mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Compare commits
132 Commits
copilot/co
...
ciflow/ind
Author | SHA1 | Date | |
---|---|---|---|
c8f180d6eb | |||
967764c9f4 | |||
cf280ca1e8 | |||
efc277cac7 | |||
4f7f43253d | |||
779296a3fc | |||
8f06a1308f | |||
240c13394e | |||
150682ba7f | |||
ca7360e996 | |||
0bf604320f | |||
9875e70da8 | |||
69a4bfe8bb | |||
62a263b8d4 | |||
0da1f911dc | |||
8700d68fef | |||
ab82456c16 | |||
b23f4687fd | |||
2705937080 | |||
c1eda348be | |||
ba93d5636e | |||
722b2b86c9 | |||
e1e8491b31 | |||
767199fd9b | |||
602ace5eb4 | |||
47804ce467 | |||
e8cb34dd52 | |||
e9d8973427 | |||
61d9a5180e | |||
8a8329b51f | |||
6b80c94901 | |||
8951df03de | |||
8139f33fa5 | |||
a88587348b | |||
633a3b7f67 | |||
fa0db212e7 | |||
15ff1cd28b | |||
c73f5080de | |||
22ae059d32 | |||
1b121d636e | |||
1ba808dd97 | |||
b2f5c25b27 | |||
a1114beed2 | |||
4888ed440e | |||
5d62b63a76 | |||
57ba575242 | |||
ceb11a584d | |||
33adb276fe | |||
e939651972 | |||
3255e7872b | |||
c4f6619330 | |||
f18041cca8 | |||
35e51893bd | |||
1f43d17ce6 | |||
032bed95cd | |||
d14cbb4476 | |||
f510d0dbc0 | |||
beb6b62e8c | |||
4740ce7787 | |||
ad67170c8b | |||
fdab48a7c1 | |||
a0948d4d23 | |||
0bbdd6b8db | |||
24520b8386 | |||
c79dfdc655 | |||
e595136187 | |||
aaac8cb0f5 | |||
0f0b4bf029 | |||
b8194268a6 | |||
f02e3947f6 | |||
9095a9dfae | |||
d9f94e0d7d | |||
23417ae50f | |||
e4d6c56ffb | |||
017d2985f3 | |||
c6a8db0b9a | |||
de09bab4b6 | |||
c137e222d4 | |||
cf3a787bbc | |||
de3da77cf7 | |||
543ddbf44c | |||
e9f4999985 | |||
29b029648e | |||
a25a649e70 | |||
69c33898fa | |||
1b397420f2 | |||
fe80f03726 | |||
e50dc40d28 | |||
2e22b1a61e | |||
616c6bdf8f | |||
c18ddfc572 | |||
86ebce1766 | |||
8cb2fb44f2 | |||
ab65498d71 | |||
06d324365c | |||
6c9c6e0936 | |||
2bcd892c86 | |||
75e2a9fae3 | |||
a16fd6b488 | |||
382b0150de | |||
a664b299ac | |||
9c12651417 | |||
08c97b4a1f | |||
fae74cd52f | |||
7a65770013 | |||
e4454947e2 | |||
3806e9767b | |||
b08d8c2e50 | |||
ca5b7f8ded | |||
9a71d96256 | |||
0d4c2b71e8 | |||
d659bbde62 | |||
58879bfafa | |||
a032510db3 | |||
39e0a832c9 | |||
dd3b48e85d | |||
cff1b20771 | |||
da8517fa63 | |||
45afaf08a1 | |||
080365b7d8 | |||
2928c5c572 | |||
630520b346 | |||
1dc9a05d03 | |||
bfcdbd0a97 | |||
faff826a46 | |||
85c5433d38 | |||
935ccdbe75 | |||
3af2f0c12a | |||
0a35b3cda3 | |||
d6f88bf2dc | |||
f2a1885c85 | |||
58a4de5815 |
@ -83,10 +83,6 @@ function build_cpython {
|
||||
py_suffix=${py_ver::-1}
|
||||
py_folder=$py_suffix
|
||||
fi
|
||||
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
|
||||
if [ "$py_suffix" == "3.14.0" ]; then
|
||||
py_suffix="3.14.0rc2"
|
||||
fi
|
||||
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
|
||||
do_cpython_build $py_ver Python-$py_suffix
|
||||
|
||||
|
@ -39,9 +39,13 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
DOCKER_GPU_BUILD_ARG=""
|
||||
;;
|
||||
rocm*)
|
||||
# we want the patch version of 7.0 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
|
||||
fi
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
|
@ -75,9 +75,13 @@ case ${image} in
|
||||
DOCKERFILE_SUFFIX="_cuda_aarch64"
|
||||
;;
|
||||
manylinux2_28-builder:rocm*)
|
||||
# we want the patch version of 7.0 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
|
||||
fi
|
||||
TARGET=rocm_final
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
|
@ -57,8 +57,8 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
|
||||
logger.info("Successfully cloned %s", target)
|
||||
return r, commit
|
||||
|
||||
except GitCommandError as e:
|
||||
logger.error("Git operation failed: %s", e)
|
||||
except GitCommandError:
|
||||
logger.exception("Git operation failed")
|
||||
raise
|
||||
|
||||
|
||||
|
6
.flake8
6
.flake8
@ -7,16 +7,12 @@ max-line-length = 120
|
||||
# C408 ignored because we like the dict keyword argument syntax
|
||||
# E501 is not flexible enough, we're using B950 instead
|
||||
ignore =
|
||||
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
|
||||
E203,E305,E402,E501,E704,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
|
||||
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
|
||||
# to line this up with executable bit
|
||||
EXE001,
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
|
||||
# these ignores are from flake8-comprehensions; please fix!
|
||||
C407,
|
||||
# these ignores are from flake8-logging-format; please fix!
|
||||
G100,G101,G200
|
||||
# these ignores are from flake8-simplify. please fix or ignore with commented reason
|
||||
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
|
||||
# SIM104 is already covered by pyupgrade ruff
|
||||
|
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
1b013f5b5a87a1882eb143c26d79d091150d6a37
|
||||
69bbe7363897764f9e758d851cd0340147d27f94
|
||||
|
29
.github/labeler.yml
vendored
29
.github/labeler.yml
vendored
@ -133,3 +133,32 @@
|
||||
|
||||
"ciflow/vllm":
|
||||
- .github/ci_commit_pins/vllm.txt
|
||||
|
||||
"ciflow/b200":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
"ciflow/h100":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
"ciflow/rocm":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
30
.github/scripts/generate_binary_build_matrix.py
vendored
30
.github/scripts/generate_binary_build_matrix.py
vendored
@ -79,21 +79,21 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
|
||||
),
|
||||
"12.9": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'"
|
||||
),
|
||||
"13.0": (
|
||||
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
|
||||
|
@ -26,9 +26,8 @@ name: !{{ build_environment }}
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "!{{ (py_ver.strip('t') + '.4') if '3.14' not in py_ver else '3.14.0-rc.2' }}"
|
||||
python-version: "!{{ py_ver.strip('t') + ('.4' if '3.14' not in py_ver else '.0') }}"
|
||||
freethreaded: !{{ "true" if py_ver.endswith('t') else "false" }}
|
||||
{%- endmacro %}
|
||||
|
||||
|
14
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
14
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -224,7 +224,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -473,7 +473,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -722,7 +722,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -971,7 +971,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1220,7 +1220,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1469,7 +1469,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1718,7 +1718,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
14
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
14
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
@ -259,7 +259,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-test: # Testing
|
||||
@ -925,7 +925,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-test: # Testing
|
||||
@ -1591,7 +1591,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-test: # Testing
|
||||
@ -2257,7 +2257,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-test: # Testing
|
||||
@ -2923,7 +2923,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-test: # Testing
|
||||
@ -3589,7 +3589,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-test: # Testing
|
||||
@ -4255,7 +4255,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-test: # Testing
|
||||
|
1
.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
generated
vendored
1
.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
generated
vendored
@ -63,7 +63,6 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.10.4"
|
||||
freethreaded: false
|
||||
|
11
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
generated
vendored
11
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
generated
vendored
@ -59,7 +59,6 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.10.4"
|
||||
freethreaded: false
|
||||
@ -169,7 +168,6 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.11.4"
|
||||
freethreaded: false
|
||||
@ -279,7 +277,6 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.12.4"
|
||||
freethreaded: false
|
||||
@ -389,7 +386,6 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.13.4"
|
||||
freethreaded: false
|
||||
@ -499,7 +495,6 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.13.4"
|
||||
freethreaded: true
|
||||
@ -609,9 +604,8 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.14.0-rc.2"
|
||||
python-version: "3.14.0"
|
||||
freethreaded: false
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
@ -719,9 +713,8 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.14.0-rc.2"
|
||||
python-version: "3.14.0"
|
||||
freethreaded: true
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
|
34
.github/workflows/trunk.yml
vendored
34
.github/workflows/trunk.yml
vendored
@ -190,6 +190,40 @@ jobs:
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
name: inductor-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -374,6 +374,7 @@ third_party/ruy/
|
||||
third_party/glog/
|
||||
|
||||
# Virtualenv
|
||||
.venv/
|
||||
venv/
|
||||
|
||||
# Log files
|
||||
|
14
CODEOWNERS
14
CODEOWNERS
@ -201,3 +201,17 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
/torch/csrc/stable/ @janeyx99 @mikaylagawarecki
|
||||
/torch/headeronly/ @janeyx99
|
||||
/torch/header_only_apis.txt @janeyx99
|
||||
|
||||
# FlexAttention
|
||||
/torch/nn/attention/flex_attention.py @drisspg
|
||||
/torch/_higher_order_ops/flex_attention.py @drisspg
|
||||
/torch/_inductor/kernel/flex/ @drisspg
|
||||
/torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg
|
||||
/test/inductor/test_flex_attention.py @drisspg
|
||||
/test/inductor/test_flex_decoding.py @drisspg
|
||||
|
||||
# Low Precision GEMMs
|
||||
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
|
||||
/test/test_scaled_matmul_cuda.py @drisspg @slayton58
|
||||
|
@ -183,11 +183,6 @@ struct CUDACachingHostAllocatorImpl
|
||||
return true;
|
||||
}
|
||||
|
||||
bool pinned_use_background_threads() override {
|
||||
return c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
|
||||
pinned_use_background_threads();
|
||||
}
|
||||
|
||||
EventPool::Event create_event_internal(DeviceIndex idx) {
|
||||
// Leak the event pool to avoid shutdown issue.
|
||||
static auto* event_pool = new EventPool();
|
||||
|
@ -177,7 +177,6 @@ inline void segmented_sort_pairs(
|
||||
}
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
|
||||
inline void unique_by_key(
|
||||
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
|
||||
@ -193,7 +192,6 @@ inline void unique_by_key(
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
|
||||
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace impl {
|
||||
|
||||
@ -579,7 +577,6 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
|
||||
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
|
||||
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
|
||||
@ -607,7 +604,6 @@ inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
|
||||
void unique(InputIteratorT input, OutputIteratorT output,
|
||||
|
@ -28,22 +28,6 @@
|
||||
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
|
||||
#endif
|
||||
|
||||
// cub support for UniqueByKey is added to cub 1.16 in:
|
||||
// https://github.com/NVIDIA/cub/pull/405
|
||||
#if CUB_VERSION >= 101600
|
||||
#define CUB_SUPPORTS_UNIQUE_BY_KEY() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_UNIQUE_BY_KEY() false
|
||||
#endif
|
||||
|
||||
// cub support for scan by key is added to cub 1.15
|
||||
// in https://github.com/NVIDIA/cub/pull/376
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_SCAN_BY_KEY() 1
|
||||
#else
|
||||
#define CUB_SUPPORTS_SCAN_BY_KEY() 0
|
||||
#endif
|
||||
|
||||
// cub support for cub::FutureValue is added to cub 1.15 in:
|
||||
// https://github.com/NVIDIA/cub/pull/305
|
||||
#if CUB_VERSION >= 101500
|
||||
|
@ -160,6 +160,10 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
|
||||
DispatchKey::CUDA,
|
||||
DispatchKey::CPU,
|
||||
DispatchKey::PrivateUse1,
|
||||
DispatchKey::SparseCPU,
|
||||
DispatchKey::SparseCUDA,
|
||||
DispatchKey::SparseCsrCPU,
|
||||
DispatchKey::SparseCsrCUDA,
|
||||
});
|
||||
|
||||
inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {
|
||||
|
@ -658,6 +658,7 @@ static void check_shape_forward(const at::Tensor& input,
|
||||
TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported");
|
||||
TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported");
|
||||
TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero");
|
||||
TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups);
|
||||
|
||||
TORCH_CHECK(weight_dim == k,
|
||||
"Expected ", weight_dim, "-dimensional input for ", weight_dim,
|
||||
|
@ -120,7 +120,7 @@ static void pow_tensor_scalar_kernel(
|
||||
} else if (dtype == ScalarType::Half) {
|
||||
[&]() {
|
||||
using scalar_t =
|
||||
c10::impl::ScalarTypeToCPPTypeT<ScalarType::Half>;
|
||||
decltype(c10::impl::ScalarTypeToCPPType<ScalarType::Half>::t);
|
||||
const auto exp = exp_scalar.to<scalar_t>();
|
||||
using Vec = Vectorized<scalar_t>;
|
||||
cpu_kernel_vec(iter,
|
||||
|
@ -2322,12 +2322,23 @@ _scaled_nvfp4_nvfp4(
|
||||
const Tensor& scale_b, const SwizzleType swizzle_b,
|
||||
const std::optional<Tensor>& bias,
|
||||
const c10::ScalarType out_dtype,
|
||||
const bool single_scale,
|
||||
Tensor& out) {
|
||||
Tensor& out,
|
||||
const std::optional<Tensor>& global_scale_a = std::nullopt,
|
||||
const std::optional<Tensor>& global_scale_b = std::nullopt) {
|
||||
#ifdef USE_ROCM
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "NVFP4 scaling not supported on ROCM");
|
||||
#endif
|
||||
TORCH_CHECK_VALUE(single_scale, "Only single-scaled NVFP4 currently supported");
|
||||
std::optional<Tensor> alpha = std::nullopt;
|
||||
// Note: "Or" here means that if only one scale is passed, we check for the other. Otherwise,
|
||||
// if this is "And" we would silently do nothing in the case where one global scale is
|
||||
// passed and not the other.
