mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Compare commits
177 Commits
codex/enha
...
v0.3.1
Author | SHA1 | Date | |
---|---|---|---|
2b4748011b | |||
902d57be9f | |||
db9a700cb7 | |||
94ba828f7b | |||
3d6242daba | |||
e90699b862 | |||
d515806e84 | |||
17f94d20aa | |||
ac0b41e3ba | |||
29f897ea2f | |||
bbdaf66534 | |||
404510e3d5 | |||
da3c4cb84c | |||
30bd9e6462 | |||
4e549e94b7 | |||
00f9da74b3 | |||
a5fec26622 | |||
a33a75385c | |||
86fdc898ec | |||
548596b5f7 | |||
7972c7e290 | |||
395d5f9295 | |||
596133697c | |||
2bcc44a33d | |||
281b6ce41d | |||
e757aaf07d | |||
d9001ce861 | |||
b68861d7bb | |||
f9f113adf5 | |||
9e3bcf4bce | |||
b4862f67db | |||
f98c795b71 | |||
24a4881cb2 | |||
7427a88660 | |||
26f038a557 | |||
3321cdce84 | |||
f31ac990f7 | |||
f69c6e4f2f | |||
4cec94d8ba | |||
d721743b03 | |||
a52e9dd352 | |||
26751c5675 | |||
45b06257dc | |||
819e76fa11 | |||
3f2b57e8e8 | |||
6ff04fbcd4 | |||
ab5b03e02b | |||
24cd54d064 | |||
afd1ce006b | |||
1e86e9106e | |||
4630ce8999 | |||
315662554d | |||
c0e270a142 | |||
9260184592 | |||
120e9014d3 | |||
343c15c2b1 | |||
85ea548cff | |||
8a9f570eb1 | |||
53d1b6318b | |||
9e18db974b | |||
84da898124 | |||
63d6afdc62 | |||
8c3e1b713a | |||
0185d5aac6 | |||
faea900161 | |||
19b1ad8c30 | |||
bd8b9986ec | |||
3d3bddb953 | |||
d7bd3b9acf | |||
7763c6f871 | |||
98879d58e3 | |||
e98af60a7d | |||
6338da9c19 | |||
b09e7a6788 | |||
a9a76c6e75 | |||
1a5a28dc34 | |||
9fdc8644f1 | |||
a120a008f8 | |||
ab8b632d8c | |||
e5920a1083 | |||
6d1bccceec | |||
82e39d1231 | |||
07f0364304 | |||
24e2ccfc07 | |||
4797f98158 | |||
840760c29f | |||
ee24a054fe | |||
f3519fd5f7 | |||
f816029a72 | |||
d27c3ce79c | |||
280bf0979d | |||
d880a52091 | |||
aae0ce4f05 | |||
47d35d2dea | |||
f8b5ce1541 | |||
7f42c74f0f | |||
af3964a872 | |||
1645546aa9 | |||
350fad8a22 | |||
565d183042 | |||
2ebda372f6 | |||
28b846c486 | |||
9622eaa6fa | |||
db8154df32 | |||
b6eeea343d | |||
1fe9991554 | |||
00118024f3 | |||
87edf5a349 | |||
20972878cc | |||
0d1128d25c | |||
81dc60493d | |||
b18df1cedf | |||
3976d77509 | |||
09c83673bf | |||
5b9a8f918e | |||
f20fb2c1a1 | |||
4e00120117 | |||
2b3f35daea | |||
c580437342 | |||
455e788fe6 | |||
c980fb359b | |||
bae45bb106 | |||
34557d80f4 | |||
1e77879b2a | |||
ff52d424b2 | |||
4b7aa13b30 | |||
e1f2d0916e | |||
4b5b7e53f6 | |||
db66fa9436 | |||
392c89ab6a | |||
cddf501fc5 | |||
d0907d2c34 | |||
448a85a8e0 | |||
ea3138fd09 | |||
b89c96fe58 | |||
088f47bb89 | |||
ddb3804f87 | |||
a896311d06 | |||
937b634b5d | |||
004dfdc7cc | |||
f8aa5e2ed7 | |||
8a49309f81 | |||
14de24d89c | |||
c7cccc250e | |||
1f694e9a6e | |||
1108bced80 | |||
c36d452224 | |||
11955b86d2 | |||
9a6788202b | |||
d58bad4073 | |||
f95e252984 | |||
b49f0f8154 | |||
269c25267b | |||
fde471ee2a | |||
eb24d2ff6e | |||
f768068c3b | |||
c456451915 | |||
f282d1dc7c | |||
2a3cae0f3e | |||
3d9630abc2 | |||
da7a5147db | |||
5df8e582cd | |||
5dff261598 | |||
aa0c8920af | |||
a3b658bf3b | |||
94e89f3911 | |||
f0956ad9ec | |||
452ea78f43 | |||
3d5d66868e | |||
cf373e25e2 | |||
91d764c781 | |||
524235bb71 | |||
e035fa028b | |||
58a928c3b9 | |||
4f1eefa8ad | |||
4251c151e3 | |||
c0931a3a4d |
@ -202,9 +202,9 @@ MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install
|
||||
Dockerfile is supplied to build images with cuda support and cudnn v6. Build as usual
|
||||
```
|
||||
docker build -t pytorch .
|
||||
|
||||
```
|
||||
Dockerfile to build with cuda 9 and cudnn v7 (with Volta support) is in tools/docker, the build command is
|
||||
|
||||
```
|
||||
docker build -t pytorch_cuda9 -f tools/docker/Dockerfile9 .
|
||||
```
|
||||
Alternatively, if you want to use a runtime image, you can use the pre-built one from Docker Hub and run with nvidia-docker:
|
||||
|
@ -56,6 +56,12 @@ gradients are correct.
|
||||
Profiler
|
||||
--------
|
||||
|
||||
Autograd includes a profiler that lets you inspect the cost of different
|
||||
operators inside your model - both on the CPU and GPU. There are two modes
|
||||
implemented at the moment - CPU-only using :class:`~torch.autograd.profiler.profile`.
|
||||
and nvprof based (registers both CPU and GPU activity) using
|
||||
:class:`~torch.autograd.profiler.emit_nvtx`.
|
||||
|
||||
.. autoclass:: torch.autograd.profiler.profile
|
||||
:members:
|
||||
|
||||
|
@ -37,6 +37,10 @@ Streams and events
|
||||
.. autoclass:: Event
|
||||
:members:
|
||||
|
||||
Memory management
|
||||
-----------------
|
||||
.. autofunction:: empty_cache
|
||||
|
||||
NVIDIA Tools Extension (NVTX)
|
||||
-----------------------------
|
||||
|
||||
|
@ -19,10 +19,10 @@ Probability distributions - torch.distributions
|
||||
.. autoclass:: Bernoulli
|
||||
:members:
|
||||
|
||||
:hidden:`Multinomial`
|
||||
:hidden:`Categorical`
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: Multinomial
|
||||
.. autoclass:: Categorical
|
||||
:members:
|
||||
|
||||
:hidden:`Normal`
|
||||
|
@ -3,18 +3,19 @@
|
||||
CUDA semantics
|
||||
==============
|
||||
|
||||
:mod:`torch.cuda` keeps track of currently selected GPU, and all CUDA tensors
|
||||
you allocate will be created on it. The selected device can be changed with a
|
||||
:mod:`torch.cuda` is used to set up and run CUDA operations. It keeps track of
|
||||
the currently selected GPU, and all CUDA tensors you allocate will by default be
|
||||
created on that device. The selected device can be changed with a
|
||||
:any:`torch.cuda.device` context manager.
|
||||
|
||||
However, once a tensor is allocated, you can do operations on it irrespectively
|
||||
of your selected device, and the results will be always placed in on the same
|
||||
However, once a tensor is allocated, you can do operations on it irrespective
|
||||
of the selected device, and the results will be always placed in on the same
|
||||
device as the tensor.
|
||||
|
||||
Cross-GPU operations are not allowed by default, with the only exception of
|
||||
:meth:`~torch.Tensor.copy_`. Unless you enable peer-to-peer memory accesses,
|
||||
any attempts to launch ops on tensors spread across different devices will
|
||||
raise an error.
|
||||
:meth:`~torch.Tensor.copy_`. Unless you enable peer-to-peer memory access, any
|
||||
attempts to launch ops on tensors spread across different devices will raise an
|
||||
error.
|
||||
|
||||
Below you can find a small example showcasing this::
|
||||
|
||||
@ -41,6 +42,66 @@ Below you can find a small example showcasing this::
|
||||
d = torch.randn(2).cuda(2)
|
||||
# d.get_device() == 2
|
||||
|
||||
Asynchronous execution
|
||||
----------------------
|
||||
|
||||
By default, GPU operations are asynchronous. When you call a function that
|
||||
uses the GPU, the operations are *enqueued* to the particular device, but not
|
||||
necessarily executed until later. This allows us to execute more computations
|
||||
in parallel, including operations on CPU or other GPUs.
|
||||
|
||||
In general, the effect of asynchronous computation is invisible to the caller,
|
||||
because (1) each device executes operations in the order they are queued, and
|
||||
(2) PyTorch automatically performs necessary synchronization when copying data
|
||||
between CPU and GPU or between two GPUs. Hence, computation will proceed as if
|
||||
every operation was executed synchronously.
|
||||
|
||||
You can force synchronous computation by setting environment variable
|
||||
`CUDA_LAUNCH_BLOCKING=1`. This can be handy when an error occurs on the GPU.
|
||||
(With asynchronous execution, such an error isn't reported until after the
|
||||
operation is actually executed, so the stack trace does not show where it was
|
||||
requested.)
|
||||
|
||||
As an exception, several functions such as :meth:`~torch.Tensor.copy_` admit
|
||||
an explicit :attr:`async` argument, which lets the caller bypass synchronization
|
||||
when it is unnecessary. Another exception is CUDA streams, explained below.
|
||||
|
||||
CUDA streams
|
||||
^^^^^^^^^^^^
|
||||
|
||||
A `CUDA stream`_ is a linear sequence of execution that belongs to a specific
|
||||
device. You normally do not need to create one explicitly: by default, each
|
||||
device uses its own "default" stream.
|
||||
|
||||
Operations inside each stream are serialized in the order they are created,
|
||||
but operations from different streams can execute concurrently in any
|
||||
relative order, unless explicit synchronization functions (such as
|
||||
:meth:`~torch.cuda.synchronize` or :meth:`~torch.cuda.Stream.wait_stream`) are
|
||||
used. For example, the following code is incorrect::
|
||||
|
||||
s = torch.cuda.stream() # Create a new stream.
|
||||
A = torch.cuda.FloatTensor(100, 100).normal_(0.0, 1.0)
|
||||
with torch.cuda.stream(s):
|
||||
# sum() may start execution before normal_() finishes!
|
||||
B = torch.sum(A)
|
||||
|
||||
When the "current stream" is the default stream, PyTorch automatically performs
|
||||
necessary synchronization when data is moved around, as explained above.
|
||||
However, when using non-default streams, it is the user's responsibility to
|
||||
ensure proper synchronization.
|
||||
|
||||
.. _CUDA stream: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
|
||||
|
||||
Memory management
|
||||
-----------------
|
||||
|
||||
PyTorch use a caching memory allocator to speed up memory allocations. This
|
||||
allows fast memory deallocation without device synchronizations. However, the
|
||||
unused memory managed by the allocator will still show as if used in
|
||||
`nvidia-smi`. Calling :meth:`~torch.cuda.empty_cache` can release all unused
|
||||
cached memory from PyTorch so that those can be used by other GPU applications.
|
||||
|
||||
|
||||
Best practices
|
||||
--------------
|
||||
|
||||
@ -49,13 +110,13 @@ Device-agnostic code
|
||||
|
||||
Due to the structure of PyTorch, you may need to explicitly write
|
||||
device-agnostic (CPU or GPU) code; an example may be creating a new tensor as
|
||||
the initial hidden state of a recurrent neural network.
|
||||
the initial hidden state of a recurrent neural network.
|
||||
|
||||
The first step is to determine whether the GPU should be used or not. A common
|
||||
pattern is to use Python's `argparse` module to read in user arguments, and
|
||||
pattern is to use Python's ``argparse`` module to read in user arguments, and
|
||||
have a flag that can be used to disable CUDA, in combination with
|
||||
`torch.cuda.is_available()`. In the following, `args.cuda` results in a flag
|
||||
that can be used to cast tensors and modules to CUDA if desired::
|
||||
:meth:`~torch.cuda.is_available`. In the following, ``args.cuda`` results in a
|
||||
flag that can be used to cast tensors and modules to CUDA if desired::
|
||||
|
||||
import argparse
|
||||
import torch
|
||||
@ -66,7 +127,7 @@ that can be used to cast tensors and modules to CUDA if desired::
|
||||
args = parser.parse_args()
|
||||
args.cuda = not args.disable_cuda and torch.cuda.is_available()
|
||||
|
||||
If modules or tensors need to be sent to the GPU, `args.cuda` can be used as
|
||||
If modules or tensors need to be sent to the GPU, ``args.cuda`` can be used as
|
||||
follows::
|
||||
|
||||
x = torch.Tensor(8, 42)
|
||||
@ -84,9 +145,9 @@ dataloader would be as follows::
|
||||
x = Variable(x.type(dtype))
|
||||
|
||||
When working with multiple GPUs on a system, you can use the
|
||||
`CUDA_VISIBLE_DEVICES` environment flag to manage which GPUs are available to
|
||||
PyTorch. To manually control which GPU a tensor is created on, the best practice
|
||||
is to use the `torch.cuda.device()` context manager::
|
||||
``CUDA_VISIBLE_DEVICES`` environment flag to manage which GPUs are available to
|
||||
PyTorch. As mentioned above, to manually control which GPU a tensor is created
|
||||
on, the best practice is to use a :any:`torch.cuda.device` context manager::
|
||||
|
||||
print("Outside device is 0") # On device 0 (default in most scenarios)
|
||||
with torch.cuda.device(1):
|
||||
@ -94,9 +155,10 @@ is to use the `torch.cuda.device()` context manager::
|
||||
print("Outside device is still 0") # On device 0
|
||||
|
||||
If you have a tensor and would like to create a new tensor of the same type on
|
||||
the same device, then you can use the `.new()` function, which acts the same as
|
||||
a normal tensor constructor. Whilst the previously mentioned methods depend on
|
||||
the current GPU context, `new()` preserves the device of the original tensor.
|
||||
the same device, then you can use the :meth:`~torch.Tensor.new` method, which
|
||||
acts the same as a normal tensor constructor. Whilst the previously mentioned
|
||||
methods depend on the current GPU context, :meth:`~torch.Tensor.new` preserves
|
||||
the device of the original tensor.
|
||||
|
||||
This is the recommended practice when creating modules in which new
|
||||
tensors/variables need to be created internally during the forward pass::
|
||||
@ -110,8 +172,9 @@ tensors/variables need to be created internally during the forward pass::
|
||||
y_cpu_long = x_cpu_long.new([[1, 2, 3]])
|
||||
|
||||
If you want to create a tensor of the same type and size of another tensor, and
|
||||
fill it with either ones or zeros, `torch.ones_like()` or `torch.zeros_like()`
|
||||
are provided as more convenient functions (which also preserve device)::
|
||||
fill it with either ones or zeros, :meth:`~torch.ones_like` or
|
||||
:meth:`~torch.zeros_like` are provided as convenient helper functions (which
|
||||
also preserve device)::
|
||||
|
||||
x_cpu = torch.FloatTensor(1)
|
||||
x_gpu = torch.cuda.FloatTensor(1)
|
||||
@ -145,9 +208,9 @@ pinned memory by passing ``pin_memory=True`` to its constructor.
|
||||
Use nn.DataParallel instead of multiprocessing
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Most use cases involving batched input and multiple GPUs should default to using
|
||||
:class:`~torch.nn.DataParallel` to utilize more than one GPU. Even with the GIL,
|
||||
a single python process can saturate multiple GPUs.
|
||||
Most use cases involving batched inputs and multiple GPUs should default to
|
||||
using :class:`~torch.nn.DataParallel` to utilize more than one GPU. Even with
|
||||
the GIL, a single Python process can saturate multiple GPUs.
|
||||
|
||||
As of version 0.1.9, large numbers of GPUs (8+) might not be fully utilized.
|
||||
However, this is a known issue that is under active development. As always,
|
||||
|
@ -53,7 +53,7 @@ exporter to print out a human-readable representation of the network::
|
||||
You can also verify the protobuf using the `onnx <https://github.com/onnx/onnx/>`_ library.
|
||||
You can install ``onnx`` with conda::
|
||||
|
||||
conda install -c ezyang onnx
|
||||
conda install -c conda-forge onnx
|
||||
|
||||
Then, you can run::
|
||||
|
||||
@ -75,10 +75,8 @@ To run the exported script with `caffe2 <https://caffe2.ai/>`_, you will need th
|
||||
|
||||
2. You'll need `onnx-caffe2 <https://github.com/onnx/onnx-caffe2>`_, a
|
||||
pure-Python library which provides a Caffe2 backend for ONNX. You can install ``onnx-caffe2``
|
||||
with conda or pip::
|
||||
with pip::
|
||||
|
||||
conda install -c ezyang onnx-caffe2
|
||||
# OR
|
||||
pip install onnx-caffe2
|
||||
|
||||
Once these are installed, you can use the backend for Caffe2::
|
||||
@ -122,34 +120,48 @@ Limitations
|
||||
Supported operators
|
||||
-------------------
|
||||
|
||||
In this tech preview, only the following operators are supported:
|
||||
The following operators are supported:
|
||||
|
||||
* Add (inplace is discarded)
|
||||
* Sub (inplace is discarded)
|
||||
* Mul (inplace is discarded)
|
||||
* Negate (inplace is discarded)
|
||||
* Addmm (inplace is discarded, alpha and beta must be 1)
|
||||
* Tanh (inplace is discarded)
|
||||
* Sigmoid (inplace is discarded)
|
||||
* Transpose
|
||||
* View
|
||||
* Permute
|
||||
* Concat
|
||||
* Squeeze (inplace is discarded)
|
||||
* add (nonzero alpha not supported)
|
||||
* sub (nonzero alpha not supported)
|
||||
* mul
|
||||
* div
|
||||
* cat
|
||||
* mm
|
||||
* addmm
|
||||
* neg
|
||||
* tanh
|
||||
* sigmoid
|
||||
* mean
|
||||
* t
|
||||
* expand (only when used before a broadcasting ONNX operator; e.g., add)
|
||||
* transpose
|
||||
* view
|
||||
* split
|
||||
* squeeze
|
||||
* prelu (single weight shared among input channels not supported)
|
||||
* threshold (non-zero threshold/non-zero value not supported)
|
||||
* leaky_relu
|
||||
* glu
|
||||
* softmax
|
||||
* avg_pool2d (ceil_mode not supported)
|
||||
* log_softmax
|
||||
* unfold (experimental support with ATen-Caffe2 integration)
|
||||
* elu
|
||||
* Conv
|
||||
* BatchNorm
|
||||
* Convolution
|
||||
* Embedding (only optional argument that is supported is ``padding_idx``)
|
||||
* Slice (only integer indexing is supported)
|
||||
* Dropout (inplace is discarded)
|
||||
* Relu (inplace is discarded)
|
||||
* PReLU (inplace is discarded, sharing a single weight among all channels is not supported)
|
||||
* LeakyRelu (inplace is discarded)
|
||||
* MaxPool1d (ceil_mode must be False)
|
||||
* MaxPool2d (ceil_mode must be False)
|
||||
* AvgPool2d (ceil_mode must be False)
|
||||
* MaxPool1d (ceil_mode not supported)
|
||||
* MaxPool2d (ceil_mode not supported)
|
||||
* MaxPool3d (ceil_mode not supported)
|
||||
* Embedding (no optional arguments supported)
|
||||
* RNN
|
||||
* ConstantPadNd
|
||||
* Dropout
|
||||
* FeatureDropout (training mode not supported)
|
||||
* Index (constant integer and tuple indices supported)
|
||||
* Negate
|
||||
|
||||
We plan on expanding support to more operators; RNNs are high on our priority
|
||||
list. The operator set above is sufficient to export the following models:
|
||||
The operator set above is sufficient to export the following models:
|
||||
|
||||
* AlexNet
|
||||
* DCGAN
|
||||
|
@ -18,11 +18,11 @@ you can specify optimizer-specific options such as the learning rate, weight dec
|
||||
|
||||
.. note::
|
||||
|
||||
If you need to move a model to GPU via `.cuda()`, please do so before
|
||||
If you need to move a model to GPU via `.cuda()`, please do so before
|
||||
constructing optimizers for it. Parameters of a model after `.cuda()` will
|
||||
be different objects with those before the call.
|
||||
be different objects with those before the call.
|
||||
|
||||
In general, you should make sure that optimized parameters live in
|
||||
In general, you should make sure that optimized parameters live in
|
||||
consistent locations when optimizers are constructed and used.
|
||||
|
||||
Example::
|
||||
@ -111,6 +111,8 @@ Algorithms
|
||||
:members:
|
||||
.. autoclass:: Adam
|
||||
:members:
|
||||
.. autoclass:: SparseAdam
|
||||
:members:
|
||||
.. autoclass:: Adamax
|
||||
:members:
|
||||
.. autoclass:: ASGD
|
||||
@ -128,7 +130,7 @@ How to adjust Learning Rate
|
||||
---------------------------
|
||||
|
||||
:mod:`torch.optim.lr_scheduler` provides several methods to adjust the learning
|
||||
rate based on the number of epoches. :class:`torch.optim.lr_scheduler.ReduceLROnPlateau`
|
||||
rate based on the number of epochs. :class:`torch.optim.lr_scheduler.ReduceLROnPlateau`
|
||||
allows dynamic learning rate reducing based on some validation measurements.
|
||||
|
||||
.. autoclass:: torch.optim.lr_scheduler.LambdaLR
|
||||
@ -139,5 +141,7 @@ allows dynamic learning rate reducing based on some validation measurements.
|
||||
:members:
|
||||
.. autoclass:: torch.optim.lr_scheduler.ExponentialLR
|
||||
:members:
|
||||
.. autoclass:: torch.optim.lr_scheduler.CosineAnnealingLR
|
||||
:members:
|
||||
.. autoclass:: torch.optim.lr_scheduler.ReduceLROnPlateau
|
||||
:members:
|
||||
|
@ -1,5 +1,7 @@
|
||||
.. currentmodule:: torch
|
||||
|
||||
.. _tensor-doc:
|
||||
|
||||
torch.Tensor
|
||||
===================================
|
||||
|
||||
|
16
setup.py
16
setup.py
@ -542,7 +542,7 @@ if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux':
|
||||
STDCPP_LIB = STDCPP_LIB[:-1]
|
||||
if type(STDCPP_LIB) != str: # python 3
|
||||
STDCPP_LIB = STDCPP_LIB.decode(sys.stdout.encoding)
|
||||
main_link_args += [STDCPP_LIB]
|
||||
extra_link_args += [STDCPP_LIB]
|
||||
version_script = os.path.abspath("tools/pytorch.version")
|
||||
extra_link_args += ['-Wl,--version-script=' + version_script]
|
||||
|
||||
@ -593,9 +593,11 @@ extensions.append(THNN)
|
||||
if WITH_CUDA:
|
||||
thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')]
|
||||
if platform.system() == 'Linux':
|
||||
thnvrtc_link_flags = ['-Wl,--no-as-needed'] + thnvrtc_link_flags
|
||||
thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed']
|
||||
# these have to be specified as -lcuda in link_flags because they
|
||||
# have to come right after the `no-as-needed` option
|
||||
thnvrtc_link_flags += ['-lcuda', '-lnvrtc']
|
||||
THNVRTC = Extension("torch._nvrtc",
|
||||
libraries=['nvrtc', 'cuda'],
|
||||
sources=['torch/csrc/nvrtc.cpp'],
|
||||
language='c++',
|
||||
include_dirs=include_dirs,
|
||||
@ -618,11 +620,13 @@ if WITH_CUDA:
|
||||
)
|
||||
extensions.append(THCUNN)
|
||||
|
||||
version = '0.2.0'
|
||||
version = '0.3.1b0'
|
||||
if os.getenv('PYTORCH_BUILD_VERSION'):
|
||||
assert os.getenv('PYTORCH_BUILD_NUMBER') is not None
|
||||
version = os.getenv('PYTORCH_BUILD_VERSION') \
|
||||
+ '_' + os.getenv('PYTORCH_BUILD_NUMBER')
|
||||
build_number = int(os.getenv('PYTORCH_BUILD_NUMBER'))
|
||||
version = os.getenv('PYTORCH_BUILD_VERSION')
|
||||
if build_number > 1:
|
||||
version += '.post' + str(build_number)
|
||||
else:
|
||||
try:
|
||||
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
|
||||
|
@ -31,6 +31,7 @@ UNITTEST_ARGS = [sys.argv[0]] + remaining
|
||||
def run_tests():
|
||||
unittest.main(argv=UNITTEST_ARGS)
|
||||
|
||||
IS_WINDOWS = sys.platform == "win32"
|
||||
|
||||
TEST_NUMPY = True
|
||||
try:
|
||||
@ -170,6 +171,9 @@ class TestCase(unittest.TestCase):
|
||||
return x, y
|
||||
|
||||
def assertEqual(self, x, y, prec=None, message=''):
|
||||
if isinstance(prec, str) and message == '':
|
||||
message = prec
|
||||
prec = None
|
||||
if prec is None:
|
||||
prec = self.precision
|
||||
|
||||
@ -329,6 +333,8 @@ class TestCase(unittest.TestCase):
|
||||
self.assertEqual(s, expected)
|
||||
|
||||
if sys.version_info < (3, 2):
|
||||
# assertRegexpMatches renamed assertRegex in 3.2
|
||||
assertRegex = unittest.TestCase.assertRegexpMatches
|
||||
# assertRaisesRegexp renamed assertRaisesRegex in 3.2
|
||||
assertRaisesRegex = unittest.TestCase.assertRaisesRegexp
|
||||
|
||||
|
@ -246,10 +246,24 @@ module_tests = [
|
||||
]
|
||||
|
||||
|
||||
def nllloss2d_reference(input, target, weight=None, ignore_index=-100,
|
||||
def kldivloss_reference(input, target, size_average=True, reduce=True):
|
||||
safe_target = target * (target > 0).type_as(target)
|
||||
safe_target_log = (safe_target + (target <= 0).type_as(target)).log()
|
||||
result = safe_target * (safe_target_log - input)
|
||||
if reduce and size_average:
|
||||
return result.mean()
|
||||
elif reduce:
|
||||
return result.sum()
|
||||
return result
|
||||
|
||||
|
||||
def nlllossNd_reference(input, target, weight=None, ignore_index=-100,
|
||||
size_average=True, reduce=True):
|
||||
N, C, H, W = input.size()
|
||||
output = torch.zeros(N, H, W).type_as(input)
|
||||
assert input.dim() >= 3
|
||||
N = input.size(0)
|
||||
C = input.size(1)
|
||||
out_size = (N,) + input.size()[2:]
|
||||
output = torch.zeros(out_size).type_as(input)
|
||||
if isinstance(target, Variable):
|
||||
target = target.data
|
||||
|
||||
@ -257,13 +271,13 @@ def nllloss2d_reference(input, target, weight=None, ignore_index=-100,
|
||||
weight = torch.ones(C).type_as(input)
|
||||
|
||||
total_weight_data = 0
|
||||
for n in range(0, N):
|
||||
for h in range(0, H):
|
||||
for w in range(0, W):
|
||||
t_nhw = target[n][h][w]
|
||||
norm = 0. if ignore_index == t_nhw else weight[t_nhw]
|
||||
output[n][h][w] = -input[n][t_nhw][h][w] * norm
|
||||
total_weight_data += norm
|
||||
for tup in product(*[range(size) for size in out_size]):
|
||||
t_nx = target[tup]
|
||||
norm = 0. if ignore_index == t_nx else weight[t_nx]
|
||||
input_index = list(tup)
|
||||
input_index.insert(1, t_nx)
|
||||
output[tup] = -input[tuple(input_index)] * norm
|
||||
total_weight_data += norm
|
||||
|
||||
if reduce and size_average:
|
||||
return output.sum() / total_weight_data
|
||||
@ -309,8 +323,9 @@ def smoothl1loss_reference(input, target, size_average=True, reduce=True):
|
||||
|
||||
|
||||
loss_reference_fns = {
|
||||
'KLDivLoss': kldivloss_reference,
|
||||
'NLLLoss': nllloss_reference,
|
||||
'NLLLoss2d': nllloss2d_reference,
|
||||
'NLLLossNd': nlllossNd_reference,
|
||||
'SmoothL1Loss': smoothl1loss_reference,
|
||||
}
|
||||
|
||||
@ -370,6 +385,8 @@ criterion_tests = [
|
||||
module_name='KLDivLoss',
|
||||
input_fn=lambda: torch.rand(10, 10).log(),
|
||||
target_fn=lambda: torch.rand(10, 10),
|
||||
reference_fn=lambda i, t, m:
|
||||
kldivloss_reference(i, t, get_size_average(m), reduce=True),
|
||||
check_no_size_average=True,
|
||||
),
|
||||
dict(
|
||||
@ -410,7 +427,7 @@ criterion_tests = [
|
||||
input_size=(2, 3, 5, 5),
|
||||
target_fn=lambda: torch.rand(2, 5, 5).mul(3).floor().long(),
|
||||
reference_fn=lambda i, t, m:
|
||||
nllloss2d_reference(i, t, size_average=get_size_average(m)),
|
||||
nlllossNd_reference(i, t, size_average=get_size_average(m)),
|
||||
check_no_size_average=True,
|
||||
),
|
||||
dict(
|
||||
@ -419,7 +436,7 @@ criterion_tests = [
|
||||
input_size=(2, 3, 5, 5),
|
||||
target=torch.rand(2, 5, 5).mul(3).floor().long(),
|
||||
reference_fn=lambda i, t, m:
|
||||
nllloss2d_reference(i, t, weight=get_weight(m)),
|
||||
nlllossNd_reference(i, t, weight=get_weight(m)),
|
||||
desc='weights',
|
||||
),
|
||||
dict(
|
||||
@ -428,7 +445,7 @@ criterion_tests = [
|
||||
input_size=(2, 3, 5, 5),
|
||||
target_fn=lambda: torch.rand(2, 5, 5).mul(3).floor().long(),
|
||||
reference_fn=lambda i, t, m:
|
||||
nllloss2d_reference(i, t, ignore_index=1),
|
||||
nlllossNd_reference(i, t, ignore_index=1),
|
||||
desc='ignore_index',
|
||||
),
|
||||
dict(
|
||||
|
@ -3,6 +3,6 @@ graph(%1 : Double(2, 2)
|
||||
%3 : Double(2)
|
||||
%4 : Double(2)
|
||||
%5 : Double(2)) {
|
||||
%7 : Double(2, 2), %8 : Handle = CppOp[N5torch8autograd16BatchNormForwardE](%1, %2, %3), uses = [[%0.i0], []];
|
||||
%7 : Double(2, 2), %8 : Handle = CppOp[N5torch8autograd16BatchNormForwardE](%1, %2, %3), uses = [[%0.i0], []], scope: BatchNorm2d;
|
||||
return (%7);
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
graph(%1 : Double(20, 16, 50, 40)
|
||||
%2 : Double(13, 16, 3, 3)) {
|
||||
%4 : UNKNOWN_TYPE = Undefined(), uses = [%3.i2];
|
||||
%5 : Double(20, 13, 48, 38), %6 : Handle = CppOp[ConvForward](%1, %2, %4), uses = [[%0.i0], []];
|
||||
%4 : UNKNOWN_TYPE = Undefined(), uses = [%3.i2], scope: Conv2d;
|
||||
%5 : Double(20, 13, 48, 38), %6 : Handle = CppOp[ConvForward](%1, %2, %4), uses = [[%0.i0], []], scope: Conv2d;
|
||||
return (%5);
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
graph(%1 : Double(2, 2)) {
|
||||
%3 : Double(2, 2), %4 : Handle = ^Dropout(0.6, True, False)(%1), uses = [[%0.i0], []];
|
||||
%3 : Double(2, 2), %4 : Handle = ^Dropout(0.6, True, False)(%1), uses = [[%0.i0], []], scope: Dropout;
|
||||
return (%3);
|
||||
}
|
||||
|
8
test/expect/TestJit.test_scopes.expect
Normal file
8
test/expect/TestJit.test_scopes.expect
Normal file
@ -0,0 +1,8 @@
|
||||
graph(%1 : Double(1)
|
||||
%2 : Double(1)) {
|
||||
%3 : Double(1) = add[alpha={1}](%1, %2), uses = [%4.i1];
|
||||
%4 : Double(1) = mul(%1, %3), uses = [%5.i0], scope: Foo;
|
||||
%5 : Double(1) = tanh(%4), uses = [%6.i0], scope: Foo/Bar;
|
||||
%6 : Double(1) = sigmoid(%5), uses = [%0.i0], scope: Foo;
|
||||
return (%6);
|
||||
}
|
9
test/expect/TestJit.test_scopes_identity_node.expect
Normal file
9
test/expect/TestJit.test_scopes_identity_node.expect
Normal file
@ -0,0 +1,9 @@
|
||||
graph(%1 : Double(1, 3, 227, 227)
|
||||
%2 : Double(64, 3, 11, 11)
|
||||
%3 : Double(64)) {
|
||||
%5 : UNKNOWN_TYPE = Conv[kernel_shape=[11, 11], strides=[4, 4], pads=[2, 2, 2, 2], dilations=[1, 1], group=1](%1, %2), uses = [[%6.i0]], scope: Net/Sequential[features]/Conv2d[0];
|
||||
%6 : Double(1, 64, 56, 56) = Add[broadcast=1, axis=1](%5, %3), uses = [%7.i0], scope: Net/Sequential[features]/Conv2d[0];
|
||||
%7 : Double(1, 64, 56, 56) = Relu(%6), uses = [%8.i0], scope: Net/Sequential[features]/ReLU[1];
|
||||
%8 : Double(1, 64, 27, 27) = MaxPool[kernel_shape=[3, 3], pads=[0, 0], strides=[2, 2]](%7), uses = [%0.i0], scope: Net/Sequential[features]/MaxPool2d[2];
|
||||
return (%8);
|
||||
}
|
5
test/expect/TestJit.test_scopes_intermediate_node.expect
Normal file
5
test/expect/TestJit.test_scopes_intermediate_node.expect
Normal file
@ -0,0 +1,5 @@
|
||||
graph(%1 : Double(2)) {
|
||||
%2 : Double(2) = Softmax[axis=0](%1), uses = [%3.i0], scope: Net;
|
||||
%3 : Double(2) = Log(%2), uses = [%0.i0], scope: Net;
|
||||
return (%3);
|
||||
}
|
@ -345,32 +345,6 @@ class TestAutograd(TestCase):
|
||||
self.assertEqual(counter[0], 1, 'bw_hook not called')
|
||||
self.assertEqual(x.grad.data, torch.ones(5, 5) * 2)
|
||||
|
||||
@unittest.skipIf(sys.version_info[0] == 2, "Python 2 doesn't collect cycles involving __del__")
|
||||
def test_hooks_cycle(self):
|
||||
import gc
|
||||
counter = [0]
|
||||
|
||||
class GradHook(object):
|
||||
def __init__(self, var):
|
||||
self.var = var
|
||||
|
||||
def __del__(self):
|
||||
counter[0] += 1
|
||||
|
||||
def __call__(self, *args):
|
||||
pass
|
||||
|
||||
def run_test():
|
||||
x = Variable(torch.ones(5, 5), requires_grad=True)
|
||||
y = x * 2
|
||||
x.register_hook(GradHook(x))
|
||||
y.register_hook(GradHook(y))
|
||||
y._backward_hooks[1] = GradHook(y)
|
||||
|
||||
run_test()
|
||||
gc.collect()
|
||||
self.assertEqual(counter[0], 3)
|
||||
|
||||
def test_hook_none(self):
|
||||
# WARNING: this is a test for autograd internals.
|
||||
# You should never have to use such things in your code.
|
||||
@ -995,6 +969,16 @@ class TestAutograd(TestCase):
|
||||
self._test_setitem_tensor((5, 5), Variable(mask))
|
||||
self._test_setitem_tensor((5,), Variable(mask[0]))
|
||||
|
||||
def test_select_sum(self):
