Compare commits

..

1 Commits

Author SHA1 Message Date
6056458606 Update (base update)
[ghstack-poisoned]
2025-10-15 19:19:12 -07:00
794 changed files with 7508 additions and 14310 deletions

View File

@ -83,6 +83,10 @@ function build_cpython {
py_suffix=${py_ver::-1}
py_folder=$py_suffix
fi
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
if [ "$py_suffix" == "3.14.0" ]; then
py_suffix="3.14.0rc2"
fi
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_suffix

View File

@ -20,7 +20,7 @@ pip_install \
pip_install coloredlogs packaging
pip_install onnxruntime==1.23.0
pip_install onnxscript==0.5.4
pip_install onnxscript==0.5.3
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -39,13 +39,9 @@ case ${DOCKER_TAG_PREFIX} in
DOCKER_GPU_BUILD_ARG=""
;;
rocm*)
# we want the patch version of 7.0 instead
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete

View File

@ -75,13 +75,9 @@ case ${image} in
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 7.0 instead
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"

View File

@ -57,8 +57,8 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
logger.info("Successfully cloned %s", target)
return r, commit
except GitCommandError:
logger.exception("Git operation failed")
except GitCommandError as e:
logger.error("Git operation failed: %s", e)
raise

View File

@ -485,22 +485,6 @@ test_inductor_aoti() {
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
test_inductor_aoti_cross_compile_for_windows() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
# Set WINDOWS_CUDA_HOME environment variable
WINDOWS_CUDA_HOME="$(pwd)/win-torch-wheel-extracted"
export WINDOWS_CUDA_HOME
echo "WINDOWS_CUDA_HOME is set to: $WINDOWS_CUDA_HOME"
echo "Contents:"
ls -lah "$(pwd)/win-torch-wheel-extracted/lib/x64/" || true
python test/inductor/test_aoti_cross_compile_windows.py -k compile --package-dir "$TEST_REPORTS_DIR" --win-torch-lib-dir "$(pwd)/win-torch-wheel-extracted/torch/lib"
}
test_inductor_cpp_wrapper_shard() {
if [[ -z "$NUM_TEST_SHARDS" ]]; then
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
@ -916,7 +900,7 @@ test_inductor_set_cpu_affinity(){
export LD_PRELOAD="$JEMALLOC_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
if [[ "$(uname -m)" != "aarch64" ]]; then
if [[ "${TEST_CONFIG}" != *aarch64* ]]; then
# Use Intel OpenMP for x86
IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so"
export LD_PRELOAD="$IOMP_LIB":"$LD_PRELOAD"
@ -930,7 +914,7 @@ test_inductor_set_cpu_affinity(){
cores=$((cpus / thread_per_core))
# Set number of cores to 16 on aarch64 for performance runs
if [[ "$(uname -m)" == "aarch64" && $cores -gt 16 ]]; then
if [[ "${TEST_CONFIG}" == *aarch64* && $cores -gt 16 ]]; then
cores=16
fi
export OMP_NUM_THREADS=$cores
@ -1631,7 +1615,6 @@ test_operator_benchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
ARCH=$(uname -m)
test_inductor_set_cpu_affinity
@ -1646,7 +1629,7 @@ test_operator_benchmark() {
pip_install pandas
python check_perf_csv.py \
--actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
--expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv"
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {
@ -1683,7 +1666,7 @@ if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
fi
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" == 'default' ]]; then
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
test_linux_aarch64
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
test_forward_backward_compatibility
@ -1734,8 +1717,6 @@ elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
test_inductor_micro_benchmark
elif [[ "${TEST_CONFIG}" == *aoti_cross_compile_for_windows* ]]; then
test_inductor_aoti_cross_compile_for_windows
elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then
install_torchvision
id=$((SHARD_NUMBER-1))

View File

@ -7,12 +7,16 @@ max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203,E305,E402,E501,E704,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
# to line this up with executable bit
EXE001,
# these ignores are from flake8-bugbear; please fix!
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
# these ignores are from flake8-comprehensions; please fix!
C407,
# these ignores are from flake8-logging-format; please fix!
G100,G101,G200
# these ignores are from flake8-simplify. please fix or ignore with commented reason
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
# SIM104 is already covered by pyupgrade ruff

View File

@ -1 +1 @@
69bbe7363897764f9e758d851cd0340147d27f94
1b013f5b5a87a1882eb143c26d79d091150d6a37

29
.github/labeler.yml vendored
View File

@ -133,32 +133,3 @@
"ciflow/vllm":
- .github/ci_commit_pins/vllm.txt
"ciflow/b200":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/h100":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/rocm":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm

View File

@ -3,7 +3,6 @@ ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-symm-mem
- ciflow/b200-distributed
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
@ -33,7 +32,6 @@ ciflow_push_tags:
- ciflow/rocm
- ciflow/rocm-mi300
- ciflow/rocm-mi355
- ciflow/rocm-navi31
- ciflow/s390
- ciflow/slow
- ciflow/torchbench

View File

@ -79,21 +79,21 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
),
"12.9": (
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | "
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | "
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | "
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | "
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'"
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"13.0": (
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
@ -241,11 +241,7 @@ def generate_libtorch_matrix(
arches += CUDA_ARCHES
arches += ROCM_ARCHES
elif os == "windows":
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
# in 2.10
windows_cuda_arches = CUDA_ARCHES.copy()
windows_cuda_arches.remove("12.9")
arches += windows_cuda_arches
arches += CUDA_ARCHES
if libtorch_variants is None:
libtorch_variants = [
"shared-with-deps",
@ -309,11 +305,7 @@ def generate_wheels_matrix(
if os == "linux":
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
elif os == "windows":
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
# in 2.10
windows_cuda_arches = CUDA_ARCHES.copy()
windows_cuda_arches.remove("12.9")
arches += windows_cuda_arches + XPU_ARCHES
arches += CUDA_ARCHES + XPU_ARCHES
elif os == "linux-aarch64":
# Separate new if as the CPU type is different and
# uses different build/test scripts

View File

@ -1092,7 +1092,7 @@ class GitHubPR:
editor = node["editor"]
return GitHubComment(
body_text=node["bodyText"],
created_at=node.get("createdAt", ""),
created_at=node["createdAt"] if "createdAt" in node else "",
author_login=node["author"]["login"],
author_url=node["author"].get("url", None),
author_association=node["authorAssociation"],

View File

@ -26,8 +26,9 @@ name: !{{ build_environment }}
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "!{{ py_ver.strip('t') + ('.4' if '3.14' not in py_ver else '.0') }}"
python-version: "!{{ (py_ver.strip('t') + '.4') if '3.14' not in py_ver else '3.14.0-rc.2' }}"
freethreaded: !{{ "true" if py_ver.endswith('t') else "false" }}
{%- endmacro %}

View File

@ -37,7 +37,7 @@ on:
runner:
required: false
type: string
default: "linux.c7i.2xlarge"
default: "linux.2xlarge"
description: |
Label of the runner this job should run on.
test-matrix:

View File

@ -224,46 +224,6 @@ jobs:
continue-on-error: true
uses: ./.github/actions/download-td-artifacts
- name: Download Windows torch wheel for cross-compilation
if: matrix.win_torch_wheel_artifact != ''
uses: seemethere/download-artifact-s3@1da556a7aa0a088e3153970611f6c432d58e80e6 # v4.2.0
with:
name: ${{ matrix.win_torch_wheel_artifact }}
path: win-torch-wheel
- name: Extract Windows wheel and setup CUDA libraries
if: matrix.win_torch_wheel_artifact != ''
shell: bash
run: |
set -x
# Find the wheel file
WHEEL_FILE=$(find win-torch-wheel -name "*.whl" -type f | head -n 1)
if [ -z "$WHEEL_FILE" ]; then
echo "Error: No wheel file found in win-torch-wheel directory"
exit 1
fi
echo "Found wheel file: $WHEEL_FILE"
# Unzip the wheel file
unzip -q "$WHEEL_FILE" -d win-torch-wheel-extracted
echo "Extracted wheel contents"
# Setup CUDA libraries (cuda.lib and cudart.lib) directory
mkdir -p win-torch-wheel-extracted/lib/x64
if [ -f "win-torch-wheel/cuda.lib" ]; then
mv win-torch-wheel/cuda.lib win-torch-wheel-extracted/lib/x64/
echo "Moved cuda.lib to win-torch-wheel-extracted/lib/x64/"
fi
if [ -f "win-torch-wheel/cudart.lib" ]; then
mv win-torch-wheel/cudart.lib win-torch-wheel-extracted/lib/x64/
echo "Moved cudart.lib to win-torch-wheel-extracted/lib/x64/"
fi
# Verify CUDA libraries are present
echo "CUDA libraries:"
ls -la win-torch-wheel-extracted/lib/x64/ || echo "No CUDA libraries found"
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py

View File

@ -168,31 +168,6 @@ jobs:
run: |
.ci/pytorch/win-build.sh
# Collect Windows torch libs and CUDA libs for cross-compilation
- name: Collect Windows CUDA libs for cross-compilation
if: steps.build.outcome != 'skipped' && inputs.cuda-version != 'cpu'
shell: bash
run: |
set -ex
# Create directory structure if does not exist
mkdir -p /c/${{ github.run_id }}/build-results
# Copy CUDA libs
CUDA_PATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${{ inputs.cuda-version }}"
if [ -f "${CUDA_PATH}/lib/x64/cuda.lib" ]; then
cp "${CUDA_PATH}/lib/x64/cuda.lib" /c/${{ github.run_id }}/build-results/
fi
if [ -f "${CUDA_PATH}/lib/x64/cudart.lib" ]; then
cp "${CUDA_PATH}/lib/x64/cudart.lib" /c/${{ github.run_id }}/build-results/
fi
# List collected files
echo "Collected CUDA libs:"
ls -lah /c/${{ github.run_id }}/build-results/*.lib
# Upload to github so that people can click and download artifacts
- name: Upload artifacts to s3
if: steps.build.outcome != 'skipped'

View File

@ -1,62 +0,0 @@
name: CI for distributed tests on B200
on:
pull_request:
paths:
- .github/workflows/b200-distributed.yml
workflow_dispatch:
push:
tags:
- ciflow/b200-distributed/*
schedule:
- cron: 46 8 * * * # about 1:46am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200:
name: linux-jammy-cuda12.8-py3.10-gcc11-build-distributed-b200
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 2, runner: "linux.dgx.b200.8" },
{ config: "distributed", shard: 2, num_shards: 2, runner: "linux.dgx.b200.8" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-test-distributed-b200:
name: linux-jammy-cuda12.8-py3.10-gcc11-test-b200
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200
with:
timeout-minutes: 1200
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -224,7 +224,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -473,7 +473,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -722,7 +722,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -971,7 +971,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1220,7 +1220,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1469,7 +1469,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1718,7 +1718,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -259,7 +259,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-test: # Testing
@ -925,7 +925,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-test: # Testing
@ -1591,7 +1591,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-test: # Testing
@ -2257,7 +2257,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-test: # Testing
@ -2923,7 +2923,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-test: # Testing
@ -3589,7 +3589,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_9-test: # Testing
@ -4255,7 +4255,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_9-test: # Testing

View File

@ -63,6 +63,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.10.4"
freethreaded: false

View File

@ -59,6 +59,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.10.4"
freethreaded: false
@ -168,6 +169,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.11.4"
freethreaded: false
@ -277,6 +279,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.12.4"
freethreaded: false
@ -386,6 +389,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.13.4"
freethreaded: false
@ -495,6 +499,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.13.4"
freethreaded: true
@ -604,8 +609,9 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.14.0"
python-version: "3.14.0-rc.2"
freethreaded: false
- name: Checkout PyTorch
uses: actions/checkout@v4
@ -713,8 +719,9 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v6
with:
# TODO: Removeme once 3.14 is out
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
python-version: "3.14.0"
python-version: "3.14.0-rc.2"
freethreaded: true
- name: Checkout PyTorch
uses: actions/checkout@v4

View File

@ -788,6 +788,256 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-debug
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-debug-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-debug
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-debug-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_9-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type

View File

@ -788,6 +788,256 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-release
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-release-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-release
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-release-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_9-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type

File diff suppressed because it is too large Load Diff

View File

@ -88,27 +88,27 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
]}
secrets: inherit

View File

@ -118,9 +118,9 @@ jobs:
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running all other linters"
if [ "$CHANGED_FILES" = '*' ]; then
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
else
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh
fi
quick-checks:

View File

@ -30,9 +30,9 @@ permissions:
contents: read
jobs:
x86-opbenchmark-build:
opbenchmark-build:
if: github.repository_owner == 'pytorch'
name: x86-opbenchmark-build
name: opbenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-py3.10-gcc11-build
@ -43,36 +43,12 @@ jobs:
]}
secrets: inherit
x86-opbenchmark-test:
name: x86-opbenchmark-test
opbenchmark-test:
name: opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: x86-opbenchmark-build
needs: opbenchmark-build
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
secrets: inherit
aarch64-opbenchmark-build:
if: github.repository_owner == 'pytorch'
name: aarch64-opbenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-aarch64-py3.10
runner: linux.arm64.m7g.4xlarge
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.arm64.m8g.4xlarge" },
]}
secrets: inherit
aarch64-opbenchmark-test:
name: aarch64-opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: aarch64-opbenchmark-build
with:
build-environment: linux-jammy-aarch64-py3.10
docker-image: ${{ needs.aarch64-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.aarch64-opbenchmark-build.outputs.test-matrix }}
docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -45,12 +45,12 @@ jobs:
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
]}
secrets: inherit

View File

@ -1,63 +0,0 @@
name: rocm-navi31
on:
push:
tags:
- ciflow/rocm-navi31/*
workflow_dispatch:
schedule:
# We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs.
# Also run less frequently on weekends.
- cron: 45 */2 * * 1-5
- cron: 45 4,12 * * 0,6
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
jobs:
target-determination:
if: github.repository_owner == 'pytorch'
name: before-test
uses: ./.github/workflows/target_determination.yml
permissions:
id-token: write
contents: read
linux-jammy-rocm-py3_10-build:
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3_10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
tests-to-include: >-
${{ github.event_name == 'schedule' && 'test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
inductor/test_flex_attention inductor/test_max_autotune' || '' }}
secrets: inherit

