mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-28 02:04:53 +08:00
Compare commits
157 Commits
cpp-docs-d
...
trunk/5076
| Author | SHA1 | Date | |
|---|---|---|---|
| 507614ba43 | |||
| 86f9f1d0ab | |||
| 154e4d36e9 | |||
| a2b6afeac5 | |||
| 262830d86c | |||
| e4c01011c2 | |||
| a60d9e1f6d | |||
| f863550192 | |||
| 84b14f3a10 | |||
| 5121499f6b | |||
| 8f80892359 | |||
| cdb60e44eb | |||
| 25909d2629 | |||
| c7eee49525 | |||
| 621ba05107 | |||
| 39a70cead1 | |||
| d97f6550a2 | |||
| 516e58965a | |||
| b55b779ad3 | |||
| 74e53d0761 | |||
| 798a6d2be1 | |||
| b0e9c86971 | |||
| 661a56002f | |||
| c9bc00f016 | |||
| ec51b139e1 | |||
| eb83c3ca23 | |||
| 7924e3aacf | |||
| 78bcfcf870 | |||
| 1e2e7cb18b | |||
| 003601a70d | |||
| 1d58d5fe25 | |||
| de7fdfe41a | |||
| b31bad1b8f | |||
| 2efcf3ca98 | |||
| 761f946043 | |||
| 8aa465f18e | |||
| 0a5d68d92d | |||
| 42bd210fff | |||
| 1d13c314b3 | |||
| 0c9763a5a0 | |||
| 79a4a9c02e | |||
| 9d0b77f4cd | |||
| d486eee234 | |||
| cddd5f74ab | |||
| dfdb68e51f | |||
| 98c818320a | |||
| cc20b7ad72 | |||
| bc11a42b3f | |||
| 4fc06f2e0a | |||
| 82473c3d59 | |||
| b6a4236e5d | |||
| b04173be9b | |||
| 32ac38f85d | |||
| c9b49e506e | |||
| 6038e476e8 | |||
| 2c851c16e5 | |||
| 31584f2d91 | |||
| 0442125362 | |||
| fdcf402d82 | |||
| 13cda9b89e | |||
| fa6d911dda | |||
| 0db6bcc015 | |||
| 60ac039998 | |||
| 380d440d1c | |||
| 9038a30cee | |||
| 690c8c13b9 | |||
| 28ee6b62ed | |||
| 81577bdb3f | |||
| e67e3d95f3 | |||
| 27af8480ea | |||
| 6494cdc40c | |||
| ac7074efa2 | |||
| 263901cec4 | |||
| c12293dcbe | |||
| 5a4997dcae | |||
| 47f638eae7 | |||
| 882b834082 | |||
| b146ea411e | |||
| 8625ffbd45 | |||
| 0977cc4474 | |||
| d9a55faccc | |||
| 75b8295868 | |||
| defb6a80d8 | |||
| f8fccb1e48 | |||
| 5aac4cfce4 | |||
| baf91bbbfc | |||
| cbcb4f7768 | |||
| 2b93d5b450 | |||
| 6b7cd48e7e | |||
| bf5aa9e42e | |||
| b1eb6dede5 | |||
| 673060beae | |||
| 2e8e9a59a8 | |||
| fb277a5916 | |||
| 73fa0d0c63 | |||
| 36c21cc84e | |||
| 0b68814b44 | |||
| e64a814ae7 | |||
| 0b58d87aec | |||
| 757975ad50 | |||
| 291712026b | |||
| 3e77a2b478 | |||
| 82ef1b5db3 | |||
| 5f370f5c42 | |||
| 05b2e02cb4 | |||
| 12f742941d | |||
| 35180fafee | |||
| c746feb86a | |||
| c5f26db5bf | |||
| 18e99b6d45 | |||
| ab9e466928 | |||
| af4ba78543 | |||
| 282f39a4bc | |||
| a479769488 | |||
| 26c7375477 | |||
| d01f15152c | |||
| 4fae6968b1 | |||
| f9953e0f61 | |||
| 34ed7a8f0d | |||
| 2fde10d914 | |||
| 0a93295da0 | |||
| 4b898b51b9 | |||
| 550e3e6efb | |||
| 715449ca76 | |||
| 84d8d06fc3 | |||
| 60992d98b2 | |||
| 59e015e3a1 | |||
| 8904a5a7c9 | |||
| f5df9ca03a | |||
| 2998abd777 | |||
| e13580e41c | |||
| f3b8e15f20 | |||
| 5211f4c108 | |||
| ad9027b80d | |||
| a1005427bf | |||
| 35153d0846 | |||
| 7773a22cdb | |||
| 7cb467a169 | |||
| 12aac12b8d | |||
| 2b748d0a56 | |||
| 16745a882a | |||
| 8daef35cf1 | |||
| 51319ca090 | |||
| d311a3d1dc | |||
| 04adfe5ba9 | |||
| 4be1e3bf92 | |||
| e7592f4005 | |||
| d334c3649d | |||
| 9f82535c5a | |||
| 5b35fc8777 | |||
| 2f38eece7c | |||
| 830e789a55 | |||
| ad4dc52bf6 | |||
| dac9ed9790 | |||
| 1c7fe8f861 | |||
| 4e643422f6 | |||
| 3c3b278872 |
@ -19,7 +19,7 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.23.0
|
||||
pip_install onnxruntime==1.23.1
|
||||
pip_install onnxscript==0.5.4
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
|
||||
@ -334,12 +334,12 @@ sympy==1.13.3
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnx==1.18.0
|
||||
onnx==1.19.1
|
||||
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.5.3
|
||||
onnxscript==0.5.4
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
@ -6,7 +6,7 @@ dependencies = [
|
||||
"GitPython==3.1.45",
|
||||
"docker==7.1.0",
|
||||
"pytest==7.3.2",
|
||||
"uv==0.8.6"
|
||||
"uv==0.9.5"
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
|
||||
354
.claude/skills/pytorch-docstring.md
Normal file
354
.claude/skills/pytorch-docstring.md
Normal file
@ -0,0 +1,354 @@
|
||||
# PyTorch Docstring Writing Guide
|
||||
|
||||
This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in `torch/_tensor_docs.py` and `torch/nn/functional.py`.
|
||||
|
||||
## General Principles
|
||||
|
||||
- Use **raw strings** (`r"""..."""`) for all docstrings to avoid issues with LaTeX/math backslashes
|
||||
- Follow **Sphinx/reStructuredText** (reST) format for documentation
|
||||
- Be **concise but complete** - include all essential information
|
||||
- Always include **examples** when possible
|
||||
- Use **cross-references** to related functions/classes
|
||||
|
||||
## Docstring Structure
|
||||
|
||||
### 1. Function Signature (First Line)
|
||||
|
||||
Start with the function signature showing all parameters:
|
||||
|
||||
```python
|
||||
r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Include the function name
|
||||
- Show positional and keyword-only arguments (use `*` separator)
|
||||
- Include default values
|
||||
- Show return type annotation
|
||||
- This line should NOT end with a period
|
||||
|
||||
### 2. Brief Description
|
||||
|
||||
Provide a one-line description of what the function does:
|
||||
|
||||
```python
|
||||
r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||||
|
||||
Applies a 2D convolution over an input image composed of several input
|
||||
planes.
|
||||
```
|
||||
|
||||
### 3. Mathematical Formulas (if applicable)
|
||||
|
||||
Use Sphinx math directives for mathematical expressions:
|
||||
|
||||
```python
|
||||
.. math::
|
||||
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
||||
```
|
||||
|
||||
Or inline math: `:math:\`x^2\``
|
||||
|
||||
### 4. Cross-References
|
||||
|
||||
Link to related classes and functions using Sphinx roles:
|
||||
|
||||
- `:class:\`~torch.nn.ModuleName\`` - Link to a class
|
||||
- `:func:\`torch.function_name\`` - Link to a function
|
||||
- `:meth:\`~Tensor.method_name\`` - Link to a method
|
||||
- `:attr:\`attribute_name\`` - Reference an attribute
|
||||
- The `~` prefix shows only the last component (e.g., `Conv2d` instead of `torch.nn.Conv2d`)
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
See :class:`~torch.nn.Conv2d` for details and output shape.
|
||||
```
|
||||
|
||||
### 5. Notes and Warnings
|
||||
|
||||
Use admonitions for important information:
|
||||
|
||||
```python
|
||||
.. note::
|
||||
This function doesn't work directly with NLLLoss,
|
||||
which expects the Log to be computed between the Softmax and itself.
|
||||
Use log_softmax instead (it's faster and has better numerical properties).
|
||||
|
||||
.. warning::
|
||||
:func:`new_tensor` always copies :attr:`data`. If you have a Tensor
|
||||
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
|
||||
or :func:`torch.Tensor.detach`.
|
||||
```
|
||||
|
||||
### 6. Args Section
|
||||
|
||||
Document all parameters with type annotations and descriptions:
|
||||
|
||||
```python
|
||||
Args:
|
||||
input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||||
weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)`
|
||||
bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
|
||||
stride (int or tuple): the stride of the convolving kernel. Can be a single number or a
|
||||
tuple `(sH, sW)`. Default: 1
|
||||
```
|
||||
|
||||
**Formatting rules:**
|
||||
- Parameter name in **lowercase**
|
||||
- Type in parentheses: `(Type)`, `(Type, optional)` for optional parameters
|
||||
- Description follows the type
|
||||
- For optional parameters, include "Default: ``value``" at the end
|
||||
- Use double backticks for inline code: ``` ``None`` ```
|
||||
- Indent continuation lines by 2 spaces
|
||||
|
||||
### 7. Keyword Args Section (if applicable)
|
||||
|
||||
Sometimes keyword arguments are documented separately:
|
||||
|
||||
```python
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
||||
Default: if None, same :class:`torch.dtype` as this tensor.
|
||||
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
||||
Default: if None, same :class:`torch.device` as this tensor.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned tensor. Default: ``False``.
|
||||
```
|
||||
|
||||
### 8. Returns Section (if needed)
|
||||
|
||||
Document the return value:
|
||||
|
||||
```python
|
||||
Returns:
|
||||
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||||
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||||
be probability distributions that sum to 1 across `dim`.
|
||||
```
|
||||
|
||||
Or simply include it in the function signature line if obvious from context.
|
||||
|
||||
### 9. Examples Section
|
||||
|
||||
Always include examples when possible:
|
||||
|
||||
```python
|
||||
Examples::
|
||||
|
||||
>>> inputs = torch.randn(33, 16, 30)
|
||||
>>> filters = torch.randn(20, 16, 5)
|
||||
>>> F.conv1d(inputs, filters)
|
||||
|
||||
>>> # With square kernels and equal stride
|
||||
>>> filters = torch.randn(8, 4, 3, 3)
|
||||
>>> inputs = torch.randn(1, 4, 5, 5)
|
||||
>>> F.conv2d(inputs, filters, padding=1)
|
||||
```
|
||||
|
||||
**Formatting rules:**
|
||||
- Use `Examples::` with double colon
|
||||
- Use `>>>` prompt for Python code
|
||||
- Include comments with `#` when helpful
|
||||
- Show actual output when it helps understanding (indent without `>>>`)
|
||||
|
||||
### 10. External References
|
||||
|
||||
Link to papers or external documentation:
|
||||
|
||||
```python
|
||||
.. _Link Name:
|
||||
https://arxiv.org/abs/1611.00712
|
||||
```
|
||||
|
||||
Reference them in text: ```See `Link Name`_```
|
||||
|
||||
## Method Types
|
||||
|
||||
### Native Python Functions
|
||||
|
||||
For regular Python functions, use a standard docstring:
|
||||
|
||||
```python
|
||||
def relu(input: Tensor, inplace: bool = False) -> Tensor:
|
||||
r"""relu(input, inplace=False) -> Tensor
|
||||
|
||||
Applies the rectified linear unit function element-wise. See
|
||||
:class:`~torch.nn.ReLU` for more details.
|
||||
"""
|
||||
# implementation
|
||||
```
|
||||
|
||||
### C-Bound Functions (using add_docstr)
|
||||
|
||||
For C-bound functions, use `_add_docstr`:
|
||||
|
||||
```python
|
||||
conv1d = _add_docstr(
|
||||
torch.conv1d,
|
||||
r"""
|
||||
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||||
|
||||
Applies a 1D convolution over an input signal composed of several input
|
||||
planes.
|
||||
|
||||
See :class:`~torch.nn.Conv1d` for details and output shape.
|
||||
|
||||
Args:
|
||||
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
||||
weight: filters of shape :math:`(\text{out\_channels} , kW)`
|
||||
...
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
### In-Place Variants
|
||||
|
||||
For in-place operations (ending with `_`), reference the original:
|
||||
|
||||
```python
|
||||
add_docstr_all(
|
||||
"abs_",
|
||||
r"""
|
||||
abs_() -> Tensor
|
||||
|
||||
In-place version of :meth:`~Tensor.abs`
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
### Alias Functions
|
||||
|
||||
For aliases, simply reference the original:
|
||||
|
||||
```python
|
||||
add_docstr_all(
|
||||
"absolute",
|
||||
r"""
|
||||
absolute() -> Tensor
|
||||
|
||||
Alias for :func:`abs`
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Shape Documentation
|
||||
|
||||
Use LaTeX math notation for tensor shapes:
|
||||
|
||||
```python
|
||||
:math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||||
```
|
||||
|
||||
### Reusable Argument Definitions
|
||||
|
||||
For commonly used arguments, define them once and reuse:
|
||||
|
||||
```python
|
||||
common_args = parse_kwargs(
|
||||
"""
|
||||
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
||||
Default: if None, same as this tensor.
|
||||
"""
|
||||
)
|
||||
|
||||
# Then use with .format():
|
||||
r"""
|
||||
...
|
||||
|
||||
Keyword args:
|
||||
{dtype}
|
||||
{device}
|
||||
""".format(**common_args)
|
||||
```
|
||||
|
||||
### Template Insertion
|
||||
|
||||
Insert reproducibility notes or other common text:
|
||||
|
||||
```python
|
||||
r"""
|
||||
{tf32_note}
|
||||
|
||||
{cudnn_reproducibility_note}
|
||||
""".format(**reproducibility_notes, **tf32_notes)
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
Here's a complete example showing all elements:
|
||||
|
||||
```python
|
||||
def gumbel_softmax(
|
||||
logits: Tensor,
|
||||
tau: float = 1,
|
||||
hard: bool = False,
|
||||
eps: float = 1e-10,
|
||||
dim: int = -1,
|
||||
) -> Tensor:
|
||||
r"""
|
||||
Sample from the Gumbel-Softmax distribution and optionally discretize.
|
||||
|
||||
Args:
|
||||
logits (Tensor): `[..., num_features]` unnormalized log probabilities
|
||||
tau (float): non-negative scalar temperature
|
||||
hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors,
|
||||
but will be differentiated as if it is the soft sample in autograd. Default: ``False``
|
||||
dim (int): A dimension along which softmax will be computed. Default: -1
|
||||
|
||||
Returns:
|
||||
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||||
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||||
be probability distributions that sum to 1 across `dim`.
|
||||
|
||||
.. note::
|
||||
This function is here for legacy reasons, may be removed from nn.Functional in the future.
|
||||
|
||||
Examples::
|
||||
>>> logits = torch.randn(20, 32)
|
||||
>>> # Sample soft categorical using reparametrization trick:
|
||||
>>> F.gumbel_softmax(logits, tau=1, hard=False)
|
||||
>>> # Sample hard categorical using "Straight-through" trick:
|
||||
>>> F.gumbel_softmax(logits, tau=1, hard=True)
|
||||
|
||||
.. _Link 1:
|
||||
https://arxiv.org/abs/1611.00712
|
||||
"""
|
||||
# implementation
|
||||
```
|
||||
|
||||
## Quick Checklist
|
||||
|
||||
When writing a PyTorch docstring, ensure:
|
||||
|
||||
- [ ] Use raw string (`r"""`)
|
||||
- [ ] Include function signature on first line
|
||||
- [ ] Provide brief description
|
||||
- [ ] Document all parameters in Args section with types
|
||||
- [ ] Include default values for optional parameters
|
||||
- [ ] Use Sphinx cross-references (`:func:`, `:class:`, `:meth:`)
|
||||
- [ ] Add mathematical formulas if applicable
|
||||
- [ ] Include at least one example in Examples section
|
||||
- [ ] Add warnings/notes for important caveats
|
||||
- [ ] Link to related module class with `:class:`
|
||||
- [ ] Use proper math notation for tensor shapes
|
||||
- [ ] Follow consistent formatting and indentation
|
||||
|
||||
## Common Sphinx Roles Reference
|
||||
|
||||
- `:class:\`~torch.nn.Module\`` - Class reference
|
||||
- `:func:\`torch.function\`` - Function reference
|
||||
- `:meth:\`~Tensor.method\`` - Method reference
|
||||
- `:attr:\`attribute\`` - Attribute reference
|
||||
- `:math:\`equation\`` - Inline math
|
||||
- `:ref:\`label\`` - Internal reference
|
||||
- ``` ``code`` ``` - Inline code (use double backticks)
|
||||
|
||||
## Additional Notes
|
||||
|
||||
- **Indentation**: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions
|
||||
- **Line length**: Try to keep lines under 100 characters when possible
|
||||
- **Periods**: End sentences with periods, but not the signature line
|
||||
- **Backticks**: Use double backticks for code: ``` ``True`` ``None`` ``False`` ```
|
||||
- **Types**: Common types are `Tensor`, `int`, `float`, `bool`, `str`, `tuple`, `list`, etc.
|
||||
7
.github/actions/setup-rocm/action.yml
vendored
7
.github/actions/setup-rocm/action.yml
vendored
@ -124,3 +124,10 @@ runs:
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
||||
- name: Preserve github env variables for use in docker
|
||||
shell: bash
|
||||
run: |
|
||||
env | grep '^GITHUB' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^CI' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^RUNNER' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
faffd5cf673615583da6517275e361cb3dbc77e6
|
||||
1752fe6809b74921644866275ab80244b96e80bc
|
||||
|
||||
5
.github/ci_configs/vllm/Dockerfile
vendored
5
.github/ci_configs/vllm/Dockerfile
vendored
@ -283,6 +283,9 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
|
||||
fi
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --pre apache-tvm-ffi==0.1.0b15
|
||||
|
||||
# Install the vllm wheel from previous stage
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/vllm/*.whl --verbose
|
||||
@ -295,6 +298,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
# TODO(elainewy): remove this once vllm commit is updated, and install flashinfer from pip
|
||||
# see https://github.com/pytorch/pytorch/pull/165274#issuecomment-3408531784
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
|
||||
|
||||
|
||||
9
.github/label_to_label.yml
vendored
9
.github/label_to_label.yml
vendored
@ -15,6 +15,11 @@
|
||||
- "module: reinplacing"
|
||||
then:
|
||||
- "module: pt2-dispatcher"
|
||||
- any:
|
||||
- "vllm-compile"
|
||||
then:
|
||||
- "module: vllm"
|
||||
- "oncall: pt2"
|
||||
- any:
|
||||
- "module: vmap"
|
||||
then:
|
||||
@ -27,10 +32,6 @@
|
||||
- "module: pt2 optimizer"
|
||||
then:
|
||||
- "module: dynamo"
|
||||
- any:
|
||||
- "module: flex attention"
|
||||
then:
|
||||
- "module: higher order operators"
|
||||
- any:
|
||||
- "module: aotinductor"
|
||||
then:
|
||||
|
||||
1
.github/workflows/inductor-periodic.yml
vendored
1
.github/workflows/inductor-periodic.yml
vendored
@ -88,7 +88,6 @@ jobs:
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
|
||||
15
.github/workflows/periodic.yml
vendored
15
.github/workflows/periodic.yml
vendored
@ -147,15 +147,16 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
|
||||
cuda-arch-list: 8.9
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
3
.github/workflows/pull.yml
vendored
3
.github/workflows/pull.yml
vendored
@ -347,7 +347,8 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
sync-tag: linux-xpu-n-build
|
||||
# This should sync with the build in xpu.yml but xpu uses a larger runner
|
||||
# sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
|
||||
1
.github/workflows/rocm-mi300.yml
vendored
1
.github/workflows/rocm-mi300.yml
vendored
@ -45,7 +45,6 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi300
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
|
||||
1
.github/workflows/rocm-mi355.yml
vendored
1
.github/workflows/rocm-mi355.yml
vendored
@ -42,7 +42,6 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi355
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
|
||||
12
.github/workflows/rocm-navi31.yml
vendored
12
.github/workflows/rocm-navi31.yml
vendored
@ -26,11 +26,23 @@ jobs:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
|
||||
12
.github/workflows/rocm.yml
vendored
12
.github/workflows/rocm.yml
vendored
@ -26,11 +26,23 @@ jobs:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
|
||||
147
.github/workflows/trunk-tagging.yml
vendored
147
.github/workflows/trunk-tagging.yml
vendored
@ -58,8 +58,10 @@ jobs:
|
||||
else
|
||||
COMMIT_SHA="${{ github.sha }}"
|
||||
fi
|
||||
echo "sha=${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
{
|
||||
echo "sha=${COMMIT_SHA}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Validate commit SHA
|
||||
run: |
|
||||
@ -87,7 +89,7 @@ jobs:
|
||||
echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)"
|
||||
fi
|
||||
|
||||
- name: Create and push tag with retry
|
||||
- name: Create and push tag(s) with retry
|
||||
id: check_tag
|
||||
env:
|
||||
TAG_NAME: ${{ steps.commit.outputs.tag_name }}
|
||||
@ -112,14 +114,23 @@ jobs:
|
||||
return 1
|
||||
}
|
||||
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
echo "exists=true" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
fi
|
||||
# Counters for summary reporting
|
||||
created_count=0
|
||||
skipped_count=0
|
||||
failed_count=0
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
# Always write outputs once on exit
|
||||
finish() {
|
||||
set +e
|
||||
if [ -n "${GITHUB_OUTPUT:-}" ]; then
|
||||
{
|
||||
echo "created_count=${created_count}"
|
||||
echo "skipped_count=${skipped_count}"
|
||||
echo "failed_count=${failed_count}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
fi
|
||||
}
|
||||
trap finish EXIT
|
||||
|
||||
# Retry configuration
|
||||
MAX_RETRIES=5
|
||||
@ -194,31 +205,111 @@ jobs:
|
||||
}
|
||||
}
|
||||
|
||||
# Execute with retry
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
echo "exists=false" >> "${GITHUB_OUTPUT}"
|
||||
# New behavior for push events: enumerate commits in the push and tag each one.
|
||||
# For workflow_dispatch, retain existing single-SHA behavior.
|
||||
|
||||
# Always fetch tags once up front to improve idempotency in loops
|
||||
git fetch origin --tags --quiet || true
|
||||
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
BEFORE_SHA="${{ github.event.before }}"
|
||||
AFTER_SHA="${{ github.sha }}" # same as event.after
|
||||
|
||||
# List commits introduced by this push (old..new), oldest first for stable ordering
|
||||
commits_file="$(mktemp)"
|
||||
git rev-list --reverse "${BEFORE_SHA}..${AFTER_SHA}" > "${commits_file}"
|
||||
|
||||
if [ ! -s "${commits_file}" ]; then
|
||||
echo "No new commits found between ${BEFORE_SHA}..${AFTER_SHA}; nothing to tag."
|
||||
rm -f "${commits_file}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
commit_count="$(wc -l < "${commits_file}" | tr -d ' ')"
|
||||
echo "Found ${commit_count} commit(s) to tag for push:"
|
||||
while IFS= read -r sha; do
|
||||
printf ' %s\n' "${sha}"
|
||||
done < "${commits_file}"
|
||||
|
||||
while IFS= read -r sha; do
|
||||
TAG_NAME="trunk/${sha}"
|
||||
COMMIT_SHA="${sha}"
|
||||
|
||||
# If tag already exists locally or remotely, skip (idempotent)
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag ${TAG_NAME} already exists - skipping"
|
||||
skipped_count=$((skipped_count + 1))
|
||||
continue
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=$((created_count + 1))
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts for ${TAG_NAME}"
|
||||
failed_count=$((failed_count + 1))
|
||||
fi
|
||||
done < "${commits_file}"
|
||||
|
||||
rm -f "${commits_file}"
|
||||
|
||||
if [ "${failed_count}" -gt 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
exit 0
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
exit 1
|
||||
# workflow_dispatch path (single SHA tagging preserved)
|
||||
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
skipped_count=1
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=1
|
||||
exit 0
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
failed_count=1
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Tag creation summary
|
||||
if: always()
|
||||
run: |
|
||||
if [ "${{ steps.check_tag.outputs.exists }}" = "true" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
elif [ "${{ job.status }}" = "success" ]; then
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
echo "Trigger: push on main"
|
||||
echo "Created: ${{ steps.check_tag.outputs.created_count }}"
|
||||
echo "Skipped (already existed): ${{ steps.check_tag.outputs.skipped_count }}"
|
||||
echo "Failed: ${{ steps.check_tag.outputs.failed_count }}"
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
echo "✅ Completed tagging for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
else
|
||||
echo "❌ Some tags failed to create for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
fi
|
||||
else
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
if [ "${{ steps.check_tag.outputs.created_count }}" = "0" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
else
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
else
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
fi
|
||||
|
||||
@ -833,8 +833,7 @@ exclude_patterns = [
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/grep_linter.py',
|
||||
'--pattern=cudaSetDevice(',
|
||||
'--pattern=cudaGetDevice(',
|
||||
'--pattern=(cudaSetDevice|cudaGetDevice)\\(',
|
||||
'--linter-name=RAWCUDADEVICE',
|
||||
'--error-name=raw CUDA API usage',
|
||||
"""--error-description=\
|
||||
@ -1138,11 +1137,8 @@ command = [
|
||||
[[linter]]
|
||||
code = 'WORKFLOWSYNC'
|
||||
include_patterns = [
|
||||
'.github/workflows/pull.yml',
|
||||
'.github/workflows/trunk.yml',
|
||||
'.github/workflows/periodic.yml',
|
||||
'.github/workflows/mac-mps.yml',
|
||||
'.github/workflows/slow.yml',
|
||||
'.github/workflows/*.yml',
|
||||
'.github/workflows/*.yaml',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
|
||||
@ -289,14 +289,15 @@ IF(USE_FBGEMM_GENAI)
|
||||
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
set(fbgemm_genai_mx8mx8bf16_grouped
|
||||
set(fbgemm_genai_cuh
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
|
||||
"${FBGEMM_GENAI_SRCS}/"
|
||||
)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${fbgemm_genai_mx8mx8bf16_grouped}
|
||||
${fbgemm_genai_cuh}
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
|
||||
@ -19,6 +19,7 @@
|
||||
#include <ATen/detail/MPSHooksInterface.h>
|
||||
#include <ATen/detail/MTIAHooksInterface.h>
|
||||
#include <ATen/detail/PrivateUse1HooksInterface.h>
|
||||
#include <ATen/detail/XLAHooksInterface.h>
|
||||
#include <ATen/detail/XPUHooksInterface.h>
|
||||
#include <c10/core/QEngine.h>
|
||||
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
||||
@ -88,6 +89,8 @@ class TORCH_API Context {
|
||||
return at::detail::getHIPHooks();
|
||||
} else if (opt_device_type == at::kHPU) {
|
||||
return at::detail::getHPUHooks();
|
||||
} else if (opt_device_type == at::kXLA) {
|
||||
return at::detail::getXLAHooks();
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
@ -196,7 +199,7 @@ class TORCH_API Context {
|
||||
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
|
||||
}
|
||||
static bool hasXLA() {
|
||||
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
|
||||
return detail::getXLAHooks().hasXLA();
|
||||
}
|
||||
static bool hasXPU() {
|
||||
return detail::getXPUHooks().hasXPU();
|
||||
|
||||
@ -59,9 +59,7 @@ struct TORCH_API Generator {
|
||||
|
||||
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
|
||||
: impl_(std::move(gen_impl)) {
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
|
||||
}
|
||||
TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported");
|
||||
}
|
||||
|
||||
bool operator==(const Generator& rhs) const {
|
||||
|
||||
@ -111,9 +111,7 @@ class TORCH_API TensorBase {
|
||||
explicit TensorBase(
|
||||
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
|
||||
: impl_(std::move(tensor_impl)) {
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("TensorImpl with nullptr is not supported");
|
||||
}
|
||||
TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported");
|
||||
}
|
||||
TensorBase(const TensorBase&) = default;
|
||||
TensorBase(TensorBase&&) noexcept = default;
|
||||
|
||||
@ -109,6 +109,10 @@ TORCH_LIBRARY_IMPL(_, AutogradHPU, m) {
|
||||
m.fallback(AUTOGRAD_FALLBACK);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL(_, AutogradPrivateUse1, m) {
|
||||
m.fallback(AUTOGRAD_FALLBACK);
|
||||
}
|
||||
|
||||
#undef AUTOGRAD_FALLBACK
|
||||
|
||||
} // namespace
|
||||
|
||||
@ -442,11 +442,17 @@ RegistrationHandleRAII Dispatcher::registerFallback(DispatchKey dispatchKey, Ker
|
||||
|
||||
auto idx = getDispatchTableIndexForDispatchKey(dispatchKey);
|
||||
TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx);
|
||||
// NB: Perserve BC for registering fallback for AutogradPrivateUse1 multiple time,
|
||||
// refer to https://github.com/pytorch/pytorch/issues/163979 for more informations.