|
||||
# both select and sum return Scalars in ATen; ensure they work together.
|
||||
x = Variable(torch.randn(10), requires_grad=True)
|
||||
|
||||
def func(x):
|
||||
return x.select(0, 1).sum()
|
||||
|
||||
gradcheck(func, [x])
|
||||
gradgradcheck(func, [x])
|
||||
|
||||
def test_stack(self):
|
||||
x = Variable(torch.randn(10, 10), requires_grad=True)
|
||||
y = Variable(torch.randn(10, 10), requires_grad=True)
|
||||
@ -1006,6 +990,43 @@ class TestAutograd(TestCase):
|
||||
self.assertEqual(y.grad.data, grad[1])
|
||||
self.assertEqual(z.grad.data, grad[2])
|
||||
|
||||
def test_put(self):
|
||||
root = Variable(torch.randn(4, 5), requires_grad=True)
|
||||
values = Variable(torch.randn(6), requires_grad=True)
|
||||
idx = Variable(torch.LongTensor([1, 2, 3, -1, -2, -3]))
|
||||
|
||||
def func(root, values):
|
||||
x = root.clone()
|
||||
x.put_(idx, values)
|
||||
return x
|
||||
|
||||
gradcheck(func, [root, values])
|
||||
gradgradcheck(func, [root, values])
|
||||
|
||||
def test_put_accumulate(self):
|
||||
root = Variable(torch.randn(4, 5), requires_grad=True)
|
||||
values = Variable(torch.randn(6), requires_grad=True)
|
||||
idx = Variable(torch.LongTensor([1, 2, 3, 1, 2, 3]))
|
||||
|
||||
def func(root, values):
|
||||
x = root.clone()
|
||||
x.put_(idx, values, accumulate=True)
|
||||
return x
|
||||
|
||||
gradcheck(func, [root, values])
|
||||
gradgradcheck(func, [root, values])
|
||||
|
||||
def test_fill(self):
|
||||
root = Variable(torch.randn(4, 5), requires_grad=True)
|
||||
|
||||
def func(root):
|
||||
x = root.clone()
|
||||
x.fill_(2)
|
||||
return x
|
||||
|
||||
gradcheck(func, [root])
|
||||
gradgradcheck(func, [root])
|
||||
|
||||
def test_unused_output(self):
|
||||
x = Variable(torch.randn(10, 10), requires_grad=True)
|
||||
outputs = x.chunk(5)
|
||||
@ -1461,13 +1482,14 @@ class TestAutograd(TestCase):
|
||||
def test_norm_subgradient(self):
|
||||
def run_test(input_size, norm_deg):
|
||||
input = Variable(torch.zeros(*input_size), requires_grad=True)
|
||||
out = input.norm(norm_deg)
|
||||
out.backward()
|
||||
input.norm(norm_deg).backward()
|
||||
self.assertEqual(input.grad.data.abs().sum(), 0)
|
||||
|
||||
run_test((10,), 2)
|
||||
run_test((10, 10), 2)
|
||||
run_test((10,), 3)
|
||||
run_test((10,), 1)
|
||||
run_test((10,), 1.5)
|
||||
|
||||
def test_profiler(self):
|
||||
x = Variable(torch.randn(10, 10))
|
||||
@ -1764,8 +1786,14 @@ method_tests = [
|
||||
('addcdiv', (S, S), (0.5, (S, 1), (1, S)), 'scale_broadcast_rhs'),
|
||||
('addcdiv', (1,), (0.5, (S, S, 1), (1, S)), 'scale_broadcast_all'),
|
||||
('zero_', (S, S, S), ()),
|
||||
('norm', (S, S, S), (2,)),
|
||||
('norm', (S, S, S), (3,), '3'),
|
||||
('norm', (S, S), (2,)),
|
||||
('norm', (S, S), (0,), '0'),
|
||||
('norm', (S, S), (0.5,), '0_5'),
|
||||
('norm', (S, S), (1,), '1'),
|
||||
('norm', (S, S), (3,), '3'),
|
||||
('norm', (S, S), (-1,), 'neg_1'),
|
||||
('norm', (S, S), (-0.5,), 'neg_0_5'),
|
||||
('norm', (S, S), (-1.5,), 'neg_1_5'),
|
||||
('norm', torch.rand(S, S, S) + 5e-2, (1.5,), '1_5'),
|
||||
('norm', (S, S, S), (2, 1), '2_dim', [1]),
|
||||
('norm', (S, S, S), (3, 1), '3_dim', [1]),
|
||||
@ -1842,6 +1870,7 @@ method_tests = [
|
||||
('squeeze', (S, 1, S, 1), ()),
|
||||
('squeeze', (S, 1, S, 1), (1,), '1_dim', [0]),
|
||||
('squeeze', (S, 1, S, 1), (2,), 'not_1_dim', [0]),
|
||||
('squeeze', (1,), (0,), '1d_dim0', [0]),
|
||||
('unsqueeze', (S, S, S), (0,), 'first', [0]),
|
||||
('unsqueeze', (S, S, S), (1,), 'middle', [0]),
|
||||
('unsqueeze', (S, S, S), (3,), 'last', [0]),
|
||||
@ -1875,6 +1904,7 @@ method_tests = [
|
||||
('topk', (S, M, S), (3, 1), 'dim'),
|
||||
('topk', (S, M, S), (3, 1, True), 'dim_desc'),
|
||||
('topk', (S, M, S), (3, 1, True, True), 'dim_desc_sort'),
|
||||
('take', (S, S, S), (Variable(torch.LongTensor([[-3, 2], [20, 2]])),)),
|
||||
('__getitem__', torch.randn(S, S, S), (dont_convert([1, 2]),)),
|
||||
('__getitem__', torch.randn(S, S, S), (slice(0, 3),), 'slice'),
|
||||
('__getitem__', torch.randn(S, S, S), (dont_convert([slice(0, 3), 1]),), 'slice_index'),
|
||||
|
@ -1,5 +1,6 @@
|
||||
import math
|
||||
import tempfile
|
||||
import re
|
||||
import unittest
|
||||
from itertools import repeat
|
||||
|
||||
@ -16,6 +17,11 @@ if not torch.cuda.is_available():
|
||||
TestCase = object # noqa: F811
|
||||
HAS_CUDA = False
|
||||
|
||||
HAS_MAGMA = HAS_CUDA
|
||||
if HAS_CUDA:
|
||||
torch.ones(1).cuda() # has_magma shows up after cuda is initialized
|
||||
HAS_MAGMA = torch.cuda.has_magma
|
||||
|
||||
|
||||
def is_floating(t):
|
||||
return type(t) in [torch.FloatTensor, torch.DoubleTensor,
|
||||
@ -91,6 +97,10 @@ def medium_2d(t):
|
||||
return make_tensor(t, M, M)
|
||||
|
||||
|
||||
def medium_2d_expanded(t):
|
||||
return t(1).expand(M, M)
|
||||
|
||||
|
||||
def medium_2d_scaled(t, scale=10):
|
||||
return make_tensor(t, M, M).mul(scale)
|
||||
|
||||
@ -137,6 +147,13 @@ def new_t(*sizes):
|
||||
return t(*sizes).copy_(torch.randn(*sizes))
|
||||
return tmp
|
||||
|
||||
# Content of each tuple:
|
||||
# - function name
|
||||
# - constructor for the tensor, signature: fn(tensor_type) -> tensor
|
||||
# - constructor for the arguments, signature: fn(tensor_type) -> list
|
||||
# - postfix name for the test (must be unique for a given function) (default='')
|
||||
# - tensor types to use (default=types)
|
||||
# - disable inplace test, if set to True, no inplace test will be done (default=False)
|
||||
tests = [
|
||||
('add', small_3d, lambda t: [number(3.14, 3, t)]),
|
||||
('add', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
|
||||
@ -289,9 +306,11 @@ tests = [
|
||||
('topk', small_3d_unique, lambda t: [2, 1, True, True], 'dim_desc_sort'),
|
||||
('trace', medium_2d, lambda t: [],),
|
||||
('tril', medium_2d, lambda t: [],),
|
||||
('tril', medium_2d_expanded, lambda t: [], 'zero_stride', types, True),
|
||||
('tril', medium_2d, lambda t: [2], 'positive'),
|
||||
('tril', medium_2d, lambda t: [-2], 'negative'),
|
||||
('triu', medium_2d, lambda t: [],),
|
||||
('triu', medium_2d_expanded, lambda t: [], 'zero_stride', types, True),
|
||||
('triu', medium_2d, lambda t: [2], 'positive'),
|
||||
('triu', medium_2d, lambda t: [-2], 'negative'),
|
||||
('unsqueeze', new_t(2, 3, 4), lambda t: [2],),
|
||||
@ -378,18 +397,24 @@ def get_cycles_per_ms():
|
||||
return _cycles_per_ms
|
||||
|
||||
|
||||
def compare_cpu_gpu(tensor_constructor, arg_constructor, fn, t, precision=1e-5):
|
||||
def compare_cpu_gpu(tensor_constructor, arg_constructor, fn, t, precision=1e-5, force_gpu_half=False):
|
||||
def tmp(self):
|
||||
cpu_tensor = tensor_constructor(t)
|
||||
gpu_tensor = to_gpu(cpu_tensor)
|
||||
type_map = {}
|
||||
if force_gpu_half:
|
||||
type_map = {
|
||||
'torch.FloatTensor': 'torch.cuda.HalfTensor',
|
||||
'torch.DoubleTensor': 'torch.cuda.HalfTensor',
|
||||
}
|
||||
gpu_tensor = to_gpu(cpu_tensor, type_map)
|
||||
cpu_args = arg_constructor(t)
|
||||
gpu_args = [to_gpu(arg) for arg in cpu_args]
|
||||
gpu_args = [to_gpu(arg, type_map) for arg in cpu_args]
|
||||
cpu_result = getattr(cpu_tensor, fn)(*cpu_args)
|
||||
try:
|
||||
gpu_result = getattr(gpu_tensor, fn)(*gpu_args)
|
||||
except RuntimeError as e:
|
||||
reason = e.args[0]
|
||||
if 'unimplemented data type' in reason:
|
||||
if 'only supports floating-point types' in reason or 'unimplemented data type' in reason:
|
||||
raise unittest.SkipTest('unimplemented data type')
|
||||
raise
|
||||
except AttributeError as e:
|
||||
@ -707,6 +732,38 @@ class TestCuda(TestCase):
|
||||
z = torch.cat([x, y], 0)
|
||||
self.assertEqual(z.get_device(), x.get_device())
|
||||
|
||||
def test_cat(self):
|
||||
SIZE = 10
|
||||
for dim in range(-3, 3):
|
||||
pos_dim = dim if dim >= 0 else 3 + dim
|
||||
x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim).cuda()
|
||||
y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim).cuda()
|
||||
z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim).cuda()
|
||||
|
||||
res1 = torch.cat((x, y, z), dim)
|
||||
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
|
||||
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
|
||||
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
|
||||
|
||||
x = torch.randn(20, SIZE, SIZE).cuda()
|
||||
self.assertEqual(torch.cat(torch.split(x, 7)), x)
|
||||
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
|
||||
|
||||
y = torch.randn(1, SIZE, SIZE).cuda()
|
||||
z = torch.cat([x, y])
|
||||
self.assertEqual(z.size(), (21, SIZE, SIZE))
|
||||
|
||||
def test_cat_bad_input_sizes(self):
|
||||
x = torch.randn(2, 1).cuda()
|
||||
y = torch.randn(2, 1, 1).cuda()
|
||||
z = torch.randn(2, 1, 1).cuda()
|
||||
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
|
||||
|
||||
x = torch.randn(2, 1, 2).cuda()
|
||||
y = torch.randn(2, 1, 1).cuda()
|
||||
z = torch.randn(2, 2, 1).cuda()
|
||||
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
|
||||
|
||||
def test_serialization(self):
|
||||
x = torch.randn(4, 4).cuda()
|
||||
with tempfile.NamedTemporaryFile() as f:
|
||||
@ -968,6 +1025,69 @@ class TestCuda(TestCase):
|
||||
def test_tensor_scatterFill(self):
|
||||
TestTorch._test_scatter_base(self, lambda t: t.cuda(), 'scatter_', True, test_bounds=False)
|
||||
|
||||
def test_var(self):
|
||||
cpu_tensor = torch.randn(2, 3, 3)
|
||||
gpu_tensor = cpu_tensor.cuda()
|
||||
self.assertEqual(gpu_tensor.var(), cpu_tensor.var())
|
||||
self.assertEqual(gpu_tensor.var(1), cpu_tensor.var(1))
|
||||
self.assertEqual(gpu_tensor.var(2), cpu_tensor.var(2))
|
||||
self.assertEqual(gpu_tensor.std(), cpu_tensor.std())
|
||||
self.assertEqual(gpu_tensor.std(1), cpu_tensor.std(1))
|
||||
self.assertEqual(gpu_tensor.var(2), cpu_tensor.var(2))
|
||||
|
||||
cpu_tensor = torch.randn(100)
|
||||
gpu_tensor = cpu_tensor.cuda()
|
||||
self.assertEqual(gpu_tensor.var(), cpu_tensor.var())
|
||||
|
||||
def test_var_unbiased(self):
|
||||
tensor = torch.randn(100).cuda()
|
||||
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
|
||||
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
|
||||
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)[0])
|
||||
|
||||
tensor = torch.FloatTensor([1.0, 2.0]).cuda()
|
||||
self.assertEqual(tensor.var(unbiased=True), 0.5)
|
||||
self.assertEqual(tensor.var(unbiased=False), 0.25)
|
||||
|
||||
tensor = torch.randn(100).cuda()
|
||||
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
|
||||
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
|
||||
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)[0])
|
||||
|
||||
def test_var_large_input(self):
|
||||
# Large, not-nice input
|
||||
tensor_cpu = torch.randn(2 * 32 * 1024 + 1, 2, 67)
|
||||
tensor_cuda = tensor_cpu.cuda()
|
||||
|
||||
self.assertEqual(tensor_cpu.var(2), tensor_cuda.var(2).cpu())
|
||||
|
||||
def test_var_stability(self):
|
||||
tensor = torch.FloatTensor([2281.5, 2281.25]).cuda()
|
||||
|
||||
# Stability for inner dim
|
||||
self.assertEqual(tensor.var(0)[0], 0.03125)
|
||||
|
||||
# General stability
|
||||
self.assertEqual(tensor.var(), 0.03125)
|
||||
|
||||
# Stability for outer dimensions
|
||||
tensor = tensor.unsqueeze(1)
|
||||
self.assertEqual(tensor.var(0)[0], 0.03125)
|
||||
|
||||
@unittest.skipIf(not HAS_MAGMA, "no MAGMA library detected")
|
||||
def test_symeig(self):
|
||||
# Small case
|
||||
tensor = torch.randn(3, 3).cuda()
|
||||
tensor = torch.mm(tensor, tensor.t())
|
||||
eigval, eigvec = torch.symeig(tensor, eigenvectors=True)
|
||||
self.assertEqual(tensor, torch.mm(torch.mm(eigvec, eigval.diag()), eigvec.t()))
|
||||
|
||||
# Large case
|
||||
tensor = torch.randn(257, 257).cuda()
|
||||
tensor = torch.mm(tensor, tensor.t())
|
||||
eigval, eigvec = torch.symeig(tensor, eigenvectors=True)
|
||||
self.assertEqual(tensor, torch.mm(torch.mm(eigvec, eigval.diag()), eigvec.t()))
|
||||
|
||||
def test_arange(self):
|
||||
for t in ['IntTensor', 'LongTensor', 'FloatTensor', 'DoubleTensor']:
|
||||
a = torch.cuda.__dict__[t]()
|
||||
@ -999,18 +1119,27 @@ if HAS_CUDA:
|
||||
for t in types:
|
||||
tensor = t()
|
||||
gpu_tensor = get_gpu_type(t)()
|
||||
|
||||
# Default values
|
||||
desc = ''
|
||||
type_subset = types
|
||||
no_inplace = False
|
||||
if len(decl) == 3:
|
||||
name, constr, arg_constr = decl
|
||||
desc = ''
|
||||
elif len(decl) == 4:
|
||||
name, constr, arg_constr, desc = decl
|
||||
elif len(decl) == 5:
|
||||
name, constr, arg_constr, desc, type_subset = decl
|
||||
if t not in type_subset:
|
||||
continue
|
||||
elif len(decl) == 6:
|
||||
name, constr, arg_constr, desc, type_subset, no_inplace = decl
|
||||
|
||||
if t not in type_subset:
|
||||
continue
|
||||
|
||||
precision = custom_precision.get(name, TestCuda.precision)
|
||||
for inplace in (True, False):
|
||||
if inplace and no_inplace:
|
||||
continue
|
||||
if inplace:
|
||||
name_inner = name + '_'
|
||||
else:
|
||||
@ -1027,7 +1156,15 @@ if HAS_CUDA:
|
||||
test_name += '_' + desc
|
||||
|
||||
assert not hasattr(TestCuda, test_name), "Duplicated test name: " + test_name
|
||||
setattr(TestCuda, test_name, compare_cpu_gpu(constr, arg_constr, name_inner, t, precision))
|
||||
setattr(TestCuda,
|
||||
test_name,
|
||||
compare_cpu_gpu(constr, arg_constr, name_inner, t, precision))
|
||||
if t == torch.FloatTensor:
|
||||
assert not hasattr(TestCuda, test_name + '_gpu_half'), "Duplicated test name: " + test_name
|
||||
setattr(TestCuda,
|
||||
test_name + '_gpu_half',
|
||||
compare_cpu_gpu(constr, arg_constr, name_inner, t,
|
||||
precision, force_gpu_half=True))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,13 +1,46 @@
|
||||
import math
|
||||
import sys
|
||||
import errno
|
||||
import os
|
||||
import ctypes
|
||||
import signal
|
||||
import torch
|
||||
import time
|
||||
import traceback
|
||||
import unittest
|
||||
from torch import multiprocessing
|
||||
from torch.utils.data import Dataset, TensorDataset, DataLoader, ConcatDataset
|
||||
from common import TestCase, run_tests, TEST_NUMPY
|
||||
from torch.utils.data.dataset import random_split
|
||||
from torch.utils.data.dataloader import default_collate, ExceptionWrapper
|
||||
from common import TestCase, run_tests, TEST_NUMPY, IS_WINDOWS
|
||||
from common_nn import TEST_CUDA
|
||||
|
||||
|
||||
JOIN_TIMEOUT = 17.0 if IS_WINDOWS else 4.5
|
||||
|
||||
|
||||
class TestDatasetRandomSplit(TestCase):
|
||||
def test_lengths_must_equal_datset_size(self):
|
||||
with self.assertRaises(ValueError):
|
||||
random_split([1, 2, 3, 4], [1, 2])
|
||||
|
||||
def test_splits_have_correct_size(self):
|
||||
splits = random_split([1, 2, 3, 4, 5, 6], [2, 4])
|
||||
self.assertEqual(len(splits), 2)
|
||||
self.assertEqual(len(splits[0]), 2)
|
||||
self.assertEqual(len(splits[1]), 4)
|
||||
|
||||
def test_splits_are_mutually_exclusive(self):
|
||||
data = [5, 2, 3, 4, 1, 6]
|
||||
splits = random_split(data, [2, 4])
|
||||
all_values = []
|
||||
all_values.extend(list(splits[0]))
|
||||
all_values.extend(list(splits[1]))
|
||||
data.sort()
|
||||
all_values.sort()
|
||||
self.assertListEqual(data, all_values)
|
||||
|
||||
|
||||
class TestTensorDataset(TestCase):
|
||||
|
||||
def test_len(self):
|
||||
@ -73,6 +106,46 @@ class TestConcatDataset(TestCase):
|
||||
self.assertEqual(0, (d3[0][0] - result[14][0]).abs().sum())
|
||||
|
||||
|
||||
# Stores the first encountered exception in .exception.
|
||||
# Inspired by https://stackoverflow.com/a/33599967
|
||||
class ErrorTrackingProcess(multiprocessing.Process):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(ErrorTrackingProcess, self).__init__(*args, **kwargs)
|
||||
self._pconn, self._cconn = multiprocessing.Pipe()
|
||||
self._exception = None
|
||||
|
||||
def run(self):
|
||||
# Disable stderr printing from os level, and make workers not printing
|
||||
# to stderr.
|
||||
# Can't use sys.stderr.close, otherwise Python `raise` will error with
|
||||
# ValueError: I/O operation on closed file.
|
||||
os.close(sys.stderr.fileno())
|
||||
try:
|
||||
super(ErrorTrackingProcess, self).run()
|
||||
self._cconn.send(None)
|
||||
except Exception as e:
|
||||
self._cconn.send(ExceptionWrapper(sys.exc_info()))
|
||||
raise
|
||||
|
||||
@property
|
||||
def exception(self):
|
||||
if self._pconn.poll():
|
||||
self._exception = self._pconn.recv()
|
||||
if self._exception is None:
|
||||
return None
|
||||
else:
|
||||
return self._exception.exc_type(self._exception.exc_msg)
|
||||
|
||||
# ESRCH means that os.kill can't finds alive proc
|
||||
def send_signal(self, signum, ignore_ESRCH=False):
|
||||
try:
|
||||
os.kill(self.pid, signum)
|
||||
except OSError as e:
|
||||
if not ignore_ESRCH or e.errno != errno.ESRCH:
|
||||
raise
|
||||
|
||||
|
||||
class ErrorDataset(Dataset):
|
||||
|
||||
def __init__(self, size):
|
||||
@ -82,6 +155,84 @@ class ErrorDataset(Dataset):
|
||||
return self.size
|
||||
|
||||
|
||||
class SegfaultDataset(Dataset):
|
||||
|
||||
def __init__(self, size):
|
||||
self.size = size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return ctypes.string_at(0)
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
|
||||
class SleepDataset(Dataset):
|
||||
|
||||
def __init__(self, size, sleep_sec):
|
||||
self.size = size
|
||||
self.sleep_sec = sleep_sec
|
||||
|
||||
def __getitem__(self, idx):
|
||||
time.sleep(self.sleep_sec)
|
||||
return idx
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
|
||||
class SeedDataset(Dataset):
|
||||
|
||||
def __init__(self, size):
|
||||
self.size = size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return torch.initial_seed()
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
|
||||
# Inspired by https://stackoverflow.com/a/26703365
|
||||
# This will ensure that each worker at least processes one data
|
||||
class SynchronizedSeedDataset(Dataset):
|
||||
|
||||
def __init__(self, size, num_workers):
|
||||
assert size >= num_workers
|
||||
self.count = multiprocessing.Value('i', 0)
|
||||
self.barrier = multiprocessing.Semaphore(0)
|
||||
self.num_workers = num_workers
|
||||
self.size = size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
self.count.value += 1
|
||||
if self.count.value == self.num_workers:
|
||||
self.barrier.release()
|
||||
self.barrier.acquire()
|
||||
self.barrier.release()
|
||||
return torch.initial_seed()
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
|
||||
def _test_timeout():
|
||||
dataset = SleepDataset(10, 10)
|
||||
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, timeout=1)
|
||||
_ = next(iter(dataloader))
|
||||
|
||||
|
||||
def _test_segfault():
|
||||
dataset = SegfaultDataset(10)
|
||||
dataloader = DataLoader(dataset, batch_size=2, num_workers=2)
|
||||
_ = next(iter(dataloader))
|
||||
|
||||
|
||||
# test custom init function
|
||||
def init_fn(worker_id):
|
||||
torch.manual_seed(12345)
|
||||
|
||||
|
||||
class TestDataLoader(TestCase):
|
||||
|
||||
def setUp(self):
|
||||
@ -148,6 +299,62 @@ class TestDataLoader(TestCase):
|
||||
self.assertTrue(input.is_pinned())
|
||||
self.assertTrue(target.is_pinned())
|
||||
|
||||
def test_multiple_dataloaders(self):
|
||||
loader1_it = iter(DataLoader(self.dataset, num_workers=1))
|
||||
loader2_it = iter(DataLoader(self.dataset, num_workers=2))
|
||||
next(loader1_it)
|
||||
next(loader1_it)
|
||||
next(loader2_it)
|
||||
next(loader2_it)
|
||||
next(loader1_it)
|
||||
next(loader2_it)
|
||||
|
||||
@unittest.skipIf(True, "flaky test")
|
||||
def test_segfault(self):
|
||||
p = ErrorTrackingProcess(target=_test_segfault)
|
||||
p.start()
|
||||
p.join(JOIN_TIMEOUT)
|
||||
try:
|
||||
self.assertFalse(p.is_alive())
|
||||
self.assertNotEqual(p.exitcode, 0)
|
||||
if IS_WINDOWS:
|
||||
self.assertIsInstance(p.exception, OSError)
|
||||
self.assertRegex(str(p.exception), r'access violation reading ')
|
||||
else:
|
||||
self.assertIsInstance(p.exception, RuntimeError)
|
||||
self.assertRegex(str(p.exception), r'DataLoader worker \(pid \d+\) is killed by signal: ')
|
||||
finally:
|
||||
p.terminate()
|
||||
|
||||
def test_timeout(self):
|
||||
p = ErrorTrackingProcess(target=_test_timeout)
|
||||
p.start()
|
||||
p.join(JOIN_TIMEOUT)
|
||||
try:
|
||||
self.assertFalse(p.is_alive())
|
||||
self.assertNotEqual(p.exitcode, 0)
|
||||
self.assertIsInstance(p.exception, RuntimeError)
|
||||
self.assertRegex(str(p.exception), r'DataLoader timed out after \d+ seconds')
|
||||
finally:
|
||||
p.terminate()
|
||||
|
||||
def test_worker_seed(self):
|
||||
num_workers = 6
|
||||
dataset = SynchronizedSeedDataset(num_workers, num_workers)
|
||||
dataloader = DataLoader(dataset, batch_size=1, num_workers=num_workers)
|
||||
seeds = set()
|
||||
for batch in dataloader:
|
||||
seeds.add(batch[0])
|
||||
self.assertEqual(len(seeds), num_workers)
|
||||
|
||||
def test_worker_init_fn(self):
|
||||
dataset = SeedDataset(4)
|
||||
dataloader = DataLoader(dataset, batch_size=2, num_workers=2,
|
||||
worker_init_fn=init_fn)
|
||||
for batch in dataloader:
|
||||
self.assertEqual(12345, batch[0])
|
||||
self.assertEqual(12345, batch[1])
|
||||
|
||||
def test_shuffle(self):
|
||||
self._test_shuffle(DataLoader(self.dataset, shuffle=True))
|
||||
|
||||
@ -223,17 +430,17 @@ class TestDataLoader(TestCase):
|
||||
"check that workers exit even if the iterator is not exhausted"
|
||||
loader = iter(DataLoader(self.dataset, batch_size=2, num_workers=4, pin_memory=True))
|
||||
workers = loader.workers
|
||||
pin_thread = loader.pin_thread
|
||||
worker_manager_thread = loader.worker_manager_thread
|
||||
for i, sample in enumerate(loader):
|
||||
if i == 3:
|
||||
break
|
||||
del loader
|
||||
for w in workers:
|
||||
w.join(1.0) # timeout of one second
|
||||
w.join(JOIN_TIMEOUT)
|
||||
self.assertFalse(w.is_alive(), 'subprocess not terminated')
|
||||
self.assertEqual(w.exitcode, 0)
|
||||
pin_thread.join(1.0)
|
||||
self.assertFalse(pin_thread.is_alive())
|
||||
worker_manager_thread.join(JOIN_TIMEOUT)
|
||||
self.assertFalse(worker_manager_thread.is_alive())
|
||||
|
||||
def test_len(self):
|
||||
def check_len(dl, expected):
|
||||
@ -276,6 +483,23 @@ class TestDataLoader(TestCase):
|
||||
batch = next(iter(loader))
|
||||
self.assertIsInstance(batch, tt)
|
||||
|
||||
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
|
||||
def test_default_colate_bad_numpy_types(self):
|
||||
import numpy as np
|
||||
|
||||
# Should be a no-op
|
||||
arr = np.array(['a', 'b', 'c'])
|
||||
default_collate(arr)
|
||||
|
||||
arr = np.array([[['a', 'b', 'c']]])
|
||||
self.assertRaises(TypeError, lambda: default_collate(arr))
|
||||
|
||||
arr = np.array([object(), object(), object()])
|
||||
self.assertRaises(TypeError, lambda: default_collate(arr))
|
||||
|
||||
arr = np.array([[[object(), object(), object()]]])
|
||||
self.assertRaises(TypeError, lambda: default_collate(arr))
|
||||
|
||||
|
||||
class StringDataset(Dataset):
|
||||
def __init__(self):
|
||||
|
@ -2,7 +2,7 @@ from common import TestCase, run_tests
|
||||
import math
|
||||
import torch
|
||||
from torch.autograd import Variable, gradcheck
|
||||
from torch.distributions import Bernoulli, Multinomial, Normal
|
||||
from torch.distributions import Bernoulli, Categorical, Normal
|
||||
|
||||
|
||||
class TestDistributions(TestCase):
|
||||
@ -47,22 +47,22 @@ class TestDistributions(TestCase):
|
||||
def test_multinomial_1d(self):
|
||||
p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True)
|
||||
# TODO: this should return a 0-dim tensor once we have Scalar support
|
||||
self.assertEqual(Multinomial(p).sample().size(), (1,))
|
||||
self.assertEqual(Multinomial(p).sample_n(1).size(), (1, 1))
|
||||
self._gradcheck_log_prob(Multinomial, (p,))
|
||||
self.assertEqual(Categorical(p).sample().size(), (1,))
|
||||
self.assertEqual(Categorical(p).sample_n(1).size(), (1, 1))
|
||||
self._gradcheck_log_prob(Categorical, (p,))
|
||||
|
||||
def test_multinomial_2d(self):
|
||||
probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]]
|
||||
p = Variable(torch.Tensor(probabilities), requires_grad=True)
|
||||
self.assertEqual(Multinomial(p).sample().size(), (2,))
|
||||
self.assertEqual(Multinomial(p).sample_n(6).size(), (6, 2))
|
||||
self._gradcheck_log_prob(Multinomial, (p,))
|
||||
self.assertEqual(Categorical(p).sample().size(), (2,))
|
||||
self.assertEqual(Categorical(p).sample_n(6).size(), (6, 2))
|
||||
self._gradcheck_log_prob(Categorical, (p,))
|
||||
|
||||
def ref_log_prob(idx, val, log_prob):
|
||||
sample_prob = p.data[idx][val] / p.data[idx].sum()
|
||||
self.assertEqual(log_prob, math.log(sample_prob))
|
||||
|
||||
self._check_log_prob(Multinomial(p), ref_log_prob)
|
||||
self._check_log_prob(Categorical(p), ref_log_prob)
|
||||
|
||||
def test_normal(self):
|
||||
mean = Variable(torch.randn(5, 5), requires_grad=True)
|
||||
|
@ -15,6 +15,15 @@ try:
|
||||
except ImportError:
|
||||
HAS_TORCHVISION = False
|
||||
|
||||
RUN_CUDA = torch.cuda.is_available()
|
||||
if torch.cuda.is_available():
|
||||
CUDA_VERSION = torch._C._cuda_getCompiledVersion()
|
||||
for d in range(torch.cuda.device_count()):
|
||||
major = torch.cuda.get_device_capability(d)[0]
|
||||
if (CUDA_VERSION < 8000 and major >= 6) or (CUDA_VERSION < 9000 and major >= 7):
|
||||
RUN_CUDA = False
|
||||
|
||||
|
||||
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
|
||||
|
||||
|
||||
@ -41,6 +50,12 @@ def LSTMCellC(*args, **kwargs):
|
||||
class TestJit(TestCase):
|
||||
maxDiff = None
|
||||
|
||||
def assertExpectedTrace(self, trace, *args, **kwargs):
|
||||
torch._C._jit_pass_lint(trace)
|
||||
torch._C._jit_pass_dce(trace)
|
||||
torch._C._jit_pass_lint(trace)
|
||||
self.assertExpected(str(trace), *args, **kwargs)
|
||||
|
||||
def test_simple(self):
|
||||
x = Variable(torch.Tensor([0.4]), requires_grad=True)
|
||||
y = Variable(torch.Tensor([0.7]), requires_grad=True)
|
||||
@ -52,7 +67,64 @@ class TestJit(TestCase):
|
||||
torch._C._jit_pass_lint(trace)
|
||||
self.assertExpected(str(trace))
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA")
|
||||
def test_scopes(self):
|
||||
x = Variable(torch.Tensor([0.4]), requires_grad=True)
|
||||
y = Variable(torch.Tensor([0.7]), requires_grad=True)
|
||||
|
||||
def f(x, y):
|
||||
out = x + y
|
||||
with torch.jit.scope('Foo', out):
|
||||
out = x * out
|
||||
with torch.jit.scope('Bar', out):
|
||||
out = torch.tanh(out)
|
||||
out = torch.sigmoid(out)
|
||||
return out
|
||||
|
||||
trace, z = torch.jit.trace(f, (x, y), nderivs=0)
|
||||
torch._C._jit_pass_lint(trace)
|
||||
self.assertExpected(str(trace))
|
||||
|
||||
def test_scopes_intermediate_node(self):
|
||||
|
||||
class Net(nn.Module):
|
||||
def forward(self, x):
|
||||
return F.log_softmax(x, dim=0)
|
||||
|
||||
net = Net()
|
||||
t = Variable(torch.ones(2), requires_grad=True)
|
||||
trace, _ = torch.jit.trace(net, (t, ))
|
||||
torch.onnx._optimize_trace(trace)
|
||||
|
||||
self.assertExpectedTrace(trace)
|
||||
|
||||
def test_scopes_identity_node(self):
|
||||
|
||||
class Net(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
return x
|
||||
|
||||
model = Net()
|
||||
|
||||
t = Variable(torch.ones(1, 3, 227, 227), requires_grad=True)
|
||||
|
||||
with torch.onnx.set_training(model, False):
|
||||
trace, _ = torch.jit.trace(model, (t, ))
|
||||
|
||||
torch.onnx._optimize_trace(trace)
|
||||
|
||||
self.assertExpectedTrace(trace)
|
||||
|
||||
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
|
||||
def test_lstm_fusion(self):
|
||||
input = Variable(torch.randn(3, 10).cuda())
|
||||
hx = Variable(torch.randn(3, 20).cuda())
|
||||
@ -65,7 +137,7 @@ class TestJit(TestCase):
|
||||
torch._C._jit_pass_lint(trace)
|
||||
self.assertExpected(str(trace))
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA")
|
||||
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
|
||||
def test_run_lstm_fusion(self):
|
||||
input = Variable(torch.randn(3, 10).cuda())
|
||||
hx = Variable(torch.randn(3, 20).cuda())
|
||||
@ -78,7 +150,7 @@ class TestJit(TestCase):
|
||||
z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters(), _assert_compiled=True)
|
||||
self.assertEqual(z, z2)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA")
|
||||
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
|
||||
def test_run_lstm_fusion_concat(self):
|
||||
input = Variable(torch.randn(3, 10).cuda())
|
||||
hx = Variable(torch.randn(3, 20).cuda())
|
||||
@ -91,7 +163,7 @@ class TestJit(TestCase):
|
||||
z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters(), _assert_compiled=True)
|
||||
self.assertEqual(z, z2)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA")
|
||||
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
|
||||
def test_concat_fusion(self):
|
||||
hx = Variable(torch.randn(3, 20).cuda())
|
||||
cx = Variable(torch.randn(3, 20).cuda())
|
||||
@ -105,7 +177,7 @@ class TestJit(TestCase):
|
||||
torch._C._jit_pass_lint(trace)
|
||||
self.assertExpected(str(trace))
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA")
|
||||
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
|
||||
def test_fusion_distribute(self):
|
||||
def f(x, y):
|
||||
z1, z2 = (x + y).chunk(2, dim=1)
|
||||
@ -146,7 +218,7 @@ class TestJit(TestCase):
|
||||
self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y))))
|
||||
self.assertEqual(z, z2)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA")
|
||||
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
|
||||
def test_compile_addc(self):
|
||||
x = Variable(torch.Tensor([0.4]), requires_grad=True).cuda()
|
||||
y = Variable(torch.Tensor([0.7]), requires_grad=True).cuda()
|
||||
@ -613,7 +685,7 @@ class TestJit(TestCase):
|
||||
assert(torch.equal(torch.ones([2, 2]), t_node.t("a")))
|
||||
self.assertExpected(str(g2))
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "cpp tests require CUDA")
|
||||
@unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA")
|
||||
def test_cpp(self):
|
||||
torch._C._jit_run_cpp_tests()
|
||||
|
||||
|
@ -11,14 +11,15 @@ import torch.cuda
|
||||
import torch.multiprocessing as mp
|
||||
from torch.autograd import Variable
|
||||
from torch.nn import Parameter
|
||||
from common import TestCase, run_tests
|
||||
from common import TestCase, run_tests, IS_WINDOWS
|
||||
|
||||
|
||||
TEST_REPEATS = 30
|
||||
HAS_SHM_FILES = os.path.isdir('/dev/shm')
|
||||
TEST_CUDA_IPC = torch.cuda.is_available() and \
|
||||
sys.version_info[0] == 3 and \
|
||||
sys.platform != 'darwin'
|
||||
sys.platform != 'darwin' and \
|
||||
sys.platform != 'win32'
|
||||
TEST_MULTIGPU = TEST_CUDA_IPC and torch.cuda.device_count() > 1
|
||||
|
||||
|
||||
@ -318,6 +319,7 @@ class TestMultiprocessing(TestCase):
|
||||
self.assertEqual(tensor_size, 5)
|
||||
self.assertEqual(storage_size, 5)
|
||||
|
||||
@unittest.skipIf(IS_WINDOWS, 'not applicable to Windows (only fails with fork)')
|
||||
@unittest.skipIf(not torch.cuda.is_available(), 'CUDA not available')
|
||||
def test_cuda_bad_call(self):
|
||||
# Initialize CUDA
|
||||
|
416
test/test_nn.py
416
test/test_nn.py
@ -27,7 +27,7 @@ from torch.nn import Parameter
|
||||
from torch.nn.parallel._functions import Broadcast
|
||||
from common_nn import NNTestCase, ModuleTest, CriterionTest, TestBase, \
|
||||
module_tests, criterion_tests, TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, \
|
||||
TEST_CUDNN_VERSION, loss_reference_fns
|
||||
TEST_CUDNN_VERSION, loss_reference_fns, get_size_average
|
||||
from common import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, \
|
||||
TEST_SCIPY, download_file
|
||||
|
||||
@ -934,6 +934,12 @@ class TestNN(NNTestCase):
|
||||
self.assertEqual(output[0][0].sum().data[0], 0)
|
||||
self.assertEqual(output[1][2].sum().data[0], 0)
|
||||
|
||||
embedding = nn.Embedding(10, 20, padding_idx=0, sparse=True)
|
||||
input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]]))
|
||||
output = embedding(input)
|
||||
self.assertEqual(output[0][0].sum().data[0], 0)
|
||||
self.assertEqual(output[1][2].sum().data[0], 0)
|
||||
|
||||
def test_embedding_max_norm(self):
|
||||
embedding = nn.Embedding(22, 5, max_norm=1.0)
|
||||
input = Variable(torch.LongTensor([2, 8, 8, 6]))
|
||||
@ -1060,6 +1066,26 @@ class TestNN(NNTestCase):
|
||||
offset[-1] = 100
|
||||
self.assertRaises(ValueError, lambda: es(input.view(-1), offset))
|
||||
|
||||
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
||||
def test_pool3d_size_one_feature_dim(self):
|
||||
# Tests crazy strides for feature dim of size 1
|
||||
x = torch.randn(7, 1, 5, 3, 2).cuda()
|
||||
strange_strides = (30, 1234, 6, 2, 1)
|
||||
y = x.new().set_(x.storage(), x.storage_offset(), x.size(), strange_strides)
|
||||
x = x.cpu().set_(x.cpu().storage(), x.storage_offset(), x.size(), strange_strides)
|
||||
x, y = Variable(x), Variable(y)
|
||||
|
||||
to_test = {
|
||||
'max_pool3d': lambda t: F.max_pool3d(t, (5, 1, 1), stride=(5, 1, 1)),
|
||||
'avg_pool3d': lambda t: F.avg_pool3d(t, (5, 1, 1), stride=(5, 1, 1)),
|
||||
}
|
||||
|
||||
for test, fn in to_test.items():
|
||||
# Should not crash
|
||||
out_y = fn(y)
|
||||
out_x = fn(x)
|
||||
self.assertEqual(out_y, out_x.cuda(), test)
|
||||
|
||||
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
||||
def test_AvgPool3d_backward_after_cat_dim1_cuda(self):
|
||||
# x has to have batch_size 1 to test contiguous checks
|
||||
@ -1609,6 +1635,60 @@ class TestNN(NNTestCase):
|
||||
self.assertEqual(out.get_device(), 0)
|
||||
self.assertEqual(out.data, expected_out)
|
||||
|
||||
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
||||
def test_data_parallel_module_kwargs_only_empty_list(self):
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.l = l
|
||||
|
||||
def forward(self, input):
|
||||
return self.l(input['data'])
|
||||
|
||||
l = nn.Linear(10, 5).float().cuda()
|
||||
i = Variable(torch.randn(20, 10).float().cuda())
|
||||
expected_out = l(i).data
|
||||
n = nn.DataParallel(Net())
|
||||
out = n(input={'data': i, 'unused': []})
|
||||
self.assertEqual(out.get_device(), 0)
|
||||
self.assertEqual(out.data, expected_out)
|
||||
|
||||
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
||||
def test_data_parallel_module_kwargs_only_empty_dict(self):
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.l = l
|
||||
|
||||
def forward(self, input):
|
||||
return self.l(input['data'])
|
||||
|
||||
l = nn.Linear(10, 5).float().cuda()
|
||||
i = Variable(torch.randn(20, 10).float().cuda())
|
||||
expected_out = l(i).data
|
||||
n = nn.DataParallel(Net())
|
||||
out = n(input={'data': i, 'unused': {}})
|
||||
self.assertEqual(out.get_device(), 0)
|
||||
self.assertEqual(out.data, expected_out)
|
||||
|
||||
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
||||
def test_data_parallel_module_kwargs_only_empty_tuple(self):
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.l = l
|
||||
|
||||
def forward(self, input):
|
||||
return self.l(input['data'])
|
||||
|
||||
l = nn.Linear(10, 5).float().cuda()
|
||||
i = Variable(torch.randn(20, 10).float().cuda())
|
||||
expected_out = l(i).data
|
||||
n = nn.DataParallel(Net())
|
||||
out = n(input={'data': i, 'unused': ()})
|
||||
self.assertEqual(out.get_device(), 0)
|
||||
self.assertEqual(out.data, expected_out)
|
||||
|
||||
def test_state_dict(self):
|
||||
l = nn.Linear(5, 5)
|
||||
block = nn.Module()
|
||||
@ -1909,6 +1989,32 @@ class TestNN(NNTestCase):
|
||||
input = Variable(torch.Tensor(torch.Size((3, ) * dims)))
|
||||
self.assertRaises(ValueError, lambda: module(input))
|
||||
|
||||
def test_conv_shapecheck(self):
|
||||
def test(should_raise, module, input_size):
|
||||
input = Variable(torch.Tensor(3, *input_size))
|
||||
if should_raise:
|
||||
self.assertRaises(RuntimeError, lambda: module(input))
|
||||
else:
|
||||
# just run it to ensure no exception raised.
|
||||
module(input)
|
||||
|
||||
# Conv1d
|
||||
test(True, nn.Conv1d(1, 1, 3), (1, 2))
|
||||
test(True, nn.Conv1d(1, 1, 3, stride=2), (1, 2))
|
||||
test(False, nn.Conv1d(1, 1, 2), (1, 2))
|
||||
test(False, nn.Conv1d(1, 1, 2, stride=2), (1, 2))
|
||||
test(False, nn.Conv1d(1, 1, 3, stride=2, padding=1), (1, 2))
|
||||
|
||||
# Conv2d
|
||||
test(True, nn.Conv2d(1, 1, (3, 3)), (1, 2, 2))
|
||||
test(False, nn.Conv2d(1, 1, (3, 3)), (1, 3, 3))
|
||||
test(False, nn.Conv2d(1, 1, (3, 3), padding=1), (1, 2, 2))
|
||||
|
||||
# Conv3D
|
||||
test(True, nn.Conv3d(1, 1, (3, 3, 3)), (1, 2, 2, 2))
|
||||
test(False, nn.Conv3d(1, 1, (3, 3, 3)), (1, 3, 3, 3))
|
||||
test(False, nn.Conv3d(1, 1, (3, 3, 3), padding=1), (1, 2, 2, 2))
|
||||
|
||||
def test_ConvTranspose2d_output_size(self):
|
||||
m = nn.ConvTranspose2d(3, 4, 3, 3, 0, 2)
|
||||
i = Variable(torch.randn(2, 3, 6, 6))
|
||||
@ -2249,6 +2355,38 @@ class TestNN(NNTestCase):
|
||||
weight_data[:] = 4
|
||||
self.assertEqual(weight_data, all_vars[4].data)
|
||||
|
||||
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
|
||||
def test_cudnn_weight_tying(self):
|
||||
rnns = [
|
||||
nn.LSTM(10, 20, batch_first=True, bidirectional=True),
|
||||
nn.GRU(10, 20, batch_first=True, bidirectional=True),
|
||||
nn.RNN(10, 20, batch_first=True, bidirectional=True)
|
||||
]
|
||||
for rnn in rnns:
|
||||
rnn.bias_ih_l0_reverse = rnn.bias_ih_l0
|
||||
rnn.cuda()
|
||||
input = Variable(torch.randn(5, 4, 10).cuda(), requires_grad=True)
|
||||
hx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True)
|
||||
all_vars = [input, hx] + list(rnn.parameters())
|
||||
opt = torch.optim.SGD(rnn.parameters(), lr=0.1)
|
||||
opt.zero_grad()
|
||||
if isinstance(rnn, nn.LSTM):
|
||||
cx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True)
|
||||
all_vars[2:2] = [cx]
|
||||
hx = (hx, cx)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
output = rnn(input, hx)
|
||||
output[0].sum().backward()
|
||||
|
||||
opt.step()
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
output_cuda = rnn(input, hx)
|
||||
rnn.cpu()
|
||||
hx = (hx[0].cpu(), hx[1].cpu()) if isinstance(rnn, nn.LSTM) else hx.cpu()
|
||||
output_cpu = rnn(input.cpu(), hx)
|
||||
self.assertEqual(output_cuda, output_cpu)
|
||||
|
||||
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
||||
def test_cuda_rnn_fused(self):
|
||||
def copy_rnn(rnn1, rnn2):
|
||||
@ -2318,6 +2456,69 @@ class TestNN(NNTestCase):
|
||||
finally:
|
||||
torch.backends.cudnn.enabled = prev
|
||||
|
||||
def test_rnn_args_check(self):
|
||||
input_size = 3
|
||||
hidden_size = 5
|
||||
num_layers = 2
|
||||
batch_size = 4
|
||||
seq_len = 6
|
||||
num_directions = 1
|
||||
|
||||
def test(input_shape, hidden_shape, mode):
|
||||
for input, hidden in get_inputs(input_shape, hidden_shape, mode):
|
||||
model = getattr(nn, mode)(input_size, hidden_size, num_layers)
|
||||
self.assertRaises(RuntimeError, lambda: model(input, hidden))
|
||||
|
||||
correct_input_shape = (seq_len, batch_size, input_size)
|
||||
correct_hidden_shape = (num_layers * num_directions, batch_size, hidden_size)
|
||||
|
||||
def update_tuple(tup, dim, delta):
|
||||
new_tup = list(tup)
|
||||
new_tup[dim] = delta
|
||||
return tuple(new_tup)
|
||||
|
||||
def get_inputs(input_shape, hidden_shape, mode):
|
||||
'''returns list( tuple(input, hidden) )
|
||||
where input, hidden are inputs to a model'''
|
||||
input = Variable(torch.randn(input_shape))
|
||||
hidden = Variable(torch.randn(hidden_shape))
|
||||
if mode is not 'LSTM':
|
||||
return [(input, hidden)]
|
||||
if hidden_shape == correct_hidden_shape:
|
||||
return [(input, (hidden, hidden))]
|
||||
good_hidden = Variable(torch.randn(correct_hidden_shape))
|
||||
return [
|
||||
(input, (hidden, good_hidden)),
|
||||
(input, (good_hidden, hidden)),
|
||||
]
|
||||
|
||||
rnn_modes = ['RNN', 'GRU', 'LSTM']
|
||||
for mode in rnn_modes:
|
||||
# Incorrect input batch size
|
||||
input_shape = update_tuple(correct_input_shape, 1, -1)
|
||||
hidden_shape = correct_hidden_shape
|
||||
test(input_shape, hidden_shape, mode)
|
||||
|
||||
# Incorrect hidden batch size
|
||||
input_shape = correct_input_shape
|
||||
hidden_shape = update_tuple(correct_hidden_shape, 1, -1)
|
||||
test(input_shape, hidden_shape, mode)
|
||||
|
||||
# Incorrect input size
|
||||
input_shape = update_tuple(correct_input_shape, 2, -1)
|
||||
hidden_shape = correct_hidden_shape
|
||||
test(input_shape, hidden_shape, mode)
|
||||
|
||||
# Incorrect hidden size
|
||||
input_shape = correct_input_shape
|
||||
hidden_shape = update_tuple(correct_hidden_shape, 2, -1)
|
||||
test(input_shape, hidden_shape, mode)
|
||||
|
||||
# Incorrect hidden[0]
|
||||
input_shape = correct_input_shape
|
||||
hidden_shape = update_tuple(correct_hidden_shape, 0, -1)
|
||||
test(input_shape, hidden_shape, mode)
|
||||
|
||||
def test_rnn_initial_hidden_state(self):
|
||||
rnn_modes = ['RNN', 'GRU', 'LSTM']
|
||||
for mode in rnn_modes:
|
||||
@ -2759,6 +2960,26 @@ class TestNN(NNTestCase):
|
||||
|
||||
self.assertEqual(out1, out2)
|
||||
|
||||
def test_elu_inplace_gradgrad(self):
|
||||
v = Variable(torch.randn(8), requires_grad=True)
|
||||
|
||||
def func(root):
|
||||
x = root.clone()
|
||||
return F.elu(x, inplace=True)
|
||||
|
||||
gradcheck(func, [v])
|
||||
gradgradcheck(func, [v])
|
||||
|
||||
def test_hardtanh_inplace_gradgrad(self):
|
||||
v = Variable(torch.randn(8), requires_grad=True)
|
||||
|
||||
def func(root):
|
||||
x = root.clone()
|
||||
return F.hardtanh(x, inplace=True)
|
||||
|
||||
gradcheck(func, [v])
|
||||
gradgradcheck(func, [v])
|
||||
|
||||
def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self):
|
||||
input = Variable(torch.rand(2, 10))
|
||||
running_var = torch.rand(10)
|
||||
@ -2844,39 +3065,25 @@ class TestNN(NNTestCase):
|
||||
self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=0), (input1, input2)))
|
||||
self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=-1), (input1, input2)))
|
||||
|
||||
# Check cosine_similarity input/output shapes
|
||||
input_size = (1, 3, 2, 1)
|
||||
expected_size = (1, 2, 1)
|
||||
input1 = Variable(torch.randn(input_size), requires_grad=True)
|
||||
input2 = Variable(torch.randn(input_size), requires_grad=True)
|
||||
self.assertEqual(F.cosine_similarity(input1, input2, dim=1).size(), expected_size)
|
||||
|
||||
def test_grid_sample(self):
|
||||
# test known input on CPU
|
||||
input = Variable(torch.arange(1, 11).view(1, 1, 2, 5))
|
||||
grid = Variable(torch.Tensor(
|
||||
[[-1, -0.5, 0, 0.2, 1],
|
||||
[-1, -0.333, 0, 0.5, 1],
|
||||
[-1, -0.5, 0, 0.3333, 1],
|
||||
[-1, -0.2, 0, 0.2, 1]]).view(1, 2, 5, 2))
|
||||
output = F.grid_sample(input, grid)
|
||||
groundtruth = torch.Tensor(
|
||||
[[2.2500, 6.0000000000, 5.0000, 4.8340, 9.0000],
|
||||
[2.2500, 6.333250045, 5.0000, 5.1000, 8.4000]]).view(1, 1, 2, 5)
|
||||
self.assertEqual(output.data, groundtruth)
|
||||
def test_cpu_against_cuda(N, C, H, W, padding_mode):
|
||||
def test_shape(N, C, IH, IW, H, W, padding_mode):
|
||||
|
||||
# do gradcheck
|
||||
N = random.randint(1, 8)
|
||||
C = random.randint(1, 8)
|
||||
H = random.randint(1, 8)
|
||||
W = random.randint(1, 8)
|
||||
input = Variable(torch.randn(N, C, H, W), requires_grad=True)
|
||||
grid = Variable(torch.randn(N, H, W, 2), requires_grad=True)
|
||||
self.assertTrue(gradcheck(lambda inp, grid: F.grid_sample(inp, grid), (input, grid)))
|
||||
|
||||
def test_cpu_against_cuda(N, C, H, W):
|
||||
def test_shape(N, C, IH, IW, H, W):
|
||||
input_cpu = Variable(torch.randn(C, N, IH, IW).transpose(0, 1), requires_grad=True)
|
||||
grid_cpu = Variable(torch.randn(H, N, W, 2).transpose(0, 1), requires_grad=True)
|
||||
out_cpu = F.grid_sample(input_cpu, grid_cpu)
|
||||
out_cpu = F.grid_sample(input_cpu, grid_cpu, padding_mode=padding_mode)
|
||||
self.assertTrue(out_cpu.size() == torch.Size([N, C, H, W]))
|
||||
|
||||
input_cuda = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True)
|
||||
grid_cuda = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True)
|
||||
out_cuda = F.grid_sample(input_cuda, grid_cuda)
|
||||
out_cuda = F.grid_sample(input_cuda, grid_cuda, padding_mode=padding_mode)
|
||||
self.assertEqual(out_cpu, out_cuda)
|
||||
|
||||
gradients = out_cpu.data.new(out_cpu.size()).normal_()
|
||||
@ -2889,15 +3096,15 @@ class TestNN(NNTestCase):
|
||||
base_input = torch.randn(C, IH, IW)
|
||||
input_cpu = Variable(base_input.expand(input_cuda.size()), requires_grad=True)
|
||||
grid_cpu = Variable(torch.randn(N, H, W, 2), requires_grad=True)
|
||||
out_cpu = F.grid_sample(input_cpu, grid_cpu)
|
||||
out_cpu = F.grid_sample(input_cpu, grid_cpu, padding_mode=padding_mode)
|
||||
|
||||
input_cuda = Variable(base_input.cuda().expand(input_cuda.size()), requires_grad=True)
|
||||
grid_cuda = Variable(grid_cpu.data.cuda(), requires_grad=True)
|
||||
out_cuda = F.grid_sample(input_cuda, grid_cuda)
|
||||
out_cuda = F.grid_sample(input_cuda, grid_cuda, padding_mode=padding_mode)
|
||||
self.assertEqual(out_cpu, out_cuda)
|
||||
|
||||
# test same size output
|
||||
test_shape(N, C, H, W, H, W)
|
||||
test_shape(N, C, H, W, H, W, padding_mode)
|
||||
|
||||
# test larger output
|
||||
N = random.randint(1, 8)
|
||||
@ -2906,7 +3113,7 @@ class TestNN(NNTestCase):
|
||||
IW = random.randint(1, 8)
|
||||
H = random.randint(IH + 1, 12)
|
||||
W = random.randint(IH + 1, 12)
|
||||
test_shape(N, C, IH, IW, H, W)
|
||||
test_shape(N, C, IH, IW, H, W, padding_mode)
|
||||
|
||||
# test smaller output
|
||||
N = random.randint(1, 8)
|
||||
@ -2915,21 +3122,44 @@ class TestNN(NNTestCase):
|
||||
IW = random.randint(1, 8)
|
||||
H = random.randint(1, IH)
|
||||
W = random.randint(1, IW)
|
||||
test_shape(N, C, IH, IW, H, W)
|
||||
test_shape(N, C, IH, IW, H, W, padding_mode)
|
||||
|
||||
# test CUDNN against CPU
|
||||
if TEST_CUDNN:
|
||||
test_cpu_against_cuda(N, C, H, W)
|
||||
# test known input on CPU
|
||||
for padding_mode in ['zeros', 'border']:
|
||||
|
||||
# test CUDA (without CUDNN) against CPU
|
||||
if TEST_CUDA:
|
||||
input = Variable(torch.arange(1, 11).view(1, 1, 2, 5))
|
||||
grid = Variable(torch.Tensor(
|
||||
[[-0.9, -1.4, 0, 0.2, 1],
|
||||
[-1, -0.333, 0, 0.5, 1],
|
||||
[-1, -0.5, 0, 0.3333, 1],
|
||||
[-1, -0.2, 0, 1.1, 0.5]]).view(1, 2, 5, 2))
|
||||
output = F.grid_sample(input, grid, padding_mode=padding_mode)
|
||||
|
||||
# GridSampler will automatically use CUDNN if it is available
|
||||
# so we disable CUDNN temporarily
|
||||
original_cudnn_enabled = cudnn.enabled
|
||||
cudnn.enabled = False
|
||||
test_cpu_against_cuda(N, C, H, W)
|
||||
cudnn.enabled = original_cudnn_enabled
|
||||
if padding_mode == 'zeros':
|
||||
groundtruth = torch.Tensor(
|
||||
[[0.9600, 6.0000000000, 5.0000, 4.8340, 9.0000],
|
||||
[2.2500, 6.333250045, 5.0000, 5.1000, 7.0000]]).view(1, 1, 2, 5)
|
||||
else:
|
||||
groundtruth = torch.Tensor(
|
||||
[[1.2000, 6.0000000000, 5.0000, 4.8340, 9.0000],
|
||||
[2.2500, 6.333250045, 5.0000, 5.1000, 8.7500]]).view(1, 1, 2, 5)
|
||||
|
||||
self.assertEqual(output.data, groundtruth)
|
||||
|
||||
# do gradcheck
|
||||
N = random.randint(1, 8)
|
||||
C = random.randint(1, 8)
|
||||
H = random.randint(1, 8)
|
||||
W = random.randint(1, 8)
|
||||
input = Variable(torch.randn(N, C, H, W), requires_grad=True)
|
||||
grid = Variable(torch.randn(N, H, W, 2), requires_grad=True)
|
||||
self.assertTrue(gradcheck(
|
||||
lambda inp, grid: F.grid_sample(inp, grid, padding_mode=padding_mode),
|
||||
(input, grid)))
|
||||
|
||||
# test CUDA against CPU
|
||||
if TEST_CUDA:
|
||||
test_cpu_against_cuda(N, C, H, W, padding_mode)
|
||||
|
||||
def test_affine_grid(self):
|
||||
# test known input on CPU
|
||||
@ -3637,22 +3867,62 @@ new_criterion_tests = [
|
||||
target_fn=lambda: torch.randn(15, 10).gt(0).double(),
|
||||
desc='weights'
|
||||
),
|
||||
dict(
|
||||
module_name='NLLLoss',
|
||||
input_size=(2, 3, 5, 5, 2, 2),
|
||||
target_fn=lambda: torch.rand(2, 5, 5, 2, 2).mul(3).floor().long(),
|
||||
reference_fn=lambda i, t, m:
|
||||
loss_reference_fns['NLLLossNd'](i, t, size_average=get_size_average(m)),
|
||||
check_no_size_average=True,
|
||||
desc='higher_dim'
|
||||
),
|
||||
dict(
|
||||
module_name='NLLLoss',
|
||||
input_size=(2, 3, 5),
|
||||
target_fn=lambda: torch.rand(2, 5).mul(3).floor().long(),
|
||||
reference_fn=lambda i, t, m:
|
||||
loss_reference_fns['NLLLossNd'](i, t, size_average=get_size_average(m)),
|
||||
check_no_size_average=True,
|
||||
desc='dim_is_3'
|
||||
),
|
||||
dict(
|
||||
module_name='PoissonNLLLoss',
|
||||
input_size=(2, 3, 4, 5),
|
||||
target_fn=lambda: torch.randn(2, 3, 4, 5).floor_().abs_(),
|
||||
desc='reduced_loss',
|
||||
desc='no_full_loss', # without sterling approx
|
||||
),
|
||||
dict(
|
||||
module_name='PoissonNLLLoss',
|
||||
constructor_args=(False, True, True),
|
||||
input_fn=lambda: torch.randn(2, 3, 4, 5).abs_().add_(0.001),
|
||||
target_fn=lambda: torch.randn(2, 3, 4, 5).floor_().abs_(),
|
||||
desc='full_loss',
|
||||
desc='full_loss', # with sterling approx
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def poissonnllloss_no_reduce_test():
|
||||
t = Variable(torch.randn(10, 10))
|
||||
return dict(
|
||||
fullname='PoissonNLLLLoss_no_reduce',
|
||||
constructor=wrap_functional(
|
||||
lambda i: F.poisson_nll_loss(i, t.type_as(i), reduce=False)),
|
||||
input_fn=lambda: torch.rand(10, 10),
|
||||
pickle=False)
|
||||
|
||||
|
||||
def kldivloss_no_reduce_test():
|
||||
t = Variable(torch.randn(10, 10))
|
||||
return dict(
|
||||
fullname='KLDivLoss_no_reduce',
|
||||
constructor=wrap_functional(
|
||||
lambda i: F.kl_div(i, t.type_as(i), reduce=False)),
|
||||
input_fn=lambda: torch.rand(10, 10).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['KLDivLoss'](i, t.data.type_as(i), reduce=False),
|
||||
pickle=False)
|
||||
|
||||
|
||||
def l1loss_no_reduce_test():
|
||||
t = Variable(torch.randn(2, 3, 4))
|
||||
return dict(
|
||||
@ -3764,7 +4034,7 @@ def nllloss2d_no_reduce_test():
|
||||
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
|
||||
input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['NLLLoss2d'](i, t.type_as(i).long(), **kwargs),
|
||||
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
|
||||
pickle=False)
|
||||
|
||||
|
||||
@ -3777,7 +4047,7 @@ def nllloss2d_no_reduce_ignore_index_test():
|
||||
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
|
||||
input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['NLLLoss2d'](i, t.type_as(i).long(), **kwargs),
|
||||
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
|
||||
pickle=False)
|
||||
|
||||
|
||||
@ -3794,7 +4064,50 @@ def nllloss2d_no_reduce_weights_test():
|
||||
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
|
||||
input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['NLLLoss2d'](i, t.type_as(i).long(), **kwargs(i)),
|
||||
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)),
|
||||
pickle=False)
|
||||
|
||||
|
||||
def nlllossNd_no_reduce_test():
|
||||
t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
|
||||
kwargs = {'reduce': False}
|
||||
return dict(
|
||||
fullname='NLLLossNd_no_reduce',
|
||||
constructor=wrap_functional(
|
||||
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
|
||||
input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
|
||||
pickle=False)
|
||||
|
||||
|
||||
def nlllossNd_no_reduce_ignore_index_test():
|
||||
t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
|
||||
kwargs = {'ignore_index': 1, 'reduce': False}
|
||||
return dict(
|
||||
fullname='NLLLossNd_no_reduce_ignore_index',
|
||||
constructor=wrap_functional(
|
||||
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
|
||||
input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
|
||||
pickle=False)
|
||||
|
||||
|
||||
def nlllossNd_no_reduce_weights_test():
|
||||
t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
|
||||
weight = torch.rand(3)
|
||||
|
||||
def kwargs(i):
|
||||
return {'weight': weight.type_as(i), 'reduce': False}
|
||||
|
||||
return dict(
|
||||
fullname='NLLLossNd_no_reduce_weights',
|
||||
constructor=wrap_functional(
|
||||
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
|
||||
input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
|
||||
reference_fn=lambda i, _:
|
||||
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)),
|
||||
pickle=False)
|
||||
|
||||
|
||||
@ -3811,6 +4124,8 @@ def smoothl1loss_no_reduce_test():
|
||||
|
||||
|
||||
new_module_tests = [
|
||||
poissonnllloss_no_reduce_test(),
|
||||
kldivloss_no_reduce_test(),
|
||||
l1loss_no_reduce_test(),
|
||||
mseloss_no_reduce_test(),
|
||||
nllloss_no_reduce_test(),
|
||||
@ -3821,6 +4136,9 @@ new_module_tests = [
|
||||
nllloss2d_no_reduce_test(),
|
||||
nllloss2d_no_reduce_weights_test(),
|
||||
nllloss2d_no_reduce_ignore_index_test(),
|
||||
nlllossNd_no_reduce_test(),
|
||||
nlllossNd_no_reduce_weights_test(),
|
||||
nlllossNd_no_reduce_ignore_index_test(),
|
||||
smoothl1loss_no_reduce_test(),
|
||||
dict(
|
||||
module_name='BatchNorm1d',
|
||||
@ -4553,7 +4871,7 @@ new_module_tests = [
|
||||
desc='dim'
|
||||
),
|
||||
dict(
|
||||
constructor=wrap_functional(F.softmax, dim=1),
|
||||
constructor=wrap_functional(F.softmax, dim=-1),
|
||||
input_size=(2, 128), # trigger the last-dim algo in CUDA
|
||||
fullname='softmax_lastdim',
|
||||
pickle=False,
|
||||
@ -4585,7 +4903,7 @@ new_module_tests = [
|
||||
pickle=False,
|
||||
),
|
||||
dict(
|
||||
constructor=wrap_functional(F.log_softmax, dim=1),
|
||||
constructor=wrap_functional(F.log_softmax, dim=-1),
|
||||
input_size=(2, 128), # trigger the last-dim algo in CUDA
|
||||
fullname='log_softmax_lastdim',
|
||||
pickle=False,
|
||||
|
@ -1,3 +1,4 @@
|
||||
import math
|
||||
import unittest
|
||||
import functools
|
||||
from copy import deepcopy
|
||||
@ -8,7 +9,7 @@ import torch.nn.functional as F
|
||||
from torch.optim import SGD
|
||||
from torch.autograd import Variable
|
||||
from torch import sparse
|
||||
from torch.optim.lr_scheduler import LambdaLR, StepLR, MultiStepLR, ExponentialLR, ReduceLROnPlateau
|
||||
from torch.optim.lr_scheduler import LambdaLR, StepLR, MultiStepLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau
|
||||
from common import TestCase, run_tests
|
||||
|
||||
|
||||
@ -61,13 +62,14 @@ class TestOptim(TestCase):
|
||||
|
||||
self.assertLessEqual(params.data.dist(solution), initial_dist)
|
||||
|
||||
def _test_rosenbrock_sparse(self, constructor):
|
||||
def _test_rosenbrock_sparse(self, constructor, sparse_only=False):
|
||||
params_t = torch.Tensor([1.5, 1.5])
|
||||
|
||||
params = Variable(torch.Tensor([1.5, 1.5]), requires_grad=True)
|
||||
params_c = Variable(torch.Tensor([1.5, 1.5]), requires_grad=True)
|
||||
params = Variable(params_t, requires_grad=True)
|
||||
optimizer = constructor([params])
|
||||
optimizer_c = constructor([params_c])
|
||||
if not sparse_only:
|
||||
params_c = Variable(params_t.clone(), requires_grad=True)
|
||||
optimizer_c = constructor([params_c])
|
||||
|
||||
solution = torch.Tensor([1, 1])
|
||||
initial_dist = params.data.dist(solution)
|
||||
@ -99,8 +101,9 @@ class TestOptim(TestCase):
|
||||
# Do cyclic coordinate descent
|
||||
w = i % 2
|
||||
optimizer.step(functools.partial(eval, params, True, w))
|
||||
optimizer_c.step(functools.partial(eval, params_c, False, w))
|
||||
self.assertEqual(params.data, params_c.data)
|
||||
if not sparse_only:
|
||||
optimizer_c.step(functools.partial(eval, params_c, False, w))
|
||||
self.assertEqual(params.data, params_c.data)
|
||||
|
||||
self.assertLessEqual(params.data.dist(solution), initial_dist)
|
||||
|
||||
@ -229,6 +232,11 @@ class TestOptim(TestCase):
|
||||
lr=1e-3)
|
||||
)
|
||||
|
||||
def test_sgd_sparse(self):
|
||||
self._test_rosenbrock_sparse(
|
||||
lambda params: optim.SGD(params, lr=5e-3)
|
||||
)
|
||||
|
||||
def test_adam(self):
|
||||
self._test_rosenbrock(
|
||||
lambda params: optim.Adam(params, lr=1e-2),
|
||||
@ -247,6 +255,12 @@ class TestOptim(TestCase):
|
||||
lr=1e-3)
|
||||
)
|
||||
|
||||
def test_sparse_adam(self):
|
||||
self._test_rosenbrock_sparse(
|
||||
lambda params: optim.SparseAdam(params, lr=4e-2),
|
||||
True
|
||||
)
|
||||
|
||||
def test_adadelta(self):
|
||||
self._test_rosenbrock(
|
||||
lambda params: optim.Adadelta(params),
|
||||
@ -423,10 +437,10 @@ class TestLRScheduler(TestCase):
|
||||
# lr = 0.05 if epoch < 3
|
||||
# lr = 0.005 if 30 <= epoch < 6
|
||||
# lr = 0.0005 if epoch >= 9
|
||||
single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3
|
||||
targets = [single_targets, list(map(lambda x: x * 10, single_targets))]
|
||||
scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
|
||||
epochs = 10
|
||||
single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3
|
||||
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
||||
scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
|
||||
self._test(scheduler, targets, epochs)
|
||||
|
||||
def test_multi_step_lr(self):
|
||||
@ -434,106 +448,116 @@ class TestLRScheduler(TestCase):
|
||||
# lr = 0.005 if 2 <= epoch < 5
|
||||
# lr = 0.0005 if epoch < 9
|
||||
# lr = 0.00005 if epoch >= 9
|
||||
single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3
|
||||
targets = [single_targets, list(map(lambda x: x * 10, single_targets))]
|
||||
scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
|
||||
epochs = 10
|
||||
single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3
|
||||
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
||||
scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
|
||||
self._test(scheduler, targets, epochs)
|
||||
|
||||
def test_exp_lr(self):
|
||||
single_targets = [0.05 * (0.9 ** x) for x in range(10)]
|
||||
targets = [single_targets, list(map(lambda x: x * 10, single_targets))]
|
||||
scheduler = ExponentialLR(self.opt, gamma=0.9)
|
||||
epochs = 10
|
||||
single_targets = [0.05 * (0.9 ** x) for x in range(epochs)]
|
||||
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
||||
scheduler = ExponentialLR(self.opt, gamma=0.9)
|
||||
self._test(scheduler, targets, epochs)
|
||||
|
||||
def test_cos_anneal_lr(self):
|
||||
epochs = 10
|
||||
eta_min = 1e-10
|
||||
single_targets = [eta_min + (0.05 - eta_min) *
|
||||
(1 + math.cos(math.pi * x / epochs)) / 2
|
||||
for x in range(epochs)]
|
||||
targets = [single_targets, list(map(lambda x: x * epochs, single_targets))]
|
||||
scheduler = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
|
||||
self._test(scheduler, targets, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau1(self):
|
||||
epochs = 10
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 20]
|
||||
metrics = [10 - i * 0.0167 for i in range(20)]
|
||||
scheduler = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min',
|
||||
threshold=0.01, patience=5, cooldown=5)
|
||||
epochs = 10
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau2(self):
|
||||
epochs = 22
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2]
|
||||
metrics = [10 - i * 0.0165 for i in range(22)]
|
||||
scheduler = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs',
|
||||
mode='min', threshold=0.1)
|
||||
epochs = 22
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau3(self):
|
||||
epochs = 22
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4]
|
||||
metrics = [-0.8] * 2 + [-0.234] * 20
|
||||
scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5,
|
||||
threshold_mode='abs')
|
||||
epochs = 22
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau4(self):
|
||||
epochs = 20
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 20]
|
||||
metrics = [1.5 * (1.025 ** i) for i in range(20)] # 1.025 > 1.1**0.25
|
||||
scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=3,
|
||||
threshold_mode='rel', threshold=0.1)
|
||||
epochs = 20
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau5(self):
|
||||
epochs = 20
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4]
|
||||
metrics = [1.5 * (1.005 ** i) for i in range(20)]
|
||||
scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel',
|
||||
threshold=0.1, patience=5, cooldown=5)
|
||||
epochs = 20
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau6(self):
|
||||
epochs = 20
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 20]
|
||||
metrics = [1.5 * (0.85 ** i) for i in range(20)]
|
||||
scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel',
|
||||
threshold=0.1)
|
||||
epochs = 20
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau7(self):
|
||||
epochs = 20
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4]
|
||||
metrics = [1] * 7 + [0.6] + [0.5] * 12
|
||||
scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel',
|
||||
threshold=0.1, patience=5, cooldown=5)
|
||||
epochs = 20
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_reduce_lr_on_plateau8(self):
|
||||
epochs = 20
|
||||
for param_group in self.opt.param_groups:
|
||||
param_group['lr'] = 0.5
|
||||
targets = [[0.5] * 6 + [0.4] * 14, [0.5] * 6 + [0.3] * 14]
|
||||
metrics = [1.5 * (1.005 ** i) for i in range(20)]
|
||||
scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', min_lr=[0.4, 0.3],
|
||||
threshold=0.1, patience=5, cooldown=5)
|
||||
epochs = 20
|
||||
self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)
|
||||
|
||||
def test_lambda_lr(self):
|
||||
epochs = 10
|
||||
self.opt.param_groups[0]['lr'] = 0.05
|
||||
self.opt.param_groups[1]['lr'] = 0.4
|
||||
targets = [[0.05 * (0.9 ** x) for x in range(10)], [0.4 * (0.8 ** x) for x in range(10)]]
|
||||
targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]]
|
||||
scheduler = LambdaLR(self.opt,
|
||||
lr_lambda=[lambda x1: 0.9 ** x1, lambda x2: 0.8 ** x2])
|
||||
epochs = 10
|
||||
self._test(scheduler, targets, epochs)
|
||||
|
||||
def _test(self, scheduler, targets, epochs=10):
|
||||
|
@ -8,6 +8,7 @@ import torch.cuda
|
||||
import tempfile
|
||||
import unittest
|
||||
import warnings
|
||||
import pickle
|
||||
from torch.utils.dlpack import from_dlpack, to_dlpack
|
||||
from itertools import product, combinations
|
||||
from common import TestCase, iter_indices, TEST_NUMPY, run_tests, download_file, skipIfNoLapack, \
|
||||
@ -71,6 +72,34 @@ class TestTorch(TestCase):
|
||||
res2[i, j] = v1[i] * v2[j]
|
||||
self.assertEqual(res1, res2)
|
||||
|
||||
def test_addr(self):
|
||||
types = {
|
||||
'torch.DoubleTensor': 1e-8,
|
||||
'torch.FloatTensor': 1e-4,
|
||||
}
|
||||
|
||||
def run_test(m, v1, v2, m_transform=lambda x: x):
|
||||
m = m_transform(m.clone())
|
||||
ref = m.clone()
|
||||
torch.addr(m, v1, v2, out=m)
|
||||
for i in range(m.size(0)):
|
||||
for j in range(m.size(1)):
|
||||
ref[i, j] += v1[i] * v2[j]
|
||||
self.assertEqual(m, ref)
|
||||
|
||||
for tname, _prec in types.items():
|
||||
for h, w in [(100, 110), (1, 20), (200, 2)]:
|
||||
m = torch.randn(h, w).type(tname)
|
||||
v1 = torch.randn(h).type(tname)
|
||||
v2 = torch.randn(w).type(tname)
|
||||
run_test(m, v1, v2)
|
||||
# test transpose
|
||||
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
||||
# test 0 strided
|
||||
v1 = torch.randn(1).type(tname).expand(h)
|
||||
run_test(m, v1, v2)
|
||||
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
||||
|
||||
def test_addmv(self):
|
||||
types = {
|
||||
'torch.DoubleTensor': 1e-8,
|
||||
@ -320,17 +349,20 @@ class TestTorch(TestCase):
|
||||
"mean", "median", "mode", "norm", "prod",
|
||||
"std", "sum", "var", "max", "min"]
|
||||
|
||||
def normfn_attr(t, dim, keepdim=False):
|
||||
def normfn_attr(t, dim, keepdim=False, out=None):
|
||||
attr = getattr(torch, "norm")
|
||||
return attr(t, 2, dim, keepdim)
|
||||
return attr(t, 2, dim, keepdim, out=out)
|
||||
|
||||
for fn_name in dim_red_fns:
|
||||
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
|
||||
|
||||
def fn(x, dim, keepdim=False):
|
||||
ans = fn_attr(x, dim, keepdim=keepdim)
|
||||
def fn(x, dim, keepdim=False, out=None):
|
||||
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
|
||||
return ans if not isinstance(ans, tuple) else ans[0]
|
||||
|
||||
def fn_tuple(x, dim, keepdim=False, out=None):
|
||||
return fn_attr(x, dim, keepdim=keepdim, out=out)
|
||||
|
||||
def test_multidim(x, dim):
|
||||
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
|
||||
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
|
||||
@ -355,6 +387,25 @@ class TestTorch(TestCase):
|
||||
x = cast(torch.randn(dims))
|
||||
test_multidim(x, singleton_dim)
|
||||
|
||||
# check reducing with output kwargs
|
||||
if fn_name in ['median', 'mode', 'max', 'min']:
|
||||
y = cast(torch.randn(5, 3))
|
||||
values = cast(torch.randn(5, 3))
|
||||
indices = cast(torch.zeros(5, 3).long() - 1)
|
||||
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
|
||||
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
|
||||
self.assertEqual(values[:, 1], values_expected,
|
||||
'{} values with out= kwarg'.format(fn_name))
|
||||
self.assertEqual(indices[:, 1], indices_expected,
|
||||
'{} indices with out= kwarg'.format(fn_name))
|
||||
continue
|
||||
|
||||
x = cast(torch.randn(5, 3))
|
||||
y = cast(torch.randn(5, 3))
|
||||
fn(y, 1, keepdim=False, out=x[:, 1])
|
||||
expected = fn(y, 1, keepdim=False)
|
||||
self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name))
|
||||
|
||||
def test_dim_reduction(self):
|
||||
self._test_dim_reduction(self, lambda t: t)
|
||||
|
||||
@ -408,6 +459,17 @@ class TestTorch(TestCase):
|
||||
test((10,))
|
||||
test((5, 5))
|
||||
|
||||
def test_all_any_empty(self):
|
||||
x = torch.ByteTensor()
|
||||
self.assertTrue(x.all())
|
||||
self.assertFalse(x.any())
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
||||
def test_all_any_empty_cuda(self):
|
||||
x = torch.cuda.ByteTensor()
|
||||
self.assertTrue(x.all())
|
||||
self.assertFalse(x.any())
|
||||
|
||||
def test_mv(self):
|
||||
m1 = torch.randn(100, 100)
|
||||
v1 = torch.randn(100)
|
||||
@ -1111,6 +1173,11 @@ class TestTorch(TestCase):
|
||||
torch.arange(0, 1, out=res2)
|
||||
self.assertEqual(res1, res2, 0)
|
||||
|
||||
# Check arange with only one argument
|
||||
res1 = torch.arange(10)
|
||||
res2 = torch.arange(0, 10)
|
||||
self.assertEqual(res1, res2, 0)
|
||||
|
||||
# Check arange for non-contiguous tensors.
|
||||
x = torch.zeros(2, 3)
|
||||
torch.arange(0, 4, out=x.narrow(1, 1, 2))
|
||||
@ -1873,6 +1940,17 @@ class TestTorch(TestCase):
|
||||
|
||||
self.assertRaises(RuntimeError, lambda: torch.cat([]))
|
||||
|
||||
def test_cat_bad_input_sizes(self):
|
||||
x = torch.randn(2, 1)
|
||||
y = torch.randn(2, 1, 1)
|
||||
z = torch.randn(2, 1, 1)
|
||||
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
|
||||
|
||||
x = torch.randn(2, 1, 2)
|
||||
y = torch.randn(2, 1, 1)
|
||||
z = torch.randn(2, 2, 1)
|
||||
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
|
||||
|
||||
def test_stack(self):
|
||||
x = torch.rand(2, 3, 4)
|
||||
y = torch.rand(2, 3, 4)
|
||||
@ -3429,6 +3507,24 @@ class TestTorch(TestCase):
|
||||
dest2[idx[i]] = dest2[idx[i]] + src[i]
|
||||
self.assertEqual(dest, dest2)
|
||||
|
||||
def test_index_select(self):
|
||||
src = torch.randn(3, 4, 5)
|
||||
# Index can be duplicated.
|
||||
idx = torch.LongTensor([2, 1, 0, 1, 2])
|
||||
dest = torch.index_select(src, 0, idx)
|
||||
self.assertEqual(dest.shape, (5, 4, 5))
|
||||
for i in range(idx.size(0)):
|
||||
self.assertEqual(dest[i], src[idx[i]])
|
||||
|
||||
# Check that 'out' is used correctly.
|
||||
out = torch.randn(5 * 4 * 5)
|
||||
dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5))
|
||||
self.assertEqual(dest.shape, (5, 4, 5))
|
||||
for i in range(idx.size(0)):
|
||||
self.assertEqual(dest[i], src[idx[i]])
|
||||
out.fill_(0.123)
|
||||
self.assertEqual(out, dest.view(-1)) # Must point to the same storage.