View File

@ -59,3 +59,29 @@ jobs:
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-rocm-py3_10-gfx1100-test:
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3_10-gfx1100
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
]}
tests-to-include: >
test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
inductor/test_flex_attention inductor/test_max_autotune
secrets: inherit

View File

@ -190,40 +190,6 @@ jobs:
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
secrets: inherit
linux-jammy-rocm-py3_10-build:
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor"
secrets: inherit
inductor-build:
name: inductor-build
uses: ./.github/workflows/_linux-build.yml
@ -234,23 +200,6 @@ jobs:
cuda-arch-list: '8.0'
secrets: inherit
# Test cross-compiled models with Windows libs extracted from wheel
cross-compile-linux-test:
name: cross-compile-linux-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build
- get-label-type
- win-vs2022-cuda12_8-py3-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: |
{ include: [
{ config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" },
]}
secrets: inherit
verify-cachebench-cpu-build:
name: verify-cachebench-cpu-build
uses: ./.github/workflows/_linux-build.yml

1
.gitignore vendored
View File

@ -374,7 +374,6 @@ third_party/ruy/
third_party/glog/
# Virtualenv
.venv/
venv/
# Log files

View File

@ -209,46 +209,6 @@ command = [
'@{{PATHSFILE}}'
]
[[linter]]
code = 'PYREFLY'
include_patterns = [
'torch/**/*.py',
'torch/**/*.pyi',
'torchgen/**/*.py',
'torchgen/**/*.pyi',
'functorch/**/*.py',
'functorch/**/*.pyi',
]
exclude_patterns = []
command = [
'python3',
'tools/linter/adapters/pyrefly_linter.py',
'--config=pyrefly.toml',
]
init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'pyrefly==0.36.2',
'sympy==1.13.3',
'types-requests==2.27.25',
'types-pyyaml==6.0.2',
'types-tabulate==0.8.8',
'types-protobuf==5.29.1.20250403',
'types-setuptools==79.0.0.20250422',
'types-jinja2==2.11.9',
'types-colorama==0.4.6',
'filelock==3.18.0',
'junitparser==2.1.1',
'rich==14.1.0',
'optree==0.17.0',
'types-openpyxl==3.1.5.20250919',
'types-python-dateutil==2.9.0.20251008'
]
[[linter]]
code = 'CLANGTIDY'
include_patterns = [

View File

@ -201,17 +201,3 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/torch/csrc/stable/ @janeyx99 @mikaylagawarecki
/torch/headeronly/ @janeyx99
/torch/header_only_apis.txt @janeyx99
# FlexAttention
/torch/nn/attention/flex_attention.py @drisspg
/torch/_higher_order_ops/flex_attention.py @drisspg
/torch/_inductor/kernel/flex/ @drisspg
/torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -313,14 +313,13 @@ IF(USE_FBGEMM_GENAI)
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
if(DEFINED ROCM_VERSION_DEV AND ROCM_VERSION_DEV VERSION_LESS "7.2.0")
list(PREPEND FBGEMM_GENAI_EXTRA_HIPCC_FLAGS -mllvm -amdgpu-coerce-illegal-types=1)
endif()
# Only compile for gfx942 for now.
# This is rather hacky, I could not figure out a clean solution :(

View File

@ -229,10 +229,10 @@ private:
}
static constexpr uint32_t kPhilox10A = 0x9E3779B9;
static constexpr uint32_t kPhilox10B = 0xBB67AE85;
static constexpr uint32_t kPhiloxSA = 0xD2511F53;
static constexpr uint32_t kPhiloxSB = 0xCD9E8D57;
static const uint32_t kPhilox10A = 0x9E3779B9;
static const uint32_t kPhilox10B = 0xBB67AE85;
static const uint32_t kPhiloxSA = 0xD2511F53;
static const uint32_t kPhiloxSB = 0xCD9E8D57;
};
typedef philox_engine Philox4_32;

View File

@ -8,7 +8,6 @@
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
#endif
#include <ATen/cpu/vec/vec128/vec128_convert.h>

View File

@ -1,794 +0,0 @@
#pragma once
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/macros/Macros.h>
#include <c10/util/irange.h>
namespace at::vec {
// Note [CPU_CAPABILITY namespace]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This header, and all of its subheaders, will be compiled with
// different architecture flags for each supported set of vector
// intrinsics. So we need to make sure they aren't inadvertently
// linked together. We do this by declaring objects in an `inline
// namespace` which changes the name mangling, but can still be
// accessed as `at::vec`.
inline namespace CPU_CAPABILITY {
#define VEC_INT_NEON_TEMPLATE(vl, bit) \
template <> \
struct is_vec_specialized_for<int##bit##_t> : std::bool_constant<true> {}; \
\
template <> \
class Vectorized<int##bit##_t> { \
using neon_type = int##bit##x##vl##_t; \
\
private: \
neon_type values; \
\
public: \
using value_type = int##bit##_t; \
using size_type = int; \
static constexpr size_type size() { \
return vl; \
} \
Vectorized() { \
values = vdupq_n_s##bit(0); \
} \
Vectorized(neon_type v) : values(v) {} \
Vectorized(int##bit##_t val); \
template < \
typename... Args, \
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
Vectorized(Args... vals) { \
__at_align__ int##bit##_t buffer[size()] = {vals...}; \
values = vld1q_s##bit(buffer); \
} \
operator neon_type() const { \
return values; \
} \
static Vectorized<int##bit##_t> loadu( \
const void* ptr, \
int64_t count = size()); \
void store(void* ptr, int64_t count = size()) const; \
template <int64_t mask> \
static Vectorized<int##bit##_t> blend( \
const Vectorized<int##bit##_t>& a, \
const Vectorized<int##bit##_t>& b); \
static Vectorized<int##bit##_t> blendv( \
const Vectorized<int##bit##_t>& a, \
const Vectorized<int##bit##_t>& b, \
const Vectorized<int##bit##_t>& mask_) { \
return vbslq_s##bit(vreinterpretq_u##bit##_s##bit(mask_.values), b, a); \
} \
template <typename step_t> \
static Vectorized<int##bit##_t> arange( \
value_type base = 0, \
step_t step = static_cast<step_t>(1)); \
static Vectorized<int##bit##_t> set( \
const Vectorized<int##bit##_t>& a, \
const Vectorized<int##bit##_t>& b, \
int64_t count = size()); \
const int##bit##_t& operator[](int idx) const = delete; \
int##bit##_t& operator[](int idx) = delete; \
Vectorized<int##bit##_t> abs() const { \
return vabsq_s##bit(values); \
} \
Vectorized<int##bit##_t> real() const { \
return values; \
} \
Vectorized<int##bit##_t> imag() const { \
return vdupq_n_s##bit(0); \
} \
Vectorized<int##bit##_t> conj() const { \
return values; \
} \
Vectorized<int##bit##_t> neg() const { \
return vnegq_s##bit(values); \
} \
int##bit##_t reduce_add() const { \
return vaddvq_s##bit(values); \
} \
int##bit##_t reduce_max() const; \
Vectorized<int##bit##_t> operator==( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vceqq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator!=( \
const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> operator<( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcltq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator<=( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcleq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator>( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcgtq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator>=( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcgeq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> eq(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> ne(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> gt(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> ge(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> lt(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> le(const Vectorized<int##bit##_t>& other) const; \
}; \
template <> \
Vectorized<int##bit##_t> inline operator+( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vaddq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator-( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vsubq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator&( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vandq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator|( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vorrq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator^( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return veorq_s##bit(a, b); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::eq( \
const Vectorized<int##bit##_t>& other) const { \
return (*this == other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ne( \
const Vectorized<int##bit##_t>& other) const { \
return (*this != other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::gt( \
const Vectorized<int##bit##_t>& other) const { \
return (*this > other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ge( \
const Vectorized<int##bit##_t>& other) const { \
return (*this >= other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::lt( \
const Vectorized<int##bit##_t>& other) const { \
return (*this < other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::le( \
const Vectorized<int##bit##_t>& other) const { \
return (*this <= other) & Vectorized<int##bit##_t>(1); \
}
VEC_INT_NEON_TEMPLATE(2, 64)
VEC_INT_NEON_TEMPLATE(4, 32)
VEC_INT_NEON_TEMPLATE(8, 16)
VEC_INT_NEON_TEMPLATE(16, 8)
inline int32_t Vectorized<int32_t>::reduce_max() const {
return vmaxvq_s32(values);
}
inline int16_t Vectorized<int16_t>::reduce_max() const {
return vmaxvq_s16(values);
}
inline int8_t Vectorized<int8_t>::reduce_max() const {
return vmaxvq_s8(values);
}
template <>
Vectorized<int32_t> inline operator*(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
return vmulq_s32(a, b);
}
template <>
Vectorized<int16_t> inline operator*(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
return vmulq_s16(a, b);
}
template <>
Vectorized<int8_t> inline operator*(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
return vmulq_s8(a, b);
}
template <>
inline Vectorized<int64_t> operator~(const Vectorized<int64_t>& a) {
int64x2_t val = a;
return ~val;
}
template <>
inline Vectorized<int32_t> operator~(const Vectorized<int32_t>& a) {
return vmvnq_s32(a);
}
template <>
inline Vectorized<int16_t> operator~(const Vectorized<int16_t>& a) {
return vmvnq_s16(a);
}
template <>
inline Vectorized<int8_t> operator~(const Vectorized<int8_t>& a) {
return vmvnq_s8(a);
}
inline Vectorized<int64_t> Vectorized<int64_t>::operator!=(
const Vectorized<int64_t>& other) const {
return ~(*this == other);
}
inline Vectorized<int32_t> Vectorized<int32_t>::operator!=(
const Vectorized<int32_t>& other) const {
return ~(*this == other);
}
inline Vectorized<int16_t> Vectorized<int16_t>::operator!=(
const Vectorized<int16_t>& other) const {
return ~(*this == other);
}
inline Vectorized<int8_t> Vectorized<int8_t>::operator!=(
const Vectorized<int8_t>& other) const {
return ~(*this == other);
}
template <>
Vectorized<int32_t> inline minimum(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
return vminq_s32(a, b);
}
template <>
Vectorized<int16_t> inline minimum(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
return vminq_s16(a, b);
}
template <>
Vectorized<int8_t> inline minimum(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
return vminq_s8(a, b);
}
template <>
Vectorized<int32_t> inline maximum(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
return vmaxq_s32(a, b);
}
template <>
Vectorized<int16_t> inline maximum(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
return vmaxq_s16(a, b);
}
template <>
Vectorized<int8_t> inline maximum(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
return vmaxq_s8(a, b);
}
template <int64_t mask>
Vectorized<int64_t> Vectorized<int64_t>::blend(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint64x2_t maskArray = {
(mask & 1LL) ? 0xFFFFFFFFFFFFFFFF : 0,
(mask & 2LL) ? 0xFFFFFFFFFFFFFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s64(maskArray, b.values, a.values);
}
template <int64_t mask>
Vectorized<int32_t> Vectorized<int32_t>::blend(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint32x4_t maskArray = {
(mask & 1LL) ? 0xFFFFFFFF : 0,
(mask & 2LL) ? 0xFFFFFFFF : 0,
(mask & 4LL) ? 0xFFFFFFFF : 0,
(mask & 8LL) ? 0xFFFFFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s32(maskArray, b.values, a.values);
}
template <int64_t mask>
Vectorized<int16_t> Vectorized<int16_t>::blend(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint16x8_t maskArray = {
(mask & 1LL) ? 0xFFFF : 0,
(mask & 2LL) ? 0xFFFF : 0,
(mask & 4LL) ? 0xFFFF : 0,
(mask & 8LL) ? 0xFFFF : 0,
(mask & 16LL) ? 0xFFFF : 0,
(mask & 32LL) ? 0xFFFF : 0,
(mask & 64LL) ? 0xFFFF : 0,
(mask & 128LL) ? 0xFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s16(maskArray, b.values, a.values);
}
template <int64_t mask>
Vectorized<int8_t> Vectorized<int8_t>::blend(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint8x16_t maskArray = {
(mask & 1LL) ? 0xFF : 0,
(mask & 2LL) ? 0xFF : 0,
(mask & 4LL) ? 0xFF : 0,
(mask & 8LL) ? 0xFF : 0,
(mask & 16LL) ? 0xFF : 0,
(mask & 32LL) ? 0xFF : 0,
(mask & 64LL) ? 0xFF : 0,
(mask & 128LL) ? 0xFF : 0,
(mask & 256LL) ? 0xFF : 0,
(mask & 512LL) ? 0xFF : 0,
(mask & 1024LL) ? 0xFF : 0,
(mask & 2048LL) ? 0xFF : 0,
(mask & 4096LL) ? 0xFF : 0,
(mask & 8192LL) ? 0xFF : 0,
(mask & 16384LL) ? 0xFF : 0,
(mask & 32768LL) ? 0xFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s8(maskArray, b.values, a.values);
}
#define VEC_INT_NEON_OPS(vl, bit) \
inline Vectorized<int##bit##_t>::Vectorized(int##bit##_t val) { \
values = vdupq_n_s##bit(val); \
} \
inline Vectorized<int##bit##_t> Vectorized<int##bit##_t>::loadu( \
const void* ptr, int64_t count) { \
if (count == size()) { \
return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(ptr)); \
} else { \
__at_align__ int##bit##_t tmp_values[size()]; \
for (const auto i : c10::irange(size())) { \
tmp_values[i] = 0; \
} \
std::memcpy( \
tmp_values, \
reinterpret_cast<const int##bit##_t*>(ptr), \
count * sizeof(int##bit##_t)); \
return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(tmp_values)); \
} \
} \
inline void Vectorized<int##bit##_t>::store(void* ptr, int64_t count) \
const { \
if (count == size()) { \
vst1q_s##bit(reinterpret_cast<int##bit##_t*>(ptr), values); \
} else { \
int##bit##_t tmp_values[size()]; \
vst1q_s##bit(reinterpret_cast<int##bit##_t*>(tmp_values), values); \
std::memcpy(ptr, tmp_values, count * sizeof(int##bit##_t)); \
} \
}
VEC_INT_NEON_OPS(2, 64)
VEC_INT_NEON_OPS(4, 32)
VEC_INT_NEON_OPS(8, 16)
VEC_INT_NEON_OPS(16, 8)
template <>
Vectorized<int64_t> inline operator*(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return x * y;
}
template <>
Vectorized<int64_t> inline operator/(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return x / y;
}
template <>
Vectorized<int32_t> inline operator/(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
int32x4_t x = a;
int32x4_t y = b;
return x / y;
}
inline int64_t Vectorized<int64_t>::reduce_max() const {
return std::max(values[0], values[1]);
}
template <>
Vectorized<int64_t> inline minimum(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return {std::min(x[0], y[0]), std::min(x[1], y[1])};
}
template <>
Vectorized<int64_t> inline maximum(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return {std::max(x[0], y[0]), std::max(x[1], y[1])};
}
template <typename step_t>
inline Vectorized<int64_t> Vectorized<int64_t>::arange(
int64_t base,
step_t step) {
const Vectorized<int64_t> base_vec(base);
const Vectorized<int64_t> step_vec(step);
const int64x2_t step_sizes = {0, 1};
return base_vec.values + step_sizes * step_vec.values;
}
template <typename step_t>
inline Vectorized<int32_t> Vectorized<int32_t>::arange(
int32_t base,
step_t step) {
const Vectorized<int32_t> base_vec(base);
const Vectorized<int32_t> step_vec(step);
const int32x4_t step_sizes = {0, 1, 2, 3};
return vmlaq_s32(base_vec, step_sizes, step_vec);
}
template <typename step_t>
inline Vectorized<int16_t> Vectorized<int16_t>::arange(
int16_t base,
step_t step) {
const Vectorized<int16_t> base_vec(base);
const Vectorized<int16_t> step_vec(step);
const int16x8_t step_sizes = {0, 1, 2, 3, 4, 5, 6, 7};
return vmlaq_s16(base_vec, step_sizes, step_vec);
}
template <typename step_t>
inline Vectorized<int8_t> Vectorized<int8_t>::arange(int8_t base, step_t step) {
const Vectorized<int8_t> base_vec(base);
const Vectorized<int8_t> step_vec(step);
const int8x16_t step_sizes = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
return vmlaq_s8(base_vec, step_sizes, step_vec);
}
template <>
Vectorized<int64_t> inline operator>>(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
uint64x2_t u = vreinterpretq_u64_s64(y);
uint64x2_t z = {std::min(u[0], (uint64_t)63), std::min(u[1], (uint64_t)63)};
return x >> vreinterpretq_s64_u64(z);
}
template <>
Vectorized<int32_t> inline operator>>(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
int32x4_t x = a;
int32x4_t y = b;
uint32x4_t bound = vdupq_n_u32(31);
uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound);
return x >> vreinterpretq_s32_u32(z);
}
template <>
Vectorized<int16_t> inline operator>>(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
int16x8_t x = a;
int16x8_t y = b;
uint16x8_t bound = vdupq_n_u16(15);
uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound);
return x >> vreinterpretq_s16_u16(z);
}
template <>
Vectorized<int8_t> inline operator>>(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
int8x16_t x = a;
int8x16_t y = b;
uint8x16_t bound = vdupq_n_u8(7);
int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound));
return x >> z;
}
template <>
Vectorized<int64_t> inline operator<<(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t y = b;
uint64x2_t u = vreinterpretq_u64_s64(y);
uint64x2_t z = {std::min(u[0], (uint64_t)64), std::min(u[1], (uint64_t)64)};
return vshlq_s64(a, vreinterpretq_s64_u64(z));
}
template <>
Vectorized<int32_t> inline operator<<(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
int32x4_t y = b;
uint32x4_t bound = vdupq_n_u32(32);
uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound);
return vshlq_s32(a, vreinterpretq_s32_u32(z));
}
template <>
Vectorized<int16_t> inline operator<<(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
int16x8_t y = b;
uint16x8_t bound = vdupq_n_u16(16);
uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound);
return vshlq_s16(a, vreinterpretq_s16_u16(z));
}
template <>
Vectorized<int8_t> inline operator<<(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
int8x16_t y = b;
uint8x16_t bound = vdupq_n_u8(8);
int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound));
return vshlq_s8(a, z);
}
inline Vectorized<int64_t> Vectorized<int64_t>::set(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 2) {
return b;
} else {
int64x2_t c = {b.values[0], a.values[1]};
return c;
}
}
inline Vectorized<int32_t> Vectorized<int32_t>::set(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 4) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint32x4_t maskArray = {
(count >= 1LL) ? 0xFFFFFFFF : 0,
(count >= 2LL) ? 0xFFFFFFFF : 0,
(count >= 3LL) ? 0xFFFFFFFF : 0,
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s32(maskArray, b.values, a.values);
}
}
inline Vectorized<int16_t> Vectorized<int16_t>::set(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 8) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint16x8_t maskArray = {
static_cast<uint16_t>((count >= 1LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 2LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 3LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 4LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 5LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 6LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 7LL) ? 0xFFFF : 0),
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s16(maskArray, b.values, a.values);
}
}
inline Vectorized<int8_t> Vectorized<int8_t>::set(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 16) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint8x16_t maskArray = {
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s8(maskArray, b.values, a.values);
}
}
template <>
Vectorized<int16_t> inline operator/(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
Vectorized<int32_t> highBitsA = vmovl_high_s16(a);
Vectorized<int32_t> highBitsB = vmovl_high_s16(b);
Vectorized<int32_t> lowBitsA = vmovl_s16(vget_low_s16(a));
Vectorized<int32_t> lowBitsB = vmovl_s16(vget_low_s16(b));
int32x4_t highBitsResult = highBitsA / highBitsB;
int32x4_t lowBitsResult = lowBitsA / lowBitsB;
return vuzp1q_s16(
vreinterpretq_s16_s32(lowBitsResult),
vreinterpretq_s16_s32(highBitsResult));
}
template <>
Vectorized<int8_t> inline operator/(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
Vectorized<int16_t> highBitsA = vmovl_high_s8(a);
Vectorized<int16_t> highBitsB = vmovl_high_s8(b);
Vectorized<int16_t> lowBitsA = vmovl_s8(vget_low_s8(a));
Vectorized<int16_t> lowBitsB = vmovl_s8(vget_low_s8(b));
int16x8_t highBitsResult = highBitsA / highBitsB;
int16x8_t lowBitsResult = lowBitsA / lowBitsB;
return vuzp1q_s8(
vreinterpretq_s8_s16(lowBitsResult),
vreinterpretq_s8_s16(highBitsResult));
}
template <>
Vectorized<int64_t> inline clamp(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& min,
const Vectorized<int64_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int32_t> inline clamp(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& min,
const Vectorized<int32_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int16_t> inline clamp(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& min,
const Vectorized<int16_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int8_t> inline clamp(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& min,
const Vectorized<int8_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int64_t> inline clamp_max(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int32_t> inline clamp_max(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int16_t> inline clamp_max(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int8_t> inline clamp_max(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int64_t> inline clamp_min(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& min) {
return maximum(min, a);
}
template <>
Vectorized<int32_t> inline clamp_min(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& min) {
return maximum(min, a);
}
template <>
Vectorized<int16_t> inline clamp_min(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& min) {
return maximum(min, a);
}
template <>
Vectorized<int8_t> inline clamp_min(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& min) {
return maximum(min, a);
}
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -1377,7 +1377,7 @@ Vectorized<c10::quint8> inline maximum(
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<int8_t> src) {
auto s8x8 = vget_low_s8(src);
auto s8x8 = vld1_s8(src.operator const int8_t*());
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
@ -1402,7 +1402,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<int8_t> src) {
auto s8x8 = vget_low_s8(src);
auto s8x8 = vld1_s8(src.operator const int8_t*());
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));