|
||||
TORCH_CHECK(
|
||||
!backendFallbackKernels_[idx].kernel.isValid(),
|
||||
"Tried to register multiple backend fallbacks for the same dispatch key ", dispatchKey, "; previous registration ",
|
||||
backendFallbackKernels_[idx].debug, ", new registration ", debug
|
||||
);
|
||||
dispatchKey == DispatchKey::AutogradPrivateUse1 ||
|
||||
!backendFallbackKernels_[idx].kernel.isValid(),
|
||||
"Tried to register multiple backend fallbacks for the same dispatch key ",
|
||||
dispatchKey,
|
||||
"; previous registration ",
|
||||
backendFallbackKernels_[idx].debug,
|
||||
", new registration ",
|
||||
debug);
|
||||
// NB: inferred function schema is always nullptr for fallbacks, as fallbacks
|
||||
// cannot be unboxed
|
||||
backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug));
|
||||
|
||||
@ -68,11 +68,7 @@ Symbol InternedStrings::_symbol(const std::string& s) {
|
||||
return it->second;
|
||||
|
||||
auto pos = s.find("::");
|
||||
if (pos == std::string::npos) {
|
||||
std::stringstream ss;
|
||||
ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s);
|
||||
Symbol ns = _symbol("namespaces::" + s.substr(0, pos));
|
||||
|
||||
Symbol sym(sym_to_info_.size());
|
||||
@ -121,12 +117,7 @@ std::string Symbol::domainString() const {
|
||||
}
|
||||
|
||||
Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) {
|
||||
if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) {
|
||||
std::ostringstream ss;
|
||||
ss << "Symbol: domain string is expected to be prefixed with '"
|
||||
<< domain_prefix() << "', e.g. 'org.pytorch.aten'";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'");
|
||||
std::string qualString = d.substr(domain_prefix().size()) + "::" + s;
|
||||
return fromQualString(qualString);
|
||||
}
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <ATen/core/stack.h>
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
#include <c10/util/hash.h>
|
||||
#include <c10/util/irange.h>
|
||||
@ -412,7 +413,7 @@ size_t IValue::hash(const IValue& v) {
|
||||
case Tag::Enum:
|
||||
case Tag::Stream:
|
||||
case Tag::Uninitialized:
|
||||
throw std::runtime_error(
|
||||
TORCH_CHECK(false,
|
||||
"unhashable type: '" + v.type()->repr_str() + "'");
|
||||
}
|
||||
// the above switch should be exhaustive
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <ATen/core/qualified_name.h>
|
||||
#include <c10/util/TypeList.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <c10/core/SymFloat.h>
|
||||
#include <c10/core/SymBool.h>
|
||||
@ -116,10 +117,8 @@ struct SingleElementType : public SharedType {
|
||||
|
||||
protected:
|
||||
SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) {
|
||||
if (!this->elem) {
|
||||
throw std::runtime_error(c10::str(
|
||||
TORCH_CHECK(this->elem, c10::str(
|
||||
"Can not create ", typeKindToString(Kind), " with None type"));
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
@ -416,16 +415,12 @@ struct TORCH_API SymbolicShape {
|
||||
}
|
||||
|
||||
ShapeSymbol operator[](size_t i) const {
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
ShapeSymbol at(size_t i) const {
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -520,9 +515,7 @@ struct VaryingShape {
|
||||
}
|
||||
|
||||
const std::optional<T> &operator[](size_t i) const {
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -957,9 +950,7 @@ struct TORCH_API DictType : public SharedType {
|
||||
|
||||
TypePtr createWithContained(
|
||||
std::vector<TypePtr> contained_types) const override {
|
||||
if (contained_types.size() != 2) {
|
||||
throw std::runtime_error("Expected 2 contained types");
|
||||
}
|
||||
TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types");
|
||||
return create(std::move(contained_types.at(0)), std::move(contained_types.at(1)));
|
||||
}
|
||||
|
||||
|
||||
@ -185,11 +185,11 @@ struct TORCH_API Type {
|
||||
: repr_(nullptr) {}
|
||||
|
||||
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p)
|
||||
: repr_(p) {}
|
||||
: repr_(makeSingletonSharedPtr(p.get())) {}
|
||||
|
||||
template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p)
|
||||
: repr_(SingletonTypePtr<T>(p.get())) {}
|
||||
: repr_(makeSingletonSharedPtr(static_cast<T*>(p.get()))) {}
|
||||
|
||||
|
||||
// We need to support construction from T* for pybind. The problem
|
||||
@ -202,8 +202,8 @@ struct TORCH_API Type {
|
||||
// Case 2: if T is exactly Type, we need to do a dynamic_cast to
|
||||
// check if it's a SharedType and do the right thing.
|
||||
//
|
||||
// Case 3: Otherwise, T is not a SharedType. (debug-check this
|
||||
// assumption!) Use a singleton pointer.
|
||||
// Case 3: Otherwise, T is not a SharedType. Use a singleton
|
||||
// pointer.
|
||||
|
||||
template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {}
|
||||
@ -211,15 +211,15 @@ struct TORCH_API Type {
|
||||
template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p) {
|
||||
if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) {
|
||||
repr_ = Repr(shared_p->shared_from_this());
|
||||
repr_ = shared_p->shared_from_this();
|
||||
} else {
|
||||
repr_ = Repr(p);
|
||||
repr_ = makeSingletonSharedPtr(p);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p)
|
||||
: repr_(p) {
|
||||
: repr_(makeSingletonSharedPtr(p)) {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr);
|
||||
}
|
||||
|
||||
@ -230,19 +230,19 @@ struct TORCH_API Type {
|
||||
~SingletonOrSharedTypePtr() = default;
|
||||
|
||||
T* get() const {
|
||||
return repr_.isSharedAndNonNull() ? repr_.shared_.repr_.get() : static_cast<T*>(repr_.rawRepr().first);
|
||||
return repr_.get();
|
||||
}
|
||||
|
||||
operator bool() const {
|
||||
return repr_.isNonNull();
|
||||
return repr_ != nullptr;
|
||||
}
|
||||
|
||||
bool operator==(std::nullptr_t) const {
|
||||
return !repr_.isNonNull();
|
||||
return repr_ == nullptr;
|
||||
}
|
||||
|
||||
bool operator!=(std::nullptr_t) const {
|
||||
return repr_.isNonNull();
|
||||
return repr_ != nullptr;
|
||||
}
|
||||
|
||||
template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true>
|
||||
@ -255,138 +255,14 @@ struct TORCH_API Type {
|
||||
}
|
||||
|
||||
private:
|
||||
// NOTE: SharedPtrWrapper exists to work around a baffling bug in
|
||||
// nvcc; see comment in destroy() below.
|
||||
struct SharedPtrWrapper {
|
||||
SharedPtrWrapper(std::shared_ptr<T> &&x)
|
||||
: repr_(std::move(x)) {}
|
||||
std::shared_ptr<T> repr_;
|
||||
};
|
||||
union Repr {
|
||||
Repr() : Repr(nullptr) {}
|
||||
// Use shared_ptr's aliasing constructor to create a non-owning pointer
|
||||
// to a singleton. The lifetime is tied to the null shared_ptr, so there's
|
||||
// no reference counting overhead for the singleton itself.
|
||||
static std::shared_ptr<T> makeSingletonSharedPtr(T* ptr) {
|
||||
return std::shared_ptr<T>(std::shared_ptr<T>(), ptr);
|
||||
}
|
||||
|
||||
explicit Repr(std::shared_ptr<T> x)
|
||||
: shared_(std::move(x)) {}
|
||||
|
||||
explicit Repr(std::nullptr_t)
|
||||
: singletonRepr_(nullptr) {}
|
||||
|
||||
explicit Repr(SingletonTypePtr<T> p)
|
||||
: singletonRepr_(p.get()) {}
|
||||
|
||||
~Repr() {
|
||||
destroy();
|
||||
}
|
||||
|
||||
// NOTE: the only non-UB way to access our null state is through
|
||||
// rawRepr(), because our copy operation doesn't preserve which
|
||||
// union member is active for null pointers.
|
||||
Repr(const Repr& rhs) {
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
new (&shared_) SharedPtrWrapper(rhs.shared_);
|
||||
} else {
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
Repr(Repr&& rhs) noexcept {
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
|
||||
} else {
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
Repr& operator=(const Repr& rhs) {
|
||||
if (&rhs == this) {
|
||||
return *this;
|
||||
}
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
if (isSharedAndNonNull()) {
|
||||
shared_ = rhs.shared_;
|
||||
} else {
|
||||
new (&shared_) SharedPtrWrapper(rhs.shared_);
|
||||
}
|
||||
} else {
|
||||
if (isSharedAndNonNull()) {
|
||||
destroy();
|
||||
}
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
Repr& operator=(Repr&& rhs) noexcept {
|
||||
if (&rhs == this) {
|
||||
return *this;
|
||||
}
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
if (isSharedAndNonNull()) {
|
||||
shared_ = std::move(rhs.shared_);
|
||||
} else {
|
||||
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
|
||||
}
|
||||
} else {
|
||||
if (isSharedAndNonNull()) {
|
||||
destroy();
|
||||
}
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
SharedPtrWrapper shared_;
|
||||
|
||||
struct SingletonRepr {
|
||||
explicit SingletonRepr(T* s) : singleton_(s) {}
|
||||
T* singleton_;
|
||||
void* unused_ = nullptr;
|
||||
} singletonRepr_;
|
||||
struct RawRepr {
|
||||
void* first;
|
||||
void* nullIfSingleton_;
|
||||
};
|
||||
|
||||
// It is UB to read the singleton part of Repr if it was
|
||||
// constructed as a shared_ptr and vice versa, but memcpying out
|
||||
// the representation is always OK, so here's an accessor to obey
|
||||
// the letter of the law.
|
||||
RawRepr rawRepr() const {
|
||||
RawRepr repr{};
|
||||
memcpy(&repr, reinterpret_cast<const char *>(this), sizeof(RawRepr));
|
||||
return repr;
|
||||
}
|
||||
|
||||
bool isNonNull() const {
|
||||
auto repr = rawRepr();
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(repr.nullIfSingleton_ == nullptr || repr.first != nullptr);
|
||||
return repr.first != nullptr;
|
||||
}
|
||||
|
||||
bool isSharedAndNonNull() const {
|
||||
return rawRepr().nullIfSingleton_ != nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
void destroy() {
|
||||
if (isSharedAndNonNull()) {
|
||||
// Without SharedPtrWrapper, this line would read
|
||||
// `shared_.~shared_ptr()` and nvcc would complain with
|
||||
// "error: expected primary-expression before '>' token"
|
||||
// referring to the "t" in "shared_ptr". SharedPtrWrapper
|
||||
// exists to work around this compiler bug.
|
||||
shared_.~SharedPtrWrapper();
|
||||
}
|
||||
}
|
||||
} repr_;
|
||||
std::shared_ptr<T> repr_;
|
||||
};
|
||||
|
||||
using TypePtr = SingletonOrSharedTypePtr<Type>;
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <array>
|
||||
@ -826,9 +827,7 @@ TupleType::TupleType(
|
||||
: NamedType(TypeKind::TupleType, std::move(name)),
|
||||
elements_(std::move(elements)),
|
||||
has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) {
|
||||
if (!v) {
|
||||
throw std::runtime_error("Can not create tuple with None type");
|
||||
}
|
||||
TORCH_CHECK(v, "Can not create tuple with None type");
|
||||
return v->hasFreeVariables();
|
||||
})), schema_(std::move(schema)) {
|
||||
|
||||
|
||||
@ -104,71 +104,6 @@ class Vectorized<float> {
|
||||
}
|
||||
return b;
|
||||
}
|
||||
// Implementation is picked from
|
||||
// https://github.com/ARM-software/ComputeLibrary/blob/v25.01/src/core/NEON/SVEMath.inl#L105
|
||||
inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) const {
|
||||
const auto c1 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3f7ffff6)); // x^1: 0x1.ffffecp-1f
|
||||
const auto c2 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3efffedb)); // x^2: 0x1.fffdb6p-2f
|
||||
const auto c3 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3e2aaf33)); // x^3: 0x1.555e66p-3f
|
||||
const auto c4 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3d2b9f17)); // x^4: 0x1.573e2ep-5f
|
||||
const auto c5 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3c072010)); // x^5: 0x1.0e4020p-7f
|
||||
const auto shift = svreinterpret_f32_u32(
|
||||
svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
|
||||
const auto inv_ln2 = svreinterpret_f32_u32(
|
||||
svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
|
||||
const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(
|
||||
0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
|
||||
const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(
|
||||
0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
|
||||
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
|
||||
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
|
||||
const auto zero = svdup_n_f32(0.f);
|
||||
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
|
||||
// Range reduction:
|
||||
// e^x = 2^n * e^r
|
||||
// where:
|
||||
// n = floor(x / ln(2))
|
||||
// r = x - n * ln(2)
|
||||
//
|
||||
// By adding x / ln(2) with 2^23 + 127 (shift):
|
||||
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127
|
||||
// forces decimal part
|
||||
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e.
|
||||
// n) + 127 will occupy the whole fraction part of z in FP32 format.
|
||||
// Subtracting 2^23 + 127 (shift) from z will result in the integer part
|
||||
// of x / ln(2) (i.e. n) because the decimal part has been pushed out
|
||||
// and lost.
|
||||
// * The addition of 127 makes the FP32 fraction part of z ready to be
|
||||
// used as the exponent
|
||||
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
|
||||
const auto z = svmla_f32_z(pg, shift, x, inv_ln2);
|
||||
const auto n = svsub_f32_z(pg, z, shift);
|
||||
const auto scale = svreinterpret_f32_u32(
|
||||
svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n
|
||||
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy
|
||||
// beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in
|
||||
// term of accuracy and performance.
|
||||
const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi);
|
||||
const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo);
|
||||
// Compute the truncated Taylor series of e^r.
|
||||
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
|
||||
const auto r2 = svmul_f32_z(pg, r, r);
|
||||
const auto p1 = svmul_f32_z(pg, c1, r);
|
||||
const auto p23 = svmla_f32_z(pg, c2, c3, r);
|
||||
const auto p45 = svmla_f32_z(pg, c4, c5, r);
|
||||
const auto p2345 = svmla_f32_z(pg, p23, p45, r2);
|
||||
const auto p12345 = svmla_f32_z(pg, p1, p2345, r2);
|
||||
auto poly = svmla_f32_z(pg, scale, p12345, scale);
|
||||
// Handle underflow and overflow.
|
||||
poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly);
|
||||
poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly);
|
||||
return poly;
|
||||
}
|
||||
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
||||
if (count == size())
|
||||
return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr));
|
||||
@ -313,11 +248,41 @@ class Vectorized<float> {
|
||||
return USE_SLEEF(
|
||||
Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1));
|
||||
}
|
||||
// Implementation copied from Arm Optimized Routines:
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/sve/expf.c
|
||||
Vectorized<float> exp_u20() const {
|
||||
return exp();
|
||||
// special case to handle special inputs that are too large or too small
|
||||
// i.e. where there's at least one element x, s.t. |x| >= 87.3...
|
||||
svbool_t is_special_case = svacgt(svptrue_b32(), values, 0x1.5d5e2ap+6f);
|
||||
if (svptest_any(svptrue_b32(), is_special_case)) {
|
||||
return exp();
|
||||
}
|
||||
const svfloat32_t ln2_hi = svdup_n_f32(0x1.62e4p-1f);
|
||||
const svfloat32_t ln2_lo = svdup_n_f32(0x1.7f7d1cp-20f);
|
||||
const svfloat32_t c1 = svdup_n_f32(0.5f);
|
||||
const svfloat32_t inv_ln2 = svdup_n_f32(0x1.715476p+0f);
|
||||
|
||||
const float shift = 0x1.803f8p17f;
|
||||
|
||||
/* n = round(x/(ln2/N)). */
|
||||
svfloat32_t z = svmad_x(svptrue_b32(), inv_ln2, values, shift);
|
||||
svfloat32_t n = svsub_x(svptrue_b32(), z, shift);
|
||||
|
||||
/* r = x - n*ln2/N. */
|
||||
svfloat32_t r = values;
|
||||
r = svmls_x(svptrue_b32(), r, n, ln2_hi);
|
||||
r = svmls_x(svptrue_b32(), r, n, ln2_lo);
|
||||
|
||||
/* scale = 2^(n/N). */
|
||||
svfloat32_t scale = svexpa(svreinterpret_u32(z));
|
||||
|
||||
/* poly(r) = exp(r) - 1 ~= r + 0.5 r^2. */
|
||||
svfloat32_t r2 = svmul_x(svptrue_b32(), r, r);
|
||||
svfloat32_t poly = svmla_x(svptrue_b32(), r, r2, c1);
|
||||
return svmla_x(svptrue_b32(), scale, scale, poly);
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp();
|
||||
return exp_u20();
|
||||
}
|
||||
Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF(
|
||||
{ return Vectorized<float>(Sleef_fmodfx_sve(values, q)); },
|
||||
@ -453,9 +418,11 @@ class Vectorized<float> {
|
||||
ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH);
|
||||
|
||||
// Step 2: Calculate exp(2 * x), where x is the clamped value.
|
||||
// svmul_f32_z computes 2 * x, and svexp_f32_z computes the exponential of
|
||||
// the result.
|
||||
svfloat32_t exp2x = svexp_f32_z(ptrue, svmul_f32_z(ptrue, CONST_2, x));
|
||||
// svmul_f32_z computes 2 * x, and exp_u20() computes the exponential of
|
||||
// the result (via Vectorized<float>, then auto-converts back to
|
||||
// svfloat32_t).
|
||||
svfloat32_t exp2x =
|
||||
Vectorized<float>(svmul_f32_z(ptrue, CONST_2, x)).exp_u20();
|
||||
|
||||
// Step 3: Calculate the numerator of the tanh function, which is exp(2x)
|
||||
// - 1.
|
||||
|
||||
@ -6,9 +6,11 @@
|
||||
#ifdef __aarch64__
|
||||
#if !defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_double_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_uint_aarch64.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
@ -354,9 +354,47 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
|
||||
Vectorized frac() const;
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
Vectorized<c10::BFloat16> neg() const {
|
||||
return -values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> reciprocal() const {
|
||||
return 1.0f / values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> operator==(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values == other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator!=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values != other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values < other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values <= other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values > other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values >= other.values;
|
||||
}
|
||||
#else
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
|
||||
@ -364,6 +402,7 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=)
|
||||
#endif
|
||||
|
||||
#undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
#undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
@ -412,28 +451,52 @@ template <>
|
||||
Vectorized<c10::BFloat16> inline operator+(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x + y;
|
||||
#else
|
||||
return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator-(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x - y;
|
||||
#else
|
||||
return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator*(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x * y;
|
||||
#else
|
||||
return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator/(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x / y;
|
||||
#else
|
||||
return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
@ -544,12 +607,19 @@ Vectorized<c10::BFloat16> inline fmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y + z;
|
||||
#else
|
||||
// NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16! Also,
|
||||
// vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered
|
||||
// elements, not the bottom and top half, so they don't seem
|
||||
// particularly useful here. Ideally we would include dot product in
|
||||
// the Vectorized interface...
|
||||
return a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -557,8 +627,15 @@ Vectorized<c10::BFloat16> inline fnmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y + z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -566,8 +643,15 @@ Vectorized<c10::BFloat16> inline fmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -575,8 +659,15 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
@ -5,6 +5,114 @@
|
||||
namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
|
||||
// Enable auto-vectorization for GCC-13+ and clang-17+
|
||||
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
|
||||
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
|
||||
|
||||
template <typename from_type, typename to_type>
|
||||
inline void convertImpl(
|
||||
const from_type* __restrict src,
|
||||
to_type* __restrict dst,
|
||||
int64_t n) {
|
||||
uint64_t len = static_cast<uint64_t>(n);
|
||||
for (uint64_t i = 0; i < len; i++) {
|
||||
dst[i] = static_cast<to_type>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#define CONVERT_TEMPLATE(from_type, to_type) \
|
||||
template <> \
|
||||
inline void convert(const from_type* src, to_type* dst, int64_t n) { \
|
||||
return convertImpl<from_type, to_type>(src, dst, n); \
|
||||
}
|
||||
|
||||
CONVERT_TEMPLATE(uint8_t, uint8_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int8_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int16_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int32_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int64_t)
|
||||
CONVERT_TEMPLATE(uint8_t, float)
|
||||
CONVERT_TEMPLATE(uint8_t, double)
|
||||
CONVERT_TEMPLATE(int8_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int8_t, int8_t)
|
||||
CONVERT_TEMPLATE(int8_t, int16_t)
|
||||
CONVERT_TEMPLATE(int8_t, int32_t)
|
||||
CONVERT_TEMPLATE(int8_t, int64_t)
|
||||
CONVERT_TEMPLATE(int8_t, float)
|
||||
CONVERT_TEMPLATE(int8_t, double)
|
||||
CONVERT_TEMPLATE(int16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int16_t, int8_t)
|
||||
CONVERT_TEMPLATE(int16_t, int16_t)
|
||||
CONVERT_TEMPLATE(int16_t, int32_t)
|
||||
CONVERT_TEMPLATE(int16_t, int64_t)
|
||||
CONVERT_TEMPLATE(int16_t, float)
|
||||
CONVERT_TEMPLATE(int16_t, double)
|
||||
CONVERT_TEMPLATE(int32_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int32_t, int8_t)
|
||||
CONVERT_TEMPLATE(int32_t, int16_t)
|
||||
CONVERT_TEMPLATE(int32_t, int32_t)
|
||||
CONVERT_TEMPLATE(int32_t, int64_t)
|
||||
CONVERT_TEMPLATE(int32_t, float)
|
||||
CONVERT_TEMPLATE(int32_t, double)
|
||||
CONVERT_TEMPLATE(int64_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int64_t, int8_t)
|
||||
CONVERT_TEMPLATE(int64_t, int16_t)
|
||||
CONVERT_TEMPLATE(int64_t, int32_t)
|
||||
CONVERT_TEMPLATE(int64_t, int64_t)
|
||||
CONVERT_TEMPLATE(int64_t, float)
|
||||
CONVERT_TEMPLATE(int64_t, double)
|
||||
CONVERT_TEMPLATE(float, uint8_t)
|
||||
CONVERT_TEMPLATE(float, int8_t)
|
||||
CONVERT_TEMPLATE(float, int16_t)
|
||||
CONVERT_TEMPLATE(float, int32_t)
|
||||
CONVERT_TEMPLATE(float, int64_t)
|
||||
CONVERT_TEMPLATE(float, float)
|
||||
CONVERT_TEMPLATE(float, double)
|
||||
CONVERT_TEMPLATE(double, uint8_t)
|
||||
CONVERT_TEMPLATE(double, int8_t)
|
||||
CONVERT_TEMPLATE(double, int16_t)
|
||||
CONVERT_TEMPLATE(double, int32_t)
|
||||
CONVERT_TEMPLATE(double, int64_t)
|
||||
CONVERT_TEMPLATE(double, float)
|
||||
CONVERT_TEMPLATE(double, double)
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
CONVERT_TEMPLATE(float16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(float16_t, int8_t)
|
||||
CONVERT_TEMPLATE(float16_t, int16_t)
|
||||
CONVERT_TEMPLATE(float16_t, int32_t)
|
||||
CONVERT_TEMPLATE(float16_t, int64_t)
|
||||
CONVERT_TEMPLATE(float16_t, float16_t)
|
||||
CONVERT_TEMPLATE(float16_t, float)
|
||||
CONVERT_TEMPLATE(float16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, float16_t)
|
||||
CONVERT_TEMPLATE(int8_t, float16_t)
|
||||
CONVERT_TEMPLATE(int16_t, float16_t)
|
||||
CONVERT_TEMPLATE(int32_t, float16_t)
|
||||
CONVERT_TEMPLATE(int64_t, float16_t)
|
||||
CONVERT_TEMPLATE(float, float16_t)
|
||||
CONVERT_TEMPLATE(double, float16_t)
|
||||
#endif
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
CONVERT_TEMPLATE(bfloat16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int32_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int64_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, float)
|
||||
CONVERT_TEMPLATE(bfloat16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int32_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int64_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(float, bfloat16_t)
|
||||
CONVERT_TEMPLATE(double, bfloat16_t)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
|
||||
586
aten/src/ATen/cpu/vec/vec128/vec128_double_neon.h
Normal file
586
aten/src/ATen/cpu/vec/vec128/vec128_double_neon.h
Normal file
@ -0,0 +1,586 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <cmath>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
template <>
|
||||
struct is_vec_specialized_for<double> : std::bool_constant<true> {};
|
||||
|
||||
template <>
|
||||
class Vectorized<double> {
|
||||
private:
|
||||
float64x2_t values;
|
||||
|
||||
public:
|
||||
using value_type = double;
|
||||
using size_type = int;
|
||||
static constexpr size_type size() {
|
||||
return 2;
|
||||
}
|
||||
Vectorized() {
|
||||
values = vdupq_n_f64(0.0);
|
||||
}
|
||||
Vectorized(float64x2_t v) : values(v) {}
|
||||
Vectorized(double val) {
|
||||
values = vdupq_n_f64(val);
|
||||
}
|
||||
template <
|
||||
typename... Args,
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>>
|
||||
Vectorized(Args... vals) {
|
||||
__at_align__ double buffer[size()] = {vals...};
|
||||
values = vld1q_f64(buffer);
|
||||
}
|
||||
operator float64x2_t() const {
|
||||
return values;
|
||||
}
|
||||
template <int64_t mask>
|
||||
static Vectorized<double> blend(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint64x2_t maskArray = {
|
||||
(mask & 1ULL) ? 0xFFFFFFFFFFFFFFFF : 0,
|
||||
(mask & 2ULL) ? 0xFFFFFFFFFFFFFFFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_f64(maskArray, b.values, a.values);
|
||||
}
|
||||
static Vectorized<double> blendv(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& mask_) {
|
||||
return vbslq_f64(vreinterpretq_u64_f64(mask_.values), b.values, a.values);
|
||||
}
|
||||
template <typename step_t>
|
||||
static Vectorized<double> arange(
|
||||
double base = 0.,
|
||||
step_t step = static_cast<step_t>(1)) {
|
||||
return {base, base + static_cast<double>(step)};
|
||||
}
|
||||
static inline Vectorized<double> set(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
int64_t count = size()) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 2) {
|
||||
return b;
|
||||
} else {
|
||||
float64x2_t c = {b.values[0], a.values[1]};
|
||||
return c;
|
||||
}
|
||||
}
|
||||
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
||||
if (count == size()) {
|
||||
return vld1q_f64(reinterpret_cast<const double*>(ptr));
|
||||
} else if (count == 1) {
|
||||
float64x1_t x = vld1_f64(reinterpret_cast<const double*>(ptr));
|
||||
float64x1_t z = {0.0};
|
||||
return vcombine_f64(x, z);
|
||||
} else {
|
||||
return vdupq_n_f64(0.0);
|
||||
}
|
||||
}
|
||||
void store(void* ptr, int64_t count = size()) const {
|
||||
if (count == size()) {
|
||||
vst1q_f64(reinterpret_cast<double*>(ptr), values);
|
||||
} else if (count == 1) {
|
||||
vst1_f64(reinterpret_cast<double*>(ptr), vget_low_f64(values));
|
||||
}
|
||||
}
|
||||
const double& operator[](int idx) const = delete;
|
||||
double& operator[](int idx) = delete;
|
||||
int64_t zero_mask() const {
|
||||
// returns an integer mask where all zero elements are translated to 1-bit
|
||||
// and others are translated to 0-bit
|
||||
uint64x2_t cmpReg = vceqzq_f64(values);
|
||||
uint64x2_t mask = {1, 2};
|
||||
uint64x2_t res = vandq_u64(cmpReg, mask);
|
||||
return res[0] | res[1];
|
||||
}
|
||||
Vectorized<double> isnan() const {
|
||||
// NaN check
|
||||
return vreinterpretq_f64_u32(
|
||||
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, values))));
|
||||
}
|
||||
bool has_inf_nan() const {
|
||||
Vectorized<double> x = vsubq_f64(values, values);
|
||||
float64x2_t r = x.isnan();
|
||||
uint64x2_t u = vreinterpretq_u64_f64(r);
|
||||
return u[0] | u[1];
|
||||
}
|
||||
Vectorized<double> map(double (*f)(double)) const {
|
||||
float64x2_t result;
|
||||
result[0] = f(values[0]);
|
||||
result[1] = f(values[1]);
|
||||
return result;
|
||||
}
|
||||
Vectorized<double> map2(
|
||||
const Vectorized<double>& second,
|
||||
double (*const f)(double, double)) const {
|
||||
float64x2_t result;
|
||||
result[0] = f(values[0], second.values[0]);
|
||||
result[1] = f(values[1], second.values[1]);
|
||||
return result;
|
||||
}
|
||||
Vectorized<double> abs() const {
|
||||
return vabsq_f64(values);
|
||||
}
|
||||
Vectorized<double> angle() const {
|
||||
auto zero = Vectorized<double>(0.0);
|
||||
auto pi = Vectorized<double>(c10::pi<double>);
|
||||
auto tmp = blendv(zero, pi, vreinterpretq_f64_u64(vcltzq_f64(values)));
|
||||
return blendv(tmp, *this, isnan());
|
||||
}
|
||||
Vectorized<double> real() const {
|
||||
return *this;
|
||||
}
|
||||
Vectorized<double> imag() const {
|
||||
return Vectorized<double>(0.0);
|
||||
}
|
||||
Vectorized<double> conj() const {
|
||||
return *this;
|
||||
}
|
||||
Vectorized<double> acos() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_acosd2_u10(values)), map(std::acos));
|
||||
}
|
||||
Vectorized<double> acosh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_acoshd2_u10(values)), map(std::acosh));
|
||||
}
|
||||
Vectorized<double> asin() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_asind2_u10(values)), map(std::asin));
|
||||
}
|
||||
Vectorized<double> asinh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_asinhd2_u10(values)), map(std::asinh));
|
||||
}
|
||||
Vectorized<double> atan() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_atand2_u10(values)), map(std::atan));
|
||||
}
|
||||
Vectorized<double> atanh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_atanhd2_u10(values)), map(std::atanh));
|
||||
}
|
||||
Vectorized<double> atan2(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_atan2d2_u10(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::atan2(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> copysign(const Vectorized<double>& sign) const {
|
||||
USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_copysignd2(values, sign)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_sign[size()];
|
||||
store(tmp);
|
||||
sign.store(tmp_sign);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> erf() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_erfd2_u10(values)), map(std::erf));
|
||||
}
|
||||
Vectorized<double> erfc() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_erfcd2_u15(values)), map(std::erfc));
|
||||
}
|
||||
Vectorized<double> exp() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_expd2_u10(values)), map(std::exp));
|
||||
}
|
||||
Vectorized<double> exp2() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_exp2d2_u10(values)), map(std::exp2));
|
||||
}
|
||||
Vectorized<double> expm1() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_expm1d2_u10(values)), map(std::expm1));
|
||||
}
|
||||
Vectorized<double> fmod(const Vectorized<double>& q) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_fmodd2(values, q)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_q[size()];
|
||||
store(tmp);
|
||||
q.store(tmp_q);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> hypot(const Vectorized<double>& b) const {
|
||||
USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_hypotd2_u05(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> i0() const {
|
||||
return map(calc_i0);
|
||||
}
|
||||
Vectorized<double> nextafter(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_nextafterd2(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); ++i) {
|
||||
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> log() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_logd2_u10(values)), map(std::log));
|
||||
}
|
||||
Vectorized<double> log2() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log2d2_u10(values)), map(std::log2));
|
||||
}
|
||||
Vectorized<double> log10() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log10d2_u10(values)), map(std::log10));
|
||||
}
|
||||
Vectorized<double> log1p() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log1pd2_u10(values)), map(std::log1p));
|
||||
}
|
||||
Vectorized<double> frac() const;
|
||||
Vectorized<double> sin() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_sind2_u10(values)), map(std::sin));
|
||||
}
|
||||
Vectorized<double> sinh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_sinhd2_u10(values)), map(std::sinh));
|
||||
}
|
||||
Vectorized<double> cos() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_cosd2_u10(values)), map(std::cos));
|
||||
}
|
||||
Vectorized<double> cosh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_coshd2_u10(values)), map(std::cosh));
|
||||
}
|
||||
Vectorized<double> pow(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_powd2_u10(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::pow(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} // Comparison using the _CMP_**_OQ predicate.