|
||||
|
||||
def test_take(self):
|
||||
def check(src, idx):
|
||||
expected = src.contiguous().view(-1).index_select(
|
||||
@ -3643,6 +3739,11 @@ class TestTorch(TestCase):
|
||||
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
|
||||
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)[0])
|
||||
|
||||
def test_var_stability(self):
|
||||
tensor = torch.FloatTensor([2281.5, 2281.25])
|
||||
self.assertEqual(tensor.var(0)[0], 0.03125)
|
||||
self.assertEqual(tensor.var(), 0.03125)
|
||||
|
||||
def test_view(self):
|
||||
tensor = torch.rand(15)
|
||||
template = torch.rand(3, 5)
|
||||
@ -3698,18 +3799,47 @@ class TestTorch(TestCase):
|
||||
self.assertEqual(torch.randn(()).expand(()), torch.randn(()))
|
||||
|
||||
def test_repeat(self):
|
||||
result = torch.Tensor()
|
||||
tensor = torch.rand(8, 4)
|
||||
|
||||
initial_shape = (8, 4)
|
||||
tensor = torch.rand(*initial_shape)
|
||||
|
||||
size = (3, 1, 1)
|
||||
torchSize = torch.Size(size)
|
||||
target = [3, 8, 4]
|
||||
self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat')
|
||||
self.assertEqual(tensor.repeat(torchSize).size(), target, 'Error in repeat using LongStorage')
|
||||
self.assertEqual(tensor.repeat(torchSize).size(), target,
|
||||
'Error in repeat using LongStorage')
|
||||
result = tensor.repeat(*size)
|
||||
self.assertEqual(result.size(), target, 'Error in repeat using result')
|
||||
result = tensor.repeat(torchSize)
|
||||
self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage')
|
||||
self.assertEqual((result.mean(0).view(8, 4) - tensor).abs().max(), 0, 'Error in repeat (not equal)')
|
||||
self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)')
|
||||
|
||||
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
||||
def test_repeat_tile(self):
|
||||
|
||||
initial_shape = (8, 4)
|
||||
|
||||
repeats = ((3, 1, 1),
|
||||
(3, 3, 3),
|
||||
(1, 2, 1),
|
||||
(2, 2, 2, 2))
|
||||
|
||||
def _generate_noncontiguous_input():
|
||||
|
||||
out = np.broadcast_to(np.random.random((1, 4)),
|
||||
initial_shape)
|
||||
|
||||
assert not (out.flags.c_contiguous or out.flags.f_contiguous)
|
||||
|
||||
return out
|
||||
|
||||
for repeat in repeats:
|
||||
for tensor in (torch.from_numpy(np.random.random(initial_shape)),
|
||||
torch.from_numpy(_generate_noncontiguous_input()),):
|
||||
|
||||
self.assertEqual(tensor.repeat(*repeat).numpy(),
|
||||
np.tile(tensor.numpy(), repeat))
|
||||
|
||||
def test_is_same_size(self):
|
||||
t1 = torch.Tensor(3, 4, 9, 10)
|
||||
@ -4071,6 +4201,18 @@ class TestTorch(TestCase):
|
||||
rootview = c[8]
|
||||
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
|
||||
|
||||
def test_serialization_offset(self):
|
||||
a = torch.randn(5, 5)
|
||||
i = 41
|
||||
with tempfile.TemporaryFile() as f:
|
||||
pickle.dump(i, f)
|
||||
torch.save(a, f)
|
||||
f.seek(0)
|
||||
j = pickle.load(f)
|
||||
b = torch.load(f)
|
||||
self.assertTrue(torch.equal(a, b))
|
||||
self.assertEqual(i, j)
|
||||
|
||||
def test_half_tensor(self):
|
||||
x = torch.randn(5, 5).float()
|
||||
y = torch.randn(5, 5).float()
|
||||
@ -4186,6 +4328,10 @@ class TestTorch(TestCase):
|
||||
self.assertEqual(type(tensor), torch.FloatTensor)
|
||||
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
|
||||
|
||||
tensor = torch.load(test_file_path, map_location='cpu')
|
||||
self.assertEqual(type(tensor), torch.FloatTensor)
|
||||
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
|
||||
|
||||
def test_from_buffer(self):
|
||||
a = bytearray([1, 2, 3, 4])
|
||||
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
|
||||
@ -4247,6 +4393,19 @@ class TestTorch(TestCase):
|
||||
x.__repr__()
|
||||
str(x),
|
||||
|
||||
def test_sizeof(self):
|
||||
sizeof_empty = torch.randn(0).storage().__sizeof__()
|
||||
sizeof_10 = torch.randn(10).storage().__sizeof__()
|
||||
sizeof_100 = torch.randn(100).storage().__sizeof__()
|
||||
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
||||
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
||||
|
||||
sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__()
|
||||
sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__()
|
||||
sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__()
|
||||
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
||||
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
||||
|
||||
def test_unsqueeze(self):
|
||||
x = torch.randn(2, 3, 4)
|
||||
y = x.unsqueeze(1)
|
||||
@ -4511,6 +4670,19 @@ class TestTorch(TestCase):
|
||||
for i in range(len(x)):
|
||||
self.assertEqual(geq2_x[i], geq2_array[i])
|
||||
|
||||
def test_error_msg_type_translation(self):
|
||||
with self.assertRaisesRegex(
|
||||
RuntimeError,
|
||||
# message includes both torch.DoubleTensor and torch.LongTensor
|
||||
'(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'):
|
||||
|
||||
# Calls model with a DoubleTensor input but LongTensor weights
|
||||
input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double())
|
||||
weight = torch.zeros(1, 1, 1, 3).long()
|
||||
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
||||
model.weight.data = weight
|
||||
out = model(input)
|
||||
|
||||
def test_comparison_ops(self):
|
||||
x = torch.randn(5, 5)
|
||||
y = torch.randn(5, 5)
|
||||
|
@ -386,7 +386,7 @@ class TestONNXUtils(TestCase):
|
||||
sizes = [2, 3, 4]
|
||||
pad = [1, 2, 3, 4]
|
||||
paddings = prepare_onnx_paddings(len(sizes), pad)
|
||||
self.assertEqual(paddings, [0, 0, 3, 4, 1, 2])
|
||||
self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
|
||||
|
||||
def test_check_onnx_broadcast(self):
|
||||
|
||||
|
@ -13,10 +13,10 @@
|
||||
|
||||
- name: add(Tensor self, Tensor other, *, Scalar alpha=1)
|
||||
self: grad
|
||||
other: grad * alpha
|
||||
other: maybe_multiply(grad, alpha)
|
||||
|
||||
- name: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)
|
||||
self: grad * beta
|
||||
self: maybe_multiply(grad, beta)
|
||||
batch1: grad.unsqueeze(0).expand({ batch1.size(0), batch1.size(1), batch2.size(2) }).bmm(batch2.transpose(1, 2)) * alpha
|
||||
batch2: batch1.transpose(1, 2).bmm(grad.unsqueeze(0).expand({ batch1.size(0), batch1.size(1), batch2.size(2) })) * alpha
|
||||
|
||||
@ -36,12 +36,12 @@
|
||||
mat2: mm_mat2_backward(grad, mat1, mat2.sizes(), mat2.strides(), alpha)
|
||||
|
||||
- name: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1)
|
||||
self: grad * beta
|
||||
self: maybe_multiply(grad, beta)
|
||||
mat: grad.ger(vec) * alpha
|
||||
vec: mat.t().mv(grad) * alpha
|
||||
|
||||
- name: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1)
|
||||
self: grad * beta
|
||||
self: maybe_multiply(grad, beta)
|
||||
vec1: grad.mv(vec2) * alpha
|
||||
vec2: grad.t().mv(vec1) * alpha
|
||||
|
||||
@ -62,7 +62,7 @@
|
||||
other: grad * -self * ((self * self + other * other).reciprocal())
|
||||
|
||||
- name: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)
|
||||
self: grad * beta
|
||||
self: maybe_multiply(grad, beta)
|
||||
batch1: grad.bmm(batch2.transpose(1, 2)) * alpha
|
||||
batch2: batch1.transpose(1, 2).bmm(grad) * alpha
|
||||
|
||||
@ -108,8 +108,8 @@
|
||||
self: grad.diag(diagonal)
|
||||
|
||||
- name: dist(Tensor self, Tensor other, Scalar p=2)
|
||||
self: norm_backward(grad, self - other, p)
|
||||
other: -norm_backward(grad, self - other, p)
|
||||
self: norm_backward(grad, self - other, p, result)
|
||||
other: -norm_backward(grad, self - other, p, result)
|
||||
|
||||
- name: div(Tensor self, Scalar other)
|
||||
self: grad / other
|
||||
@ -149,7 +149,8 @@
|
||||
|
||||
- name: eye # fallthrough
|
||||
|
||||
- name: fill(Tensor self, Scalar value) # FIXME
|
||||
- name: fill(Tensor self, Scalar value)
|
||||
self: zeros_like(grad)
|
||||
|
||||
- name: floor(Tensor self)
|
||||
self: zeros_like(grad)
|
||||
@ -217,7 +218,6 @@
|
||||
|
||||
- name: index_select(Tensor self, int64_t dim, Tensor index)
|
||||
self: grad.type().zeros(self.sizes()).index_add_(dim, index, grad)
|
||||
__view__: True
|
||||
|
||||
- name: inverse(Tensor self)
|
||||
self: -at::mm(output.t(), at::mm(grad, output.t()))
|
||||
@ -348,10 +348,10 @@
|
||||
self: zeros_like(grad)
|
||||
|
||||
- name: norm(Tensor self, Scalar p=2)
|
||||
self: norm_backward(grad, self, p)
|
||||
self: norm_backward(grad, self, p, result)
|
||||
|
||||
- name: norm(Tensor self, Scalar p, int64_t dim, bool keepdim=False)
|
||||
self: norm_backward(grad, self, p, dim, keepdim)
|
||||
self: norm_backward(grad, self, p, destination, dim, keepdim)
|
||||
|
||||
- name: numel # fallthrough
|
||||
- name: ones # fallthrough
|
||||
@ -395,7 +395,7 @@
|
||||
self: not_implemented("pstrf")
|
||||
|
||||
- name: put(Tensor self, Tensor index, Tensor source, bool accumulate)
|
||||
self: zeros_like(self).put_(index, source, accumulate)
|
||||
self: grad.clone().put_(index, zeros_like(source), accumulate)
|
||||
source: grad.take(index)
|
||||
|
||||
- name: qr(Tensor self)
|
||||
@ -468,7 +468,7 @@
|
||||
__view__: True
|
||||
|
||||
- name: squeeze(Tensor self, int64_t dim)
|
||||
self: maybe_unsqueeze(grad, dim, self.size(dim) == 1)
|
||||
self: maybe_unsqueeze(grad, dim, self.size(dim) == 1 && self.sizes().size() != 1)
|
||||
__view__: True
|
||||
|
||||
- name: std
|
||||
@ -563,9 +563,9 @@
|
||||
grad_output: avg_pool3d(grad, kernel_size, stride, padding, ceil_mode, count_include_pad)
|
||||
input: zeros_like(input)
|
||||
|
||||
- name: elu_backward(Tensor grad_output, Tensor input, Scalar alpha, bool inplace, Tensor output)
|
||||
grad_output: elu_backward(grad, input, alpha, inplace, output)
|
||||
input: grad * grad_input * (input < 0).toType(grad.type())
|
||||
- name: elu_backward(Tensor grad_output, Scalar alpha, Tensor output)
|
||||
grad_output: elu_backward(grad, alpha, output)
|
||||
output: grad * grad_output * (output < 0).toType(grad.type())
|
||||
|
||||
- name: glu_backward(Tensor grad_output, Tensor input, int64_t dim)
|
||||
grad_output: glu_double_backward_grad_output(grad, input, dim)
|
||||
@ -575,11 +575,12 @@
|
||||
grad_output: hardshrink_backward(grad, input, lambd)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: hardtanh_backward(Tensor grad_output, Tensor input, Scalar min_val, Scalar max_val, bool inplace)
|
||||
grad_output: hardtanh_backward(grad, input, min_val, max_val, false)
|
||||
- name: hardtanh_backward(Tensor grad_output, Tensor input, Scalar min_val, Scalar max_val)
|
||||
grad_output: hardtanh_backward(grad, input, min_val, max_val)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: kl_div_backward(Tensor input, Tensor target, bool size_average)
|
||||
- name: kl_div_backward(Tensor grad_output, Tensor input, Tensor target, bool size_average, bool reduce)
|
||||
grad_output: kl_div_double_backward_grad_output(grad, input, target, size_average, reduce)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: l1_loss_backward(Tensor grad_output, Tensor input, Tensor target, bool size_average, bool reduce)
|
||||
@ -594,8 +595,8 @@
|
||||
grad_output: grad - (grad * output.exp()).sum(dim, true)
|
||||
input: log_softmax_double_backward(grad, grad_output, dim, output)
|
||||
|
||||
- name: leaky_relu_backward(Tensor grad_output, Tensor input, Scalar negative_slope, bool inplace)
|
||||
grad_output: leaky_relu_backward(grad, input, negative_slope, false)
|
||||
- name: leaky_relu_backward(Tensor grad_output, Tensor input, Scalar negative_slope)
|
||||
grad_output: leaky_relu_backward(grad, input, negative_slope)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: max_pool2d_backward(Tensor grad_output, Tensor input, IntList kernel_size, IntList stride, IntList padding, IntList dilation, bool ceil_mode, Tensor indices)
|
||||
@ -623,8 +624,8 @@
|
||||
input: zeros_like(input)
|
||||
weight: zeros_like(weight)
|
||||
|
||||
- name: rrelu_backward(Tensor grad_output, Tensor input, Scalar lower, Scalar upper, bool training, bool inplace, Tensor noise)
|
||||
grad_output: rrelu_backward(grad, input, lower, upper, training, false, noise)
|
||||
- name: rrelu_backward(Tensor grad_output, Tensor input, Scalar lower, Scalar upper, bool training, Tensor noise)
|
||||
grad_output: rrelu_backward(grad, input, lower, upper, training, noise)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: smooth_l1_loss_backward(Tensor grad_output, Tensor input, Tensor target, bool size_average, bool reduce)
|
||||
@ -646,8 +647,8 @@
|
||||
grad_output: softshrink_backward(grad, input, lambd)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: threshold_backward(Tensor grad_output, Tensor input, Scalar threshold, Scalar value, bool inplace)
|
||||
grad_output: threshold_backward(grad, input, threshold, value, false)
|
||||
- name: threshold_backward(Tensor grad_output, Tensor input, Scalar threshold, Scalar value)
|
||||
grad_output: threshold_backward(grad, input, threshold, value)
|
||||
input: zeros_like(grad)
|
||||
|
||||
- name: _sigmoid_backward(Tensor grad_output, Tensor output)
|
||||
|
@ -49,6 +49,16 @@ PY_VARIABLE_METHOD_DEF = CodeTemplate("""\
|
||||
UNPACK_SELF = "auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;"
|
||||
|
||||
|
||||
# XXX: if you got here because of an assertion failure, it doesn't mean
|
||||
# it's enough to just extend the list here. Before you do this, make sure
|
||||
# to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h.
|
||||
SUPPORTED_RETURN_TYPES = {
|
||||
'Tensor', 'std::tuple<Tensor,Tensor>',
|
||||
'std::tuple<Tensor,Tensor,Tensor>', 'std::vector<Tensor>',
|
||||
'Scalar', 'bool', 'int64_t', 'void*'
|
||||
}
|
||||
|
||||
|
||||
def create_python_bindings(
|
||||
python_functions, py_methods, py_method_defs, py_method_dispatch,
|
||||
is_class):
|
||||
@ -80,6 +90,9 @@ def create_python_bindings(
|
||||
|
||||
def emit_dispatch(i, function):
|
||||
env = {}
|
||||
simple_return_type = function['return_type'].replace(' &', '')
|
||||
assert simple_return_type in SUPPORTED_RETURN_TYPES, \
|
||||
function['name'] + ' returns unsupported type: ' + simple_return_type
|
||||
|
||||
actuals = []
|
||||
formal_args = []
|
||||
|
@ -39,7 +39,11 @@ return baseType->${method_prefix}${api_name}(${unpacked_args});""")
|
||||
|
||||
METHOD_DEFINITION_FALLTHROUGH_VARIABLE = CodeTemplate("""\
|
||||
${unpack_args}
|
||||
return as_variable(baseType->${method_prefix}${api_name}(${unpacked_args}));""")
|
||||
auto flags = compute_flags({ ${args_with_derivatives} });
|
||||
auto var = as_variable(baseType->${method_prefix}${api_name}(${unpacked_args}));
|
||||
var.is_volatile() = flags.is_volatile;
|
||||
return var;
|
||||
""")
|
||||
|
||||
METHOD_DEFINITION_FALLTHROUGH_INPLACE = CodeTemplate("""\
|
||||
${unpack_args}
|
||||
@ -67,6 +71,7 @@ FUNCTION_DEFINITION = CodeTemplate("""\
|
||||
variable_list ${op}::apply(const variable_list& grads) {
|
||||
variable_list grad_inputs{${num_inputs}};
|
||||
${body}
|
||||
ensure_no_aten_scalars(grad_inputs);
|
||||
return grad_inputs;
|
||||
}
|
||||
""")
|
||||
@ -682,11 +687,6 @@ def create_variable_type(top_env, aten_declarations):
|
||||
if declaration['return_type'] in FALLTHROUGH_RETURN_TYPES:
|
||||
body.extend(METHOD_DEFINITION_FALLTHROUGH.substitute(combined).split('\n'))
|
||||
return body
|
||||
elif declaration['name'] in FALLTHROUGH_FUNCTIONS:
|
||||
tmpl = (METHOD_DEFINITION_FALLTHROUGH_INPLACE if declaration['inplace']
|
||||
else METHOD_DEFINITION_FALLTHROUGH_VARIABLE)
|
||||
body.extend(tmpl.substitute(combined).split('\n'))
|
||||
return body
|
||||
|
||||
arguments = declaration['arguments']
|
||||
tensor_args = [arg for arg in arguments if arg['simple_type'] in {'Tensor', 'TensorList'}]
|
||||
@ -752,6 +752,12 @@ def create_variable_type(top_env, aten_declarations):
|
||||
elif is_view:
|
||||
env['version_counter'] = 'take_version_counter(ret, self);'
|
||||
|
||||
if declaration['name'] in FALLTHROUGH_FUNCTIONS:
|
||||
tmpl = (METHOD_DEFINITION_FALLTHROUGH_INPLACE if declaration['inplace']
|
||||
else METHOD_DEFINITION_FALLTHROUGH_VARIABLE)
|
||||
body.extend(tmpl.substitute(combined).split('\n'))
|
||||
return body
|
||||
|
||||
base_call = BASE_CALL.substitute(combined)
|
||||
if not declaration['inplace']:
|
||||
base_call = 'auto ret = as_variable({})'.format(base_call)
|
||||
|
@ -34,41 +34,44 @@ Tensor maybe_multiply(const Tensor & t, const Scalar & s) {
|
||||
}
|
||||
}
|
||||
|
||||
Tensor norm_backward(const Tensor & grad, const Tensor & self, const Scalar & p_) {
|
||||
auto p = p_.toDouble();
|
||||
auto norm = self.norm(p_);
|
||||
|
||||
if (norm.toDouble() == 0.0) {
|
||||
// handle case at 0 where we return a subgradient containing 0
|
||||
return zeros_like(self);
|
||||
}
|
||||
|
||||
if (p == 2.0) {
|
||||
return self * (grad / norm);
|
||||
} else {
|
||||
auto pow_ = self.abs().pow(p - 2);
|
||||
auto scale_v = grad / norm.toTensor().pow(p - 1);
|
||||
return self * pow_ * scale_v;
|
||||
// Don't expose ATen scalars to Variable API, because they are not supported yet.
|
||||
void ensure_no_aten_scalars(variable_list &vars) {
|
||||
for (auto& v : vars) {
|
||||
if (v.defined() && v.dim() == 0) {
|
||||
v.data().as_strided_({1}, {1});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Tensor norm_backward(Tensor grad, const Tensor & self, const Scalar & p_, int64_t dim, bool keepdim) {
|
||||
if (!keepdim && self.dim() > 1) {
|
||||
grad = grad.unsqueeze(dim);
|
||||
}
|
||||
auto p = p_.toDouble();
|
||||
auto norm = self.norm(p, dim, true);
|
||||
Tensor grad_input;
|
||||
if (p == 2.0) {
|
||||
grad_input = self * (grad / norm);
|
||||
Tensor norm_backward(const Tensor & grad, const Tensor & self, const Scalar & p_, const Tensor & norm) {
|
||||
double p = p_.toDouble();
|
||||
Tensor self_scaled;
|
||||
Tensor scale_v;
|
||||
if (p == 0.0) {
|
||||
return zeros_like(self);
|
||||
} else if (p == 1.0) {
|
||||
return self.sign() * grad;
|
||||
} else if (p < 2.0) {
|
||||
self_scaled = self.sign() * self.abs().pow(p - 1);
|
||||
scale_v = grad / norm.pow(p - 1);
|
||||
} else if (p == 2.0) {
|
||||
self_scaled = self;
|
||||
scale_v = grad / norm;
|
||||
} else {
|
||||
auto pow_ = self.abs().pow(p - 2);
|
||||
auto scale_v = grad / norm.pow(p - 1);
|
||||
grad_input = self * pow_ * scale_v;
|
||||
self_scaled = self * self.abs().pow(p - 2);
|
||||
scale_v = grad / norm.pow(p - 1);
|
||||
}
|
||||
// handle case at 0 where we return a subgradient containing 0
|
||||
grad_input.masked_fill_(norm == 0, 0);
|
||||
return grad_input;
|
||||
scale_v.masked_fill_(norm == 0, 0);
|
||||
return self_scaled * scale_v;
|
||||
}
|
||||
|
||||
Tensor norm_backward(Tensor grad, const Tensor & self, const Scalar & p_, Tensor norm, int64_t dim, bool keepdim) {
|
||||
if (!keepdim && self.dim() > 1) {
|
||||
grad = grad.unsqueeze(dim);
|
||||
norm = norm.unsqueeze(dim);
|
||||
}
|
||||
return norm_backward(grad, self, p_, norm);
|
||||
}
|
||||
|
||||
Tensor reduce_to(const Tensor & grad, IntList sizes) {
|
||||
@ -300,6 +303,16 @@ Tensor glu_double_backward_grad_output(const Tensor & grad, const Tensor & input
|
||||
return tmp.narrow(dim, 0, sizes[dim]) + tmp.narrow(dim, sizes[dim], sizes[dim]);
|
||||
}
|
||||
|
||||
Tensor kl_div_double_backward_grad_output(const Tensor & grad, const Tensor & input, const Tensor & target, bool size_average, bool reduce) {
|
||||
auto result = kl_div_backward(grad, input, target, size_average, false);
|
||||
if (reduce && size_average) {
|
||||
return result.mean().toTensor();
|
||||
} else if (reduce) {
|
||||
return result.sum().toTensor();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
Tensor log_sigmoid_double_backward(const Tensor & grad, const Tensor & input) {
|
||||
auto z = input.sigmoid();
|
||||
return grad * (z - 1) * z;
|
||||
|
@ -25,7 +25,7 @@ RUN curl -o ~/miniconda.sh -O https://repo.continuum.io/miniconda/Miniconda3-la
|
||||
/opt/conda/bin/conda create -y --name pytorch-py$PYTHON_VERSION python=$PYTHON_VERSION numpy pyyaml scipy ipython mkl&& \
|
||||
/opt/conda/bin/conda clean -ya
|
||||
ENV PATH /opt/conda/envs/pytorch-py$PYTHON_VERSION/bin:$PATH
|
||||
#RUN conda install --name pytorch-py$PYTHON_VERSION -c soumith magma-cuda80
|
||||
RUN conda install --name pytorch-py$PYTHON_VERSION -c soumith magma-cuda90
|
||||
# This must be done before pip so that requirements.txt is available
|
||||
WORKDIR /opt/pytorch
|
||||
COPY . .
|
||||
|
31
tools/pytorch.version
Normal file
31
tools/pytorch.version
Normal file
@ -0,0 +1,31 @@
|
||||
{
|
||||
global:
|
||||
_TH*;
|
||||
__TH*;
|
||||
TH*;
|
||||
*THP*;
|
||||
*THCP*;
|
||||
PyInit*;
|
||||
init*;
|
||||
state;
|
||||
_ZGVZN2at*;
|
||||
_ZN2at*;
|
||||
_ZNK2at*Type*;
|
||||
_ZNK2at*Tensor*;
|
||||
_ZNK2at*Storage*;
|
||||
_ZNK2at*Scalar*;
|
||||
_ZNK2at*CUDA*;
|
||||
*2at7Context*;
|
||||
_ZTIN2at*;
|
||||
_ZTIZN2at*;
|
||||
_ZTSN2at*;
|
||||
_ZTSPN2at*;
|
||||
_ZTSZN2at*;
|
||||
_ZTVN2at*;
|
||||
_ZZN2at*;
|
||||
_Z*torch*;
|
||||
_Z*Tensor*;
|
||||
_Z*tensor*;
|
||||
local:
|
||||
*;
|
||||
};
|
@ -108,6 +108,11 @@ def set_default_tensor_type(t):
|
||||
global Storage
|
||||
Tensor = _import_dotted_name(t)
|
||||
Storage = _import_dotted_name(t.replace('Tensor', 'Storage'))
|
||||
|
||||
if 'cuda' in t:
|
||||
import torch.cuda
|
||||
torch.cuda.init()
|
||||
|
||||
_C._set_default_tensor_type(Tensor)
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
1653
torch/_torch_docs.py
1653
torch/_torch_docs.py
File diff suppressed because it is too large
Load Diff
@ -12,7 +12,7 @@ def _type(self, new_type=None, async=False):
|
||||
|
||||
Args:
|
||||
new_type (type or string): The desired type
|
||||
async (bool): If True, and the source is in pinned memory and
|
||||
async (bool): If ``True``, and the source is in pinned memory and
|
||||
destination is on the GPU or vice versa, the copy is
|
||||
performed asynchronously with respect to the host.
|
||||
Otherwise, the argument has no effect.
|
||||
@ -46,7 +46,7 @@ def _cuda(self, device=None, async=False):
|
||||
|
||||
Args:
|
||||
device (int): The destination GPU id. Defaults to the current device.
|
||||
async (bool): If True and the source is in pinned memory, the copy will
|
||||
async (bool): If ``True`` and the source is in pinned memory, the copy will
|
||||
be asynchronous with respect to the host. Otherwise, the
|
||||
argument has no effect.
|
||||
"""
|
||||
|
@ -63,16 +63,16 @@ def backward(variables, grad_variables=None, retain_graph=None, create_graph=Non
|
||||
grad_variables (sequence of (Tensor, Variable or None)): Gradients w.r.t.
|
||||
each element of corresponding variables. Any tensors will be
|
||||
automatically converted to Variables that are volatile unless
|
||||
``create_graph`` is True. None values can be specified for scalar
|
||||
``create_graph`` is ``True``. None values can be specified for scalar
|
||||
Variables or ones that don't require grad. If a None value would
|
||||
be acceptable for all grad_variables, then this argument is optional.
|
||||
retain_graph (bool, optional): If False, the graph used to compute the grad
|
||||
will be freed. Note that in nearly all cases setting this option to True
|
||||
retain_graph (bool, optional): If ``False``, the graph used to compute the grad
|
||||
will be freed. Note that in nearly all cases setting this option to ``True``
|
||||
is not needed and often can be worked around in a much more efficient
|
||||
way. Defaults to the value of ``create_graph``.
|
||||
create_graph (bool, optional): If true, graph of the derivative will
|
||||
create_graph (bool, optional): If ``True``, graph of the derivative will
|
||||
be constructed, allowing to compute higher order derivative products.
|
||||
Defaults to False, unless ``grad_variables`` contains at least one
|
||||
Defaults to ``False``, unless ``grad_variables`` contains at least one
|
||||
non-volatile Variable.
|
||||
"""
|
||||
variables = (variables,) if isinstance(variables, Variable) else tuple(variables)
|
||||
@ -109,8 +109,8 @@ def grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=Non
|
||||
Gradients can be given as Tensors when one doesn't need the graph of the
|
||||
derivative, or as Variables, in which case the graph will be created.
|
||||
|
||||
If ``only_inputs`` is True, the function will only return a list of gradients
|
||||
w.r.t the specified inputs. If it's False, then gradient w.r.t. all remaining
|
||||
If ``only_inputs`` is ``True``, the function will only return a list of gradients
|
||||
w.r.t the specified inputs. If it's ``False``, then gradient w.r.t. all remaining
|
||||
leaves will still be computed, and will be accumulated into their ``.grad``
|
||||
attribute.
|
||||
|
||||
@ -120,24 +120,24 @@ def grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=Non
|
||||
returned (and not accumulated into ``.grad``).
|
||||
grad_outputs (sequence of Tensor or Variable): Gradients w.r.t. each output.
|
||||
Any tensors will be automatically converted to Variables that are
|
||||
volatile unless ``create_graph`` is True. None values can be
|
||||
volatile unless ``create_graph`` is ``True``. None values can be
|
||||
specified for scalar Variables or ones that don't require grad.
|
||||
If a None value would be acceptable for all grad_variables, then
|
||||
this argument is optional.
|
||||
retain_graph (bool, optional): If False, the graph used to compute the grad
|
||||
will be freed. Note that in nearly all cases setting this option to True
|
||||
retain_graph (bool, optional): If ``False``, the graph used to compute the grad
|
||||
will be freed. Note that in nearly all cases setting this option to ``True``
|
||||
is not needed and often can be worked around in a much more efficient
|
||||
way. Defaults to the value of ``create_graph``.
|
||||
create_graph (bool, optional): If True, graph of the derivative will
|
||||
create_graph (bool, optional): If ``True``, graph of the derivative will
|
||||
be constructed, allowing to compute higher order derivative products.
|
||||
Defaults to False, unless ``grad_variables`` contains at least one
|
||||
Defaults to ``False``, unless ``grad_variables`` contains at least one
|
||||
non-volatile Variable.
|
||||
only_inputs (bool, optional): If True, gradient w.r.t. leaves that are
|
||||
only_inputs (bool, optional): If ``True``, gradient w.r.t. leaves that are
|
||||
part of the graph, but don't appear in ``inputs`` won't be computed
|
||||
and accumulated. Defaults to True.
|
||||
allow_unused (bool, optional): If False, specifying inputs that were not
|
||||
and accumulated. Defaults to ``True``.
|
||||
allow_unused (bool, optional): If ``False``, specifying inputs that were not
|
||||
used when computing outputs (and therefore their grad is always zero)
|
||||
is an error. Default: False.
|
||||
is an error. Defaults to ``False``.
|
||||
"""
|
||||
|
||||
outputs = (outputs,) if isinstance(outputs, Variable) else tuple(outputs)
|
||||
|
@ -2,7 +2,7 @@ import torch
|
||||
from ..function import Function
|
||||
|
||||
|
||||
class Multinomial(Function):
|
||||
class Categorical(Function):
|
||||
@staticmethod
|
||||
def forward(ctx, probs, num_samples, with_replacement):
|
||||
samples = probs.multinomial(num_samples, with_replacement)
|
||||
|
@ -57,15 +57,14 @@ def maybe_unexpand_or_view(variable, old_size):
|
||||
# The order is dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, ...
|
||||
def prepare_onnx_paddings(dim, pad):
|
||||
assert isinstance(dim, int)
|
||||
# The order of paddings is dim_0_begin, dim_0_end, dim_1_begin, ... , dim_n_end.
|
||||
# The desired order of paddings is
|
||||
# dim_0_begin, dim_1_begin, ... , dim_0_end, ..., dim_n_end.
|
||||
# n is the dimension of input.
|
||||
assert len(pad) <= dim * 2
|
||||
paddings = []
|
||||
# pad is guaranteed to have even elements.
|
||||
for i, j in zip(pad[0::2], pad[1::2]):
|
||||
paddings = [i, j] + paddings
|
||||
while len(paddings) < 2 * dim:
|
||||
paddings = [0, 0] + paddings
|
||||
# assume zero-dimensions in the beginning
|
||||
paddings = list(pad[:]) + [0] * (dim * 2 - len(pad))
|
||||
# reverse order and collate first beginnings and then ends
|
||||
paddings = paddings[-2::-2] + paddings[-1::-2]
|
||||
assert len(paddings) == dim * 2
|
||||
return paddings
|
||||
|
||||
|
@ -203,7 +203,7 @@ def gradcheck(func, inputs, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True
|
||||
return True
|
||||
|
||||
|
||||
def gradgradcheck(func, inputs, grad_outputs, eps=1e-6, atol=1e-5, rtol=1e-3):
|
||||
def gradgradcheck(func, inputs, grad_outputs=None, eps=1e-6, atol=1e-5, rtol=1e-3):
|
||||
"""Check gradients of gradients computed via small finite differences
|
||||
against analytical gradients
|
||||
This function checks that backpropagating through the gradients computed
|
||||
@ -216,17 +216,27 @@ def gradgradcheck(func, inputs, grad_outputs, eps=1e-6, atol=1e-5, rtol=1e-3):
|
||||
is true for all elements of analytical gradient a and numerical gradient n.