|
||||
if (global_scale_a.has_value() || global_scale_b.has_value()) {
|
||||
TORCH_CHECK_VALUE(global_scale_a.has_value(),
|
||||
"For two-level-scaled NVFP4, global_scale_a must have a value");
|
||||
TORCH_CHECK_VALUE(global_scale_b.has_value(),
|
||||
"For two-level-scaled NVFP4, global_scale_b must have a value");
|
||||
alpha = global_scale_a.value().mul(global_scale_b.value());
|
||||
}
|
||||
// Restrictions:
|
||||
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
|
||||
// Scales must be swizzled
|
||||
@ -2349,7 +2360,7 @@ _scaled_nvfp4_nvfp4(
|
||||
|
||||
auto scaling_choice_a = ScalingType::BlockWise1x16;
|
||||
auto scaling_choice_b = ScalingType::BlockWise1x16;
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out, alpha);
|
||||
}
|
||||
|
||||
|
||||
@ -2555,9 +2566,10 @@ _scaled_mm_cuda_v2_out(
|
||||
} else if (gemm_impl == ScaledGemmImplementation::MXFP8_MXFP8) {
|
||||
return _scaled_mxfp8_mxfp8(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
|
||||
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "Only single-scale NVFP4 currently supported");
|
||||
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out,
|
||||
scale_a[1], scale_b[1]);
|
||||
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE) {
|
||||
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, true /* single_scale */, out);
|
||||
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
|
||||
} else if (gemm_impl == ScaledGemmImplementation::MXFP4_MXFP4) {
|
||||
return _scaled_mxfp4_mxfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
|
||||
} else {
|
||||
|
@ -856,13 +856,9 @@ struct type_specialized_kernel_launcher {
|
||||
out_calc_t output_offset_calculator,
|
||||
loader_t loader,
|
||||
storer_t storer) {
|
||||
constexpr ScalarType sret_t = rt_binary_specializations[arg_index][0];
|
||||
constexpr ScalarType sarg0_t = rt_binary_specializations[arg_index][1];
|
||||
constexpr ScalarType sarg1_t = rt_binary_specializations[arg_index][2];
|
||||
if (ret_t == sret_t && arg0_t == sarg0_t && arg1_t == sarg1_t) {
|
||||
using cret_t = c10::impl::ScalarTypeToCPPTypeT<sret_t>;
|
||||
using carg0_t = c10::impl::ScalarTypeToCPPTypeT<sarg0_t>;
|
||||
using carg1_t = c10::impl::ScalarTypeToCPPTypeT<sarg1_t>;
|
||||
if (ret_t == rt_binary_specializations[arg_index][0] &&
|
||||
arg0_t == rt_binary_specializations[arg_index][1] &&
|
||||
arg1_t == rt_binary_specializations[arg_index][2])
|
||||
launch_vectorized_templated_kernel<
|
||||
func_t,
|
||||
array_t,
|
||||
@ -870,9 +866,12 @@ struct type_specialized_kernel_launcher {
|
||||
out_calc_t,
|
||||
loader_t,
|
||||
storer_t,
|
||||
cret_t,
|
||||
carg0_t,
|
||||
carg1_t>(
|
||||
decltype(c10::impl::ScalarTypeToCPPType<
|
||||
rt_binary_specializations[arg_index][0]>::t),
|
||||
decltype(c10::impl::ScalarTypeToCPPType<
|
||||
rt_binary_specializations[arg_index][1]>::t),
|
||||
decltype(c10::impl::ScalarTypeToCPPType<
|
||||
rt_binary_specializations[arg_index][2]>::t)>(
|
||||
numel,
|
||||
f,
|
||||
data,
|
||||
@ -880,7 +879,6 @@ struct type_specialized_kernel_launcher {
|
||||
output_offset_calculator,
|
||||
loader,
|
||||
storer);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -15,9 +15,7 @@
|
||||
#include <ATen/native/cuda/block_reduce.cuh>
|
||||
#include <ATen/native/cuda/thread_constants.h>
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
#include <thrust/iterator/reverse_iterator.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -240,10 +238,6 @@ __global__ void renorm_kernel(
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
|
||||
#endif
|
||||
|
||||
Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices_,
|
||||
int64_t num_weights, int64_t padding_idx,
|
||||
@ -306,7 +300,6 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
|
||||
|
||||
if (scale_grad_by_freq) {
|
||||
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
@ -333,11 +326,6 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
|
||||
num_indices
|
||||
);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
|
||||
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
|
||||
return embedding_backward_cuda_kernel(grad, orig_indices,
|
||||
|
@ -10,9 +10,7 @@
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
#include <thrust/iterator/counting_iterator.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -196,18 +194,9 @@ __global__ void compute_num_of_partial_segments(const index_t *partials_per_segm
|
||||
partials_per_segment_offset[num_of_segments-1];
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
__global__ void write_num_of_segments_for_legacy_thrust_path(int64_t *num_of_segments_ptr, int64_t num_of_segments) {
|
||||
*num_of_segments_ptr = num_of_segments;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // anon namespace
|
||||
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
template<typename index_t>
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
#endif
|
||||
|
||||
Tensor embedding_backward_cuda_kernel(
|
||||
const Tensor &grad,
|
||||
@ -234,20 +223,12 @@ Tensor embedding_backward_cuda_kernel(
|
||||
auto segment_offsets = at::empty({numel}, orig_indices.options());
|
||||
auto num_of_segments_tensor = at::empty({}, grad.options().dtype(kLong));
|
||||
int64_t *num_of_segments_ptr = num_of_segments_tensor.mutable_data_ptr<int64_t>();
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
|
||||
int64_t num_of_segments = embedding_backward_cuda_kernel_unique_by_key<index_t>(sorted_indices, segment_offsets);
|
||||
write_num_of_segments_for_legacy_thrust_path<<<1, 1, 0, c10::cuda::getCurrentCUDAStream()>>>(num_of_segments_ptr, num_of_segments);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
|
||||
cuda::cub::unique_by_key(
|
||||
sorted_indices.const_data_ptr<index_t>(), thrust::make_counting_iterator(0),
|
||||
segment_offsets.mutable_data_ptr<index_t>(),
|
||||
num_of_segments_ptr, sorted_indices.numel());
|
||||
});
|
||||
#endif
|
||||
|
||||
int64_t max_segments = std::min<int64_t>(numel, num_weights);
|
||||
|
||||
|
@ -31,16 +31,10 @@
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
#include <thrust/iterator/reverse_iterator.h>
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
|
||||
@ -199,7 +193,6 @@ Tensor embedding_bag_backward_cuda_sum_avg(
|
||||
|
||||
if (scale_grad_by_freq) {
|
||||
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
@ -226,11 +219,6 @@ Tensor embedding_bag_backward_cuda_sum_avg(
|
||||
num_indices
|
||||
);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
|
||||
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
return embedding_backward_cuda_kernel(grad, orig_indices, sorted_indices,
|
||||
count, num_weights, padding_idx, mode == EmbeddingBagMode::MEAN, offset2bag,
|
||||
|
@ -1,90 +0,0 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/native/cuda/SortingCommon.cuh>
|
||||
#include <ATen/cuda/cub_definitions.cuh>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#else
|
||||
#include <ATen/ops/empty_like.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cuda/ThrustAllocator.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
#include <thrust/sort.h>
|
||||
#include <thrust/unique.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count) {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
at::cuda::ThrustAllocator allocator;
|
||||
auto policy = thrust::cuda::par(allocator).on(stream);
|
||||
|
||||
auto num_indices = count.numel();
|
||||
|
||||
// Compute an increasing sequence per unique item in sortedIndices:
|
||||
// sorted: 2 5 5 5 7 7 8 9 9
|
||||
// count: 1 1 2 3 1 2 1 1 2
|
||||
auto sorted_data = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
|
||||
auto count_data = thrust::device_ptr<index_t>(count.mutable_data_ptr<index_t>());
|
||||
thrust::inclusive_scan_by_key(
|
||||
policy,
|
||||
sorted_data,
|
||||
sorted_data + num_indices,
|
||||
thrust::make_constant_iterator(1),
|
||||
count_data
|
||||
);
|
||||
|
||||
// Take the maximum of each count per unique key in reverse:
|
||||
// sorted: 2 5 5 5 7 7 8 9 9
|
||||
// count: 1 3 3 3 2 2 1 2 2
|
||||
thrust::inclusive_scan_by_key(
|
||||
policy,
|
||||
thrust::make_reverse_iterator(sorted_data + num_indices),
|
||||
thrust::make_reverse_iterator(sorted_data),
|
||||
thrust::make_reverse_iterator(count_data + num_indices),
|
||||
thrust::make_reverse_iterator(count_data + num_indices),
|
||||
thrust::equal_to<index_t>(),
|
||||
thrust::maximum<index_t>()
|
||||
);
|
||||
}
|
||||
|
||||
template
|
||||
void embedding_dense_backward_cuda_scan<int>(Tensor &sorted_indices, Tensor &count);
|
||||
template
|
||||
void embedding_dense_backward_cuda_scan<int64_t>(Tensor &sorted_indices, Tensor &count);
|
||||
|
||||
#endif
|
||||
|
||||
template<typename index_t>
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
at::cuda::ThrustAllocator allocator;
|
||||
auto policy = thrust::cuda::par(allocator).on(stream);
|
||||
const ptrdiff_t numel = sorted_indices.numel();
|
||||
auto sorted_indices_dev = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
|
||||
auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
auto dummy_dev = thrust::device_ptr<index_t>(dummy.mutable_data_ptr<index_t>());
|
||||
auto ends = thrust::unique_by_key_copy(
|
||||
policy,
|
||||
sorted_indices_dev,
|
||||
sorted_indices_dev + numel,
|
||||
thrust::make_counting_iterator(0),
|
||||
dummy_dev,
|
||||
thrust::device_ptr<index_t>(segment_offsets.mutable_data_ptr<index_t>()));
|
||||
return thrust::get<0>(ends) - dummy_dev;
|
||||
}
|
||||
|
||||
template
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key<int>(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
template
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key<int64_t>(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
|
||||
} // namespace at::native
|
@ -146,6 +146,7 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
|
||||
int64_t batch_size = target.size(0);
|
||||
int64_t H = target.size(1);
|
||||
int64_t W = target.size(2);
|
||||
int64_t n_classes = grad_input.size(1);
|
||||
|
||||
CUDA_KERNEL_LOOP(index, n_threads) {
|
||||
const int64_t b = index % batch_size;
|
||||
@ -156,6 +157,7 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
|
||||
if (cur_target == ignore_index) {
|
||||
continue;
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
|
||||
scalar_t value = -(weight != nullptr ? weight[cur_target] : static_cast<scalar_t>(1));
|
||||
grad_input[b][cur_target][h][w] = value * grad_output[b][h][w];
|
||||
}
|
||||
|
@ -413,14 +413,12 @@ struct ReduceOp {
|
||||
value = thread_reduce<output_vec_size>(input_slice);
|
||||
}
|
||||
|
||||
if (config.should_block_y_reduce()) {
|
||||
value = block_y_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
__syncthreads();
|
||||
if (config.should_block_x_reduce()) {
|
||||
value = block_x_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
|
||||
if (config.should_block_y_reduce()) {
|
||||
value = block_y_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
using out_ptr_vec_t = std::array<out_scalar_t*, output_vec_size>;
|
||||
using offset_vec_t = std::array<index_t, output_vec_size>;
|
||||
offset_vec_t base_offsets;
|
||||
@ -655,14 +653,8 @@ struct ReduceOp {
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
// Intra-warp reduction, fix CUDA to have offset decreasing for better numerics
|
||||
// matching Triton, etc.
|
||||
// todo for AMD
|
||||
#ifdef USE_ROCM
|
||||
|
||||
for (int offset = 1; offset < dim_x; offset <<= 1) {
|
||||
#else
|
||||
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
|
||||
#endif
|
||||
#pragma unroll
|
||||
for (int i = 0; i < output_vec_size; i++) {
|
||||
arg_t other = ops.warp_shfl_down(value[i], offset);
|
||||
|
@ -19,7 +19,6 @@
|
||||
|
||||
namespace at::native {
|
||||
|
||||
// TODO: remove this when CUDA <11.6 is no longer supported
|
||||
void topk_out_with_sort(
|
||||
const Tensor& self,
|
||||
int64_t k, int64_t dim, bool largest,
|
||||
@ -31,21 +30,12 @@ void topk_out_with_sort(
|
||||
indices.copy_(sorted_indices.narrow(dim, 0, k));
|
||||
}
|
||||
|
||||
// TODO: remove this when CUDA <11.6 is no longer supported
|
||||
bool disable_sort_for_topk();
|
||||
bool should_use_sort(const Tensor& self, int64_t dim) {
|
||||
#if defined(USE_ROCM)
|
||||
if (self.dtype() == kBool) return false; // Bool sort not supported in ROCm: https://github.com/pytorch/pytorch/issues/139972
|
||||
return (self.numel() >= 10000 && self.numel() == self.size(dim)); // based on the experiments in https://github.com/pytorch/pytorch/pull/146387
|
||||
#else
|
||||
if (disable_sort_for_topk()) return false;
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/68632
|
||||
if (self.dim() == 0) return false;
|
||||
if (self.dtype() == kBool) return false; // Bool is not support by topk
|
||||
int64_t slice_size = self.size(dim);
|
||||
if (slice_size == 0) return false;
|
||||
int64_t num_slices = self.numel() / slice_size;
|
||||
return num_slices <= 10 && slice_size >= 100000;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -21,11 +21,6 @@ using namespace at::native;
|
||||
|
||||
namespace at::native {
|
||||
|
||||
// TODO: remove this when CUDA <11.6 is no longer supported
|
||||
bool disable_sort_for_topk() {
|
||||
return CUB_SUPPORTS_SCAN_BY_KEY();
|
||||
}
|
||||
|
||||
namespace sbtopk { // single_block_topk
|
||||
|
||||
template <typename T>
|
||||
@ -418,10 +413,6 @@ __global__ void computeBlockwiseWithinKCounts(
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
return;
|
||||
#endif
|
||||
|
||||
Bitwise desired_digit = at::cuda::Bitfield<Bitwise>::getBitfield(desired, current_bit, RADIX_BITS);
|
||||
|
||||
// if largest, then only threads that has tidx > desired_digit are active
|
||||
@ -477,7 +468,6 @@ __global__ void computeBlockwiseWithinKCounts(
|
||||
}
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
// Assumption: slice_size can not be larger than UINT32_MAX
|
||||
template <typename Bitwise>
|
||||
__global__ void computeBlockwiseKthCounts(
|
||||
@ -609,7 +599,6 @@ __global__ void gatherTopK(at::cuda::detail::TensorInfo<const T, IndexType> inpu
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int get_items_per_thread(uint64_t num_slices, uint64_t slice_size) {
|
||||
// occupancy of this kernel is limited by registers per threads
|
||||
@ -687,16 +676,12 @@ void launch(
|
||||
uint32_t* digit_cum_sum = reinterpret_cast<uint32_t*>(digit_cum_sum_buffer.get());
|
||||
AT_CUDA_CHECK(cudaMemsetAsync(digit_cum_sum, 0, numInputSlices * RADIX_DIGITS * sizeof(uint32_t), stream));
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
auto withinKCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
|
||||
uint32_t* withinKCounts = reinterpret_cast<uint32_t*>(withinKCounts_buffer.get());
|
||||
AT_CUDA_CHECK(cudaMemsetAsync(withinKCounts, 0, num_blocks * sizeof(uint32_t), stream));
|
||||
|
||||
auto kthCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
|
||||
uint32_t* kthCounts = reinterpret_cast<uint32_t*>(kthCounts_buffer.get());
|
||||
#else
|
||||
uint32_t* withinKCounts = nullptr;
|
||||
#endif
|
||||
|
||||
Bitwise desiredMask = 0;
|
||||
dim3 grid;
|
||||
@ -743,7 +728,6 @@ void launch(
|
||||
}
|
||||
desired = desired_in;
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
computeBlockwiseKthCounts<Bitwise><<<std::min(((int64_t)numInputSlices + 255) / 256, (int64_t)1073741824), 256, 0, stream>>>(
|
||||
desired, counts, num_blocks, blocks_per_slice, kthCounts);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
@ -759,28 +743,6 @@ void launch(
|
||||
topK, topKWithinSliceStride, indices, indicesWithinSliceStride, items_per_thread,
|
||||
blocks_per_slice, kthValues, withinKCounts, kthCounts, num_blocks);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#else
|
||||
// Find topk values based on kth values
|
||||
{
|
||||
dim3 grid;
|
||||
TORCH_INTERNAL_ASSERT(getGridFromTiles(numInputSlices, grid), "Too many slices for topk");
|
||||
int warp_size = at::cuda::warp_size();
|
||||
dim3 block(std::min(at::ceil_div((int64_t)inputSliceSize, (int64_t)warp_size) * (int64_t)warp_size, (int64_t)1024));
|
||||
sbtopk::gatherTopK<T, IndexType, Dim, /* WithKthValues= */true><<<grid, block, 0, stream>>>(
|
||||
input,
|
||||
inputSliceSize,
|
||||
outputSliceSize,
|
||||
largest,
|
||||
numInputSlices,
|
||||
inputWithinSliceStride,
|
||||
topK,
|
||||
topKWithinSliceStride,
|
||||
indices,
|
||||
indicesWithinSliceStride,
|
||||
kthValues);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace mbtopk
|
||||
@ -788,7 +750,6 @@ void launch(
|
||||
bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
|
||||
if (num_slices > std::numeric_limits<uint32_t>::max() ||
|
||||
slice_size > std::numeric_limits<uint32_t>::max()) return false;
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/74267
|
||||
return (num_slices <= 20 && slice_size >= 20000) ||
|
||||
(num_slices > 20 && num_slices <= 40 && slice_size >= 10000) ||
|
||||
@ -797,12 +758,6 @@ bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
|
||||
(num_slices >= 200 && num_slices < 800 && slice_size >= 3000) ||
|
||||
(num_slices >= 800 && num_slices <= 4000 && slice_size >= 800) ||
|
||||
(num_slices > 4000 && slice_size >= 400);
|
||||
#else
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/71081
|
||||
return (num_slices <= 400 && slice_size >= 5000) ||
|
||||
(num_slices > 400 && num_slices < 4000 && slice_size >= 1000) ||
|
||||
(num_slices >= 4000 && slice_size >= 300);
|
||||
#endif
|
||||
}
|
||||
|
||||
void launch_gather_topk_kernel(
|
||||
|
@ -44,7 +44,7 @@ __global__ void triu_tril_kernel(
|
||||
const int64_t k,
|
||||
const int64_t N_padded,
|
||||
const IndexType last_dim_padded) {
|
||||
int64_t linear_idx = (blockIdx.x * blockDim.x + threadIdx.x) * elements_per_thread;
|
||||
int64_t linear_idx = (((int64_t)blockIdx.x) * blockDim.x + threadIdx.x) * elements_per_thread;
|
||||
if (linear_idx >= N_padded) {
|
||||
return;
|
||||
}
|
||||
|
@ -127,29 +127,6 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
// Helper function to compute output pixel range that can contribute to input pixel
|
||||
template <typename accscalar_t>
|
||||
__device__ __forceinline__ void compute_output_range(
|
||||
int input_pos,
|
||||
accscalar_t scale,
|
||||
int output_size,
|
||||
bool align_corners,
|
||||
int& min_output,
|
||||
int& max_output) {
|
||||
accscalar_t lo, hi;
|
||||
if (align_corners) {
|
||||
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
|
||||
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
|
||||
} else {
|
||||
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
|
||||
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
|
||||
}
|
||||
min_output = max(0, static_cast<int>(ceil(lo)));
|
||||
max_output = min(output_size - 1, static_cast<int>(floor(hi)));
|
||||
}
|
||||
#endif
|
||||
|
||||
// Backward (adjoint) operation 1 <- 2 (accumulates)
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
C10_LAUNCH_BOUNDS_1(1024)
|
||||
@ -164,74 +141,8 @@ __global__ void upsample_bilinear2d_backward_out_frame(
|
||||
const bool align_corners,
|
||||
scalar_t* __restrict__ idata,
|
||||
const scalar_t* __restrict__ odata) {
|
||||
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
|
||||
const size_t i_numel = nc * width1 * height1;
|
||||
#ifdef USE_ROCM
|
||||
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
|
||||
index += blockDim.x * gridDim.x) {
|
||||
// Decode input pixel coordinates
|
||||
size_t index_temp = index;
|
||||
const int w1 = index_temp % width1;
|
||||
index_temp /= width1;
|
||||
const int h1 = index_temp % height1;
|
||||
const size_t nc_idx = index_temp / height1;
|
||||
|
||||
accscalar_t grad_sum = 0;
|
||||
|
||||
// Find range of output pixels that could interpolate from this input pixel
|
||||
int h2_min, h2_max, w2_min, w2_max;
|
||||
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
|
||||
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
|
||||
|
||||
// Iterate over potential output pixels
|
||||
for (int h2 = h2_min; h2 <= h2_max; h2++) {
|
||||
for (int w2 = w2_min; w2 <= w2_max; w2++) {
|
||||
// Compute source coordinates for this output pixel
|
||||
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
|
||||
rheight, h2, align_corners, /*cubic=*/false);
|
||||
const int h1_base = (int)h1r;
|
||||
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
|
||||
const accscalar_t h1lambda = h1r - h1_base;
|
||||
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
|
||||
|
||||
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
|
||||
rwidth, w2, align_corners, /*cubic=*/false);
|
||||
const int w1_base = (int)w1r;
|
||||
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
|
||||
const accscalar_t w1lambda = w1r - w1_base;
|
||||
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
|
||||
|
||||
// Check if our input pixel participates in this interpolation and accumulate all weights
|
||||
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
|
||||
// to the same pixel, so we need to accumulate weights from all matching positions
|
||||
accscalar_t weight = 0;
|
||||
|
||||
// Check all four interpolation positions and accumulate weights
|
||||
if (h1 == h1_base && w1 == w1_base) {
|
||||
weight += h0lambda * w0lambda; // top-left
|
||||
}
|
||||
if (h1 == h1_base && w1 == w1_base + w1p) {
|
||||
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
|
||||
}
|
||||
if (h1 == h1_base + h1p && w1 == w1_base) {
|
||||
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
|
||||
}
|
||||
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
|
||||
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
|
||||
}
|
||||
|
||||
if (weight > 0) {
|
||||
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
|
||||
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write accumulated gradient (no atomics needed)
|
||||
idata[index] = static_cast<scalar_t>(grad_sum);
|
||||
}
|
||||
#else
|
||||
const size_t o_numel = nc * width2 * height2;
|
||||
const size_t i_numel = nc * width1 * height1;
|
||||
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
|
||||
index += blockDim.x * gridDim.x) {
|
||||
size_t index_temp = index;
|
||||
@ -280,7 +191,6 @@ __global__ void upsample_bilinear2d_backward_out_frame(
|
||||
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
|
||||
true);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
@ -477,6 +387,7 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
// threads are not covering the whole input tensor.