|
||||
// `O`: get false if an operand is NaN
|
||||
// `Q`: do not raise if an operand is NaN
|
||||
Vectorized<double> tan() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_tand2_u10(values)), map(std::tan));
|
||||
}
|
||||
Vectorized<double> tanh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_tanhd2_u10(values)), map(std::tanh));
|
||||
}
|
||||
Vectorized<double> lgamma() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_lgammad2_u10(values)), map(std::lgamma));
|
||||
}
|
||||
Vectorized<double> erfinv() const {
|
||||
return map(calc_erfinv);
|
||||
}
|
||||
Vectorized<double> exp_u20() const {
|
||||
return exp();
|
||||
}
|
||||
Vectorized<double> fexp_u20() const {
|
||||
return exp();
|
||||
}
|
||||
Vectorized<double> i0e() const {
|
||||
return map(calc_i0e);
|
||||
}
|
||||
Vectorized<double> digamma() const {
|
||||
return map(calc_digamma);
|
||||
}
|
||||
Vectorized<double> igamma(const Vectorized<double>& x) const {
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_x[size()];
|
||||
store(tmp);
|
||||
x.store(tmp_x);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
}
|
||||
Vectorized<double> igammac(const Vectorized<double>& x) const {
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_x[size()];
|
||||
store(tmp);
|
||||
x.store(tmp_x);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
}
|
||||
Vectorized<double> ceil() const {
|
||||
return vrndpq_f64(values);
|
||||
}
|
||||
Vectorized<double> floor() const {
|
||||
return vrndmq_f64(values);
|
||||
}
|
||||
Vectorized<double> neg() const {
|
||||
return vnegq_f64(values);
|
||||
}
|
||||
Vectorized<double> round() const {
|
||||
return vrndiq_f64(values);
|
||||
}
|
||||
Vectorized<double> trunc() const {
|
||||
return vrndq_f64(values);
|
||||
}
|
||||
Vectorized<double> sqrt() const {
|
||||
return vsqrtq_f64(values);
|
||||
}
|
||||
Vectorized<double> reciprocal() const {
|
||||
return vdivq_f64(vdupq_n_f64(1.0), values);
|
||||
}
|
||||
Vectorized<double> rsqrt() const {
|
||||
return vdivq_f64(vdupq_n_f64(1.0), vsqrtq_f64(values));
|
||||
}
|
||||
double reduce_add() const {
|
||||
return vaddvq_f64(values);
|
||||
}
|
||||
double reduce_max() const {
|
||||
return vmaxvq_f64(values);
|
||||
}
|
||||
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vceqq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
||||
float64x2_t r0 = vreinterpretq_f64_u32(
|
||||
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, other.values))));
|
||||
return Vectorized<double>(r0);
|
||||
}
|
||||
|
||||
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcltq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcleq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcgtq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcgeq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> eq(const Vectorized<double>& other) const;
|
||||
Vectorized<double> ne(const Vectorized<double>& other) const;
|
||||
Vectorized<double> gt(const Vectorized<double>& other) const;
|
||||
Vectorized<double> ge(const Vectorized<double>& other) const;
|
||||
Vectorized<double> lt(const Vectorized<double>& other) const;
|
||||
Vectorized<double> le(const Vectorized<double>& other) const;
|
||||
};
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator+(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vaddq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator-(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vsubq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator*(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vmulq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator/(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vdivq_f64(a, b);
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
Vectorized<double> inline Vectorized<double>::frac() const {
|
||||
return *this - this->trunc();
|
||||
}
|
||||
|
||||
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
||||
// either input is a NaN.
|
||||
template <>
|
||||
Vectorized<double> inline maximum(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vmaxq_f64(a, b);
|
||||
}
|
||||
|
||||
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
||||
// either input is a NaN.
|
||||
template <>
|
||||
Vectorized<double> inline minimum(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vminq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& min,
|
||||
const Vectorized<double>& max) {
|
||||
return vminq_f64(max, vmaxq_f64(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp_max(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& max) {
|
||||
return vminq_f64(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp_min(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& min) {
|
||||
return vmaxq_f64(min, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator&(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
vandq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator|(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
vorrq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator^(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
veorq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::eq(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this == other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::ne(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this != other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::gt(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this > other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::ge(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this >= other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::lt(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this < other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::le(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this <= other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fmadd(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmaq_f64(c, a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fnmadd(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmsq_f64(c, a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fmsub(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmaq_f64(vnegq_f64(c), a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fnmsub(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmsq_f64(vnegq_f64(c), a, b);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
@ -307,11 +307,49 @@ class Vectorized<float> {
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp)
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2)
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
|
||||
// Implementation copied from Arm Optimized Routine
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
|
||||
Vectorized<float> exp_u20() const {
|
||||
return exp();
|
||||
// bail out to sleef if it's a special case:
|
||||
// i.e. there's an input s.t. |input| > 87.3....
|
||||
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
|
||||
uint32x4_t cmp = vcagtq_f32(values, special_bound);
|
||||
if (vpaddd_u64(vreinterpretq_u64_u32(cmp)) != 0) {
|
||||
return exp();
|
||||
}
|
||||
|
||||
const float32x4_t inv_ln2 = vdupq_n_f32(0x1.715476p+0f);
|
||||
const float ln2_hi = 0x1.62e4p-1f;
|
||||
const float ln2_lo = 0x1.7f7d1cp-20f;
|
||||
const float c0 = 0x1.0e4020p-7f;
|
||||
const float c2 = 0x1.555e66p-3f;
|
||||
const float32x4_t ln2_c02 = {ln2_hi, ln2_lo, c0, c2};
|
||||
|
||||
const uint32x4_t exponent_bias = vdupq_n_u32(0x3f800000);
|
||||
const float32x4_t c1 = vdupq_n_f32(0x1.573e2ep-5f);
|
||||
const float32x4_t c3 = vdupq_n_f32(0x1.fffdb6p-2f);
|
||||
const float32x4_t c4 = vdupq_n_f32(0x1.ffffecp-1f);
|
||||
|
||||
/* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)]
|
||||
x = ln2*n + r, with r in [-ln2/2, ln2/2]. */
|
||||
|
||||
float32x4_t n = vrndaq_f32(vmulq_f32(values, inv_ln2));
|
||||
float32x4_t r = vfmsq_laneq_f32(values, n, ln2_c02, 0);
|
||||
r = vfmsq_laneq_f32(r, n, ln2_c02, 1);
|
||||
uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_s32(vcvtq_s32_f32(n)), 23);
|
||||
float32x4_t scale = vreinterpretq_f32_u32(vaddq_u32(e, exponent_bias));
|
||||
|
||||
float32x4_t r2 = vmulq_f32(r, r);
|
||||
float32x4_t p = vfmaq_laneq_f32(c1, r, ln2_c02, 2);
|
||||
float32x4_t q = vfmaq_laneq_f32(c3, r, ln2_c02, 3);
|
||||
q = vfmaq_f32(q, p, r2);
|
||||
p = vmulq_f32(c4, r);
|
||||
float32x4_t poly = vfmaq_f32(p, q, r2);
|
||||
|
||||
return vfmaq_f32(scale, poly, scale);
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp();
|
||||
return exp_u20();
|
||||
}
|
||||
DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME(
|
||||
fmod,
|
||||
@ -540,42 +578,6 @@ inline Vectorized<float> Vectorized<float>::le(
|
||||
return (*this <= other) & Vectorized<float>(1.0f);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const float* src, int32_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<float>::size());
|
||||
i += Vectorized<float>::size()) {
|
||||
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<int32_t>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<float>::size());
|
||||
i += Vectorized<float>::size()) {
|
||||
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<float>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<float> inline fmadd(
|
||||
const Vectorized<float>& a,
|
||||
|
||||
@ -569,46 +569,6 @@ inline Vectorized<c10::Half> Vectorized<c10::Half>::le(
|
||||
return (*this <= other) & Vectorized<c10::Half>(1);
|
||||
}
|
||||
|
||||
// These are global functions, so the defaults in vec_base.h should
|
||||
// work fine if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC is not available.
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
template <>
|
||||
inline void convert(const float16_t* src, int16_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
|
||||
i += Vectorized<c10::Half>::size()) {
|
||||
vst1q_s16(dst + i, vcvtq_s16_f16(vld1q_f16(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<int16_t>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const int16_t* src, float16_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
|
||||
i += Vectorized<c10::Half>::size()) {
|
||||
vst1q_f16(dst + i, vcvtq_f16_s16(vld1q_s16(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<float16_t>(src[i]);
|
||||
}
|
||||
}
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
template <>
|
||||
Vectorized<c10::Half> inline fmadd(
|
||||
const Vectorized<c10::Half>& a,
|
||||
|
||||
378
aten/src/ATen/cpu/vec/vec128/vec128_uint_aarch64.h
Normal file
378
aten/src/ATen/cpu/vec/vec128/vec128_uint_aarch64.h
Normal file
@ -0,0 +1,378 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
#define VEC_UINT_NEON_TEMPLATE(vl, bit) \
|
||||
template <> \
|
||||
struct is_vec_specialized_for<uint##bit##_t> : std::bool_constant<true> {}; \
|
||||
\
|
||||
template <> \
|
||||
class Vectorized<uint##bit##_t> { \
|
||||
using neon_type = uint##bit##x##vl##_t; \
|
||||
\
|
||||
private: \
|
||||
neon_type values; \
|
||||
\
|
||||
public: \
|
||||
using value_type = uint##bit##_t; \
|
||||
using size_type = int; \
|
||||
static constexpr size_type size() { \
|
||||
return vl; \
|
||||
} \
|
||||
Vectorized() { \
|
||||
values = vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized(neon_type v) : values(v) {} \
|
||||
Vectorized(uint##bit##_t val); \
|
||||
template < \
|
||||
typename... Args, \
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
|
||||
Vectorized(Args... vals) { \
|
||||
__at_align__ uint##bit##_t buffer[size()] = {vals...}; \
|
||||
values = vld1q_u##bit(buffer); \
|
||||
} \
|
||||
operator neon_type() const { \
|
||||
return values; \
|
||||
} \
|
||||
static Vectorized<uint##bit##_t> loadu( \
|
||||
const void* ptr, \
|
||||
uint64_t count = size()); \
|
||||
void store(void* ptr, uint64_t count = size()) const; \
|
||||
template <uint64_t mask> \
|
||||
static Vectorized<uint##bit##_t> blend( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b); \
|
||||
static Vectorized<uint##bit##_t> blendv( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
const Vectorized<uint##bit##_t>& mask_) { \
|
||||
return vbslq_u##bit(mask_.values, b, a); \
|
||||
} \
|
||||
template <typename step_t> \
|
||||
static Vectorized<uint##bit##_t> arange( \
|
||||
value_type base = 0, \
|
||||
step_t step = static_cast<step_t>(1)); \
|
||||
static Vectorized<uint##bit##_t> set( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
uint64_t count = size()); \
|
||||
const uint##bit##_t& operator[](uint idx) const = delete; \
|
||||
uint##bit##_t& operator[](uint idx) = delete; \
|
||||
Vectorized<uint##bit##_t> abs() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> real() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> imag() const { \
|
||||
return vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> conj() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> neg() const { \
|
||||
return vreinterpretq_u##bit##_s##bit( \
|
||||
vnegq_s##bit(vreinterpretq_s##bit##_u##bit(values))); \
|
||||
} \
|
||||
uint##bit##_t reduce_add() const { \
|
||||
return vaddvq_u##bit(values); \
|
||||
} \
|
||||
uint##bit##_t reduce_max() const; \
|
||||
Vectorized<uint##bit##_t> operator==( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vceqq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator!=( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> operator<( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcltq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator<=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcleq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgtq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgeq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> le( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
}; \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator+( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vaddq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator-( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vsubq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator&( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vandq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator|( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vorrq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator^( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return veorq_u##bit(a, b); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this == other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this != other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this > other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this >= other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this < other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::le( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this <= other) & Vectorized<uint##bit##_t>(1); \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_TEMPLATE(16, 8)
|
||||
|
||||
inline uint8_t Vectorized<uint8_t>::reduce_max() const {
|
||||
return vmaxvq_u8(values);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator*(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmulq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) {
|
||||
return vmvnq_u8(a);
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::operator!=(
|
||||
const Vectorized<uint8_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline minimum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vminq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline maximum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmaxq_u8(a, b);
|
||||
}
|
||||
|
||||
template <uint64_t mask>
|
||||
Vectorized<uint8_t> Vectorized<uint8_t>::blend(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
(mask & 1LL) ? 0xFF : 0,
|
||||
(mask & 2LL) ? 0xFF : 0,
|
||||
(mask & 4LL) ? 0xFF : 0,
|
||||
(mask & 8LL) ? 0xFF : 0,
|
||||
(mask & 16LL) ? 0xFF : 0,
|
||||
(mask & 32LL) ? 0xFF : 0,
|
||||
(mask & 64LL) ? 0xFF : 0,
|
||||
(mask & 128LL) ? 0xFF : 0,
|
||||
(mask & 256LL) ? 0xFF : 0,
|
||||
(mask & 512LL) ? 0xFF : 0,
|
||||
(mask & 1024LL) ? 0xFF : 0,
|
||||
(mask & 2048LL) ? 0xFF : 0,
|
||||
(mask & 4096LL) ? 0xFF : 0,
|
||||
(mask & 8192LL) ? 0xFF : 0,
|
||||
(mask & 16384LL) ? 0xFF : 0,
|
||||
(mask & 32768LL) ? 0xFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
#define VEC_UINT_NEON_OPS(vl, bit) \
|
||||
inline Vectorized<uint##bit##_t>::Vectorized(uint##bit##_t val) { \
|
||||
values = vdupq_n_u##bit(val); \
|
||||
} \
|
||||
inline Vectorized<uint##bit##_t> Vectorized<uint##bit##_t>::loadu( \
|
||||
const void* ptr, uint64_t count) { \
|
||||
if (count == size()) { \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(ptr)); \
|
||||
} else { \
|
||||
__at_align__ uint##bit##_t tmp_values[size()]; \
|
||||
for (const auto i : c10::irange(size())) { \
|
||||
tmp_values[i] = 0; \
|
||||
} \
|
||||
std::memcpy( \
|
||||
tmp_values, \
|
||||
reinterpret_cast<const uint##bit##_t*>(ptr), \
|
||||
count * sizeof(uint##bit##_t)); \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(tmp_values)); \
|
||||
} \
|
||||
} \
|
||||
inline void Vectorized<uint##bit##_t>::store(void* ptr, uint64_t count) \
|
||||
const { \
|
||||
if (count == size()) { \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(ptr), values); \
|
||||
} else { \
|
||||
uint##bit##_t tmp_values[size()]; \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(tmp_values), values); \
|
||||
std::memcpy(ptr, tmp_values, count * sizeof(uint##bit##_t)); \
|
||||
} \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_OPS(16, 8)
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::arange(
|
||||
uint8_t base,
|
||||
step_t step) {
|
||||
const Vectorized<uint8_t> base_vec(base);
|
||||
const Vectorized<uint8_t> step_vec(step);
|
||||
const uint8x16_t step_sizes = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
return vmlaq_u8(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator>>(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return x >> z;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator<<(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return vshlq_u8(a, vreinterpretq_s8_u8(z));
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::set(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b,
|
||||
uint64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 16) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
|
||||
0};
|
||||
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator/(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t y = b;
|
||||
return x / y;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_max(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_min(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
@ -1390,7 +1390,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8));
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
@ -1412,7 +1412,7 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
|
||||
|
||||
192
aten/src/ATen/cuda/CUDAGreenContext.cpp
Normal file
192
aten/src/ATen/cuda/CUDAGreenContext.cpp
Normal file
@ -0,0 +1,192 @@
|
||||
#include <ATen/cuda/CUDAGreenContext.h>
|
||||
|
||||
namespace at::cuda {
|
||||
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int driver_version;
|
||||
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
|
||||
TORCH_CHECK(
|
||||
driver_version >= 12080, "cuda driver too old to use green context!");
|
||||
CUcontext pctx = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
|
||||
if (C10_UNLIKELY(!pctx)) {
|
||||
TORCH_WARN(
|
||||
"Attempted to create a green context but"
|
||||
" there was no primary context! Creating a primary context...");
|
||||
|
||||
cudaFree(0);
|
||||
}
|
||||
|
||||
CUdevice device;
|
||||
device_id_ = device_id;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
|
||||
|
||||
// Get device resources
|
||||
CUdevResource device_resource;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
|
||||
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
|
||||
|
||||
// Split resources
|
||||
std::vector<CUdevResource> result(1);
|
||||
auto result_data = result.data();
|
||||
unsigned int nb_groups = 1;
|
||||
CUdevResource remaining;
|
||||
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
|
||||
result_data,
|
||||
&nb_groups,
|
||||
&device_resource,
|
||||
&remaining,
|
||||
0, // default flags
|
||||
num_sms));
|
||||
|
||||
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
|
||||
|
||||
// Generate resource descriptor
|
||||
CUdevResourceDesc desc;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
|
||||
&desc, result_data, 1));
|
||||
|
||||
// Create green context
|
||||
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
|
||||
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
|
||||
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
|
||||
|
||||
// Convert to regular context
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
|
||||
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
std::unique_ptr<GreenContext> GreenContext::create(
|
||||
uint32_t num_sms,
|
||||
std::optional<uint32_t> device_id) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (!device_id.has_value()) {
|
||||
device_id = at::cuda::current_device();
|
||||
}
|
||||
return std::make_unique<GreenContext>(device_id.value(), num_sms);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Implement move operations
|
||||
GreenContext::GreenContext(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (this != &other) {
|
||||
// Clean up current resources
|
||||
if (green_ctx_) {
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (current == context_) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"attempting to overwrite current green ctx "
|
||||
"when it is active!");
|
||||
}
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
}
|
||||
|
||||
// Take ownership of other's resources
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
}
|
||||
return *this;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext::~GreenContext() noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext GreenContext::getContext() const {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
return context_;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx GreenContext::getGreenContext() const {
|
||||
return green_ctx_;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void GreenContext::setContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
auto current_stream = c10::cuda::getCurrentCUDAStream();
|
||||
parent_stream_ = current_stream.stream();
|
||||
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(current_stream);
|
||||
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (!current) {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_));
|
||||
} else {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_));
|
||||
}
|
||||
// currently hardcodes the new green context to use the default stream
|
||||
// TODO(eqy): consider creating a new stream if e.g., it allows interop
|
||||
// with CUDA Graph captures etc.
|
||||
auto default_stream = c10::cuda::getDefaultCUDAStream();
|
||||
ev.block(default_stream);
|
||||
c10::cuda::setCurrentCUDAStream(default_stream);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
void GreenContext::popContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
// see above note about stream being hardcoded to the default stream
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(c10::cuda::getCurrentCUDAStream());
|
||||
CUcontext popped;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped));
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
popped == context_, "expected popped context to be the current ctx");
|
||||
ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
} // namespace at::cuda
|
||||
53
aten/src/ATen/cuda/CUDAGreenContext.h
Normal file
53
aten/src/ATen/cuda/CUDAGreenContext.h
Normal file
@ -0,0 +1,53 @@
|
||||
#pragma once
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <cuda.h>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#define CUDA_HAS_GREEN_CONTEXT 1
|
||||
#else
|
||||
#define CUDA_HAS_GREEN_CONTEXT 0
|
||||
#endif
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
class TORCH_CUDA_CPP_API GreenContext {
|
||||
public:
|
||||
GreenContext(uint32_t device_id, uint32_t num_sms);
|
||||
|
||||
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
|
||||
|
||||
// Delete copy constructor and assignment
|
||||
GreenContext(const GreenContext&) = delete;
|
||||
GreenContext& operator=(const GreenContext&) = delete;
|
||||
|
||||
// Implement move operations
|
||||
GreenContext(GreenContext&& other) noexcept;
|
||||
GreenContext& operator=(GreenContext&& other) noexcept;
|
||||
~GreenContext() noexcept;
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext getContext() const;
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx getGreenContext() const;
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void setContext();
|
||||
|
||||
void popContext();
|
||||
|
||||
private:
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int32_t device_id_ = -1;
|
||||
CUgreenCtx green_ctx_ = nullptr;
|
||||
CUcontext context_ = nullptr;
|
||||
cudaStream_t parent_stream_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
} // namespace at::cuda
|
||||
270
aten/src/ATen/cuda/CUDAScaledBlas.cpp
Normal file
270
aten/src/ATen/cuda/CUDAScaledBlas.cpp
Normal file
@ -0,0 +1,270 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace at::cuda::scaled {
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8,
|
||||
* Each needs a single scale, {Tensorwise (float)}
|
||||
*/
|
||||
bool check_tensorwise_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scale each, {Tensorwise, float}
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::TensorWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::TensorWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8,
|
||||
* Each needs scales, {Rowwise (float)}
|
||||
*/
|
||||
bool check_rowwise_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scale each, {Tensorwise, float}
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {RowWise, dp32} for A & B
|
||||
if (recipe_a[0] != ScalingType::RowWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::RowWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Two-level scaling, canonical NVFP4
|
||||
* Both inputs must be fp4
|
||||
* A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)}
|
||||
*/
|
||||
bool check_nvfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2 scales, 2 recipes for each input
|
||||
if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Single-level scaling, what PyT currently understands
|
||||
* Both inputs must be fp4
|
||||
* A, B need 1 scale, {Blockwise_1x16 (e4m3)}
|
||||
*/
|
||||
bool check_nvfp4_recipe_single_scale
|
||||
(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2 scales, 2 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x16) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x16) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8
|
||||
* A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float)
|
||||
*/
|
||||
bool check_deepseek_recipe(ScalingType expected_recipe_a,
|
||||
ScalingType expected_recipe_b,
|
||||
c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B
|
||||
if (recipe_a[0] != expected_recipe_a) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != expected_recipe_b) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp8_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp4
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace at::native::cuda::blas::scaled
|
||||
174
aten/src/ATen/cuda/CUDAScaledBlas.h
Normal file
174
aten/src/ATen/cuda/CUDAScaledBlas.h
Normal file
@ -0,0 +1,174 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace at::cuda::scaled {
|
||||
|
||||
static bool _scaled_mm_allowed_device(bool sm90_only=false, bool sm100_only=false) {
|
||||
#ifdef USE_ROCM
|
||||
static const std::vector<std::string> archs = {
|
||||
"gfx942",
|
||||
#if ROCM_VERSION >= 60300
|
||||
"gfx1200", "gfx1201",
|
||||
#endif
|
||||
#if ROCM_VERSION >= 60500
|
||||
"gfx950"
|
||||
#endif
|
||||
};
|
||||
return at::detail::getCUDAHooks().isGPUArch(archs);
|
||||
#else
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
|
||||
if (sm90_only || sm100_only) {
|
||||
return (sm90_only && dprops->major == 9) || (sm100_only && dprops->major == 10);
|
||||
} else {
|
||||
return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
static bool _scaled_mm_is_fnuz() {
|
||||
return at::detail::getCUDAHooks().isGPUArch({"gfx942"});
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Track concrete implementations available
|
||||
*/
|
||||
enum class ScaledGemmImplementation {
|
||||
NONE = 0,
|
||||
TENSORWISE_TENSORWISE = 1,
|
||||
ROWWISE_ROWWISE = 2,
|
||||
BLOCK_128x128_1x128 = 3,
|
||||
BLOCK_1x128_128x128 = 4,
|
||||
BLOCK_1x128_1x128 = 5,
|
||||
MXFP8_MXFP8 = 6,
|
||||
NVFP4_NVFP4 = 7,
|
||||
NVFP4_NVFP4_SINGLE_SCALE = 8,
|
||||
MXFP4_MXFP4 = 9,
|
||||
};
|
||||
|
||||
/**
|
||||
* Convert passed int (enum) from python back into a
|
||||
* strictly-typed enum
|
||||
*/
|
||||
template <class EnumType, class ArrayType>
|
||||
std::vector<EnumType> convert_int_to_enum(ArrayType& v) {
|
||||
std::vector<EnumType> converted;
|
||||
converted.reserve(v.size());
|
||||
|
||||
for (auto vi : v) {
|
||||
converted.push_back(static_cast<EnumType>(vi));
|
||||
}
|
||||
return converted;
|
||||
}
|
||||
|
||||
bool check_tensorwise_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
|
||||
bool check_rowwise_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_nvfp4_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_nvfp4_recipe_single_scale
|
||||
(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_deepseek_recipe(ScalingType,
|
||||
ScalingType,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_mxfp8_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_mxfp4_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
} // namespace at::native::cuda::blas::scaled
|
||||
@ -70,11 +70,7 @@
|
||||
#define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max()
|
||||
#endif
|
||||
|
||||
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM)
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
namespace at_cuda_detail {
|
||||
#endif
|
||||
#if defined(USE_ROCM)
|
||||
|
||||
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
|
||||
|
||||
@ -96,10 +92,6 @@ template <>
|
||||
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
|
||||
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
} // namespace at_cuda_detail
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
@ -121,7 +113,7 @@ struct cuda_type<c10::Half> {
|
||||
using type = __half;
|
||||
};
|
||||
|
||||
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
|
||||
#if !defined(USE_ROCM)
|
||||
|
||||
template<>
|
||||
struct cuda_type<c10::BFloat16> {
|
||||
@ -203,36 +195,6 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera
|
||||
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
template<typename ValueT, typename InputIteratorT>
|
||||
struct chained_iterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using value_type = ValueT;
|
||||
using pointer = ValueT*;
|
||||
using reference = ValueT&;
|
||||
|
||||
InputIteratorT iter;
|
||||
ValueT *first;
|
||||
difference_type offset = 0;
|
||||
|
||||
__device__ ValueT operator[](difference_type i) {
|
||||
i += offset;
|
||||
if (i == 0) {
|
||||
return *first;
|
||||
} else {
|
||||
return ValueT(iter[i - 1]);
|
||||
}
|
||||
}
|
||||
__device__ chained_iterator operator+(difference_type i) {
|
||||
return chained_iterator{iter, first, i};
|
||||
}
|
||||
__device__ ValueT operator*() {
|
||||
return (*this)[0];
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
||||
// so split at int_max/2
|
||||
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
|
||||
@ -277,25 +239,6 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
|
||||
using tuple = typename ArgIndexInputIterator::value_type;
|
||||
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
|
||||
if (x.key == 0) {
|
||||
return *first_elem_ptr;
|
||||
} else {
|
||||
return x.value;
|
||||
}
|
||||
};
|
||||
auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)(
|
||||
ArgIndexInputIterator(input + i), input_iter_transform);
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i + 1,
|
||||
output + i,
|
||||
@ -303,7 +246,6 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -555,16 +497,6 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
|
||||
input + i, first_elem_ptr};
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i,
|
||||
output + i,
|
||||
@ -572,7 +504,6 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -10,14 +10,6 @@
|
||||
#define CUB_VERSION 200001
|
||||
#endif
|
||||
|
||||
// cub sort support for __nv_bfloat16 is added to cub 1.13 in:
|
||||
// https://github.com/NVIDIA/cub/pull/306
|
||||
#if CUB_VERSION >= 101300
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() false
|
||||
#endif
|
||||
|
||||
// cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in:
|
||||
// https://github.com/NVIDIA/cub/pull/326
|
||||
// CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake
|
||||
@ -28,14 +20,6 @@
|
||||
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
|
||||
#endif
|
||||
|
||||
// cub support for cub::FutureValue is added to cub 1.15 in:
|
||||
// https://github.com/NVIDIA/cub/pull/305
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() false
|
||||
#endif
|
||||
|
||||
// There were many bc-breaking changes in major version release of CCCL v3.0.0
|
||||
// Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html
|
||||
#if CUB_VERSION >= 200800
|
||||
|
||||
23
aten/src/ATen/detail/XLAHooksInterface.cpp
Normal file
23
aten/src/ATen/detail/XLAHooksInterface.cpp
Normal file
@ -0,0 +1,23 @@
|
||||
#include <ATen/detail/XLAHooksInterface.h>
|
||||
|
||||
namespace at {
|
||||
namespace detail {
|
||||
|
||||
const XLAHooksInterface& getXLAHooks() {
|
||||
auto create_impl = [] {
|
||||
// Create XLA hooks using the registry
|
||||
auto hooks = XLAHooksRegistry()->Create("torch_xla::detail::XLAHooks", XLAHooksArgs{});
|
||||
if (hooks) {
|
||||
return hooks;
|
||||
}
|
||||
// If hooks creation fails, fall back to default implementation
|
||||
return std::make_unique<XLAHooksInterface>();
|
||||
};
|
||||
static auto hooks = create_impl();
|
||||
return *hooks;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
C10_DEFINE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs)
|
||||
|
||||
} // namespace at
|
||||
79
aten/src/ATen/detail/XLAHooksInterface.h
Normal file
79
aten/src/ATen/detail/XLAHooksInterface.h
Normal file
@ -0,0 +1,79 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/Registry.h>
|
||||
|
||||
#include <ATen/detail/AcceleratorHooksInterface.h>
|
||||
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-parameter")
|
||||
|
||||
namespace at {
|
||||
|
||||
constexpr const char* XLA_HELP =
|
||||
"This error has occurred because you are trying "
|
||||
"to use some XLA functionality, but the XLA library has not been "
|
||||
"loaded by the dynamic linker. You must load xla libraries by `import torch_xla`";
|
||||
|
||||
struct TORCH_API XLAHooksInterface : AcceleratorHooksInterface {
|
||||
~XLAHooksInterface() override = default;
|
||||
|
||||
void init() const override {
|
||||
TORCH_CHECK(false, "Cannot initialize XLA without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
virtual bool hasXLA() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual std::string showConfig() const {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"Cannot query detailed XLA version without torch_xla library. ",
|
||||
XLA_HELP);
|
||||
}
|
||||
|
||||
const Generator& getDefaultGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
TORCH_CHECK(
|
||||
false, "Cannot get default XLA generator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Generator getNewGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
TORCH_CHECK(false, "Cannot get XLA generator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
virtual DeviceIndex getCurrentDevice() const override {
|
||||
TORCH_CHECK(false, "Cannot get current XLA device without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Device getDeviceFromPtr(void* /*data*/) const override {
|
||||
TORCH_CHECK(false, "Cannot get device of pointer on XLA without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Allocator* getPinnedMemoryAllocator() const override {
|
||||
TORCH_CHECK(false, "Cannot get XLA pinned memory allocator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
bool isPinnedPtr(const void* data) const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool hasPrimaryContext(DeviceIndex device_index) const override {
|
||||
TORCH_CHECK(false, "Cannot query primary context without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct TORCH_API XLAHooksArgs {};
|
||||
|
||||
TORCH_DECLARE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs);
|
||||
#define REGISTER_XLA_HOOKS(clsname) \
|
||||
C10_REGISTER_CLASS(XLAHooksRegistry, clsname, clsname)
|
||||
|
||||
namespace detail {
|
||||
TORCH_API const XLAHooksInterface& getXLAHooks();
|
||||
} // namespace detail
|
||||
} // namespace at
|
||||
C10_DIAGNOSTIC_POP()
|
||||
@ -11,6 +11,8 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto
|
||||
"pixel_shuffle expects a positive upscale_factor, but got ",
|
||||
upscale_factor);
|
||||
int64_t c = self.size(-3);
|
||||
TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor,
|
||||
"upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor);
|
||||
int64_t upscale_factor_squared = upscale_factor * upscale_factor;
|
||||
TORCH_CHECK(c % upscale_factor_squared == 0,
|
||||
"pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of "
|
||||
|
||||
@ -259,11 +259,20 @@ inline void winograd_f2k3_input_transform_inplace__rvv(
|
||||
const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4);
|
||||
const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4);
|
||||
const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4);
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround:
|
||||
* Avoid single-statement read-modify-write on MEM_REF like:
|
||||
* *input_tile_val =
|
||||
* __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
* This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin)
|
||||
* with -march=rv64gcv. Use a temporary then write back.