|
||||
|
||||
Args:
|
||||
func: Python function that takes Variable inputs and returns
|
||||
func (function): Python function that takes Variable inputs and returns
|
||||
a tuple of Variables
|
||||
inputs: tuple of Variables
|
||||
grad_outputs: tuple of Variables
|
||||
eps: perturbation for finite differences
|
||||
atol: absolute tolerance
|
||||
rtol: relative tolerance
|
||||
inputs (tuple of Variable): inputs to the function
|
||||
grad_outputs (tuple of Variable, optional): The gradients with respect to
|
||||
the function's outputs.
|
||||
eps (float, optional): perturbation for finite differences
|
||||
atol (float, optional): absolute tolerance
|
||||
rtol (float, optional): relative tolerance
|
||||
|
||||
Returns:
|
||||
True if all differences satisfy allclose condition
|
||||
True if all differences satisfy allclose condition. Raises an exception
|
||||
otherwise.
|
||||
"""
|
||||
if grad_outputs is None:
|
||||
# If grad_outputs is not specified, create random variables of the same
|
||||
# shape, type, and device as the outputs
|
||||
def randn_like(x):
|
||||
return Variable(x.data.new(x.size()).normal_(), requires_grad=True)
|
||||
outputs = _as_tuple(func(*inputs))
|
||||
grad_outputs = [randn_like(x) for x in outputs]
|
||||
|
||||
def new_func(*input_args):
|
||||
input_args = input_args[:-len(grad_outputs)]
|
||||
outputs = _differentiable_outputs(func(*input_args))
|
||||
|
@ -1,12 +1,18 @@
|
||||
import torch
|
||||
import subprocess
|
||||
import os
|
||||
import sys
|
||||
import copy
|
||||
import tempfile
|
||||
import re
|
||||
import itertools
|
||||
from collections import defaultdict, namedtuple
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
FileNotFoundError
|
||||
except NameError:
|
||||
# py2.7
|
||||
FileNotFoundError = IOError
|
||||
|
||||
|
||||
class EventList(list):
|
||||
"""A list of Events (for pretty printing)"""
|
||||
@ -17,6 +23,17 @@ class EventList(list):
|
||||
return self.table()
|
||||
|
||||
def table(self, sort_by=None):
|
||||
"""Prints an EventList as a nicely formatted table.
|
||||
|
||||
Arguments:
|
||||
sort_by (str, optional): Attribute used to sort entries. By default
|
||||
they are printed in the same order as they were registered.
|
||||
Valid keys include: ``cpu_time``, ``cuda_time``, ``cpu_time_total``,
|
||||
``cuda_time_total``, ``count``.
|
||||
|
||||
Returns:
|
||||
A string containing the table.
|
||||
"""
|
||||
return build_table(self, sort_by)
|
||||
|
||||
def export_chrome_trace(self, path):
|
||||
@ -72,7 +89,7 @@ class profile(object):
|
||||
|
||||
Arguments:
|
||||
enabled (bool, optional): Setting this to False makes this context manager a no-op.
|
||||
Default: True.
|
||||
Default: ``True``.
|
||||
|
||||
.. warning:
|
||||
This context managers should not be called recursively, i.e. at most one
|
||||
@ -131,21 +148,27 @@ class profile(object):
|
||||
return '<unfinished torch.autograd.profile>'
|
||||
return str(self.function_events)
|
||||
|
||||
def export_chrome_trace(self, path):
|
||||
def _check_finish(self):
|
||||
if self.function_events is None:
|
||||
raise RuntimeError("can't export a trace that didn't finish running")
|
||||
|
||||
def table(self, sort_by=None):
|
||||
self._check_finish()
|
||||
return self.function_events.table(sort_by)
|
||||
table.__doc__ = EventList.table.__doc__
|
||||
|
||||
def export_chrome_trace(self, path):
|
||||
self._check_finish()
|
||||
return self.function_events.export_chrome_trace(path)
|
||||
export_chrome_trace.__doc__ = EventList.export_chrome_trace.__doc__
|
||||
|
||||
def key_averages(self):
|
||||
if self.function_events is None:
|
||||
raise RuntimeError("can't average a trace that didn't finish running")
|
||||
self._check_finish()
|
||||
return self.function_events.key_averages()
|
||||
key_averages.__doc__ = EventList.key_averages.__doc__
|
||||
|
||||
def total_average(self):
|
||||
if self.function_events is None:
|
||||
raise RuntimeError("can't average a trace that didn't finish running")
|
||||
self._check_finish()
|
||||
return self.function_events.total_average()
|
||||
total_average.__doc__ = EventList.total_average.__doc__
|
||||
|
||||
@ -153,18 +176,24 @@ class profile(object):
|
||||
class emit_nvtx(object):
|
||||
"""Context manager that makes every autograd operation emit an NVTX range.
|
||||
|
||||
It is useful when running the program under nvprof. Unfortunately, there's no
|
||||
way to force nvprof to flush the data it collected to disk, so for CUDA profiling
|
||||
one has to use this context manager to annotate nvprof traces, and then use
|
||||
:func:`torch.autograd.profiler.open_nvtx` to analyze the checkpoint.
|
||||
It is useful when running the program under nvprof::
|
||||
|
||||
nvprof --profile-from-start off -o trace_name.prof -- <regular command here>
|
||||
|
||||
Unfortunately, there's no way to force nvprof to flush the data it collected
|
||||
to disk, so for CUDA profiling one has to use this context manager to annotate
|
||||
nvprof traces and wait for the process to exit before inspecting them.
|
||||
Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or
|
||||
:func:`torch.autograd.profiler.load_nvprof` can load the results for inspection
|
||||
e.g. in Python REPL.
|
||||
|
||||
.. warning:
|
||||
This context managers should not be called recursively, i.e. at most one
|
||||
This context manager should not be called recursively, i.e. at most one
|
||||
instance should be enabled at any given time.
|
||||
|
||||
Arguments:
|
||||
enabled (bool, optional): Setting this to False makes this context manager a no-op.
|
||||
Default: True.
|
||||
Default: ``True``.
|
||||
|
||||
Example:
|
||||
>>> with torch.cuda.profiler.profile():
|
||||
@ -173,7 +202,7 @@ class emit_nvtx(object):
|
||||
... model(x)
|
||||
"""
|
||||
def __init__(self, enabled=True):
|
||||
self.enabled = True
|
||||
self.enabled = enabled
|
||||
self.entered = False
|
||||
|
||||
def __enter__(self):
|
||||
@ -291,7 +320,7 @@ def demangle(name):
|
||||
try:
|
||||
with open(os.devnull, 'w') as devnull:
|
||||
return subprocess.check_output(['c++filt', '-n', name], stderr=devnull).rstrip().decode("ascii")
|
||||
except subprocess.CalledProcessError:
|
||||
except (subprocess.CalledProcessError, OSError, FileNotFoundError) as e:
|
||||
return name
|
||||
|
||||
|
||||
|
@ -154,14 +154,14 @@ class Variable(_C._VariableBase):
|
||||
None values can be specified for scalar Variables or ones that
|
||||
don't require grad. If a None value would be acceptable then
|
||||
this argument is optional.
|
||||
retain_graph (bool, optional): If False, the graph used to compute
|
||||
retain_graph (bool, optional): If ``False``, the graph used to compute
|
||||
the grads will be freed. Note that in nearly all cases setting
|
||||
this option to True is not needed and often can be worked around
|
||||
in a much more efficient way. Defaults to the value of
|
||||
``create_graph``.
|
||||
create_graph (bool, optional): If true, graph of the derivative will
|
||||
create_graph (bool, optional): If ``True``, graph of the derivative will
|
||||
be constructed, allowing to compute higher order derivative
|
||||
products. Defaults to False, unless ``gradient`` is a volatile
|
||||
products. Defaults to ``False``, unless ``gradient`` is a volatile
|
||||
Variable.
|
||||
"""
|
||||
torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables)
|
||||
@ -205,20 +205,31 @@ class Variable(_C._VariableBase):
|
||||
return handle
|
||||
|
||||
def reinforce(self, reward):
|
||||
"""Registers a reward obtained as a result of a stochastic process.
|
||||
def trim(str):
|
||||
return '\n'.join([line.strip() for line in str.split('\n')])
|
||||
|
||||
Differentiating stochastic nodes requires providing them with reward
|
||||
value. If your graph contains any stochastic operations, you should
|
||||
call this function on their outputs. Otherwise an error will be raised.
|
||||
raise RuntimeError(trim(r"""reinforce() was removed.
|
||||
Use torch.distributions instead.
|
||||
See http://pytorch.org/docs/master/distributions.html
|
||||
|
||||
Parameters:
|
||||
reward(Tensor): Tensor with per-element rewards. It has to match
|
||||
the device location and shape of Variable's data.
|
||||
"""
|
||||
if not isinstance(self.grad_fn, StochasticFunction):
|
||||
raise RuntimeError("reinforce() can be only called on outputs "
|
||||
"of stochastic functions")
|
||||
self.grad_fn._reinforce(reward)
|
||||
Instead of:
|
||||
|
||||
probs = policy_network(state)
|
||||
action = probs.multinomial()
|
||||
next_state, reward = env.step(action)
|
||||
action.reinforce(reward)
|
||||
action.backward()
|
||||
|
||||
Use:
|
||||
|
||||
probs = policy_network(state)
|
||||
# NOTE: categorical is equivalent to what used to be called multinomial
|
||||
m = torch.distributions.Categorical(probs)
|
||||
action = m.sample()
|
||||
next_state, reward = env.step(action)
|
||||
loss = -m.log_prob(action) * reward
|
||||
loss.backward()
|
||||
"""))
|
||||
|
||||
def detach(self):
|
||||
"""Returns a new Variable, detached from the current graph.
|
||||
@ -422,7 +433,7 @@ class Variable(_C._VariableBase):
|
||||
return self.expand(tensor.size())
|
||||
|
||||
def multinomial(self, num_samples=1, replacement=False):
|
||||
return Multinomial.apply(self, num_samples, replacement)
|
||||
return Categorical.apply(self, num_samples, replacement)
|
||||
|
||||
def bernoulli(self):
|
||||
return Bernoulli.apply(self)
|
||||
|
@ -257,10 +257,11 @@ class RNNDescriptor(object):
|
||||
CUDNN_RNN_ALGO_STANDARD,
|
||||
datatype
|
||||
))
|
||||
if version() >= 7000 and int(cuda[0]) >= 9:
|
||||
lib.cudnnSetRNNMatrixMathType(self, CUDNN_DEFAULT_MATH)
|
||||
if datatype == CUDNN_DATA_HALF:
|
||||
lib.cudnnSetRNNMatrixMathType(self, CUDNN_TENSOR_OP_MATH)
|
||||
if version() >= 7000 and int(cuda[0]) >= 9 and (
|
||||
torch.cuda.get_device_capability(torch.cuda.current_device())[0] >= 7):
|
||||
lib.cudnnSetRNNMatrixMathType(self, CUDNN_DEFAULT_MATH)
|
||||
if datatype == CUDNN_DATA_HALF:
|
||||
lib.cudnnSetRNNMatrixMathType(self, CUDNN_TENSOR_OP_MATH)
|
||||
else:
|
||||
check_error(lib.cudnnSetRNNDescriptor(
|
||||
self,
|
||||
|
@ -203,13 +203,6 @@ def forward(fn, input, hx, weight, output, hy):
|
||||
if fn.batch_first and not is_input_packed:
|
||||
input = input.transpose(0, 1)
|
||||
|
||||
if (not is_input_packed and input.dim() != 3) or (is_input_packed and input.dim() != 2):
|
||||
raise RuntimeError(
|
||||
'input must have 3 dimensions, got {}'.format(input.dim()))
|
||||
if fn.input_size != input.size(-1):
|
||||
raise RuntimeError('input.size(-1) must be equal to input_size. Expected {}, got {}'.format(
|
||||
fn.input_size, input.size(-1)
|
||||
))
|
||||
if fn.dropout != 0 and cudnn.version() < 5103:
|
||||
raise RuntimeError('dropout supported only in cudnn v5.1 and above')
|
||||
|
||||
@ -261,9 +254,6 @@ def forward(fn, input, hx, weight, output, hy):
|
||||
fn.w_desc = init_weight_descriptor(fn, fn.weight_buf)
|
||||
w = fn.weight_buf
|
||||
|
||||
if tuple(hx.size()) != hidden_size:
|
||||
raise RuntimeError('Expected hidden size {}, got {}'.format(
|
||||
hidden_size, tuple(hx.size())))
|
||||
if cx is not None and tuple(cx.size()) != hidden_size:
|
||||
raise RuntimeError('Expected cell size {}, got {}'.format(
|
||||
hidden_size, tuple(cx.size())))
|
||||
|
203
torch/csrc/DataLoader.cpp
Normal file
203
torch/csrc/DataLoader.cpp
Normal file
@ -0,0 +1,203 @@
|
||||
#include <sys/wait.h>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <atomic>
|
||||
#include <signal.h>
|
||||
#include "THP.h"
|
||||
|
||||
// In cases like DataLoader, if a worker process die due to bus error/segfault
|
||||
// or just hang, the main process, if implemented with
|
||||
// multiprocessing.queue.SimpleQueue, will hang waiting for data. This is
|
||||
// difficult to avoid on PyTorch side as it can be caused by limited shm, or
|
||||
// other libraries users call in the workers. The following methods is an effort
|
||||
// to do our best provide some error message to users when such unfortunate
|
||||
// events happen.
|
||||
|
||||
// TODO: The following don't work on Windows. Specifically, sigaction, waitid
|
||||
// calls ,and SIGCHLD handler. Currently, dummy implementations are provided
|
||||
// for Windows.
|
||||
|
||||
#ifndef _WIN32
|
||||
|
||||
// Critical signal handlers should be registered on worker processes before
|
||||
// doing work.
|
||||
// The handler will raise default handler so that the kill information will be
|
||||
// retrieved from main process.
|
||||
// Python handle is _set_worker_signal_handlers().
|
||||
#define SIGNAL_HANDLER(SIGNAL, HANDLER_NAME, ERROR_MSG) \
|
||||
static void HANDLER_NAME(int sig, siginfo_t *info, void *ctx) \
|
||||
{ \
|
||||
write(STDERR_FILENO, ERROR_MSG, sizeof(ERROR_MSG) / sizeof(char)); \
|
||||
struct sigaction sa; \
|
||||
sa.sa_handler = SIG_DFL; \
|
||||
sa.sa_flags = 0; \
|
||||
if (sigemptyset(&sa.sa_mask) != 0 || sigaction(SIGNAL, &sa, NULL) != 0) { \
|
||||
_exit(EXIT_FAILURE); \
|
||||
} else { \
|
||||
raise(SIGNAL); \
|
||||
} \
|
||||
}
|
||||
|
||||
// signal(2) is really not portable. So use sigaction.
|
||||
// http://man7.org/linux/man-pages/man2/signal.2.html
|
||||
static inline void setSignalHandler(int signal, void(*handler)(int, siginfo_t *, void *), struct sigaction *old_sa_ptr)
|
||||
{
|
||||
struct sigaction sa;
|
||||
sa.sa_sigaction = handler;
|
||||
sa.sa_flags = SA_RESTART|SA_SIGINFO|SA_NOCLDSTOP|SA_NODEFER;
|
||||
if (sigemptyset(&sa.sa_mask) != 0 || sigaction(signal, &sa, old_sa_ptr) != 0) {
|
||||
std::ostringstream oss;
|
||||
oss << "An error occurred while setting handler for " << strsignal(signal) << ".";
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
|
||||
SIGNAL_HANDLER(SIGBUS, handler_SIGBUS, "ERROR: Unexpected bus error encountered in worker. "
|
||||
"This might be caused by insufficient shared memory (shm).\n");
|
||||
SIGNAL_HANDLER(SIGSEGV, handler_SIGSEGV, "ERROR: Unexpected segmentation fault encountered in worker.\n");
|
||||
|
||||
// When an error happend in DataLoader methods and Python starts to exit, the
|
||||
// error trace will keep the loader alive, and Python may kill the children
|
||||
// processes first before deleting the loader object. Then the cleaning up
|
||||
// methods in DataLoader.__del__ are not yet called, and SIGCHILD will print an
|
||||
// error saying a worker is killed by SIGTERM. So we suppress SIGTERM from main
|
||||
// loader process here to avoid this by _exit(EXIT_SUCCESS). Note that if we
|
||||
// exit with nonzero code, the loader SIGCHLD handler may report RuntimeError
|
||||
// again, and then it defeats the whole purpose.
|
||||
static void handler_SIGTERM(int sig, siginfo_t *info, void *ctx)
|
||||
{
|
||||
if (info->si_pid == getppid()) {
|
||||
_exit(EXIT_SUCCESS);
|
||||
}
|
||||
struct sigaction sa;
|
||||
sa.sa_handler = SIG_DFL;
|
||||
sa.sa_flags = 0;
|
||||
if (sigemptyset(&sa.sa_mask) != 0 || sigaction(SIGTERM, &sa, NULL) != 0) {
|
||||
_exit(EXIT_FAILURE);
|
||||
} else {
|
||||
raise(SIGTERM);
|
||||
}
|
||||
}
|
||||
|
||||
PyObject *THPModule_setWorkerSignalHandlers(PyObject *module, PyObject *arg) {
|
||||
HANDLE_TH_ERRORS
|
||||
setSignalHandler(SIGBUS, &handler_SIGBUS, NULL);
|
||||
setSignalHandler(SIGSEGV, &handler_SIGSEGV, NULL);
|
||||
setSignalHandler(SIGTERM, &handler_SIGTERM, NULL);
|
||||
Py_RETURN_TRUE;
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
static std::map<int64_t, std::set<pid_t>> worker_pids = {};
|
||||
|
||||
PyObject *THPModule_errorIfAnyWorkerFails(PyObject *module) {
|
||||
HANDLE_TH_ERRORS
|
||||
int error;
|
||||
std::set<pid_t> *pid_set;
|
||||
pid_t worker_pid;
|
||||
siginfo_t infop;
|
||||
|
||||
// Only check the pids we care about
|
||||
for (auto it = worker_pids.begin(); it != worker_pids.end(); ++it) {
|
||||
pid_set = &(it->second);
|
||||
for (auto pid_it = pid_set->begin(); pid_it != pid_set->end(); ++pid_it) {
|
||||
worker_pid = *pid_it;
|
||||
// Use waitid rather than waitpid so that we can set NOWAIT, and that Python
|
||||
// and other handlers can get whatever info they want about the child.
|
||||
infop.si_pid = 0;
|
||||
error = waitid(P_PID, worker_pid, &infop, WEXITED|WNOHANG|WNOWAIT);
|
||||
// ignore errors and case with no waitable child
|
||||
if (error < 0 || infop.si_pid == 0)
|
||||
continue;
|
||||
if (infop.si_code == CLD_EXITED && infop.si_status != EXIT_SUCCESS) { // exit with error
|
||||
std::ostringstream oss;
|
||||
oss << "DataLoader worker (pid " << worker_pid << ") exited "
|
||||
<< "unexpectedly with exit code " << infop.si_status << ".";
|
||||
// This is necessary. Otherwise, the runtime error will kill the other
|
||||
// workers, and trigger this again.
|
||||
pid_set->clear();
|
||||
throw std::runtime_error(oss.str());
|
||||
} else if (infop.si_code == CLD_KILLED || infop.si_code == CLD_DUMPED) { // killed by signal
|
||||
std::ostringstream oss;
|
||||
oss << "DataLoader worker (pid " << worker_pid << ") is killed "
|
||||
<< "by signal: " << strsignal(infop.si_status) << ".";
|
||||
// This is necessary. Otherwise, the runtime error will kill the other
|
||||
// workers, and trigger this again.
|
||||
pid_set->clear();
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
Py_RETURN_NONE;
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
// We don't want to exit on any SIGCHLD from any child. child_pids is a tuple
|
||||
// of pids we are interested in.
|
||||
PyObject *THPModule_updateWorkerPIDs(PyObject *module, PyObject *args) {
|
||||
HANDLE_TH_ERRORS
|
||||
Py_ssize_t num_args = args ? (Py_ssize_t) PyTuple_Size(args) : 0;
|
||||
THPUtils_assert(num_args == 2, "_update_worker_pids expectes exactly 2 arguments.");
|
||||
int64_t key = THPUtils_unpackLong(PyTuple_GET_ITEM(args, 0));
|
||||
THPUtils_assert(worker_pids.find(key) == worker_pids.end(), "_update_worker_pids "
|
||||
"should be called only once for each DataLoader.");
|
||||
PyObject *child_pids = PyTuple_GET_ITEM(args, 1);
|
||||
THPUtils_assert(PyTuple_Check(child_pids), "_update_worker_pids "
|
||||
"expects a tuple for child_pids, but got %s.", THPUtils_typename(child_pids));
|
||||
|
||||
std::set<pid_t> pids_set = {};
|
||||
auto size = PyTuple_GET_SIZE(child_pids);
|
||||
for (int idx = 0; idx < size; idx++) {
|
||||
PyObject* obj = PyTuple_GET_ITEM(child_pids, idx);
|
||||
pids_set.insert((pid_t) THPUtils_unpackLong(obj));
|
||||
}
|
||||
|
||||
worker_pids[key] = pids_set;
|
||||
|
||||
Py_RETURN_NONE;
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
PyObject *THPModule_removeWorkerPIDs(PyObject *module, PyObject *loader_id) {
|
||||
HANDLE_TH_ERRORS
|
||||
|
||||
int64_t key = THPUtils_unpackLong(loader_id);
|
||||
THPUtils_assert(worker_pids.find(key) != worker_pids.end(), "Cannot find worker "
|
||||
"information for DataLoader with id %ld.", key);
|
||||
|
||||
worker_pids.erase(key);
|
||||
|
||||
Py_RETURN_NONE;
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
#undef SIGNAL_HANDLER
|
||||
|
||||
#else
|
||||
// dummy implementations for windows
|
||||
|
||||
PyObject *THPModule_setWorkerSignalHandlers(PyObject *module, PyObject *_ignored) {
|
||||
Py_RETURN_TRUE;
|
||||
}
|
||||
|
||||
PyObject *THPModule_updateWorkerPIDs(PyObject *module, PyObject *_ignored) {
|
||||
Py_RETURN_TRUE;
|
||||
}
|
||||
|
||||
PyObject *THPModule_removeWorkerPIDs(PyObject *module, PyObject *_ignored) {
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
PyObject *THPModule_exitIfAnyWorkerFails(PyObject *module, PyObject *_ignored) {
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
PyMethodDef DataLoaderMethods[] = {
|
||||
{"_set_worker_signal_handlers", (PyCFunction)THPModule_setWorkerSignalHandlers, METH_NOARGS, NULL},
|
||||
{"_update_worker_pids", (PyCFunction)THPModule_updateWorkerPIDs, METH_VARARGS, NULL},
|
||||
{"_remove_worker_pids", (PyCFunction)THPModule_removeWorkerPIDs, METH_O, NULL},
|
||||
{"_error_if_any_worker_fails", (PyCFunction)THPModule_errorIfAnyWorkerFails, METH_NOARGS, NULL},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
@ -1,5 +1,8 @@
|
||||
#include <Python.h>
|
||||
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "THP.h"
|
||||
|
||||
PyObject *THPException_FatalError;
|
||||
@ -11,3 +14,61 @@ bool THPException_init(PyObject *module)
|
||||
ASSERT_TRUE(PyModule_AddObject(module, "FatalError", THPException_FatalError) == 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace torch {
|
||||
|
||||
void replaceAll(std::string & str,
|
||||
const std::string & old_str,
|
||||
const std::string & new_str) {
|
||||
std::string::size_type pos = 0u;
|
||||
while ((pos = str.find(old_str, pos)) != std::string::npos){
|
||||
str.replace(pos, old_str.length(), new_str);
|
||||
}
|
||||
}
|
||||
|
||||
std::string processErrorMsg(std::string str) {
|
||||
|
||||
// Translate Aten types to their respective pytorch ones
|
||||
std::vector<std::pair<std::string, std::string>> changes {
|
||||
{"SparseCUDAByteType", "torch.cuda.sparse.ByteTensor"},
|
||||
{"SparseCUDACharType", "torch.cuda.sparse.CharTensor"},
|
||||
{"SparseCUDADoubleType", "torch.cuda.sparse.DoubleTensor"},
|
||||
{"SparseCUDAFloatType", "torch.cuda.sparse.FloatTensor"},
|
||||
{"SparseCUDAIntType", "torch.cuda.sparse.IntTensor"},
|
||||
{"SparseCUDALongType", "torch.cuda.sparse.LongTensor"},
|
||||
{"SparseCUDAShortType", "torch.cuda.sparse.ShortTensor"},
|
||||
{"SparseCUDAHalfType", "torch.cuda.sparse.HalfTensor"},
|
||||
{"SparseCPUByteType", "torch.sparse.ByteTensor"},
|
||||
{"SparseCPUCharType", "torch.sparse.CharTensor"},
|
||||
{"SparseCPUDoubleType", "torch.sparse.DoubleTensor"},
|
||||
{"SparseCPUFloatType", "torch.sparse.FloatTensor"},
|
||||
{"SparseCPUIntType", "torch.sparse.IntTensor"},
|
||||
{"SparseCPULongType", "torch.sparse.LongTensor"},
|
||||
{"SparseCPUShortType", "torch.sparse.ShortTensor"},
|
||||
{"SparseCPUHalfType", "torch.sparse.HalfTensor"},
|
||||
{"CUDAByteType", "torch.cuda.ByteTensor"},
|
||||
{"CUDACharType", "torch.cuda.CharTensor"},
|
||||
{"CUDADoubleType", "torch.cuda.DoubleTensor"},
|
||||
{"CUDAFloatType", "torch.cuda.FloatTensor"},
|
||||
{"CUDAIntType", "torch.cuda.IntTensor"},
|
||||
{"CUDALongType", "torch.cuda.LongTensor"},
|
||||
{"CUDAShortType", "torch.cuda.ShortTensor"},
|
||||
{"CUDAHalfType", "torch.cuda.HalfTensor"},
|
||||
{"CPUByteType", "torch.ByteTensor"},
|
||||
{"CPUCharType", "torch.CharTensor"},
|
||||
{"CPUDoubleType", "torch.DoubleTensor"},
|
||||
{"CPUFloatType", "torch.FloatTensor"},
|
||||
{"CPUIntType", "torch.IntTensor"},
|
||||
{"CPULongType", "torch.LongTensor"},
|
||||
{"CPUShortType", "torch.ShortTensor"},
|
||||
{"CPUHalfType", "torch.HalfTensor"},
|
||||
};
|
||||
|
||||
for (const auto & it : changes) {
|
||||
replaceAll(str, it.first, it.second);
|
||||
}
|
||||
|
||||
return str;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -14,7 +14,8 @@
|
||||
} catch (python_error &e) { \
|
||||
return retval; \
|
||||
} catch (std::exception &e) { \
|
||||
PyErr_SetString(PyExc_RuntimeError, e.what()); \
|
||||
auto msg = torch::processErrorMsg(e.what()); \
|
||||
PyErr_SetString(PyExc_RuntimeError, msg.c_str()); \
|
||||
return retval; \
|
||||
}
|
||||
|
||||
@ -68,4 +69,8 @@ struct python_error : public std::exception {
|
||||
bool THPException_init(PyObject *module);
|
||||
#endif
|
||||
|
||||
namespace torch {
|
||||
std::string processErrorMsg(std::string str);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -25,6 +25,7 @@
|
||||
#include "THP.h"
|
||||
|
||||
#include "ModuleSparse.cpp"
|
||||
#include "DataLoader.cpp"
|
||||
|
||||
PyObject* module;
|
||||
PyObject* tensor_classes;
|
||||
@ -792,6 +793,7 @@ static PyObject* initModule() {
|
||||
#define ASSERT_TRUE(cmd) if (!(cmd)) return NULL
|
||||
|
||||
THPUtils_addPyMethodDefs(methods, TorchMethods);
|
||||
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
|
||||
#ifdef WITH_CUDA
|
||||
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
|
||||
#endif
|
||||
|
@ -1,3 +1,5 @@
|
||||
#define __STDC_FORMAT_MACROS
|
||||
|
||||
#include <Python.h>
|
||||
#include <structmember.h>
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
#define __STDC_FORMAT_MACROS
|
||||
|
||||
#include <Python.h>
|
||||
#include <structmember.h>
|
||||
|
||||
|
@ -55,7 +55,8 @@ auto BatchNormForward::apply(const variable_list& inputs) -> variable_list {
|
||||
bool use_cudnn = false;
|
||||
#ifdef WITH_CUDNN
|
||||
use_cudnn = (input.type().isCuda()
|
||||
&& input.type().scalarType() != at::kHalf
|
||||
&& (input.type().scalarType() != at::kHalf
|
||||
|| weight.type().scalarType() == at::kFloat)
|
||||
&& weight.defined() && bias.defined()
|
||||
&& input.size(0) <= 131070
|
||||
&& cudnn_enabled && CUDNN_VERSION >= 5110L);
|
||||
@ -115,7 +116,8 @@ auto BatchNormBackward::apply(const variable_list& grad_outputs) -> variable_lis
|
||||
bool use_cudnn = false;
|
||||
#ifdef WITH_CUDNN
|
||||
use_cudnn = (input.type().backend() == at::kCUDA
|
||||
&& input.type().scalarType() != at::kHalf
|
||||
&& (input.type().scalarType() != at::kHalf
|
||||
|| weight.type().scalarType() == at::kFloat)
|
||||
&& weight.defined() && bias.defined() && training
|
||||
&& input.size(0) <= 131070
|
||||
&& cudnn_enabled && CUDNN_VERSION >= 5110L);
|
||||
@ -164,7 +166,7 @@ auto BatchNormBackward::apply(const variable_list& grad_outputs) -> variable_lis
|
||||
// Add saved variables used out of the pure autograd to inputs
|
||||
variable_list all_inputs(grad_outputs);
|
||||
all_inputs.push_back(input_var);
|
||||
if (weight.get()) {
|
||||
if (weight.defined()) {
|
||||
all_inputs.push_back(weight_var);
|
||||
}
|
||||
auto outputs = as_tensor_list(std::move(grad_input),
|
||||
|
@ -365,7 +365,7 @@ auto ConvForward::apply(const variable_list& inputs) -> variable_list {
|
||||
// For Convolution strategies that don't implicitly handle grad_bias, we add a helper
|
||||
// function here to perform it using simple Tensor operators
|
||||
static at::Tensor compute_grad_bias(const at::Tensor& grad_output) {
|
||||
// grad_output is in N, C, H, W, we re-shape and reduce over spatial dims and batches
|
||||
// grad_output is in N, C, H, W, we re-shape and reduce over spatial dims and batches
|
||||
return grad_output.contiguous().view({grad_output.size(0), grad_output.size(1), -1}).sum(0).sum(1);
|
||||
}
|
||||
|
||||
@ -727,7 +727,18 @@ auto ConvBackwardBackward::apply(const variable_list& grad_grad_inputs) -> varia
|
||||
gI = apply_fn<Transpose>(0, 1)(gIt);
|
||||
}
|
||||
}
|
||||
return {ggO, gI, gW};
|
||||
|
||||
if (should_compute_output(0) && !ggO.defined()) ggO = at::zeros_like(gO);
|
||||
if (should_compute_output(1) && !gI.defined()) gI = at::zeros_like(input);
|
||||
if (should_compute_output(2) && !gW.defined()) gW = at::zeros_like(weight);
|
||||
bool is_volatile = std::any_of(grad_grad_inputs.begin(), grad_grad_inputs.end(), [](const Variable& v){
|
||||
return v.defined() && v.is_volatile();
|
||||
});
|
||||
auto results = variable_list({ggO, gI, gW});
|
||||
for (auto& result : results) {
|
||||
result.is_volatile() |= is_volatile;
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
auto ConvBackwardBackward::releaseVariables() -> void {
|
||||
|
@ -9,7 +9,7 @@ namespace autograd {
|
||||
jit::node_list BatchNormForward::symbolic(SymbolicContext* ctx, jit::node_list inputs) {
|
||||
auto & g = ctx->graph;
|
||||
// X, Scale, Bias
|
||||
auto bn = g->appendNode(g->create(jit::kSpatialBN,{inputs.at(0),inputs.at(1),inputs.at(2)}));
|
||||
auto bn = g->appendNode(g->create(jit::kBatchNormalization, {inputs.at(0),inputs.at(1),inputs.at(2)}));
|
||||
bn->addInput(jit::tracer::getBufferTrace(*ctx->buffer_map, running_mean));
|
||||
bn->addInput(jit::tracer::getBufferTrace(*ctx->buffer_map, running_var));
|
||||
bn->i_(jit::kis_test, !this->training);
|
||||
|
@ -18,7 +18,7 @@ namespace torch { namespace autograd {
|
||||
jit::node_list ConvForward::symbolic(SymbolicContext* ctx, jit::node_list inputs) {
|
||||
auto & g = ctx->graph;
|
||||
// See Note [Caffe2ConvTranspose]
|
||||
auto n = g->create(!transposed ? jit::kConv : jit::kCaffe2ConvTranspose,
|
||||
auto n = g->create(!transposed ? jit::kConv : jit::kConvTranspose,
|
||||
{inputs.at(0), inputs.at(1)});
|
||||
|
||||
// Irritatingly, Caffe2 requires us to specify kernels,
|
||||
@ -55,6 +55,8 @@ jit::node_list ConvForward::symbolic(SymbolicContext* ctx, jit::node_list inputs
|
||||
n->i_(jit::kgroup,groups);
|
||||
|
||||
// Not in ONNX?
|
||||
// TODO: implement it once ConvTranspose in ONNX gets `adj` argument instead
|
||||
// of providing `output_shape`
|
||||
for (int p : output_padding) {
|
||||
JIT_EXPECTM(p == 0, "output padding is not supported.");
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "torch/csrc/autograd/input_buffer.h"
|
||||
|
||||
#include "torch/csrc/assertions.h"
|
||||
#include "torch/csrc/autograd/functions/basic_ops.h"
|
||||
#include "torch/csrc/utils/auto_gpu.h"
|
||||
|
||||
@ -10,6 +11,7 @@ InputBuffer::InputBuffer(size_t size)
|
||||
{}
|
||||
|
||||
void InputBuffer::add(size_t pos, Variable var) {
|
||||
TORCH_ASSERT(pos >= 0 && pos < buffer.size());
|
||||
if (!var.defined()) {
|
||||
return;
|
||||
}
|
||||
|
@ -43,6 +43,10 @@ PyObject * THPVariable_Wrap(Variable var)
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
if (var.dim() == 0) {
|
||||
throw std::runtime_error("Variable API does not support Scalars");
|
||||
}
|
||||
|
||||
if (auto obj = var.get()->pyobj) {
|
||||
Py_INCREF(obj);
|
||||
return obj;
|
||||
@ -96,26 +100,21 @@ static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
|
||||
{
|
||||
Py_VISIT(self->data);
|
||||
Py_VISIT(self->backward_hooks);
|
||||
// We don't want to traverse the grad_fn, even if the Variable owns it and the
|
||||
// shared pointer's use count is 1. This is because we would need to treat
|
||||
// the grad_fn as part of the Python state and hold the GIL sometimes when
|
||||
// grad_fn's shared_ptr is copied, otherwise a race condition with the Python
|
||||
// GC could occur. Holding the GIL when the shared_ptr is copied adds
|
||||
// undesirable complexity/overhead.
|
||||
//
|
||||
// When hooks, a Variable, and its grad_fn are involved in a Python reference
|
||||
// cycle, because we're not traversing the grad_fn, the reference cycle will
|
||||
// in fact leak.
|
||||
//
|
||||
// See https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c
|
||||
// for more details about the race condition involving traversing the grad_fn
|
||||
// and the python GC.
|
||||
if (self->cdata.defined()) {
|
||||
// Only visit this if we actually own it (no one else use the shared pointer)
|
||||
auto& grad_fn = self->cdata.grad_fn();
|
||||
if (grad_fn.use_count() == 1) {
|
||||
if (auto fn = dynamic_cast<PyFunction*>(grad_fn.get())) {
|
||||
Py_VISIT(fn->obj);
|
||||
} else {
|
||||
// visit hooks in C++ implemented autograd functions
|
||||
for (auto& hook : grad_fn->pre_hooks) {
|
||||
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
|
||||
Py_VISIT(pyhook->dict);
|
||||
}
|
||||
}
|
||||
for (auto& hook : grad_fn->post_hooks) {
|
||||
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
|
||||
Py_VISIT(pyhook->dict);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto& hook : self->cdata.hooks()) {
|
||||
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
|
||||
Py_VISIT(pyhook->dict);
|
||||
|
@ -13,6 +13,10 @@
|
||||
namespace torch { namespace autograd { namespace utils {
|
||||
|
||||
inline PyObject* wrap(at::Tensor tensor) {
|
||||
if (tensor.defined() && tensor.dim() == 0) {
|
||||
// don't expose 0-dim tensors to Variable API.
