||||
|   auto sorted_indices_dev = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>()); | ||||
|   auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT); | ||||
|   auto dummy_dev = thrust::device_ptr<index_t>(dummy.mutable_data_ptr<index_t>()); | ||||
|   auto ends = thrust::unique_by_key_copy( | ||||
|           policy, | ||||
|           sorted_indices_dev, | ||||
|           sorted_indices_dev + numel, | ||||
|           thrust::make_counting_iterator(0), | ||||
|           dummy_dev, | ||||
|           thrust::device_ptr<index_t>(segment_offsets.mutable_data_ptr<index_t>())); | ||||
|   return thrust::get<0>(ends) - dummy_dev; | ||||
| } | ||||
|  | ||||
| template | ||||
| int64_t embedding_backward_cuda_kernel_unique_by_key<int>(const Tensor &sorted_indices, Tensor &segment_offsets); | ||||
| template | ||||
| int64_t embedding_backward_cuda_kernel_unique_by_key<int64_t>(const Tensor &sorted_indices, Tensor &segment_offsets); | ||||
|  | ||||
| } // namespace at::native | ||||
| @ -231,7 +231,7 @@ const auto lcm_string = jiterator_stringify( | ||||
| const auto digamma_string = jiterator_stringify( | ||||
|   template <typename T> | ||||
|   T digamma(T x) { | ||||
|     static constexpr double PI_f64 = 3.14159265358979323846; | ||||
|     static const double PI_f64 = 3.14159265358979323846; | ||||
|  | ||||
|     // Short-circuits if x is +/- 0 and returns -/+ ∞ per the C++ standard | ||||
|     if (x == 0) { | ||||
| @ -3072,9 +3072,9 @@ template <typename scalar_t> | ||||
| static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) { | ||||
|   // [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma | ||||
|   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>; | ||||
|   static constexpr double PI_f64 = 3.14159265358979323846; | ||||
|   constexpr accscalar_t PSI_10 = 2.25175258906672110764; | ||||
|   constexpr accscalar_t A[] = { | ||||
|   static const double PI_f64 = 3.14159265358979323846; | ||||
|   const accscalar_t PSI_10 = 2.25175258906672110764; | ||||
|   const accscalar_t A[] = { | ||||
|       8.33333333333333333333E-2, | ||||
|       -2.10927960927960927961E-2, | ||||
|       7.57575757575757575758E-3, | ||||
|  | ||||
| @ -146,7 +146,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel( | ||||
|   int64_t batch_size = target.size(0); | ||||
|   int64_t H = target.size(1); | ||||
|   int64_t W = target.size(2); | ||||
|   int64_t n_classes = grad_input.size(1); | ||||
|  | ||||
|   CUDA_KERNEL_LOOP(index, n_threads) { | ||||
|     const int64_t b = index % batch_size; | ||||
| @ -157,7 +156,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel( | ||||
|     if (cur_target == ignore_index) { | ||||
|       continue; | ||||
|     } | ||||
|     CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes); | ||||
|     scalar_t value = -(weight != nullptr ? weight[cur_target] : static_cast<scalar_t>(1)); | ||||
|     grad_input[b][cur_target][h][w] = value * grad_output[b][h][w]; | ||||
|   } | ||||
|  | ||||
| @ -413,12 +413,14 @@ struct ReduceOp { | ||||
|       value = thread_reduce<output_vec_size>(input_slice); | ||||
|     } | ||||
|  | ||||
|     if (config.should_block_x_reduce()) { | ||||
|       value = block_x_reduce<output_vec_size>(value, shared_memory); | ||||
|     } | ||||
|     if (config.should_block_y_reduce()) { | ||||
|       value = block_y_reduce<output_vec_size>(value, shared_memory); | ||||
|     } | ||||
|     __syncthreads(); | ||||
|     if (config.should_block_x_reduce()) { | ||||
|       value = block_x_reduce<output_vec_size>(value, shared_memory); | ||||
|     } | ||||
|  | ||||
|     using out_ptr_vec_t = std::array<out_scalar_t*, output_vec_size>; | ||||
|     using offset_vec_t = std::array<index_t, output_vec_size>; | ||||
|     offset_vec_t base_offsets; | ||||
| @ -653,14 +655,8 @@ struct ReduceOp { | ||||
|     } | ||||
|  | ||||
|     __syncthreads(); | ||||
|     // Intra-warp reduction, fix CUDA to have offset decreasing for better numerics | ||||
|     // matching Triton, etc. | ||||
|     // TODO(PaulZhang12): AMD and internal | ||||
|     #if defined(USE_ROCM) || defined(FBCODE_CAFFE2) | ||||
|  | ||||
|     for (int offset = 1; offset < dim_x; offset <<= 1) { | ||||
|     #else | ||||
|     for (int offset = dim_x >> 1; offset > 0; offset >>= 1) { | ||||
|     #endif | ||||
|       #pragma unroll | ||||
|       for (int i = 0; i < output_vec_size; i++) { | ||||
|         arg_t other = ops.warp_shfl_down(value[i], offset); | ||||
| @ -1095,7 +1091,11 @@ ReduceConfig setReduceConfig(const TensorIterator& iter){ | ||||
|   // threads with different threadIdx.x are independent and will produce results for different outputs. | ||||
|   // In such case, values in each loaded vector always correspond to different outputs. | ||||
|   if (fastest_moving_stride == sizeof(scalar_t)) { | ||||
| #ifdef USE_ROCM | ||||
|     if (reduction_on_fastest_striding_dimension && dim0 >= 128 && iter.num_reduce_dims() == 1) { | ||||
| #else | ||||
|     if (reduction_on_fastest_striding_dimension && dim0 > 128 && iter.num_reduce_dims() == 1 && vt0 >= input_vec_size) { | ||||
| #endif | ||||
|       // Case 1: "vectorize along input" | ||||
|       // Note that if vt0 < ReduceConfig::vec_size, then this means the register pressure could be high, in such case, | ||||
|       // we should avoid vectorization. | ||||
|  | ||||
| @ -39,15 +39,10 @@ static void std_var_kernel_cuda(TensorIterator& iter, double correction, bool ta | ||||
| template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t> | ||||
| void mean_kernel_impl(TensorIterator& iter) { | ||||
|   //  returns acc_t for all non-complex dtypes and returns T for c10::complex<T> | ||||
|   constexpr bool is_16_bits = sizeof(scalar_t) == 2; | ||||
|   using factor_t = typename c10::scalar_value_type<acc_t>::type; | ||||
|   factor_t factor = static_cast<factor_t>(iter.num_output_elements()) / iter.numel(); | ||||
|   if constexpr (is_16_bits) { | ||||
|     gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor}); | ||||
|   } else { | ||||
|   gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor}); | ||||
| } | ||||
| } | ||||
|  | ||||
| static void mean_kernel_cuda(TensorIterator& iter) { | ||||
|   if (iter.dtype() == kHalf) { | ||||
|  | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user
	