|
||||
* Do NOT refactor into the single-statement form. Clang is unaffected.
|
||||
*/
|
||||
vfloat32m1x4_t tmp_input_tile_val = *input_tile_val;
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3);
|
||||
*input_tile_val = tmp_input_tile_val;
|
||||
}
|
||||
|
||||
inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
@ -277,9 +286,15 @@ inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4);
|
||||
const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4);
|
||||
const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4);
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_output_tile_val = *input_tile_val;
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0);
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1);
|
||||
*input_tile_val = tmp_output_tile_val;
|
||||
}
|
||||
|
||||
inline vfloat32m1_t
|
||||
@ -300,11 +315,17 @@ inline void winograd_f2k3_kernel_transform__rvv(
|
||||
const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4);
|
||||
const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4);
|
||||
vfloat32m1_t half_g0_plus_g2 = __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4);
|
||||
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0);
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_transform = *transform;
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0);
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2);
|
||||
*transform = tmp_transform;
|
||||
}
|
||||
|
||||
inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) {
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
574
aten/src/ATen/native/cuda/GroupedBlas.cpp
Normal file
574
aten/src/ATen/native/cuda/GroupedBlas.cpp
Normal file
@ -0,0 +1,574 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/CUDAScaledBlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace scaled_blas = at::cuda::scaled;
|
||||
using scaled_blas::ScaledGemmImplementation;
|
||||
using scaled_blas::convert_int_to_enum;
|
||||
using scaled_blas::_scaled_mm_allowed_device;
|
||||
|
||||
namespace at::native {
|
||||
|
||||
namespace {
|
||||
|
||||
// 2d-2d and 2d-3d
|
||||
// scaling=MXFP8
|
||||
// CUDA-only
|
||||
Tensor&
|
||||
_mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const SwizzleType& swizzle_a,
|
||||
const Tensor& scale_b,
|
||||
const SwizzleType& swizzle_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
Tensor& out) {
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
const bool b_is_2d = mat_b.dim() == 2;
|
||||
bool b_is_3d = mat_b.dim() == 3;
|
||||
bool is_2d_2d = a_is_2d && b_is_2d;
|
||||
bool is_2d_3d = a_is_2d && b_is_3d;
|
||||
TORCH_CHECK_VALUE(is_2d_2d || is_2d_3d, "MXFP8 grouped GEMM currently only supports 2d-2d and 2d-3d cases");
|
||||
TORCH_CHECK_VALUE(offs.has_value(), "MXFP8 2d-2d and 2d-3d grouped GEMMs requires offsets");
|
||||
TORCH_CHECK_VALUE(out.scalar_type() == at::kBFloat16, "Only bf16 out_dtype is supported for MXFP8 grouped gemm");
|
||||
// MXFP8 expects float8_e8m0fnu scales.
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu,
|
||||
"For MXFP8 grouped gemm, both scales must be float8_e8m0fnu tensors.");
|
||||
#ifdef USE_ROCM
|
||||
TORCH_CHECK_VALUE(swizzle_a == SwizzleType::NO_SWIZZLE && swizzle_b == SwizzleType::NO_SWIZZLE,
|
||||
"For ROCM MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_NONE");
|
||||
#else
|
||||
TORCH_CHECK_VALUE(swizzle_a == SwizzleType::SWIZZLE_32_4_4 && swizzle_b == SwizzleType::SWIZZLE_32_4_4,
|
||||
"For CUDA MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_32_4_4");
|
||||
#endif
|
||||
|
||||
#if defined(USE_FBGEMM_GENAI) and !defined(USE_ROCM)
|
||||
fbgemm_gpu::mx8mx8bf16_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs.value(),
|
||||
out);
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "mxfp8_mxfp8 grouped gemm requires compile with USE_FBGEMM_GENAI");
|
||||
#endif
|
||||
return out;
|
||||
}
|
||||
|
||||
// 2d-2d and 2d-3d cases
|
||||
// scaling=rowwise
|
||||
// CUDA-only
|
||||
Tensor&
|
||||
_f8_f8_bf16_rowwise_grouped_mm_cuda(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_b.scalar_type());
|
||||
|
||||
at::cuda::detail::f8f8bf16_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
return out;
|
||||
}
|
||||
|
||||
// 2d-2d and 2d-3d cases
|
||||
// scaling=rowwise
|
||||
// only being called for rocm
|
||||
Tensor&
|
||||
_f8_f8_bf16_rowwise_grouped_mm_rocm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
Tensor& out) {
|
||||
TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_b.scalar_type());
|
||||
|
||||
#if defined(USE_FBGEMM_GENAI) && defined(USE_ROCM)
|
||||
fbgemm_gpu::f8f8bf16_rowwise_grouped_mm(
|
||||
mat_a,
|
||||
// FBGEMM expects B matrix shape to be (.., N, K)
|
||||
mat_b.transpose(-2, -1),
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
out);
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "grouped gemm is not supported without USE_FBGEMM_GENAI on ROCM")
|
||||
#endif
|
||||
return out;
|
||||
|
||||
}
|
||||
|
||||
// Dispatch f8 x f8 -> bf16 row-wise scaled to rocm/cuda
|
||||
Tensor&
|
||||
_f8_f8_bf16_rowwise_grouped_mm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
// FP8 per-tensor and per-row scaling expect fp32 scales.
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat,
|
||||
"For grouped FP8 rowwise, both scales must be float32 tensors");
|
||||
#ifndef USE_ROCM
|
||||
return _f8_f8_bf16_rowwise_grouped_mm_cuda(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
#else
|
||||
// NOTE: ignore use_fast_accum
|
||||
TORCH_CHECK_VALUE(!bias.has_value(), "ROCM grouped gemm does not support bias")
|
||||
return _f8_f8_bf16_rowwise_grouped_mm_rocm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
out);
|
||||
#endif
|
||||
}
|
||||
|
||||
void _check_scales_fp8_rowwise(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
|
||||
// Checks scales for 2d or 3d target tensors (`mat`).
|
||||
if (mat.dim() == 2) {
|
||||
TORCH_CHECK(
|
||||
scale.dim() == 1,
|
||||
"scale must be a 1D tensor, but got ",
|
||||
scale.dim(),
|
||||
"D, arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.is_contiguous(), "scale must be contiguous for arg ", arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.size(0) == mat.size(dim) * scale_multiplier,
|
||||
"scale must have the same length as mat for arg ",
|
||||
arg_idx);
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
scale.dim() == 2,
|
||||
"scale must be a 2D tensor, but got ",
|
||||
scale.dim(),
|
||||
"D for arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.stride(1) == 1,
|
||||
"scale must be contiguous in the last dimension for arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.size(0) == mat.size(0),
|
||||
"scale must have the same batch dimension as mat for arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.size(1) == mat.size(1 + dim),
|
||||
"scale must have the same first dimension as mat for arg ",
|
||||
arg_idx);
|
||||
}
|
||||
}
|
||||
|
||||
void _check_scales_mxfp8(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx) {
|
||||
// Checks scales for 2d or 3d target tensors (`mat`).
|
||||
if (mat.dim() == 2) {
|
||||
// For MXFP8, 2d tensors have variable size groups represented as subtensors,
|
||||
// that are converted to blocked padded format individually,
|
||||
// so we can't check the scale sizes without doing a d2h sync to get the group sizes here.
|
||||
TORCH_CHECK(
|
||||
scale.dim() == mat.dim(),
|
||||
"for mxfp8, scale must have same number of dimensions as parent tensor, but got mat.dim() = ", mat.dim(), " and scale.dim() = ", scale.dim(), " for arg ", arg_idx);
|
||||
|
||||
// LHS mat shape (M, total_K) -> scale shape (rounded_up(M, 128), rounded_up_per_group(K/32, 4))
|
||||
// RHS mat shape (total_K, N) -> scale shape (rounded_up(N, 128), rounded_up_per_group(K/32, 4))
|
||||
// * weight is transposed prior to the call, scale stays non-transposed.
|
||||
bool LHS = arg_idx == 0;
|
||||
int scale_dim_to_check = 0;
|
||||
int mat_dim_to_check = LHS ? 0 : 1;
|
||||
TORCH_CHECK(
|
||||
scale.size(scale_dim_to_check) >= mat.size(mat_dim_to_check),
|
||||
"for mxfp8, arg ", arg_idx, " tensor shape (", mat.size(0), ", ", mat.size(1), ") ",
|
||||
"must have scale.shape[", scale_dim_to_check, "] >= ", mat.size(mat_dim_to_check), " but got scale.shape=(", scale.size(0), ", ", scale.size(1), ")");
|
||||
} else {
|
||||
// For MXFP8, 3d tensors have static group sizes (stack of 2d tensors),
|
||||
// so we can check the exact expected scale sizes here without a d2h sync.
|
||||
auto round_up = [](auto x, auto y) {
|
||||
return ((x + y - 1) / y) * y;
|
||||
};
|
||||
|
||||
// TODO: this is for 3d tensor in 2d-3d case specifically.
|
||||
// We'll need to support 3d-3d and 3d-2d cases once mxfp8 grouped gemm supports them.
|
||||
int64_t G = mat.size(0);
|
||||
int64_t K = mat.size(1);
|
||||
int64_t N = mat.size(2);
|
||||
int64_t blocked_scale_K = round_up(K/32, 4);
|
||||
int64_t blocked_scale_N = round_up(N, 128);
|
||||
|
||||
// fbgemm expects stack of flattened blocked scales for 3d tensor, shape (G, blocked_scale_K * blocked_scale_N).
|
||||
TORCH_CHECK(
|
||||
scale.dim() == mat.dim() - 1,
|
||||
"for mxfp8 2d-3d grouped GEMM, the 3d tensor of shape (G,K,N) must have a 2d scale of shape (G, blocked_scale_K * blocked_scale_N), but scale is ", scale.dim(), "D for arg ", arg_idx
|
||||
);
|
||||
TORCH_CHECK(
|
||||
scale.size(0) == G && scale.size(1) == blocked_scale_K * blocked_scale_N,
|
||||
"for mxfp8, the tensor shape (", G, ", ", K, ", ", N, ") must have scale shape (", G, ",", blocked_scale_K, ",", blocked_scale_N, ") for arg ", arg_idx
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
void check_scale(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
|
||||
bool using_fp8_rowwise = scale.scalar_type() == kFloat;
|
||||
bool using_mxfp8 = scale.scalar_type() == at::kFloat8_e8m0fnu;
|
||||
if (using_fp8_rowwise) {
|
||||
_check_scales_fp8_rowwise(mat, scale, dim, arg_idx, scale_multiplier);
|
||||
} else if (using_mxfp8) {
|
||||
_check_scales_mxfp8(mat, scale, dim, arg_idx);
|
||||
} else {
|
||||
TORCH_CHECK(false, "scale must be float32 or float8_e8m0fnu, but got ", scale.dtype());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
Tensor
|
||||
_scaled_grouped_mm_cuda(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
std::optional<c10::ScalarType> out_dtype,
|
||||
bool use_fast_accum) {
|
||||
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true);
|
||||
TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+");
|
||||
|
||||
TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed");
|
||||
TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed");
|
||||
TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d");
|
||||
TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d");
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
const bool b_is_2d = mat_b.dim() == 2;
|
||||
|
||||
// NOTE(slayton): For sub-1B formats want contraction_dim argument?
|
||||
if (!a_is_2d || !b_is_2d) {
|
||||
TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match");
|
||||
}
|
||||
TORCH_CHECK_VALUE(
|
||||
mat_a.size(-1) % 16 == 0,
|
||||
"Expected trailing dimension of mat_a to be divisible by 16 ",
|
||||
"but got mat1 shape: (",
|
||||
mat_a.sizes(),
|
||||
").");
|
||||
TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0,
|
||||
"Expected mat_b shape to be divisible by 16 ",
|
||||
"but got mat_b shape: (",
|
||||
mat_b.sizes(),
|
||||
").");
|
||||
|
||||
|
||||
TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet");
|
||||
TORCH_CHECK_VALUE(!scale_result.has_value(), "Scale result not supported yet");
|
||||
TORCH_CHECK_VALUE(offs.has_value() == (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix");
|
||||
|
||||
// NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present.
|
||||
// for rowwise, no offsets implies 3d-3d and is handled by lower-level
|
||||
// routines
|
||||
if (offs.has_value()) {
|
||||
TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D");
|
||||
TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32");
|
||||
}
|
||||
// FP8 per-tensor and per-row scaling expect fp32 scales.
|
||||
// MXFP8 expects float8_e8m0fnu scales.
|
||||
TORCH_CHECK_VALUE(
|
||||
(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat) ||
|
||||
(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu),
|
||||
"For FP8 tensorwise and rowwise, both scales must both be float32 tensors. For MXFP8, scales must both be float8_e8m0fnu tensors.");
|
||||
|
||||
const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1;
|
||||
check_scale(mat_a, scale_a, 0 ,0, scale_multiplier);
|
||||
check_scale(mat_b, scale_b, 1, 1, scale_multiplier);
|
||||
|
||||
const auto out_dtype_ = out_dtype.value_or(kBFloat16);
|
||||
TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm");
|
||||
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
|
||||
#if defined(USE_FBGEMM_GENAI) && defined(USE_CUDA) && !defined(USE_ROCM)
|
||||
// MXFP8 grouped GEMM dispatching
|
||||
bool is_mx8mx8bf16 = (
|
||||
mat_a.scalar_type() == at::kFloat8_e4m3fn && mat_b.scalar_type() == at::kFloat8_e4m3fn &&
|
||||
scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu
|
||||
);
|
||||
#else
|
||||
bool is_mx8mx8bf16 = false;
|
||||
#endif
|
||||
|
||||
if (is_mx8mx8bf16) {
|
||||
// Note: Passing implied SwizzleType here, correctness of scale previously checked
|
||||
// in `check_scale` call
|
||||
return _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
SwizzleType::SWIZZLE_32_4_4,
|
||||
scale_b,
|
||||
SwizzleType::SWIZZLE_32_4_4,
|
||||
offs.value(),
|
||||
out);
|
||||
}
|
||||
|
||||
// If we're not MXFP8, then we're row-wise scaling.
|
||||
return _f8_f8_bf16_rowwise_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>;
|
||||
|
||||
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 2> scale_grouped_kernel_dispatch = {{
|
||||
{ "rowwise_rowwise", scaled_blas::check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE},
|
||||
{ "mxfp8_mxfp8", scaled_blas::check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}}};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
Tensor
|
||||
_scaled_grouped_mm_cuda_v2(
|
||||
const Tensor& mat_a, const Tensor& mat_b,
|
||||
ArrayRef<Tensor> scale_a,
|
||||
IntArrayRef scale_recipe_a,
|
||||
IntArrayRef swizzle_a,
|
||||
ArrayRef<Tensor> scale_b,
|
||||
IntArrayRef scale_recipe_b,
|
||||
IntArrayRef swizzle_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
const std::optional<c10::ScalarType> out_dtype,
|
||||
IntArrayRef contraction_dim,
|
||||
bool use_fast_accum) {
|
||||
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true);
|
||||
TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+");
|
||||
|
||||
TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed");
|
||||
TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed");
|
||||
TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d");
|
||||
TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d");
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
const bool b_is_2d = mat_b.dim() == 2;
|
||||
|
||||
// NOTE(slayton): For sub-1B formats want contraction_dim argument?
|
||||
if (!a_is_2d || !b_is_2d) {
|
||||
if (contraction_dim.size() > 0) {
|
||||
const int dim_a = contraction_dim[0], dim_b = mat_b.size(contraction_dim[1]);
|
||||
TORCH_CHECK_VALUE(mat_a.size(dim_a) == mat_b.size(dim_b),
|
||||
"Contraction dimensions (", dim_a, ",", dim_b, ") of mat_a and mat_b must match, got: ", mat_a.size(dim_a), " and ",
|
||||
mat_b.size(dim_b));
|
||||
// Note: only (-1, -2) is currently supported
|
||||
TORCH_CHECK_VALUE(dim_a == -1 && dim_b == -2, "Curently contraction dims must be (-1, -2) only");
|
||||
} else {
|
||||
TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match");
|
||||
}
|
||||
}
|
||||
TORCH_CHECK_VALUE(
|
||||
mat_a.size(-1) % 16 == 0,
|
||||
"Expected trailing dimension of mat_a to be divisible by 16 ",
|
||||
"but got mat1 shape: (",
|
||||
mat_a.sizes(),
|
||||
").");
|
||||
TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0,
|
||||
"Expected mat_b shape to be divisible by 16 ",
|
||||
"but got mat_b shape: (",
|
||||
mat_b.sizes(),
|
||||
").");
|
||||
|
||||
TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet");
|
||||
TORCH_CHECK_VALUE(offs.has_value() == (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix");
|
||||
|
||||
// NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present.
|
||||
// for rowwise, no offsets implies 3d-3d and is handled by lower-level
|
||||
// routines
|
||||
if (offs.has_value()) {
|
||||
TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D");
|
||||
TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32");
|
||||
}
|
||||
|
||||
const auto out_dtype_ = out_dtype.value_or(kBFloat16);
|
||||
TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm");
|
||||
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
|
||||
// Conversion of implicitly-defined enums to explicit
|
||||
auto scale_recipe_a_enum = convert_int_to_enum<ScalingType>(scale_recipe_a);
|
||||
auto swizzle_a_enum = convert_int_to_enum<SwizzleType>(swizzle_a);
|
||||
auto scale_recipe_b_enum = convert_int_to_enum<ScalingType>(scale_recipe_b);
|
||||
auto swizzle_b_enum = convert_int_to_enum<SwizzleType>(swizzle_b);
|
||||
|
||||
// at this point we can start working out what we want to be doing
|
||||
// Try to do as few steps as possible.
|
||||
// NOTE: support is deliberately sparse, can explicitly enumerate all combinations allowed.
|
||||
// Do this via a list of defined (name, acceptance, concrete_impl) tuples.
|
||||
ScaledGemmImplementation gemm_impl = ScaledGemmImplementation::NONE;
|
||||
for (const auto& fn_entry : scale_grouped_kernel_dispatch) {
|
||||
const auto [name, accept_fn, scaled_gemm_impl] = fn_entry;
|
||||
bool ok = accept_fn(mat_a.scalar_type(),
|
||||
scale_recipe_a_enum,
|
||||
scale_a,
|
||||
mat_b.scalar_type(),
|
||||
scale_recipe_b_enum,
|
||||
scale_b);
|
||||
if (ok) {
|
||||
gemm_impl = scaled_gemm_impl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
TORCH_CHECK_VALUE(gemm_impl != ScaledGemmImplementation::NONE,
|
||||
"No gemm implementation was found");
|
||||
|
||||
switch (gemm_impl) {
|
||||
case ScaledGemmImplementation::ROWWISE_ROWWISE: {
|
||||
const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1;
|
||||
_check_scales_fp8_rowwise(mat_a, scale_a[0], 0 /* dim */ , 0 /* arg_idx */, scale_multiplier);
|
||||
_check_scales_fp8_rowwise(mat_b, scale_b[0], 1 /* dim */ , 1 /* arg_idx */, scale_multiplier);
|
||||
return _f8_f8_bf16_rowwise_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a[0],
|
||||
scale_b[0],
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
case ScaledGemmImplementation::MXFP8_MXFP8: {
|
||||
_check_scales_mxfp8(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
|
||||
_check_scales_mxfp8(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */);
|
||||
return _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a[0],
|
||||
swizzle_a_enum[0],
|
||||
scale_b[0],
|
||||
swizzle_b_enum[0],
|
||||
offs.value(),
|
||||
out);
|
||||
}
|
||||
default:
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false,
|
||||
"_scaled_grouped_mm_cuda_v2 is in an inconsistent state - should never reach here");
|
||||
}
|
||||
}
|
||||
|
||||
Tensor _grouped_mm_cuda(const Tensor& mat_a, const Tensor& mat_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
std::optional<c10::ScalarType> out_dtype) {
|
||||
_grouped_mm_validate_inputs(mat_a, mat_b, offs, bias, out_dtype);
|
||||
bool a_b_and_out_are_bf16 = (
|
||||
mat_a.dtype() == at::kBFloat16 &&
|
||||
mat_b.dtype() == at::kBFloat16 &&
|
||||
out_dtype.value_or(at::kBFloat16) == at::kBFloat16
|
||||
);
|
||||
#ifndef USE_ROCM
|
||||
bool use_fast_path = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true) && a_b_and_out_are_bf16;
|
||||
#else
|
||||
// _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used.
|
||||
// the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm
|
||||
bool use_fast_path = false;
|
||||
#endif
|
||||
const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype);
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
if (use_fast_path) {
|
||||
// fast path, no d2h sync needed
|
||||
at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out);
|
||||
} else {
|
||||
_grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
@ -1,18 +1,17 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/detail/FunctionTraits.h>
|
||||
#include <ATen/native/TensorIterator.h>
|
||||
#include <ATen/native/TensorIteratorDynamicCasting.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/native/cuda/thread_constants.h>
|
||||
|
||||
#include <thrust/tuple.h>
|
||||
|
||||
#include <ATen/native/cuda/MemoryAccess.cuh>
|
||||
|
||||
#include <tuple>
|
||||
|
||||
|
||||
|
||||
namespace at::native {
|
||||
|
||||
template<int N>
|
||||
@ -62,7 +61,11 @@ __device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < elems_per_thread; i++) {
|
||||
if (policy.check_inbounds(i)) {
|
||||
#if defined(__HIP__)
|
||||
results[i] = c10::guts::apply(f, args[i]);
|
||||
#else
|
||||
results[i] = std::apply(f, args[i]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -23,7 +23,7 @@ namespace at::native {
|
||||
|
||||
// The maximum number of threads in a block
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int MAX_BLOCK_SIZE = 256;
|
||||
constexpr int MAX_BLOCK_SIZE = 1024;
|
||||
#else
|
||||
constexpr int MAX_BLOCK_SIZE = 512;
|
||||
#endif
|
||||
@ -33,7 +33,7 @@ constexpr unsigned MAX_GRID_SIZE = 65535u;
|
||||
// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
|
||||
static int getNumThreads(int nElem) {
|
||||
#if defined(USE_ROCM)
|
||||
int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
|
||||
int threadSizes[5] = { 64, 128, 256, 512, MAX_BLOCK_SIZE };
|
||||
#else
|
||||
int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
|
||||
#endif
|
||||
@ -115,9 +115,23 @@ __device__ scalar_t reduce(Op op, PTA tensor, int plane) {
|
||||
// first the reductions each thread does separately
|
||||
scalar_t sum = static_cast<scalar_t>(0);
|
||||
for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) {
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int UNRL = 4; // load deserilize factor
|
||||
scalar_t tmp[UNRL];
|
||||
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x*UNRL) {
|
||||
#pragma unroll
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
tmp[u] = op(batch, plane, std::min((int)tensor.size(2)-1, (int)(x+u*blockDim.x)));
|
||||
#pragma unroll
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
if (x+u*blockDim.x < tensor.size(2))
|
||||
sum += tmp[u];
|
||||
}
|
||||
#else
|
||||
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) {
|
||||
sum += op(batch, plane, x);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
__shared__ scalar_t shared[C10_WARP_SIZE];
|
||||
SumReduceOp<scalar_t> reduce_op;
|
||||
@ -292,6 +306,22 @@ __global__ void batch_norm_collect_statistics_kernel(
|
||||
stat_accscalar_t var_n = 0;
|
||||
int n = 0;
|
||||
for (int batch = threadIdx.y; batch < input.size(0); batch += blockDim.y) {
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int UNRL = 4;
|
||||
stat_accscalar_t v_[UNRL];
|
||||
for (int x = threadIdx.x; x < input.size(2); x += blockDim.x*UNRL) {
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
v_[u] = input[batch][plane][min(x+u*blockDim.x, input.size(2)-1)];
|
||||
for (int u = 0; u < UNRL; u++) {
|
||||
if (x+u*blockDim.x < input.size(2)) {
|
||||
stat_accscalar_t d1 = v_[u] - avg;
|
||||
n++;
|
||||
avg += d1 / n;
|
||||
var_n += d1 * (v_[u] - avg);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int x = threadIdx.x; x < input.size(2); x += blockDim.x) {
|
||||
stat_accscalar_t v = input[batch][plane][x];
|
||||
stat_accscalar_t d1 = v - avg;
|
||||
@ -299,6 +329,7 @@ __global__ void batch_norm_collect_statistics_kernel(
|
||||
avg += d1 / n;
|
||||
var_n += d1 * (v - avg);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// first warpSum to get one value per thread to
|
||||
|
||||
@ -92,6 +92,16 @@ inline thrust::pair<int64_t, int64_t> get_index_mapping2d(
|
||||
output_offset + output_y * output_dim_x + output_x);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int64_t reflect_index(int64_t x, int64_t len) {
|
||||
const int64_t two = (len - 1) * 2;
|
||||
if (two <= 0) {
|
||||
return 0;
|
||||
}
|
||||
int64_t m = x % two;
|
||||
if (m < 0) m += two;
|
||||
return (m < len) ? m : (two - m);
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void reflection_pad1d_out_kernel(
|
||||
const scalar_t * input, scalar_t * output,
|
||||
@ -106,6 +116,28 @@ __global__ void reflection_pad1d_out_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void reflection_pad1d_flat(
|
||||
const scalar_t* __restrict__ input,
|
||||
scalar_t* __restrict__ output,
|
||||
int64_t input_w, int64_t pad_l, int64_t pad_r,
|
||||
int64_t out_w, int64_t plane_count) {
|
||||
|
||||
const int64_t bx = blockDim.x;
|
||||
const int64_t tx = threadIdx.x;
|
||||
|
||||
const int64_t total = plane_count * out_w;
|
||||
const int64_t grid_stride = static_cast<int64_t>(bx) * gridDim.x;
|
||||
int64_t linear = static_cast<int64_t>(blockIdx.x) * bx + tx;
|
||||
|
||||
for (; linear < total; linear += grid_stride) {
|
||||
const int64_t plane = linear / out_w;
|
||||
const int64_t x = linear - plane * out_w;
|
||||
const int64_t j = reflect_index(x - pad_l, input_w);
|
||||
output[plane * out_w + x] = input[plane * input_w + j];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void reflection_pad1d_backward_out_kernel(
|
||||
scalar_t * grad_input, const scalar_t * grad_output,
|
||||
@ -710,25 +742,44 @@ TORCH_IMPL_FUNC(reflection_pad1d_out_cuda)
|
||||
int64_t input_w = input_.size(dim_w);
|
||||
int64_t output_w = input_w + pad_l + pad_r;
|
||||
|
||||
dim3 block_size(output_w > 256 ? 256 : output_w);
|
||||
dim3 grid_size((int)::ceil(output_w / 256.0), nplane, nbatch);
|
||||
|
||||
Tensor input = input_.contiguous();
|
||||
|
||||
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
|
||||
kHalf, kBFloat16, input.scalar_type(), "reflection_pad1d_out_template", [&] {
|
||||
reflection_pad1d_out_kernel<<<
|
||||
grid_size,
|
||||
block_size,
|
||||
0,
|
||||
at::cuda::getCurrentCUDAStream()>>>(
|
||||
input.const_data_ptr<scalar_t>(),
|
||||
output.mutable_data_ptr<scalar_t>(),
|
||||
input_w,
|
||||
pad_l,
|
||||
pad_r);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
const int block_x = static_cast<int>(std::min<int64_t>(256, std::max<int64_t>(1, output_w)));
|
||||
const cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
||||
const int max_x = prop->maxGridSize[0];
|
||||
const int max_y = prop->maxGridSize[1];
|
||||
const int max_z = prop->maxGridSize[2];
|
||||
|
||||
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, input.scalar_type(), "reflection_pad1d_out", [&] {
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
const int64_t gx = at::ceil_div(output_w, static_cast<int64_t>(block_x));
|
||||
|
||||
const bool fits3d = (nplane <= max_y) && (nbatch <= max_z) && (gx <= max_x);
|
||||
|
||||
if (fits3d) {
|
||||
dim3 block(block_x, 1, 1);
|
||||
dim3 grid(gx, static_cast<unsigned>(nplane), static_cast<unsigned>(nbatch));
|
||||
reflection_pad1d_out_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
input.const_data_ptr<scalar_t>(),
|
||||
output.mutable_data_ptr<scalar_t>(),
|
||||
input_w, pad_l, pad_r);
|
||||
} else {
|
||||
dim3 block(block_x, 1, 1);
|
||||
const int64_t plane_count = nplane * nbatch;
|
||||
const int64_t total_blocks = at::ceil_div(plane_count * output_w, static_cast<int64_t>(block_x));
|
||||
const int grid_x = static_cast<int>(std::min<int64_t>(max_x, std::max<int64_t>(1, total_blocks)));
|
||||
dim3 grid(grid_x, 1, 1);
|
||||
|
||||
reflection_pad1d_flat<scalar_t><<<grid, block, 0, stream>>>(
|
||||
input.const_data_ptr<scalar_t>(),
|
||||
output.mutable_data_ptr<scalar_t>(),
|
||||
input_w, pad_l, pad_r, output_w, plane_count);
|
||||
}
|
||||
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(reflection_pad1d_backward_out_cuda)(const Tensor& grad_output_,
|
||||
|
||||
@ -43,6 +43,12 @@ std::tuple<Tensor&, Tensor&> kthvalue_out_impl_cuda(
|
||||
TORCH_CHECK(k >= 1 && k <= slicesize,
|
||||
"kthvalue(): selected number k out of range for dimension ", dim);
|
||||
|
||||
TORCH_CHECK(
|
||||
slicesize <= std::numeric_limits<int32_t>::max(),
|
||||
"kthvalue(): dimension ", dim, " is too large (", slicesize,
|
||||
"). The current CUDA implementation supports dimension sizes up to ",
|
||||
std::numeric_limits<int32_t>::max());
|
||||
|
||||
at::assert_no_overlap(self, values);
|
||||
|
||||
_reduction_with_indices_allocate_or_resize_output(
|
||||
@ -163,10 +169,6 @@ std::tuple<Tensor&, Tensor&> kthvalue_out_cuda(
|
||||
bool keepdim,
|
||||
Tensor& values,
|
||||
Tensor& indices) {
|
||||
// See note [Writing Nondeterministic Operations]
|
||||
// If there are duplicate elements of the kth value, the procedure for choosing which
|
||||
// of the duplicates to use for the indices output is nondeterministic.