|
||||
grad_input.zero_();
|
||||
|
||||
const size_t num_kernels = nbatch * channels * output_height * output_width;
|
||||
const int num_threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
@ -486,12 +397,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
constexpr bool use_input = true;
|
||||
#else
|
||||
constexpr bool use_input = false;
|
||||
#endif
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::ScalarType::Half, at::ScalarType::BFloat16,
|
||||
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
|
||||
@ -509,8 +414,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
|
||||
input_width, output_width, align_corners, scales_w);
|
||||
|
||||
const size_t num_kernels = nbatch * channels * output_height * output_width;
|
||||
|
||||
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
|
||||
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
|
||||
input_height,
|
||||
@ -541,8 +444,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
|
||||
input_width, output_width, align_corners, scales_w);
|
||||
|
||||
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
|
||||
|
||||
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
|
||||
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
|
||||
num_threads,
|
||||
|
@ -466,11 +466,7 @@ struct ReduceJitOp {
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#ifdef USE_ROCM
|
||||
for (int offset = 1; offset < dim_x; offset <<= 1) {
|
||||
#else
|
||||
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
|
||||
#endif
|
||||
#pragma unroll
|
||||
for (int i = 0; i < output_vec_size; i++) {
|
||||
arg_t other = reducer::warp_shfl_down(value[i], offset);
|
||||
|
@ -487,9 +487,7 @@ std::unique_ptr<fe::graph::Graph> build_graph(
|
||||
auto scaled_dot_product_flash_attention_options =
|
||||
fe::graph::SDPA_attributes()
|
||||
.set_name("CUDNN_SDPA")
|
||||
.set_is_inference(return_softmaxstats == false)
|
||||
// TODO(eqy): switch to this API once cuDNN FE is upgraded
|
||||
// .set_generate_stats(return_softmaxstats)
|
||||
.set_generate_stats(return_softmaxstats)
|
||||
.set_causal_mask(is_causal)
|
||||
.set_attn_scale(attn_scale);
|
||||
if (use_ragged_in_dense(q, k, v, o, attn_bias.has_value())) {
|
||||
@ -707,9 +705,7 @@ std::unique_ptr<fe::graph::Graph> build_graph_nestedtensor(
|
||||
auto scaled_dot_product_flash_attention_options =
|
||||
fe::graph::SDPA_attributes()
|
||||
.set_name("CUDNN_SDPA_NESTEDTENSOR")
|
||||
.set_is_inference(return_softmaxstats == false)
|
||||
// TODO(eqy): switch to this API once cuDNN FE is upgraded
|
||||
// .set_generate_stats(return_softmaxstats)
|
||||
.set_generate_stats(return_softmaxstats)
|
||||
.set_causal_mask(is_causal)
|
||||
.set_attn_scale(attn_scale)
|
||||
.set_seq_len_q(SEQ_LEN_Q_)
|
||||
|
@ -441,7 +441,7 @@ kernel void applySYRK(
|
||||
uint3 tid [[thread_position_in_threadgroup]],
|
||||
uint3 tgid [[threadgroup_position_in_grid]],
|
||||
uint3 tpg [[threads_per_threadgroup]],
|
||||
uint sgitg [[simdgroup_index_in_threadgroup]]) {
|
||||
uint warp_id [[simdgroup_index_in_threadgroup]]) {
|
||||
const uint tx = tid.x;
|
||||
const uint ty = tid.y;
|
||||
const uint simdGroupsPerThreadgroup = (tpg.x * tpg.y + 31) / 32;
|
||||
@ -474,11 +474,8 @@ kernel void applySYRK(
|
||||
(actSize_j % 8 == 0) && (actSize_h % 8 == 0) && (actSize_k % 8 == 0);
|
||||
|
||||
if (use_simdgroup) {
|
||||
uint warp_id = sgitg;
|
||||
|
||||
simdgroup_matrix<float, 8, 8> negative_identity =
|
||||
simdgroup_matrix<float, 8, 8>(-1.0);
|
||||
simdgroup_matrix<float, 8, 8> identity = simdgroup_matrix<float, 8, 8>(1.0);
|
||||
simdgroup_matrix<float, 8, 8> Prod;
|
||||
simdgroup_matrix<float, 8, 8> Afrag;
|
||||
simdgroup_matrix<float, 8, 8> Bfrag;
|
||||
@ -521,8 +518,7 @@ kernel void applySYRK(
|
||||
/* transpose = */ upper);
|
||||
|
||||
simdgroup_multiply(Prod, Afrag, Bfrag);
|
||||
simdgroup_multiply(Prod, Prod, negative_identity);
|
||||
simdgroup_multiply_accumulate(Cfrag, Cfrag, identity, Prod);
|
||||
simdgroup_multiply_accumulate(Cfrag, Prod, negative_identity, Cfrag);
|
||||
}
|
||||
|
||||
simdgroup_store(
|
||||
|
@ -196,6 +196,28 @@ bool use_metal_mm(const Tensor& self, const Tensor& other, const Tensor& output)
|
||||
other.size(0) > max_stride_size || other.size(1) > max_stride_size);
|
||||
}
|
||||
|
||||
void map_mps_decomposition_error_code_to_blas(const Tensor& status) {
|
||||
const auto& status_flat = status.view(-1);
|
||||
|
||||
for (const auto i : c10::irange(status_flat.size(0))) {
|
||||
int code = status_flat[i].item<int>();
|
||||
switch (code) {
|
||||
case MPSMatrixDecompositionStatusSuccess:
|
||||
status_flat[i] = 0;
|
||||
break;
|
||||
case MPSMatrixDecompositionStatusNonPositiveDefinite:
|
||||
case MPSMatrixDecompositionStatusSingular:
|
||||
status_flat[i] = 2;
|
||||
break;
|
||||
case MPSMatrixDecompositionStatusFailure:
|
||||
status_flat[i] = -1;
|
||||
break;
|
||||
default:
|
||||
TORCH_INTERNAL_ASSERT(false, "Unknown MPSMatrixDecompositionStatus enum value: ", code);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
static void linalg_lu_factor_ex_out_mps_impl(const Tensor& A,
|
||||
@ -487,6 +509,9 @@ static void linalg_solve_out_mps_impl(const Tensor& A,
|
||||
"mpsmatrixdecompositionstatus for details.");
|
||||
}
|
||||
}
|
||||
|
||||
map_mps_decomposition_error_code_to_blas(info);
|
||||
|
||||
if (!left) {
|
||||
// If this was a right solve, transpose the result back
|
||||
result.copy_(result_t.transpose(-2, -1).contiguous());
|
||||
|
@ -1370,6 +1370,7 @@
|
||||
dispatch:
|
||||
SparseCPU: bmm_sparse_cpu
|
||||
SparseCUDA: bmm_sparse_cuda
|
||||
SparseMPS: bmm_sparse_mps
|
||||
NestedTensorCPU: bmm_nested
|
||||
NestedTensorCUDA: bmm_nested_cuda
|
||||
tags: core
|
||||
@ -1385,6 +1386,7 @@
|
||||
MTIA: bmm_out_mtia
|
||||
SparseCPU: bmm_out_sparse_cpu
|
||||
SparseCUDA: bmm_out_sparse_cuda
|
||||
SparseMPS: bmm_out_sparse_mps
|
||||
SparseCsrCUDA: bmm_out_sparse_csr_cuda
|
||||
|
||||
- func: bmm.dtype(Tensor self, Tensor mat2, ScalarType out_dtype) -> Tensor
|
||||
@ -4173,7 +4175,7 @@
|
||||
structured_delegate: mm.out
|
||||
variants: function, method
|
||||
dispatch:
|
||||
SparseCPU, SparseCUDA: _sparse_mm
|
||||
SparseCPU, SparseCUDA, SparseMPS: _sparse_mm
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm
|
||||
tags: core
|
||||
|
||||
@ -7112,6 +7114,7 @@
|
||||
MTIA: addmm_out_mtia
|
||||
SparseCPU: addmm_out_sparse_dense_cpu
|
||||
SparseCUDA: addmm_out_sparse_dense_cuda
|
||||
SparseMPS: addmm_out_sparse_dense_mps
|
||||
SparseCsrCPU: addmm_out_sparse_compressed_cpu
|
||||
SparseCsrCUDA: addmm_out_sparse_compressed_cuda
|
||||
|
||||
@ -7121,6 +7124,7 @@
|
||||
dispatch:
|
||||
SparseCPU: addmm_sparse_dense_cpu
|
||||
SparseCUDA: addmm_sparse_dense_cuda
|
||||
SparseMPS: addmm_sparse_dense_mps
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: addmm_sparse_compressed_dense
|
||||
tags: core
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/native/SparseTensorUtils.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/native/mps/OperationUtils.h>
|
||||
#include <ATen/native/sparse/SparseStubs.h>
|
||||
#include <ATen/native/sparse/SparseBinaryOpIntersectionCommon.h>
|
||||
@ -18,6 +19,8 @@
|
||||
#include <ATen/ops/ones_like.h>
|
||||
#include <ATen/ops/argsort.h>
|
||||
#include <ATen/ops/result_type.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/copy_sparse_to_sparse.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#endif
|
||||
@ -33,6 +36,305 @@ static auto& lib = MetalShaderLibrary::getBundledLibrary();
|
||||
#include <ATen/native/mps/Mul_metallib.h>
|
||||
#endif
|
||||
|
||||
static Tensor& s_addmm_out_sparse_dense_mps(
|
||||
Tensor& r,
|
||||
const Tensor& t,
|
||||
const SparseTensor& sparse_,
|
||||
const Tensor& dense,
|
||||
const Scalar& beta,
|
||||
const Scalar& alpha) {
|
||||
TORCH_CHECK(sparse_.sparse_dim() == 2, "addmm: sparse_dim must be 2, got ", sparse_.sparse_dim());
|
||||
TORCH_CHECK(sparse_.dense_dim() == 0, "addmm: sparse values must be 0-dense-dim, got ", sparse_.dense_dim());
|
||||
TORCH_CHECK(dense.dim() == 2, "addmm: 'dense' must be 2D, got ", dense.dim());
|
||||
TORCH_CHECK(t.dim() == 2, "addmm: 't' must be 2D, got ", t.dim());
|
||||
|
||||
const int64_t I = sparse_.size(0);
|
||||
const int64_t J = sparse_.size(1);
|
||||
const int64_t K = dense.size(1);
|
||||
|
||||
TORCH_CHECK(dense.size(0) == J,
|
||||
"addmm: dense (mat2) dim0 must be ", J, ", got ", dense.size(0));
|
||||
TORCH_CHECK(t.size(0) == I && t.size(1) == K,
|
||||
"addmm: 't' shape must be (", I, ", ", K, "), got (", t.size(0), ", ", t.size(1), ")");
|
||||
|
||||
r.resize_({I, K});
|
||||
|
||||
auto sparse = sparse_.coalesce();
|
||||
const int64_t nnz = sparse._nnz();
|
||||
|
||||
if (nnz == 0 || I == 0 || K == 0) {
|
||||
at::mul_out(r, t, beta);
|
||||
return r;
|
||||
}
|
||||
|
||||
const auto v_dtype = sparse._values().scalar_type();
|
||||
const auto d_dtype = dense.scalar_type();
|
||||
const auto t_dtype = t.scalar_type();
|
||||
auto compute_dtype = c10::promoteTypes(c10::promoteTypes(v_dtype, d_dtype), t_dtype);
|
||||
|
||||
TORCH_CHECK(canCast(compute_dtype, r.scalar_type()),
|
||||
"Can't convert computed type ", compute_dtype, " to output ", r.scalar_type());
|
||||
|
||||
auto indices2d = sparse._indices().contiguous();
|
||||
auto values = sparse._values().to(compute_dtype);
|
||||
auto dense_c = dense.to(compute_dtype).contiguous();
|
||||
auto t_c = t.to(compute_dtype).contiguous();
|
||||
|
||||
const bool out_needs_cast = (r.scalar_type() != compute_dtype) || !r.is_contiguous();
|
||||
Tensor out_buf = out_needs_cast
|
||||
? at::empty({I, K}, r.options().dtype(compute_dtype))
|
||||
: r;
|
||||
auto out_contig = out_buf.contiguous();
|
||||
|
||||
auto device = r.device();
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
const float alpha_f = alpha.to<float>();
|
||||
const float beta_f = beta.to<float>();
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
const std::string func = "spmm_addmm_coo_" + mps::scalarToMetalTypeString(values);
|
||||
auto pso = lib.getPipelineStateForFunc(func);
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
|
||||
const uint32_t tew = pso.threadExecutionWidth;
|
||||
const uint32_t gridX = static_cast<uint32_t>(K);
|
||||
const uint32_t gridZ = static_cast<uint32_t>(I);
|
||||
const uint32_t tgW = std::min<uint32_t>(gridX, tew);
|
||||
|
||||
MTLSize grid = MTLSizeMake(gridX, 1, gridZ);
|
||||
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
|
||||
|
||||
mtl_setArgs(enc,
|
||||
indices2d,
|
||||
values,
|
||||
dense_c,
|
||||
t_c,
|
||||
out_contig,
|
||||
std::array<uint32_t, 3>{static_cast<uint32_t>(I),
|
||||
static_cast<uint32_t>(J),
|
||||
static_cast<uint32_t>(K)},
|
||||
std::array<float, 2>{alpha_f, beta_f},
|
||||
static_cast<uint32_t>(nnz));
|
||||
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
|
||||
}
|
||||
});
|
||||
|
||||
if (out_needs_cast) {
|
||||
r.copy_(out_contig.to(r.scalar_type()));
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
static void build_batch_ptr_mps(
|
||||
const Tensor& indices_dim0,
|
||||
int64_t B,
|
||||
Tensor& batch_ptr
|
||||
) {
|
||||
// Builds an array of pointers which point to each batches elements. Example:
|
||||
// idx_b = [0, 0, 0, 1, 1, 2, 2, 2, 2] // 9 non-zero elements
|
||||
// └─────┘ └──┘ └─────────┘
|
||||
// batch 0 batch 1 batch 2
|
||||
// batch_ptr = [0, 3, 5, 9]
|
||||
// │ │ │ └─ end of batch 2 (total nnz)
|
||||
// │ │ └──── batch 2 starts at index 5
|
||||
// │ └─────── batch 1 starts at index 3
|
||||
// └────────── batch 0 starts at index 0
|
||||
TORCH_CHECK(indices_dim0.is_mps() && batch_ptr.is_mps(), "MPS device expected");
|
||||
auto device = indices_dim0.device();
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
const int64_t nnz = indices_dim0.numel();
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("build_batch_ptr_from_sorted_batches");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
|
||||
const uint32_t tew = pso.threadExecutionWidth;
|
||||
const uint32_t Q = static_cast<uint32_t>(B + 1);
|
||||
const uint32_t tgW = std::min<uint32_t>(Q, tew);
|
||||
MTLSize grid = MTLSizeMake(Q, 1, 1);
|
||||
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
|
||||
|
||||
mtl_setArgs(enc,
|
||||
indices_dim0,
|
||||
batch_ptr,
|
||||
std::array<uint32_t, 2>{static_cast<uint32_t>(nnz),
|
||||
static_cast<uint32_t>(B)});
|
||||
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
static void build_row_ptr_per_batch_mps(
|
||||
const Tensor& rows,
|
||||
const Tensor& batch_ptr,
|
||||
int64_t B,
|
||||
int64_t I,
|
||||
Tensor& row_ptr
|
||||
) {
|
||||
// Build per-batch CSR-style row pointer arrays from row indices sorted by batch
|
||||
// Given:
|
||||
// rows: 1-D array of length nnz with row ids in [0, I), sorted within each batch
|
||||
// batch_ptr: length B+1, where [batch_ptr[b], batch_ptr[b+1]) is the subrange for batch b
|
||||
// Produces:
|
||||
// - row_ptr: shape [B, I+1]
|
||||
//
|
||||
// Example (B = 2, I = 4):
|
||||
// rows = [0, 0, 1, 3, 0, 2, 2] // 7 non-zero elements
|
||||
// └─── batch 0 ──┘ └─ batch 1 ─┘
|
||||
// batch_ptr = [0, 4, 7]
|
||||
// │ │ └─ end of batch 1 (total nnz)
|
||||
// │ └──── end of batch 0/start of batch 1
|
||||
// └─────── start of batch 0
|
||||
//
|
||||
// per-batch row pointers (I+1 entries each):
|
||||
// row_ptr[0] = [0, 2, 3, 3, 4]
|
||||
// row_ptr[1] = [0, 1, 1, 3, 3]
|
||||
// laid out in memory: [0, 2, 3, 3, 4, 0, 1, 1, 3, 3]
|
||||
TORCH_CHECK(rows.is_mps() && batch_ptr.is_mps() && row_ptr.is_mps(), "MPS device expected");
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("build_row_ptr_from_sorted_rows_by_batch");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
|
||||
const uint32_t tew = pso.threadExecutionWidth;
|
||||
const uint32_t Qx = static_cast<uint32_t>(I + 1);
|
||||
const uint32_t Qy = static_cast<uint32_t>(B);
|
||||
const uint32_t tgW = std::min<uint32_t>(Qx, tew);
|
||||
|
||||
MTLSize grid = MTLSizeMake(Qx, Qy, 1);
|
||||
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
|
||||
|
||||
mtl_setArgs(enc,
|
||||
rows,
|
||||
batch_ptr,
|
||||
row_ptr,
|
||||
std::array<uint32_t, 2>{static_cast<uint32_t>(I),
|
||||
static_cast<uint32_t>(B)});
|
||||
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Tensor& bmm_out_sparse_mps(const SparseTensor& self_, const Tensor& mat2_, Tensor& result_) {
|
||||
TORCH_CHECK(result_.is_mps(), "bmm_sparse: expected 'out' to be MPS, got ", result_.device());
|
||||
TORCH_CHECK(self_.is_mps(), "bmm_sparse: expected 'self' to be MPS, got ", self_.device());
|
||||
TORCH_CHECK(mat2_.is_mps(), "bmm_sparse: expected 'mat2' to be MPS, got ", mat2_.device());
|
||||
|
||||
TORCH_CHECK(self_.dense_dim() == 0, "bmm_sparse: Tensor 'self' must have 0 dense dims, but has ", self_.dense_dim());
|
||||
TORCH_CHECK(self_.sparse_dim() == 3, "bmm_sparse: Tensor 'self' must have 3 sparse dims, but has ", self_.sparse_dim());