View File

@ -16,8 +16,6 @@
#include <c10/util/irange.h>
#include <c10/core/ScalarType.h>
#include <ATen/cuda/detail/BLASConstants.h>
#ifdef USE_ROCM
#include <c10/cuda/CUDAStream.h>
#include <hipblaslt/hipblaslt-ext.hpp>
@ -1956,15 +1954,13 @@ void scaled_gemm(
const void *result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
bool use_fast_accum,
const std::optional<Tensor>& alpha) {
bool use_fast_accum) {
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
// of input arguments to this function.
const auto computeType = CUBLAS_COMPUTE_32F;
const auto scaleType = CUDA_R_32F;
// Note: alpha_val may change later depending on user-passed argument
float alpha_val = 1.0;
float beta_val = 0.0;
const float alpha_val = 1.0;
const float beta_val = 0.0;
CuBlasLtMatmulDescriptor computeDesc(computeType, scaleType);
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSA, _cublasOpFromChar(transa));
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, _cublasOpFromChar(transb));
@ -2035,33 +2031,6 @@ void scaled_gemm(
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, CUBLASLT_EPILOGUE_BIAS);
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE, ScalarTypeToCudaDataType(bias_dtype));
}
// Handle user-passed alpha
float *alpha_ptr = &alpha_val;
float *beta_ptr = &beta_val;
if (alpha.has_value()) {
auto& a = alpha.value();
// if device-tensor
if (a.is_cuda()) {
// NOTE: there are lifetime requirements on device-side pointers for alpha/beta -- the value must be
// valid & correct until the cublas call finishes (not is scheduled like host-side values). Thus
// we need to use allocations for alpha/beta that have some guarantees on lifetime - a statically
// managed 4B buffer for alpha that we'll copy the passed alpha value into, and constant memory
// for beta respectively.
float *user_alpha_ptr = at::cuda::detail::get_user_alpha_ptr();
at::Tensor user_alpha = at::from_blob(user_alpha_ptr, {1}, TensorOptions().device(kCUDA).dtype(kFloat));
user_alpha.copy_(a);
// Tell cublasLt we're using device-side pointers for alpha/beta
auto pointer_mode = CUBLASLT_POINTER_MODE_DEVICE;
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_POINTER_MODE, pointer_mode);
alpha_ptr = user_alpha.data_ptr<float>();
beta_ptr = at::cuda::detail::get_cublas_device_zero();
} else {
alpha_val = a.item<float>();
}
}
// For other data types, use the get_scale_mode function based on scaling type
// The SCALE_MODE attrs only exist in cuBLAS 12.8+/ROCm 7.0 or in recent hipblaslt,
// but we must invoke get_scale_mode anyways to trigger the version checks.
@ -2079,7 +2048,6 @@ void scaled_gemm(
cublasLtMatmulHeuristicResult_t heuristicResult = {};
int returnedResult = 0;
cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle();
TORCH_CUDABLAS_CHECK(cublasLtMatmulAlgoGetHeuristic(
ltHandle,
computeDesc.descriptor(),
@ -2120,10 +2088,10 @@ void scaled_gemm(
auto is_valid_status = hipblaslt_ext::matmulIsAlgoSupported(
ltHandle,
computeDesc.descriptor(),
alpha_ptr,
&alpha_val,
Adesc.descriptor(),
Bdesc.descriptor(),
beta_ptr,
&beta_val,
Cdesc.descriptor(),
Ddesc.descriptor(),
all_algos[i].algo,
@ -2142,14 +2110,17 @@ void scaled_gemm(
cublasStatus_t cublasStatus = cublasLtMatmul(
ltHandle,
computeDesc.descriptor(),
alpha_ptr,
&alpha_val,
mat1_ptr,
Adesc.descriptor(),
mat2_ptr,
Bdesc.descriptor(),
beta_ptr,
// NOTE: always use result_ptr here, because cuBLASLt w/device beta=0 can't handle nullptr either
&beta_val,
#ifdef USE_ROCM
result_ptr, // unused, since beta_val is 0, but hipblaslt can't handle nullptr
#else
nullptr,
#endif // ifdef USE_ROCM
Cdesc.descriptor(),
result_ptr,
Ddesc.descriptor(),

View File

@ -161,8 +161,7 @@ void scaled_gemm(
const void* result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
bool use_fast_accum,
const std::optional<Tensor>& alpha);
bool use_fast_accum);
#define CUDABLAS_BGEMM_ARGTYPES(Dtype) CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, Dtype)

View File

@ -325,9 +325,9 @@ uint64_t CUDAGeneratorImpl::seed() {
*/
c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
// The RNG state comprises the seed, and an offset used for Philox.
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(int64_t);
static const size_t total_size = seed_size + offset_size;
auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto rng_state = state_tensor.data_ptr<uint8_t>();
@ -346,9 +346,9 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
* and size of the internal state.
*/
void CUDAGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(int64_t);
static const size_t total_size = seed_size + offset_size;
detail::check_rng_state(new_state);

View File

@ -183,6 +183,11 @@ struct CUDACachingHostAllocatorImpl
return true;
}
bool pinned_use_background_threads() override {
return c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
pinned_use_background_threads();
}
EventPool::Event create_event_internal(DeviceIndex idx) {
// Leak the event pool to avoid shutdown issue.
static auto* event_pool = new EventPool();

View File

@ -177,6 +177,7 @@ inline void segmented_sort_pairs(
}
}
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
inline void unique_by_key(
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
@ -192,6 +193,7 @@ inline void unique_by_key(
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
}
#endif
namespace impl {
@ -577,6 +579,7 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
#endif
}
#if CUB_SUPPORTS_SCAN_BY_KEY()
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
@ -604,6 +607,7 @@ inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT
#endif
}
#endif
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
void unique(InputIteratorT input, OutputIteratorT output,

View File

@ -28,6 +28,22 @@
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
#endif
// cub support for UniqueByKey is added to cub 1.16 in:
// https://github.com/NVIDIA/cub/pull/405
#if CUB_VERSION >= 101600
#define CUB_SUPPORTS_UNIQUE_BY_KEY() true
#else
#define CUB_SUPPORTS_UNIQUE_BY_KEY() false
#endif
// cub support for scan by key is added to cub 1.15
// in https://github.com/NVIDIA/cub/pull/376
#if CUB_VERSION >= 101500
#define CUB_SUPPORTS_SCAN_BY_KEY() 1
#else
#define CUB_SUPPORTS_SCAN_BY_KEY() 0
#endif
// cub support for cub::FutureValue is added to cub 1.15 in:
// https://github.com/NVIDIA/cub/pull/305
#if CUB_VERSION >= 101500