|
||||
at::globalContext().alertNotDeterministic("kthvalue CUDA");
|
||||
auto result = [&]() {
|
||||
NoNamesGuard guard;
|
||||
// `kthvalue_out_impl_cuda` expects contiguous in input `self`.
|
||||
|
||||
@ -65,25 +65,34 @@ __global__ void gatherKthValue(
|
||||
&kValue);
|
||||
|
||||
// Find the index of the k-th highest element
|
||||
index_t kValueIndex = 0;
|
||||
bool foundKValue = false;
|
||||
__shared__ int32_t minIndexFound;
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
minIndexFound = static_cast<int32_t>(inputSliceSize);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
for (index_t i = threadIdx.x; i < inputSliceSize; i += blockDim.x) {
|
||||
bool inRange = (i < inputSliceSize);
|
||||
scalar_t v = inRange ? doLdg(&inputSliceStart[i * inputWithinSliceStride])
|
||||
: static_cast<scalar_t>(0);
|
||||
bool isKValue = inRange &&
|
||||
((v == kValue) || (at::_isnan(v) && at::_isnan(kValue)));
|
||||
if (isKValue) {
|
||||
kValueIndex = i;
|
||||
foundKValue = true;
|
||||
break;
|
||||
}
|
||||
// Early exit based on best-so-far
|
||||
if (i >= minIndexFound) {
|
||||
break;
|
||||
}
|
||||
|
||||
scalar_t v = doLdg(&inputSliceStart[i * inputWithinSliceStride]);
|
||||
bool isKValue =
|
||||
((v == kValue) || (at::_isnan(v) && at::_isnan(kValue)));
|
||||
|
||||
if (isKValue) {
|
||||
atomicMin(&minIndexFound, static_cast<int32_t>(i));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (foundKValue) {
|
||||
kthValueSliceStart[0] = kValue;
|
||||
indicesSliceStart[0] = kValueIndex;
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
indicesSliceStart[0] = static_cast<index_t>(minIndexFound);
|
||||
kthValueSliceStart[0] = kValue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -127,6 +127,29 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
// Helper function to compute output pixel range that can contribute to input pixel
|
||||
template <typename accscalar_t>
|
||||
__device__ __forceinline__ void compute_output_range(
|
||||
int input_pos,
|
||||
accscalar_t scale,
|
||||
int output_size,
|
||||
bool align_corners,
|
||||
int& min_output,
|
||||
int& max_output) {
|
||||
accscalar_t lo, hi;
|
||||
if (align_corners) {
|
||||
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
|
||||
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
|
||||
} else {
|
||||
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
|
||||
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
|
||||
}
|
||||
min_output = max(0, static_cast<int>(std::ceil(lo)));
|
||||
max_output = min(output_size - 1, static_cast<int>(std::floor(hi)));
|
||||
}
|
||||
#endif
|
||||
|
||||
// Backward (adjoint) operation 1 <- 2 (accumulates)
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
C10_LAUNCH_BOUNDS_1(1024)
|
||||
@ -141,8 +164,74 @@ __global__ void upsample_bilinear2d_backward_out_frame(
|
||||
const bool align_corners,
|
||||
scalar_t* __restrict__ idata,
|
||||
const scalar_t* __restrict__ odata) {
|
||||
const size_t o_numel = nc * width2 * height2;
|
||||
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
|
||||
const size_t i_numel = nc * width1 * height1;
|
||||
#ifdef USE_ROCM
|
||||
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
|
||||
index += blockDim.x * gridDim.x) {
|
||||
// Decode input pixel coordinates
|
||||
size_t index_temp = index;
|
||||
const int w1 = index_temp % width1;
|
||||
index_temp /= width1;
|
||||
const int h1 = index_temp % height1;
|
||||
const size_t nc_idx = index_temp / height1;
|
||||
|
||||
accscalar_t grad_sum = 0;
|
||||
|
||||
// Find range of output pixels that could interpolate from this input pixel
|
||||
int h2_min, h2_max, w2_min, w2_max;
|
||||
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
|
||||
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
|
||||
|
||||
// Iterate over potential output pixels
|
||||
for (int h2 = h2_min; h2 <= h2_max; h2++) {
|
||||
for (int w2 = w2_min; w2 <= w2_max; w2++) {
|
||||
// Compute source coordinates for this output pixel
|
||||
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
|
||||
rheight, h2, align_corners, /*cubic=*/false);
|
||||
const int h1_base = (int)h1r;
|
||||
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
|
||||
const accscalar_t h1lambda = h1r - h1_base;
|
||||
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
|
||||
|
||||
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
|
||||
rwidth, w2, align_corners, /*cubic=*/false);
|
||||
const int w1_base = (int)w1r;
|
||||
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
|
||||
const accscalar_t w1lambda = w1r - w1_base;
|
||||
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
|
||||
|
||||
// Check if our input pixel participates in this interpolation and accumulate all weights
|
||||
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
|
||||
// to the same pixel, so we need to accumulate weights from all matching positions
|
||||
accscalar_t weight = 0;
|
||||
|
||||
// Check all four interpolation positions and accumulate weights
|
||||
if (h1 == h1_base && w1 == w1_base) {
|
||||
weight += h0lambda * w0lambda; // top-left
|
||||
}
|
||||
if (h1 == h1_base && w1 == w1_base + w1p) {
|
||||
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
|
||||
}
|
||||
if (h1 == h1_base + h1p && w1 == w1_base) {
|
||||
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
|
||||
}
|
||||
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
|
||||
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
|
||||
}
|
||||
|
||||
if (weight > 0) {
|
||||
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
|
||||
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write accumulated gradient (no atomics needed)
|
||||
idata[index] = static_cast<scalar_t>(grad_sum);
|
||||
}
|
||||
#else
|
||||
const size_t o_numel = nc * width2 * height2;
|
||||
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
|
||||
index += blockDim.x * gridDim.x) {
|
||||
size_t index_temp = index;
|
||||
@ -191,6 +280,7 @@ __global__ void upsample_bilinear2d_backward_out_frame(
|
||||
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
|
||||
true);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
@ -387,7 +477,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
// threads are not covering the whole input tensor.
|
||||
grad_input.zero_();
|
||||
|
||||
const size_t num_kernels = nbatch * channels * output_height * output_width;
|
||||
const int num_threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
@ -397,6 +486,12 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
constexpr bool use_input = true;
|
||||
#else
|
||||
constexpr bool use_input = false;
|
||||
#endif
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::ScalarType::Half, at::ScalarType::BFloat16,
|
||||
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
|
||||
@ -414,6 +509,8 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
|
||||
input_width, output_width, align_corners, scales_w);
|
||||
|
||||
const size_t num_kernels = nbatch * channels * output_height * output_width;
|
||||
|
||||
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
|
||||
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
|
||||
input_height,
|
||||
@ -444,6 +541,8 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
|
||||
input_width, output_width, align_corners, scales_w);
|
||||
|
||||
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
|
||||
|
||||
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
|
||||
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
|
||||
num_threads,
|
||||
|
||||
@ -52,7 +52,7 @@ struct FusedAdagradMathFunctor {
|
||||
using opmath_t = at::opmath_type<scalar_t>;
|
||||
|
||||
C10_DEVICE __forceinline__ void operator()(
|
||||
int chunk_size,
|
||||
int64_t chunk_size,
|
||||
FusedOptimizerTensorListMetadata<3>& tl,
|
||||
const float* lr_ptr,
|
||||
const double& lr,
|
||||
@ -133,4 +133,4 @@ struct FusedAdagradMathFunctor {
|
||||
|
||||
} // namespace
|
||||
|
||||
} // namespace at::native
|
||||
} // namespace at::native
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
#include <ATen/WrapDimUtilsMulti.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/oneDNN.h>
|
||||
#include <ATen/native/xpu/Blas.h>
|
||||
#include <torch/library.h>
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
|
||||
@ -50,9 +51,13 @@ Tensor& addmm_out(
|
||||
mat1.dtype(),
|
||||
" != ",
|
||||
mat2.dtype())
|
||||
|
||||
// complex case
|
||||
TORCH_CHECK(
|
||||
!mat1.is_complex(), "Complex datatype matmul is not supported in oneDNN");
|
||||
if (self.is_complex()) {
|
||||
at::native::addmm_complex_out_xpu(self, mat1, mat2, beta, alpha, result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<int64_t> result_shape = {mat1.size(0), mat2.size(1)};
|
||||
result.resize_(result_shape);
|
||||
@ -167,8 +172,11 @@ Tensor& mm_out(const Tensor& self, const Tensor& mat2, Tensor& result) {
|
||||
return result;
|
||||
}
|
||||
|
||||
TORCH_CHECK(
|
||||
!self.is_complex(), "Complex datatype matmul is not supported in oneDNN");
|
||||
if (self.is_complex()) {
|
||||
at::native::mm_complex_out_xpu(self, mat2, result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
onednn::matmul(result, self, mat2, Tensor(), true, onednn::Attr());
|
||||
return result;
|
||||
@ -208,9 +216,12 @@ Tensor& baddbmm_out(
|
||||
input.sizes());
|
||||
|
||||
// complex case
|
||||
TORCH_CHECK(
|
||||
!batch1.is_complex(),
|
||||
"Complex datatype matmul is not supported in oneDNN");
|
||||
if (input.is_complex()) {
|
||||
at::native::baddbmm_complex_out_xpu(
|
||||
input, batch1, batch2, beta, alpha, result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// general case
|
||||
onednn::Attr attr;
|
||||
@ -257,8 +268,13 @@ Tensor& bmm_out(const Tensor& self, const Tensor& batch2, Tensor& result) {
|
||||
return result;
|
||||
}
|
||||
|
||||
TORCH_CHECK(
|
||||
!self.is_complex(), "Complex datatype matmul is not supported in oneDNN");
|
||||
// complex case
|
||||
if (self.is_complex()) {
|
||||
at::native::bmm_complex_out_xpu(self, batch2, result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
onednn::matmul(result, self, batch2, at::Tensor(), true, onednn::Attr());
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -222,6 +222,13 @@ struct nextafter_functor {
|
||||
}
|
||||
};
|
||||
|
||||
struct hypot_functor {
|
||||
template <typename T>
|
||||
inline T operator()(const T a, const T b) {
|
||||
return static_cast<T>(precise::sqrt(float(a) * a + float(b) * b));
|
||||
}
|
||||
};
|
||||
|
||||
// Complex binary functors
|
||||
struct polar_functor {
|
||||
template <typename U>
|
||||
@ -362,6 +369,7 @@ struct igammac_functor {
|
||||
REGISTER_OPMATH_BINARY_OP(NAME, half, half); \
|
||||
REGISTER_OPMATH_BINARY_OP(NAME, bfloat, bfloat)
|
||||
|
||||
REGISTER_FLOAT_BINARY_OP(hypot);
|
||||
REGISTER_FLOAT_BINARY_OP(copysign);
|
||||
REGISTER_INT2FLOAT_BINARY_OP(copysign);
|
||||
REGISTER_FLOAT_BINARY_OP(fmax);
|
||||
|
||||
16
aten/src/ATen/native/mps/kernels/LinearAlgebra.h
Normal file
16
aten/src/ATen/native/mps/kernels/LinearAlgebra.h
Normal file
@ -0,0 +1,16 @@
|
||||
#pragma onces
|
||||
#include <c10/metal/common.h>
|
||||
|
||||
template <unsigned N = c10::metal::max_ndim>
|
||||
struct OrgqrParams {
|
||||
int32_t num_batch_dims;
|
||||
|
||||
uint32_t m;
|
||||
uint32_t n;
|
||||
uint32_t k;
|
||||
|
||||
::c10::metal::array<uint32_t, N> A_strides;
|
||||
::c10::metal::array<uint32_t, N> tau_strides;
|
||||
::c10::metal::array<uint32_t, N> H_strides;
|
||||
::c10::metal::array<uint32_t, N> H_sizes;
|
||||
};
|
||||
@ -1,3 +1,4 @@
|
||||
#include <ATen/native/mps/kernels/LinearAlgebra.h>
|
||||
#include <c10/metal/utils.h>
|
||||
#include <metal_array>
|
||||
#include <metal_simdgroup>
|
||||
@ -640,6 +641,164 @@ kernel void applyPivots(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T bool_to_float(bool b) {
|
||||
return static_cast<T>(b);
|
||||
}
|
||||
|
||||
template <>
|
||||
half2 bool_to_float(bool b) {
|
||||
return half2(b ? 1 : 0, 0);
|
||||
}
|
||||
|
||||
template <>
|
||||
float2 bool_to_float(bool b) {
|
||||
return float2(b ? 1 : 0, 0);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T calc_H_irc(
|
||||
device T* A,
|
||||
uint32_t A_stride_r,
|
||||
uint32_t A_stride_c,
|
||||
constant T* tau,
|
||||
uint32_t tau_stride,
|
||||
uint32_t r,
|
||||
uint32_t c,
|
||||
uint32_t i) {
|
||||
T I_val = bool_to_float<T>(r == c);
|
||||
T tau_val = tau[i * tau_stride];
|
||||
|
||||
T A_ci = c10::metal::conj(A[c * A_stride_r + i * A_stride_c]);
|
||||
T A_ri = A[r * A_stride_r + i * A_stride_c];
|
||||
|
||||
T c_eq_i = bool_to_float<T>(c == i);
|
||||
T r_eq_i = bool_to_float<T>(r == i);
|
||||
|
||||
T A_ci_ = (c > i) ? A_ci : c_eq_i;
|
||||
T A_ri_ = (r > i) ? A_ri : r_eq_i;
|
||||
|
||||
return I_val - c10::metal::mul(tau_val, c10::metal::mul(A_ci_, A_ri_));
|
||||
}
|
||||
|
||||
// Calculate (A @ B)[r, c], the element in the r-th row and c-th column of the
|
||||
// result of matrix multiplying A and B together. A and B must be size m-by-m
|
||||
// and have the same strides. The formula for this operation, written in Python
|
||||
// syntax, is:
|
||||
// (A @ B)[r, c] = A[r, :].dot(B[:, c])
|
||||
template <typename T>
|
||||
static T calc_matmul_rc(
|
||||
device T* A,
|
||||
device T* B,
|
||||
uint32_t stride_r,
|
||||
uint32_t stride_c,
|
||||
uint32_t m,
|
||||
uint32_t r,
|
||||
uint32_t c) {
|
||||
T AB_rc = 0;
|
||||
auto A_row_offset = r * stride_r;
|
||||
auto B_col_offset = c * stride_c;
|
||||
|
||||
uint32_t A_col_offset = 0;
|
||||
uint32_t B_row_offset = 0;
|
||||
|
||||
for (uint32_t j = 0; j < m;
|
||||
j++, A_col_offset += stride_c, B_row_offset += stride_r) {
|
||||
AB_rc += c10::metal::mul(
|
||||
A[A_row_offset + A_col_offset], B[B_row_offset + B_col_offset]);
|
||||
}
|
||||
return AB_rc;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
kernel void orgqr(
|
||||
device T* A [[buffer(0)]],
|
||||
constant T* tau [[buffer(1)]],
|
||||
device T* H [[buffer(2)]],
|
||||
device T* H_prod [[buffer(3)]],
|
||||
constant OrgqrParams<>& params [[buffer(4)]],
|
||||
uint tid [[thread_position_in_grid]]) {
|
||||
constant auto& A_strides = params.A_strides;
|
||||
constant auto& tau_strides = params.tau_strides;
|
||||
constant auto& H_strides = params.H_strides;
|
||||
constant auto& H_sizes = params.H_sizes;
|
||||
|
||||
auto num_batch_dims = params.num_batch_dims;
|
||||
auto m = params.m;
|
||||
auto n = params.n;
|
||||
auto k = params.k;
|
||||
|
||||
auto m2 = m * m;
|
||||
auto batch_idx = tid / m2;
|
||||
|
||||
// Find the matrices for this thread's batch index
|
||||
uint32_t A_offset = 0;
|
||||
uint32_t tau_offset = 0;
|
||||
uint32_t H_offset = 0;
|
||||
|
||||
for (auto dim = num_batch_dims - 1; dim >= 0; dim--) {
|
||||
auto dim_size = H_sizes[dim];
|
||||
auto dim_idx = batch_idx % dim_size;
|
||||
|
||||
A_offset += dim_idx * A_strides[dim];
|
||||
tau_offset += dim_idx * tau_strides[dim];
|
||||
H_offset += dim_idx * H_strides[dim];
|
||||
|
||||
batch_idx /= dim_size;
|
||||
}
|
||||
|
||||
A += A_offset;
|
||||
tau += tau_offset;
|
||||
H += H_offset;
|
||||
H_prod += H_offset;
|
||||
|
||||
auto matrix_idx = tid % m2;
|
||||
auto r = matrix_idx / m;
|
||||
auto c = matrix_idx % m;
|
||||
auto A_stride_r = A_strides[num_batch_dims];
|
||||
auto A_stride_c = A_strides[num_batch_dims + 1];
|
||||
auto tau_stride = tau_strides[num_batch_dims];
|
||||
auto H_stride_r = H_strides[num_batch_dims];
|
||||
auto H_stride_c = H_strides[num_batch_dims + 1];
|
||||
|
||||
// Find the element of H and H_prod that this thread will calculate
|
||||
device T* H_elem_ptr = H + (r * H_stride_r + c * H_stride_c);
|
||||
device T* H_prod_elem_ptr = H_prod + (r * H_stride_r + c * H_stride_c);
|
||||
|
||||
for (uint32_t i = 0; i < k; i++) {
|
||||
// Calculate and write H_i
|
||||
|
||||
T H_irc = calc_H_irc(A, A_stride_r, A_stride_c, tau, tau_stride, r, c, i);
|
||||
|
||||
// Calculate element [r, c] of prod(H_0, ..., H_i)
|
||||
if (i == 0) {
|
||||
*H_prod_elem_ptr = H_irc;
|
||||
} else {
|
||||
*H_elem_ptr = H_irc;
|
||||
|
||||
// Need this sync because the below matmul requires all threads to finish
|
||||
// writing their entries to `H_prod` and `H`.
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
T H_prod_0_to_i_rc =
|
||||
calc_matmul_rc(H_prod, H, H_stride_r, H_stride_c, m, r, c);
|
||||
|
||||
// Need this sync because the above matmul uses the current values in
|
||||
// `H_prod`, and we don't want to overwrite those until all threads are
|
||||
// finished using them.