|
||||
TORCH_CHECK(mat2_.dim() == 3, "bmm_sparse: Tensor 'mat2' must have 3 dims, but has ", mat2_.dim());
|
||||
|
||||
TORCH_CHECK(self_.size(0) == mat2_.size(0), "bmm_sparse: 'self.size(0)' and 'mat2.size(0)' must match");
|
||||
TORCH_CHECK(self_.size(2) == mat2_.size(1), "bmm_sparse: 'self.size(2)' and 'mat2.size(1)' must match");
|
||||
|
||||
const int64_t B = self_.size(0);
|
||||
const int64_t I = self_.size(1);
|
||||
const int64_t J = self_.size(2);
|
||||
const int64_t K = mat2_.size(2);
|
||||
|
||||
auto self = self_.coalesce();
|
||||
const int64_t nnz = self._nnz();
|
||||
if (nnz == 0) {
|
||||
return result_.zero_();
|
||||
}
|
||||
|
||||
const auto computeDtype = at::kFloat;
|
||||
|
||||
auto indices = self._indices();
|
||||
auto values = self._values();
|
||||
|
||||
auto values_c = values.scalar_type() == computeDtype ? values : values.to(computeDtype);
|
||||
auto mat2_c = mat2_.scalar_type() == computeDtype ? mat2_ : mat2_.to(computeDtype);
|
||||
auto mat2_contig = mat2_c.contiguous();
|
||||
|
||||
auto idx_b = indices.select(0, 0).contiguous();
|
||||
auto idx_i = indices.select(0, 1).contiguous();
|
||||
auto idx_j = indices.select(0, 2).contiguous();
|
||||
|
||||
// builds an array of pointers of where the batch_idx's pointer starts and ends
|
||||
// look in function for better explanation
|
||||
auto batch_ptr = at::empty({B + 1}, at::device(result_.device()).dtype(kLong));
|
||||
build_batch_ptr_mps(idx_b, B, batch_ptr);
|
||||
// build row_ptr per batch: for each (b, i) get [start, end) into rows/cols/vals
|
||||
auto row_ptr = at::empty({B * (I + 1)}, at::device(result_.device()).dtype(kLong));
|
||||
build_row_ptr_per_batch_mps(idx_i, batch_ptr, B, I, row_ptr);
|
||||
|
||||
const bool out_needs_cast = (result_.scalar_type() != computeDtype) || !result_.is_contiguous();
|
||||
Tensor out_buf = out_needs_cast
|
||||
? at::empty({B, I, K}, result_.options().dtype(computeDtype))
|
||||
: result_;
|
||||
auto out_contig = out_buf.contiguous();
|
||||
|
||||
auto stream = getCurrentMPSStream();
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("spmm_bmm_coo_rows_grouped_" + mps::scalarToMetalTypeString(values));
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
|
||||
const uint32_t tew = pso.threadExecutionWidth;
|
||||
const uint32_t tgW = std::min<uint32_t>((uint32_t)K, tew);
|
||||
|
||||
// One threadgroup per (row i, batch b), lanes cover K
|
||||
MTLSize grid = MTLSizeMake(tgW, (uint32_t)I, (uint32_t)B);
|
||||
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
|
||||
|
||||
mtl_setArgs(enc,
|
||||
idx_i,
|
||||
idx_j,
|
||||
values_c,
|
||||
mat2_contig,
|
||||
out_contig,
|
||||
row_ptr,
|
||||
std::array<uint32_t, 4>{(uint32_t)B, (uint32_t)I, (uint32_t)J, (uint32_t)K});
|
||||
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
|
||||
}
|
||||
});
|
||||
if (out_needs_cast) {
|
||||
result_.copy_(out_contig.to(result_.scalar_type()));
|
||||
}
|
||||
return result_;
|
||||
}
|
||||
|
||||
Tensor bmm_sparse_mps(const Tensor& self, const Tensor& mat2) {
|
||||
Tensor result = at::zeros({self.size(0), self.size(1), mat2.size(2)}, mat2.options());
|
||||
return bmm_out_sparse_mps(self, mat2, result);
|
||||
}
|
||||
|
||||
Tensor& addmm_out_sparse_dense_mps(
|
||||
const Tensor& self,
|
||||
const SparseTensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Scalar& beta,
|
||||
const Scalar& alpha,
|
||||
Tensor& result) {
|
||||
c10::MaybeOwned<Tensor> b_self = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out");
|
||||
return s_addmm_out_sparse_dense_mps(result, *b_self, mat1, mat2, beta, alpha);
|
||||
}
|
||||
|
||||
Tensor addmm_sparse_dense_mps(
|
||||
const Tensor& self,
|
||||
const SparseTensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Scalar& beta,
|
||||
const Scalar& alpha
|
||||
) {
|
||||
c10::MaybeOwned<Tensor> b_self = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out");
|
||||
Tensor result = at::empty({0}, self.options());
|
||||
return s_addmm_out_sparse_dense_mps(result, *b_self, mat1, mat2, beta, alpha);
|
||||
}
|
||||
|
||||
static SparseTensor& mul_out_dense_sparse_mps(
|
||||
const Tensor& dense,
|
||||
const Tensor& sparse,
|
||||
|
@ -1,10 +1,105 @@
|
||||
#include <metal_stdlib>
|
||||
#include <c10/metal/indexing.h>
|
||||
#include <c10/metal/utils.h>
|
||||
using namespace c10::metal;
|
||||
using namespace metal;
|
||||
|
||||
inline uint lower_bound_i64(device const long* arr, uint lo, uint hi, long key) {
|
||||
uint l = lo, r = hi;
|
||||
while (l < r) {
|
||||
uint m = (l + r) >> 1;
|
||||
long v = arr[m];
|
||||
if (v < key) {
|
||||
l = m + 1;
|
||||
} else {
|
||||
r = m;
|
||||
}
|
||||
}
|
||||
return l;
|
||||
}
|
||||
|
||||
template <typename T> struct MulAccum { using type = float; };
|
||||
template <> struct MulAccum<float2> { using type = float2; };
|
||||
inline uint upper_bound_i64(device const long* arr, uint lo, uint hi, long key) {
|
||||
uint l = lo, r = hi;
|
||||
while (l < r) {
|
||||
uint m = (l + r) >> 1;
|
||||
long v = arr[m];
|
||||
if (v <= key) {
|
||||
l = m + 1;
|
||||
} else {
|
||||
r = m;
|
||||
}
|
||||
}
|
||||
return l;
|
||||
}
|
||||
|
||||
kernel void build_row_ptr_from_sorted_rows_by_batch(
|
||||
device const long* rows [[buffer(0)]],
|
||||
device const long* batch_ptr [[buffer(1)]],
|
||||
device long* row_ptr [[buffer(2)]],
|
||||
constant uint2& dims [[buffer(3)]],
|
||||
uint3 tid [[thread_position_in_grid]])
|
||||
{
|
||||
const uint I = dims.x;
|
||||
const uint B = dims.y;
|
||||
|
||||
const uint i = tid.x;
|
||||
const uint b = tid.y;
|
||||
|
||||
if (b >= B || i > I) return;
|
||||
|
||||
const uint base = (uint)batch_ptr[b];
|
||||
const uint lim = (uint)batch_ptr[b + 1];
|
||||
|
||||
const ulong out_base = (ulong)b * (ulong)(I + 1);
|
||||
|
||||
if (i == I) {
|
||||
row_ptr[out_base + (ulong)I] = (long)lim;
|
||||
} else {
|
||||
const long key = (long)i;
|
||||
const uint pos = lower_bound_i64(rows, base, lim, key);
|
||||
row_ptr[out_base + (ulong)i] = (long)pos;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
kernel void spmm_bmm_coo_rows_grouped(
|
||||
device const long* rows [[buffer(0)]],
|
||||
device const long* cols [[buffer(1)]],
|
||||
device const T* vals [[buffer(2)]],
|
||||
device const T* dense [[buffer(3)]],
|
||||
device T* out [[buffer(4)]],
|
||||
device const long* row_ptr [[buffer(5)]],
|
||||
constant uint4& dims [[buffer(6)]],
|
||||
uint3 tid [[thread_position_in_grid]],
|
||||
uint3 ltid [[thread_position_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]])
|
||||
{
|
||||
const uint B = dims.x;
|
||||
const uint I = dims.y;
|
||||
const uint J = dims.z;
|
||||
const uint K = dims.w;
|
||||
|
||||
const uint b = tid.z;
|
||||
const uint i = tid.y;
|
||||
const uint lane = ltid.x;
|
||||
const uint tgW = tptg.x;
|
||||
|
||||
const ulong rp_base = (ulong)b * (ulong)(I + 1);
|
||||
const uint start = (uint)row_ptr[rp_base + (ulong)i];
|
||||
const uint end = (uint)row_ptr[rp_base + (ulong)i + 1];
|
||||
|
||||
for (uint k = lane; k < K; k += tgW) {
|
||||
auto acc = static_cast<accum_t<T>>(T(0));
|
||||
for (uint p = start; p < end; ++p) {
|
||||
const uint c = (uint)cols[p];
|
||||
const auto v = static_cast<accum_t<T>>(vals[p]);
|
||||
const uint d_off = ((b * J) + c) * K + k;
|
||||
const auto d = static_cast<accum_t<T>>(dense[d_off]);
|
||||
acc += mul(v, d);
|
||||
}
|
||||
const uint y_off = ((b * I) + i) * K + k;
|
||||
out[y_off] = static_cast<T>(acc);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
kernel void dense_sparse_mul_kernel(
|
||||
@ -32,10 +127,9 @@ kernel void dense_sparse_mul_kernel(
|
||||
ulong dense_idx = (ulong)key * (ulong)view_cols + (ulong)col;
|
||||
ulong val_idx = (ulong)i * (ulong)view_cols + (ulong)col;
|
||||
|
||||
using accum_t = typename MulAccum<T>::type;
|
||||
const accum_t a = static_cast<accum_t>(values[val_idx]);
|
||||
const accum_t b = static_cast<accum_t>(dense[dense_idx]);
|
||||
out_values[val_idx] = static_cast<T>(a * b);
|
||||
const auto a = static_cast<accum_t<T>>(values[val_idx]);
|
||||
const auto b = static_cast<accum_t<T>>(dense[dense_idx]);
|
||||
out_values[val_idx] = static_cast<T>(mul(a, b));
|
||||
}
|
||||
|
||||
kernel void intersect_binary_search(
|
||||
@ -120,6 +214,76 @@ kernel void fused_gather_mul_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
kernel void build_batch_ptr_from_sorted_batches(
|
||||
device const long* batches [[buffer(0)]],
|
||||
device long* batch_ptr [[buffer(1)]],
|
||||
constant uint2& nnz_B [[buffer(2)]],
|
||||
uint3 tid [[thread_position_in_grid]])
|
||||
{
|
||||
uint b = tid.x;
|
||||
uint nnz = nnz_B.x;
|
||||
uint batch = nnz_B.y;
|
||||
|
||||
if (b == batch) {
|
||||
batch_ptr[b] = (long)nnz;
|
||||
return;
|
||||
}
|
||||
|
||||
uint lo = 0;
|
||||
uint hi = nnz;
|
||||
long key = (long)b;
|
||||
while (lo < hi) {
|
||||
uint mid = (lo + hi) >> 1;
|
||||
long v = batches[mid];
|
||||
if (v < key) lo = mid + 1;
|
||||
else hi = mid;
|
||||
}
|
||||
batch_ptr[b] = (long)lo;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
kernel void spmm_addmm_coo(
|
||||
device const long* indices2d [[buffer(0)]],
|
||||
device const T* vals [[buffer(1)]],
|
||||
device const T* dense [[buffer(2)]],
|
||||
device const T* t_in [[buffer(3)]],
|
||||
device T* out [[buffer(4)]],
|
||||
constant uint3& dims [[buffer(5)]],
|
||||
constant float2& alpha_beta [[buffer(6)]],
|
||||
constant uint& nnz [[buffer(7)]],
|
||||
uint3 tid [[thread_position_in_grid]])
|
||||
{
|
||||
const uint K = dims.z;
|
||||
const uint k = tid.x;
|
||||
const uint i = tid.z;
|
||||
const float alpha = alpha_beta.x;
|
||||
const float beta = alpha_beta.y;
|
||||
|
||||
device const long* rows = indices2d;
|
||||
device const long* cols = indices2d + nnz;
|
||||
|
||||
const uint start = lower_bound_i64(rows, 0u, nnz, (long)i);
|
||||
const uint end = upper_bound_i64(rows, 0u, nnz, (long)i);
|
||||
|
||||
// accumulator is float for scalar/half/bfloat and float2 for float2
|
||||
auto acc = static_cast<accum_t<T>>(T(0));
|
||||
|
||||
for (uint p = start; p < end; ++p) {
|
||||
const uint c = (uint)cols[p];
|
||||
const auto v = static_cast<accum_t<T>>(vals[p]);
|
||||
const uint dense_off = c * K + k;
|
||||
const auto d = static_cast<accum_t<T>>(dense[dense_off]);
|
||||
acc += mul(v, d);
|
||||
}
|
||||
|
||||
const uint off = i * K + k;
|
||||
const auto base = (beta != 0.0f) ? (static_cast<accum_t<T>>(t_in[off]) * beta) : static_cast<accum_t<T>>(T(0));
|
||||
const auto y = base + alpha * acc;
|
||||
out[off] = static_cast<T>(y);
|
||||
}
|
||||
|
||||
|
||||
#define INSTANTIATE_DENSE_SPARSE_MUL(DTYPE) \
|
||||
template [[host_name("dense_sparse_mul_kernel_" #DTYPE)]] kernel void \
|
||||
dense_sparse_mul_kernel<DTYPE>( \
|
||||
@ -151,6 +315,36 @@ INSTANTIATE_DENSE_SPARSE_MUL(float2);
|
||||
constant uint2& dims_output [[buffer(8)]], \
|
||||
uint3 gid [[thread_position_in_grid]]);
|
||||
|
||||
INSTANTIATE_FUSED_GATHER_MUL(float);
|
||||
INSTANTIATE_FUSED_GATHER_MUL(half);
|
||||
INSTANTIATE_FUSED_GATHER_MUL(bfloat);
|
||||
INSTANTIATE_FOR_FLOAT_TYPES(INSTANTIATE_FUSED_GATHER_MUL);
|
||||
|
||||
|
||||
#define INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED(DTYPE) \
|
||||
template [[host_name("spmm_bmm_coo_rows_grouped_" #DTYPE)]] kernel void \
|
||||
spmm_bmm_coo_rows_grouped<DTYPE>( \
|
||||
device const long* rows [[buffer(0)]], \
|
||||
device const long* cols [[buffer(1)]], \
|
||||
device const DTYPE* vals [[buffer(2)]], \
|
||||
device const DTYPE* dense [[buffer(3)]], \
|
||||
device DTYPE* out [[buffer(4)]], \
|
||||
device const long* row_ptr [[buffer(5)]], \
|
||||
constant uint4& dims [[buffer(6)]], \
|
||||
uint3 tid [[thread_position_in_grid]], \
|
||||
uint3 ltid [[thread_position_in_threadgroup]], \
|
||||
uint3 tptg [[threads_per_threadgroup]]);
|
||||
|
||||
INSTANTIATE_FOR_ALL_TYPES(INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED);
|
||||
|
||||
#define INSTANTIATE_SPMM_ADDMM_COO(DTYPE) \
|
||||
template [[host_name("spmm_addmm_coo_" #DTYPE)]] kernel void \
|
||||
spmm_addmm_coo<DTYPE>( \
|
||||
device const long* indices2d [[buffer(0)]], \
|
||||
device const DTYPE* vals [[buffer(1)]], \
|
||||
device const DTYPE* dense [[buffer(2)]], \
|
||||
device const DTYPE* t_in [[buffer(3)]], \
|
||||
device DTYPE* out [[buffer(4)]], \
|
||||
constant uint3& dims [[buffer(5)]], \
|
||||
constant float2& alpha_beta [[buffer(6)]], \
|
||||
constant uint& nnz [[buffer(7)]], \
|
||||
uint3 tid [[thread_position_in_grid]]);
|
||||
|
||||
INSTANTIATE_FOR_ALL_TYPES(INSTANTIATE_SPMM_ADDMM_COO);
|
||||
|
@ -1751,8 +1751,8 @@ def maybe_snapshot_memory(should_snapshot_memory, suffix):
|
||||
f"{output_filename.rstrip('.csv')}_{suffix}.pickle",
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
log.error("Failed to save memory snapshot, %s", e)
|
||||
except Exception:
|
||||
log.exception("Failed to save memory snapshot")
|
||||
|
||||
torch.cuda.memory._record_memory_history(enabled=None)
|
||||
|
||||
@ -2284,9 +2284,11 @@ class BenchmarkRunner:
|
||||
)
|
||||
):
|
||||
is_same = False
|
||||
except Exception:
|
||||
except Exception as e:
|
||||
# Sometimes torch.allclose may throw RuntimeError
|
||||
is_same = False
|
||||
exception_string = str(e)
|
||||
accuracy_status = f"fail_exception: {exception_string}"
|
||||
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
||||
|
||||
if not is_same:
|
||||
accuracy_status = "eager_two_runs_differ"
|
||||
@ -2403,9 +2405,11 @@ class BenchmarkRunner:
|
||||
force_max_multiplier=force_max_multiplier,
|
||||
):
|
||||
is_same = False
|
||||
except Exception:
|
||||
except Exception as e:
|
||||
# Sometimes torch.allclose may throw RuntimeError
|
||||
is_same = False
|
||||
exception_string = str(e)
|
||||
accuracy_status = f"fail_exception: {exception_string}"
|
||||
return record_status(accuracy_status, dynamo_start_stats=start_stats)
|
||||
|
||||
if not is_same:
|
||||
if self.args.skip_accuracy_check:
|
||||
|
@ -124,7 +124,7 @@ with open(MODELS_FILENAME) as fh:
|
||||
continue
|
||||
batch_size = int(batch_size)
|
||||
BATCH_SIZE_KNOWN_MODELS[model_name] = batch_size
|
||||
assert len(BATCH_SIZE_KNOWN_MODELS)
|
||||
assert BATCH_SIZE_KNOWN_MODELS
|
||||
|
||||
|
||||
try:
|
||||
|
@ -296,8 +296,8 @@ class OperatorInputsLoader:
|
||||
for key in self.operator_db.keys():
|
||||
try:
|
||||
op = eval(key)
|
||||
except AttributeError as ae:
|
||||
log.warning("Evaluating an op name into an OpOverload: %s", ae)
|
||||
except AttributeError:
|
||||
log.warning("Evaluating an op name into an OpOverload", exc_info=True)
|
||||
continue
|
||||
yield op
|
||||
|
||||
|
@ -3,6 +3,7 @@ import sys
|
||||
from benchmark_base import BenchmarkBase
|
||||
|
||||
import torch
|
||||
from torch._dynamo.utils import CompileTimeInstructionCounter
|
||||
|
||||
|
||||
class Benchmark(BenchmarkBase):
|
||||
@ -32,7 +33,11 @@ class Benchmark(BenchmarkBase):
|
||||
def _work(self):