View File

@ -1,54 +0,0 @@
#include <ATen/Functions.h>
#include <ATen/Tensor.h>
#include <ATen/cuda/Exceptions.h>
#include <mutex>
namespace at {
namespace cuda {
namespace detail {
__device__ __constant__ float cublas_one_device;
__device__ __constant__ float cublas_zero_device;
float *get_cublas_device_one() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float one = 1.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float)));
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return ptr;
}
float *get_cublas_device_zero() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float zero = 0.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float)));
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return ptr;
}
float *get_user_alpha_ptr() {
static float *alpha_ptr;
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float)));
});
return alpha_ptr;
}
} // namespace detail
} // namespace cuda
} // namespace at

View File

@ -1,11 +0,0 @@
#pragma once
#include <ATen/core/TensorBase.h>
namespace at::cuda::detail {
float *get_cublas_device_one();
float *get_cublas_device_zero();
float *get_user_alpha_ptr();
} // namespace at::cuda::detail

View File

@ -109,8 +109,7 @@ class DefaultScaledGemmOp : public Callable<ScaledGemmParams<T>> {
params->c_scale_ptr,
params->ldc,
params->c_dtype,
params->use_fast_accum,
std::nullopt /* alpha */);
params->use_fast_accum);
return OK;
}
};

View File

@ -160,10 +160,6 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,
DispatchKey::SparseCPU,
DispatchKey::SparseCUDA,
DispatchKey::SparseCsrCPU,
DispatchKey::SparseCsrCUDA,
});
inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {

View File

@ -240,8 +240,8 @@ TORCH_META_FUNC(gelu_backward) (
namespace at::native {
static constexpr double SELU_ALPHA = 1.6732632423543772848170429916717;
static constexpr double SELU_SCALE = 1.0507009873554804934193349852946;
static const double SELU_ALPHA = 1.6732632423543772848170429916717;
static const double SELU_SCALE = 1.0507009873554804934193349852946;
DEFINE_DISPATCH(elu_stub);
DEFINE_DISPATCH(elu_backward_stub);

View File

@ -286,7 +286,7 @@ template void scal_fast_path<scalar_t>(int *n, scalar_t *a, scalar_t *x, int *in
#if AT_BUILD_WITH_BLAS()
template <>
bool scal_use_fast_path<double>(int64_t n, int64_t incx) {
auto constexpr intmax = std::numeric_limits<int>::max();
auto intmax = std::numeric_limits<int>::max();
return n <= intmax && incx <= intmax;
}
@ -315,7 +315,7 @@ bool gemv_use_fast_path<float>(
int64_t incx,
[[maybe_unused]] float beta,
int64_t incy) {
auto constexpr intmax = std::numeric_limits<int>::max();
auto intmax = std::numeric_limits<int>::max();
return (m <= intmax) && (n <= intmax) && (lda <= intmax) &&
(incx > 0) && (incx <= intmax) && (incy > 0) && (incy <= intmax);
}

View File

@ -658,7 +658,6 @@ static void check_shape_forward(const at::Tensor& input,
TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported");
TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported");
TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero");
TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups);
TORCH_CHECK(weight_dim == k,
"Expected ", weight_dim, "-dimensional input for ", weight_dim,

View File

@ -1,6 +1,5 @@
#pragma once
#include <array>
#include <ATen/native/Math.h>
#include <c10/macros/Macros.h>
#include <c10/util/MathConstants.h>
@ -128,7 +127,7 @@ C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, unifor
template<typename scalar_t>
C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
constexpr static scalar_t kTailValues[] = {
const static scalar_t kTailValues[] = {
0.0810614667953272,
0.0413406959554092,
0.0276779256849983,
@ -140,7 +139,7 @@ C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
0.00925546218271273,
0.00833056343336287
};
if (k < std::size(kTailValues)) {
if (k <= 9) {
return kTailValues[static_cast<size_t>(k)];
}
scalar_t kp1sq = (k + 1) * (k + 1);

View File

@ -581,7 +581,7 @@ scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
template <typename scalar_t>
static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
static constexpr scalar_t lanczos_sum_expg_scaled_num[13] = {
static const scalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
@ -596,7 +596,7 @@ static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static constexpr scalar_t lanczos_sum_expg_scaled_denom[13] = {
static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
@ -712,7 +712,7 @@ static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
template <typename scalar_t>
static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
static constexpr scalar_t d[25][25] =
static const scalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,

View File

@ -62,7 +62,7 @@
#include <utility>
#include <vector>
static constexpr int MIOPEN_DIM_MAX = 5;
static const int MIOPEN_DIM_MAX = 5;
namespace at::meta {

View File

@ -1906,9 +1906,11 @@ Tensor& index_fill_(
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
TORCH_CHECK(
self.is_complex() || !source.isComplex(),
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
if (!self.is_complex() && source.isComplex()) {
TORCH_CHECK(
false,
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
}
// Handle the case when `self` is 0-dim
Tensor self_nonzero_dim = (self.dim() == 0) ? self.unsqueeze(-1) : self;

View File

@ -77,7 +77,7 @@ inline AdvancedIndex make_info(Tensor self, IOptTensorListRef orig) {
// next broadcast all index tensors together
try {
indices = expand_outplace(indices);
} catch (std::exception&) {
} catch (std::exception& e) {
TORCH_CHECK_INDEX(
false,
"shape mismatch: indexing tensors could not be broadcast together"

View File

@ -141,8 +141,6 @@ void compute_triu_tril(const Tensor& self, int64_t k, const Tensor &result) {
return;
}
checkTrilTriuMemoryOverlap(result, self);
bool inplace_op = self.is_same(result);
bool inplace_update = false;

View File

@ -1,4 +1,3 @@
#include <ATen/MemoryOverlap.h>
#include <ATen/core/Tensor.h>
#include <ATen/native/LinearAlgebraUtils.h>
@ -55,13 +54,4 @@ static inline std::tuple<bool, Tensor> checkTrilTriuBatchContiguous(const Tensor
return std::make_tuple(true, tensor);
}
static inline void checkTrilTriuMemoryOverlap(const Tensor& result, const Tensor& self) {
if (result.is_same(self)) {
at::assert_no_internal_overlap(result);
} else {
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
}
}
} // namespace at::native

View File

@ -120,7 +120,7 @@ static void pow_tensor_scalar_kernel(
} else if (dtype == ScalarType::Half) {
[&]() {
using scalar_t =
decltype(c10::impl::ScalarTypeToCPPType<ScalarType::Half>::t);
c10::impl::ScalarTypeToCPPTypeT<ScalarType::Half>;
const auto exp = exp_scalar.to<scalar_t>();
using Vec = Vectorized<scalar_t>;
cpu_kernel_vec(iter,

View File

@ -1038,7 +1038,7 @@ struct HelperInterpNearest : public HelperInterpBase {
// We keep this structure for BC and consider as deprecated.
// See HelperInterpNearestExact as replacement
static constexpr int interp_size = 1;
static const int interp_size = 1;
static inline void init_indices_weights(
at::ScalarType output_type,
@ -1155,7 +1155,7 @@ struct HelperInterpNearestExact : public HelperInterpNearest {
struct HelperInterpLinear : public HelperInterpBase {
static constexpr int interp_size = 2;
static const int interp_size = 2;
// Compute indices and weights for each interpolated dimension
// indices_weights = {
@ -1275,7 +1275,7 @@ struct HelperInterpLinear : public HelperInterpBase {
struct HelperInterpCubic : public HelperInterpBase {
static constexpr int interp_size = 4;
static const int interp_size = 4;
// Compute indices and weights for each interpolated dimension
// indices_weights = {

View File

@ -1359,8 +1359,7 @@ _scaled_gemm(
const ScalingType scaling_choice_a, const ScalingType scaling_choice_b,
const std::optional<Tensor>& bias,
const bool use_fast_accum,
Tensor& out,
const std::optional<Tensor>& alpha = std::nullopt) {
Tensor& out) {
cublasCommonArgs args(mat1, mat2, out, scale_a, scale_b, std::nullopt, scaling_choice_a, scaling_choice_b);
const auto out_dtype_ = args.result->scalar_type();
TORCH_CHECK(args.transa == 't' && args.transb == 'n', "Only multiplication of row-major and column-major matrices is supported by cuBLASLt");
@ -1411,8 +1410,7 @@ _scaled_gemm(
args.scale_result_ptr,
args.result_ld,
out_dtype_,
use_fast_accum,
alpha);
use_fast_accum);
return out;
}
}
@ -1761,7 +1759,6 @@ enum class ScaledGemmImplementation {
MXFP8_MXFP8 = 6,
NVFP4_NVFP4 = 7,
NVFP4_NVFP4_SINGLE_SCALE = 8,
MXFP4_MXFP4 = 9,
};
/**
@ -1958,39 +1955,10 @@ bool check_mxfp8_recipe(c10::ScalarType type_a,
return true;
}
/**
* Both inputs must be fp4
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
*/
bool check_mxfp4_recipe(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp4
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
return false;
}
// 1 scales, 1 recipes for each input
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {Blockwise_1x32, e8m0} for A & B
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
return true;
}
using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>;
using namespace std::placeholders;
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 9> scale_kernel_dispatch = {{
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 8> scale_kernel_dispatch = {{
{ "tensorwise_tensorwise", check_tensorwise_recipe, ScaledGemmImplementation::TENSORWISE_TENSORWISE },
{ "rowwise_rowwise", check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE},
{ "block_1x128_128x128", std::bind(check_deepseek_recipe, ScalingType::BlockWise1x128, ScalingType::BlockWise128x128, _1, _2, _3, _4, _5, _6),
@ -2001,8 +1969,7 @@ std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 9>
ScaledGemmImplementation::BLOCK_1x128_1x128},
{ "nvfp4_nvfp4", check_nvfp4_recipe, ScaledGemmImplementation::NVFP4_NVFP4},
{ "nvfp4_nvfp4_single_scale", check_nvfp4_recipe_single_scale, ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE },
{ "mxfp8_mxfp8", check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8},
{ "mxfp4_mxfp4", check_mxfp4_recipe, ScaledGemmImplementation::MXFP4_MXFP4}}};
{ "mxfp8_mxfp8", check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}}};
Tensor&
_scaled_tensorwise_tensorwise(
@ -2220,22 +2187,15 @@ _scaled_mxfp8_mxfp8(
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
mat_a.scalar_type(), mat_b.scalar_type());
#ifdef USE_ROCM
auto scale_a_elems = ceil_div<int64_t>(mat_a.size(0), 32) * mat_a.size(1);
auto scale_b_elems = ceil_div<int64_t>(mat_b.size(1), 32) * mat_b.size(0);
#else
auto scale_a_elems = round_up<int64_t>(mat_a.size(0), 128) * round_up<int64_t>(ceil_div<int64_t>(mat_a.size(1), 32), 4);
auto scale_b_elems = round_up<int64_t>(mat_b.size(1), 128) * round_up<int64_t>(ceil_div<int64_t>(mat_b.size(0), 32), 4);
#endif
TORCH_CHECK_VALUE(scale_a_elems == scale_a.numel(),
"For Blockwise scaling scale_a should have ", scale_a_elems, " elements, got: ", scale_a.numel());
TORCH_CHECK_VALUE(scale_b_elems == scale_b.numel(),
"For Blockwise scaling scale_b should have ", scale_b_elems, " elements, got: ", scale_b.numel());
#ifndef USE_ROCM
TORCH_CHECK_VALUE(swizzle_a == SwizzleType::SWIZZLE_32_4_4, "scale_a must be swizzled to SWIZZLE_32_4_4 format");
TORCH_CHECK_VALUE(swizzle_b == SwizzleType::SWIZZLE_32_4_4, "scale_b must be swizzled to SWIZZLE_32_4_4 format");
#endif
TORCH_CHECK_VALUE(scale_a.is_contiguous() && scale_b.is_contiguous(),
"For Blockwise scaling both scales should be contiguous");
@ -2265,56 +2225,6 @@ _scaled_mxfp8_mxfp8(
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
}
Tensor&
_scaled_mxfp4_mxfp4(
const Tensor& mat_a, const Tensor& mat_b,
const Tensor& scale_a, const SwizzleType swizzle_a,
const Tensor& scale_b, const SwizzleType swizzle_b,
const std::optional<Tensor>& bias,
const c10::ScalarType out_dtype,
Tensor& out) {
#ifndef USE_ROCM
TORCH_CHECK_NOT_IMPLEMENTED(false, "MXFP4 scaling supported on ROCM only");
#endif
// Restrictions:
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
TORCH_CHECK_VALUE(mat_a.scalar_type() == at::kFloat4_e2m1fn_x2 && mat_b.scalar_type() == at::kFloat4_e2m1fn_x2, "mat_a and mat_b must be fp4 types, got: ",
mat_a.scalar_type(), mat_b.scalar_type());
auto scale_a_elems = ceil_div<int64_t>(2 * mat_a.size(0), 32) * mat_a.size(1);
auto scale_b_elems = ceil_div<int64_t>(2 * mat_b.size(1), 32) * mat_b.size(0);
TORCH_CHECK_VALUE(scale_a_elems == scale_a.numel(),
"For Blockwise scaling scale_a should have ", scale_a_elems, " elements, got: ", scale_a.numel());
TORCH_CHECK_VALUE(scale_b_elems == scale_b.numel(),
"For Blockwise scaling scale_b should have ", scale_b_elems, " elements, got: ", scale_b.numel());
TORCH_CHECK_VALUE(scale_a.is_contiguous() && scale_b.is_contiguous(),
"For Blockwise scaling both scales should be contiguous");
TORCH_CHECK_VALUE(out.scalar_type() == out_dtype, "expected out.scalar_type() to be ", out_dtype, ", but got ", out_dtype);
auto scaling_choice_a = ScalingType::BlockWise1x32;
auto scaling_choice_b = ScalingType::BlockWise1x32;
#if ROCM_VERSION >= 70000
TORCH_CHECK_NOT_IMPLEMENTED(at::detail::getCUDAHooks().isGPUArch({"gfx950"}),
"Block-wise scaling for Float8_e8m0fnu is only supported on gfx950");
TORCH_CHECK_VALUE(mat_a.size(0) % 32 == 0 && mat_a.size(1) % 32 == 0 &&
mat_b.size(0) % 32 == 0 && mat_b.size(1) % 32 == 0,
"Matrix dimensions must be multiples of 32 for block-wise scaling");
TORCH_CHECK_VALUE(out.scalar_type() == ScalarType::BFloat16 ||
out.scalar_type() == ScalarType::Half,
"Block-wise scaling only supports BFloat16 or Half output types");
#else
TORCH_CHECK_NOT_IMPLEMENTED(false, "Block-wise scaling for Float8_e8m0fnu requires ROCm 7.0 or later");
#endif
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
}
Tensor&
_scaled_nvfp4_nvfp4(
const Tensor& mat_a, const Tensor& mat_b,
@ -2322,23 +2232,12 @@ _scaled_nvfp4_nvfp4(
const Tensor& scale_b, const SwizzleType swizzle_b,
const std::optional<Tensor>& bias,
const c10::ScalarType out_dtype,
Tensor& out,
const std::optional<Tensor>& global_scale_a = std::nullopt,
const std::optional<Tensor>& global_scale_b = std::nullopt) {
const bool single_scale,
Tensor& out) {
#ifdef USE_ROCM
TORCH_CHECK_NOT_IMPLEMENTED(false, "NVFP4 scaling not supported on ROCM");
#endif
std::optional<Tensor> alpha = std::nullopt;
// Note: "Or" here means that if only one scale is passed, we check for the other. Otherwise,
// if this is "And" we would silently do nothing in the case where one global scale is
// passed and not the other.
if (global_scale_a.has_value() || global_scale_b.has_value()) {
TORCH_CHECK_VALUE(global_scale_a.has_value(),
"For two-level-scaled NVFP4, global_scale_a must have a value");
TORCH_CHECK_VALUE(global_scale_b.has_value(),
"For two-level-scaled NVFP4, global_scale_b must have a value");
alpha = global_scale_a.value().mul(global_scale_b.value());
}
TORCH_CHECK_VALUE(single_scale, "Only single-scaled NVFP4 currently supported");
// Restrictions:
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
// Scales must be swizzled
@ -2360,7 +2259,7 @@ _scaled_nvfp4_nvfp4(
auto scaling_choice_a = ScalingType::BlockWise1x16;
auto scaling_choice_b = ScalingType::BlockWise1x16;
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out, alpha);
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
}
@ -2566,12 +2465,9 @@ _scaled_mm_cuda_v2_out(
} else if (gemm_impl == ScaledGemmImplementation::MXFP8_MXFP8) {
return _scaled_mxfp8_mxfp8(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4) {
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out,
scale_a[1], scale_b[1]);
TORCH_CHECK_NOT_IMPLEMENTED(false, "Only single-scale NVFP4 currently supported");
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE) {
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
} else if (gemm_impl == ScaledGemmImplementation::MXFP4_MXFP4) {
return _scaled_mxfp4_mxfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, true /* single_scale */, out);
} else {
TORCH_CHECK_VALUE(false, "Invalid state - found an implementation, but not really");
}