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
*H_prod_elem_ptr = H_prod_0_to_i_rc;
|
||||
}
|
||||
}
|
||||
|
||||
device T* A_elem_ptr = A + (r * A_stride_r + c * A_stride_c);
|
||||
|
||||
if (c < n) {
|
||||
*A_elem_ptr = *H_prod_elem_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
#define INSTANTIATE_MM_OPS(DTYPE) \
|
||||
template [[host_name("matmul_" #DTYPE)]] kernel void matmul<DTYPE>( \
|
||||
constant DTYPE * mat1Data [[buffer(0)]], \
|
||||
@ -679,3 +838,19 @@ INSTANTIATE_MM_OPS(int);
|
||||
INSTANTIATE_MM_OPS(short);
|
||||
INSTANTIATE_MM_OPS(char);
|
||||
INSTANTIATE_MM_OPS(uchar);
|
||||
|
||||
#define REGISTER_ORGQR(T) \
|
||||
template [[host_name("orgqr_" #T)]] \
|
||||
kernel void orgqr<T>( \
|
||||
device T * A [[buffer(0)]], \
|
||||
constant T * tau [[buffer(1)]], \
|
||||
device T * H [[buffer(2)]], \
|
||||
device T * H_prod [[buffer(3)]], \
|
||||
constant OrgqrParams<> & params [[buffer(4)]], \
|
||||
uint tid [[thread_position_in_grid]]);
|
||||
|
||||
REGISTER_ORGQR(float);
|
||||
REGISTER_ORGQR(half);
|
||||
REGISTER_ORGQR(bfloat);
|
||||
REGISTER_ORGQR(float2);
|
||||
REGISTER_ORGQR(half2);
|
||||
|
||||
@ -5,6 +5,21 @@
|
||||
using namespace metal;
|
||||
using namespace c10::metal;
|
||||
|
||||
struct angle_functor {
|
||||
template <typename T, enable_if_t<is_complex_v<T>, bool> = true>
|
||||
inline T operator()(const T x) {
|
||||
return T(atan2(x.y, x.x), 0);
|
||||
}
|
||||
template <typename T, enable_if_t<is_scalar_floating_point_v<T>, bool> = true>
|
||||
inline T operator()(const T x) {
|
||||
return T(isnan(x) ? x : x < 0 ? M_PI_F : 0.0);
|
||||
}
|
||||
template <typename T, enable_if_t<is_scalar_integral_v<T>, bool> = true>
|
||||
inline float operator()(const T x) {
|
||||
return x < 0 ? M_PI_F : 0.0;
|
||||
}
|
||||
};
|
||||
|
||||
// Implement exp wrapper for both real and complex types
|
||||
template <typename T, enable_if_t<is_scalar_floating_point_v<T>, bool> = true>
|
||||
inline T exp_(const T x) {
|
||||
@ -545,6 +560,7 @@ REGISTER_UNARY_OP(abs, float, float);
|
||||
REGISTER_UNARY_OP(abs, half, half);
|
||||
|
||||
#define INSTANTIATE_UNARY_KERNELS2(DTYPE0, DTYPE1) \
|
||||
REGISTER_UNARY_OP(angle, DTYPE1, DTYPE0); \
|
||||
REGISTER_UNARY_OP(erf, DTYPE1, DTYPE0); \
|
||||
REGISTER_UNARY_OP(erfc, DTYPE1, DTYPE0); \
|
||||
REGISTER_UNARY_OP(erfinv, DTYPE1, DTYPE0); \
|
||||
@ -583,6 +599,7 @@ INSTANTIATE_UNARY_KERNELS2(float, int);
|
||||
INSTANTIATE_UNARY_KERNELS2(float, long);
|
||||
|
||||
#define INSTANTIATE_UNARY_KERNELS_VEC2(DTYPE) \
|
||||
REGISTER_UNARY_OP(angle, DTYPE##2, DTYPE##2); \
|
||||
REGISTER_UNARY_OP(neg, DTYPE##2, DTYPE##2); \
|
||||
REGISTER_UNARY_OP(exp, DTYPE##2, DTYPE##2); \
|
||||
REGISTER_UNARY_OP(expm1, DTYPE##2, DTYPE##2); \
|
||||
|
||||
@ -92,13 +92,8 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
|
||||
}
|
||||
|
||||
// upcasting to float32 if needed to improve precision when multiplying by the scale factor
|
||||
if ([maskedMM dataType] != MPSDataTypeFloat32) {
|
||||
maskedMM = [mpsGraph castTensor:maskedMM toType:MPSDataTypeFloat32 name:nil];
|
||||
}
|
||||
maskedMM = castMPSTensor(mpsGraph, maskedMM, MPSDataTypeFloat32);
|
||||
maskedMM = [mpsGraph multiplicationWithPrimaryTensor:maskedMM secondaryTensor:scaleTensor name:nil];
|
||||
if ([maskedMM dataType] != qTensor.dataType) {
|
||||
maskedMM = [mpsGraph castTensor:maskedMM toType:qTensor.dataType name:nil];
|
||||
}
|
||||
|
||||
if (is_causal) {
|
||||
auto causalMask = [mpsGraph constantWithScalar:1.0f
|
||||
@ -112,7 +107,9 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
|
||||
name:nil];
|
||||
} else if (attn_mask) {
|
||||
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
|
||||
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM secondaryTensor:graph->maskTensor name:nil];
|
||||
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM
|
||||
secondaryTensor:castMPSTensor(mpsGraph, graph->maskTensor, maskedMM.dataType)
|
||||
name:nil];
|
||||
}
|
||||
|
||||
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
|
||||
@ -133,8 +130,8 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
|
||||
graph->qTensor = qTensor;
|
||||
graph->kTensor = kTensor;
|
||||
graph->vTensor = vTensor;
|
||||
graph->outputTensor = output;
|
||||
graph->attnTensor = sm;
|
||||
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
|
||||
graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
|
||||
});
|
||||
auto qPlaceholder = Placeholder(cachedGraph->qTensor, query);
|
||||
auto kPlaceholder = Placeholder(cachedGraph->kTensor, key);
|
||||
|
||||
@ -202,6 +202,10 @@ static void igammac_mps_kernel(TensorIteratorBase& iter) {
|
||||
lib.exec_binary_kernel(iter, "igammac");
|
||||
}
|
||||
|
||||
static void hypot_mps_kernel(TensorIteratorBase& iter) {
|
||||
lib.exec_binary_kernel(iter, "hypot");
|
||||
}
|
||||
|
||||
REGISTER_DISPATCH(fmax_stub, &fmax_mps_kernel)
|
||||
REGISTER_DISPATCH(fmin_stub, &fmin_mps_kernel)
|
||||
REGISTER_DISPATCH(copysign_stub, ©sign_mps_kernel)
|
||||
@ -229,4 +233,5 @@ REGISTER_DISPATCH(fmod_stub, &fmod_mps_kernel)
|
||||
REGISTER_DISPATCH(remainder_stub, &remainder_mps_kernel)
|
||||
REGISTER_DISPATCH(igamma_stub, &igamma_mps_kernel)
|
||||
REGISTER_DISPATCH(igammac_stub, &igammac_mps_kernel)
|
||||
REGISTER_DISPATCH(hypot_stub, &hypot_mps_kernel)
|
||||
} // namespace at::native
|
||||
|
||||
@ -16,7 +16,6 @@
|
||||
#include <ATen/ops/eq_native.h>
|
||||
#include <ATen/ops/ge_native.h>
|
||||
#include <ATen/ops/gt_native.h>
|
||||
#include <ATen/ops/hypot_native.h>
|
||||
#include <ATen/ops/le_native.h>
|
||||
#include <ATen/ops/logaddexp2_native.h>
|
||||
#include <ATen/ops/logaddexp_native.h>
|
||||
@ -278,22 +277,6 @@ TORCH_IMPL_FUNC(pow_Scalar_out_mps)(const Scalar& base, const Tensor& exp, const
|
||||
}
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(hypot_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
mps::BinaryOpBlock hypot_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
|
||||
MPSGraph* mpsGraph = cachedGraph->graph();
|
||||
MPSGraphTensor* twoTensor = [mpsGraph constantWithScalar:2.0 shape:@[ @1 ] dataType:primaryCastTensor.dataType];
|
||||
MPSGraphTensor* sumTensor = [mpsGraph additionWithPrimaryTensor:[mpsGraph powerWithPrimaryTensor:primaryCastTensor
|
||||
secondaryTensor:twoTensor
|
||||
name:nil]
|
||||
secondaryTensor:[mpsGraph powerWithPrimaryTensor:secondaryCastTensor
|
||||
secondaryTensor:twoTensor
|
||||
name:nil]
|
||||
name:nil];
|
||||
return [mpsGraph squareRootWithTensor:sumTensor name:nil];
|
||||
};
|
||||
mps::binaryOpTensor(self, other, output, "hypot_out_mps", hypot_op_block);
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(logaddexp_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
mps::BinaryOpBlock logaddexp_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
|
||||
MPSGraph* mpsGraph = cachedGraph->graph();
|
||||
|
||||
@ -8,6 +8,9 @@
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <ATen/native/mps/MPSGraphSequoiaOps.h>
|
||||
#include <ATen/native/mps/OperationUtils.h>
|
||||
#include <ATen/native/mps/kernels/LinearAlgebra.h>
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -28,6 +31,7 @@
|
||||
#include <ATen/ops/linalg_solve_triangular_native.h>
|
||||
#include <ATen/ops/lu_unpack_native.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/orgqr_native.h>
|
||||
#include <ATen/ops/slice.h>
|
||||
#include <ATen/ops/stack.h>
|
||||
#include <ATen/ops/triangular_solve_native.h>
|
||||
@ -338,6 +342,8 @@ static void linalg_lu_factor_ex_out_mps_impl(const Tensor& A,
|
||||
". See https://developer.apple.com/documentation/metalperformanceshaders/mpsmatrixdecompositionstatus for details.");
|
||||
}
|
||||
}
|
||||
|
||||
map_mps_decomposition_error_code_to_blas(info);
|
||||
}
|
||||
|
||||
static void linalg_solve_out_mps_impl(const Tensor& A,
|
||||
@ -1233,6 +1239,69 @@ static void cholesky_stub_impl(const Tensor& out, const Tensor& info, bool upper
|
||||
}
|
||||
}
|
||||
|
||||
static Tensor& orgqr_stub_impl(Tensor& self, const Tensor& tau) {
|
||||
if (self.numel() == 0) {
|
||||
return self;
|
||||
}
|
||||
|
||||
auto m = self.size(-2);
|
||||
auto n = self.size(-1);
|
||||
auto k = tau.size(-1);
|
||||
|
||||
if (tau.numel() == 0) {
|
||||
auto I = eye(m, self.scalar_type(), std::nullopt, self.device());
|
||||
return self.copy_(I.slice(-1, 0, n));
|
||||
}
|
||||
|
||||
auto num_batch_dims = self.dim() - 2;
|
||||
auto batch_sizes = self.sizes().slice(0, num_batch_dims);
|
||||
|
||||
std::vector<int64_t> H_sizes(num_batch_dims + 2);
|
||||
for (auto dim : c10::irange(num_batch_dims)) {
|
||||
H_sizes[dim] = self.size(dim);
|
||||
}
|
||||
H_sizes[num_batch_dims] = m;
|
||||
H_sizes[num_batch_dims + 1] = m;
|
||||
|
||||
auto H = at::empty(H_sizes, self.options().memory_format(MemoryFormat::Contiguous));
|
||||
auto H_prod = at::empty_like(H);
|
||||
|
||||
OrgqrParams params;
|
||||
|
||||
params.num_batch_dims = num_batch_dims;
|
||||
params.m = m;
|
||||
params.n = n;
|
||||
params.k = k;
|
||||
|
||||
for (const auto dim : c10::irange(self.dim())) {
|
||||
params.A_strides[dim] = self.stride(dim);
|
||||
|
||||
if (dim < tau.dim()) {
|
||||
params.tau_strides[dim] = tau.stride(dim);
|
||||
}
|
||||
|
||||
params.H_strides[dim] = H.stride(dim);
|
||||
params.H_sizes[dim] = H.size(dim);
|
||||
}
|
||||
|
||||
auto num_threads = H.numel();
|
||||
MPSStream* stream = getCurrentMPSStream();
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
id<MTLComputeCommandEncoder> compute_encoder = stream->commandEncoder();
|
||||
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("orgqr_{}", scalarToMetalTypeString(self)));
|
||||
getMPSProfiler().beginProfileKernel(pipeline_state, "orgqr", {self, tau});
|
||||
[compute_encoder setComputePipelineState:pipeline_state];
|
||||
mtl_setArgs(compute_encoder, self, tau, H, H_prod, params);
|
||||
mtl_dispatch1DJob(compute_encoder, pipeline_state, num_threads);
|
||||
getMPSProfiler().endProfileKernel(pipeline_state);
|
||||
}
|
||||
});
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
} // namespace mps
|
||||
|
||||
Tensor addr_mps(const Tensor& self, const Tensor& vec1, const Tensor& vec2, const Scalar& beta, const Scalar& alpha) {
|
||||
@ -1448,20 +1517,6 @@ TORCH_IMPL_FUNC(_linalg_solve_ex_out_mps)
|
||||
mps::linalg_solve_out_mps_impl(A, B, left, check_errors, result, LU, pivots, info);
|
||||
}
|
||||
|
||||
std::tuple<Tensor&, Tensor&> linalg_lu_factor_out_mps(const Tensor& A, bool pivot, Tensor& LU, Tensor& pivots) {
|
||||
Tensor info = at::empty({}, A.options().dtype(kInt));
|
||||
mps::linalg_lu_factor_ex_out_mps_impl(A, pivot, LU, pivots, info, false);
|
||||
return std::tie(LU, pivots);
|
||||
}
|
||||
|
||||
std::tuple<Tensor, Tensor> linalg_lu_factor_mps(const Tensor& A, bool pivot) {
|
||||
Tensor LU = at::empty({0}, A.options());
|
||||
Tensor pivots = at::empty({0}, A.options().dtype(kInt));
|
||||
Tensor info = at::empty({}, A.options().dtype(kInt));
|
||||
mps::linalg_lu_factor_ex_out_mps_impl(A, pivot, LU, pivots, info, false);
|
||||
return std::make_tuple(std::move(LU), std::move(pivots));
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(lu_unpack_out_mps)
|
||||
(const Tensor& LU_data,
|
||||
const Tensor& LU_pivots,
|
||||
@ -1483,4 +1538,6 @@ TORCH_IMPL_FUNC(linalg_inv_ex_out_mps)(const Tensor& A, bool check_errors, const
|
||||
}
|
||||
|
||||
REGISTER_DISPATCH(cholesky_stub, mps::cholesky_stub_impl)
|
||||
REGISTER_DISPATCH(orgqr_stub, mps::orgqr_stub_impl);
|
||||
|
||||
} // namespace at::native
|
||||
|
||||
@ -34,6 +34,7 @@ REGISTER_UNARY_TI_DISPATCH(sinc);
|
||||
REGISTER_UNARY_TI_DISPATCH(sinh);
|
||||
REGISTER_UNARY_TI_DISPATCH(cosh);
|
||||
REGISTER_UNARY_TI_DISPATCH(tanh);
|
||||
REGISTER_UNARY_TI_DISPATCH(angle);
|
||||
REGISTER_UNARY_TI_DISPATCH(abs);
|
||||
REGISTER_UNARY_TI_DISPATCH(sin);
|
||||
REGISTER_UNARY_TI_DISPATCH(cos);
|
||||
|
||||
@ -12,7 +12,6 @@
|
||||
#include <ATen/ops/_copy_from_and_resize.h>
|
||||
#include <ATen/ops/acos_native.h>
|
||||
#include <ATen/ops/acosh_native.h>
|
||||
#include <ATen/ops/angle_native.h>
|
||||
#include <ATen/ops/asin_native.h>
|
||||
#include <ATen/ops/asinh_native.h>
|
||||
#include <ATen/ops/atan_native.h>
|
||||
@ -204,23 +203,6 @@ Tensor& logical_not_out_mps(const Tensor& self, Tensor& output) {
|
||||
return output;
|
||||
}
|
||||
|
||||
Tensor& angle_out_mps(const Tensor& self, Tensor& output) {
|
||||
mps::unary_op(self, output, "angle_out_mps", ^MPSGraphTensor*(MPSGraph* mpsGraph, MPSGraphTensor* inputTensor) {
|
||||
auto realPart = [mpsGraph realPartOfTensor:inputTensor name:nil];
|
||||
auto imagPart = [mpsGraph imaginaryPartOfTensor:inputTensor name:nil];
|
||||
return [mpsGraph atan2WithPrimaryTensor:imagPart secondaryTensor:realPart name:nil];
|
||||
});
|
||||
return output;
|
||||
}
|
||||
|
||||
Tensor angle_mps(const Tensor& self) {
|
||||
const auto float_type = c10::isIntegralType(self.scalar_type(), /*includeBool=*/true)
|
||||
? c10::typeMetaToScalarType(c10::get_default_dtype())
|
||||
: c10::toRealValueType(self.scalar_type());
|
||||
Tensor result = at::empty({0}, self.options().dtype(float_type));
|
||||
return angle_out_mps(self, result);
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(frac_out_mps)(const Tensor& self, const Tensor& output) {
|
||||
TORCH_CHECK(isFloatingType(self.scalar_type()), "frac_out_mps is only implemented for floating types");
|
||||
mps::unary_op(self, output, "frac_out_mps", ^MPSGraphTensor*(MPSGraph* mpsGraph, MPSGraphTensor* inputTensor) {
|
||||
|
||||
@ -403,16 +403,14 @@
|
||||
device_check: NoCheck # TensorIterator
|
||||
variants: function, method
|
||||
dispatch:
|
||||
CPU, CUDA: angle
|
||||
MPS: angle_mps
|
||||
CPU, CUDA, MPS: angle
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: angle_sparse_csr
|
||||
tags: pointwise
|
||||
|
||||
- func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
||||
device_check: NoCheck # TensorIterator
|
||||
dispatch:
|
||||
CPU, CUDA: angle_out
|
||||
MPS: angle_out_mps
|
||||
CPU, CUDA, MPS: angle_out
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: angle_sparse_csr_out
|
||||
tags: pointwise
|
||||
|
||||
@ -10042,8 +10040,7 @@
|
||||
structured: True
|
||||
structured_inherits: TensorIteratorBase
|
||||
dispatch:
|
||||
CPU, CUDA: hypot_out
|
||||
MPS: hypot_out_mps
|
||||
CPU, CUDA, MPS: hypot_out
|
||||
tags: pointwise
|
||||
|
||||
- func: hypot(Tensor self, Tensor other) -> Tensor
|
||||
@ -14157,16 +14154,10 @@
|
||||
- func: linalg_lu_factor(Tensor A, *, bool pivot=True) -> (Tensor LU, Tensor pivots)
|
||||
python_module: linalg
|
||||
variants: function
|
||||
dispatch:
|
||||
CompositeImplicitAutograd: linalg_lu_factor
|
||||
MPS: linalg_lu_factor_mps
|
||||
|
||||
- func: linalg_lu_factor.out(Tensor A, *, bool pivot=True, Tensor(a!) LU, Tensor(b!) pivots) -> (Tensor(a!) LU, Tensor(b!) pivots)
|
||||
python_module: linalg
|
||||
variants: function
|
||||
dispatch:
|
||||
CompositeImplicitAutograd: linalg_lu_factor_out
|
||||
MPS: linalg_lu_factor_out_mps
|
||||
|
||||
- func: linalg_lu_factor_ex(Tensor A, *, bool pivot=True, bool check_errors=False) -> (Tensor LU, Tensor pivots, Tensor info)
|
||||
python_module: linalg
|
||||
@ -14368,12 +14359,12 @@
|
||||
python_module: linalg
|
||||
variants: function
|
||||
dispatch:
|
||||
CPU, CUDA: linalg_householder_product
|
||||
CPU, CUDA, MPS: linalg_householder_product
|
||||
|
||||
- func: linalg_householder_product.out(Tensor input, Tensor tau, *, Tensor(a!) out) -> Tensor(a!)
|
||||
python_module: linalg
|
||||
dispatch:
|
||||
CPU, CUDA: linalg_householder_product_out
|
||||
CPU, CUDA, MPS: linalg_householder_product_out
|
||||
|
||||
- func: linalg_inv_ex(Tensor A, *, bool check_errors=False) -> (Tensor inverse, Tensor info)
|
||||
python_module: linalg
|
||||
|
||||
@ -40,15 +40,7 @@
|
||||
#include <thrust/iterator/discard_iterator.h>
|
||||
|
||||
|
||||
#if defined(__CUDACC__) && (defined(CUSPARSE_VERSION) || (defined(USE_ROCM) && ROCM_VERSION >= 60300))
|
||||
#define IS_CUSPARSE11_AVAILABLE() 1
|
||||
#else
|
||||
#define IS_CUSPARSE11_AVAILABLE() 0
|
||||
#endif
|
||||
|
||||
#if IS_CUSPARSE11_AVAILABLE()
|
||||
#include <library_types.h>
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
@ -103,17 +95,9 @@ struct csrMatrixRef {
|
||||
int nnz_{0};
|
||||
std::vector<int> size_{};
|
||||
|
||||
#if IS_CUSPARSE11_AVAILABLE()
|
||||
cusparseSpMatDescr_t description_{0};
|
||||
#else
|
||||
cusparseMatDescr_t description_{0};
|
||||
#endif
|
||||
cusparseSpMatDescr_t description_{0};
|
||||
|
||||
csrMatrixRef() {
|
||||
#if !IS_CUSPARSE11_AVAILABLE()
|
||||
create_general_description_(description_);
|
||||
#endif
|
||||
}
|
||||
csrMatrixRef() = default;
|
||||
|
||||
csrMatrixRef(
|
||||
int* csr_indices,
|
||||
@ -126,7 +110,6 @@ struct csrMatrixRef {
|
||||
csr_values_{csr_values},
|
||||
nnz_{nnz},
|
||||
size_{size} {
|
||||
#if IS_CUSPARSE11_AVAILABLE()
|
||||
cudaDataType cuda_data_type = at::cuda::getCudaDataType<scalar_t>();
|
||||
TORCH_CUDASPARSE_CHECK(cusparseCreateCsr(
|
||||
&description_,
|
||||
@ -140,17 +123,10 @@ struct csrMatrixRef {
|
||||
CUSPARSE_INDEX_32I,
|
||||
CUSPARSE_INDEX_BASE_ZERO,
|
||||
cuda_data_type));
|
||||
#else
|
||||
create_general_description_(description_);
|
||||
#endif
|
||||
}
|
||||
|
||||
~csrMatrixRef() {
|
||||
#if IS_CUSPARSE11_AVAILABLE()
|
||||
cusparseDestroySpMat(description_);
|
||||
#else
|
||||
cusparseDestroyMatDescr(description_);
|
||||
#endif
|
||||
cusparseDestroySpMat(description_);
|
||||
}
|
||||
|
||||
int size(int index) const {
|
||||
@ -196,8 +172,6 @@ struct csrOutput {
|
||||
}
|
||||
};
|
||||
|
||||
#if IS_CUSPARSE11_AVAILABLE()
|
||||
|
||||
// RAII guard helps to support cuSparse 11 API for `A @ B` operation
|
||||
// This generic template exists because with cuSparse the `scalar_t` type could be a double or float
|
||||
template <class scalar_t>
|
||||
@ -396,284 +370,6 @@ template struct CusparseMatrixMultiplyOp<float>;
|
||||
|
||||
template struct CusparseMatrixMultiplyOp<double>;
|
||||
|
||||
#else // if not IS_CUSPARSE11_AVAILABLE()
|
||||
|
||||
using DcsrMatrixRef = csrMatrixRef<double>;
|
||||
using ScsrMatrixRef = csrMatrixRef<float>;
|
||||
|
||||
// RAII guard helps to support cuSparse 10 API for `A @ B` operation
|
||||
// This generic template exists because with cuSparse the `scalar_t` type could be a double or float
|
||||
template <class scalar_t>
|
||||
struct CusparseMatrixMultiplyOp {
|
||||
csrOutput operator()(
|
||||
const csrMatrixRef<scalar_t>& lhs,
|
||||
const csrMatrixRef<scalar_t>& rhs,
|
||||
Tensor &output_values,
|
||||
Tensor &output_indices)
|
||||
{
|
||||
static_assert(false&&sizeof(scalar_t), "cusparse csr sparse-sparse MM only supports data type of float and double.");
|
||||
}
|
||||
};
|
||||
|
||||
// Specializacion for `A @ B` operation for double values with cuSparse
|
||||
template<> struct CusparseMatrixMultiplyOp<double> {
|
||||
csrgemm2Info_t gemm2Info_;
|
||||
|
||||
CusparseMatrixMultiplyOp() {
|
||||
TORCH_CUDASPARSE_CHECK(cusparseCreateCsrgemm2Info(&gemm2Info_));
|
||||
}
|
||||
~CusparseMatrixMultiplyOp() {
|
||||
cusparseDestroyCsrgemm2Info(gemm2Info_);
|
||||
}
|
||||
|
||||
csrOutput operator ()(
|
||||
const DcsrMatrixRef& lhs,
|
||||
const DcsrMatrixRef& rhs,
|
||||
Tensor &output_values,
|
||||
Tensor &output_indices) {
|
||||
double alpha = 1.0;
|
||||
DcsrMatrixRef empty;
|
||||
return Dgemm2(lhs, rhs, empty, &alpha, nullptr, output_values, output_indices);
|
||||
}
|
||||
|
||||
csrOutput Dgemm2(
|
||||
const DcsrMatrixRef& A,
|
||||
const DcsrMatrixRef& B,
|
||||
const DcsrMatrixRef& C,
|
||||
const double* alpha,
|
||||
const double* beta,
|
||||
Tensor &output_values,
|
||||
Tensor &output_indices) {
|
||||
void* buffer_{nullptr};
|
||||
cusparseHandle_t cusparseHandle_ = at::cuda::getCurrentCUDASparseHandle();
|
||||
TORCH_CUDASPARSE_CHECK(cusparseSetPointerMode(cusparseHandle_, CUSPARSE_POINTER_MODE_HOST));
|
||||
|
||||
csrOutput out({A.size(0), B.size(1)});
|
||||
int innerSize = confirm_mult_size(A.size_, B.size_);
|
||||
out.csr_pointers_ = at::empty({out.size(0) + 1}, output_indices.options().dtype(kInt));
|
||||
|
||||
// Compute needed buffer size
|
||||
size_t new_bubber_sz;
|
||||
TORCH_CUDASPARSE_CHECK(cusparseDcsrgemm2_bufferSizeExt(
|
||||
cusparseHandle_,
|
||||
out.size(0),
|
||||
out.size(1),
|
||||
innerSize,
|
||||
alpha,
|
||||
A.description_,
|
||||
A.nnz_,
|
||||
A.csr_pointers_,
|
||||
A.csr_indices_,
|
||||
B.description_,
|
||||
B.nnz_,
|
||||
B.csr_pointers_,
|
||||
B.csr_indices_,
|
||||
beta,
|
||||
C.description_,
|
||||
C.nnz_,
|
||||
C.csr_pointers_,
|
||||
C.csr_indices_,
|
||||
gemm2Info_,
|
||||
&new_bubber_sz));
|
||||
|
||||
// (Re)allocate buffer if needed
|
||||
auto& allocator = *::c10::cuda::CUDACachingAllocator::get();
|
||||
at::DataPtr data_ptr = allocator.allocate(new_bubber_sz);
|
||||
buffer_ = data_ptr.get();
|
||||
|
||||
// Find the resulting non-zero pattern.
|
||||
TORCH_CUDASPARSE_CHECK(cusparseXcsrgemm2Nnz(
|
||||
cusparseHandle_,
|
||||
out.size(0),
|
||||
out.size(1),
|
||||
innerSize,
|
||||
A.description_,
|
||||
A.nnz_,
|
||||
A.csr_pointers_,
|
||||
A.csr_indices_,
|
||||
B.description_,
|
||||
B.nnz_,
|
||||
B.csr_pointers_,
|
||||
B.csr_indices_,
|
||||
C.description_,
|
||||
C.nnz_,
|
||||
C.csr_pointers_,
|
||||
C.csr_indices_,
|
||||
out.description_,
|
||||
out.csr_pointers_.data_ptr<int>(),
|
||||
&out.nnz_,
|
||||
gemm2Info_,
|
||||
buffer_));
|
||||
|
||||
out.csr_indices_ = at::empty({out.nnz_}, output_indices.options().dtype(kInt));
|
||||
out.csr_values_ = at::empty({out.nnz_}, output_values.options());
|
||||
|
||||
// Perform the gemm2 operation for doubles
|
||||
// out = alpha ∗ A ∗ B + beta ∗ C
|
||||
TORCH_CUDASPARSE_CHECK(cusparseDcsrgemm2(
|
||||
cusparseHandle_,
|
||||
out.size(0),
|
||||
out.size(1),
|
||||
innerSize,
|
||||
alpha,
|
||||
A.description_,
|
||||
A.nnz_,
|
||||
A.csr_values_,
|
||||
A.csr_pointers_,
|
||||
A.csr_indices_,
|
||||
B.description_,
|
||||
B.nnz_,
|
||||
B.csr_values_,
|
||||
B.csr_pointers_,
|
||||
B.csr_indices_,
|
||||
beta,
|
||||
C.description_,
|
||||
C.nnz_,
|
||||
C.csr_values_,
|
||||
C.csr_pointers_,
|
||||
C.csr_indices_,
|
||||
out.description_,
|
||||
out.csr_values_.data_ptr<double>(),
|
||||
out.csr_pointers_.data_ptr<int>(),
|
||||
out.csr_indices_.data_ptr<int>(),
|
||||
gemm2Info_,
|
||||
buffer_));
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// Specializacion for `A @ B` operation for float values with cuSparse
|
||||
template<> struct CusparseMatrixMultiplyOp<float> {
|
||||
csrgemm2Info_t gemm2Info_;
|
||||
|
||||
CusparseMatrixMultiplyOp() {
|
||||
TORCH_CUDASPARSE_CHECK(cusparseCreateCsrgemm2Info(&gemm2Info_));
|
||||
|
||||
}
|
||||
~CusparseMatrixMultiplyOp() {
|
||||
cusparseDestroyCsrgemm2Info(gemm2Info_);
|
||||
}
|
||||
csrOutput operator()(
|
||||
const ScsrMatrixRef& lhs,
|
||||
const ScsrMatrixRef& rhs,
|
||||
Tensor &output_values,
|
||||
Tensor &output_indices) {
|
||||
float alpha = 1.0;
|
||||
ScsrMatrixRef empty;
|
||||
return Sgemm2(lhs, rhs, empty, &alpha, nullptr, output_values, output_indices);
|
||||
}
|
||||
|
||||
csrOutput Sgemm2(
|
||||
const ScsrMatrixRef& A,
|
||||
const ScsrMatrixRef& B,
|
||||
const ScsrMatrixRef& C,
|
||||
const float* alpha,
|
||||
const float* beta,
|
||||
Tensor &output_values,
|
||||
Tensor &output_indices) {
|
||||
void* buffer_{nullptr};
|
||||
cusparseHandle_t cusparseHandle_ = at::cuda::getCurrentCUDASparseHandle();
|
||||
TORCH_CUDASPARSE_CHECK(cusparseSetPointerMode(cusparseHandle_, CUSPARSE_POINTER_MODE_HOST));
|
||||
|
||||
csrOutput out({A.size(0), B.size(1)});
|
||||
|
||||
int innerSize = confirm_mult_size(A.size_, B.size_);
|
||||
|
||||
out.csr_pointers_ = at::empty({out.size(0) + 1}, output_indices.options().dtype(kInt));
|
||||
|
||||
// Compute needed buffer size
|
||||
size_t new_bubber_sz;
|
||||
TORCH_CUDASPARSE_CHECK(cusparseScsrgemm2_bufferSizeExt(
|
||||
cusparseHandle_,
|
||||
out.size(0),
|
||||
out.size(1),
|
||||
innerSize,
|
||||
alpha,
|
||||
A.description_,
|
||||
A.nnz_,
|
||||
A.csr_pointers_,
|
||||
A.csr_indices_,
|
||||
B.description_,
|
||||
B.nnz_,
|
||||
B.csr_pointers_,
|
||||
B.csr_indices_,
|
||||
beta,
|
||||
C.description_,
|
||||
C.nnz_,
|
||||
C.csr_pointers_,
|
||||
C.csr_indices_,
|
||||
gemm2Info_,
|
||||
&new_bubber_sz));
|
||||
|
||||
auto& allocator = *::c10::cuda::CUDACachingAllocator::get();
|
||||
at::DataPtr data_ptr = allocator.allocate(new_bubber_sz);
|
||||
buffer_ = data_ptr.get();
|
||||
|
||||
// Find the resulting non-zero pattern.