|
||||
# enable_cpp_symbolic_shape_guards has impact on this benchmark
|
||||
# Keep using False value for consistency.
|
||||
with torch._dynamo.config.patch("enable_cpp_symbolic_shape_guards", False):
|
||||
with (
|
||||
torch._dynamo.config.patch("enable_cpp_symbolic_shape_guards", False),
|
||||
torch._export.config.patch(use_new_tracer_experimental=True),
|
||||
CompileTimeInstructionCounter.record(),
|
||||
):
|
||||
torch.export.export(self.m, (self.input,), strict=True)
|
||||
|
||||
|
||||
|
@ -38,7 +38,7 @@ update_hint_regression,compile_time_instruction_count,1719000000,0.1
|
||||
|
||||
|
||||
|
||||
sum_floordiv_regression,compile_time_instruction_count,966100000,0.1
|
||||
sum_floordiv_regression,compile_time_instruction_count,3686995725,0.1
|
||||
|
||||
|
||||
|
||||
|
|
@ -85,7 +85,7 @@ class WeightOnlyInt8QuantHandler:
|
||||
cur_state_dict[f"{fqn}.weight"] = int8_weight
|
||||
cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
|
||||
elif isinstance(mod, ConditionalFeedForward):
|
||||
for weight_idx in range(0, 3):
|
||||
for weight_idx in range(3):
|
||||
weight_name = f"w{weight_idx + 1}"
|
||||
scales_name = f"scales{weight_idx + 1}"
|
||||
weight = getattr(mod, weight_name)
|
||||
|
@ -1729,10 +1729,8 @@ def define_buck_targets(
|
||||
"torch/csrc/jit/backends/backend_debug_info.cpp",
|
||||
"torch/csrc/jit/backends/backend_interface.cpp",
|
||||
],
|
||||
compiler_flags = get_pt_compiler_flags() + select({
|
||||
"DEFAULT": [],
|
||||
"ovr_config//os:android": c2_fbandroid_xplat_compiler_flags
|
||||
}),
|
||||
compiler_flags = get_pt_compiler_flags(),
|
||||
fbandroid_compiler_flags = c2_fbandroid_xplat_compiler_flags,
|
||||
# @lint-ignore BUCKLINT link_whole
|
||||
link_whole = True,
|
||||
linker_flags = get_no_as_needed_linker_flag(),
|
||||
@ -2025,9 +2023,6 @@ def define_buck_targets(
|
||||
"ovr_config//os:android-x86_64": [
|
||||
"-mssse3",
|
||||
],
|
||||
}) + select({
|
||||
"DEFAULT": [],
|
||||
"ovr_config//os:android": c2_fbandroid_xplat_compiler_flags,
|
||||
}),
|
||||
exported_preprocessor_flags = get_aten_preprocessor_flags(),
|
||||
exported_deps = [
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include <c10/core/AllocatorConfig.h>
|
||||
#include <c10/core/DeviceType.h>
|
||||
#include <c10/util/env.h>
|
||||
|
||||
namespace c10::CachingAllocator {
|
||||
@ -47,7 +46,7 @@ size_t AcceleratorAllocatorConfig::roundup_power2_divisions(size_t size) {
|
||||
63 - llvm::countLeadingZeros(kRoundUpPowerOfTwoStart);
|
||||
const size_t interval_end =
|
||||
63 - llvm::countLeadingZeros(kRoundUpPowerOfTwoEnd);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
interval_end - interval_start == kRoundUpPowerOfTwoIntervals,
|
||||
"kRoundUpPowerOfTwoIntervals mismatch");
|
||||
|
||||
@ -66,7 +65,7 @@ size_t AcceleratorAllocatorConfig::parseMaxSplitSize(
|
||||
std::numeric_limits<size_t>::max() / kMB;
|
||||
|
||||
size_t val_env = tokenizer.toSizeT(++i);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
val_env >= min_allowed_split_size_mb,
|
||||
"CachingAllocator option max_split_size_mb too small, must be >= ",
|
||||
min_allowed_split_size_mb);
|
||||
@ -85,7 +84,7 @@ size_t AcceleratorAllocatorConfig::parseMaxNonSplitRoundingSize(
|
||||
std::numeric_limits<size_t>::max() / kMB;
|
||||
|
||||
size_t val_env = tokenizer.toSizeT(++i);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
val_env >= min_allowed_split_size_mb,
|
||||
"CachingAllocator option max_non_split_rounding_mb too small, must be >= ",
|
||||
min_allowed_split_size_mb);
|
||||
@ -100,7 +99,7 @@ size_t AcceleratorAllocatorConfig::parseGarbageCollectionThreshold(
|
||||
size_t i) {
|
||||
tokenizer.checkToken(++i, ":");
|
||||
double val_env = tokenizer.toDouble(++i);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
val_env > 0 && val_env < 1.0,
|
||||
"garbage_collect_threshold is invalid, set it in (0.0, 1.0)");
|
||||
garbage_collection_threshold_ = val_env;
|
||||
@ -121,7 +120,7 @@ size_t AcceleratorAllocatorConfig::parseRoundUpPower2Divisions(
|
||||
size_t value_index = i;
|
||||
tokenizer.checkToken(++i, ":");
|
||||
size_t value = tokenizer.toSizeT(++i);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
value == 0 || llvm::isPowerOf2_64(value),
|
||||
"For roundups, the divisions has to be power of 2 or 0 to disable roundup ");
|
||||
|
||||
@ -129,12 +128,13 @@ size_t AcceleratorAllocatorConfig::parseRoundUpPower2Divisions(
|
||||
std::fill(
|
||||
std::next(
|
||||
roundup_power2_divisions_.begin(),
|
||||
static_cast<std::vector<size_t>::difference_type>(last_index)),
|
||||
static_cast<std::vector<size_t>::difference_type>(
|
||||
last_index + 1)),
|
||||
roundup_power2_divisions_.end(),
|
||||
value);
|
||||
} else {
|
||||
size_t boundary = tokenizer.toSizeT(value_index);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
llvm::isPowerOf2_64(boundary),
|
||||
"For roundups, the intervals have to be power of 2 ");
|
||||
|
||||
@ -164,7 +164,7 @@ size_t AcceleratorAllocatorConfig::parseRoundUpPower2Divisions(
|
||||
"Expected closing bracket ']' in ConfigTokenizer but reached end of config");
|
||||
} else { // Keep this for backwards compatibility
|
||||
size_t value = tokenizer.toSizeT(i);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
llvm::isPowerOf2_64(value),
|
||||
"For roundups, the divisions has to be power of 2 ");
|
||||
std::fill(
|
||||
@ -224,7 +224,7 @@ void AcceleratorAllocatorConfig::parseArgs(const std::string& env) {
|
||||
// If a device-specific configuration parser hook is registered, it will
|
||||
// check if the key is unrecognized.
|
||||
if (device_config_parser_hook_) {
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
getKeys().find(key) != getKeys().end(),
|
||||
"Unrecognized key '",
|
||||
key,
|
||||
|
@ -76,7 +76,7 @@ class ConfigTokenizer {
|
||||
} else if (token == "False") {
|
||||
return false;
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
false,
|
||||
"Expected 'True' or 'False' at index ",
|
||||
i,
|
||||
@ -253,7 +253,7 @@ class C10_API AcceleratorAllocatorConfig {
|
||||
device_config_parser_hook_ = std::move(hook);
|
||||
auto& mutable_keys = getMutableKeys();
|
||||
for (auto& key : keys) {
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
mutable_keys.insert(key).second,
|
||||
"Duplicated key '",
|
||||
key,
|
||||
|
@ -52,6 +52,19 @@ AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CONSTANT)
|
||||
#undef DEFINE_CONSTANT
|
||||
|
||||
inline const char* toString(ScalarType t) {
|
||||
#define DEFINE_CASE(_, name) \
|
||||
case ScalarType::name: \
|
||||
return #name;
|
||||
|
||||
switch (t) {
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CASE)
|
||||
default:
|
||||
return "UNKNOWN_SCALAR";
|
||||
}
|
||||
#undef DEFINE_CASE
|
||||
}
|
||||
|
||||
inline size_t elementSize(ScalarType t) {
|
||||
#define CASE_ELEMENTSIZE_CASE(ctype, name) \
|
||||
case ScalarType::name: \
|
||||
@ -295,6 +308,12 @@ inline bool canCast(const ScalarType from, const ScalarType to) {
|
||||
|
||||
C10_API ScalarType promoteTypes(ScalarType a, ScalarType b);
|
||||
|
||||
inline std::ostream& operator<<(
|
||||
std::ostream& stream,
|
||||
at::ScalarType scalar_type) {
|
||||
return stream << toString(scalar_type);
|
||||
}
|
||||
|
||||
// Returns a pair of strings representing the names for each dtype.
|
||||
// The returned pair is (name, legacy_name_if_applicable)
|
||||
C10_API std::pair<std::string, std::string> getDtypeNames(
|
||||
|
@ -4,7 +4,6 @@
|
||||
#include <c10/core/SymNodeImpl.h>
|
||||
#include <c10/util/intrusive_ptr.h>
|
||||
#include <c10/util/safe_numerics.h>
|
||||
#include <functional>
|
||||
|
||||
namespace c10 {
|
||||
|
||||
|
@ -9,7 +9,6 @@
|
||||
#include <c10/core/impl/TorchDispatchModeTLS.h>
|
||||
#include <c10/util/Logging.h>
|
||||
#include <c10/util/accumulate.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <optional>
|
||||
|
||||
#include <utility>
|
||||
|
@ -1,9 +1,5 @@
|
||||
#include <c10/core/TensorOptions.h>
|
||||
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/core/Layout.h>
|
||||
#include <c10/util/Optional.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace c10 {
|
||||
|
@ -2,7 +2,6 @@
|
||||
|
||||
#include <c10/core/Allocator.h>
|
||||
#include <c10/core/StorageImpl.h>
|
||||
#include <c10/core/alignment.h>
|
||||
#include <c10/core/impl/COWDeleter.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/ParallelGuard.h>
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include <c10/core/DispatchKey.h>
|
||||
#include <c10/core/SafePyObject.h>
|
||||
#include <c10/core/impl/LocalDispatchKeySet.h>
|
||||
#include <c10/core/impl/TorchDispatchModeTLS.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
@ -20,7 +20,7 @@ size_t CUDAAllocatorConfig::parseAllocatorConfig(
|
||||
tokenizer.checkToken(++i, ":");
|
||||
i++; // Move to the value after the colon
|
||||
#ifdef USE_ROCM
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
((tokenizer[i] == "native") || (tokenizer[i] == PYTORCH_TOKEN1) ||
|
||||
(tokenizer[i] == PYTORCH_TOKEN2)),
|
||||
"Unknown allocator backend, "
|
||||
@ -36,7 +36,7 @@ size_t CUDAAllocatorConfig::parseAllocatorConfig(
|
||||
" != ",
|
||||
get()->name());
|
||||
#else // USE_ROCM
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
((tokenizer[i] == "native") || (tokenizer[i] == PYTORCH_TOKEN1)),
|
||||
"Unknown allocator backend, "
|
||||
"options are native and " PYTORCH_TOKEN1);
|
||||
@ -109,7 +109,7 @@ void CUDAAllocatorConfig::parseArgs(const std::string& env) {
|
||||
} else {
|
||||
const auto& keys =
|
||||
c10::CachingAllocator::AcceleratorAllocatorConfig::getKeys();
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
keys.find(key) != keys.end(),
|
||||
"Unrecognized key '",
|
||||
key,
|
||||
@ -151,12 +151,12 @@ size_t CUDAAllocatorConfig::parsePinnedNumRegisterThreads(
|
||||
size_t i) {
|
||||
tokenizer.checkToken(++i, ":");
|
||||
size_t val2 = tokenizer.toSizeT(++i);
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
llvm::isPowerOf2_64(val2),
|
||||
"Number of register threads has to be power of 2, got ",
|
||||
val2);
|
||||
auto maxThreads = CUDAAllocatorConfig::pinned_max_register_threads();
|
||||
TORCH_CHECK(
|
||||
TORCH_CHECK_VALUE(
|
||||
val2 <= maxThreads,
|
||||
"Number of register threads should be less than or equal to ",
|
||||
maxThreads,
|
||||
@ -171,7 +171,8 @@ size_t CUDAAllocatorConfig::parsePinnedReserveSegmentSize(
|
||||
size_t i) {
|
||||
tokenizer.checkToken(++i, ":");
|
||||
size_t val2 = tokenizer.toSizeT(++i);
|
||||
TORCH_CHECK(val2 > 0, "Pinned reserve segment size has to be greater than 0");
|
||||
TORCH_CHECK_VALUE(
|
||||
val2 > 0, "Pinned reserve segment size has to be greater than 0");
|
||||
m_pinned_reserve_segment_size_mb = val2;
|
||||
return i;
|
||||
}
|
||||
|
@ -3,6 +3,7 @@
|
||||
#include <c10/core/AllocatorConfig.h>
|
||||
#include <c10/cuda/CUDAException.h>
|
||||
#include <c10/cuda/CUDAMacros.h>
|
||||
#include <c10/util/Deprecated.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/env.h>
|
||||
|
||||
@ -17,9 +18,14 @@ enum class Expandable_Segments_Handle_Type : int {
|
||||
// Environment config parser
|
||||
class C10_CUDA_API CUDAAllocatorConfig {
|
||||
public:
|
||||
C10_DEPRECATED_MESSAGE(
|
||||
"c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::max_split_size() is deprecated. Please use c10::CachingAllocator::AcceleratorAllocatorConfig::max_split_size() instead.")
|
||||
static size_t max_split_size() {
|
||||
return c10::CachingAllocator::AcceleratorAllocatorConfig::max_split_size();
|
||||
}
|
||||
|
||||
C10_DEPRECATED_MESSAGE(
|
||||
"c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::garbage_collection_threshold() is deprecated. Please use c10::CachingAllocator::AcceleratorAllocatorConfig::garbage_collection_threshold() instead.")
|
||||
static double garbage_collection_threshold() {
|
||||
return c10::CachingAllocator::AcceleratorAllocatorConfig::
|
||||
garbage_collection_threshold();
|
||||
@ -64,6 +70,8 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
return instance().m_pinned_num_register_threads;
|
||||
}
|
||||
|
||||
C10_DEPRECATED_MESSAGE(
|
||||
"c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::pinned_use_background_threads() is deprecated. Please use c10::CachingAllocator::AcceleratorAllocatorConfig::pinned_use_background_threads() instead.")
|
||||
static bool pinned_use_background_threads() {
|
||||
return c10::CachingAllocator::AcceleratorAllocatorConfig::
|
||||
pinned_use_background_threads();
|
||||
@ -80,11 +88,15 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
return 128;
|
||||
}
|
||||
|
||||
C10_DEPRECATED_MESSAGE(
|
||||
"c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::roundup_power2_divisions() is deprecated. Please use c10::CachingAllocator::AcceleratorAllocatorConfig::roundup_power2_divisions() instead.")
|
||||
static size_t roundup_power2_divisions(size_t size) {
|
||||
return c10::CachingAllocator::AcceleratorAllocatorConfig::
|
||||
roundup_power2_divisions(size);
|
||||
}
|
||||
|
||||
C10_DEPRECATED_MESSAGE(
|
||||
"c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::roundup_power2_divisions() is deprecated. Please use c10::CachingAllocator::AcceleratorAllocatorConfig::roundup_power2_divisions() instead.")
|
||||
static std::vector<size_t> roundup_power2_divisions() {
|
||||
return c10::CachingAllocator::AcceleratorAllocatorConfig::
|
||||
roundup_power2_divisions();
|
||||
@ -95,6 +107,8 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
max_non_split_rounding_size();
|
||||
}
|
||||
|
||||
C10_DEPRECATED_MESSAGE(
|
||||
"c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::last_allocator_settings() is deprecated. Please use c10::CachingAllocator::AcceleratorAllocatorConfig::last_allocator_settings() instead.")
|
||||
static std::string last_allocator_settings() {
|
||||
return c10::CachingAllocator::getAllocatorSettings();
|
||||
}
|
||||
|
@ -1260,6 +1260,9 @@ class DeviceCachingAllocator {
|
||||
// thread local compile context for each device
|
||||
static thread_local std::stack<std::string> compile_context;
|
||||
|
||||
// thread local user metadata for annotating allocations
|
||||
static thread_local std::string user_metadata;
|
||||
|
||||
public:
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
||||
explicit DeviceCachingAllocator(c10::DeviceIndex id)
|
||||
@ -1267,7 +1270,7 @@ class DeviceCachingAllocator {
|
||||
large_blocks(/*small=*/false),
|
||||
small_blocks(/*small=*/true) {
|
||||
stats.max_split_size =
|
||||
static_cast<int64_t>(CUDAAllocatorConfig::max_split_size());
|
||||
static_cast<int64_t>(AcceleratorAllocatorConfig::max_split_size());
|
||||
context_recorder_.store(nullptr);
|
||||
}
|
||||
|
||||
@ -1302,6 +1305,14 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
void setUserMetadata(const std::string& metadata) {
|
||||
user_metadata = metadata;
|
||||
}
|
||||
|
||||
std::string getUserMetadata() {
|
||||
return user_metadata;
|
||||
}
|
||||
|
||||
bool checkPoolLiveAllocations(
|
||||
MempoolId_t mempool_id,
|
||||
const std::unordered_set<void*>& expected_live_allocations) const {
|
||||
@ -1394,7 +1405,8 @@ class DeviceCachingAllocator {
|
||||
// Do garbage collection if the flag is set.
|
||||
if (C10_UNLIKELY(
|
||||
set_fraction &&
|
||||
CUDAAllocatorConfig::garbage_collection_threshold() > 0.0)) {
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold() >
|
||||
0.0)) {
|
||||
garbage_collect_cached_blocks(context);
|
||||
}
|
||||
// Attempt allocate
|
||||
@ -1646,7 +1658,7 @@ class DeviceCachingAllocator {
|
||||
stats.active_bytes[stat_type].increase(block->size);
|
||||
stats.requested_bytes[stat_type].increase(block->requested_size);
|
||||
});
|
||||
if (block->size >= CUDAAllocatorConfig::max_split_size())
|
||||
if (block->size >= AcceleratorAllocatorConfig::max_split_size())
|
||||
stats.oversize_allocations.increase(1);
|
||||
|
||||
auto allocated_bytes_gauge =
|
||||
@ -1915,7 +1927,7 @@ class DeviceCachingAllocator {
|
||||
block->pool->owner_MempoolId(),
|
||||
context ? context : block->context_when_allocated);
|
||||
|
||||
if (block->size >= CUDAAllocatorConfig::max_split_size())
|
||||
if (block->size >= AcceleratorAllocatorConfig::max_split_size())
|
||||
stats.oversize_allocations.decrease(1);
|
||||
|
||||
// If the block has been used on more than one stream, handle accordingly.
|
||||
@ -2488,7 +2500,8 @@ class DeviceCachingAllocator {
|
||||
if (size < kMinBlockSize) {
|
||||
return kMinBlockSize;
|
||||
} else {
|
||||
auto divisions = CUDAAllocatorConfig::roundup_power2_divisions(size);
|
||||
auto divisions =
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions(size);
|
||||
if (divisions > 1 && size > (kMinBlockSize * divisions)) {
|
||||
return roundup_power2_next_division(size, divisions);
|
||||
} else {
|
||||
@ -2982,7 +2995,7 @@ class DeviceCachingAllocator {
|
||||
if (block->pool->is_small || CUDAAllocatorConfig::expandable_segments()) {
|
||||
return remaining >= kMinBlockSize;
|
||||
} else {
|
||||
return (size < CUDAAllocatorConfig::max_split_size()) &&
|
||||
return (size < AcceleratorAllocatorConfig::max_split_size()) &&
|
||||
(remaining > kSmallSize);
|
||||
}
|
||||
}
|
||||
@ -3002,7 +3015,7 @@ class DeviceCachingAllocator {
|
||||
|
||||
if (C10_UNLIKELY(
|
||||
set_fraction &&
|
||||
CUDAAllocatorConfig::garbage_collection_threshold() > 0.0)) {
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold() > 0.0)) {
|
||||
// Track block reuse interval only when garbage collection is enabled.
|
||||
++pool.get_free_blocks_call_count;
|
||||
}
|
||||
@ -3044,13 +3057,13 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
|
||||
// Do not return an oversized block for a large request
|
||||
if ((p.size() < CUDAAllocatorConfig::max_split_size()) &&
|
||||
((*it)->size >= CUDAAllocatorConfig::max_split_size()))
|
||||
if ((p.size() < AcceleratorAllocatorConfig::max_split_size()) &&
|
||||
((*it)->size >= AcceleratorAllocatorConfig::max_split_size()))
|
||||
return false;
|
||||
// Allow oversized block size to be rounded up but within a limit
|
||||
if ((p.size() >= CUDAAllocatorConfig::max_split_size()) &&
|
||||
if ((p.size() >= AcceleratorAllocatorConfig::max_split_size()) &&
|
||||
((*it)->size >=
|
||||
p.size() + CUDAAllocatorConfig::max_non_split_rounding_size()))
|
||||
p.size() + AcceleratorAllocatorConfig::max_non_split_rounding_size()))
|
||||
return false;
|
||||
p.block = *it;
|
||||
pool.blocks.erase(it);
|
||||
@ -3073,7 +3086,7 @@ class DeviceCachingAllocator {
|
||||
// therefore should be of less overheads.