View File

@ -856,9 +856,13 @@ struct type_specialized_kernel_launcher {
out_calc_t output_offset_calculator,
loader_t loader,
storer_t storer) {
if (ret_t == rt_binary_specializations[arg_index][0] &&
arg0_t == rt_binary_specializations[arg_index][1] &&
arg1_t == rt_binary_specializations[arg_index][2])
constexpr ScalarType sret_t = rt_binary_specializations[arg_index][0];
constexpr ScalarType sarg0_t = rt_binary_specializations[arg_index][1];
constexpr ScalarType sarg1_t = rt_binary_specializations[arg_index][2];
if (ret_t == sret_t && arg0_t == sarg0_t && arg1_t == sarg1_t) {
using cret_t = c10::impl::ScalarTypeToCPPTypeT<sret_t>;
using carg0_t = c10::impl::ScalarTypeToCPPTypeT<sarg0_t>;
using carg1_t = c10::impl::ScalarTypeToCPPTypeT<sarg1_t>;
launch_vectorized_templated_kernel<
func_t,
array_t,
@ -866,12 +870,9 @@ struct type_specialized_kernel_launcher {
out_calc_t,
loader_t,
storer_t,
decltype(c10::impl::ScalarTypeToCPPType<
rt_binary_specializations[arg_index][0]>::t),
decltype(c10::impl::ScalarTypeToCPPType<
rt_binary_specializations[arg_index][1]>::t),
decltype(c10::impl::ScalarTypeToCPPType<
rt_binary_specializations[arg_index][2]>::t)>(
cret_t,
carg0_t,
carg1_t>(
numel,
f,
data,
@ -879,6 +880,7 @@ struct type_specialized_kernel_launcher {
output_offset_calculator,
loader,
storer);
}
}
};

View File

@ -38,41 +38,12 @@ __device__ inline int min(int a, int b) {
#define BLOCK_STRIDE_BWD 2 // increasing block_stride to lower # of blocks launched
#endif
template <typename index_t>
static __device__ inline index_t p_start(index_t size, int pad, int kernel, int dilation, int stride) {
const auto kernel_extent = static_cast<index_t>((kernel - 1) * dilation + 1);
return (size + pad < kernel_extent) ? index_t(0) : (size + pad - kernel_extent) / stride + 1;
static __device__ inline int p_start(int size, int pad, int kernel, int dilation, int stride) {
return (size + pad < ((kernel - 1) * dilation + 1)) ? 0 : (size + pad - ((kernel - 1) * dilation + 1)) / stride + 1;
}
template <typename index_t>
static __device__ inline index_t p_end(index_t size, int pad, index_t pooled_size, int stride) {
return std::min((size + pad) / stride + 1, pooled_size);
}
static inline bool can_use_int32_nhwc(
int64_t nbatch, int64_t channels,
int64_t height, int64_t width,
int64_t pooled_height, int64_t pooled_width,
int64_t in_stride_n, int64_t in_stride_c,
int64_t in_stride_h, int64_t in_stride_w)
{
constexpr int64_t int_max = std::numeric_limits<int>::max();
int64_t max_intra_batch =
(height ? (height - 1) * in_stride_h : 0) +
(width ? (width - 1) * in_stride_w : 0) +
(channels? (channels - 1) * in_stride_c : 0);
int64_t max_input_offset = (nbatch ? (nbatch - 1) * in_stride_n : 0) + max_intra_batch;
if (max_input_offset > int_max) return false;
int64_t out_batch_stride = pooled_height * pooled_width * channels;
if ((nbatch ? (nbatch - 1) * out_batch_stride : 0) > int_max) return false;
if (height * width > int_max) return false;
return true;
static __device__ inline int p_end(int size, int pad, int pooled_size, int stride) {
return min((size + pad) / stride + 1, pooled_size);
}
// kernels borrowed from Caffe
@ -114,25 +85,21 @@ __global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom
}
}
template <typename scalar_t, typename index_t>
template <typename scalar_t>
C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS)
__global__ void max_pool_forward_nhwc(
const scalar_t* bottom_data,
const int nbatch,
const index_t channels, const index_t height, const index_t width,
const index_t pooled_height, const index_t pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const index_t in_stride_n, const index_t in_stride_c,
const index_t in_stride_h, const index_t in_stride_w,
const int kernel_stride_C, const int kernel_size_C,
scalar_t* top_data, int64_t* top_mask) {
extern __shared__ unsigned char smem_raw[];
index_t *out_mask_cached = reinterpret_cast<index_t*>(smem_raw);
scalar_t *out_cached = reinterpret_cast<scalar_t*>(
out_mask_cached + kernel_size_C*blockDim.x*blockDim.y*blockDim.z);
__global__ void max_pool_forward_nhwc(const scalar_t* bottom_data, const int nbatch,
const int64_t channels, const int64_t height,
const int64_t width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const int in_stride_n, const int in_stride_c,
const int in_stride_h, const int in_stride_w,
const int kernel_stride_C, const int kernel_size_C,
scalar_t* top_data, int64_t* top_mask) {
extern __shared__ int smem[];
int *out_mask_cached = smem;
scalar_t *out_cached = reinterpret_cast<scalar_t*>(&out_mask_cached[kernel_size_C*blockDim.x*blockDim.y*blockDim.z]);
// flattening cta for pre-computation & smem initialization;
int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z);
@ -151,26 +118,26 @@ __global__ void max_pool_forward_nhwc(
int channel_id = blockIdx.x / nbatch;
int channel_offset = threadIdx.x + channel_id * blockDim.x;
top_data = top_data + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
top_mask = top_mask + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
bottom_data = bottom_data + static_cast<index_t>(batch_id) * in_stride_n;
top_data = top_data + batch_id * pooled_height * pooled_width * channels;
top_mask = top_mask + batch_id * pooled_height * pooled_width * channels;
bottom_data = bottom_data + batch_id * in_stride_n;
out_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
out_mask_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
out_mask_cached = &out_mask_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
int oH = (static_cast<int>(pooled_height) + gridDim.z - 1) / gridDim.z;
int oW = (static_cast<int>(pooled_width) + gridDim.y - 1) / gridDim.y;
int oH = (pooled_height + gridDim.z-1) / gridDim.z;
int oW = (pooled_width + gridDim.y-1) / gridDim.y;
int ostartH = threadIdx.z + blockIdx.z*oH;
int oendH = ::min(ostartH+oH, static_cast<int>(pooled_height));
int oendH = ::min(ostartH+oH, pooled_height);
int ostartW = threadIdx.y + blockIdx.y*oW;
int oendW = ::min(ostartW+oW, static_cast<int>(pooled_width));
int oendW = ::min(ostartW+oW, pooled_width);
for (int oh = ostartH; oh < oendH; oh+=blockDim.z) {
index_t hstart = static_cast<index_t>(oh) * stride_h - pad_h;
index_t hend = std::min(hstart + static_cast<index_t>((kernel_h - 1) * dilation_h + 1), height);
int hstart = oh * stride_h - pad_h;
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
for (int ow = ostartW; ow < oendW; ow+=blockDim.y) {
index_t wstart = static_cast<index_t>(ow) * stride_w - pad_w;
index_t wend = std::min(wstart + static_cast<index_t>((kernel_w - 1) * dilation_w + 1), width);
int wstart = ow * stride_w - pad_w;
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
while(hstart < 0)
hstart += dilation_h;
while(wstart < 0)
@ -218,12 +185,12 @@ __global__ void max_pool_forward_nhwc(
// Else do it Non-Prefetch...
else
#endif
for (index_t ih = hstart; ih < hend; ih += dilation_h) {
for (index_t iw = wstart; iw < wend; iw += dilation_w) {
for (int ih = hstart; ih < hend; ih += dilation_h) {
for (int iw = wstart; iw < wend; iw += dilation_w) {
int cached_index = threadIdx.x;
const scalar_t *ptr_input = bottom_data + ih * in_stride_h + iw * in_stride_w;
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
scalar_t val = ptr_input[c * in_stride_c];
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
scalar_t val = ptr_input[c*in_stride_c];
if ((val > out_cached[cached_index]) || at::_isnan(val)) {
out_cached[cached_index] = val;
out_mask_cached[cached_index] = ih * width + iw;
@ -233,15 +200,15 @@ __global__ void max_pool_forward_nhwc(
}
}
scalar_t *ptr_output_data = top_data + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
int64_t *ptr_output_mask = top_mask + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
scalar_t *ptr_output_data = top_data + (oh * pooled_width + ow) * channels;
int64_t *ptr_output_mask = top_mask + (oh * pooled_width + ow) * channels;
int cached_index = threadIdx.x;
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
ptr_output_data[c] = out_cached[cached_index];
ptr_output_mask[c] = static_cast<int64_t>(out_mask_cached[cached_index]);
ptr_output_mask[c] = out_mask_cached[cached_index];
out_cached[cached_index] = at::numeric_limits<scalar_t>::lower_bound();
out_mask_cached[cached_index] = index_t(0);
out_mask_cached[cached_index] = 0;
cached_index += blockDim.x;
}
}
@ -249,7 +216,7 @@ __global__ void max_pool_forward_nhwc(
}
static constexpr int BLOCK_THREADS = 256;
static const int BLOCK_THREADS = 256;
template <typename scalar_t, typename accscalar_t>
#if defined (USE_ROCM)
@ -495,11 +462,6 @@ const Tensor& indices) {
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z));
const dim3 block(block_x, block_y, block_z);
bool use_int32 = can_use_int32_nhwc(
nbatch, nInputPlane, inputHeight, inputWidth,
outputHeight, outputWidth,
in_stride_n, in_stride_c, in_stride_h, in_stride_w);
int kernel_stride_C = ceil_div(
safe_downcast<int, int64_t>(nInputPlane), block_x * 4);
int kernel_size_C = ceil_div(
@ -514,41 +476,18 @@ const Tensor& indices) {
ceil_div(safe_downcast<int, int64_t>(outputHeight), block_z*BLOCK_STRIDE_FWD));
const dim3 grid(grid_x, grid_y, grid_z);
size_t shmem_size;
size_t mask_elems = static_cast<size_t>(kernel_size_C) * block_x * block_y * block_z;
size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * (sizeof(int) + sizeof(scalar_t));
AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock);
if (use_int32) {
shmem_size = mask_elems * (sizeof(int32_t) + sizeof(scalar_t));
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
"shared memory too small");
max_pool_forward_nhwc<scalar_t, int32_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, static_cast<int>(nbatch),
static_cast<int32_t>(nInputPlane),
static_cast<int32_t>(inputHeight),
static_cast<int32_t>(inputWidth),
static_cast<int32_t>(outputHeight),
static_cast<int32_t>(outputWidth),
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
static_cast<int32_t>(in_stride_n),
static_cast<int32_t>(in_stride_c),
static_cast<int32_t>(in_stride_h),
static_cast<int32_t>(in_stride_w),
kernel_stride_C, kernel_size_C,
output_data, indices_data);
} else {
shmem_size = mask_elems * (sizeof(int64_t) + sizeof(scalar_t));
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
"shared memory too small");
max_pool_forward_nhwc<scalar_t, int64_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, static_cast<int>(nbatch),
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
in_stride_n, in_stride_c, in_stride_h, in_stride_w,
kernel_stride_C, kernel_size_C,
output_data, indices_data);
}
max_pool_forward_nhwc<scalar_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, nbatch,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
in_stride_n, in_stride_c,
in_stride_h, in_stride_w,
kernel_stride_C, kernel_size_C,
output_data, indices_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}