|
||||
Variable(tensor).data().as_strided_({1}, {1});
|
||||
}
|
||||
return THPVariable_Wrap(Variable(std::move(tensor)));
|
||||
}
|
||||
|
||||
@ -54,6 +58,10 @@ inline PyObject* wrap(int64_t value) {
|
||||
return THPUtils_packInt64(value);
|
||||
}
|
||||
|
||||
inline PyObject* wrap(void* value) {
|
||||
return THPUtils_packInt64(reinterpret_cast<intptr_t>(value));
|
||||
}
|
||||
|
||||
inline PyObject* wrap(at::Scalar scalar) {
|
||||
return wrap(scalar.toTensor());
|
||||
}
|
||||
|
@ -133,6 +133,18 @@ PyObject * THCPModule_getDeviceName_wrap(PyObject *self, PyObject *arg)
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
PyObject * THCPModule_getDeviceCapability_wrap(PyObject *self, PyObject *arg)
|
||||
{
|
||||
HANDLE_TH_ERRORS
|
||||
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to getDeviceCapability");
|
||||
long device = THPUtils_unpackLong(arg);
|
||||
|
||||
cudaDeviceProp prop;
|
||||
THCudaCheck(cudaGetDeviceProperties(&prop, device));
|
||||
return Py_BuildValue("(ii)", prop.major, prop.minor);
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
PyObject * THCPModule_getCurrentStream_wrap(PyObject *self)
|
||||
{
|
||||
HANDLE_TH_ERRORS
|
||||
@ -174,6 +186,11 @@ PyObject * THCPModule_getDriverVersion(PyObject *self)
|
||||
return PyLong_FromLong((long) driverVersion);
|
||||
}
|
||||
|
||||
PyObject * THCPModule_getCompiledVersion(PyObject *self)
|
||||
{
|
||||
return PyLong_FromLong((long) CUDA_VERSION);
|
||||
}
|
||||
|
||||
PyObject * THCPModule_getRNGState(PyObject *_unused)
|
||||
{
|
||||
HANDLE_TH_ERRORS
|
||||
@ -297,6 +314,15 @@ PyObject * THCPModule_cudaUnlockMutex(PyObject *module)
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
PyObject * THCPModule_emptyCache(PyObject *_unused)
|
||||
{
|
||||
HANDLE_TH_ERRORS
|
||||
auto device_allocator = THCState_getDeviceAllocator(state);
|
||||
THCudaCheck(device_allocator->emptyCache(device_allocator->state));
|
||||
END_HANDLE_TH_ERRORS
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Cuda module initialization
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -369,13 +395,16 @@ static struct PyMethodDef _THCPModule_methods[] = {
|
||||
{"_cuda_getDevice", (PyCFunction)THCPModule_getDevice_wrap, METH_NOARGS, NULL},
|
||||
{"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, NULL},
|
||||
{"_cuda_getDeviceName", (PyCFunction)THCPModule_getDeviceName_wrap, METH_O, NULL},
|
||||
{"_cuda_getDeviceCapability", (PyCFunction)THCPModule_getDeviceCapability_wrap, METH_O, NULL},
|
||||
{"_cuda_getCurrentStream", (PyCFunction)THCPModule_getCurrentStream_wrap, METH_NOARGS, NULL},
|
||||
{"_cuda_getCurrentBlasHandle", (PyCFunction)THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, NULL},
|
||||
{"_cuda_setStream", (PyCFunction)THCPModule_setStream_wrap, METH_O, NULL},
|
||||
{"_cuda_isDriverSufficient", (PyCFunction)THCPModule_isDriverSufficient, METH_NOARGS, NULL},
|
||||
{"_cuda_getDriverVersion", (PyCFunction)THCPModule_getDriverVersion, METH_NOARGS, NULL},
|
||||
{"_cuda_getCompiledVersion", (PyCFunction)THCPModule_getCompiledVersion, METH_NOARGS, NULL},
|
||||
{"_cuda_getRNGState", (PyCFunction)THCPModule_getRNGState, METH_NOARGS, NULL},
|
||||
{"_cuda_setRNGState", (PyCFunction)THCPModule_setRNGState, METH_O, NULL},
|
||||
{"_cuda_emptyCache", (PyCFunction) THCPModule_emptyCache, METH_NOARGS, NULL},
|
||||
{"_cuda_manualSeed", (PyCFunction)THCPModule_manualSeed, METH_O, NULL},
|
||||
{"_cuda_manualSeedAll", (PyCFunction)THCPModule_manualSeedAll, METH_O, NULL},
|
||||
{"_cuda_seed", (PyCFunction)THCPModule_seed, METH_NOARGS, NULL},
|
||||
|
@ -1,3 +1,5 @@
|
||||
#define __STDC_FORMAT_MACROS
|
||||
|
||||
#include <Python.h>
|
||||
#include <structmember.h>
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
#define __STDC_FORMAT_MACROS
|
||||
|
||||
#include <Python.h>
|
||||
#include <structmember.h>
|
||||
|
||||
|
@ -228,12 +228,12 @@ struct algorithm_search<cudnnConvolutionFwdAlgo_t> {
|
||||
conv.cdesc.desc,
|
||||
conv.odesc.desc,
|
||||
out,
|
||||
1,
|
||||
n_algo,
|
||||
&algoCount,
|
||||
perfResults,
|
||||
ws.data,
|
||||
ws.size));
|
||||
return getBestAlgorithm<cudnnConvolutionFwdAlgoPerf_t>(perfResults, deterministic, n_algo);
|
||||
return getBestAlgorithm<cudnnConvolutionFwdAlgoPerf_t>(perfResults, deterministic, algoCount);
|
||||
}
|
||||
|
||||
static void getAlgorithm(
|
||||
@ -302,12 +302,12 @@ struct algorithm_search<cudnnConvolutionBwdDataAlgo_t> {
|
||||
conv.cdesc.desc,
|
||||
conv.idesc.desc,
|
||||
in,
|
||||
1,
|
||||
n_algo,
|
||||
&algoCount,
|
||||
perfResults,
|
||||
ws.data,
|
||||
ws.size));
|
||||
return getBestAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>(perfResults, deterministic, n_algo);
|
||||
return getBestAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>(perfResults, deterministic, algoCount);
|
||||
}
|
||||
|
||||
static void getAlgorithm(cudnnHandle_t handle, const Convolution& conv, cudnnConvolutionBwdDataAlgo_t* algo) {
|
||||
@ -376,12 +376,12 @@ struct algorithm_search<cudnnConvolutionBwdFilterAlgo_t> {
|
||||
conv.cdesc.desc,
|
||||
conv.wdesc.desc,
|
||||
wght,
|
||||
1,
|
||||
n_algo,
|
||||
&algoCount,
|
||||
perfResults,
|
||||
ws.data,
|
||||
ws.size));
|
||||
return getBestAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>(perfResults, deterministic, n_algo);
|
||||
return getBestAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>(perfResults, deterministic, algoCount);
|
||||
}
|
||||
|
||||
static void getAlgorithm(
|
||||
|
@ -36,7 +36,7 @@
|
||||
#define COPY_FROM_ARRAY_CUDA(ELTYPE, ARRAY, STORAGE, SIZE) \
|
||||
{ \
|
||||
ELTYPE *arrdata = (ELTYPE*)PyArray_DATA(ARRAY); \
|
||||
std::unique_ptr<load_real> data_guard(new load_real[SIZE]); \
|
||||
std::unique_ptr<load_real[]> data_guard(new load_real[SIZE]); \
|
||||
load_real *data = data_guard.get(); \
|
||||
for (size_t i=0; i<SIZE; i++) { \
|
||||
data[i] = arrdata[i]; \
|
||||
@ -51,7 +51,7 @@
|
||||
#define COPY_FROM_ARRAY_CUDA_HALF(ELTYPE, ARRAY, STORAGE, SIZE) \
|
||||
{ \
|
||||
ELTYPE *arrdata = (ELTYPE*)PyArray_DATA(ARRAY); \
|
||||
std::unique_ptr<load_real> data_guard(new load_real[SIZE]); \
|
||||
std::unique_ptr<load_real[]> data_guard(new load_real[SIZE]); \
|
||||
load_real *data = data_guard.get(); \
|
||||
for (size_t i=0; i<SIZE; i++) { \
|
||||
data[i] = arrdata[i]; \
|
||||
@ -379,7 +379,7 @@ static PyObject * THPTensor_(pynew)(PyTypeObject *type, PyObject *args, PyObject
|
||||
real *data = tensor->storage->data;
|
||||
#else
|
||||
size_t numel = THTensor_(numel)(LIBRARY_STATE tensor);
|
||||
std::unique_ptr<load_real> data_guard(new load_real[numel]);
|
||||
std::unique_ptr<load_real[]> data_guard(new load_real[numel]);
|
||||
load_real *data = data_guard.get();
|
||||
#endif
|
||||
THPObjectPtr final_sequence;
|
||||
@ -778,7 +778,7 @@ static bool THPTensor_(_convertToTensorIndexers)(
|
||||
// store THPTensors rather than THTensors.
|
||||
|
||||
std::vector<Py_ssize_t> indexingDims;
|
||||
std::vector<THPIndexTensor*>indexers;
|
||||
std::vector<THPPointer<THPIndexTensor>> indexers;
|
||||
|
||||
if (THPTensor_(_checkSingleSequenceTriggersAdvancedIndexing)(index)) {
|
||||
// Handle the special case where we only have a single indexer
|
||||
@ -791,7 +791,7 @@ static bool THPTensor_(_convertToTensorIndexers)(
|
||||
return false;
|
||||
}
|
||||
indexingDims.push_back(0);
|
||||
indexers.push_back(indexer);
|
||||
indexers.push_back(THPPointer<THPIndexTensor>(indexer));
|
||||
} else {
|
||||
// The top-level indexer should be a sequence, per the check above
|
||||
THPObjectPtr fast(PySequence_Fast(index, NULL));
|
||||
@ -827,15 +827,10 @@ static bool THPTensor_(_convertToTensorIndexers)(
|
||||
"convertible to LongTensors. The indexing object at position %zd is of type %s "
|
||||
"and cannot be converted", i, THPUtils_typename(obj));
|
||||
|
||||
// Clean up Indexers
|
||||
for (auto& idx : indexers) {
|
||||
THIndexTensor_(free)(LIBRARY_STATE idx->cdata);
|
||||
Py_DECREF(idx);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
indexingDims.push_back(i + ellipsisOffset);
|
||||
indexers.push_back(indexer);
|
||||
indexers.push_back(THPPointer<THPIndexTensor>(indexer));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -849,7 +844,7 @@ static bool THPTensor_(_convertToTensorIndexers)(
|
||||
for (const auto& indexer : indexers) {
|
||||
maybeBroadcasted.emplace_back(THIndexTensor_(new)(LIBRARY_STATE_NOARGS));
|
||||
// borrow the underlying Tensor from the indexer map
|
||||
candidates.emplace_back(indexer->cdata);
|
||||
candidates.emplace_back(indexer.get()->cdata);
|
||||
}
|
||||
|
||||
// Broadcast/Expand indexing Tensors as necessary
|
||||
@ -888,11 +883,6 @@ static bool THPTensor_(_convertToTensorIndexers)(
|
||||
"for dimension %lld (of size %lld)",
|
||||
(long long)indexAtDim, (long long)dim, (long long)sizeAtDim);
|
||||
|
||||
// Clean up Indexers
|
||||
for (auto& idx : indexers) {
|
||||
THIndexTensor_(free)(LIBRARY_STATE idx->cdata);
|
||||
Py_DECREF(idx);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
@ -907,19 +897,9 @@ static bool THPTensor_(_convertToTensorIndexers)(
|
||||
}
|
||||
PyErr_Format(PyExc_IndexError, "The advanced indexing objects could not be broadcast");
|
||||
|
||||
// Clean up Indexers
|
||||
for (auto& idx : indexers) {
|
||||
THIndexTensor_(free)(LIBRARY_STATE idx->cdata);
|
||||
Py_DECREF(idx);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Clean up Indexers
|
||||
for (auto& idx : indexers) {
|
||||
THIndexTensor_(free)(LIBRARY_STATE idx->cdata);
|
||||
Py_DECREF(idx);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -761,6 +761,12 @@ PyObject * THPTensor_(stride)(PyObject *self, PyObject *args, PyObject *kwargs)
|
||||
- accreal start
|
||||
- accreal end
|
||||
- CONSTANT 1
|
||||
- arguments:
|
||||
- arg: THTensor* result
|
||||
output: True
|
||||
- CONSTANT 0
|
||||
- accreal end
|
||||
- CONSTANT 1
|
||||
]]
|
||||
|
||||
[[
|
||||
|
@ -78,7 +78,7 @@ using GraphsAttr = VectorAttributeValue<std::shared_ptr<Graph>,AttributeKind::gs
|
||||
|
||||
// CRTP so that Node which inherits Attributes can be return for
|
||||
// method chaining e.g:
|
||||
// Node * n = g->create(kSelect)->set_i(kOffset,3)->set_f(kValue,3.5);
|
||||
// Node * n = g->create(kSelect)->i_(kOffset,3)->f_(kValue,3.5);
|
||||
// we return Derived* pointers because Nodes are normally held as pointers.
|
||||
template<typename Derived>
|
||||
struct Attributes {
|
||||
|
@ -69,7 +69,8 @@ void encodeTensor(onnx::TensorProto * p, const at::Tensor & tensor) {
|
||||
break;
|
||||
}
|
||||
p->set_data_type(onnx_type);
|
||||
at::Tensor cont = tensor.toType(at::CPU(at_type)).contiguous();
|
||||
// CPU's HalfTensor doesn't have contiguous(), so first calling contiguous()
|
||||
at::Tensor cont = tensor.contiguous().toType(at::CPU(at_type));
|
||||
p->set_raw_data(cont);
|
||||
}
|
||||
|
||||
@ -79,40 +80,50 @@ void addAttribute(onnx::NodeProto * n_p, jit::Node * n, jit::Symbol name) {
|
||||
switch(n->kindOf(name)) {
|
||||
case AttributeKind::f:
|
||||
attr->set_f(n->f(name));
|
||||
attr->set_type(onnx::aFLOAT);
|
||||
break;
|
||||
case AttributeKind::fs:
|
||||
attr->set_type(onnx::aFLOATS);
|
||||
for(auto & v : n->fs(name))
|
||||
attr->add_floats(v);
|
||||
break;
|
||||
case AttributeKind::i:
|
||||
attr->set_type(onnx::aINT);
|
||||
attr->set_i(n->i(name));
|
||||
break;
|
||||
case AttributeKind::is:
|
||||
attr->set_type(onnx::aINTS);
|
||||
for(auto & v : n->is(name))
|
||||
attr->add_ints(v);
|
||||
break;
|
||||
case AttributeKind::s:
|
||||
attr->set_type(onnx::aSTRING);
|
||||
attr->set_s(n->s(name));
|
||||
break;
|
||||
case AttributeKind::ss:
|
||||
attr->set_type(onnx::aSTRINGS);
|
||||
for(auto & v : n->ss(name))
|
||||
attr->add_strings(v);
|
||||
break;
|
||||
case AttributeKind::t: {
|
||||
attr->set_type(onnx::aTENSOR);
|
||||
auto t = attr->mutable_t();
|
||||
encodeTensor(t, n->t(name));
|
||||
} break;
|
||||
case AttributeKind::ts:
|
||||
attr->set_type(onnx::aTENSORS);
|
||||
for(auto & v : n->ts(name)) {
|
||||
auto t = attr->add_tensors();
|
||||
encodeTensor(t, v);
|
||||
}
|
||||
break;
|
||||
case AttributeKind::g: {
|
||||
attr->set_type(onnx::aGRAPH);
|
||||
auto g = attr->mutable_g();
|
||||
encodeGraph(g, n->g(name), {});
|
||||
} break;
|
||||
case AttributeKind::gs:
|
||||
attr->set_type(onnx::aGRAPHS);
|
||||
for(auto & v : n->gs(name)) {
|
||||
auto g = attr->add_graphs();
|
||||
encodeGraph(g, v, {});
|
||||
@ -191,6 +202,9 @@ void encodeGraph(onnx::GraphProto * p_g, const std::shared_ptr<Graph> & g, const
|
||||
continue;
|
||||
}
|
||||
auto p_n = p_g->add_node();
|
||||
if (node->getSourceLocation()) {
|
||||
p_n->set_doc_string(node->getSourceLocation()->python_traceback);
|
||||
}
|
||||
for(auto input : node->inputs()) {
|
||||
p_n->add_input(node_name(input));
|
||||
}
|
||||
@ -256,11 +270,18 @@ void validateGraph(const std::shared_ptr<Graph>& graph) {
|
||||
}
|
||||
|
||||
std::string ExportGraph(const std::shared_ptr<Graph>& graph,
|
||||
const std::vector<at::Tensor> & initializers) {
|
||||
const std::vector<at::Tensor> & initializers,
|
||||
int64_t onnx_opset_version) {
|
||||
|
||||
validateGraph(graph);
|
||||
|
||||
onnx::ModelProto model_proto;
|
||||
model_proto.set_producer_name("pytorch");
|
||||
model_proto.set_producer_version("0.3");
|
||||
auto* imp = model_proto.add_opset_import();
|
||||
// This is the version of ONNX operator set we are targeting
|
||||
imp->set_version(onnx_opset_version);
|
||||
|
||||
// Set up nanopb callbacks and compute the amount of space needed to store
|
||||
// the resulting protobuf
|
||||
encodeModel(&model_proto, graph, initializers);
|
||||
|
@ -5,6 +5,7 @@
|
||||
namespace torch { namespace jit {
|
||||
|
||||
std::string ExportGraph(const std::shared_ptr<Graph>& graph,
|
||||
const std::vector<at::Tensor> & initializers);
|
||||
const std::vector<at::Tensor> & initializers,
|
||||
int64_t onnx_opset_version);
|
||||
|
||||
}}
|
||||
|
@ -261,6 +261,14 @@ CompiledFusionFunction::CompiledFusionFunction(const std::string & name, Annotat
|
||||
, output_desc(agraph.output_desc) {
|
||||
JIT_CUDA_CHECK(cudaGetDevice(&device));
|
||||
JIT_CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
||||
if ((prop.major >= 6 && CUDA_VERSION < 8000) ||
|
||||
(prop.major >= 7 && CUDA_VERSION < 9000)) {
|
||||
std::stringstream err_string;
|
||||
err_string << "PyTorch compiled with insufficient CUDA version: "
|
||||
<< CUDA_VERSION << " for the current GPU device " << prop.name
|
||||
<< " with device capability " << prop.major << "." << prop.minor;
|
||||
throw std::runtime_error(err_string.str());
|
||||
}
|
||||
|
||||
std::stringstream cu;
|
||||
concat_desc = codegen::emitCompilationUnit(cu, name, agraph);
|
||||
|
@ -43,9 +43,8 @@ _(split) \
|
||||
_(Offset) \
|
||||
_(value) \
|
||||
_(Subgraph) \
|
||||
_(SpatialBN) \
|
||||
_(BatchNormalization) \
|
||||
_(Conv) \
|
||||
_(Caffe2ConvTranspose) \
|
||||
_(ConvTranspose) \
|
||||
_(is_test) \
|
||||
_(epsilon) \
|
||||
@ -75,6 +74,8 @@ _(shape) \
|
||||
_(axes) \
|
||||
_(group) \
|
||||
_(inplace) \
|
||||
_(transA) \
|
||||
_(transB) \
|
||||
_(other)
|
||||
|
||||
enum BuiltinSymbol {
|
||||
|
@ -41,6 +41,7 @@ void printNodeRef(std::ostream & out, const Node * n) {
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream & out, const std::vector<T> & nodes) {
|
||||
out << at::ArrayRef<T>{nodes};
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@ -262,7 +263,15 @@ std::ostream& printNode(std::ostream & out, const Node * n, std::vector<const No
|
||||
} else {
|
||||
emitUses(out,n);
|
||||
}
|
||||
out << "];\n";
|
||||
out << "]";
|
||||
std::string scopeName = n->scopeName();
|
||||
if (scopeName.empty()) {
|
||||
out << ";\n";
|
||||
}
|
||||
else {
|
||||
out << ", ";
|
||||
out << "scope: " << scopeName << ";\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
@ -60,6 +60,73 @@ static inline bool operator==(const Use & a, const Use & b) {
|
||||
// Graph holds a list of parameters.
|
||||
struct Param;
|
||||
|
||||
// SourceLocation represents source code-level debug information for a node.
|
||||
// It contains a Python stack trace that represents the provenance of a given
|
||||
// node in the trace.
|
||||
struct SourceLocation {
|
||||
SourceLocation(std::string python_traceback)
|
||||
: python_traceback(std::move(python_traceback)) {}
|
||||
std::string python_traceback;
|
||||
};
|
||||
|
||||
// Scope is a node of a trie that represents the tree of nested scopes.
|
||||
// Individual scopes are pushed and popped from Graph, which holds a
|
||||
// pointer to the current scope. Each Node in Graph holds a pointer
|
||||
// to the scope that was current when the node was created.
|
||||
// The trie never needs to shrink, it only grows until it is disposed
|
||||
// of when Graph is deallocated. Hence, pointers to scopes held by nodes
|
||||
// will always be valid as long as Graph is alive.
|
||||
struct Scope {
|
||||
private:
|
||||
Scope* parent_;
|
||||
Symbol name_;
|
||||
std::vector<std::unique_ptr<Scope> > children_;
|
||||
public:
|
||||
Scope() {
|
||||
name_ = stringToSymbol("");
|
||||
parent_ = NULL;
|
||||
}
|
||||
Scope(Scope* parent, Symbol name) {
|
||||
name_ = name;
|
||||
parent_ = parent;
|
||||
}
|
||||
Scope* push(Symbol name) {
|
||||
children_.push_back(std::unique_ptr<Scope>(new Scope(this, name)));
|
||||
return children_.back().get();
|
||||
}
|
||||
Scope* parent() {
|
||||
if (parent_ == NULL) {
|
||||
throw std::runtime_error("Cannot get parent from Scope with no parent");
|
||||
}
|
||||
return parent_;
|
||||
}
|
||||
bool isRoot() {
|
||||
return parent_ == NULL;
|
||||
}
|
||||
Scope* getRoot() {
|
||||
Scope* current = this;
|
||||
while (current->parent_) {
|
||||
current = current->parent_;
|
||||
}
|
||||
return current;
|
||||
}
|
||||
Symbol name() {
|
||||
return name_;
|
||||
}
|
||||
std::string namesFromRoot(const std::string& separator="/") {
|
||||
std::string out = std::string(symbolToString(this->name_));
|
||||
if (this->isRoot()) {
|
||||
return out;
|
||||
}
|
||||
Scope* parent = this->parent_;
|
||||
while (!parent->isRoot()) {
|
||||
out = std::string(symbolToString(parent->name_)) + separator + out;
|
||||
parent = parent->parent_;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// the list types are intentionally simple, but we type-def
|
||||
// them here so if we need to change them, refactoring will be easier
|
||||
using node_list = std::vector<Node*>;
|
||||
@ -113,6 +180,8 @@ private:
|
||||
size_t unique_ = 0; // unique id
|
||||
size_t stage_ = 0; // 0-forward, 1-backward, 2-double-backward,...
|
||||
std::string debug_name_;
|
||||
std::shared_ptr<SourceLocation> source_location_;
|
||||
Scope* scope_;
|
||||
protected:
|
||||
TypePtr type_;
|
||||
Node(Graph * graph_, NodeKind kind_); //defined after graph
|
||||
@ -150,6 +219,13 @@ public:
|
||||
const std::string & debugName() const {
|
||||
return debug_name_;
|
||||
}
|
||||
Node* setSourceLocation(std::shared_ptr<SourceLocation> sl) {
|
||||
source_location_ = sl;
|
||||
return this;
|
||||
}
|
||||
std::shared_ptr<SourceLocation> getSourceLocation() const {
|
||||
return source_location_;
|
||||
}
|
||||
Graph * owningGraph() {
|
||||
return graph_;
|
||||
}
|
||||
@ -171,6 +247,18 @@ public:
|
||||
size_t stage() const {
|
||||
return stage_;
|
||||
}
|
||||
Scope* scope() {
|
||||
return scope_;
|
||||
}
|
||||
void setScope(Scope* scope) {
|
||||
scope_ = scope;
|
||||
}
|
||||
std::string scopeName() const {
|
||||
if (scope_ == NULL) {
|
||||
return "";
|
||||
}
|
||||
return scope_->namesFromRoot();
|
||||
}
|
||||
// NB: This returns an ArrayRef; that means that it will
|
||||
// get invalidated if you resize inputs (e.g., using addInput)
|
||||
// We can't return a std::vector<Node*>& because there's no
|
||||
@ -511,11 +599,7 @@ protected:
|
||||
//
|
||||
// NB: This does NOT clone stages. You're expected to set the stage correctly
|
||||
// if you are going to preserve it.
|
||||
virtual void cloneFrom(Node * s) {
|
||||
if (s->hasType()) setType(s->type());
|
||||
setDebugName(s->debugName());
|
||||
copyAttributes(*s);
|
||||
}
|
||||
virtual void cloneFrom(Node * s);
|
||||
};
|
||||
|
||||
struct Graph {
|
||||
@ -533,6 +617,9 @@ private:
|
||||
|
||||
size_t new_node_stage_;
|
||||
|
||||
std::shared_ptr<Scope> scope_root_;
|
||||
Scope * current_scope_;
|
||||
|
||||
// holds outputs in a way that can be reflected
|
||||
// as a Use object
|
||||
// also used as the beginning/end of the circular node list to avoid
|
||||
@ -540,11 +627,17 @@ private:
|
||||
Node * const output_;
|
||||
|
||||
public:
|
||||
Graph()
|
||||
|
||||
Graph(std::shared_ptr<Scope> scope_root)
|
||||
: next_unique_(0)
|
||||
, new_node_stage_(0)
|
||||
, scope_root_(scope_root)
|
||||
, current_scope_(scope_root_.get())
|
||||
, output_(initOutput(create(kReturn))) {}
|
||||
|
||||
Graph()
|
||||
: Graph( std::make_shared<Scope>()) {}
|
||||
|
||||
at::ArrayRef<Node*> inputs() {
|
||||
return inputs_;
|
||||
}
|
||||
@ -600,6 +693,29 @@ public:
|
||||
Node * addInput() {
|
||||
return addInput(create(kParam));
|
||||
}
|
||||
void push_scope(const std::string& scope_name) {
|
||||
current_scope_ = current_scope_->push(stringToSymbol(scope_name));
|
||||
}
|
||||
void pop_scope() {
|
||||
current_scope_ = current_scope_->parent();
|
||||
}
|
||||
Scope * current_scope() {
|
||||
return current_scope_;
|
||||
}
|
||||
void set_current_scope(Scope* scope) {
|
||||
if (scope->getRoot() != scope_root_.get()) {
|
||||
throw std::runtime_error("trying to set a scope as current that does not belong to the Graph's scope trie");
|
||||
}
|
||||
current_scope_ = scope;
|
||||
}
|
||||
ResourceGuard set_current_scope_temporary(Scope* scope) {
|
||||
auto prev_scope = current_scope_;
|
||||
this->set_current_scope(scope);
|
||||
return ResourceGuard([prev_scope, this]() { this->current_scope_ = prev_scope; });
|
||||
}
|
||||
std::shared_ptr<Scope> scope_root() {
|
||||
return scope_root_;
|
||||
}
|
||||
|
||||
Node * addInput(Node* n) {
|
||||
JIT_ASSERT(n->kind() == kParam);
|
||||
@ -676,7 +792,8 @@ public:
|
||||
}
|
||||
Node * createFusionGroup() {
|
||||
auto n = create(kFusionGroup);
|
||||
n->g_(kSubgraph,std::make_shared<Graph>());
|
||||
auto subgraph = std::make_shared<Graph>(scope_root_);
|
||||
n->g_(kSubgraph, subgraph);
|
||||
return n;
|
||||
}
|
||||
Node * createPythonOp(THPObjectPtr&& pyobj, const std::string & cconv, bool is_legacy, pyobj_list&& scalar_args);
|
||||
@ -746,9 +863,10 @@ inline Node::Node(Graph * graph_, NodeKind kind_) :
|
||||
graph_(graph_),
|
||||
unique_(graph_->next_unique_++),
|
||||
stage_(graph_->new_node_stage_),
|
||||
scope_(graph_->current_scope_) ,
|
||||
type_(getInitialType(kind_)) {
|
||||
graph_->all_nodes.emplace(this);
|
||||
}
|
||||
graph_->all_nodes.emplace(this);
|
||||
}
|
||||
|
||||
inline void Node::destroy() {
|
||||
JIT_ASSERT(inGraphList());
|
||||
@ -770,6 +888,16 @@ inline Node* Node::makeMultireturn() {
|
||||
return select;
|
||||
}
|
||||
|
||||
inline void Node::cloneFrom(Node * s) {
|
||||
if (s->hasType()) setType(s->type());
|
||||
setDebugName(s->debugName());
|
||||
setSourceLocation(s->getSourceLocation());
|
||||
if (s->owningGraph()->scope_root_ == owningGraph()->scope_root_) {
|
||||
scope_ = s->scope_;
|
||||
}
|
||||
copyAttributes(*s);
|
||||
}
|
||||
|
||||
// Helper macros for constructing switch statements over Node types
|
||||
// instead of heavy-weight visitors
|
||||
// read 'between' these defines to see how they turn into a big switch
|
||||
|
@ -33,7 +33,7 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) {
|
||||
throw std::logic_error("ToONNX: tracing state is expired");
|
||||
}
|
||||
|
||||
auto new_graph = std::make_shared<Graph>();
|
||||
auto new_graph = std::make_shared<Graph>(state->graph->scope_root());
|
||||
std::unordered_map<void*, Node*> new_buffer_map;
|
||||
|
||||
torch::autograd::SymbolicContext ctx;
|
||||
@ -86,6 +86,9 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) {
|
||||
if (!outputs[i]->hasType()) {
|
||||
outputs[i]->setType(old->typeOption());
|
||||
}
|
||||
// Copy over source location information to all nodes created by
|
||||
// the symbolic
|
||||
outputs[i]->setSourceLocation(node->getSourceLocation());
|
||||
env[old] = outputs[i];
|
||||
} else {
|
||||
// Null output means that the ONNX op doesn't have outputs corresponding
|
||||
@ -121,6 +124,31 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) {
|
||||
}
|
||||
};
|
||||
|
||||
// Cast output of symbolic() python implementation
|
||||
auto processSymbolicOutput = [&](const std::string& op_name, Node* n, const py::object& raw_output) {
|
||||
if (raw_output.ptr() == Py_None) {
|
||||
cloneNode(n);
|
||||
return;
|
||||
}
|
||||
// Cast the outputs back to C++ and put them in the new graph
|
||||
std::vector<Node*> outputs;
|
||||
try {
|
||||
if (py::isinstance<Node>(raw_output)) {
|
||||
outputs = node_list{py::cast<Node*>(raw_output)};
|
||||
} else {
|
||||
outputs = py::cast<std::vector<Node*>>(raw_output);
|
||||
}
|
||||
} catch (const std::exception& ex) {
|
||||
std::ostringstream ss;
|
||||
ss << "Error casting results of symbolic for " << op_name
|
||||
<< ": expected to return list of op nodes, instead received type ''"
|
||||
<< py::str(raw_output.get_type()) << "': " << py::str(raw_output);
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
setOutputs(op_name, n, outputs);
|
||||
};
|
||||
|
||||
auto callPySymbolicFunction = [&](Node* n) {
|
||||
// The idea is delegate as much of the actual argument massaging to
|
||||
// Python as possible
|
||||
@ -131,21 +159,11 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) {
|
||||
py_inputs[input_nr++] = py::cast(envFn(input));
|
||||
}
|
||||
|
||||
auto scope_guard = ctx.graph->set_current_scope_temporary(n->scope());
|
||||
|
||||
py::object raw_output = onnx.attr("_run_symbolic_function")(ctx.graph, n, py_inputs);
|
||||
|
||||
if (raw_output.ptr() == Py_None) {
|
||||
cloneNode(n);
|
||||
} else {
|
||||
// Cast the outputs back to C++ and put them in the new graph
|
||||
node_list outputs;
|
||||
if (py::isinstance<Node>(raw_output)) {
|
||||
outputs = node_list{py::cast<Node*>(raw_output)};
|
||||
} else {
|
||||
outputs = py::cast<std::vector<Node*>>(raw_output);
|
||||
}
|
||||
|
||||
setOutputs(symbolToString(n->kind()), n, outputs);
|
||||
}
|
||||
processSymbolicOutput(symbolToString(n->kind()), n, raw_output);
|
||||
};
|
||||
|
||||
auto callPySymbolicMethod = [&](PythonOp* op) {
|
||||
@ -179,25 +197,14 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) {
|
||||
py_symbolic_args[input_nr++] = obj;
|
||||
}
|
||||
|
||||
auto scope_guard = ctx.graph->set_current_scope_temporary(op->scope());
|
||||
|
||||
// Call the symbolic function
|
||||
// Use a little trampoline function so we can give good error messages
|
||||
// upon argument mismatch
|
||||
py::object raw_output = onnx.attr("_run_symbolic_method")(op->name(), pyobj.attr("symbolic"), py_symbolic_args);
|
||||
|
||||
if (raw_output.ptr() == Py_None) {
|
||||
cloneNode(op);
|
||||
return;
|
||||
}
|
||||
|
||||
// Cast the outputs back to C++ and put them in the new graph
|
||||
std::vector<Node*> outputs;
|
||||
if (py::isinstance<Node>(raw_output)) {
|
||||
outputs = node_list{py::cast<Node*>(raw_output)};
|
||||
} else {
|
||||
outputs = py::cast<std::vector<Node*>>(raw_output);
|
||||
}
|
||||
|
||||
setOutputs(op->name(), op, outputs);
|
||||
processSymbolicOutput(op->name(), op, raw_output);
|
||||
};
|
||||
|
||||
// Finally, visit all nodes in the graph
|
||||
@ -215,6 +222,7 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) {
|
||||
// Selects are translated by multi-return nodes.
|
||||
JIT_ASSERT(env.count(value) > 0);
|
||||
IR_ELSEIFM(CppOp)
|
||||
auto scope_guard = new_graph->set_current_scope_temporary(node->scope());
|
||||
if (auto fn = std::dynamic_pointer_cast<autograd::HasSymbolic>(value->fn)) {
|
||||
auto outputs = fn->symbolic(&ctx, fmap(node->inputs(), envFn));
|
||||
setOutputs(value->name(), node, outputs);
|
||||
|
@ -15,24 +15,62 @@ std::unordered_set<NodeKind> broadcasting = {
|
||||
kGemm,
|
||||
};
|
||||
|
||||
bool isNopTranspose(const std::vector<int64_t> & perm) {
|
||||
for (size_t i = 0; i < perm.size(); i++)
|
||||
if (perm[i] != i)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// returns a vector `ret` such that transposing by `ret` is equivalent
|
||||
// to transposing by `t1` and then by `t2`
|
||||
std::vector<int64_t> composeTransposes(const std::vector<int64_t> & t1,
|
||||
const std::vector<int64_t> & t2) {
|
||||
JIT_ASSERT(t1.size() == t2.size());
|
||||
std::vector<int64_t> ret;
|
||||
for (size_t i = 0; i < t1.size(); i++) {
|
||||
JIT_ASSERT( t1[i] < t2.size());
|
||||
JIT_ASSERT(t2[t1[i]] < t2.size());
|
||||
ret.push_back(t2[t1[i]]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool isBroadcasting(Node *node) {
|
||||
return broadcasting.count(node->kind());
|
||||
}
|
||||
|
||||
// When iterating over the dimension sizes, starting at the trailing dimension,
|
||||
// the dimension sizes must either be equal, or one of them does not exist.
|
||||
// First iterate over the 'from' tensor sizes. Ignore all leading and trailing
|
||||
// dimensions that are simply one, since they can be trivially broadcasted.
|
||||
// When iterating over the dimension sizes (with reduced 'from' tensor),
|
||||
// starting at the trailing dimension, the dimension sizes must either be equal,
|
||||
// or one of them does not exist.
|
||||
//
|
||||
// equivalently:
|
||||
//
|
||||
// Test that 'from' is a suffix of 'to'.
|
||||
// Note that this is NOT equivalent to numpy broadcasting semantics, and do
|
||||
// not represent that generalized broadcasting that Pytorch implements in
|
||||
// general. Rather, this is Caffe2-style broadcasting.
|
||||
bool fusibleExpandTo(at::IntList from, at::IntList to) {
|
||||
auto f = from.rbegin();
|
||||
auto t = to.rbegin();
|
||||
for (; f != from.rend() && t != to.rend(); f++, t++) {
|
||||
// TODO: if 1->n expansion is supported, adjust this conditional.
|
||||
if (*f != *t) return false;
|
||||
if (from.size() > to.size()) {
|
||||
return false;
|
||||
}
|
||||
return f == from.rend();
|
||||
ssize_t from_dim_start = 0, from_dim_end = from.size() - 1;
|
||||
while (from_dim_start < from.size() && from[from_dim_start] == 1) {
|
||||
from_dim_start++;
|
||||
}
|
||||
while (from_dim_end > from_dim_start && from[from_dim_end] == 1) {
|
||||
from_dim_end--;
|
||||
}
|
||||
|
||||
ssize_t f = from_dim_end;
|
||||
ssize_t t = to.size() - 1;
|
||||
for (; f >= from_dim_start && t >= 0; --f, --t) {
|
||||
if (from[f] != to[t]) return false;
|
||||
}
|
||||
|
||||
// In the case that the 'to' tensor has leading ones in the same place that
|
||||
// the 'from' tensor does, f will be less than from_dim_start rather than
|
||||
// strictly equal. E.x.: to := [5, 1, 768] and from := [1, 1, 768]
|
||||
return f <= from_dim_start;
|
||||
}
|
||||
|
||||
void fuseBroadcast(std::shared_ptr<Graph>& graph) {
|
||||
@ -76,6 +114,58 @@ void fuseBroadcast(std::shared_ptr<Graph>& graph) {
|
||||
}
|
||||
}
|
||||
|
||||
void fuseConsecutiveTransposes(std::shared_ptr<Graph>& graph) {
|
||||
for (auto it = graph->begin(); it != graph->end(); ++it) {
|
||||
auto* n = *it;
|
||||
|
||||
if (n->kind() == kTranspose && n->input()->kind() == kTranspose) {
|
||||
auto origInput = n->input();
|
||||
n->is_(kperm, composeTransposes(origInput->is(kperm), n->is(kperm)));
|
||||
n->replaceInput(0, origInput->input());
|
||||
if (origInput->uses().size() == 0) {
|
||||
origInput->destroy();
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void eliminateNopTranspose(std::shared_ptr<Graph>& graph) {
|
||||
for (auto it = graph->begin(); it != graph->end(); ++it) {
|
||||
auto* n = *it;
|
||||
|
||||
if (n->kind() == kTranspose) {
|
||||
if (isNopTranspose(n->is(kperm))) {
|
||||
n->replaceAllUsesWith(n->input());
|
||||
it.destroyCurrent();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fuseTransposeIntoGemm(std::shared_ptr<Graph>& graph) {
|
||||
static const std::vector<int64_t> simpleTransPerm({1,0});
|
||||
|
||||
for (auto it = graph->begin(); it != graph->end(); ++it) {
|
||||
auto* n = *it;
|
||||
|
||||
if (n->kind() == kGemm) {
|
||||
for (size_t i : {0,1}) {
|
||||
auto inp = n->inputs()[i];
|
||||
auto trans = i == 0 ? ktransA : ktransB;
|
||||
if (inp->kind() == kTranspose && inp->is(kperm) == simpleTransPerm) {
|
||||
n->replaceInput(i, inp->input());
|
||||
n->i_(trans, n->hasAttribute(trans) ? !n->i(trans) : 1);
|
||||
if (inp->uses().size() == 0) {
|
||||
inp->destroy();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This optimization does ONNX-specific peephole optimizations.