|
||||
|
||||
size_t gc_threshold = static_cast<size_t>(
|
||||
CUDAAllocatorConfig::garbage_collection_threshold() *
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold() *
|
||||
static_cast<double>(allowed_memory_maximum));
|
||||
// No need to trigger GC yet
|
||||
if (total_allocated_memory <= gc_threshold) {
|
||||
@ -3221,7 +3234,7 @@ class DeviceCachingAllocator {
|
||||
stats.segment[stat_type].increase(1);
|
||||
stats.reserved_bytes[stat_type].increase(size);
|
||||
});
|
||||
if (size >= CUDAAllocatorConfig::max_split_size())
|
||||
if (size >= AcceleratorAllocatorConfig::max_split_size())
|
||||
stats.oversize_segments.increase(1);
|
||||
auto reserved_bytes_gauge =
|
||||
STATIC_GAUGE(pytorch.CUDACachingAllocator.reserved_bytes);
|
||||
@ -3250,7 +3263,7 @@ class DeviceCachingAllocator {
|
||||
bool release_available_cached_blocks(
|
||||
const AllocParams& p,
|
||||
const std::shared_ptr<GatheredContext>& context) {
|
||||
if (CUDAAllocatorConfig::max_split_size() ==
|
||||
if (AcceleratorAllocatorConfig::max_split_size() ==
|
||||
std::numeric_limits<size_t>::max())
|
||||
return false;
|
||||
BlockPool& pool = *p.pool;
|
||||
@ -3258,8 +3271,8 @@ class DeviceCachingAllocator {
|
||||
// because of std::unique_ptr, block cannot be trivially copied
|
||||
// Use constructor for search key.
|
||||
Block key(p.search_key.device, p.search_key.stream, p.search_key.size);
|
||||
key.size = (key.size < CUDAAllocatorConfig::max_split_size())
|
||||
? CUDAAllocatorConfig::max_split_size()
|
||||
key.size = (key.size < AcceleratorAllocatorConfig::max_split_size())
|
||||
? AcceleratorAllocatorConfig::max_split_size()
|
||||
: key.size;
|
||||
auto it = pool.blocks.lower_bound(&key);
|
||||
if (it == pool.blocks.end() || (*it)->stream != p.stream() ||
|
||||
@ -3272,7 +3285,7 @@ class DeviceCachingAllocator {
|
||||
--it; // Back up one item. Now on the largest block for the correct
|
||||
// stream
|
||||
while ((totalReleased < key.size) &&
|
||||
((*it)->size >= CUDAAllocatorConfig::max_split_size()) &&
|
||||
((*it)->size >= AcceleratorAllocatorConfig::max_split_size()) &&
|
||||
((*it)->stream == p.stream())) {
|
||||
auto cur = it;
|
||||
bool is_first = cur == pool.blocks.begin();
|
||||
@ -3397,7 +3410,7 @@ class DeviceCachingAllocator {
|
||||
stats.reserved_bytes[static_cast<int64_t>(StatType::AGGREGATE)]
|
||||
.current);
|
||||
|
||||
if (block->size >= CUDAAllocatorConfig::max_split_size())
|
||||
if (block->size >= AcceleratorAllocatorConfig::max_split_size())
|
||||
stats.oversize_segments.decrease(1);
|
||||
pool->blocks.erase(block);
|
||||
delete block;
|
||||
@ -3682,7 +3695,8 @@ class DeviceCachingAllocator {
|
||||
mempool_id,
|
||||
getApproximateTime(),
|
||||
record_context_ >= RecordContext::ALLOC ? std::move(context) : nullptr,
|
||||
compile_string);
|
||||
compile_string,
|
||||
user_metadata);
|
||||
|
||||
// Callbacks should not include any Pytorch call
|
||||
for (const auto& cb : trace_trackers_) {
|
||||
@ -3737,6 +3751,7 @@ static void uncached_delete(void* ptr) {
|
||||
|
||||
static void local_raw_delete(void* ptr);
|
||||
thread_local std::stack<std::string> DeviceCachingAllocator::compile_context;
|
||||
thread_local std::string DeviceCachingAllocator::user_metadata;
|
||||
#ifdef __cpp_lib_hardware_interference_size
|
||||
using std::hardware_destructive_interference_size;
|
||||
#else
|
||||
@ -3934,6 +3949,18 @@ class NativeCachingAllocator : public CUDAAllocator {
|
||||
device_allocator[device]->popCompileContext();
|
||||
}
|
||||
|
||||
void setUserMetadata(const std::string& metadata) override {
|
||||
c10::DeviceIndex device = 0;
|
||||
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
||||
device_allocator[device]->setUserMetadata(metadata);
|
||||
}
|
||||
|
||||
std::string getUserMetadata() override {
|
||||
c10::DeviceIndex device = 0;
|
||||
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
||||
return device_allocator[device]->getUserMetadata();
|
||||
}
|
||||
|
||||
bool isHistoryEnabled() override {
|
||||
c10::DeviceIndex device = 0;
|
||||
C10_CUDA_CHECK(c10::cuda::GetDevice(&device));
|
||||
@ -4034,8 +4061,8 @@ class NativeCachingAllocator : public CUDAAllocator {
|
||||
|
||||
auto& md = result.config_metadata;
|
||||
md.garbage_collection_threshold =
|
||||
CUDAAllocatorConfig::garbage_collection_threshold();
|
||||
md.max_split_size = CUDAAllocatorConfig::max_split_size();
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold();
|
||||
md.max_split_size = AcceleratorAllocatorConfig::max_split_size();
|
||||
md.pinned_num_register_threads =
|
||||
CUDAAllocatorConfig::pinned_num_register_threads();
|
||||
md.expandable_segments = CUDAAllocatorConfig::expandable_segments();
|
||||
@ -4043,11 +4070,12 @@ class NativeCachingAllocator : public CUDAAllocator {
|
||||
CUDAAllocatorConfig::release_lock_on_cudamalloc();
|
||||
md.pinned_use_host_register =
|
||||
CUDAAllocatorConfig::pinned_use_cuda_host_register();
|
||||
md.last_allocator_settings = CUDAAllocatorConfig::last_allocator_settings();
|
||||
md.last_allocator_settings =
|
||||
AcceleratorAllocatorConfig::last_allocator_settings();
|
||||
md.graph_capture_record_stream_reuse =
|
||||
CUDAAllocatorConfig::graph_capture_record_stream_reuse();
|
||||
md.roundup_power2_divisions =
|
||||
CUDAAllocatorConfig::roundup_power2_divisions();
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions();
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -4425,11 +4453,12 @@ CUDAAllocator* allocator();
|
||||
} // namespace CudaMallocAsync
|
||||
|
||||
struct BackendStaticInitializer {
|
||||
// Parses env for backend at load time, duplicating some logic from
|
||||
// CUDAAllocatorConfig. CUDAAllocatorConfig double-checks it later (at
|
||||
// runtime). Defers verbose exceptions and error checks, including Cuda
|
||||
// version checks, to CUDAAllocatorConfig's runtime doublecheck. If this
|
||||
// works, maybe we should move all of CUDAAllocatorConfig here?
|
||||
// Parses the environment configuration for CUDA/ROCm allocator backend at
|
||||
// load time. This duplicates some logic from CUDAAllocatorConfig to ensure
|
||||
// lazy initialization without triggering global static constructors. The
|
||||
// function looks for the key "backend" and returns the appropriate allocator
|
||||
// instance based on its value. If no valid configuration is found, it falls
|
||||
// back to the default Native allocator.
|
||||
CUDAAllocator* parseEnvForBackend() {
|
||||
auto val = c10::utils::get_env("PYTORCH_CUDA_ALLOC_CONF");
|
||||
#ifdef USE_ROCM
|
||||
@ -4438,34 +4467,35 @@ struct BackendStaticInitializer {
|
||||
val = c10::utils::get_env("PYTORCH_HIP_ALLOC_CONF");
|
||||
}
|
||||
#endif
|
||||
if (!val.has_value()) {
|
||||
val = c10::utils::get_env("PYTORCH_ALLOC_CONF");
|
||||
}
|
||||
if (val.has_value()) {
|
||||
const std::string& config = val.value();
|
||||
|
||||
std::regex exp("[\\s,]+");
|
||||
std::sregex_token_iterator it(config.begin(), config.end(), exp, -1);
|
||||
std::sregex_token_iterator end;
|
||||
std::vector<std::string> options(it, end);
|
||||
|
||||
for (auto option : options) {
|
||||
std::regex exp2("[:]+");
|
||||
std::sregex_token_iterator it2(option.begin(), option.end(), exp2, -1);
|
||||
std::sregex_token_iterator end2;
|
||||
std::vector<std::string> kv(it2, end2);
|
||||
if (kv.size() >= 2) {
|
||||
if (kv[0] == "backend") {
|
||||
c10::CachingAllocator::ConfigTokenizer tokenizer(val.value());
|
||||
for (size_t i = 0; i < tokenizer.size(); i++) {
|
||||
const auto& key = tokenizer[i];
|
||||
if (key == "backend") {
|
||||
tokenizer.checkToken(++i, ":");
|
||||
i++; // Move to the value after the colon
|
||||
if (tokenizer[i] == "cudaMallocAsync"
|
||||
#ifdef USE_ROCM
|
||||
// convenience for ROCm users to allow either CUDA or HIP env var
|
||||
if (kv[1] == "cudaMallocAsync" || kv[1] == "hipMallocAsync")
|
||||
#else
|
||||
if (kv[1] == "cudaMallocAsync")
|
||||
// convenience for ROCm users to allow either CUDA or HIP env var
|
||||
|| tokenizer[i] == "hipMallocAsync"
|
||||
#endif
|
||||
return CudaMallocAsync::allocator();
|
||||
if (kv[1] == "native")
|
||||
return &Native::allocator;
|
||||
) {
|
||||
return CudaMallocAsync::allocator();
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
// Skip the key and its value
|
||||
i = tokenizer.skipKey(i);
|
||||
}
|
||||
if (i + 1 < tokenizer.size()) {
|
||||
tokenizer.checkToken(++i, ",");
|
||||
}
|
||||
}
|
||||
}
|
||||
// Default fallback allocator.
|
||||
return &Native::allocator;
|
||||
}
|
||||
|
||||
|
@ -118,7 +118,8 @@ struct TraceEntry {
|
||||
MempoolId_t mempool,
|
||||
approx_time_t time,
|
||||
std::shared_ptr<GatheredContext> context = nullptr,
|
||||
std::string compile_context = "")
|
||||
std::string compile_context = "",
|
||||
std::string user_metadata = "")
|
||||
: action_(action),
|
||||
device_(device),
|
||||
addr_(addr),
|
||||
@ -126,7 +127,8 @@ struct TraceEntry {
|
||||
stream_(stream),
|
||||
size_(size),
|
||||
mempool_(std::move(mempool)),
|
||||
compile_context_(std::move(compile_context)) {
|
||||
compile_context_(std::move(compile_context)),
|
||||
user_metadata_(std::move(user_metadata)) {
|
||||
time_.approx_t_ = time;
|
||||
}
|
||||
Action action_;
|
||||
@ -138,6 +140,7 @@ struct TraceEntry {
|
||||
MempoolId_t mempool_;
|
||||
trace_time_ time_{};
|
||||
std::string compile_context_;
|
||||
std::string user_metadata_;
|
||||
};
|
||||
|
||||
// Calls made by record_function will save annotations
|
||||
@ -297,6 +300,10 @@ class CUDAAllocator : public DeviceAllocator {
|
||||
const std::vector<std::pair<std::string, std::string>>& /*md*/) {}
|
||||
virtual void pushCompileContext(std::string& md) {}
|
||||
virtual void popCompileContext() {}
|
||||
virtual void setUserMetadata(const std::string& metadata) {}
|
||||
virtual std::string getUserMetadata() {
|
||||
return "";
|
||||
}
|
||||
virtual void attachOutOfMemoryObserver(OutOfMemoryObserver observer) = 0;
|
||||
|
||||
// Attached AllocatorTraceTracker callbacks will be called while the
|
||||
@ -536,6 +543,14 @@ inline void enablePeerAccess(
|
||||
get()->enablePeerAccess(dev, dev_to_access);
|
||||
}
|
||||
|
||||
inline void setUserMetadata(const std::string& metadata) {
|
||||
get()->setUserMetadata(metadata);
|
||||
}
|
||||
|
||||
inline std::string getUserMetadata() {
|
||||
return get()->getUserMetadata();
|
||||
}
|
||||
|
||||
} // namespace c10::cuda::CUDACachingAllocator
|
||||
|
||||
namespace c10::cuda {
|
||||
|
@ -1,8 +1,6 @@
|
||||
#include <c10/cuda/CUDADeviceAssertionHost.h>
|
||||
#include <c10/cuda/CUDAException.h>
|
||||
#include <c10/cuda/CUDAFunctions.h>
|
||||
#include <c10/util/Backtrace.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
@ -4,7 +4,6 @@
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <c10/util/UniqueVoidPtr.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
@ -1,7 +1,6 @@
|
||||
#include <c10/cuda/CUDAMiscFunctions.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
|
||||
namespace c10::cuda {
|
||||
|
@ -1,7 +1,6 @@
|
||||
#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/CUDAException.h>
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <c10/util/CallOnce.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/Logging.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
@ -328,5 +328,21 @@ struct pair {
|
||||
T2 second;
|
||||
};
|
||||
|
||||
#define INSTANTIATE_FOR_ALL_TYPES(MACRO) \
|
||||
MACRO(float); \
|
||||
MACRO(half); \
|
||||
MACRO(bfloat); \
|
||||
MACRO(float2); \
|
||||
MACRO(long); \
|
||||
MACRO(char); \
|
||||
MACRO(uchar); \
|
||||
MACRO(short); \
|
||||
MACRO(int);
|
||||
|
||||
#define INSTANTIATE_FOR_FLOAT_TYPES(MACRO) \
|
||||
MACRO(float); \
|
||||
MACRO(half); \
|
||||
MACRO(bfloat);
|
||||
|
||||
} // namespace metal
|
||||
} // namespace c10
|
||||
|
@ -67,8 +67,8 @@ TEST(AllocatorConfigTest, allocator_config_test) {
|
||||
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(128 * kMB), 2);
|
||||
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(256 * kMB), 4);
|
||||
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(512 * kMB), 2);
|
||||
// EXPECT_EQ(
|
||||
// AcceleratorAllocatorConfig::roundup_power2_divisions(1024 * kMB), 4);
|
||||
EXPECT_EQ(
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions(1024 * kMB), 4);
|
||||
EXPECT_EQ(
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions(2048 * kMB), 1);
|
||||
EXPECT_EQ(
|
||||
@ -101,8 +101,8 @@ TEST(AllocatorConfigTest, allocator_config_test) {
|
||||
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(512 * kMB), 1);
|
||||
EXPECT_EQ(
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions(1024 * kMB), 0);
|
||||
// EXPECT_EQ(
|
||||
// AcceleratorAllocatorConfig::roundup_power2_divisions(2048 * kMB), 8);
|
||||
EXPECT_EQ(
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions(2048 * kMB), 8);
|
||||
EXPECT_EQ(
|
||||
AcceleratorAllocatorConfig::roundup_power2_divisions(4096 * kMB), 2);
|
||||
|
||||
|
@ -1,7 +1,6 @@
|
||||
#include <c10/util/ApproximateClock.h>
|
||||
#include <c10/util/ArrayRef.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace c10 {
|
||||
|
||||
|
@ -1,7 +1,5 @@
|
||||
#include <c10/util/complex.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
// Note [ Complex Square root in libc++]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// In libc++ complex square root is computed using polar form
|
||||
|
@ -11,7 +11,6 @@
|
||||
#include <unistd.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
|
@ -74,7 +74,7 @@ def unroll(uf, IndexType, InType, OutType, use_weights, isa, fused, use_offsets)
|
||||
)
|
||||
|
||||
code.append(" " + OutType + "* op = &out[rangeIndex * block_size];")
|
||||
for i in range(0, uf):
|
||||
for i in range(uf):
|
||||
j = 8 * i
|
||||
code.append(" __m256 vop" + str(j) + " = _mm256_setzero_ps();")
|
||||
|
||||
@ -158,7 +158,7 @@ def unroll(uf, IndexType, InType, OutType, use_weights, isa, fused, use_offsets)
|
||||
"&input[idx_pref_T0 * fused_block_size];"
|
||||
)
|
||||
|
||||
for i in range(0, uf):
|
||||
for i in range(uf):
|
||||
j = 8 * i
|
||||
cachelinesize = 64
|
||||
byteoffset = sizeof[InType] * j
|
||||
@ -170,7 +170,7 @@ def unroll(uf, IndexType, InType, OutType, use_weights, isa, fused, use_offsets)
|
||||
code.append(" if (!normalize_by_lengths || length == 0) {")
|
||||
else:
|
||||
code.append(" if (!normalize_by_lengths || lengths[rangeIndex] == 0) {")
|
||||
for i in range(0, uf):
|
||||
for i in range(uf):
|
||||
j = 8 * i
|
||||
code.append(" _mm256_storeu_ps(&op[" + str(j) + "], vop" + str(j) + ");")
|
||||
code.append(" } else {")
|
||||
@ -181,7 +181,7 @@ def unroll(uf, IndexType, InType, OutType, use_weights, isa, fused, use_offsets)
|
||||
code.append(
|
||||
" __m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);"
|
||||
)
|
||||
for i in range(0, uf):
|
||||
for i in range(uf):
|
||||
j = 8 * i
|
||||
code.append(
|
||||
" _mm256_storeu_ps(&op["