View File

@ -15,7 +15,9 @@
#include <ATen/native/cuda/block_reduce.cuh>
#include <ATen/native/cuda/thread_constants.h>
#if CUB_SUPPORTS_SCAN_BY_KEY()
#include <thrust/iterator/reverse_iterator.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -34,9 +36,9 @@ namespace at::native {
namespace {
#if defined(USE_ROCM)
static constexpr int BLOCKDIMY = 16;
static const int BLOCKDIMY = 16;
#else
static constexpr int BLOCKDIMY = 32;
static const int BLOCKDIMY = 32;
#endif
template
@ -238,6 +240,10 @@ __global__ void renorm_kernel(
} // anonymous namespace
#if !CUB_SUPPORTS_SCAN_BY_KEY()
template<typename index_t>
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
#endif
Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices_,
int64_t num_weights, int64_t padding_idx,
@ -300,6 +306,7 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
if (scale_grad_by_freq) {
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
#if CUB_SUPPORTS_SCAN_BY_KEY()
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -326,6 +333,11 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
num_indices
);
});
#else
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
});
#endif
}
return embedding_backward_cuda_kernel(grad, orig_indices,

View File

@ -10,7 +10,9 @@
#include <c10/macros/Macros.h>
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
#include <thrust/iterator/counting_iterator.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -194,9 +196,18 @@ __global__ void compute_num_of_partial_segments(const index_t *partials_per_segm
partials_per_segment_offset[num_of_segments-1];
}
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
__global__ void write_num_of_segments_for_legacy_thrust_path(int64_t *num_of_segments_ptr, int64_t num_of_segments) {
*num_of_segments_ptr = num_of_segments;
}
#endif
} // anon namespace
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
template<typename index_t>
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets);
#endif
Tensor embedding_backward_cuda_kernel(
const Tensor &grad,
@ -223,12 +234,20 @@ Tensor embedding_backward_cuda_kernel(
auto segment_offsets = at::empty({numel}, orig_indices.options());
auto num_of_segments_tensor = at::empty({}, grad.options().dtype(kLong));
int64_t *num_of_segments_ptr = num_of_segments_tensor.mutable_data_ptr<int64_t>();
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
int64_t num_of_segments = embedding_backward_cuda_kernel_unique_by_key<index_t>(sorted_indices, segment_offsets);
write_num_of_segments_for_legacy_thrust_path<<<1, 1, 0, c10::cuda::getCurrentCUDAStream()>>>(num_of_segments_ptr, num_of_segments);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
#else
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
cuda::cub::unique_by_key(
sorted_indices.const_data_ptr<index_t>(), thrust::make_counting_iterator(0),
segment_offsets.mutable_data_ptr<index_t>(),
num_of_segments_ptr, sorted_indices.numel());
});
#endif
int64_t max_segments = std::min<int64_t>(numel, num_weights);

View File

@ -31,10 +31,16 @@
#include <c10/macros/Macros.h>
#if CUB_SUPPORTS_SCAN_BY_KEY()
#include <thrust/iterator/reverse_iterator.h>
#endif
namespace at::native {
#if !CUB_SUPPORTS_SCAN_BY_KEY()
template<typename index_t>
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
#endif
namespace {
@ -193,6 +199,7 @@ Tensor embedding_bag_backward_cuda_sum_avg(
if (scale_grad_by_freq) {
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
#if CUB_SUPPORTS_SCAN_BY_KEY()
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -219,6 +226,11 @@ Tensor embedding_bag_backward_cuda_sum_avg(
num_indices
);
});
#else
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
});
#endif
}
return embedding_backward_cuda_kernel(grad, orig_indices, sorted_indices,
count, num_weights, padding_idx, mode == EmbeddingBagMode::MEAN, offset2bag,

View File

@ -82,7 +82,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
constexpr accscalar_t lanczos_sum_expg_scaled_num[13] = {
static const accscalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
@ -97,7 +97,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
constexpr accscalar_t lanczos_sum_expg_scaled_denom[13] = {
static const accscalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
@ -126,10 +126,10 @@ __host__ __device__ scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t ax, fac, res, num, numfac;
constexpr accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
static const accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
7.09782712893383996843E2 : 88.72283905206835;
constexpr accscalar_t EXP1 = 2.718281828459045;
constexpr accscalar_t lanczos_g = 6.024680040776729583740234375;
static const accscalar_t EXP1 = 2.718281828459045;
static const accscalar_t lanczos_g = 6.024680040776729583740234375;
if (::fabs(a - x) > 0.4 * ::fabs(a)) {
ax = a * ::log(x) - x - ::lgamma(a);
@ -158,9 +158,9 @@ __host__ __device__ scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
// Compute igam using DLMF 8.11.4. [igam1]
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
constexpr int MAXITER = 2000;
static const int MAXITER = 2000;
int i;
accscalar_t ans, ax, c, r;
@ -196,8 +196,8 @@ __host__ __device__ scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
accscalar_t fac = 1;
accscalar_t sum = 0;
accscalar_t term, logx;
constexpr int MAXITER = 2000;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
static const int MAXITER = 2000;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
for (n = 1; n < MAXITER; n++) {
@ -219,7 +219,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
constexpr accscalar_t d[25][25] =
static const accscalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9, 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10, -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11, -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13, -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16, -1.9752288294349443e-15},
{-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3, -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7, -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6, 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8, 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9, 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14, 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13, -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14, -4.13125571381061e-15},
{4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4, 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5, -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6, -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10, -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9, 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11, 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12, 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17, 8.8592218725911273e-15},
@ -248,7 +248,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
int k, n, sgn;
int maxpow = 0;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
accscalar_t lambda = x / a;
accscalar_t sigma = (x - a) / a;
@ -314,12 +314,12 @@ __host__ __device__ scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar
int i;
accscalar_t ans, ax, c, yc, r, t, y, z;
accscalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
constexpr int MAXITER = 2000;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
static const int MAXITER = 2000;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
constexpr accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
static const accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
4.503599627370496e15 : 16777216.;
constexpr accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
static const accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
2.22044604925031308085e-16 : 5.9604644775390625E-8;
ax = _igam_helper_fac(a, x);
@ -385,10 +385,10 @@ __noinline__ __host__ __device__ scalar_t calc_igammac(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t absxma_a;
constexpr accscalar_t SMALL = 20.0;
constexpr accscalar_t LARGE = 200.0;
constexpr accscalar_t SMALLRATIO = 0.3;
constexpr accscalar_t LARGERATIO = 4.5;
static const accscalar_t SMALL = 20.0;
static const accscalar_t LARGE = 200.0;
static const accscalar_t SMALLRATIO = 0.3;
static const accscalar_t LARGERATIO = 4.5;
if ((x < 0) || (a < 0)) {
// out of defined-region of the function
@ -467,10 +467,10 @@ __noinline__ __host__ __device__ scalar_t calc_igamma(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t absxma_a;
constexpr accscalar_t SMALL = 20.0;
constexpr accscalar_t LARGE = 200.0;
constexpr accscalar_t SMALLRATIO = 0.3;
constexpr accscalar_t LARGERATIO = 4.5;
static const accscalar_t SMALL = 20.0;
static const accscalar_t LARGE = 200.0;
static const accscalar_t SMALLRATIO = 0.3;
static const accscalar_t LARGERATIO = 4.5;
// boundary values following SciPy
if ((x < 0) || (a < 0)) {

View File

@ -0,0 +1,90 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/native/cuda/SortingCommon.cuh>
#include <ATen/cuda/cub_definitions.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty_like.h>
#endif
#include <ATen/cuda/ThrustAllocator.h>
#include <thrust/device_ptr.h>
#include <thrust/execution_policy.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/constant_iterator.h>
namespace at::native {
#if !CUB_SUPPORTS_SCAN_BY_KEY()
template<typename index_t>
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count) {
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
at::cuda::ThrustAllocator allocator;
auto policy = thrust::cuda::par(allocator).on(stream);
auto num_indices = count.numel();
// Compute an increasing sequence per unique item in sortedIndices:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 1 2 3 1 2 1 1 2
auto sorted_data = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
auto count_data = thrust::device_ptr<index_t>(count.mutable_data_ptr<index_t>());
thrust::inclusive_scan_by_key(
policy,
sorted_data,
sorted_data + num_indices,
thrust::make_constant_iterator(1),
count_data
);
// Take the maximum of each count per unique key in reverse:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 3 3 3 2 2 1 2 2
thrust::inclusive_scan_by_key(
policy,
thrust::make_reverse_iterator(sorted_data + num_indices),
thrust::make_reverse_iterator(sorted_data),
thrust::make_reverse_iterator(count_data + num_indices),
thrust::make_reverse_iterator(count_data + num_indices),
thrust::equal_to<index_t>(),
thrust::maximum<index_t>()
);
}
template
void embedding_dense_backward_cuda_scan<int>(Tensor &sorted_indices, Tensor &count);
template
void embedding_dense_backward_cuda_scan<int64_t>(Tensor &sorted_indices, Tensor &count);
#endif
template<typename index_t>
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets) {
auto stream = at::cuda::getCurrentCUDAStream();
at::cuda::ThrustAllocator allocator;
auto policy = thrust::cuda::par(allocator).on(stream);
const ptrdiff_t numel = sorted_indices.numel();
auto sorted_indices_dev = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto dummy_dev = thrust::device_ptr<index_t>(dummy.mutable_data_ptr<index_t>());
auto ends = thrust::unique_by_key_copy(
policy,
sorted_indices_dev,
sorted_indices_dev + numel,
thrust::make_counting_iterator(0),
dummy_dev,
thrust::device_ptr<index_t>(segment_offsets.mutable_data_ptr<index_t>()));
return thrust::get<0>(ends) - dummy_dev;
}
template
int64_t embedding_backward_cuda_kernel_unique_by_key<int>(const Tensor &sorted_indices, Tensor &segment_offsets);
template
int64_t embedding_backward_cuda_kernel_unique_by_key<int64_t>(const Tensor &sorted_indices, Tensor &segment_offsets);
} // namespace at::native

View File

@ -231,7 +231,7 @@ const auto lcm_string = jiterator_stringify(
const auto digamma_string = jiterator_stringify(
template <typename T>
T digamma(T x) {
static constexpr double PI_f64 = 3.14159265358979323846;
static const double PI_f64 = 3.14159265358979323846;
// Short-circuits if x is +/- 0 and returns -/+ ∞ per the C++ standard
if (x == 0) {
@ -3072,9 +3072,9 @@ template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) {
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static constexpr double PI_f64 = 3.14159265358979323846;
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
constexpr accscalar_t A[] = {
static const double PI_f64 = 3.14159265358979323846;
const accscalar_t PSI_10 = 2.25175258906672110764;
const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,

View File

@ -146,7 +146,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
int64_t batch_size = target.size(0);
int64_t H = target.size(1);
int64_t W = target.size(2);
int64_t n_classes = grad_input.size(1);
CUDA_KERNEL_LOOP(index, n_threads) {
const int64_t b = index % batch_size;
@ -157,7 +156,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
if (cur_target == ignore_index) {
continue;
}
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
scalar_t value = -(weight != nullptr ? weight[cur_target] : static_cast<scalar_t>(1));
grad_input[b][cur_target][h][w] = value * grad_output[b][h][w];
}

View File

@ -413,12 +413,14 @@ struct ReduceOp {
value = thread_reduce<output_vec_size>(input_slice);
}
if (config.should_block_x_reduce()) {
value = block_x_reduce<output_vec_size>(value, shared_memory);
}
if (config.should_block_y_reduce()) {
value = block_y_reduce<output_vec_size>(value, shared_memory);
}
__syncthreads();
if (config.should_block_x_reduce()) {
value = block_x_reduce<output_vec_size>(value, shared_memory);
}
using out_ptr_vec_t = std::array<out_scalar_t*, output_vec_size>;
using offset_vec_t = std::array<index_t, output_vec_size>;
offset_vec_t base_offsets;
@ -655,8 +657,8 @@ struct ReduceOp {
__syncthreads();
// Intra-warp reduction, fix CUDA to have offset decreasing for better numerics
// matching Triton, etc.
// TODO(PaulZhang12): AMD and internal
#if defined(USE_ROCM) || defined(FBCODE_CAFFE2)
// todo for AMD
#ifdef USE_ROCM
for (int offset = 1; offset < dim_x; offset <<= 1) {
#else
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
@ -1095,7 +1097,11 @@ ReduceConfig setReduceConfig(const TensorIterator& iter){
// threads with different threadIdx.x are independent and will produce results for different outputs.
// In such case, values in each loaded vector always correspond to different outputs.
if (fastest_moving_stride == sizeof(scalar_t)) {
#ifdef USE_ROCM
if (reduction_on_fastest_striding_dimension && dim0 >= 128 && iter.num_reduce_dims() == 1) {
#else
if (reduction_on_fastest_striding_dimension && dim0 > 128 && iter.num_reduce_dims() == 1 && vt0 >= input_vec_size) {
#endif
// Case 1: "vectorize along input"
// Note that if vt0 < ReduceConfig::vec_size, then this means the register pressure could be high, in such case,
// we should avoid vectorization.