|
||||
//
|
||||
// At the moment, here are the optimizations it does:
|
||||
@ -83,6 +173,9 @@ void fuseBroadcast(std::shared_ptr<Graph>& graph) {
|
||||
// easier for non-strided backends to more efficiently do broadcasts if this is
|
||||
// local information. This optimization is not useful for PyTorch as 'expand'
|
||||
// is free.
|
||||
// - Fusing of consecutive transposes
|
||||
// - Elimiation of NOP transposes
|
||||
// - Fusing of transposes into Gemm
|
||||
//
|
||||
// Before you write an optimization here, ask yourself, "Could I do this
|
||||
// optimization on ATen operators"? If so, you should seriously consider
|
||||
@ -94,6 +187,9 @@ void PeepholeOptimizeONNX(std::shared_ptr<Graph>& graph) {
|
||||
// TODO: make it easier not to do O(k) iterations over the graph, where
|
||||
// k is the number of distinct peephole optimizations
|
||||
fuseBroadcast(graph);
|
||||
fuseConsecutiveTransposes(graph);
|
||||
eliminateNopTranspose(graph);
|
||||
fuseTransposeIntoGemm(graph);
|
||||
}
|
||||
|
||||
}}
|
||||
|
@ -13,6 +13,7 @@ void PeepholeOptimize(std::shared_ptr<Graph>& graph) {
|
||||
for (auto it = graph->begin(); it != graph->end(); ++it) {
|
||||
auto* n = *it;
|
||||
|
||||
// eliminate redundant expand
|
||||
if (n->kind() == kexpand) {
|
||||
if (n->is(ksize) == n->input()->type()->expect<TensorType>()->sizes()) {
|
||||
n->replaceAllUsesWith(n->input());
|
||||
|
@ -105,6 +105,7 @@ void initPythonIRBindings(PyObject * module_) {
|
||||
node->setType(other->typeOption());
|
||||
return node;
|
||||
})
|
||||
.NS(scopeName)
|
||||
#define AS(name) def(#name,&Attributes<Node> :: name)
|
||||
// methods from Attributes
|
||||
.AS(copyAttributes)
|
||||
|
@ -19,7 +19,7 @@ namespace torch { namespace jit {
|
||||
|
||||
void initPythonTracerBindings(PyObject* module_) {
|
||||
auto m = py::handle(module_).cast<py::module>();
|
||||
py::class_<TracingState,std::shared_ptr<TracingState>>(m, "TracingState")
|
||||
py::class_<TracingState,std::shared_ptr<TracingState>>(m, "TracingState", py::dynamic_attr())
|
||||
// NB: no constructor; you have to get it from C++ code
|
||||
.def("__repr__", [](const TracingState& s) {
|
||||
std::ostringstream ss;
|
||||
@ -32,13 +32,17 @@ void initPythonTracerBindings(PyObject* module_) {
|
||||
ss << *s.graph;
|
||||
return ss.str();
|
||||
})
|
||||
.def("export", [](TracingState& s) {
|
||||
ASSERT_UNEXPIRED("export");
|
||||
return py::bytes(ExportGraph(s.graph, {}));
|
||||
.def("push_scope", [](TracingState& s, const std::string& scope_name) {
|
||||
ASSERT_UNEXPIRED("push_scope");
|
||||
s.push_scope(scope_name);
|
||||
})
|
||||
.def("export", [](TracingState& s, const std::vector<at::Tensor>& initializers) {
|
||||
.def("pop_scope", [](TracingState& s) {
|
||||
ASSERT_UNEXPIRED("pop_scope");
|
||||
s.pop_scope();
|
||||
})
|
||||
.def("export", [](TracingState& s, const std::vector<at::Tensor>& initializers, int64_t onnx_opset_version) {
|
||||
ASSERT_UNEXPIRED("export");
|
||||
return py::bytes(ExportGraph(s.graph, initializers));
|
||||
return py::bytes(ExportGraph(s.graph, initializers, onnx_opset_version));
|
||||
})
|
||||
.def("graph", [](TracingState& s) {
|
||||
return s.graph;
|
||||
@ -56,6 +60,12 @@ void initPythonTracerBindings(PyObject* module_) {
|
||||
m.def("_tracer_exit", [](variable_list var_outputs) {
|
||||
tracer::exit(var_outputs);
|
||||
});
|
||||
m.def("_get_tracing_state", [](const variable_list& vars) {
|
||||
return getTracingState(vars);
|
||||
});
|
||||
m.def("_is_tracing", [](const variable_list& vars) {
|
||||
return isTracing(vars);
|
||||
});
|
||||
}
|
||||
|
||||
}} // namespace torch::jit
|
||||
|
@ -4,6 +4,11 @@
|
||||
#include "torch/csrc/autograd/function.h"
|
||||
#include "torch/csrc/autograd/python_engine.h"
|
||||
#include "torch/csrc/autograd/functions/special.h"
|
||||
#include "torch/csrc/utils/auto_gil.h"
|
||||
#include "torch/csrc/utils/python_strings.h"
|
||||
|
||||
#include <frameobject.h>
|
||||
#include <patchlevel.h>
|
||||
|
||||
namespace torch { namespace jit { namespace tracer {
|
||||
|
||||
@ -89,6 +94,28 @@ void nontraceableBackwardSubgraph(const variable_list& inputs, const variable_li
|
||||
std::make_shared<autograd::Eval>()->replaceSubgraph(inputs, outputs);
|
||||
}
|
||||
|
||||
namespace {
|
||||
// Python interpreter retrieval routine adapted from
|
||||
// https://stackoverflow.com/a/8706144
|
||||
std::string getPythonInterpreterStackTrace() {
|
||||
std::stringstream stack_trace;
|
||||
AutoGIL gil;
|
||||
PyThreadState *tstate = PyThreadState_GET();
|
||||
if (NULL != tstate && NULL != tstate->frame) {
|
||||
PyFrameObject *frame = tstate->frame;
|
||||
|
||||
while (NULL != frame) {
|
||||
int line = PyCode_Addr2Line(frame->f_code, frame->f_lasti);
|
||||
std::string filename = THPUtils_unpackString(frame->f_code->co_filename);
|
||||
std::string funcname = THPUtils_unpackString(frame->f_code->co_name);
|
||||
stack_trace << filename << "(" << line << "): " << funcname << "\n";
|
||||
frame = frame->f_back;
|
||||
}
|
||||
}
|
||||
return stack_trace.str();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
Node* recordTrace(std::string op, // TODO: make this a Symbol
|
||||
at::ArrayRef<Variable> inputs,
|
||||
at::ArrayRef<Variable> outputs) {
|
||||
@ -99,6 +126,9 @@ Node* recordTrace(std::string op, // TODO: make this a Symbol
|
||||
auto state_lock = state->lock();
|
||||
|
||||
Node *n = graph->create(stringToSymbol(op));
|
||||
auto sl = std::make_shared<SourceLocation>(getPythonInterpreterStackTrace());
|
||||
n->setSourceLocation(sl);
|
||||
|
||||
for (Variable input : inputs) {
|
||||
n->addInput(getValueTrace(state, input));
|
||||
}
|
||||
|
@ -80,6 +80,14 @@ struct TracingState : public std::enable_shared_from_this<TracingState> {
|
||||
bool is_complete() const {
|
||||
return !is_expired() && graph->stage() == num_stages - 1;
|
||||
}
|
||||
|
||||
void push_scope(const std::string& scope_name) {
|
||||
graph->push_scope(scope_name);
|
||||
}
|
||||
|
||||
void pop_scope() {
|
||||
graph->pop_scope();
|
||||
}
|
||||
};
|
||||
|
||||
struct ValueTracingStateElem {
|
||||
|
@ -168,6 +168,21 @@ DEFINE_CONST(UINT64)
|
||||
DEFINE_CONST(COMPLEX64)
|
||||
DEFINE_CONST(COMPLEX128)
|
||||
#undef DEFINE_CONST
|
||||
|
||||
#define DEFINE_CONST(C) \
|
||||
const auto a##C = onnx_AttributeProto_AttributeType_##C;
|
||||
DEFINE_CONST(FLOAT)
|
||||
DEFINE_CONST(INT)
|
||||
DEFINE_CONST(STRING)
|
||||
DEFINE_CONST(TENSOR)
|
||||
DEFINE_CONST(GRAPH)
|
||||
DEFINE_CONST(FLOATS)
|
||||
DEFINE_CONST(INTS)
|
||||
DEFINE_CONST(STRINGS)
|
||||
DEFINE_CONST(TENSORS)
|
||||
DEFINE_CONST(GRAPHS)
|
||||
#undef DEFINE_CONST
|
||||
|
||||
// C++ wrappers which simulate the Google C++ Protobuf API
|
||||
//
|
||||
// These are NOT COMPLETE wrappers. If you find something is missing, add it!
|
||||
@ -270,6 +285,7 @@ public:
|
||||
proto.graphs = list<GraphProto, onnx_GraphProto_fields>(&graphs);
|
||||
}
|
||||
void set_name(const std::string& s) { proto.name = string(&name, s); }
|
||||
void set_type(onnx_AttributeProto_AttributeType t) { proto.has_type = true; proto.type = t; }
|
||||
void set_f(float f) { proto.has_f = true; proto.f = f; }
|
||||
void set_i(int64_t i) { proto.has_i = true; proto.i = i; }
|
||||
void set_s(std::string s_) { proto.s = string(&s, s_); }
|
||||
@ -290,6 +306,7 @@ public:
|
||||
class NodeProto : public MicroProto<onnx_NodeProto> {
|
||||
private:
|
||||
std::string op_type;
|
||||
std::string doc_string;
|
||||
unique_vector<std::string> inputs;
|
||||
unique_vector<std::string> outputs;
|
||||
unique_vector<AttributeProto> attributes;
|
||||
@ -309,6 +326,7 @@ public:
|
||||
return ptr;
|
||||
}
|
||||
void set_op_type(const std::string& s) { proto.op_type= string(&op_type, s); }
|
||||
void set_doc_string(const std::string& s) { proto.doc_string = string(&doc_string, s); }
|
||||
};
|
||||
|
||||
class GraphProto : public MicroProto<onnx_GraphProto> {
|
||||
@ -349,6 +367,15 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class OperatorSetIdProto : public MicroProto<onnx_OperatorSetIdProto> {
|
||||
private:
|
||||
std::string domain;
|
||||
public:
|
||||
OperatorSetIdProto() : MicroProto(onnx_OperatorSetIdProto_init_default) {}
|
||||
void set_domain(const std::string& s) { proto.domain = string(&domain, s); }
|
||||
void set_version(int64_t v) { proto.has_version = true; proto.version = v; }
|
||||
};
|
||||
|
||||
class ModelProto : public MicroProto<onnx_ModelProto> {
|
||||
private:
|
||||
std::string producer_name;
|
||||
@ -356,21 +383,26 @@ private:
|
||||
std::string domain;
|
||||
std::string doc_string;
|
||||
std::unique_ptr<GraphProto> graph;
|
||||
unique_vector<OperatorSetIdProto> opset_import;
|
||||
public:
|
||||
ModelProto() : MicroProto(onnx_ModelProto_init_default) {
|
||||
proto.has_ir_version = true;
|
||||
proto.ir_version = onnx_Version_IR_VERSION;
|
||||
proto.producer_name = string(&producer_name, "pytorch");
|
||||
// TODO: stop hard-coding this
|
||||
proto.producer_version = string(&producer_version, "0.2");
|
||||
proto.domain = string(&domain, "com.facebook");
|
||||
proto.opset_import = list<OperatorSetIdProto, onnx_OperatorSetIdProto_fields>(&opset_import);
|
||||
}
|
||||
void set_model_version(int64_t i) { proto.has_model_version = true; proto.model_version = i; }
|
||||
void set_doc_string(const std::string& s) { proto.doc_string = string(&doc_string, s); }
|
||||
void set_producer_name(const std::string& s) { proto.producer_name = string(&producer_name, s); }
|
||||
void set_producer_version(const std::string& s) { proto.producer_version = string(&producer_version, s); }
|
||||
GraphProto* mutable_graph() {
|
||||
proto.graph = msg<GraphProto, onnx_GraphProto_fields>(&graph);
|
||||
return graph.get();
|
||||
}
|
||||
OperatorSetIdProto* add_opset_import() {
|
||||
auto ptr = new OperatorSetIdProto();
|
||||
opset_import.emplace_back(ptr);
|
||||
return ptr;
|
||||
}
|
||||
};
|
||||
|
||||
}} // namespace torch::onnx
|
||||
|
@ -10,7 +10,7 @@
|
||||
|
||||
|
||||
|
||||
const pb_field_t onnx_AttributeProto_fields[12] = {
|
||||
const pb_field_t onnx_AttributeProto_fields[13] = {
|
||||
PB_FIELD( 1, STRING , OPTIONAL, CALLBACK, FIRST, onnx_AttributeProto, name, name, 0),
|
||||
PB_FIELD( 2, FLOAT , OPTIONAL, STATIC , OTHER, onnx_AttributeProto, f, name, 0),
|
||||
PB_FIELD( 3, INT64 , OPTIONAL, STATIC , OTHER, onnx_AttributeProto, i, f, 0),
|
||||
@ -22,6 +22,7 @@ const pb_field_t onnx_AttributeProto_fields[12] = {
|
||||
PB_FIELD( 9, BYTES , REPEATED, CALLBACK, OTHER, onnx_AttributeProto, strings, ints, 0),
|
||||
PB_FIELD( 10, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_AttributeProto, tensors, strings, &onnx_TensorProto_fields),
|
||||
PB_FIELD( 11, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_AttributeProto, graphs, tensors, &onnx_GraphProto_fields),
|
||||
PB_FIELD( 20, UENUM , OPTIONAL, STATIC , OTHER, onnx_AttributeProto, type, graphs, 0),
|
||||
PB_LAST_FIELD
|
||||
};
|
||||
|
||||
@ -31,17 +32,18 @@ const pb_field_t onnx_ValueInfoProto_fields[3] = {
|
||||
PB_LAST_FIELD
|
||||
};
|
||||
|
||||
const pb_field_t onnx_NodeProto_fields[7] = {
|
||||
const pb_field_t onnx_NodeProto_fields[8] = {
|
||||
PB_FIELD( 1, STRING , REPEATED, CALLBACK, FIRST, onnx_NodeProto, input, input, 0),
|
||||
PB_FIELD( 2, STRING , REPEATED, CALLBACK, OTHER, onnx_NodeProto, output, input, 0),
|
||||
PB_FIELD( 3, STRING , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, name, output, 0),
|
||||
PB_FIELD( 4, STRING , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, op_type, name, 0),
|
||||
PB_FIELD( 5, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_NodeProto, attribute, op_type, &onnx_AttributeProto_fields),
|
||||
PB_FIELD( 6, STRING , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, doc_string, attribute, 0),
|
||||
PB_FIELD( 7, STRING , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, domain, doc_string, 0),
|
||||
PB_LAST_FIELD
|
||||
};
|
||||
|
||||
const pb_field_t onnx_ModelProto_fields[8] = {
|
||||
const pb_field_t onnx_ModelProto_fields[9] = {
|
||||
PB_FIELD( 1, INT64 , OPTIONAL, STATIC , FIRST, onnx_ModelProto, ir_version, ir_version, 0),
|
||||
PB_FIELD( 2, STRING , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, producer_name, ir_version, 0),
|
||||
PB_FIELD( 3, STRING , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, producer_version, producer_name, 0),
|
||||
@ -49,6 +51,7 @@ const pb_field_t onnx_ModelProto_fields[8] = {
|
||||
PB_FIELD( 5, INT64 , OPTIONAL, STATIC , OTHER, onnx_ModelProto, model_version, domain, 0),
|
||||
PB_FIELD( 6, STRING , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, doc_string, model_version, 0),
|
||||
PB_FIELD( 7, MESSAGE , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, graph, doc_string, &onnx_GraphProto_fields),
|
||||
PB_FIELD( 8, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_ModelProto, opset_import, graph, &onnx_OperatorSetIdProto_fields),
|
||||
PB_LAST_FIELD
|
||||
};
|
||||
|
||||
@ -120,6 +123,13 @@ const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3] = {
|
||||
PB_LAST_FIELD
|
||||
};
|
||||
|
||||
const pb_field_t onnx_OperatorSetIdProto_fields[3] = {
|
||||
PB_FIELD( 1, STRING , OPTIONAL, CALLBACK, FIRST, onnx_OperatorSetIdProto, domain, domain, 0),
|
||||
PB_FIELD( 2, INT64 , OPTIONAL, STATIC , OTHER, onnx_OperatorSetIdProto, version, domain, 0),
|
||||
PB_LAST_FIELD
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -132,7 +142,7 @@ const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3] = {
|
||||
* numbers or field sizes that are larger than what can fit in 8 or 16 bit
|
||||
* field descriptors.
|
||||
*/
|
||||
PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 65536 && pb_membersize(onnx_SparseTensorProto, indices) < 65536 && pb_membersize(onnx_SparseTensorProto, values) < 65536 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 65536 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 65536), YOU_MUST_DEFINE_PB_FIELD_32BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto)
|
||||
PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 65536 && pb_membersize(onnx_SparseTensorProto, indices) < 65536 && pb_membersize(onnx_SparseTensorProto, values) < 65536 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 65536 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 65536), YOU_MUST_DEFINE_PB_FIELD_32BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto_onnx_OperatorSetIdProto)
|
||||
#endif
|
||||
|
||||
#if !defined(PB_FIELD_16BIT) && !defined(PB_FIELD_32BIT)
|
||||
@ -143,7 +153,7 @@ PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 65536 && pb_members
|
||||
* numbers or field sizes that are larger than what can fit in the default
|
||||
* 8 bit descriptors.
|
||||
*/
|
||||
PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 256 && pb_membersize(onnx_SparseTensorProto, indices) < 256 && pb_membersize(onnx_SparseTensorProto, values) < 256 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 256 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 256), YOU_MUST_DEFINE_PB_FIELD_16BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto)
|
||||
PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 256 && pb_membersize(onnx_SparseTensorProto, indices) < 256 && pb_membersize(onnx_SparseTensorProto, values) < 256 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 256 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 256), YOU_MUST_DEFINE_PB_FIELD_16BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto_onnx_OperatorSetIdProto)
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -16,12 +16,31 @@ extern "C" {
|
||||
|
||||
/* Enum definitions */
|
||||
typedef enum _onnx_Version {
|
||||
onnx_Version_IR_VERSION = 1
|
||||
onnx_Version__START_VERSION = 0,
|
||||
onnx_Version_IR_VERSION_2017_10_10 = 1,
|
||||
onnx_Version_IR_VERSION = 2
|
||||
} onnx_Version;
|
||||
#define _onnx_Version_MIN onnx_Version_IR_VERSION
|
||||
#define _onnx_Version_MIN onnx_Version__START_VERSION
|
||||
#define _onnx_Version_MAX onnx_Version_IR_VERSION
|
||||
#define _onnx_Version_ARRAYSIZE ((onnx_Version)(onnx_Version_IR_VERSION+1))
|
||||
|
||||
typedef enum _onnx_AttributeProto_AttributeType {
|
||||
onnx_AttributeProto_AttributeType_UNDEFINED = 0,
|
||||
onnx_AttributeProto_AttributeType_FLOAT = 1,
|
||||
onnx_AttributeProto_AttributeType_INT = 2,
|
||||
onnx_AttributeProto_AttributeType_STRING = 3,
|
||||
onnx_AttributeProto_AttributeType_TENSOR = 4,
|
||||
onnx_AttributeProto_AttributeType_GRAPH = 5,
|
||||
onnx_AttributeProto_AttributeType_FLOATS = 6,
|
||||
onnx_AttributeProto_AttributeType_INTS = 7,
|
||||
onnx_AttributeProto_AttributeType_STRINGS = 8,
|
||||
onnx_AttributeProto_AttributeType_TENSORS = 9,
|
||||
onnx_AttributeProto_AttributeType_GRAPHS = 10
|
||||
} onnx_AttributeProto_AttributeType;
|
||||
#define _onnx_AttributeProto_AttributeType_MIN onnx_AttributeProto_AttributeType_UNDEFINED
|
||||
#define _onnx_AttributeProto_AttributeType_MAX onnx_AttributeProto_AttributeType_GRAPHS
|
||||
#define _onnx_AttributeProto_AttributeType_ARRAYSIZE ((onnx_AttributeProto_AttributeType)(onnx_AttributeProto_AttributeType_GRAPHS+1))
|
||||
|
||||
typedef enum _onnx_TensorProto_DataType {
|
||||
onnx_TensorProto_DataType_UNDEFINED = 0,
|
||||
onnx_TensorProto_DataType_FLOAT = 1,
|
||||
@ -63,6 +82,7 @@ typedef struct _onnx_NodeProto {
|
||||
pb_callback_t op_type;
|
||||
pb_callback_t attribute;
|
||||
pb_callback_t doc_string;
|
||||
pb_callback_t domain;
|
||||
/* @@protoc_insertion_point(struct:onnx_NodeProto) */
|
||||
} onnx_NodeProto;
|
||||
|
||||
@ -91,6 +111,8 @@ typedef struct _onnx_AttributeProto {
|
||||
pb_callback_t strings;
|
||||
pb_callback_t tensors;
|
||||
pb_callback_t graphs;
|
||||
bool has_type;
|
||||
onnx_AttributeProto_AttributeType type;
|
||||
/* @@protoc_insertion_point(struct:onnx_AttributeProto) */
|
||||
} onnx_AttributeProto;
|
||||
|
||||
@ -104,9 +126,17 @@ typedef struct _onnx_ModelProto {
|
||||
int64_t model_version;
|
||||
pb_callback_t doc_string;
|
||||
pb_callback_t graph;
|
||||
pb_callback_t opset_import;
|
||||
/* @@protoc_insertion_point(struct:onnx_ModelProto) */
|
||||
} onnx_ModelProto;
|
||||
|
||||
typedef struct _onnx_OperatorSetIdProto {
|
||||
pb_callback_t domain;
|
||||
bool has_version;
|
||||
int64_t version;
|
||||
/* @@protoc_insertion_point(struct:onnx_OperatorSetIdProto) */
|
||||
} onnx_OperatorSetIdProto;
|
||||
|
||||
typedef struct _onnx_TensorProto_Segment {
|
||||
bool has_begin;
|
||||
int64_t begin;
|
||||
@ -173,10 +203,10 @@ typedef struct _onnx_SparseTensorProto {
|
||||
/* Default values for struct fields */
|
||||
|
||||
/* Initializer values for message structs */
|
||||
#define onnx_AttributeProto_init_default {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_AttributeProto_init_default {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, (onnx_AttributeProto_AttributeType)0}
|
||||
#define onnx_ValueInfoProto_init_default {{{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_NodeProto_init_default {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_ModelProto_init_default {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_NodeProto_init_default {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_ModelProto_init_default {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_GraphProto_init_default {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_TensorProto_init_default {{{NULL}, NULL}, false, (onnx_TensorProto_DataType)0, false, onnx_TensorProto_Segment_init_default, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_TensorProto_Segment_init_default {false, 0, false, 0}
|
||||
@ -186,10 +216,11 @@ typedef struct _onnx_SparseTensorProto {
|
||||
#define onnx_TypeProto_TensorShapeProto_Dimension_init_default {false, 0, {{NULL}, NULL}}
|
||||
#define onnx_TypeProto_TensorTypeProto_init_default {false, (onnx_TensorProto_DataType)0, {{NULL}, NULL}}
|
||||
#define onnx_TypeProto_SparseTensorTypeProto_init_default {false, (onnx_TensorProto_DataType)0, false, onnx_TypeProto_TensorShapeProto_init_default}
|
||||
#define onnx_AttributeProto_init_zero {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_OperatorSetIdProto_init_default {{{NULL}, NULL}, false, 0}
|
||||
#define onnx_AttributeProto_init_zero {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, (onnx_AttributeProto_AttributeType)0}
|
||||
#define onnx_ValueInfoProto_init_zero {{{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_NodeProto_init_zero {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_ModelProto_init_zero {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_NodeProto_init_zero {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_ModelProto_init_zero {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_GraphProto_init_zero {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_TensorProto_init_zero {{{NULL}, NULL}, false, (onnx_TensorProto_DataType)0, false, onnx_TensorProto_Segment_init_zero, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}}
|
||||
#define onnx_TensorProto_Segment_init_zero {false, 0, false, 0}
|
||||
@ -199,6 +230,7 @@ typedef struct _onnx_SparseTensorProto {
|
||||
#define onnx_TypeProto_TensorShapeProto_Dimension_init_zero {false, 0, {{NULL}, NULL}}
|
||||
#define onnx_TypeProto_TensorTypeProto_init_zero {false, (onnx_TensorProto_DataType)0, {{NULL}, NULL}}
|
||||
#define onnx_TypeProto_SparseTensorTypeProto_init_zero {false, (onnx_TensorProto_DataType)0, false, onnx_TypeProto_TensorShapeProto_init_zero}
|
||||
#define onnx_OperatorSetIdProto_init_zero {{{NULL}, NULL}, false, 0}
|
||||
|
||||
/* Field tags (for use in manual encoding/decoding) */
|
||||
#define onnx_GraphProto_node_tag 1
|
||||
@ -212,12 +244,14 @@ typedef struct _onnx_SparseTensorProto {
|
||||
#define onnx_NodeProto_output_tag 2
|
||||
#define onnx_NodeProto_name_tag 3
|
||||
#define onnx_NodeProto_op_type_tag 4
|
||||
#define onnx_NodeProto_domain_tag 7
|
||||
#define onnx_NodeProto_attribute_tag 5
|
||||
#define onnx_NodeProto_doc_string_tag 6
|
||||
#define onnx_TypeProto_TensorShapeProto_dim_tag 1
|
||||
#define onnx_ValueInfoProto_name_tag 1
|
||||
#define onnx_ValueInfoProto_type_tag 2
|
||||
#define onnx_AttributeProto_name_tag 1
|
||||
#define onnx_AttributeProto_type_tag 20
|
||||
#define onnx_AttributeProto_f_tag 2
|
||||
#define onnx_AttributeProto_i_tag 3
|
||||
#define onnx_AttributeProto_s_tag 4
|
||||
@ -229,12 +263,15 @@ typedef struct _onnx_SparseTensorProto {
|
||||
#define onnx_AttributeProto_tensors_tag 10
|
||||
#define onnx_AttributeProto_graphs_tag 11
|
||||
#define onnx_ModelProto_ir_version_tag 1
|
||||
#define onnx_ModelProto_opset_import_tag 8
|
||||
#define onnx_ModelProto_producer_name_tag 2
|
||||
#define onnx_ModelProto_producer_version_tag 3
|
||||
#define onnx_ModelProto_domain_tag 4
|
||||
#define onnx_ModelProto_model_version_tag 5
|
||||
#define onnx_ModelProto_doc_string_tag 6
|
||||
#define onnx_ModelProto_graph_tag 7
|
||||
#define onnx_OperatorSetIdProto_domain_tag 1
|
||||
#define onnx_OperatorSetIdProto_version_tag 2
|
||||
#define onnx_TensorProto_Segment_begin_tag 1
|
||||
#define onnx_TensorProto_Segment_end_tag 2
|
||||
#define onnx_TypeProto_SparseTensorTypeProto_elem_type_tag 1
|
||||
@ -261,10 +298,10 @@ typedef struct _onnx_SparseTensorProto {
|
||||
#define onnx_SparseTensorProto_values_tag 3
|
||||
|
||||
/* Struct field encoding specification for nanopb */
|
||||
extern const pb_field_t onnx_AttributeProto_fields[12];
|
||||
extern const pb_field_t onnx_AttributeProto_fields[13];
|
||||
extern const pb_field_t onnx_ValueInfoProto_fields[3];
|
||||
extern const pb_field_t onnx_NodeProto_fields[7];
|
||||
extern const pb_field_t onnx_ModelProto_fields[8];
|
||||
extern const pb_field_t onnx_NodeProto_fields[8];
|
||||
extern const pb_field_t onnx_ModelProto_fields[9];
|
||||
extern const pb_field_t onnx_GraphProto_fields[8];
|
||||
extern const pb_field_t onnx_TensorProto_fields[12];
|
||||
extern const pb_field_t onnx_TensorProto_Segment_fields[3];
|
||||
@ -274,6 +311,7 @@ extern const pb_field_t onnx_TypeProto_TensorShapeProto_fields[2];
|
||||
extern const pb_field_t onnx_TypeProto_TensorShapeProto_Dimension_fields[3];
|
||||
extern const pb_field_t onnx_TypeProto_TensorTypeProto_fields[3];
|
||||
extern const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3];
|
||||
extern const pb_field_t onnx_OperatorSetIdProto_fields[3];
|
||||
|
||||
/* Maximum encoded size of messages (where known) */
|
||||
/* onnx_AttributeProto_size depends on runtime parameters */
|
||||
@ -289,6 +327,7 @@ extern const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3];
|
||||
/* onnx_TypeProto_TensorShapeProto_Dimension_size depends on runtime parameters */
|
||||
/* onnx_TypeProto_TensorTypeProto_size depends on runtime parameters */
|
||||
#define onnx_TypeProto_SparseTensorTypeProto_size (8 + onnx_TypeProto_TensorShapeProto_size)
|
||||
/* onnx_OperatorSetIdProto_size depends on runtime parameters */
|
||||
|
||||
/* Message IDs (where set with "msgid" option) */
|
||||
#ifdef PB_MSGID
|
||||
|
@ -14,6 +14,7 @@ import ctypes
|
||||
import os
|
||||
import torch
|
||||
import traceback
|
||||
import warnings
|
||||
from torch._six import raise_from
|
||||
from multiprocessing.util import register_after_fork as _register_after_fork
|
||||
|
||||
@ -65,11 +66,37 @@ http://www.nvidia.com/Download/index.aspx""")
|
||||
The NVIDIA driver on your system is too old (found version {}).
|
||||
Please update your GPU driver by downloading and installing a new
|
||||
version from the URL: http://www.nvidia.com/Download/index.aspx
|
||||
Alternatively, go to: https://pytorch.org/binaries to install
|
||||
Alternatively, go to: http://pytorch.org to install
|
||||
a PyTorch version that has been compiled with your version
|
||||
of the CUDA driver.""".format(str(torch._C._cuda_getDriverVersion())))
|
||||
|
||||
|
||||
def _check_capability():
|
||||
incorrect_binary_warn = """
|
||||
Found GPU%d %s which requires CUDA_VERSION >= %d for
|
||||
optimal performance and fast startup time, but your PyTorch was compiled
|
||||
with CUDA_VERSION %d. Please install the correct PyTorch binary
|
||||
using instructions from http://pytorch.org
|
||||
"""
|
||||
|
||||
old_gpu_warn = """
|
||||
Found GPU%d %s which is of cuda capability %d.%d.
|
||||
PyTorch no longer supports this GPU because it is too old.
|
||||
"""
|
||||
|
||||
CUDA_VERSION = torch._C._cuda_getCompiledVersion()
|
||||
for d in range(device_count()):
|
||||
capability = get_device_capability(d)
|
||||
major = capability[0]
|
||||
name = get_device_name(d)
|
||||
if CUDA_VERSION < 8000 and major >= 6:
|
||||
warnings.warn(incorrect_binary_warn % (d, name, 8000, CUDA_VERSION))
|
||||
elif CUDA_VERSION < 9000 and major >= 7:
|
||||
warnings.warn(incorrect_binary_warn % (d, name, 9000, CUDA_VERSION))
|
||||
elif capability == (3, 0) or capability == (5, 0) or major < 3:
|
||||
warnings.warn(old_gpu_warn % (d, name, major, capability[1]))
|
||||
|
||||
|
||||
def _lazy_call(callable):
|
||||
if _initialized:
|
||||
callable()
|
||||
@ -77,11 +104,26 @@ def _lazy_call(callable):
|
||||
# Don't store the actual traceback to avoid memory cycle
|
||||
_queued_calls.append((callable, traceback.format_stack()))
|
||||
|
||||
_lazy_call(_check_capability)
|
||||
|
||||
|
||||
class DeferredCudaCallError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
def init():
|
||||
"""Initialize PyTorch's CUDA state. You may need to call
|
||||
this explicitly if you are interacting with PyTorch via
|
||||
its C API, as Python bindings for CUDA functionality will not
|
||||
be until this initialization takes place. Ordinary users
|
||||
should not need this, as all of PyTorch's CUDA methods
|
||||
automatically initialize CUDA state on-demand.
|
||||
|
||||
Does nothing if the CUDA state is already initialized.
|
||||
"""
|
||||
_lazy_init()
|
||||
|
||||
|
||||
def _lazy_init():
|
||||
global _initialized, _cudart, _original_pid, _queued_calls
|
||||
if _initialized:
|
||||
@ -162,10 +204,10 @@ class device(object):
|
||||
def __enter__(self):
|
||||
if self.idx is -1:
|
||||
return
|
||||
_lazy_init()
|
||||
self.prev_idx = torch._C._cuda_getDevice()
|
||||
if self.prev_idx != self.idx:
|
||||
torch._C._cuda_setDevice(self.idx)
|
||||
_lazy_init()
|
||||
|
||||
def __exit__(self, *args):
|
||||
if self.prev_idx != self.idx:
|
||||
@ -213,6 +255,19 @@ def get_device_name(device):
|
||||
return torch._C._cuda_getDeviceName(device)
|
||||
|
||||
|
||||
def get_device_capability(device):
|
||||
"""Gets the cuda capability of a device.
|
||||
|
||||
Arguments:
|
||||
device (int): device for which to return the name. This function is a
|
||||
no-op if this argument is negative.
|
||||
Returns:
|
||||
tuple(int, int): the major and minor cuda capability of the device
|
||||
"""
|
||||
if device >= 0:
|
||||
return torch._C._cuda_getDeviceCapability(device)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def stream(stream):
|
||||
"""Context-manager that selects a given stream.
|
||||
@ -223,6 +278,10 @@ def stream(stream):
|
||||
Arguments:
|
||||
stream (Stream): selected stream. This manager is a no-op if it's
|
||||
``None``.
|
||||
|
||||
.. note:: Streams are per-device, and this function changes the "current
|
||||
stream" only for the currently selected device. It is illegal to select
|
||||
a stream that belongs to a different device.
|
||||
"""
|
||||
if stream is None:
|
||||
yield
|
||||
@ -238,7 +297,6 @@ def stream(stream):
|
||||
def device_count():
|
||||
"""Returns the number of GPUs available."""
|
||||
if is_available():
|
||||
_lazy_init()
|
||||
return torch._C._cuda_getDeviceCount()
|
||||
else:
|
||||
return 0
|
||||
@ -264,9 +322,18 @@ def current_stream():
|
||||
|
||||
def current_blas_handle():
|
||||
"""Returns cublasHandle_t pointer to current cuBLAS handle"""
|
||||
_lazy_init()
|
||||
return torch._C._cuda_getCurrentBlasHandle()
|
||||
|
||||
|
||||
def empty_cache():
|
||||
"""Releases all unoccupied cached memory currently held by the caching
|
||||
allocator so that those can be used in other GPU application and visible in
|
||||
`nvidia-smi`."""
|
||||
if _initialized:
|
||||
return torch._C._cuda_emptyCache()
|
||||
|
||||
|
||||
def _host_allocator():
|
||||
_lazy_init()
|
||||
return torch._C._cuda_cudaHostAllocator()
|
||||
|
@ -6,6 +6,10 @@ from . import cudart, check_error, cudaStatus
|
||||
class Stream(torch._C._CudaStreamBase):
|
||||
"""Wrapper around a CUDA stream.
|
||||
|
||||
A CUDA stream is a linear sequence of execution that belongs to a specific
|
||||
device, independent from other streams. See :ref:`cuda-semantics` for
|
||||
details.
|
||||
|
||||
Arguments:
|
||||
device(int, optional): a device on which to allocate the Stream.
|
||||
priority(int, optional): priority of the stream. Lower numbers
|
||||
@ -21,6 +25,15 @@ class Stream(torch._C._CudaStreamBase):
|
||||
|
||||
Arguments:
|
||||
event (Event): an event to wait for.
|
||||
|
||||
.. note:: This is a wrapper around ``cudaStreamWaitEvent()``: see `CUDA
|
||||
documentation`_ for more info.
|
||||
|
||||
This function returns without waiting for :attr:`event`: only future
|
||||
operations are affected.
|
||||
|
||||
.. _CUDA documentation:
|
||||
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
|
||||
"""
|
||||
check_error(cudart().cudaStreamWaitEvent(self, event, ctypes.c_int(0)))
|
||||
|
||||
@ -32,6 +45,9 @@ class Stream(torch._C._CudaStreamBase):
|
||||
|
||||
Arguments:
|
||||
stream (Stream): a stream to synchronize.