|
||||
|
@ -159,8 +159,6 @@ ignore = [
|
||||
"EXE001",
|
||||
"F405",
|
||||
"FURB122", # writelines
|
||||
# these ignores are from flake8-logging-format; please fix!
|
||||
"G101",
|
||||
# these ignores are from ruff NPY; please fix!
|
||||
"NPY002",
|
||||
# these ignores are from ruff PERF; please fix!
|
||||
@ -204,14 +202,10 @@ select = [
|
||||
"NPY",
|
||||
"PERF",
|
||||
"PGH004",
|
||||
"PIE790",
|
||||
"PIE794",
|
||||
"PIE800",
|
||||
"PIE804",
|
||||
"PIE807",
|
||||
"PIE810",
|
||||
"PIE",
|
||||
"PLC0131", # type bivariance
|
||||
"PLC0132", # type param mismatch
|
||||
"PLC1802", # len({expression}) used as condition without comparison
|
||||
"PLC0205", # string as __slots__
|
||||
"PLC3002", # unnecessary-direct-lambda-call
|
||||
"PLE",
|
||||
|
20
pyrefly.toml
20
pyrefly.toml
@ -5,6 +5,7 @@ python-version = "3.12"
|
||||
project-includes = [
|
||||
"torch",
|
||||
"caffe2",
|
||||
"tools",
|
||||
"test/test_bundled_images.py",
|
||||
"test/test_bundled_inputs.py",
|
||||
"test/test_complex.py",
|
||||
@ -22,12 +23,13 @@ project-includes = [
|
||||
project-excludes = [
|
||||
# ==== below will be enabled directory by directory ====
|
||||
# ==== to test Pyrefly on a specific directory, simply comment it out ====
|
||||
"torch/_inductor/runtime",
|
||||
"torch/_inductor/codegen/triton.py",
|
||||
"torch/_inductor/runtime/triton_helpers.py",
|
||||
"torch/_inductor/runtime/triton_heuristics.py",
|
||||
"torch/_inductor/runtime/halide_helpers.py",
|
||||
"tools/linter/adapters/test_device_bias_linter.py",
|
||||
"tools/code_analyzer/gen_operators_yaml.py",
|
||||
# formatting issues, will turn on after adjusting where suppressions can be
|
||||
# in import statements
|
||||
"tools/flight_recorder/components/types.py",
|
||||
"torch/linalg/__init__.py",
|
||||
"torch/package/importer.py",
|
||||
"torch/package/_package_pickler.py",
|
||||
@ -42,17 +44,6 @@ project-excludes = [
|
||||
"torch/distributed/elastic/metrics/__init__.py",
|
||||
"torch/_inductor/fx_passes/bucketing.py",
|
||||
# ====
|
||||
"benchmarks/instruction_counts/main.py",
|
||||
"benchmarks/instruction_counts/definitions/setup.py",
|
||||
"benchmarks/instruction_counts/applications/ci.py",
|
||||
"benchmarks/instruction_counts/core/api.py",
|
||||
"benchmarks/instruction_counts/core/expand.py",
|
||||
"benchmarks/instruction_counts/core/types.py",
|
||||
"benchmarks/instruction_counts/core/utils.py",
|
||||
"benchmarks/instruction_counts/definitions/standard.py",
|
||||
"benchmarks/instruction_counts/definitions/setup.py",
|
||||
"benchmarks/instruction_counts/execution/runner.py",
|
||||
"benchmarks/instruction_counts/execution/work.py",
|
||||
"torch/include/**",
|
||||
"torch/csrc/**",
|
||||
"torch/distributed/elastic/agent/server/api.py",
|
||||
@ -139,3 +130,4 @@ errors.bad-param-name-override = false
|
||||
errors.implicit-import = false
|
||||
permissive-ignores = true
|
||||
replace-imports-with-any = ["!sympy.printing.*", "sympy.*", "onnxscript.onnx_opset.*"]
|
||||
search-path = ["tools/experimental"]
|
||||
|
@ -190,7 +190,7 @@ class TestActivationSparsifier(TestCase):
|
||||
if features is None:
|
||||
assert torch.all(mask * input_data == output)
|
||||
else:
|
||||
for feature_idx in range(0, len(features)):
|
||||
for feature_idx in range(len(features)):
|
||||
feature = torch.Tensor(
|
||||
[features[feature_idx]], device=input_data.device
|
||||
).long()
|
||||
@ -378,7 +378,7 @@ class TestActivationSparsifier(TestCase):
|
||||
# some dummy data
|
||||
data_list = []
|
||||
num_data_points = 5
|
||||
for _ in range(0, num_data_points):
|
||||
for _ in range(num_data_points):
|
||||
rand_data = torch.randn(16, 1, 28, 28)
|
||||
activation_sparsifier.model(rand_data)
|
||||
data_list.append(rand_data)
|
||||
|
@ -143,7 +143,7 @@ class TestBaseDataScheduler(TestCase):
|
||||
|
||||
# checking step count
|
||||
step_cnt = 5
|
||||
for _ in range(0, step_cnt):
|
||||
for _ in range(step_cnt):
|
||||
sparsifier.step()
|
||||
scheduler.step()
|
||||
|
||||
|
@ -123,7 +123,7 @@ class _BaseDataSparsiferTestCase(TestCase):
|
||||
|
||||
step_count = 3
|
||||
|
||||
for _ in range(0, step_count):
|
||||
for _ in range(step_count):
|
||||
sparsifier.step()
|
||||
for some_data in all_data:
|
||||
name, data, _ = self._get_name_data_config(some_data)
|
||||
|
@ -472,8 +472,8 @@ class TestNearlyDiagonalSparsifier(TestCase):
|
||||
else:
|
||||
height, width = mask.shape
|
||||
dist_to_diagonal = nearliness // 2
|
||||
for row in range(0, height):
|
||||
for col in range(0, width):
|
||||
for row in range(height):
|
||||
for col in range(width):
|
||||
if abs(row - col) <= dist_to_diagonal:
|
||||
assert mask[row, col] == 1
|
||||
else:
|
||||
|
@ -53,24 +53,3 @@ TEST_FORALL(AT_FORALL_COMPLEX_TYPES, 2)
|
||||
|
||||
#undef DEFINE_CHECK
|
||||
#undef TEST_FORALL
|
||||
|
||||
TEST(TestScalarType, toString) {
|
||||
using torch::headeronly::ScalarType;
|
||||
|
||||
#define DEFINE_CHECK(_, name) EXPECT_EQ(toString(ScalarType::name), #name);
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CHECK);
|
||||
#undef DEFINE_CHECK
|
||||
}
|
||||
|
||||
TEST(TestScalarType, operator_left_shift) {
|
||||
using torch::headeronly::ScalarType;
|
||||
|
||||
#define DEFINE_CHECK(_, name) \
|
||||
{ \
|
||||
std::stringstream ss; \
|
||||
ss << ScalarType::name; \
|
||||
EXPECT_EQ(ss.str(), #name); \
|
||||
}
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CHECK);
|
||||
#undef DEFINE_CHECK
|
||||
}
|
||||
|
@ -164,6 +164,9 @@ class TestIntTuple(TestCase):
|
||||
crd2idx(4, ((2, 2, 2), (2, 2, 2)), ((1, 16, 4), (8, 2, 32))), 8
|
||||
) # 4 -> (1,0,0) -> 1*8 = 8
|
||||
|
||||
# Test with zero-length shape and strides
|
||||
self.assertEqual(crd2idx(0, (), ()), 0) # 0 -> () -> sum([]) = 0
|
||||
|
||||
def test_idx2crd_basic(self):
|
||||
# Test basic int/int case
|
||||
self.assertEqual(idx2crd(2, 5, 1), 2)
|
||||
|
@ -79,7 +79,7 @@ if BACKEND == "gloo" or BACKEND == "nccl":
|
||||
dist.init_process_group(
|
||||
store=store, rank=self.rank, world_size=self.world_size, backend="gloo"
|
||||
)
|
||||
group = list(range(0, self.world_size))
|
||||
group = list(range(self.world_size))
|
||||
group_id = dist.group.WORLD
|
||||
self._test_all_gather(
|
||||
group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.FP16
|
||||
@ -94,7 +94,7 @@ if BACKEND == "gloo" or BACKEND == "nccl":
|
||||
dist.init_process_group(
|
||||
store=store, rank=self.rank, world_size=self.world_size, backend="gloo"
|
||||
)
|
||||
group = list(range(0, self.world_size))
|
||||
group = list(range(self.world_size))
|
||||
group_id = dist.group.WORLD
|
||||
self._test_all_gather(
|
||||
group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.BFP16
|
||||
@ -111,7 +111,7 @@ if BACKEND == "gloo" or BACKEND == "nccl":
|
||||
dist.init_process_group(
|
||||
store=store, rank=self.rank, world_size=self.world_size, backend="nccl"
|
||||
)
|
||||
group = list(range(0, self.world_size))
|
||||
group = list(range(self.world_size))
|
||||
group_id = dist.new_group(range(self.world_size))
|
||||
rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
|
||||
self._test_all_to_all(
|
||||
@ -135,7 +135,7 @@ if BACKEND == "gloo" or BACKEND == "nccl":
|
||||
dist.init_process_group(
|
||||
store=store, rank=self.rank, world_size=self.world_size, backend="nccl"
|
||||
)
|
||||
group = list(range(0, self.world_size))
|
||||
group = list(range(self.world_size))
|
||||
group_id = dist.new_group(range(self.world_size))
|
||||
rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
|
||||
self._test_all_to_all(
|
||||
@ -158,7 +158,7 @@ if BACKEND == "gloo" or BACKEND == "nccl":
|
||||
dist.init_process_group(
|
||||
store=store, rank=self.rank, world_size=self.world_size, backend="nccl"
|
||||
)
|
||||
group = list(range(0, self.world_size))
|
||||
group = list(range(self.world_size))
|
||||
group_id = dist.new_group(range(self.world_size))
|
||||
rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
|
||||
self._test_all_to_all_single(
|
||||
@ -181,7 +181,7 @@ if BACKEND == "gloo" or BACKEND == "nccl":
|
||||
dist.init_process_group(
|
||||
store=store, rank=self.rank, world_size=self.world_size, backend="nccl"
|
||||
)
|
||||
group = list(range(0, self.world_size))
|
||||
group = list(range(self.world_size))
|
||||
group_id = dist.new_group(range(self.world_size))
|
||||
rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
|
||||
self._test_all_to_all_single(
|
||||
|
@ -66,7 +66,7 @@ if TEST_WITH_DEV_DBG_ASAN:
|
||||
def create_sharded_tensor(rank, world_size, shards_per_rank, shard_size=8):
|
||||
shards_metadata = []
|
||||
local_shards = []
|
||||
for idx in range(0, world_size * shards_per_rank):
|
||||
for idx in range(world_size * shards_per_rank):
|
||||
shard_rank = idx // shards_per_rank
|
||||
shard_md = ShardMetadata(
|
||||
shard_offsets=[idx * shard_size],
|
||||
|
@ -45,7 +45,7 @@ if TEST_WITH_DEV_DBG_ASAN:
|
||||
def create_sharded_tensor(rank, world_size, shards_per_rank):
|
||||
shards_metadata = []
|
||||
local_shards = []
|
||||
for idx in range(0, world_size * shards_per_rank):
|
||||
for idx in range(world_size * shards_per_rank):
|
||||
shard_rank = idx // shards_per_rank
|
||||
shard_md = ShardMetadata(
|
||||
shard_offsets=[idx * 8], shard_sizes=[8], placement=f"rank:{shard_rank}/cpu"
|
||||
|
@ -633,7 +633,7 @@ class SimpleElasticAgentTest(unittest.TestCase):
|
||||
worker_group = agent.get_worker_group()
|
||||
|
||||
num_restarts = 3
|
||||
for _ in range(0, num_restarts):
|
||||
for _ in range(num_restarts):
|
||||
agent._restart_workers(worker_group)
|
||||
self.assertEqual(WorkerState.HEALTHY, worker_group.state)
|
||||
|
||||
|
@ -146,7 +146,7 @@ def echo_large(size: int) -> dict[int, str]:
|
||||
returns a large output ({0: test0", 1: "test1", ..., (size-1):f"test{size-1}"})
|
||||
"""
|
||||
out = {}
|
||||
for idx in range(0, size):
|
||||
for idx in range(size):
|
||||
out[idx] = f"test{idx}"
|
||||
return out
|
||||
|
||||
|
@ -191,7 +191,7 @@ if not (IS_WINDOWS or IS_MACOS or IS_ARM64):
|
||||
"""
|
||||
client = timer.FileTimerClient(file_path)
|
||||
sem.release()
|
||||
for _ in range(0, n):
|
||||
for _ in range(n):
|
||||
client.acquire("test_scope", 0)
|
||||
time.sleep(interval)
|
||||
|
||||
|
@ -102,7 +102,7 @@ if not (IS_WINDOWS or IS_MACOS or IS_ARM64):
|
||||
|
||||
world_size = 8
|
||||
processes = []
|
||||
for i in range(0, world_size):
|
||||
for i in range(world_size):
|
||||
if i % 2 == 0:
|
||||
p = spawn_ctx.Process(target=_stuck_function, args=(i, mp_queue))
|
||||
else:
|
||||
@ -110,7 +110,7 @@ if not (IS_WINDOWS or IS_MACOS or IS_ARM64):
|
||||
p.start()
|
||||
processes.append(p)
|
||||
|
||||
for i in range(0, world_size):
|
||||
for i in range(world_size):
|
||||
p = processes[i]
|
||||
p.join()
|
||||
if i % 2 == 0:
|
||||
|
@ -127,7 +127,7 @@ if not INVALID_PLATFORMS:
|
||||
interval seconds. Releases the given semaphore once before going to work.
|
||||
"""
|
||||
sem.release()
|
||||
for i in range(0, n):
|
||||
for i in range(n):
|
||||
mp_queue.put(TimerRequest(i, "test_scope", 0))
|
||||
time.sleep(interval)
|
||||
|
||||
|
@ -15,7 +15,7 @@ class CyclingIteratorTest(unittest.TestCase):
|
||||
def generator(self, epoch, stride, max_epochs):
|
||||
# generate an continuously incrementing list each epoch
|
||||
# e.g. [0,1,2] [3,4,5] [6,7,8] ...
|
||||
return iter([stride * epoch + i for i in range(0, stride)])
|
||||
return iter([stride * epoch + i for i in range(stride)])
|
||||
|
||||
def test_cycling_iterator(self):
|
||||
stride = 3
|
||||
@ -25,7 +25,7 @@ class CyclingIteratorTest(unittest.TestCase):
|
||||
return self.generator(epoch, stride, max_epochs)
|
||||
|
||||
it = CyclingIterator(n=max_epochs, generator_fn=generator_fn)
|
||||
for i in range(0, stride * max_epochs):
|
||||
for i in range(stride * max_epochs):
|
||||
self.assertEqual(i, next(it))
|
||||
|
||||
with self.assertRaises(StopIteration):
|
||||
|
@ -124,7 +124,7 @@ class TestFSDPHybridShard(FSDPTest):
|
||||
model = MyModel().to(device_type)
|
||||
num_node_devices = torch.accelerator.device_count()
|
||||
shard_rank_lists = (
|
||||
list(range(0, num_node_devices // 2)),
|
||||
list(range(num_node_devices // 2)),
|
||||
list(range(num_node_devices // 2, num_node_devices)),
|
||||
)
|
||||
shard_groups = (
|
||||
@ -175,7 +175,7 @@ class TestFSDPHybridShard(FSDPTest):
|
||||
model = MyModel().to(device_type)
|
||||
num_node_devices = torch.accelerator.device_count()
|
||||
shard_rank_lists = (
|
||||
list(range(0, num_node_devices // 2)),
|
||||
list(range(num_node_devices // 2)),
|
||||
list(range(num_node_devices // 2, num_node_devices)),
|
||||
)
|
||||
shard_groups = (
|
||||
|
@ -771,5 +771,40 @@ class TestCPCustomOps(DTensorTestBase):
|
||||
torch.library.opcheck(flex_cp_allgather, example)
|
||||
|
||||
|
||||
class TestSharding(DTensorTestBase):
|
||||
@property
|
||||
def world_size(self) -> int:
|
||||
return 2
|
||||
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@with_comms
|
||||
def test_context_parallel_shard(self) -> None:
|
||||
B = 4
|
||||
seq_len = 32
|
||||
|
||||
device_mesh = init_device_mesh(
|
||||
mesh_shape=(2,), mesh_dim_names=("cp",), device_type=self.device_type
|
||||
)
|
||||
freqs_cis = torch.arange(0, seq_len, device=self.device_type)
|
||||
q = torch.ones(B * seq_len, device=self.device_type).reshape(B, seq_len)
|
||||
k = torch.ones(B * seq_len, device=self.device_type).reshape(B, seq_len)
|
||||
v = torch.ones(B * seq_len, device=self.device_type).reshape(B, seq_len)
|
||||
|
||||
load_balancer = _HeadTailLoadBalancer(
|
||||
seq_len, self.world_size, torch.device(self.device_type)
|
||||
)
|
||||
freqs_cis_shard, q_shard, k_shard, v_shard = _context_parallel_shard(
|
||||
device_mesh, [freqs_cis, q, k, v], [0, 1, 1, 1], load_balancer=load_balancer
|
||||
)
|
||||
self.assertEqual(freqs_cis_shard.size(), (seq_len // 2,))
|
||||
chunks = freqs_cis.chunk(self.world_size * 2)
|
||||
self.assertEqual(
|
||||
freqs_cis_shard,
|
||||
torch.cat(
|
||||
[chunks[self.rank], chunks[self.world_size * 2 - self.rank - 1]], dim=0
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
@ -802,7 +802,7 @@ class TestLocalDTensorOps(TestDTensorOps):
|
||||
self.run_opinfo_test(dtype, op)
|
||||
|
||||
def test_mean(self):
|
||||
with LocalTensorMode(frozenset(range(0, self.world_size))):
|
||||
with LocalTensorMode(frozenset(range(self.world_size))):
|
||||
self.run_mean()
|
||||
|
||||
def test_one_hot(self):
|
||||
@ -811,7 +811,7 @@ class TestLocalDTensorOps(TestDTensorOps):
|
||||
def run_opinfo_test(
|
||||
self, dtype, op, requires_grad=True, sample_inputs_filter=lambda s: True
|
||||
):
|
||||
with LocalTensorMode(frozenset(range(0, self.world_size))):
|
||||
with LocalTensorMode(frozenset(range(self.world_size))):
|
||||
super().run_opinfo_test(dtype, op, requires_grad, sample_inputs_filter)
|
||||
|
||||
def assertEqualOnRank(self, x, y, msg=None, *, rank=0):
|
||||
|
@ -17,6 +17,7 @@ from torch.distributed.tensor.debug import CommDebugMode
|
||||
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
|
||||
from torch.testing._internal.common_utils import run_tests, skipIfRocm
|
||||
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
||||
create_local_tensor_test_class,
|
||||
DTensorConverter,
|
||||
DTensorTestBase,
|
||||
with_comms,
|
||||
@ -704,6 +705,12 @@ class DistTensorOpsTest(DTensorTestBase):
|
||||
|
||||
@with_comms
|
||||
def test_dtensor_dtype_conversion(self):
|
||||
from torch.distributed.tensor.debug import (
|
||||
_clear_sharding_prop_cache,
|
||||
_get_sharding_prop_cache_info,
|
||||
)
|
||||
|
||||
_clear_sharding_prop_cache()
|
||||
device_mesh = self.build_device_mesh()
|
||||
shard_spec = [Shard(0)]
|
||||
# by default we start from bf16 dtype
|
||||
@ -722,8 +729,6 @@ class DistTensorOpsTest(DTensorTestBase):
|
||||
self.assertEqual(bf16_sharded_dtensor1.dtype, torch.bfloat16)
|
||||
self.assertEqual(bf16_sharded_dtensor1.to_local().dtype, torch.bfloat16)
|
||||
|
||||
from torch.distributed.tensor.debug import _get_sharding_prop_cache_info
|
||||
|
||||
# by this point we only have cache misses
|
||||
hits, misses, _, _ = _get_sharding_prop_cache_info()
|
||||
self.assertEqual(hits, 0)
|
||||
@ -775,7 +780,7 @@ class DistTensorOpsTest(DTensorTestBase):
|
||||
)
|
||||
|
||||
def _test_split_on_partial(self, reduce_op: str, split_size: int, split_dim: int):
|
||||
torch.manual_seed(self.rank)
|
||||
self.init_manual_seed_for_rank()
|
||||
mesh = self.build_device_mesh()
|
||||
|
||||
partial_tensor = torch.randn(8, 8, device=self.device_type)
|
||||
@ -822,5 +827,9 @@ class DistTensorOpsTest(DTensorTestBase):
|
||||
self.assertEqual(x.full_tensor(), y)
|
||||
|
||||
|
||||
DistTensorOpsTestWithLocalTensor = create_local_tensor_test_class(
|
||||
DistTensorOpsTest,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
@ -536,7 +536,7 @@ class DeviceMeshTestNDim(DTensorTestBase):
|
||||
# Create shard groups (e.g. (0, 1, 2, 3), (4, 5, 6, 7))
|
||||
# and assign the correct shard group to each rank
|
||||
shard_rank_lists = (
|
||||
list(range(0, self.world_size // 2)),
|
||||
list(range(self.world_size // 2)),
|
||||
list(range(self.world_size // 2, self.world_size)),
|
||||
)
|
||||
shard_groups = (
|
||||
@ -1664,14 +1664,14 @@ class CuTeLayoutTest(TestCase):
|
||||
def test_remap_to_tensor(self):
|
||||
"""Test the remap_to_tensor method for various scenarios."""