View File

@ -39,14 +39,9 @@ static void std_var_kernel_cuda(TensorIterator& iter, double correction, bool ta
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
void mean_kernel_impl(TensorIterator& iter) {
// returns acc_t for all non-complex dtypes and returns T for c10::complex<T>
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
using factor_t = typename c10::scalar_value_type<acc_t>::type;
factor_t factor = static_cast<factor_t>(iter.num_output_elements()) / iter.numel();
if constexpr (is_16_bits) {
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
} else {
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
}
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
}
static void mean_kernel_cuda(TensorIterator& iter) {

View File

@ -13,19 +13,24 @@ namespace at::native {
template <typename scalar_t, typename acc_t = scalar_t, typename out_t = scalar_t>
struct sum_functor {
void operator()(TensorIterator& iter) {
const auto sum_combine = [] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
};
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
if constexpr (is_16_bits) {
#ifdef USE_ROCM
// Half and BFloat16 can be packed in groups of up to 8 elements and
// can use *_DWORDX4 instructions to achieve that.
const bool is_16_bits =
( (std::is_same<at::Half, scalar_t>::value) ||
(std::is_same<at::BFloat16, scalar_t>::value) );
if (is_16_bits) {
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(
iter, func_wrapper<out_t>(sum_combine)
);
} else {
gpu_reduce_kernel<scalar_t, out_t>(
iter, func_wrapper<out_t>(sum_combine)
);
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
return;
}
#endif
gpu_reduce_kernel<scalar_t, out_t>(
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
}
};

View File

@ -19,6 +19,7 @@
namespace at::native {
// TODO: remove this when CUDA <11.6 is no longer supported
void topk_out_with_sort(
const Tensor& self,
int64_t k, int64_t dim, bool largest,
@ -30,12 +31,21 @@ void topk_out_with_sort(
indices.copy_(sorted_indices.narrow(dim, 0, k));
}
// TODO: remove this when CUDA <11.6 is no longer supported
bool disable_sort_for_topk();
bool should_use_sort(const Tensor& self, int64_t dim) {
#if defined(USE_ROCM)
if (self.dtype() == kBool) return false; // Bool sort not supported in ROCm: https://github.com/pytorch/pytorch/issues/139972
return (self.numel() >= 10000 && self.numel() == self.size(dim)); // based on the experiments in https://github.com/pytorch/pytorch/pull/146387
#else
return false;
if (disable_sort_for_topk()) return false;
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/68632
if (self.dim() == 0) return false;
if (self.dtype() == kBool) return false; // Bool is not support by topk
int64_t slice_size = self.size(dim);
if (slice_size == 0) return false;
int64_t num_slices = self.numel() / slice_size;
return num_slices <= 10 && slice_size >= 100000;
#endif
}

View File

@ -21,6 +21,11 @@ using namespace at::native;
namespace at::native {
// TODO: remove this when CUDA <11.6 is no longer supported
bool disable_sort_for_topk() {
return CUB_SUPPORTS_SCAN_BY_KEY();
}
namespace sbtopk { // single_block_topk
template <typename T>
@ -413,6 +418,10 @@ __global__ void computeBlockwiseWithinKCounts(
}
__syncthreads();
#if !CUB_SUPPORTS_SCAN_BY_KEY()
return;
#endif
Bitwise desired_digit = at::cuda::Bitfield<Bitwise>::getBitfield(desired, current_bit, RADIX_BITS);
// if largest, then only threads that has tidx > desired_digit are active
@ -468,6 +477,7 @@ __global__ void computeBlockwiseWithinKCounts(
}
}
#if CUB_SUPPORTS_SCAN_BY_KEY()
// Assumption: slice_size can not be larger than UINT32_MAX
template <typename Bitwise>
__global__ void computeBlockwiseKthCounts(
@ -599,6 +609,7 @@ __global__ void gatherTopK(at::cuda::detail::TensorInfo<const T, IndexType> inpu
}
}
}
#endif
int get_items_per_thread(uint64_t num_slices, uint64_t slice_size) {
// occupancy of this kernel is limited by registers per threads
@ -676,12 +687,16 @@ void launch(
uint32_t* digit_cum_sum = reinterpret_cast<uint32_t*>(digit_cum_sum_buffer.get());
AT_CUDA_CHECK(cudaMemsetAsync(digit_cum_sum, 0, numInputSlices * RADIX_DIGITS * sizeof(uint32_t), stream));
#if CUB_SUPPORTS_SCAN_BY_KEY()
auto withinKCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
uint32_t* withinKCounts = reinterpret_cast<uint32_t*>(withinKCounts_buffer.get());
AT_CUDA_CHECK(cudaMemsetAsync(withinKCounts, 0, num_blocks * sizeof(uint32_t), stream));
auto kthCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
uint32_t* kthCounts = reinterpret_cast<uint32_t*>(kthCounts_buffer.get());
#else
uint32_t* withinKCounts = nullptr;
#endif
Bitwise desiredMask = 0;
dim3 grid;
@ -728,6 +743,7 @@ void launch(
}
desired = desired_in;
#if CUB_SUPPORTS_SCAN_BY_KEY()
computeBlockwiseKthCounts<Bitwise><<<std::min(((int64_t)numInputSlices + 255) / 256, (int64_t)1073741824), 256, 0, stream>>>(
desired, counts, num_blocks, blocks_per_slice, kthCounts);
C10_CUDA_KERNEL_LAUNCH_CHECK();
@ -743,6 +759,28 @@ void launch(
topK, topKWithinSliceStride, indices, indicesWithinSliceStride, items_per_thread,
blocks_per_slice, kthValues, withinKCounts, kthCounts, num_blocks);
C10_CUDA_KERNEL_LAUNCH_CHECK();
#else
// Find topk values based on kth values
{
dim3 grid;
TORCH_INTERNAL_ASSERT(getGridFromTiles(numInputSlices, grid), "Too many slices for topk");
int warp_size = at::cuda::warp_size();
dim3 block(std::min(at::ceil_div((int64_t)inputSliceSize, (int64_t)warp_size) * (int64_t)warp_size, (int64_t)1024));
sbtopk::gatherTopK<T, IndexType, Dim, /* WithKthValues= */true><<<grid, block, 0, stream>>>(
input,
inputSliceSize,
outputSliceSize,
largest,
numInputSlices,
inputWithinSliceStride,
topK,
topKWithinSliceStride,
indices,
indicesWithinSliceStride,
kthValues);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
#endif
}
} // namespace mbtopk
@ -750,6 +788,7 @@ void launch(
bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
if (num_slices > std::numeric_limits<uint32_t>::max() ||
slice_size > std::numeric_limits<uint32_t>::max()) return false;
#if CUB_SUPPORTS_SCAN_BY_KEY()
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/74267
return (num_slices <= 20 && slice_size >= 20000) ||
(num_slices > 20 && num_slices <= 40 && slice_size >= 10000) ||
@ -758,6 +797,12 @@ bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
(num_slices >= 200 && num_slices < 800 && slice_size >= 3000) ||
(num_slices >= 800 && num_slices <= 4000 && slice_size >= 800) ||
(num_slices > 4000 && slice_size >= 400);
#else
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/71081
return (num_slices <= 400 && slice_size >= 5000) ||
(num_slices > 400 && num_slices < 4000 && slice_size >= 1000) ||
(num_slices >= 4000 && slice_size >= 300);
#endif
}
void launch_gather_topk_kernel(

View File

@ -5,7 +5,6 @@
#include <ATen/Dispatch.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/native/Resize.h>
#include <ATen/native/TriangularOpsUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -45,7 +44,7 @@ __global__ void triu_tril_kernel(
const int64_t k,
const int64_t N_padded,
const IndexType last_dim_padded) {
int64_t linear_idx = (((int64_t)blockIdx.x) * blockDim.x + threadIdx.x) * elements_per_thread;
int64_t linear_idx = (blockIdx.x * blockDim.x + threadIdx.x) * elements_per_thread;
if (linear_idx >= N_padded) {
return;
}
@ -111,8 +110,6 @@ __global__ void triu_tril_kernel(
template <bool upper>
void triu_tril_cuda_template(const Tensor& result, const Tensor& self, int64_t k, const char* name) {
checkTrilTriuMemoryOverlap(result, self);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(
at::ScalarType::ComplexHalf,
at::ScalarType::Half,

View File

@ -277,7 +277,7 @@ struct BilinearFilterFunctor {
return 0;
}
static constexpr int size = 2;
static const int size = 2;
};
// taken from
@ -301,7 +301,7 @@ struct BicubicFilterFunctor {
return 0;
}
static constexpr int size = 4;
static const int size = 4;
};
template <typename accscalar_t>

View File

@ -127,6 +127,29 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
}
}
#ifdef USE_ROCM
// Helper function to compute output pixel range that can contribute to input pixel
template <typename accscalar_t>
__device__ __forceinline__ void compute_output_range(
int input_pos,
accscalar_t scale,
int output_size,
bool align_corners,
int& min_output,
int& max_output) {
accscalar_t lo, hi;
if (align_corners) {
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
} else {
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
}
min_output = max(0, static_cast<int>(ceil(lo)));
max_output = min(output_size - 1, static_cast<int>(floor(hi)));
}
#endif
// Backward (adjoint) operation 1 <- 2 (accumulates)
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
@ -141,8 +164,74 @@ __global__ void upsample_bilinear2d_backward_out_frame(
const bool align_corners,
scalar_t* __restrict__ idata,
const scalar_t* __restrict__ odata) {
const size_t o_numel = nc * width2 * height2;
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
const size_t i_numel = nc * width1 * height1;
#ifdef USE_ROCM
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
index += blockDim.x * gridDim.x) {
// Decode input pixel coordinates
size_t index_temp = index;
const int w1 = index_temp % width1;
index_temp /= width1;
const int h1 = index_temp % height1;
const size_t nc_idx = index_temp / height1;
accscalar_t grad_sum = 0;
// Find range of output pixels that could interpolate from this input pixel
int h2_min, h2_max, w2_min, w2_max;
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
// Iterate over potential output pixels
for (int h2 = h2_min; h2 <= h2_max; h2++) {
for (int w2 = w2_min; w2 <= w2_max; w2++) {
// Compute source coordinates for this output pixel
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
rheight, h2, align_corners, /*cubic=*/false);
const int h1_base = (int)h1r;
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
const accscalar_t h1lambda = h1r - h1_base;
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
rwidth, w2, align_corners, /*cubic=*/false);
const int w1_base = (int)w1r;
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
const accscalar_t w1lambda = w1r - w1_base;
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
// Check if our input pixel participates in this interpolation and accumulate all weights
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
// to the same pixel, so we need to accumulate weights from all matching positions
accscalar_t weight = 0;
// Check all four interpolation positions and accumulate weights
if (h1 == h1_base && w1 == w1_base) {
weight += h0lambda * w0lambda; // top-left
}
if (h1 == h1_base && w1 == w1_base + w1p) {
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base) {
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
}
if (weight > 0) {
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
}
}
}
// Write accumulated gradient (no atomics needed)
idata[index] = static_cast<scalar_t>(grad_sum);
}
#else
const size_t o_numel = nc * width2 * height2;
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
index += blockDim.x * gridDim.x) {
size_t index_temp = index;
@ -191,6 +280,7 @@ __global__ void upsample_bilinear2d_backward_out_frame(
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
true);
}
#endif
}
template <typename scalar_t, typename accscalar_t>
@ -387,7 +477,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
// threads are not covering the whole input tensor.
grad_input.zero_();
const size_t num_kernels = nbatch * channels * output_height * output_width;
const int num_threads = std::min(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -397,6 +486,12 @@ static void upsample_bilinear2d_backward_out_cuda_template(
return;
}
#ifdef USE_ROCM
constexpr bool use_input = true;
#else
constexpr bool use_input = false;
#endif
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half, at::ScalarType::BFloat16,
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
@ -414,6 +509,8 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * output_height * output_width;
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
input_height,
@ -444,6 +541,8 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
num_threads,

View File

@ -141,11 +141,7 @@ WelfordDataLN cuWelfordOnlineSum(
if constexpr (!rms_norm){
U delta = val - curr_sum.mean;
U new_count = curr_sum.count + 1.f;
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
U new_mean = curr_sum.mean + delta * __builtin_amdgcn_rcpf(new_count);
#else
U new_mean = curr_sum.mean + delta * (1.f/new_count); //proper division is slow, this is less accurate but noticeably faster
#endif
return {new_mean, curr_sum.sigma2 + delta * (val - new_mean), new_count};
} else{
return {0.f, curr_sum.sigma2 + val * val, 0};
@ -163,11 +159,7 @@ WelfordDataLN cuWelfordCombine(
U count = dataA.count + dataB.count;
U mean, sigma2;
if (count > decltype(dataB.count){0}) {
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
auto coef = __builtin_amdgcn_rcpf(count);
#else
auto coef = 1.f/count; //NB we don't use --use_fast_math, but this is emulation, 1./count goes to intrinsic, `* coef` is multiplication, instead of slow fp division
#endif
auto nA = dataA.count * coef;
auto nB = dataB.count * coef;
mean = nA*dataA.mean + nB*dataB.mean;

View File

@ -466,7 +466,7 @@ struct ReduceJitOp {
__syncthreads();
#if defined(USE_ROCM) || defined(FBCODE_CAFFE2)
#ifdef USE_ROCM
for (int offset = 1; offset < dim_x; offset <<= 1) {
#else
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {

View File

@ -487,7 +487,9 @@ std::unique_ptr<fe::graph::Graph> build_graph(
auto scaled_dot_product_flash_attention_options =
fe::graph::SDPA_attributes()
.set_name("CUDNN_SDPA")
.set_generate_stats(return_softmaxstats)
.set_is_inference(return_softmaxstats == false)
// TODO(eqy): switch to this API once cuDNN FE is upgraded
// .set_generate_stats(return_softmaxstats)
.set_causal_mask(is_causal)
.set_attn_scale(attn_scale);
if (use_ragged_in_dense(q, k, v, o, attn_bias.has_value())) {
@ -705,7 +707,9 @@ std::unique_ptr<fe::graph::Graph> build_graph_nestedtensor(
auto scaled_dot_product_flash_attention_options =
fe::graph::SDPA_attributes()
.set_name("CUDNN_SDPA_NESTEDTENSOR")
.set_generate_stats(return_softmaxstats)
.set_is_inference(return_softmaxstats == false)
// TODO(eqy): switch to this API once cuDNN FE is upgraded
// .set_generate_stats(return_softmaxstats)
.set_causal_mask(is_causal)
.set_attn_scale(attn_scale)
.set_seq_len_q(SEQ_LEN_Q_)

View File

@ -160,12 +160,8 @@ static bool mkldnn_conv_enabled_fpmath_mode_bf16(){
}
static bool mkldnn_conv_enabled_fpmath_mode_tf32(){
#if defined(__x86_64__) || defined(_M_X64)
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
cpuinfo_has_x86_amx_fp16();
#else
return false; //TF32 not supported on power system
#endif
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
cpuinfo_has_x86_amx_fp16();
}
static inline at::MemoryFormat mkldnn_convolution_memory_format(int64_t dims, bool is_channels_last) {

View File

@ -74,12 +74,8 @@ static bool use_mkldnn_bf32_linear() {
}
static bool use_mkldnn_tf32_linear() {
#if defined(__x86_64__) || defined(_M_X64)
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
cpuinfo_has_x86_amx_fp16();
#else
return false; // TF32 not supported on power system
#endif
}
Tensor mkldnn_linear(