|
||||
|
||||
.. note:: This function returns without waiting for currently enqueued
|
||||
kernels in :attr:`stream`: only future operations are affected.
|
||||
"""
|
||||
self.wait_event(stream.record_event())
|
||||
|
||||
@ -63,7 +79,14 @@ class Stream(torch._C._CudaStreamBase):
|
||||
return True
|
||||
|
||||
def synchronize(self):
|
||||
"""Wait for all the kernels in this stream to complete."""
|
||||
"""Wait for all the kernels in this stream to complete.
|
||||
|
||||
.. note:: This is a wrapper around ``cudaStreamSynchronize()``: see
|
||||
`CUDA documentation`_ for more info.
|
||||
|
||||
.. _CUDA documentation:
|
||||
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
|
||||
"""
|
||||
check_error(cudart().cudaStreamSynchronize(self))
|
||||
|
||||
@staticmethod
|
||||
@ -107,10 +130,10 @@ class Event(object):
|
||||
|
||||
Arguments:
|
||||
enable_timing (bool): indicates if the event should measure time
|
||||
(default: False)
|
||||
blocking (bool): if true, :meth:`wait` will be blocking (default: False)
|
||||
interprocess (bool): if true, the event can be shared between processes
|
||||
(default: False)
|
||||
(default: ``False``)
|
||||
blocking (bool): if ``True``, :meth:`wait` will be blocking (default: ``False``)
|
||||
interprocess (bool): if ``True``, the event can be shared between processes
|
||||
(default: ``False``)
|
||||
"""
|
||||
|
||||
DEFAULT = 0x0
|
||||
|
@ -1,17 +1,32 @@
|
||||
"""
|
||||
r"""
|
||||
The ``distributions`` package contains parameterizable probability distributions
|
||||
and sampling functions.
|
||||
|
||||
The :meth:`log_prob` method is useful for policy gradient based methods. If the
|
||||
parameters of the distribution are differentiable, then the result of ``log_prob``
|
||||
is also differentiable.
|
||||
Policy gradient methods can be implemented using the
|
||||
:meth:`~torch.distributions.Distribution.log_prob` method, when the probability
|
||||
density function is differentiable with respect to its parameters. A basic
|
||||
method is the REINFORCE rule:
|
||||
|
||||
Example::
|
||||
.. math::
|
||||
|
||||
probs = network(input)
|
||||
m = Multinomial(probs)
|
||||
\Delta\theta = \alpha r \frac{\partial\log p(a|\pi^\theta(s))}{\partial\theta}
|
||||
|
||||
where :math:`\theta` are the parameters, :math:`\alpha` is the learning rate,
|
||||
:math:`r` is the reward and :math:`p(a|\pi^\theta(s))` is the probability of
|
||||
taking action :math:`a` in state :math:`s` given policy :math:`\pi^\theta`.
|
||||
|
||||
In practice we would sample an action from the output of a network, apply this
|
||||
action in an environment, and then use ``log_prob`` to construct an equivalent
|
||||
loss function. Note that we use a negative because optimisers use gradient
|
||||
descent, whilst the rule above assumes gradient ascent. With a categorical
|
||||
policy, the code for implementing REINFORCE would be as follows::
|
||||
|
||||
probs = policy_network(state)
|
||||
# NOTE: this is equivalent to what used to be called multinomial
|
||||
m = Categorical(probs)
|
||||
action = m.sample()
|
||||
loss = -m.log_prob(action) * get_reward(env, action)
|
||||
next_state, reward = env.step(action)
|
||||
loss = -m.log_prob(action) * reward
|
||||
loss.backward()
|
||||
"""
|
||||
import math
|
||||
@ -19,7 +34,7 @@ from numbers import Number
|
||||
import torch
|
||||
|
||||
|
||||
__all__ = ['Distribution', 'Bernoulli', 'Multinomial', 'Normal']
|
||||
__all__ = ['Distribution', 'Bernoulli', 'Categorical', 'Normal']
|
||||
|
||||
|
||||
class Distribution(object):
|
||||
@ -87,9 +102,12 @@ class Bernoulli(Distribution):
|
||||
return log_pmf.gather(0, value.unsqueeze(0).long()).squeeze(0)
|
||||
|
||||
|
||||
class Multinomial(Distribution):
|
||||
class Categorical(Distribution):
|
||||
r"""
|
||||
Creates a multinomial distribution parameterized by `probs`.
|
||||
Creates a categorical distribution parameterized by `probs`.
|
||||
|
||||
.. note::
|
||||
It is equivalent to the distribution that ``multinomial()`` samples from.
|
||||
|
||||
Samples are integers from `0 ... K-1` where `K` is probs.size(-1).
|
||||
|
||||
@ -102,7 +120,7 @@ class Multinomial(Distribution):
|
||||
|
||||
Example::
|
||||
|
||||
>>> m = Multinomial(torch.Tensor([ 0.25, 0.25, 0.25, 0.25 ]))
|
||||
>>> m = Categorical(torch.Tensor([ 0.25, 0.25, 0.25, 0.25 ]))
|
||||
>>> m.sample() # equal probability of 0, 1, 2, 3
|
||||
3
|
||||
[torch.LongTensor of size 1]
|
||||
|
@ -9,15 +9,15 @@ __all__ = [
|
||||
|
||||
|
||||
def split(tensor, split_size, dim=0):
|
||||
"""Splits the tensor into equally sized chunks (if possible).
|
||||
"""Splits the tensor into chunks all of size :attr:`split_size` (if possible).
|
||||
|
||||
Last chunk will be smaller if the tensor size along a given dimension
|
||||
is not divisible by ``split_size``.
|
||||
is not divisible by :attr`split_size`.
|
||||
|
||||
Arguments:
|
||||
tensor (Tensor): tensor to split.
|
||||
split_size (int): size of a single chunk.
|
||||
dim (int): dimension along which to split the tensor.
|
||||
tensor (Tensor): the tensor to split
|
||||
split_size (int): size of a single chunk
|
||||
dim (int): dimension along which to split the tensor
|
||||
"""
|
||||
if dim < 0:
|
||||
dim += tensor.dim()
|
||||
@ -32,12 +32,12 @@ def split(tensor, split_size, dim=0):
|
||||
|
||||
|
||||
def chunk(tensor, chunks, dim=0):
|
||||
"""Splits a tensor into a number of chunks along a given dimension.
|
||||
"""Splits a tensor into a specific number of chunks.
|
||||
|
||||
Arguments:
|
||||
tensor (Tensor): tensor to split.
|
||||
chunks (int): number of chunks to return.
|
||||
dim (int): dimension along which to split the tensor.
|
||||
tensor (Tensor): the tensor to split
|
||||
chunks (int): number of chunks to return
|
||||
dim (int): dimension along which to split the tensor
|
||||
"""
|
||||
if dim < 0:
|
||||
dim += tensor.dim()
|
||||
@ -51,9 +51,9 @@ def stack(sequence, dim=0, out=None):
|
||||
All tensors need to be of the same size.
|
||||
|
||||
Arguments:
|
||||
sequence (Sequence): sequence of tensors to concatenate.
|
||||
sequence (Sequence): sequence of tensors to concatenate
|
||||
dim (int): dimension to insert. Has to be between 0 and the number
|
||||
of dimensions of concatenated tensors (inclusive).
|
||||
of dimensions of concatenated tensors (inclusive)
|
||||
"""
|
||||
if len(sequence) == 0:
|
||||
raise ValueError("stack expects a non-empty sequence of tensors")
|
||||
@ -72,8 +72,8 @@ def unbind(tensor, dim=0):
|
||||
Returns a tuple of all slices along a given dimension, already without it.
|
||||
|
||||
Arguments:
|
||||
tensor (Tensor): tensor to unbind.
|
||||
dim (int): dimension to remove.
|
||||
tensor (Tensor): the tensor to unbind
|
||||
dim (int): dimension to remove
|
||||
"""
|
||||
return tuple(tensor.select(dim, i) for i in _range(tensor.size(dim)))
|
||||
|
||||
@ -87,10 +87,10 @@ def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
|
||||
2: The U tensor.
|
||||
|
||||
Arguments:
|
||||
LU_data (Tensor): The packed LU factorization data.
|
||||
LU_pivots (Tensor): The packed LU factorization pivots.
|
||||
unpack_data (bool): Flag indicating if the data should be unpacked.
|
||||
unpack_pivots (bool): Flag indicating if the pivots should be unpacked.
|
||||
LU_data (Tensor): the packed LU factorization data
|
||||
LU_pivots (Tensor): the packed LU factorization pivots
|
||||
unpack_data (bool): flag indicating if the data should be unpacked
|
||||
unpack_pivots (bool): tlag indicating if the pivots should be unpacked
|
||||
"""
|
||||
|
||||
nBatch, sz, _ = LU_data.size()
|
||||
@ -122,7 +122,7 @@ def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
|
||||
|
||||
|
||||
def matmul(tensor1, tensor2, out=None):
|
||||
"""Matrix product of two tensors.
|
||||
r"""Matrix product of two tensors.
|
||||
|
||||
The behavior depends on the dimensionality of the tensors as follows:
|
||||
|
||||
@ -139,17 +139,18 @@ def matmul(tensor1, tensor2, out=None):
|
||||
batched matrix multiply and removed after. If the second argument is 1-dimensional, a
|
||||
1 is appended to its dimension for the purpose of the batched matrix multiple and removed after.
|
||||
The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus
|
||||
must be broadcastable). For example, if :attr:`tensor1` is a `j x 1 x n x m` Tensor
|
||||
and :attr:`tensor2` is a `k x m x p` Tensor, :attr:`out` will be an `j x k x n x p` Tensor.
|
||||
must be broadcastable). For example, if :attr:`tensor1` is a
|
||||
:math:`(j \times 1 \times n \times m)` tensor and :attr:`tensor2` is a :math:`(k \times m \times p)`
|
||||
tensor, :attr:`out` will be an :math:`(j \times k \times n \times p)` tensor.
|
||||
|
||||
.. note::
|
||||
|
||||
The 1-dimensional dot product version of this function does not support an :attr:`out` parameter.
|
||||
|
||||
Arguments:
|
||||
tensor1 (Tensor): First tensor to be multiplied
|
||||
tensor2 (Tensor): Second tensor to be multiplied
|
||||
out (Tensor, optional): Output tensor
|
||||
tensor1 (Tensor): the first tensor to be multiplied
|
||||
tensor2 (Tensor): the second tensor to be multiplied
|
||||
out (Tensor, optional): the output tensor
|
||||
"""
|
||||
dim_tensor1 = tensor1.dim()
|
||||
dim_tensor2 = tensor2.dim()
|
||||
|
@ -31,6 +31,30 @@ HOLE = Placeholder("HOLE")
|
||||
VOLATILE = Placeholder("VOLATILE")
|
||||
|
||||
|
||||
# This global variable is set when we are tracing a *forwards* computation.
|
||||
# It is intended to be a cheap way to test if tracing has occurred, before
|
||||
# doing the slower path using `get_tracing_state` (below.)
|
||||
_tracing = False
|
||||
|
||||
|
||||
def get_tracing_state(args):
|
||||
if not torch._C._is_tracing(args):
|
||||
return None
|
||||
return torch._C._get_tracing_state(args)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def scope(scope_name, *vars):
|
||||
tracing_state = get_tracing_state(vars)
|
||||
if tracing_state:
|
||||
tracing_state.push_scope(scope_name)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
if tracing_state:
|
||||
tracing_state.pop_scope()
|
||||
|
||||
|
||||
def compile(arg=None, **kwargs):
|
||||
"""
|
||||
Decorator which marks a function or module class as eligible for
|
||||
@ -69,10 +93,10 @@ def compile(arg=None, **kwargs):
|
||||
(as we always wait to see all derivatives before compiling.)
|
||||
Default: 1 (i.e., we will compile forwards and backwards, but not
|
||||
double-backwards).
|
||||
optimize (bool, optional): whether or not to apply optimizations. Default: True.
|
||||
optimize (bool, optional): whether or not to apply optimizations. Default: ``True``.
|
||||
|
||||
Debug arguments:
|
||||
time (bool, optional): if True, whenever we execute the model in question, we
|
||||
time (bool, optional): if ``True``, whenever we execute the model in question, we
|
||||
will also print out some timing information for how long the model
|
||||
took to execute. At the moment, there are three types of timings we
|
||||
emit:
|
||||
@ -87,10 +111,10 @@ def compile(arg=None, **kwargs):
|
||||
- optimized: the time it took to execute the optimized model.
|
||||
|
||||
At the moment, all of these timings are for the forward pass only.
|
||||
Default: False.
|
||||
enabled (bool, optional): if False, compilation is disabled and you
|
||||
Default: ``False``.
|
||||
enabled (bool, optional): if ``False``, compilation is disabled and you
|
||||
will get back your original model. This is a convenient way to
|
||||
disable tracing without having to delete the annotation. Default: True.
|
||||
disable tracing without having to delete the annotation. Default: ``True``.
|
||||
|
||||
Example: Compile as class decorator.
|
||||
|
||||
@ -227,6 +251,8 @@ class TracedModule(Module):
|
||||
self.nderivs = nderivs
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
global _tracing
|
||||
|
||||
# TODO: Possible optimization: use the unflattened
|
||||
# output so we don't unflatten it when we get out
|
||||
# NB: Not a method because _raw_trace can't deal
|
||||
@ -238,7 +264,9 @@ class TracedModule(Module):
|
||||
kw_items = list(kwargs.items())
|
||||
kw_items.sort()
|
||||
in_vars, in_struct = _flatten((args, tuple(kw_items)), self.state_dict(keep_vars=True).values())
|
||||
_tracing = True
|
||||
trace, (out_vars, out_struct) = traced_inner(in_vars, in_struct)
|
||||
_tracing = False
|
||||
out, unmatched = _unflatten(out_vars, out_struct)
|
||||
assert len(unmatched) == 0
|
||||
return trace, out
|
||||
@ -396,6 +424,10 @@ class _CompiledMixin(object):
|
||||
# TODO: Figure out how to call parent destructor, if there is one.
|
||||
# Apparently, this is buggy:
|
||||
# https://stackoverflow.com/questions/22972720/python-cant-invoke-parent-class-destructor-with-super
|
||||
# NB: Have to mangle this by hand!
|
||||
if not (hasattr(self, '_CompiledMixin__misses') and hasattr(self, '_CompiledMixin___hits')):
|
||||
# Probably died during construction
|
||||
return
|
||||
if self.__misses != 0 and self.__hits == 0:
|
||||
warnings.warn("{} was marked with JIT and invoked {} times, "
|
||||
"but we never successfully used compiled code."
|
||||
|
@ -18,18 +18,22 @@ class DistKLDivCriterion(Criterion):
|
||||
input,
|
||||
target,
|
||||
self.output_tensor,
|
||||
self.sizeAverage
|
||||
self.sizeAverage,
|
||||
True, # reduce
|
||||
)
|
||||
self.output = self.output_tensor[0]
|
||||
return self.output
|
||||
|
||||
def updateGradInput(self, input, target):
|
||||
assert input.is_same_size(target)
|
||||
implicit_gradOutput = torch.ones(1).type_as(input)
|
||||
self._backend.DistKLDivCriterion_updateGradInput(
|
||||
self._backend.library_state,
|
||||
input,
|
||||
target,
|
||||
implicit_gradOutput,
|
||||
self.gradInput,
|
||||
self.sizeAverage
|
||||
self.sizeAverage,
|
||||
True, # reduce
|
||||
)
|
||||
return self.gradInput
|
||||
|
@ -29,7 +29,6 @@ class ELU(Module):
|
||||
def updateGradInput(self, input, gradOutput):
|
||||
self._backend.ELU_updateGradInput(
|
||||
self._backend.library_state,
|
||||
input,
|
||||
gradOutput,
|
||||
self.gradInput,
|
||||
self.output,
|
||||
|
@ -20,14 +20,14 @@ class Padding(Module):
|
||||
super(Padding, self).__init__()
|
||||
|
||||
def updateOutput(self, input):
|
||||
outputSize = list(input.size())
|
||||
outputSize[self.dim] += abs(self.pad)
|
||||
self.outputSize = torch.Size(outputSize)
|
||||
dim = self.dim
|
||||
|
||||
if hasattr(self, "nInputDim") and self.nInputDim > 0 and input.dim() != self.nInputDim:
|
||||
dim = dim + 1
|
||||
|
||||
outputSize = list(input.size())
|
||||
outputSize[dim] += abs(self.pad)
|
||||
self.outputSize = torch.Size(outputSize)
|
||||
|
||||
self.output.resize_(self.outputSize)
|
||||
self.output.fill_(self.value)
|
||||
index = self.index
|
||||
|
@ -66,6 +66,7 @@ IF ($ENV{TH_BINARY_BUILD})
|
||||
IF (UNIX AND NOT APPLE)
|
||||
# hiding statically linked library symbols, this flag is not available for the linker under MACOSX
|
||||
SET(CMAKE_CXX_FLAGS "-Wl,--exclude-libs,libstdc++.a ${CMAKE_CXX_FLAGS}")
|
||||
set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--version-script=${CMAKE_CURRENT_SOURCE_DIR}/../../../tools/pytorch.version")
|
||||
ENDIF(UNIX AND NOT APPLE)
|
||||
ENDIF()
|
||||
|
||||
|
@ -17,8 +17,15 @@ public:
|
||||
Type & getType(Backend p, ScalarType s) {
|
||||
initCUDAIfNeeded(p);
|
||||
auto & type = type_registry[static_cast<int>(p)][static_cast<int>(s)];
|
||||
if(!type)
|
||||
|
||||
if(!type) {
|
||||
// there is only a single Undefined Type.
|
||||
if (p == Backend::Undefined || s == ScalarType::Undefined) {
|
||||
auto & undef = type_registry[static_cast<int>(Backend::Undefined)][static_cast<int>(ScalarType::Undefined)];
|
||||
if (undef) return *undef;
|
||||
}
|
||||
runtime_error("%s%sType is not enabled.",toString(p),toString(s));
|
||||
}
|
||||
return *type;
|
||||
}
|
||||
Generator & defaultGenerator(Backend p) {
|
||||
|
@ -13,28 +13,28 @@ static DLDataType getDLDataType(const Type& type) {
|
||||
dtype.bits = type.elementSizeInBytes() * 8;
|
||||
switch (type.scalarType()) {
|
||||
case ScalarType::Byte:
|
||||
dtype.code = DLDataTypeCode::kUInt;
|
||||
dtype.code = DLDataTypeCode::kDLUInt;
|
||||
break;
|
||||
case ScalarType::Char:
|
||||
dtype.code = DLDataTypeCode::kInt;
|
||||
dtype.code = DLDataTypeCode::kDLInt;
|
||||
break;
|
||||
case ScalarType::Double:
|
||||
dtype.code = DLDataTypeCode::kFloat;
|
||||
dtype.code = DLDataTypeCode::kDLFloat;
|
||||
break;
|
||||
case ScalarType::Float:
|
||||
dtype.code = DLDataTypeCode::kFloat;
|
||||
dtype.code = DLDataTypeCode::kDLFloat;
|
||||
break;
|
||||
case ScalarType::Int:
|
||||
dtype.code = DLDataTypeCode::kInt;
|
||||
dtype.code = DLDataTypeCode::kDLInt;
|
||||
break;
|
||||
case ScalarType::Long:
|
||||
dtype.code = DLDataTypeCode::kInt;
|
||||
dtype.code = DLDataTypeCode::kDLInt;
|
||||
break;
|
||||
case ScalarType::Short:
|
||||
dtype.code = DLDataTypeCode::kInt;
|
||||
dtype.code = DLDataTypeCode::kDLInt;
|
||||
break;
|
||||
case ScalarType::Half:
|
||||
dtype.code = DLDataTypeCode::kFloat;
|
||||
dtype.code = DLDataTypeCode::kDLFloat;
|
||||
break;
|
||||
case ScalarType::NumOptions:
|
||||
throw std::logic_error("NumOptions is not a valid ScalarType");
|
||||
@ -47,9 +47,9 @@ static DLContext getDLContext(const Type& type, const int64_t& device_id) {
|
||||
DLContext ctx;
|
||||
ctx.device_id = device_id;
|
||||
if (type.isCuda()) {
|
||||
ctx.device_type = DLDeviceType::kGPU;
|
||||
ctx.device_type = DLDeviceType::kDLGPU;
|
||||
} else {
|
||||
ctx.device_type = DLDeviceType::kCPU;
|
||||
ctx.device_type = DLDeviceType::kDLCPU;
|
||||
}
|
||||
return ctx;
|
||||
}
|
||||
@ -58,10 +58,10 @@ static DLContext getDLContext(const Type& type, const int64_t& device_id) {
|
||||
static Backend getATenBackend(const DLContext& ctx) {
|
||||
Backend backend;
|
||||
switch (ctx.device_type) {
|
||||
case DLDeviceType::kCPU:
|
||||
case DLDeviceType::kDLCPU:
|
||||
backend = Backend::CPU;
|
||||
break;
|
||||
case DLDeviceType::kGPU:
|
||||
case DLDeviceType::kDLGPU:
|
||||
backend = Backend::CUDA;
|
||||
break;
|
||||
default:
|
||||
@ -75,7 +75,7 @@ ScalarType toScalarType(const DLDataType& dtype) {
|
||||
ScalarType stype;
|
||||
if (dtype.lanes != 1) throw std::logic_error("ATen does not support lanes != 1");
|
||||
switch (dtype.code) {
|
||||
case DLDataTypeCode::kUInt:
|
||||
case DLDataTypeCode::kDLUInt:
|
||||
switch (dtype.bits) {
|
||||
case 8:
|
||||
stype = ScalarType::Byte;
|
||||
@ -84,7 +84,7 @@ ScalarType toScalarType(const DLDataType& dtype) {
|
||||
throw std::logic_error("Unsupported kUInt bits " + std::to_string(dtype.bits));
|
||||
}
|
||||
break;
|
||||
case DLDataTypeCode::kInt:
|
||||
case DLDataTypeCode::kDLInt:
|
||||
switch (dtype.bits) {
|
||||
case 8:
|
||||
stype = ScalarType::Char;
|
||||
@ -102,7 +102,7 @@ ScalarType toScalarType(const DLDataType& dtype) {
|
||||
throw std::logic_error("Unsupported kInt bits " + std::to_string(dtype.bits));
|
||||
}
|
||||
break;
|
||||
case DLDataTypeCode::kFloat:
|
||||
case DLDataTypeCode::kDLFloat:
|
||||
switch (dtype.bits) {
|
||||
case 16:
|
||||
stype = ScalarType::Half;
|
||||
@ -128,8 +128,8 @@ struct ATenDLMTensor {
|
||||
DLManagedTensor tensor;
|
||||
};
|
||||
|
||||
void destructor(DLManagedTensor * arg) {
|
||||
delete static_cast<ATenDLMTensor*>(arg->ctx);
|
||||
void deleter(DLManagedTensor * arg) {
|
||||
delete static_cast<ATenDLMTensor*>(arg->manager_ctx);
|
||||
}
|
||||
|
||||
|
||||
@ -138,33 +138,33 @@ void destructor(DLManagedTensor * arg) {
|
||||
DLManagedTensor* toDLPack(const Tensor& src) {
|
||||
ATenDLMTensor * atDLMTensor(new ATenDLMTensor);
|
||||
atDLMTensor->handle = src;
|
||||
atDLMTensor->tensor.ctx = atDLMTensor;
|
||||
atDLMTensor->tensor.destructor = &destructor;
|
||||
atDLMTensor->tensor.dlTensor.data = src.data_ptr();
|
||||
atDLMTensor->tensor.manager_ctx = atDLMTensor;
|
||||
atDLMTensor->tensor.deleter = &deleter;
|
||||
atDLMTensor->tensor.dl_tensor.data = src.data_ptr();
|
||||
int64_t device_id = 0;
|
||||
if (src.type().isCuda()) {
|
||||
device_id = src.get_device();
|
||||
}
|
||||
atDLMTensor->tensor.dlTensor.ctx = getDLContext(src.type(), device_id);
|
||||
atDLMTensor->tensor.dlTensor.ndim = src.dim();
|
||||
atDLMTensor->tensor.dlTensor.dtype = getDLDataType(src.type());
|
||||
atDLMTensor->tensor.dlTensor.shape = const_cast<int64_t*>(src.sizes().data());
|
||||
atDLMTensor->tensor.dlTensor.strides = const_cast<int64_t*>(src.strides().data());
|
||||
atDLMTensor->tensor.dlTensor.byte_offset = 0;
|
||||
atDLMTensor->tensor.dl_tensor.ctx = getDLContext(src.type(), device_id);
|
||||
atDLMTensor->tensor.dl_tensor.ndim = src.dim();
|
||||
atDLMTensor->tensor.dl_tensor.dtype = getDLDataType(src.type());
|
||||
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(src.sizes().data());
|
||||
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(src.strides().data());
|
||||
atDLMTensor->tensor.dl_tensor.byte_offset = 0;
|
||||
return &(atDLMTensor->tensor);
|
||||
}
|
||||
|
||||
|
||||
Tensor fromDLPack(const DLManagedTensor* src) {
|
||||
Backend backend = getATenBackend(src->dlTensor.ctx);
|
||||
ScalarType stype = toScalarType(src->dlTensor.dtype);
|
||||
Backend backend = getATenBackend(src->dl_tensor.ctx);
|
||||
ScalarType stype = toScalarType(src->dl_tensor.dtype);
|
||||
auto deleter = [src](void * self) {
|
||||
src->destructor(const_cast<DLManagedTensor*>(src));
|
||||
src->deleter(const_cast<DLManagedTensor*>(src));
|
||||
};
|
||||
return getType(backend, stype).tensorFromBlob(
|
||||
src->dlTensor.data,
|
||||
IntList(src->dlTensor.shape, src->dlTensor.ndim),
|
||||
IntList(src->dlTensor.strides, src->dlTensor.ndim),
|
||||
src->dl_tensor.data,
|
||||
IntList(src->dl_tensor.shape, src->dl_tensor.ndim),
|
||||
IntList(src->dl_tensor.strides, src->dl_tensor.ndim),
|
||||
deleter);
|
||||
}
|
||||
} //namespace at
|
||||
|
@ -579,13 +579,22 @@
|
||||
- CPU
|
||||
- CUDA
|
||||
return: argument 0
|
||||
arguments:
|
||||
- arg: THTensor* result
|
||||
output: True
|
||||
- accreal start
|
||||
- accreal end
|
||||
- arg: accreal step
|
||||
default: 1
|
||||
options:
|
||||
- cname: arange
|
||||
arguments:
|
||||
- arg: THTensor* result
|
||||
output: True
|
||||
- accreal start
|
||||
- accreal end
|
||||
- arg: accreal step
|
||||
default: 1
|
||||
- cname: arange
|
||||
arguments:
|
||||
- arg: THTensor* result
|
||||
output: True
|
||||
- CONSTANT 0
|
||||
- accreal end
|
||||
- CONSTANT 1
|
||||
]]
|
||||
[[
|
||||
name: scatter_
|
||||
|
@ -1,10 +1,20 @@
|
||||
#pragma once
|
||||
|
||||
#include "ATen/Tensor.h"
|
||||
#include <functional>
|
||||
#include <sstream>
|
||||
|
||||
namespace at {
|
||||
|
||||
// avoid copy-construction of Tensor by using a reference_wrapper.
|
||||
inline void check_defined(std::initializer_list<std::reference_wrapper<const Tensor>> tensors, const char *api_name) {
|
||||
for (auto& t : tensors) {
|
||||
if (!t.get().defined()) {
|
||||
runtime_error("%s(...) called with an undefined Tensor", api_name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand) {
|
||||
if (tensor.sizes().equals(to_expand.sizes())) {
|
||||
return std::make_tuple(to_expand);
|
||||
@ -13,6 +23,11 @@ inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_
|
||||
return std::make_tuple(to_expand.expand(tensor.sizes()));
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand, const char *api_name) {
|
||||
check_defined({tensor, to_expand}, api_name);
|
||||
return expand_inplace(tensor, to_expand);
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand1, const Tensor &to_expand2) {
|
||||
if (tensor.sizes().equals(to_expand1.sizes()) && tensor.sizes().equals((to_expand2.sizes()))) {
|
||||
return std::make_tuple(to_expand1, to_expand2);
|
||||
@ -21,6 +36,12 @@ inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Ten
|
||||
return std::make_tuple(to_expand1.expand(tensor.sizes()), to_expand2.expand(tensor.sizes()));
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand1, const Tensor &to_expand2,
|
||||
const char *api_name) {
|
||||
check_defined({tensor, to_expand1, to_expand2}, api_name);
|
||||
return expand_inplace(tensor, to_expand1, to_expand2);
|
||||
}
|
||||
|
||||
inline std::vector<int64_t> infer_size2(IntList a, IntList b) {
|
||||
auto dimsA = a.size();
|
||||
auto dimsB = b.size();
|
||||
@ -55,9 +76,14 @@ inline std::tuple<Tensor, Tensor> expand_outplace(const Tensor &to_expand1, cons
|
||||
return std::make_tuple(to_expand1.expand(expanded_size), to_expand2.expand(expanded_size));
|
||||
}
|
||||
|
||||
std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1,
|
||||
const Tensor &to_expand2,
|
||||
const Tensor &to_expand3) {
|
||||
inline std::tuple<Tensor, Tensor> expand_outplace(const Tensor &to_expand1, const Tensor &to_expand2, const char *api_name) {
|
||||
check_defined({to_expand1, to_expand2}, api_name);
|
||||
return expand_outplace(to_expand1, to_expand2);
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1,
|
||||
const Tensor &to_expand2,
|
||||
const Tensor &to_expand3) {
|
||||
if (to_expand1.sizes().equals(to_expand2.sizes()) && to_expand1.sizes().equals(to_expand3.sizes())) {
|
||||
return std::make_tuple(to_expand1, to_expand2, to_expand3);
|
||||
}
|
||||
@ -67,6 +93,14 @@ std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1,
|
||||
return std::make_tuple(to_expand1.expand(expanded_size), to_expand2.expand(expanded_size), to_expand3.expand(expanded_size));
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1,
|
||||
const Tensor &to_expand2,
|
||||
const Tensor &to_expand3,
|
||||
const char *api_name) {
|
||||
check_defined({to_expand1, to_expand2, to_expand3}, api_name);
|
||||
return expand_outplace(to_expand1, to_expand2, to_expand3);
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntList sizes) {
|
||||
if(to_expand.sizes().equals(sizes)) {
|
||||
return std::make_tuple(to_expand);
|
||||
@ -75,4 +109,9 @@ inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntList sizes) {
|
||||
return std::make_tuple(to_expand.expand(sizes));
|
||||
}
|
||||
|
||||
inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntList sizes, const char *api_name) {
|
||||
check_defined({to_expand}, api_name);
|
||||
return expand_size(to_expand, sizes);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -128,6 +128,24 @@
|
||||
${THTensor}_setStorage(${state,}result_->tensor, self_->tensor->storage, self_->tensor->storageOffset, size_, stride_);
|
||||
]]
|
||||
|
||||
[[
|
||||
name: as_strided_
|
||||
variants: [method,function]
|
||||
return: argument 0
|
||||
arguments:
|
||||
- THTensor* self
|
||||
- THSize* size
|
||||
- THStride* stride
|
||||
- arg: int64_t storage_offset
|
||||
default: -1
|
||||
aten_custom_call: |
|
||||
if (storage_offset == -1) {
|
||||
storage_offset = self_->tensor->storageOffset;
|
||||
}
|
||||
${THTensor}_setStorage(${state,}self_->tensor, self_->tensor->storage, storage_offset, size_, stride_);
|
||||
self_->maybeScalar(size.size() == 0);
|
||||
]]
|
||||
|
||||
[[
|
||||
name: cat
|
||||
cname: catArray
|
||||
|
@ -23,7 +23,7 @@ public:
|
||||
|
||||
explicit Scalar(const detail::TensorBase & t)
|
||||
: tag(Tag::HAS_t), t(t) {
|
||||
AT_ASSERT(t.pImpl, "Attempting to create a Scalar from an undefined tensor");
|
||||
AT_ASSERT(t.defined(), "Attempting to create a Scalar from an undefined tensor");
|
||||
AT_ASSERT(t.dim() == 0, "Attempting to create a Scalar from a %d dim tensor", t.dim());
|
||||
}
|
||||
|
||||
|
@ -23,6 +23,7 @@ enum class ScalarType {
|
||||
n,
|
||||
AT_FORALL_SCALAR_TYPES(DEFINE_ENUM)
|
||||
#undef DEFINE_ENUM
|
||||
Undefined,
|
||||
NumOptions
|
||||
};
|
||||
|
||||
@ -31,6 +32,7 @@ enum class Backend {
|
||||
CUDA,
|
||||
SparseCPU,
|
||||
SparseCUDA,
|
||||
Undefined,
|
||||
NumOptions
|
||||
};
|
||||
|
||||
@ -62,7 +64,7 @@ static inline const char * toString(ScalarType t) {
|
||||
switch(t) {
|
||||
AT_FORALL_SCALAR_TYPES(DEFINE_CASE)
|
||||
default:
|
||||
return "UNKNOWN_SCALAR_TYPE";
|
||||
return "UNKNOWN_SCALAR";
|
||||
}
|
||||
#undef DEFINE_CASE
|
||||
}
|
||||
|
@ -1,29 +1,32 @@
|
||||
#pragma once
|
||||
|
||||
#include "ATen/TensorImpl.h"
|
||||
#include "ATen/UndefinedTensor.h"
|
||||
|
||||
namespace at { namespace detail {
|
||||
|
||||
// TensorBase is the base class for Tensor which handles the reference counting
|
||||
struct TensorBase {
|
||||
TensorBase()
|
||||
: pImpl(nullptr) {}
|
||||
TensorBase(): TensorBase(UndefinedTensor::singleton(), false) {}
|
||||
TensorBase(TensorImpl * self, bool retain)
|
||||
: pImpl(self) {
|
||||
if(pImpl != nullptr && retain)
|
||||
if (pImpl == nullptr) {
|
||||
throw std::runtime_error("TensorBase with nullptr not supported");
|
||||
}
|
||||
if(retain && pImpl != UndefinedTensor::singleton())
|
||||
pImpl->retain();
|
||||
}
|
||||
TensorBase(const TensorBase & rhs)
|
||||
: pImpl(rhs.pImpl) {
|
||||
if(pImpl != nullptr)
|
||||
if (pImpl != UndefinedTensor::singleton())
|
||||
pImpl->retain();
|
||||
}
|
||||
TensorBase(TensorBase && rhs) noexcept
|
||||
: pImpl(rhs.pImpl) {
|
||||
rhs.pImpl = nullptr;
|
||||
rhs.pImpl = UndefinedTensor::singleton();
|
||||
}
|
||||
~TensorBase() {
|
||||
if(pImpl != nullptr)
|
||||
if (pImpl != UndefinedTensor::singleton())
|
||||
pImpl->release();
|
||||
}
|
||||
TensorBase & operator=(TensorBase && rhs) & {
|
||||
@ -48,6 +51,9 @@ struct TensorBase {
|
||||
TensorImpl * get() const {
|
||||
return pImpl;
|
||||
}
|
||||
bool defined() const {
|
||||
return pImpl != UndefinedTensor::singleton();
|
||||
}
|
||||
|
||||
friend struct Type;
|
||||
|
||||
|
@ -11,6 +11,7 @@ inline Tensor & Tensor::operator=(Scalar v) && {
|
||||
return assign_(v);
|
||||
}
|
||||
inline Tensor & Tensor::assign_(Scalar v) {
|
||||
AT_ASSERT(defined(), "attempting to assign a scalar to an undefined tensor");
|
||||
AT_ASSERT(dim() == 0, "attempting to assign a scalar to %d dim tensor", dim());
|
||||
pImpl->assign_(v);
|
||||
return *this;
|
||||
|
42
torch/lib/ATen/UndefinedTensor.cpp
Normal file
42
torch/lib/ATen/UndefinedTensor.cpp
Normal file
@ -0,0 +1,42 @@
|
||||
#include "ATen/UndefinedTensor.h"
|
||||
#include "ATen/Context.h"
|
||||
|
||||
namespace at {
|
||||
|
||||
// should this use the globalContext? Can it get a context passed in somehow?
|
||||
UndefinedTensor::UndefinedTensor()
|
||||
: TensorImpl(&(globalContext().getType(Backend::Undefined,ScalarType::Undefined))) {
|
||||
}
|
||||
|
||||
const char * UndefinedTensor::toString() const {
|
||||
return "UndefinedTensor";
|
||||
}
|
||||
|
||||
IntList UndefinedTensor::sizes() const {
|
||||
runtime_error("sizes() called on undefined Tensor");
|
||||
}
|
||||
|
||||
int64_t UndefinedTensor::dim() const {
|
||||
runtime_error("dim() called on undefined Tensor");
|
||||
}
|
||||
|
||||
const char * UndefinedTensor::typeString() {
|
||||
return "UndefinedType";
|
||||
}
|
||||
void * UndefinedTensor::unsafeGetTH(bool retain) {
|
||||
runtime_error("unsafeGetTH(bool retain) called on undefined Tensor");
|
||||
}
|
||||
|
||||
IntList UndefinedTensor::strides() const {
|
||||
runtime_error("strides() called on undefined Tensor");
|
||||
}
|
||||
Scalar UndefinedTensor::localScalar() {
|
||||
runtime_error("localScalar() called on undefined Tensor");
|
||||
}
|
||||
void UndefinedTensor::assign_(Scalar s) {
|
||||
runtime_error("assign_() called on undefined Tensor");
|
||||
}
|
||||
|
||||
UndefinedTensor UndefinedTensor::_singleton;
|
||||
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user