|
||||
# Test 1: Consecutive ranks, full world - should return logical groups directly
|
||||
original_mesh = torch.tensor([[0, 1], [2, 3]], dtype=torch.int)
|
||||
original_mesh = torch.tensor([0, 1, 2, 3], dtype=torch.int)
|
||||
layout1 = _Layout((2, 2), (2, 1)) # row-major 2x2
|
||||
result1 = layout1.remap_to_tensor(original_mesh)
|
||||
expected1 = torch.tensor([[[0, 1], [2, 3]]], dtype=torch.int)
|
||||
self.assertEqual(result1, expected1)
|
||||
|
||||
# Test 2: Non-consecutive ranks - should map to actual ranks
|
||||
original_mesh = torch.tensor([[10, 20], [30, 40]], dtype=torch.int)
|
||||
original_mesh = torch.tensor([10, 20, 30, 40], dtype=torch.int)
|
||||
layout2 = _Layout((2, 2), (2, 1))
|
||||
result2 = layout2.remap_to_tensor(original_mesh)
|
||||
expected2 = torch.tensor([[[10, 20], [30, 40]]], dtype=torch.int)
|
||||
@ -1692,7 +1692,7 @@ class CuTeLayoutTest(TestCase):
|
||||
self.assertEqual(result5, expected5)
|
||||
|
||||
# Test 6: Tensor Cute representation of a 2D mesh
|
||||
original_mesh = torch.tensor([[0, 2], [1, 3]], dtype=torch.int)
|
||||
original_mesh = torch.tensor([0, 2, 1, 3], dtype=torch.int)
|
||||
layout6 = _Layout((2, 2), (1, 2)) # column-major style
|
||||
result6 = layout6.remap_to_tensor(original_mesh)
|
||||
expected6 = torch.tensor([[[0, 1], [2, 3]]], dtype=torch.int)
|
||||
|
@ -53,7 +53,13 @@ class ProcessGroupTest(TestCase):
|
||||
|
||||
|
||||
class Dist2MultiProcessTestCase(MultiProcessTestCase):
|
||||
device: torch.device
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
raise NotImplementedError
|
||||
|
||||
# @device.setter
|
||||
# def device(self, value: torch.device) -> None:
|
||||
# self._device = value
|
||||
|
||||
@property
|
||||
def world_size(self) -> int:
|
||||
@ -257,7 +263,9 @@ class Dist2MultiProcessTestCase(MultiProcessTestCase):
|
||||
|
||||
|
||||
class ProcessGroupGlooTest(Dist2MultiProcessTestCase):
|
||||
device = torch.device("cpu")
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return torch.device("cpu")
|
||||
|
||||
@requires_gloo()
|
||||
def new_group(self) -> torch.distributed.ProcessGroup:
|
||||
@ -274,6 +282,10 @@ class ProcessGroupGlooTest(Dist2MultiProcessTestCase):
|
||||
|
||||
|
||||
class ProcessGroupNCCLTest(Dist2MultiProcessTestCase):
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return torch.device("cuda", self.rank)
|
||||
|
||||
@requires_nccl()
|
||||
@skip_if_lt_x_gpu(2)
|
||||
def new_group(self) -> torch.distributed.ProcessGroup:
|
||||
@ -282,8 +294,6 @@ class ProcessGroupNCCLTest(Dist2MultiProcessTestCase):
|
||||
os.environ["MASTER_ADDR"] = "127.0.0.1"
|
||||
os.environ["MASTER_PORT"] = "29501"
|
||||
|
||||
self.device = torch.device("cuda", self.rank)
|
||||
|
||||
return dist2.new_group(
|
||||
backend="nccl",
|
||||
timeout=timedelta(seconds=60),
|
||||
|
@ -1141,9 +1141,8 @@ class NVSHMEMTritonTest(MultiProcContinuousTest):
|
||||
vals[0, ::2] = 1
|
||||
vals[0, 1::2] = 2
|
||||
vals[1] = 1
|
||||
vals2 = vals[2].view(-1, 2, 2)
|
||||
vals2[:, 0] = 1
|
||||
vals2[:, 1] = 2
|
||||
for rank in range(world_size):
|
||||
vals[2, rank] = 1 if (rank // 2) % 2 == 0 else 2
|
||||
expected = vals.prod(-1).tolist()
|
||||
|
||||
# Synchronize before reduction
|
||||
|
@ -5722,11 +5722,11 @@ class TestKL(DistributionsTestCase):
|
||||
def test_kl_multivariate_normal(self):
|
||||
set_rng_seed(0) # see Note [Randomized statistical tests]
|
||||
n = 5 # Number of tests for multivariate_normal
|
||||
for i in range(0, n):
|
||||
loc = [torch.randn(4) for _ in range(0, 2)]
|
||||
for i in range(n):
|
||||
loc = [torch.randn(4) for _ in range(2)]
|
||||
scale_tril = [
|
||||
transform_to(constraints.lower_cholesky)(torch.randn(4, 4))
|
||||
for _ in range(0, 2)
|
||||
for _ in range(2)
|
||||
]
|
||||
p = MultivariateNormal(loc=loc[0], scale_tril=scale_tril[0])
|
||||
q = MultivariateNormal(loc=loc[1], scale_tril=scale_tril[1])
|
||||
@ -5755,10 +5755,10 @@ class TestKL(DistributionsTestCase):
|
||||
|
||||
def test_kl_multivariate_normal_batched(self):
|
||||
b = 7 # Number of batches
|
||||
loc = [torch.randn(b, 3) for _ in range(0, 2)]
|
||||
loc = [torch.randn(b, 3) for _ in range(2)]
|
||||
scale_tril = [
|
||||
transform_to(constraints.lower_cholesky)(torch.randn(b, 3, 3))
|
||||
for _ in range(0, 2)
|
||||
for _ in range(2)
|
||||
]
|
||||
expected_kl = torch.stack(
|
||||
[
|
||||
@ -5766,7 +5766,7 @@ class TestKL(DistributionsTestCase):
|
||||
MultivariateNormal(loc[0][i], scale_tril=scale_tril[0][i]),
|
||||
MultivariateNormal(loc[1][i], scale_tril=scale_tril[1][i]),
|
||||
)
|
||||
for i in range(0, b)
|
||||
for i in range(b)
|
||||
]
|
||||
)
|
||||
actual_kl = kl_divergence(
|
||||
@ -5777,7 +5777,7 @@ class TestKL(DistributionsTestCase):
|
||||
|
||||
def test_kl_multivariate_normal_batched_broadcasted(self):
|
||||
b = 7 # Number of batches
|
||||
loc = [torch.randn(b, 3) for _ in range(0, 2)]
|
||||
loc = [torch.randn(b, 3) for _ in range(2)]
|
||||
scale_tril = [
|
||||
transform_to(constraints.lower_cholesky)(torch.randn(b, 3, 3)),
|
||||
transform_to(constraints.lower_cholesky)(torch.randn(3, 3)),
|
||||
@ -5788,7 +5788,7 @@ class TestKL(DistributionsTestCase):
|
||||
MultivariateNormal(loc[0][i], scale_tril=scale_tril[0][i]),
|
||||
MultivariateNormal(loc[1][i], scale_tril=scale_tril[1]),
|
||||
)
|
||||
for i in range(0, b)
|
||||
for i in range(b)
|
||||
]
|
||||
)
|
||||
actual_kl = kl_divergence(
|
||||
@ -5800,15 +5800,15 @@ class TestKL(DistributionsTestCase):
|
||||
def test_kl_lowrank_multivariate_normal(self):
|
||||
set_rng_seed(0) # see Note [Randomized statistical tests]
|
||||
n = 5 # Number of tests for lowrank_multivariate_normal
|
||||
for i in range(0, n):
|
||||
loc = [torch.randn(4) for _ in range(0, 2)]
|
||||
cov_factor = [torch.randn(4, 3) for _ in range(0, 2)]
|
||||
for i in range(n):
|
||||
loc = [torch.randn(4) for _ in range(2)]
|
||||
cov_factor = [torch.randn(4, 3) for _ in range(2)]
|
||||
cov_diag = [
|
||||
transform_to(constraints.positive)(torch.randn(4)) for _ in range(0, 2)
|
||||
transform_to(constraints.positive)(torch.randn(4)) for _ in range(2)
|
||||
]
|
||||
covariance_matrix = [
|
||||
cov_factor[i].matmul(cov_factor[i].t()) + cov_diag[i].diag()
|
||||
for i in range(0, 2)
|
||||
for i in range(2)
|
||||
]
|
||||
p = LowRankMultivariateNormal(loc[0], cov_factor[0], cov_diag[0])
|
||||
q = LowRankMultivariateNormal(loc[1], cov_factor[1], cov_diag[1])
|
||||
@ -5861,10 +5861,10 @@ class TestKL(DistributionsTestCase):
|
||||
|
||||
def test_kl_lowrank_multivariate_normal_batched(self):
|
||||
b = 7 # Number of batches
|
||||
loc = [torch.randn(b, 3) for _ in range(0, 2)]
|
||||
cov_factor = [torch.randn(b, 3, 2) for _ in range(0, 2)]
|
||||
loc = [torch.randn(b, 3) for _ in range(2)]
|
||||
cov_factor = [torch.randn(b, 3, 2) for _ in range(2)]
|
||||
cov_diag = [
|
||||
transform_to(constraints.positive)(torch.randn(b, 3)) for _ in range(0, 2)
|
||||
transform_to(constraints.positive)(torch.randn(b, 3)) for _ in range(2)
|
||||
]
|
||||
expected_kl = torch.stack(
|
||||
[
|
||||
@ -5876,7 +5876,7 @@ class TestKL(DistributionsTestCase):
|
||||
loc[1][i], cov_factor[1][i], cov_diag[1][i]
|
||||
),
|
||||
)
|
||||
for i in range(0, b)
|
||||
for i in range(b)
|
||||
]
|
||||
)
|
||||
actual_kl = kl_divergence(
|
||||
|
@ -1647,6 +1647,29 @@ Non-primal fwd outputs from model w/o backward hook: {mod_no_hook_fwd_outputs_no
|
||||
|
||||
self.assertEqual(opt_fn(x), fn(x))
|
||||
|
||||
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
|
||||
def test_nonlocal_mutation(self):
|
||||
counter = 0
|
||||
|
||||
def gn(x):
|
||||
nonlocal counter
|
||||
counter += 1
|
||||
return torch.sin(x)
|
||||
|
||||
def fn(x):
|
||||
return torch.utils.checkpoint.checkpoint(gn, x, use_reentrant=True)
|
||||
|
||||
x = torch.randn(4, 4, requires_grad=True)
|
||||
fn(x).sum().backward()
|
||||
# The mutation is reapplied in the backward as well
|
||||
self.assertEqual(counter, 2)
|
||||
counter = 0
|
||||
|
||||
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
||||
opt_fn(x).sum().backward()
|
||||
# The mutation is not reapplied in the backward because the flag was on.
|
||||
self.assertEqual(counter, 1)
|
||||
|
||||
|
||||
devices = ["cuda", "hpu"]
|
||||
instantiate_device_type_tests(
|
||||
|
@ -2,6 +2,7 @@
|
||||
import functools
|
||||
import operator
|
||||
import os
|
||||
import re
|
||||
import unittest.mock as mock
|
||||
from unittest.mock import patch
|
||||
|
||||
@ -1472,6 +1473,30 @@ class DecoratorTests(torch._dynamo.test_case.TestCase):
|
||||
self.assertEqual(out1, inp + 2)
|
||||
self.assertEqual(out2, inp + 2)
|
||||
|
||||
def test_fail_on_recompile_shows_guard_details(self):
|
||||
@torch.compile(backend="eager", dynamic=False)
|
||||
def f(x):
|
||||
return x + 1
|
||||
|
||||
f(torch.ones(4))
|
||||
f(torch.ones(5))
|
||||
|
||||
def post_munge(s):
|
||||
return re.sub(r"line number: \d+", "line number: N", s)
|
||||
|
||||
with torch.compiler.set_stance("fail_on_recompile"):
|
||||
f(torch.ones(4))
|
||||
self.assertExpectedInlineMunged(
|
||||
RuntimeError,
|
||||
lambda: f(torch.ones(7)),
|
||||
"""\
|
||||
Detected recompile when torch.compile stance is 'fail_on_recompile'. filename: 'test_decorators.py', function name: 'f', line number: N
|
||||
triggered by the following guard failure(s):
|
||||
- 0/0: tensor 'x' size mismatch at index 0. expected 4, actual 7
|
||||
- 0/1: tensor 'x' size mismatch at index 0. expected 5, actual 7""", # noqa: B950
|
||||
post_munge=post_munge,
|
||||
)
|
||||
|
||||
def test_set_stance_fail_on_recompile_with_disable(self):
|
||||
@torch.compiler.disable
|
||||
def inner(x):
|
||||
|
@ -49,9 +49,9 @@ class ExportTests(torch._dynamo.test_case.TestCase):
|
||||
lc_key = state[0]
|
||||
lc_val = state[1]
|
||||
bar = []
|
||||
for _ in range(0, 4):
|
||||
for _ in range(4):
|
||||
bar2 = []
|
||||
for _ in range(0, 3):
|
||||
for _ in range(3):
|
||||
bar2.append(
|
||||
lc_key + lc_val + torch.tensor([0.1, 0.25, 0.4, 0.5, 0.1])
|
||||
)
|
||||
@ -665,9 +665,9 @@ def forward(self, x, y):
|
||||
lc_key = state[0]
|
||||
lc_val = state[1]
|
||||
bar = []
|
||||
for _ in range(0, 4):
|
||||
for _ in range(4):
|
||||
bar2 = []
|
||||
for _ in range(0, 3):
|
||||
for _ in range(3):
|
||||
bar2.append(
|
||||
lc_key + lc_val + torch.tensor([0.1, 0.25, 0.4, 0.5, 0.1])
|
||||
)
|
||||
@ -2712,19 +2712,20 @@ def forward(self, x):
|
||||
torch._dynamo.exc.UserError,
|
||||
".*y.*size.*2.* = 4 is not equal to .*x.*size.*1.* = 3",
|
||||
):
|
||||
torch.export.export(bar, (x, y), dynamic_shapes=dynamic_shapes, strict=True)
|
||||
with torch._export.config.patch(use_new_tracer_experimental=True):
|
||||
torch.export.export(
|
||||
bar, (x, y), dynamic_shapes=dynamic_shapes, strict=True
|
||||
)
|
||||
y = torch.randn(10, 3, 3)
|
||||
ebar = torch.export.export(
|
||||
bar, (x, y), dynamic_shapes=dynamic_shapes, strict=True
|
||||
)
|
||||
self.assertEqual(
|
||||
[
|
||||
str(node.meta["val"].shape)
|
||||
for node in ebar.graph_module.graph.nodes
|
||||
if node.op == "placeholder"
|
||||
],
|
||||
["torch.Size([s17, s27, s27])", "torch.Size([s17, s27, s27])"],
|
||||
)
|
||||
with torch._export.config.patch(use_new_tracer_experimental=True):
|
||||
ebar = torch.export.export(
|
||||
bar, (x, y), dynamic_shapes=dynamic_shapes, strict=True
|
||||
)
|
||||
|
||||
for node in ebar.graph_module.graph.nodes:
|
||||
if node.op == "placeholder":
|
||||
shape = node.meta["val"].shape
|
||||
self.assertEqual(shape[1], shape[2])
|
||||
|
||||
@torch._dynamo.config.patch(
|
||||
capture_dynamic_output_shape_ops=True,
|
||||
|
@ -3627,7 +3627,7 @@ class GraphModule(torch.nn.Module):
|
||||
)
|
||||
|
||||
test(range(10), slice(1, 10, 2), expected=range(1, 10, 2))
|
||||
test(range(10), slice(None, 10, None), expected=range(0, 10))
|
||||
test(range(10), slice(None, 10, None), expected=range(10))
|
||||
test(range(10), slice(-1, 7, None), expected=range(9, 7))
|
||||
test(range(10), slice(-1, 7, 2), expected=range(9, 7, 2))
|
||||
test(range(1, 10, 2), slice(3, 7, 2), expected=range(7, 11, 4))
|
||||
|
@ -238,6 +238,56 @@ class AnnotateTests(torch._dynamo.test_case.TestCase):
|
||||
('call_function', 'getitem_5', {'compile_inductor': 0})""", # noqa: B950
|
||||
)
|
||||
|
||||
def test_as_decorator(self):
|
||||
class Mod(torch.nn.Module):
|
||||
@fx_traceback.annotate({"fdsp_bucket": 0})
|
||||
def sin(self, x):
|
||||
return torch.sin(x)
|
||||
|
||||
def forward(self, x):
|
||||
with fx_traceback.annotate({"pp_stage": 0}):
|
||||
sin = self.sin(x)
|
||||
sub = sin - 2
|
||||
mul = sub * 2
|
||||
div = mul / 3
|
||||
return div
|
||||
|
||||
m = Mod()
|
||||
backend = AotEagerAndRecordGraphs()
|
||||
opt_m = torch.compile(m, backend=backend, fullgraph=True)
|
||||
x = torch.randn(10, requires_grad=True)
|
||||
m(x)
|
||||
opt_m(x).sum().backward()
|
||||
|
||||
self.assertEqual(len(backend.fw_graphs), 1)
|
||||
self.assertEqual(len(backend.bw_graphs), 1)
|
||||
|
||||
dynamo_metadata = fx_traceback._get_custom_metadata(backend.graphs[0])
|
||||
fw_metadata = fx_traceback._get_custom_metadata(backend.fw_graphs[0])
|
||||
bw_metadata = fx_traceback._get_custom_metadata(backend.bw_graphs[0])
|
||||
self.assertExpectedInline(
|
||||
str(dynamo_metadata),
|
||||
"""\
|
||||
('placeholder', 'l_x_', {'pp_stage': 0, 'fdsp_bucket': 0})
|
||||
('call_function', 'sin', {'pp_stage': 0, 'fdsp_bucket': 0})
|
||||
('call_function', 'sub', {'pp_stage': 0})
|
||||
('call_function', 'mul', {'pp_stage': 0})""", # noqa: B950
|
||||
)
|
||||
self.assertExpectedInline(
|
||||
str(fw_metadata),
|
||||
"""\
|
||||
('call_function', 'sin', {'pp_stage': 0, 'fdsp_bucket': 0})
|
||||
('call_function', 'sub', {'pp_stage': 0})
|
||||
('call_function', 'mul', {'pp_stage': 0})""", # noqa: B950
|
||||
)
|
||||
self.assertExpectedInline(
|
||||
str(bw_metadata),
|
||||
"""\
|
||||
('call_function', 'mul_1', {'pp_stage': 0})
|
||||
('call_function', 'cos', {'pp_stage': 0, 'fdsp_bucket': 0})
|
||||
('call_function', 'mul_2', {'pp_stage': 0, 'fdsp_bucket': 0})""", # noqa: B950
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user