|
||||
TORCH_CUDASPARSE_CHECK(cusparseXcsrgemm2Nnz(
|
||||
cusparseHandle_,
|
||||
out.size(0),
|
||||
out.size(1),
|
||||
innerSize,
|
||||
A.description_,
|
||||
A.nnz_,
|
||||
A.csr_pointers_,
|
||||
A.csr_indices_,
|
||||
B.description_,
|
||||
B.nnz_,
|
||||
B.csr_pointers_,
|
||||
B.csr_indices_,
|
||||
C.description_,
|
||||
C.nnz_,
|
||||
C.csr_pointers_,
|
||||
C.csr_indices_,
|
||||
out.description_,
|
||||
out.csr_pointers_.data_ptr<int>(),
|
||||
&out.nnz_,
|
||||
gemm2Info_,
|
||||
buffer_));
|
||||
|
||||
out.csr_indices_ = at::empty({out.nnz_}, output_indices.options().dtype(kInt));
|
||||
out.csr_values_ = at::empty({out.nnz_}, output_values.options());
|
||||
|
||||
// Perform the gemm2 operation for doubles
|
||||
// out = alpha ∗ A ∗ B + beta ∗ C
|
||||
TORCH_CUDASPARSE_CHECK(cusparseScsrgemm2(
|
||||
cusparseHandle_,
|
||||
out.size(0),
|
||||
out.size(1),
|
||||
innerSize,
|
||||
alpha,
|
||||
A.description_,
|
||||
A.nnz_,
|
||||
A.csr_values_,
|
||||
A.csr_pointers_,
|
||||
A.csr_indices_,
|
||||
B.description_,
|
||||
B.nnz_,
|
||||
B.csr_values_,
|
||||
B.csr_pointers_,
|
||||
B.csr_indices_,
|
||||
beta,
|
||||
C.description_,
|
||||
C.nnz_,
|
||||
C.csr_values_,
|
||||
C.csr_pointers_,
|
||||
C.csr_indices_,
|
||||
out.description_,
|
||||
out.csr_values_.data_ptr<float>(),
|
||||
out.csr_pointers_.data_ptr<int>(),
|
||||
out.csr_indices_.data_ptr<int>(),
|
||||
gemm2Info_,
|
||||
buffer_));
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif // IS_CUSPARSE11_AVAILABLE()
|
||||
|
||||
template <typename scalar_t>
|
||||
void sparse_sparse_matmul_cuda_kernel(
|
||||
Tensor& result,
|
||||
@ -815,19 +511,15 @@ Tensor sparse_sparse_matmul_cuda(const Tensor& mat1_, const Tensor& mat2_) {
|
||||
auto output = at::native::empty_like(mat1_);
|
||||
output.sparse_resize_and_clear_({mat1_.size(0), mat2_.size(1)}, mat1_.sparse_dim(), 0);
|
||||
|
||||
#if IS_CUSPARSE11_AVAILABLE() && !defined(USE_ROCM)
|
||||
#if !defined(USE_ROCM)
|
||||
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, mat1_.scalar_type(), "sparse_matmul", [&] {
|
||||
sparse_sparse_matmul_cuda_kernel<scalar_t>(output, mat1_.coalesce(), mat2_.coalesce());
|
||||
});
|
||||
#elif IS_CUSPARSE11_AVAILABLE() && defined(USE_ROCM)
|
||||
#else
|
||||
// ROCm does not support half and bfloat16 types for sparse_matmul
|
||||
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(mat1_.scalar_type(), "sparse_matmul", [&] {
|
||||
sparse_sparse_matmul_cuda_kernel<scalar_t>(output, mat1_.coalesce(), mat2_.coalesce());
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_FLOATING_TYPES(mat1_.scalar_type(), "sparse_matmul", [&] {
|
||||
sparse_sparse_matmul_cuda_kernel<scalar_t>(output, mat1_.coalesce(), mat2_.coalesce());
|
||||
});
|
||||
#endif
|
||||
return output;
|
||||
}
|
||||
|
||||
@ -33,7 +33,7 @@ using namespace mps;
|
||||
#ifndef PYTORCH_JIT_COMPILE_SHADERS
|
||||
static auto& lib = MetalShaderLibrary::getBundledLibrary();
|
||||
#else
|
||||
#include <ATen/native/mps/Mul_metallib.h>
|
||||
#include <ATen/native/mps/SparseTensorMath_metallib.h>
|
||||
#endif
|
||||
|
||||
static Tensor& s_addmm_out_sparse_dense_mps(
|
||||
@ -369,12 +369,7 @@ static SparseTensor& mul_out_dense_sparse_mps(
|
||||
}
|
||||
|
||||
if (scalar_like) {
|
||||
auto scalar = dense;
|
||||
if (dense.numel() == 1 && dense.dim() > 0) {
|
||||
scalar = dense.view({});
|
||||
}
|
||||
scalar = scalar.to(values.options());
|
||||
auto out_vals = values.mul(scalar);
|
||||
auto out_vals = values.mul(dense.to(values.options()));
|
||||
if (out.scalar_type() != commonDtype) {
|
||||
out_vals = out_vals.to(out.scalar_type());
|
||||
}
|
||||
@ -508,14 +503,14 @@ SparseTensor& mul_out_sparse_mps(const Tensor& t_, const Tensor& src_, SparseTen
|
||||
const auto device = r_.device();
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
auto lhs_indices = lhs._indices();
|
||||
auto rhs_indices = rhs._indices();
|
||||
auto lhs_values = lhs._values().to(commonDtype);
|
||||
auto rhs_values = rhs._values().to(commonDtype);
|
||||
auto lhs_indices = lhs._indices().contiguous();
|
||||
auto rhs_indices = rhs._indices().contiguous();
|
||||
auto lhs_values = lhs._values().to(commonDtype).contiguous();
|
||||
auto rhs_values = rhs._values().to(commonDtype).contiguous();
|
||||
|
||||
// Flatten sparse indices to keys
|
||||
auto lhs_keys = flatten_indices(lhs_indices, lhs.sizes());
|
||||
auto rhs_keys = flatten_indices(rhs_indices, rhs.sizes());
|
||||
auto lhs_keys = flatten_indices(lhs_indices, lhs.sizes().slice(0, ndim_i));
|
||||
auto rhs_keys = flatten_indices(rhs_indices, rhs.sizes().slice(0, ndim_i));
|
||||
|
||||
// Intersect sorted keys (search the shorter in the longer)
|
||||
const bool A_is_lhs = (lhs_nnz <= rhs_nnz);
|
||||
@ -546,35 +541,54 @@ SparseTensor& mul_out_sparse_mps(const Tensor& t_, const Tensor& src_, SparseTen
|
||||
auto out_indices = at::empty({ndim_i, static_cast<int64_t>(M)}, at::device(device).dtype(at::kLong));
|
||||
auto lhs_match = outA_idx.narrow(0, 0, M);
|
||||
auto rhs_match = outB_idx.narrow(0, 0, M);
|
||||
auto out_val_sizes = lhs_values.sizes().vec();
|
||||
out_val_sizes[0] = static_cast<int64_t>(M);
|
||||
auto dense_sizes_vec = lhs.sizes().slice(ndim_i).vec();
|
||||
int64_t cols64 = 1;
|
||||
for (auto s : dense_sizes_vec) cols64 *= s;
|
||||
const uint32_t cols = static_cast<uint32_t>(std::max<int64_t>(cols64, 1));
|
||||
|
||||
auto to2d = [&](Tensor t, int64_t nnz) -> Tensor {
|
||||
const int64_t t_cols = t.numel() / nnz;
|
||||
if (t_cols == cols64) {
|
||||
return t.view({nnz, cols64});
|
||||
}
|
||||
return t.view({nnz, 1}).expand({nnz, cols64}).contiguous();
|
||||
};
|
||||
|
||||
// make both sides 2d [nnz, cols] buffers so the kernel can index it
|
||||
auto lhs_vals2d = to2d(lhs_values, lhs_nnz);
|
||||
auto rhs_vals2d = to2d(rhs_values, rhs_nnz);
|
||||
|
||||
std::vector<int64_t> out_val_sizes;
|
||||
out_val_sizes.reserve(1 + dense_sizes_vec.size());
|
||||
out_val_sizes.push_back(static_cast<int64_t>(M));
|
||||
out_val_sizes.insert(out_val_sizes.end(), dense_sizes_vec.begin(), dense_sizes_vec.end());
|
||||
auto out_values = at::empty(out_val_sizes, lhs_values.options());
|
||||
|
||||
const uint32_t cols = static_cast<uint32_t>(
|
||||
lhs_values.numel() / std::max<int64_t>(1, lhs_nnz));
|
||||
if (M > 0) {
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc(
|
||||
"fused_gather_mul_kernel_" + mps::scalarToMetalTypeString(lhs_values));
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc(
|
||||
"fused_gather_mul_kernel_" + mps::scalarToMetalTypeString(lhs_values));
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
const uint32_t tew = pso.threadExecutionWidth;
|
||||
const uint32_t gridW = std::max<uint32_t>(cols, 1u);
|
||||
const uint32_t tgW = std::min(gridW, tew);
|
||||
MTLSize grid = MTLSizeMake(gridW, 1, M);
|
||||
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
|
||||
|
||||
const uint32_t tew = pso.threadExecutionWidth;
|
||||
uint32_t tgW = std::min(cols, tew);
|
||||
MTLSize grid = MTLSizeMake(cols, 1, M);
|
||||
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
|
||||
|
||||
mtl_setArgs(enc,
|
||||
lhs_values, rhs_values,
|
||||
lhs_match, rhs_match,
|
||||
lhs_indices, out_indices,
|
||||
out_values,
|
||||
std::array<uint32_t, 2>{static_cast<uint32_t>(ndim_i), static_cast<uint32_t>(lhs_nnz)},
|
||||
std::array<uint32_t, 2>{M, cols});
|
||||
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
|
||||
}
|
||||
});
|
||||
mtl_setArgs(enc,
|
||||
lhs_vals2d, rhs_vals2d,
|
||||
lhs_match, rhs_match,
|
||||
lhs_indices, out_indices,
|
||||
out_values,
|
||||
std::array<uint32_t, 2>{static_cast<uint32_t>(ndim_i), static_cast<uint32_t>(lhs_nnz)},
|
||||
std::array<uint32_t, 2>{M, cols});
|
||||
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
if (r_.scalar_type() != commonDtype) {
|
||||
out_values = out_values.to(r_.scalar_type());
|
||||
|
||||
@ -62,7 +62,6 @@ kernel void build_row_ptr_from_sorted_rows_by_batch(
|
||||
|
||||
template <typename T>
|
||||
kernel void spmm_bmm_coo_rows_grouped(
|
||||
device const long* rows [[buffer(0)]],
|
||||
device const long* cols [[buffer(1)]],
|
||||
device const T* vals [[buffer(2)]],
|
||||
device const T* dense [[buffer(3)]],
|
||||
@ -73,7 +72,6 @@ kernel void spmm_bmm_coo_rows_grouped(
|
||||
uint3 ltid [[thread_position_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]])
|
||||
{
|
||||
const uint B = dims.x;
|
||||
const uint I = dims.y;
|
||||
const uint J = dims.z;
|
||||
const uint K = dims.w;
|
||||
@ -197,9 +195,9 @@ kernel void fused_gather_mul_kernel(
|
||||
const ulong offR = (ulong)iR * (ulong)view_cols + (ulong)col;
|
||||
const ulong offO = (ulong)k * (ulong)view_cols + (ulong)col;
|
||||
|
||||
const float a = (float)lhs_vals[offL];
|
||||
const float b = (float)rhs_vals[offR];
|
||||
out_vals[offO] = (T)(a * b);
|
||||
const auto a = static_cast<accum_t<T>>(lhs_vals[offL]);
|
||||
const auto b = static_cast<accum_t<T>>(rhs_vals[offR]);
|
||||
out_vals[offO] = static_cast<T>(mul(a, b));
|
||||
}
|
||||
|
||||
// One thread per match copies the indices column
|
||||
@ -321,7 +319,6 @@ INSTANTIATE_FOR_FLOAT_TYPES(INSTANTIATE_FUSED_GATHER_MUL);
|
||||
#define INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED(DTYPE) \
|
||||
template [[host_name("spmm_bmm_coo_rows_grouped_" #DTYPE)]] kernel void \
|
||||
spmm_bmm_coo_rows_grouped<DTYPE>( \
|
||||
device const long* rows [[buffer(0)]], \
|
||||
device const long* cols [[buffer(1)]], \
|
||||
device const DTYPE* vals [[buffer(2)]], \
|
||||
device const DTYPE* dense [[buffer(3)]], \
|
||||
@ -76,14 +76,21 @@ bool priority_order_init_ = false;
|
||||
// TODO(eqy): more benchmarking to determine whether this should include sm86/89
|
||||
// Needs to be kept in-sync with test_fused_chocie in test_transformers.py
|
||||
bool check_prefer_cudnn_attention() {
|
||||
static const bool prefer_cudnn = c10::utils::check_env("TORCH_CUDNN_SDPA_PREFERRED") != false;
|
||||
static const bool prefer_cudnn = c10::utils::check_env("TORCH_CUDNN_SDPA_DEPRIORITIZED") != true;
|
||||
if (!prefer_cudnn) {
|
||||
return false;
|
||||
}
|
||||
#if (defined(CUDNN_VERSION) && (CUDNN_VERSION >= 90900))
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
auto major = dprops->major;
|
||||
return (major == 9 || major == 10) && !dprops->minor;
|
||||
try {
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
auto major = dprops->major;
|
||||
return (major == 9 || major == 10) && !dprops->minor;
|
||||
} catch (c10::Error const& e) {
|
||||
#ifdef DEBUG
|
||||
TORCH_WARN("check_prefer_cudnn_attention() caught exception ", e.what());
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
|
||||
@ -37,6 +37,10 @@ TEST(SingletonOrSharedTypePtr, Comparison) {
|
||||
|
||||
EXPECT_NE(empty, p);
|
||||
EXPECT_NE(p, p2);
|
||||
|
||||
EXPECT_EQ(empty, empty);
|
||||
EXPECT_EQ(p, p);
|
||||
EXPECT_EQ(p2, p2);
|
||||
}
|
||||
|
||||
TEST(SingletonOrSharedTypePtr, SingletonComparison) {
|
||||
@ -47,6 +51,8 @@ TEST(SingletonOrSharedTypePtr, SingletonComparison) {
|
||||
c10::TypePtr type = c10::NoneType::get();
|
||||
EXPECT_NE(type, c10::StringType::get());
|
||||
EXPECT_NE(type, c10::DeviceObjType::get());
|
||||
EXPECT_EQ(type, type);
|
||||
EXPECT_EQ(type, c10::NoneType::get());
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -526,6 +526,41 @@ namespace {
|
||||
[](const vec& v) { return v.expm1(); },
|
||||
createDefaultUnaryTestCase<vec>(TestSeed(), false, true));
|
||||
}
|
||||
TYPED_TEST(Exponents, ExpU20) {
|
||||
using vec = TypeParam;
|
||||
using VT = ValueType<TypeParam>;
|
||||
using UVT = UvalueType<TypeParam>;
|
||||
|
||||
// Explicit edge values
|
||||
VT v_too_small = VT(-100.0); // much less than -87.3
|
||||
VT exp_too_small = std::exp(v_too_small);
|
||||
VT v_neg_edge = VT(-0x1.5d5e2ap+6f); // just at the edge
|
||||
VT exp_neg_edge = std::exp(v_neg_edge);
|
||||
VT v_zero = VT(0.0); // middle, normal case
|
||||
VT exp_zero = std::exp(v_zero);
|
||||
VT v_pos_edge = VT(0x1.5d5e2ap+6f); // just at the edge
|
||||
VT exp_pos_edge = std::exp(v_pos_edge);
|
||||
VT v_too_large = VT(100.0); // much more than 87.3
|
||||
VT exp_too_large = std::exp(v_too_large);
|
||||
|
||||
auto test_case = TestingCase<vec>::getBuilder()
|
||||
// Randoms in normal range, but the .addCustom() below guarantees we hit the special/fallback cases
|
||||
.addDomain(CheckWithinDomains<UVT>{{{-100, 100}}, false, getDefaultTolerance<UVT>()})
|
||||
.addCustom({ {v_too_small}, exp_too_small })
|
||||
.addCustom({ {v_neg_edge}, exp_neg_edge })
|
||||
.addCustom({ {v_zero}, exp_zero })
|
||||
.addCustom({ {v_pos_edge}, exp_pos_edge })
|
||||
.addCustom({ {v_too_large}, exp_too_large })
|
||||
.setTrialCount(65536)
|
||||
.setTestSeed(TestSeed());
|
||||
|
||||
test_unary<vec>(
|
||||
NAME_INFO(exp_u20_edge_cases),
|
||||
RESOLVE_OVERLOAD(std::exp),
|
||||
[](const vec& v) { return v.exp_u20(); },
|
||||
test_case
|
||||
);
|
||||
}
|
||||
TYPED_TEST(ErrorFunctions, Erf) {
|
||||
using vec = TypeParam;
|
||||
test_unary<vec>(
|
||||
|
||||
@ -58,8 +58,7 @@ def list_benchmarks():
|
||||
|
||||
def run_benchmark(
|
||||
benchmark_name: str,
|
||||
should_visualize: bool = False,
|
||||
compile_mode: str = "max-autotune-no-cudagraphs",
|
||||
script_args,
|
||||
):
|
||||
"""Run a specific benchmark."""
|
||||
if benchmark_name not in BENCHMARK_REGISTRY:
|
||||
@ -68,29 +67,29 @@ def run_benchmark(
|
||||
return False
|
||||
|
||||
print(f"Running benchmark: {benchmark_name}")
|
||||
print(f"Torch compile mode: {compile_mode}")
|
||||
print(f"Torch compile mode: {script_args.compile_mode}")
|
||||
print("=" * 60)
|
||||
|
||||
benchmark_class = BENCHMARK_REGISTRY[benchmark_name]
|
||||
benchmark = benchmark_class(compile_mode)
|
||||
benchmark = benchmark_class(script_args)
|
||||
benchmark.benchmark()
|
||||
if should_visualize:
|
||||
if script_args.visualize:
|
||||
benchmark.visualize()
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def run_all_benchmarks(should_visualize: bool = False, compile_mode: str = "default"):
|
||||
def run_all_benchmarks(script_args):
|
||||
"""Run all available benchmarks."""
|
||||
print("Running all benchmarks...")
|
||||
print(f"Torch compile mode: {compile_mode}")
|
||||
print(f"Torch compile mode: {script_args.compile_mode}")
|
||||
print("=" * 60)
|
||||
|
||||
for name, cls in BENCHMARK_REGISTRY.items():
|
||||
print(f"\n{'=' * 20} {name.upper()} {'=' * 20}")
|
||||
benchmark = cls(compile_mode)
|
||||
benchmark = cls(script_args)
|
||||
benchmark.benchmark()
|
||||
if should_visualize:
|
||||
if script_args.visualize:
|
||||
benchmark.visualize()
|
||||
print()
|
||||
|
||||
@ -137,6 +136,19 @@ Examples:
|
||||
help="Torch compile mode to use (default: default)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tolerance",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Tolerance for the accuracy check",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exit-on-accuracy-failure",
|
||||
action="store_true",
|
||||
help="Whether to exit with an error message for accuracy failure",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Handle list option
|
||||
@ -146,7 +158,7 @@ Examples:
|
||||
|
||||
# Handle all option
|
||||
if args.all:
|
||||
run_all_benchmarks(args.visualize, args.compile_mode)
|
||||
run_all_benchmarks(args)
|
||||
return
|
||||
|
||||
# Handle specific benchmarks
|
||||
@ -157,7 +169,7 @@ Examples:
|
||||
sys.exit(1)
|
||||
|
||||
for benchmark_name in args.benchmarks:
|
||||
run_benchmark(benchmark_name, args.visualize, args.compile_mode)
|
||||
run_benchmark(benchmark_name, args)
|
||||
print() # Add spacing between benchmarks
|
||||
|
||||
|
||||
|
||||
@ -9,8 +9,8 @@ import torch.nn.functional as F
|
||||
|
||||
|
||||
class CrossEntropyForward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -106,8 +106,8 @@ class CrossEntropyForward(BenchmarkKernel):
|
||||
|
||||
|
||||
class CrossEntropyBackward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -194,8 +194,8 @@ class CrossEntropyBackward(BenchmarkKernel):
|
||||
|
||||
|
||||
class SoftmaxForward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -259,8 +259,8 @@ class SoftmaxForward(BenchmarkKernel):
|
||||
|
||||
|
||||
class SoftmaxBackward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -329,8 +329,8 @@ class SoftmaxBackward(BenchmarkKernel):
|
||||
|
||||
|
||||
class RMSNormForward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -383,7 +383,22 @@ class RMSNormForward(BenchmarkKernel):
|
||||
from quack.rmsnorm import _rmsnorm_fwd
|
||||
|
||||
x, w = args
|
||||
return lambda: _rmsnorm_fwd(x, w, eps=1e-6)
|
||||
y = torch.empty_like(x)
|
||||
|
||||
def quack_fwd():
|
||||
_rmsnorm_fwd(
|
||||
x,
|
||||
w,
|
||||
out=y,
|
||||
bias=None,
|
||||
rstd=None,
|
||||
residual=None,
|
||||
residual_out=None,
|
||||
eps=1e-6,
|
||||
)
|
||||
return y
|
||||
|
||||
return quack_fwd
|
||||
|
||||
def liger(self, args, kwargs) -> Any:
|
||||
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
||||
@ -404,9 +419,14 @@ class RMSNormForward(BenchmarkKernel):
|
||||
|
||||
|
||||
class RMSNormBackward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = [
|
||||
"eager",
|
||||
"compiled",
|
||||
"quack",
|
||||
"liger",
|
||||
]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
# TODO: OOM for (32768, 65536) on h100
|
||||
@ -454,8 +474,11 @@ class RMSNormBackward(BenchmarkKernel):
|
||||
y, [x, w], grad_outputs=dy, retain_graph=True
|
||||
)
|
||||
|
||||
def compute_rstd(self, x, eps):
|
||||
return torch.rsqrt(torch.mean(x.float().square(), dim=-1, keepdim=True) + eps)
|
||||
|
||||
def quack(self, args, kwargs=None) -> Any:
|
||||
from quack.rmsnorm import _rmsnorm_backward
|
||||
from quack.rmsnorm import _get_sm_count, _rmsnorm_bwd
|
||||
|
||||
(
|
||||
x,
|
||||
@ -463,15 +486,40 @@ class RMSNormBackward(BenchmarkKernel):
|
||||
dy,
|
||||
) = args
|
||||
M, N = x.shape
|
||||
rstd = torch.randn(M, device="cuda", dtype=torch.float32)
|
||||
return lambda: _rmsnorm_backward(x, w, dy, rstd)
|
||||
|
||||
rstd = self.compute_rstd(x, eps=1e-6)
|
||||
dx = torch.empty_like(x)
|
||||
sm_count = _get_sm_count(x.size(1), x.device)
|
||||
dw_partial = torch.empty(
|
||||
sm_count, x.size(1), device=x.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
def quack_bwd():
|
||||
_rmsnorm_bwd(
|
||||
x,
|
||||
w,
|
||||
dy,
|
||||
rstd,
|
||||
dx,
|
||||
dw_partial,
|
||||
db_partial=None,
|
||||
dresidual_out=None,
|
||||
dresidual=None,
|
||||
sm_count=sm_count,
|
||||
)
|
||||
dw = dw_partial.sum(dim=0).to(w.dtype)
|
||||
return dx, dw
|
||||
|
||||
return quack_bwd
|
||||
|
||||
def liger(self, args, kwargs=None) -> Any:
|
||||
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
||||
|
||||
x, w, dy = args
|
||||
M, N = x.shape
|
||||
liger_rmsnorm = LigerRMSNorm(hidden_size=N, eps=1e-6).cuda()
|
||||
liger_rmsnorm = LigerRMSNorm(
|
||||
hidden_size=N, eps=1e-6, casting_mode="gemma"
|
||||
).cuda()
|
||||
liger_rmsnorm.weight.data.copy_(w)
|
||||
y = liger_rmsnorm(x)
|
||||
return lambda: torch.autograd.grad(
|
||||
@ -489,8 +537,8 @@ class RMSNormBackward(BenchmarkKernel):
|
||||
|
||||
|
||||
class LayerNormForward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "quack", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -563,8 +611,8 @@ class LayerNormForward(BenchmarkKernel):
|
||||
|
||||
|
||||
class LayerNormBackward(BenchmarkKernel):
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
super().__init__(compile_mode)
|
||||
def __init__(self, script_args):
|
||||
super().__init__(script_args)
|
||||
self.available_backends = ["eager", "compiled", "liger"]
|
||||
|
||||
def get_shapes(self) -> tuple[tuple[int, ...], ...]:
|
||||
@ -614,20 +662,31 @@ class LayerNormBackward(BenchmarkKernel):
|
||||
y, [x, w], grad_outputs=dy, retain_graph=True
|
||||
)
|
||||
|
||||
def compute_mean_rstd(self, x, eps):
|
||||
x = x.float()
|
||||
|
||||
var, mean = torch.var_mean(x, dim=-1, keepdim=True, correction=0)
|
||||
rstd = torch.rsqrt(var + eps)
|
||||
return mean, rstd
|
||||
|
||||
def liger(self, args, kwargs) -> Any:
|
||||
from liger_kernel.transformers.layer_norm import LigerLayerNorm
|
||||
"""
|
||||
Call layer_norm_backward directly rather than calling
|
||||
liger_kernel.transformers.layer_norm.LigerLayerNorm and
|
||||
torch.autograd.grad.
|
||||
|
||||
The latter fashion saves mean/rstd in x.dtype which can fail
|
||||
accuracy test. We call layer_norm_backward with fp32 mean and
|
||||
rstd.
|
||||
"""
|
||||
from liger_kernel.ops.layer_norm import layer_norm_backward
|
||||
|
||||
x, w, dy = args
|
||||
eps = 1e-6
|
||||
mean, rstd = self.compute_mean_rstd(x, eps)
|
||||
M, N = x.shape
|
||||
liger_layernorm = LigerLayerNorm(hidden_size=N, eps=1e-6).cuda()
|
||||
liger_layernorm.weight.data.copy_(w)
|
||||
liger_layernorm.bias.data.copy_(
|
||||
torch.zeros(N, device="cuda", dtype=torch.float32)
|
||||
)
|
||||
y = liger_layernorm(x)
|
||||
return lambda: torch.autograd.grad(
|
||||
y, [x, liger_layernorm.weight], grad_outputs=dy, retain_graph=True
|
||||
)
|
||||
|
||||
return lambda: layer_norm_backward(dy, x, w, None, mean, rstd)[0:2]
|
||||
|
||||
def benchmark(self):
|
||||
for M, N in self.get_shapes():
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass
|
||||
@ -43,10 +44,11 @@ class Performance:
|
||||
|
||||
|
||||
class BenchmarkKernel:
|
||||
def __init__(self, compile_mode: str = "max-autotune-no-cudagraphs"):
|
||||
def __init__(self, script_args):
|
||||
self.script_args = script_args
|
||||
self.name = self.__class__.__name__
|
||||
self.available_backends: list[str] = []
|
||||
self.compile_mode: str = compile_mode
|
||||
self.compile_mode: str = script_args.compile_mode
|
||||
|
||||
# mapping from backend to list of performance results
|
||||
self.profiling_results: defaultdict[str, list[Performance]] = defaultdict(list)
|
||||
@ -106,14 +108,21 @@ class BenchmarkKernel:
|
||||
args_ref, kwargs_ref = self.clone_inputs(args, kwargs)
|
||||
res[backend] = getattr(self, backend)(args_ref, kwargs_ref)()
|
||||
gold = res["eager"]
|
||||
|
||||
tol = {}
|
||||
if self.script_args.tolerance:
|
||||
tol = {
|
||||
"atol": self.script_args.tolerance,
|
||||
"rtol": self.script_args.tolerance,
|
||||
}
|
||||
for backend in self.available_backends:
|
||||
if backend == "eager":
|
||||
continue
|
||||
try:
|
||||
torch.testing.assert_close(res[backend], gold)
|
||||
torch.testing.assert_close(res[backend], gold, **tol)
|
||||
for t, gold_t in zip(res[backend], gold):
|
||||
if t.requires_grad:
|
||||
torch.testing.assert_close(t.grad, gold_t.grad)
|
||||
torch.testing.assert_close(t.grad, gold_t.grad, **tol)
|
||||
print(
|
||||
f"Accuracy check \033[92m✓ succeed\033[0m for {backend} backend on {self.name} kernel"
|
||||
)
|
||||
@ -121,6 +130,9 @@ class BenchmarkKernel:
|
||||
print(
|
||||
f"Accuracy check \033[91m✗ failed\033[0m for {backend} backend on {self.name} kernel. Error {e}"
|
||||
)
|
||||
if self.script_args.exit_on_accuracy_failure:
|
||||
print("Exit right away since --exit-on-accuracy-failure is set")
|
||||
sys.exit(1)
|
||||
|
||||
def benchmark_single_shape(
|
||||
self, args, kwargs=None, should_check_accuracy=True, setting: str = ""
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
add_loop_eager,compile_time_instruction_count,3070000000,0.1
|
||||
add_loop_eager,compile_time_instruction_count,3184000000,0.1
|
||||
|
||||
|
||||
|
||||
add_loop_eager_dynamic,compile_time_instruction_count,4432000000,0.1
|
||||
add_loop_eager_dynamic,compile_time_instruction_count,4595000000,0.1
|
||||
|
||||
|
||||
|
||||
@ -18,7 +18,7 @@ add_loop_inductor_gpu,compile_time_instruction_count,26800000000,0.1
|
||||
|
||||
|
||||
|
||||
basic_modules_ListOfLinears_eager,compile_time_instruction_count,1048000000,0.1
|
||||
basic_modules_ListOfLinears_eager,compile_time_instruction_count,1096000000,0.1
|
||||
|
||||
|
||||
|
||||
@ -26,7 +26,7 @@ basic_modules_ListOfLinears_inductor,compile_time_instruction_count,15240000000,
|
||||
|
||||
|
||||
|
||||
basic_modules_ListOfLinears_inductor_gpu_force_shape_pad,compile_time_instruction_count,17020000000,0.1
|
||||
basic_modules_ListOfLinears_inductor_gpu_force_shape_pad,compile_time_instruction_count,17720000000,0.1
|
||||
|
||||
|
||||
|
||||
@ -34,11 +34,11 @@ basic_modules_ListOfLinears_inductor_gpu,compile_time_instruction_count,11090000
|
||||
|
||||
|
||||
|
||||
update_hint_regression,compile_time_instruction_count,1719000000,0.1
|
||||
update_hint_regression,compile_time_instruction_count,1645000000,0.1
|
||||
|
||||
|
||||
|
||||
sum_floordiv_regression,compile_time_instruction_count,3686995725,0.1
|
||||
sum_floordiv_regression,compile_time_instruction_count,3813000000,0.1
|
||||
|
||||
|
||||
|
||||
@ -50,31 +50,31 @@ symint_sum_loop,compile_time_instruction_count,4299000000,0.1
|
||||
|
||||
|
||||
|
||||
aotdispatcher_inference_nosubclass_cpu,compile_time_instruction_count,1869000000,0.1
|
||||
aotdispatcher_inference_nosubclass_cpu,compile_time_instruction_count,1793000000,0.1
|
||||
|
||||
|
||||
|
||||
aotdispatcher_inference_subclass_cpu,compile_time_instruction_count,5281000000,0.1
|
||||
aotdispatcher_inference_subclass_cpu,compile_time_instruction_count,5120000000,0.1
|
||||
|
||||
|
||||
|
||||
aotdispatcher_partitioner_cpu,compile_time_instruction_count,8333000000,0.1
|
||||
aotdispatcher_partitioner_cpu,compile_time_instruction_count,7936000000,0.1
|
||||
|
||||
|
||||
|
||||
aotdispatcher_partitioner_cpu2,compile_time_instruction_count,1909000000,0.1
|
||||
aotdispatcher_partitioner_cpu2,compile_time_instruction_count,1848000000,0.1
|
||||
|
||||
|
||||
|
||||
aotdispatcher_training_nosubclass_cpu,compile_time_instruction_count,3442000000,0.1
|
||||
aotdispatcher_training_nosubclass_cpu,compile_time_instruction_count,3152000000,0.1
|
||||
|
||||
|
||||
|
||||
aotdispatcher_training_subclass_cpu,compile_time_instruction_count,9239000000,0.1
|
||||
aotdispatcher_training_subclass_cpu,compile_time_instruction_count,8301000000,0.1
|
||||
|
||||
|
||||
|
||||
mm_loop_inductor_gpu,compile_time_instruction_count,4820968837,0.1
|
||||
mm_loop_inductor_gpu,compile_time_instruction_count,4958000000,0.1
|
||||
|
||||
|
||||
|
||||
@ -82,8 +82,8 @@ mm_loop_inductor_dynamic_gpu,compile_time_instruction_count,9051000000,0.1
|
||||
|
||||
|
||||
|
||||
basic_NestedModule_eager,compile_time_instruction_count,9554000000,0.1
|
||||
basic_NestedModule_eager,compile_time_instruction_count,9990000000,0.1
|
||||
|
||||
|
||||
|
||||
basic_InlineMod_eager,compile_time_instruction_count,7618000000,0.1
|
||||
basic_InlineMod_eager,compile_time_instruction_count,8126000000,0.1
|
||||
|
||||
|
@ -43,6 +43,7 @@ tolerance:
|
||||
- doctr_reco_predictor
|
||||
- drq
|
||||
- phlippe_resnet
|
||||
- pytorch_CycleGAN_and_pix2pix
|
||||
|
||||
higher_bf16:
|
||||
- doctr_reco_predictor
|
||||
|
||||
@ -44,21 +44,101 @@ PyTorch,div_,div__M1_N1_K1_cpu_dtype_onetorch.float32_dtype_twotorch.float32,sho
|
||||
PyTorch,div_,div__M64_N64_K64_cpu_dtype_onetorch.float32_dtype_twotorch.float32,short,False,59.241161,0.000000
|
||||
PyTorch,div_,div__M64_N64_K128_cpu_dtype_onetorch.float32_dtype_twotorch.float32,short,False,59.852816,0.000000
|
||||
PyTorch,add,"add_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float32",short,False,57.006677,0.000000
|
||||
PyTorch,add,"add_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.bfloat16",short,False,88.167000,0.000000
|
||||
PyTorch,add,"add_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float64",short,False,57.519000,0.000000
|
||||
PyTorch,sub,"sub_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float32",short,False,55.606088,0.000000
|
||||
PyTorch,sub,"sub_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.bfloat16",short,False,86.551000,0.000000
|
||||
PyTorch,sub,"sub_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float64",short,False,57.864088,0.000000
|
||||
PyTorch,div,"div_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float32",short,False,58.529255,0.000000
|
||||
PyTorch,div,"div_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.bfloat16",short,False,71.641000,0.000000
|
||||
PyTorch,div,"div_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float64",short,False,83.073000,0.000000
|
||||
PyTorch,mul,"mul_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float32",short,False,54.645077,0.000000
|
||||
PyTorch,mul,"mul_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.bfloat16",short,False,67.570000,0.000000
|
||||
PyTorch,mul,"mul_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.float64",short,False,57.895000,0.000000
|
||||
PyTorch,add,add_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,4.397014,0.000000
|
||||
PyTorch,add,add_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,7.739000,0.000000
|
||||
PyTorch,add,add_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.786000,0.000000
|
||||
PyTorch,add,add_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,1.911000,0.000000
|
||||
PyTorch,add,add_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,59.243500,0.000000
|
||||
PyTorch,add,add_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,105.066000,0.000000
|
||||
PyTorch,add,add_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,106.076000,0.000000
|
||||
PyTorch,add,add_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,47.225000,0.000000
|
||||
PyTorch,add,add_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,57.947691,0.000000
|
||||
PyTorch,add,add_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,107.291000,0.000000
|
||||
PyTorch,add,add_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,107.224000,0.000000
|
||||
PyTorch,add,add_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,47.912000,0.000000
|
||||
PyTorch,sub,sub_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,1.925851,0.000000
|
||||
PyTorch,sub,sub_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,8.0240000,0.000000
|
||||
PyTorch,sub,sub_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,8.069000,0.000000
|
||||
PyTorch,sub,sub_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,1.938000,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,57.308320,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,107.091000,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,108.710000,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,47.502000,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,57.787743,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,108.863000,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,108.939000,0.000000
|
||||
PyTorch,sub,sub_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,47.603000,0.000000
|
||||
PyTorch,div,div_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,7.978539,0.000000
|
||||
PyTorch,div,div_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,8.741000,0.000000
|
||||
PyTorch,div,div_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,8.757000,0.000000
|
||||
PyTorch,div,div_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,8.774000,0.000000
|
||||
PyTorch,div,div_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,159.754860,0.000000
|
||||
PyTorch,div,div_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,165.552000,0.000000
|
||||
PyTorch,div,div_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,165.755000,0.000000
|
||||
PyTorch,div,div_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,165.714000,0.000000
|
||||
PyTorch,div,div_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,165.360235,0.000000
|
||||
PyTorch,div,div_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,168.376000,0.000000
|
||||
PyTorch,div,div_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,169.604000,0.000000
|
||||
PyTorch,div,div_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,168.428000,0.000000
|
||||
PyTorch,mul,mul_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,3.928136,0.000000
|
||||
PyTorch,mul,mul_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,7.402000,0.000000
|
||||
PyTorch,mul,mul_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.567000,0.000000
|
||||
PyTorch,mul,mul_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,4.020000,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,56.413499,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,104.638000,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,104.335000,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,48.612000,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,55.925090,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,106.110000,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,106.389000,0.000000
|
||||
PyTorch,mul,mul_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,48.195000,0.000000
|
||||
PyTorch,asr,asr_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,1.989000,0.000000
|
||||
PyTorch,asr,asr_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,7.999000,0.000000
|
||||
PyTorch,asr,asr_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.939000,0.000000
|
||||
PyTorch,asr,asr_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,1.980000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,54.408000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,105.647000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,106.476000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,48.784000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,55.583000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,108.083000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,107.663000,0.000000
|
||||
PyTorch,asr,asr_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,48.283000,0.000000
|
||||
PyTorch,lsl,lsl_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,1.986000,0.000000
|
||||
PyTorch,lsl,lsl_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,7.676000,0.000000
|
||||
PyTorch,lsl,lsl_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.618000,0.000000
|
||||
PyTorch,lsl,lsl_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,1.982000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,54.698000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,105.899000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,106.741000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,51.182000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,55.290000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,107.744000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,107.820000,0.000000
|
||||
PyTorch,lsl,lsl_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,51.298000,0.000000
|
||||
PyTorch,xor,xor_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,1.988000,0.000000
|
||||
PyTorch,xor,xor_M1_N1_K1_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,7.689000,0.000000
|
||||
PyTorch,xor,xor_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.695000,0.000000
|
||||
PyTorch,xor,xor_M1_N1_K1_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,1.978000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,54.934000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K64_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,105.217000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,104.215000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K64_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,47.115000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,55.974000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,106.828000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,106.879000,0.000000
|
||||
PyTorch,xor,xor_M64_N64_K128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,48.197000,0.000000
|
||||
PyTorch,logical_and,"logical_and_in_one[64,1,64]_in_two[1,64,1]_cpu_dtypetorch.bool",short,False,78.404254,0.000000
|
||||
PyTorch,logical_and,logical_and_M1_N1_K1_cpu_dtype_onetorch.bool_dtype_twotorch.bool,short,False,5.354032,0.000000
|
||||
PyTorch,logical_and,logical_and_M64_N64_K64_cpu_dtype_onetorch.bool_dtype_twotorch.bool,short,False,54.072783,0.000000
|
||||
@ -71,6 +151,9 @@ PyTorch,baddbmm,baddbmm_B2_M1_N8_K2_cpu_dtypetorch.float32,short,False,6.631313,
|
||||
PyTorch,baddbmm,baddbmm_B2_M1_N8_K2_cpu_dtypetorch.bfloat16,short,False,6.476986,0.000000
|
||||
PyTorch,baddbmm,baddbmm_B128_M64_N32_K64_cpu_dtypetorch.float32,short,False,266.065131,0.000000
|
||||
PyTorch,baddbmm,baddbmm_B128_M64_N32_K64_cpu_dtypetorch.bfloat16,short,False,295.503063,0.000000
|
||||
PyTorch,all,all_M1_N1_K1_cpu,short,False,5.773000,0.000000
|
||||
PyTorch,all,all_M64_N64_K64_cpu,short,False,89.427000,0.000000
|
||||
PyTorch,all,all_M64_N64_K128_cpu,short,False,120.119000,0.000000
|
||||
PyTorch,cat,"cat_sizes(1,1,1)_N2_dim0_cpu",short,False,4.301950,0.000000
|
||||
PyTorch,cat,"cat_sizes(512,512,2)_N2_dim1_cpu",short,False,99.093415,0.000000
|
||||
PyTorch,cat,"cat_sizes(128,1024,2)_N2_dim1_cpu",short,False,96.771578,0.000000
|
||||
|
||||
|
@ -580,6 +580,9 @@ class BenchmarkRunner:
|
||||
else "unknown"
|
||||
)
|
||||
|
||||
# Extract operator name from test_name
|
||||
operator_name = test_name.split("_")[0]
|
||||
|
||||
# Create the record
|
||||
@dataclass
|
||||
class BenchmarkInfo:
|
||||
@ -593,6 +596,7 @@ class BenchmarkRunner:
|
||||
name: str
|
||||
type: str
|
||||
origins: list[str]
|
||||
extra_info: dict[str, Any]
|
||||
|
||||
@dataclass
|
||||
class MetricInfo:
|
||||
@ -618,10 +622,14 @@ class BenchmarkRunner:
|
||||
"device": device,
|
||||
"arch": device_arch,
|
||||
"use_compile": use_compile,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
model=ModelInfo(
|
||||
name=test_name, type="micro-benchmark", origins=["pytorch"]
|
||||
name=test_name,
|
||||
type="micro-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={"operator_name": operator_name},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
name="latency",
|
||||
|
||||
@ -25,7 +25,7 @@ binary_configs_broadcast = op_bench.config_list(
|
||||
],
|
||||
cross_product_configs={
|
||||
"device": ["cpu"],
|
||||
"dtype": [torch.float],
|
||||
"dtype": [torch.float, torch.bfloat16, torch.float64],
|
||||
},
|
||||
tags=["short"],
|
||||
)
|
||||
@ -71,8 +71,8 @@ binary_short_configs = op_bench.config_list(
|
||||
],
|
||||
cross_product_configs={
|
||||
"device": ["cpu", "cuda"],
|
||||
"dtype_one": [torch.int32],
|
||||
"dtype_two": [torch.int32],
|
||||
"dtype_one": [torch.int32, torch.uint8],
|
||||
"dtype_two": [torch.int32, torch.uint8],
|
||||
},
|
||||
tags=["short"],
|
||||
)
|
||||
@ -82,8 +82,8 @@ binary_long_configs = op_bench.cross_product_configs(
|
||||
N=[32, 64],
|
||||
K=[256, 512],
|
||||
device=["cpu", "cuda"],
|
||||
dtype_one=[torch.int8, torch.int32],
|
||||
dtype_two=[torch.int8, torch.int32],
|
||||
dtype_one=[torch.int8, torch.int32, torch.uint8],
|
||||
dtype_two=[torch.int8, torch.int32, torch.uint8],
|
||||
tags=["long"],
|
||||
)
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -176,8 +176,8 @@ THIRD_PARTY_LIBS = {
|
||||
"omp": ["//xplat/third-party/linker_lib:omp", "//third_party:no-op"],
|
||||
"pocketfft": ["//third-party/pocket_fft:pocketfft", "//third_party:pocketfft_header"],
|
||||
"psimd": ["//xplat/third-party/psimd:psimd", "//third_party:psimd"],
|
||||
"pthreadpool": ["//xplat/third-party/pthreadpool:pthreadpool", "//third_party:pthreadpool"],
|
||||
"pthreadpool_header": ["//xplat/third-party/pthreadpool:pthreadpool_header", "//third_party:pthreadpool_header"],
|
||||
"pthreadpool": ["fbsource//xplat/third-party/pthreadpool:pthreadpool", "//third_party:pthreadpool"],
|
||||
"pthreadpool_header": ["fbsource//xplat/third-party/pthreadpool:pthreadpool_header", "//third_party:pthreadpool_header"],
|
||||
"moodycamel": ["//third-party/moodycamel:moodycamel", "//third_party:moodycamel"],
|
||||
"pyyaml": ["//third-party/pypi/pyyaml:pyyaml", "//third_party:pyyaml"],
|
||||
"rt": ["//xplat/third-party/linker_lib:rt", "//third_party:rt"],
|
||||
@ -1729,8 +1729,10 @@ def define_buck_targets(
|
||||
"torch/csrc/jit/backends/backend_debug_info.cpp",
|
||||
"torch/csrc/jit/backends/backend_interface.cpp",
|
||||
],
|
||||
compiler_flags = get_pt_compiler_flags(),
|
||||
fbandroid_compiler_flags = c2_fbandroid_xplat_compiler_flags,
|
||||
compiler_flags = get_pt_compiler_flags() + select({
|
||||
"DEFAULT": [],
|
||||
"ovr_config//os:android": c2_fbandroid_xplat_compiler_flags
|
||||
}),
|
||||
# @lint-ignore BUCKLINT link_whole
|
||||
link_whole = True,
|
||||
linker_flags = get_no_as_needed_linker_flag(),
|
||||
@ -2023,6 +2025,9 @@ def define_buck_targets(
|
||||
"ovr_config//os:android-x86_64": [
|
||||
"-mssse3",
|
||||
],
|
||||
}) + select({
|
||||
"DEFAULT": [],
|
||||
"ovr_config//os:android": c2_fbandroid_xplat_compiler_flags,
|
||||
}),
|
||||
exported_preprocessor_flags = get_aten_preprocessor_flags(),
|
||||
exported_deps = [
|
||||
|
||||
@ -855,6 +855,7 @@ libtorch_python_cuda_core_sources = [
|
||||
"torch/csrc/cuda/Stream.cpp",
|
||||
"torch/csrc/cuda/Graph.cpp",
|
||||
"torch/csrc/cuda/MemPool.cpp",
|
||||
"torch/csrc/cuda/GreenContext.cpp",
|
||||
"torch/csrc/cuda/shared/cudart.cpp",
|
||||
"torch/csrc/cuda/shared/nvtx.cpp",
|
||||
"torch/csrc/cuda/utils.cpp",
|
||||
|
||||
@ -13,7 +13,17 @@
|
||||
namespace c10::CachingAllocator {
|
||||
|
||||
// "large" allocations may be packed in 20 MiB blocks
|
||||
const size_t kLargeBuffer = 20971520;
|
||||
constexpr size_t kLargeBuffer = 20971520;
|
||||
// "small" allocations are packed in 2 MiB blocks
|
||||
constexpr size_t kSmallBuffer = 2097152;
|
||||
// all sizes are rounded to at least 512 bytes
|
||||
constexpr size_t kMinBlockSize = 512;
|
||||
// largest "small" allocation is 1 MiB
|
||||
constexpr size_t kSmallSize = 1048576;
|
||||
// allocations between 1 and 10 MiB may use kLargeBuffer
|
||||
constexpr size_t kMinLargeAlloc = 10485760;
|
||||
// round up large allocations to 2 MiB
|
||||
constexpr size_t kRoundLarge = 2097152;
|
||||
|
||||
// A utility class for tokenizing allocator configuration strings into discrete
|
||||
// parts. For example, the config string:
|
||||
|
||||
@ -223,7 +223,7 @@ inline DispatchKey backendToDispatchKey(Backend b) {
|
||||
case Backend::PrivateUse1:
|
||||
return DispatchKey::PrivateUse1;
|
||||
default:
|
||||
throw std::runtime_error("Unknown backend");
|
||||
TORCH_CHECK(false, "Unknown backend");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -336,7 +336,7 @@ class C10_API Scalar {
|
||||
} else if (isBoolean()) {
|
||||
return ScalarType::Bool;
|
||||
} else {
|
||||
throw std::runtime_error("Unknown scalar type.");
|
||||
TORCH_CHECK(false, "Unknown scalar type.");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -228,7 +228,7 @@ std::pair<std::string, std::string> getDtypeNames(c10::ScalarType scalarType) {
|
||||
case c10::ScalarType::Float4_e2m1fn_x2:
|
||||
return std::make_pair("float4_e2m1fn_x2", "");
|
||||
default:
|
||||
throw std::runtime_error("Unimplemented scalar type");
|
||||
TORCH_CHECK(false, "Unimplemented scalar type");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -52,19 +52,6 @@ AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CONSTANT)
|
||||
#undef DEFINE_CONSTANT
|
||||
|
||||
inline const char* toString(ScalarType t) {
|
||||
#define DEFINE_CASE(_, name) \
|
||||
case ScalarType::name: \
|
||||
return #name;
|
||||
|
||||
switch (t) {
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CASE)
|
||||
default:
|
||||
return "UNKNOWN_SCALAR";
|
||||
}
|
||||
#undef DEFINE_CASE
|
||||
}
|
||||
|
||||
inline size_t elementSize(ScalarType t) {
|
||||
#define CASE_ELEMENTSIZE_CASE(ctype, name) \
|
||||
case ScalarType::name: \
|
||||
@ -150,22 +137,6 @@ inline ScalarType toQIntType(ScalarType t) {
|
||||
}
|
||||
}
|
||||
|
||||
inline ScalarType toUnderlying(ScalarType t) {
|
||||
switch (t) {
|
||||
case ScalarType::QUInt8:
|
||||
case ScalarType::QUInt4x2:
|
||||
[[fallthrough]];
|
||||
case ScalarType::QUInt2x4:
|
||||
return ScalarType::Byte;
|
||||
case ScalarType::QInt8:
|
||||
return ScalarType::Char;
|
||||
case ScalarType::QInt32:
|
||||
return ScalarType::Int;
|
||||
default:
|
||||
return t;
|
||||
}
|
||||
}
|
||||
|
||||
inline bool isSignedType(ScalarType t) {
|
||||
#define CASE_ISSIGNED(name) \
|
||||
case ScalarType::name: \
|
||||
@ -308,12 +279,6 @@ inline bool canCast(const ScalarType from, const ScalarType to) {
|
||||
|
||||
C10_API ScalarType promoteTypes(ScalarType a, ScalarType b);
|
||||
|
||||
inline std::ostream& operator<<(
|
||||
std::ostream& stream,
|
||||
at::ScalarType scalar_type) {
|
||||
return stream << toString(scalar_type);
|
||||
}
|
||||
|
||||
// Returns a pair of strings representing the names for each dtype.
|
||||
// The returned pair is (name, legacy_name_if_applicable)
|
||||
C10_API std::pair<std::string, std::string> getDtypeNames(
|
||||
|
||||
@ -87,9 +87,7 @@ bool ThreadPool::inThreadPool() const {
|
||||
}
|
||||
|
||||
void ThreadPool::run(std::function<void()> func) {
|
||||
if (threads_.empty()) {
|
||||
throw std::runtime_error("No threads to run a task");
|
||||
}
|
||||
TORCH_CHECK(threads_.size() > 0, "No threads to run a task");
|
||||
std::unique_lock<std::mutex> lock(mutex_);
|
||||
|
||||
// Set task and signal condition variable so that a worker thread will
|
||||
|
||||
@ -131,15 +131,6 @@ namespace Native {
|
||||
* notifyCaptureDestroy.
|
||||
*/
|
||||
|
||||
constexpr size_t kMinBlockSize =
|
||||
512; // all sizes are rounded to at least 512 bytes
|
||||
constexpr size_t kSmallSize = 1048576; // largest "small" allocation is 1 MiB
|
||||
constexpr size_t kSmallBuffer =
|
||||
2097152; // "small" allocations are packed in 2 MiB blocks
|
||||
constexpr size_t kMinLargeAlloc =
|
||||
10485760; // allocations between 1 and 10 MiB may use kLargeBuffer
|
||||
constexpr size_t kRoundLarge = 2097152; // round up large allocations to 2 MiB
|
||||
|
||||
static char SHAREABLE_HANDLE_VERSION = 2;
|
||||
enum ShareableHandleType : char {
|
||||
SHAREABLE_CUDA_MALLOC = 'c',
|
||||
@ -4478,7 +4469,10 @@ struct BackendStaticInitializer {
|
||||
if (key == "backend") {
|
||||
tokenizer.checkToken(++i, ":");
|
||||
i++; // Move to the value after the colon
|
||||
if (tokenizer[i] == "cudaMallocAsync"
|
||||
// break up token to trick hipify
|
||||
if (tokenizer[i] ==
|
||||
"c"
|
||||
"udaMallocAsync"
|
||||
#ifdef USE_ROCM
|
||||
// convenience for ROCm users to allow either CUDA or HIP env var
|
||||
|| tokenizer[i] == "hipMallocAsync"
|
||||
|
||||
@ -913,7 +913,9 @@ struct CudaMallocAsyncAllocator : public CUDAAllocator {
|
||||
}
|
||||
}
|
||||
std::string name() override {
|
||||
return "cudaMallocAsync";
|
||||
// break up token to trick hipify
|
||||
return "c"
|
||||
"udaMallocAsync";
|
||||
}
|
||||
void copy_data(void* dest, const void* src, std::size_t count) const final {
|
||||
C10_CUDA_CHECK(
|
||||
|
||||
@ -51,6 +51,17 @@
|
||||
|
||||
#if defined(CUDA_VERSION) && (CUDA_VERSION >= 12030)
|
||||
#define C10_LIBCUDA_DRIVER_API_OPTIONAL(_) \
|
||||
_(cuCtxFromGreenCtx, 12080) \
|
||||
_(cuCtxGetCurrent, 12080) \
|
||||
_(cuCtxPopCurrent, 12080) \
|
||||
_(cuCtxPushCurrent, 12080) \
|
||||
_(cuCtxSetCurrent, 12080) \
|
||||
_(cuGreenCtxCreate, 12080) \
|
||||
_(cuGreenCtxDestroy, 12080) \
|
||||
_(cuDevSmResourceSplitByCount, 12080) \
|
||||
_(cuDeviceGet, 12080) \
|
||||
_(cuDeviceGetDevResource, 12080) \
|
||||
_(cuDevResourceGenerateDesc, 12080) \
|
||||
_(cuMulticastAddDevice, 12030) \
|
||||
_(cuMulticastBindMem, 12030) \
|
||||
_(cuMulticastCreate, 12030) \
|
||||
|
||||
@ -328,6 +328,21 @@ struct pair {
|
||||
T2 second;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static T conj(T a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
template <>
|
||||
half2 conj(half2 a) {
|
||||
return half2(a.x, -a.y);
|
||||
}
|
||||
|
||||
template <>
|
||||
float2 conj(float2 a) {
|
||||
return float2(a.x, -a.y);
|
||||
}
|
||||
|
||||
#define INSTANTIATE_FOR_ALL_TYPES(MACRO) \
|
||||
MACRO(float); \
|
||||
MACRO(half); \
|
||||
|
||||
@ -45,14 +45,7 @@ constexpr bool is_pod_v = is_pod<T>::value;
|
||||
|
||||
namespace guts {
|
||||
|
||||
#if defined(__cpp_lib_apply) && !defined(__CUDA_ARCH__) && !defined(__HIP__)
|
||||
|
||||
template <class F, class Tuple>
|
||||
C10_HOST_DEVICE inline constexpr decltype(auto) apply(F&& f, Tuple&& t) {
|
||||
return std::apply(std::forward<F>(f), std::forward<Tuple>(t));
|
||||
}
|
||||
|
||||
#else
|
||||
#if defined(__HIP__)
|
||||
|
||||
// Implementation from http://en.cppreference.com/w/cpp/utility/apply (but
|
||||
// modified)
|
||||
|
||||
@ -14,16 +14,6 @@ using namespace c10::CachingDeviceAllocator;
|
||||
|
||||
// newly allocated memory with 512-byte alignment.
|
||||
constexpr size_t kDeviceAlignment = 512;
|
||||
// all sizes are rounded to at least 512 bytes
|
||||
constexpr size_t kMinBlockSize = 512;
|
||||
// largest "small" allocation is 1 MiB
|
||||
constexpr size_t kSmallSize = 1048576;
|
||||
// "small" allocations are packed in 2 MiB blocks
|
||||
constexpr size_t kSmallBuffer = 2097152;
|
||||
// allocations between 1 and 10 MiB may use kLargeBuffer
|
||||
constexpr size_t kMinLargeAlloc = 10485760;
|
||||
// round up large allocations to 2 MiB
|
||||
constexpr size_t kRoundLarge = 2097152;
|
||||
|
||||
namespace {
|
||||
using stream_set = ska::flat_hash_set<xpu::XPUStream>;
|
||||
|
||||
@ -607,6 +607,12 @@ if(USE_CUDA)
|
||||
set_source_files_properties(${ASYNC_MM_FILE} PROPERTIES COMPILE_FLAGS "-gencode arch=compute_90a,code=sm_90a")
|
||||
endif()
|
||||
endif()
|
||||
if(NOT WIN32)
|
||||
set_source_files_properties(
|
||||
${TORCH_ROOT}/aten/src/ATen/cuda/CUDAGreenContext.cpp
|
||||
PROPERTIES COMPILE_FLAGS "-DPYTORCH_C10_DRIVER_API_SUPPORTED=1"
|
||||
)
|
||||
endif()
|
||||
set_source_files_properties(
|
||||
${TORCH_ROOT}/aten/src/ATen/cuda/detail/LazyNVRTC.cpp
|
||||
PROPERTIES COMPILE_DEFINITIONS "NVRTC_SHORTHASH=${CUDA_NVRTC_SHORTHASH}"
|
||||
|
||||
@ -1638,38 +1638,7 @@ if(USE_KINETO)
|
||||
message(STATUS " KINETO_LIBRARY_TYPE = ${KINETO_LIBRARY_TYPE}")
|
||||
|
||||
if(NOT LIBKINETO_NOCUPTI)
|
||||
set(CUDA_SOURCE_DIR "${CUDA_TOOLKIT_ROOT_DIR}" CACHE STRING "")
|
||||
message(STATUS " CUDA_SOURCE_DIR = ${CUDA_SOURCE_DIR}")
|
||||
message(STATUS " CUDA_INCLUDE_DIRS = ${CUDA_INCLUDE_DIRS}")
|
||||
|
||||
if(NOT MSVC)
|
||||
if(USE_CUPTI_SO)
|
||||
set(CUPTI_LIB_NAME "libcupti.so")
|
||||
else()
|
||||
set(CUPTI_LIB_NAME "libcupti_static.a")
|
||||
endif()
|
||||
else()
|
||||
set(CUPTI_LIB_NAME "cupti.lib")
|
||||
endif()
|
||||
|
||||
find_library(CUPTI_LIBRARY_PATH ${CUPTI_LIB_NAME} PATHS
|
||||
${CUDA_SOURCE_DIR}
|
||||
${CUDA_SOURCE_DIR}/extras/CUPTI/lib64
|
||||
${CUDA_SOURCE_DIR}/lib
|
||||
${CUDA_SOURCE_DIR}/lib64
|
||||
NO_DEFAULT_PATH)
|
||||
|
||||
find_path(CUPTI_INCLUDE_DIR cupti.h PATHS
|
||||
${CUDA_SOURCE_DIR}/extras/CUPTI/include
|
||||
${CUDA_INCLUDE_DIRS}
|
||||
${CUDA_SOURCE_DIR}
|
||||
${CUDA_SOURCE_DIR}/include
|
||||
NO_DEFAULT_PATH)
|
||||
|
||||
if(CUPTI_LIBRARY_PATH AND CUPTI_INCLUDE_DIR)
|
||||
message(STATUS " CUPTI_INCLUDE_DIR = ${CUPTI_INCLUDE_DIR}")
|
||||
set(CUDA_cupti_LIBRARY ${CUPTI_LIBRARY_PATH})
|
||||
message(STATUS " CUDA_cupti_LIBRARY = ${CUDA_cupti_LIBRARY}")
|
||||
if(TARGET CUDA::cupti)
|
||||
message(STATUS "Found CUPTI")
|
||||
set(LIBKINETO_NOCUPTI OFF CACHE STRING "" FORCE)
|
||||
|
||||
@ -1682,7 +1651,7 @@ if(USE_KINETO)
|
||||
if(NOT APPLE)
|
||||
set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} "dl" "pthread")
|
||||
endif()
|
||||
set(CMAKE_REQUIRED_LINK_OPTIONS "-Wl,--whole-archive,${CUPTI_LIBRARY_PATH},--no-whole-archive")
|
||||
set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} $<LINK_LIBRARY:WHOLE_ARCHIVE,CUDA::cupti_static>)
|
||||
check_cxx_source_runs("#include <stdexcept>
|
||||
int main() {
|
||||
try {
|
||||
|
||||
@ -272,7 +272,7 @@ Here, we'll briefly introduce the implementation process of custom operators, fo
|
||||
* Name: `input`
|
||||
* Output Type: `Tensor`
|
||||
|
||||
2. **Register Operator&Autograd Fallback:**
|
||||
2. **Register Operator**
|
||||
|
||||
::::{tab-set}
|
||||
|
||||
@ -285,19 +285,11 @@ Here, we'll briefly introduce the implementation process of custom operators, fo
|
||||
:end-before: LITERALINCLUDE END: CUSTOM OPERATOR DEFAULT
|
||||
:linenos:
|
||||
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/aten/OpenRegExtra.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: CUSTOM OPERATOR FALLBACK
|
||||
:end-before: LITERALINCLUDE END: CUSTOM OPERATOR FALLBACK
|
||||
:emphasize-lines: 2
|
||||
:linenos:
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
Use `TORCH_LIBRARY_IMPL` to register the `wrapper_custom_abs` implementation for the `custom_abs` operator in `PrivateUse1`. However, because `Autograd` is always enabled in PyTorch, PyTorch defaults to finding and executing the corresponding backward implementation even if only forward computation is required(will fallthrough in backward implementation). Therefore, we also need to register the corresponding implementation for `AutogradPrivateUse1` of the `custom_abs` operator. Fortunately, PyTorch also provides a general `Autograd Fallback` mechanism named `torch::autograd::autogradNotImplementedFallback`, if only forward computation is involved, it is equivalent to a fallthrough operation, selecting the next DispatchKey for computation; if backward computation is involved, an error is thrown.
|
||||
Use `TORCH_LIBRARY_IMPL` to register the `wrapper_custom_abs` implementation for the `custom_abs` operator in `PrivateUse1`. Because `Autograd` is always enabled in PyTorch, PyTorch defaults to finding and executing the corresponding backward implementation even if only forward computation is required(will fallthrough in backward implementation). Fortunately, PyTorch have implemented a general `Autograd Fallback` for PrivateUse1 as well, if only forward computation is involved, it is equivalent to a fallthrough operation, selecting the next DispatchKey for computation; if backward computation is involved, an error is thrown.
|
||||
|
||||
3. **Register Metadata(optional, but required by the graph mode, etc.):**
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user