View File

@ -114,13 +114,8 @@ static bool use_mkldnn_bf32_matmul() {
return use_mkldnn_bf16_matmul() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::BF16;
}
static bool use_mkldnn_tf32_matmul() {
#if defined(__x86_64__) || defined(_M_X64)
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
#else
return false; // TF32 not supported on power system
#endif
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
}
// returns an ideep::tensor
@ -416,7 +411,7 @@ static inline bool checksize(const Tensor& mat1, const Tensor& mat2){
// else if dim = 3, mat1's size = (b * m * n), mat2's size = (b * n * k)
// else called from aten::mv, mat1.size = (m * n), mat2.size = (n)
// only m * n * b * k(if exist) are large enough we can get benefit from mkldnn optimized gemm kernel
constexpr int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
static const int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
if (mat1.dim() == 1 && mat2.dim() == 1) {
// aten::dot
return mat1.size(0) > mkldnn_gemm_min_size;

View File

@ -712,7 +712,7 @@ Tensor wrapped_scalar_tensor_mps(const Scalar& scalar, const Device device) {
} else if (scalar.isBoolean()) {
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kBool));
} else if (scalar.isComplex()) {
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kComplexFloat));
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kComplexDouble));
} else {
TORCH_INTERNAL_ASSERT(scalar.isIntegral(false));
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kLong));

View File

@ -441,7 +441,7 @@ kernel void applySYRK(
uint3 tid [[thread_position_in_threadgroup]],
uint3 tgid [[threadgroup_position_in_grid]],
uint3 tpg [[threads_per_threadgroup]],
uint warp_id [[simdgroup_index_in_threadgroup]]) {
uint sgitg [[simdgroup_index_in_threadgroup]]) {
const uint tx = tid.x;
const uint ty = tid.y;
const uint simdGroupsPerThreadgroup = (tpg.x * tpg.y + 31) / 32;
@ -474,8 +474,11 @@ kernel void applySYRK(
(actSize_j % 8 == 0) && (actSize_h % 8 == 0) && (actSize_k % 8 == 0);
if (use_simdgroup) {
uint warp_id = sgitg;
simdgroup_matrix<float, 8, 8> negative_identity =
simdgroup_matrix<float, 8, 8>(-1.0);
simdgroup_matrix<float, 8, 8> identity = simdgroup_matrix<float, 8, 8>(1.0);
simdgroup_matrix<float, 8, 8> Prod;
simdgroup_matrix<float, 8, 8> Afrag;
simdgroup_matrix<float, 8, 8> Bfrag;
@ -518,7 +521,8 @@ kernel void applySYRK(
/* transpose = */ upper);
simdgroup_multiply(Prod, Afrag, Bfrag);
simdgroup_multiply_accumulate(Cfrag, Prod, negative_identity, Cfrag);
simdgroup_multiply(Prod, Prod, negative_identity);
simdgroup_multiply_accumulate(Cfrag, Cfrag, identity, Prod);
}
simdgroup_store(

View File

@ -1,16 +1,16 @@
#pragma once
#include <c10/metal/common.h>
template <typename idx_type_t = int64_t, unsigned N = c10::metal::max_ndim>
struct CatSharedParams {
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
struct CatLargeSharedParams {
int32_t ndim;
int32_t cat_dim;
::c10::metal::array<idx_type_t, N> output_strides;
::c10::metal::array<idx_type_t, N> output_sizes;
};
template <typename idx_type_t = int64_t, unsigned N = c10::metal::max_ndim>
struct CatInputParams {
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
struct CatLargeInputParams {
idx_type_t cat_dim_offset;
idx_type_t input_element_offset;
::c10::metal::array<idx_type_t, N> input_strides;

View File

@ -6,25 +6,26 @@
using namespace metal;
using namespace c10::metal;
template <typename I, typename T_in, typename T_out>
kernel void cat(
template <typename T_in, typename T_out>
kernel void cat_large(
constant T_in* input [[buffer(0)]],
device T_out* output [[buffer(1)]],
constant CatSharedParams<I>& shared_params [[buffer(2)]],
constant CatInputParams<I>& input_params [[buffer(3)]],
constant CatLargeSharedParams<>& shared_params [[buffer(2)]],
constant CatLargeInputParams<>& input_params [[buffer(3)]],
uint tid [[thread_position_in_grid]]) {
auto ndim = shared_params.ndim;
auto cat_dim = shared_params.cat_dim;
constant auto& output_strides = shared_params.output_strides;
constant auto& output_sizes = shared_params.output_sizes;
auto cat_dim_offset = input_params.cat_dim_offset;
auto input_element_offset = input_params.input_element_offset;
constant auto& input_strides = input_params.input_strides;
constant auto& input_sizes = input_params.input_sizes;
auto input_element_idx = static_cast<I>(tid) + input_element_offset;
I input_offset = 0;
I output_offset = 0;
auto input_element_idx = static_cast<int64_t>(tid) + input_element_offset;
int64_t input_offset = 0;
int64_t output_offset = 0;
for (auto dim = ndim - 1; dim >= 0; dim--) {
auto dim_size = input_sizes[dim];
@ -41,45 +42,41 @@ kernel void cat(
output[output_offset] = static_cast<T_out>(input[input_offset]);
}
#define REGISTER_CAT_OP(I, T_in, T_out) \
template [[host_name("cat_" #I "_" #T_in "_" #T_out)]] \
kernel void cat<I, T_in, T_out>( \
constant T_in * input [[buffer(0)]], \
device T_out * output [[buffer(1)]], \
constant CatSharedParams<I> & shared_params [[buffer(2)]], \
constant CatInputParams<I> & input_params [[buffer(3)]], \
#define REGISTER_CAT_LARGE_OP(T_in, T_out) \
template [[host_name("cat_large_" #T_in "_" #T_out)]] \
kernel void cat_large<T_in, T_out>( \
constant T_in * input [[buffer(0)]], \
device T_out * output [[buffer(1)]], \
constant CatLargeSharedParams<> & shared_params [[buffer(2)]], \
constant CatLargeInputParams<> & input_params [[buffer(3)]], \
uint tid [[thread_position_in_grid]]);
#define REGISTER_CAT_OP_ALL_INPUT_TYPES(I, T_out) \
REGISTER_CAT_OP(I, float, T_out); \
REGISTER_CAT_OP(I, half, T_out); \
REGISTER_CAT_OP(I, bfloat, T_out); \
REGISTER_CAT_OP(I, int, T_out); \
REGISTER_CAT_OP(I, uint, T_out); \
REGISTER_CAT_OP(I, long, T_out); \
REGISTER_CAT_OP(I, ulong, T_out); \
REGISTER_CAT_OP(I, short, T_out); \
REGISTER_CAT_OP(I, ushort, T_out); \
REGISTER_CAT_OP(I, char, T_out); \
REGISTER_CAT_OP(I, uchar, T_out); \
REGISTER_CAT_OP(I, bool, T_out);
#define REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(T_out) \
REGISTER_CAT_LARGE_OP(float, T_out); \
REGISTER_CAT_LARGE_OP(half, T_out); \
REGISTER_CAT_LARGE_OP(bfloat, T_out); \
REGISTER_CAT_LARGE_OP(int, T_out); \
REGISTER_CAT_LARGE_OP(uint, T_out); \
REGISTER_CAT_LARGE_OP(long, T_out); \
REGISTER_CAT_LARGE_OP(ulong, T_out); \
REGISTER_CAT_LARGE_OP(short, T_out); \
REGISTER_CAT_LARGE_OP(ushort, T_out); \
REGISTER_CAT_LARGE_OP(char, T_out); \
REGISTER_CAT_LARGE_OP(uchar, T_out); \
REGISTER_CAT_LARGE_OP(bool, T_out);
#define REGISTER_CAT_FOR_INDEX_TYPE(I) \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, float); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, half); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, bfloat); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, int); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, uint); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, long); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, ulong); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, short); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, ushort); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, char); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, uchar); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, bool); \
\
REGISTER_CAT_OP(I, float2, float2); \
REGISTER_CAT_OP(I, half2, half2);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(float);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(half);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bfloat);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(int);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uint);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(long);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ulong);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(short);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ushort);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(char);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uchar);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bool);
REGISTER_CAT_FOR_INDEX_TYPE(int64_t);
REGISTER_CAT_FOR_INDEX_TYPE(int32_t);
REGISTER_CAT_LARGE_OP(float2, float2);
REGISTER_CAT_LARGE_OP(half2, half2);

View File

@ -907,8 +907,6 @@ Tensor& index_fill_mps_(Tensor& self, int64_t dim, const Tensor& index, const Te
TORCH_CHECK(index.scalar_type() == ScalarType::Long || index.scalar_type() == ScalarType::Int,
"index_fill_(): Expected dtype int32 or int64 for index");
TORCH_CHECK(dim == 0 || dim < self.dim(), "index_fill_(): Indexing dim ", dim, " is out of bounds of tensor");
TORCH_CHECK(self.is_complex() || !source.is_complex(),
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
// MPS.scatter crashes if used with complex dtypes
TORCH_CHECK(!c10::isComplexType(self.scalar_type()), "index_fill_(): Complex types are yet not supported");

View File

@ -196,28 +196,6 @@ bool use_metal_mm(const Tensor& self, const Tensor& other, const Tensor& output)
other.size(0) > max_stride_size || other.size(1) > max_stride_size);
}
void map_mps_decomposition_error_code_to_blas(const Tensor& status) {
const auto& status_flat = status.view(-1);
for (const auto i : c10::irange(status_flat.size(0))) {
int code = status_flat[i].item<int>();
switch (code) {
case MPSMatrixDecompositionStatusSuccess:
status_flat[i] = 0;
break;
case MPSMatrixDecompositionStatusNonPositiveDefinite:
case MPSMatrixDecompositionStatusSingular:
status_flat[i] = 2;
break;
case MPSMatrixDecompositionStatusFailure:
status_flat[i] = -1;
break;
default:
TORCH_INTERNAL_ASSERT(false, "Unknown MPSMatrixDecompositionStatus enum value: ", code);
}
}
}
} // anonymous namespace
static void linalg_lu_factor_ex_out_mps_impl(const Tensor& A,
@ -509,9 +487,6 @@ static void linalg_solve_out_mps_impl(const Tensor& A,
"mpsmatrixdecompositionstatus for details.");
}
}
map_mps_decomposition_error_code_to_blas(info);
if (!left) {
// If this was a right solve, transpose the result back
result.copy_(result_t.transpose(-2, -1).contiguous());

View File

@ -3,7 +3,6 @@
#include <ATen/MemoryOverlap.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/mps/MPSProfiler.h>
#include <ATen/native/Pool.h>
#include <ATen/native/TensorShape.h>
#include <ATen/native/TypeProperties.h>
#include <ATen/native/mps/OperationUtils.h>
@ -70,40 +69,29 @@ static void check_shape_except_dim(const Tensor& first, const Tensor& second, in
}
}
template <typename T>
std::string get_type_str();
template <>
std::string get_type_str<int64_t>() {
return "int64_t";
}
template <>
std::string get_type_str<int32_t>() {
return "int32_t";
}
// This implementation of cat is used only if one of the inputs or the output is
// too large to use MPSGraph.
// NOTE: `output` is expected to already have the correct size.
template <typename idx_type_t>
static void cat_out_mps_impl(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
CatSharedParams<idx_type_t> shared_params;
static void cat_out_large_tensor_mps(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
CatLargeSharedParams shared_params;
shared_params.ndim = output.dim();
shared_params.cat_dim = dimension;
for (const auto dim : c10::irange(output.dim())) {
shared_params.output_strides[dim] = safe_downcast<idx_type_t, int64_t>(output.stride(dim));
shared_params.output_sizes[dim] = safe_downcast<idx_type_t, int64_t>(output.size(dim));
shared_params.output_strides[dim] = output.stride(dim);
shared_params.output_sizes[dim] = output.size(dim);
}
idx_type_t cat_dim_offset = 0;
int64_t cat_dim_offset = 0;
size_t input_idx = 0;
MPSStream* stream = getCurrentMPSStream();
// Launch a separate kernels for each input. This will produce some overhead.
// In order to launch only one kernel to process all inputs, we would have to
// copy all the input tensor data into a packed buffer, which would not be
// ideal.
// Launch a separate kernels for each input. This will produce some overhead,
// but that should be relatively minimal since at least one of the inputs is
// very large. In order to launch only one kernel to process all inputs, we
// would have to copy all the input tensor data into a packed buffer, which
// would not be ideal.
for (const Tensor& input : inputs) {
if (input.numel() == 0) {
continue;
@ -116,23 +104,21 @@ static void cat_out_mps_impl(const ITensorListRef& inputs, int64_t dimension, co
for (int64_t numel_remaining = input.numel(); numel_remaining > 0; numel_remaining -= max_num_threads) {
auto num_threads = std::min(max_num_threads, numel_remaining);
CatInputParams<idx_type_t> input_params;
CatLargeInputParams input_params;
input_params.cat_dim_offset = safe_downcast<idx_type_t, int64_t>(cat_dim_offset);
input_params.input_element_offset = safe_downcast<idx_type_t, int64_t>(input.numel() - numel_remaining);
input_params.cat_dim_offset = cat_dim_offset;
input_params.input_element_offset = input.numel() - numel_remaining;
for (const auto dim : c10::irange(input.dim())) {
input_params.input_strides[dim] = safe_downcast<idx_type_t, int64_t>(input.stride(dim));
input_params.input_sizes[dim] = safe_downcast<idx_type_t, int64_t>(input.size(dim));
input_params.input_strides[dim] = input.stride(dim);
input_params.input_sizes[dim] = input.size(dim);
}
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("cat_{}_{}_{}",
get_type_str<idx_type_t>(),
scalarToMetalTypeString(input),
scalarToMetalTypeString(output)));
auto pipeline_state = lib.getPipelineStateForFunc(
fmt::format("cat_large_{}_{}", scalarToMetalTypeString(input), scalarToMetalTypeString(output)));
getMPSProfiler().beginProfileKernel(pipeline_state, "cat", {input});
[computeEncoder setComputePipelineState:pipeline_state];
mtl_setArgs(computeEncoder, input, output, shared_params, input_params);
@ -308,6 +294,13 @@ TORCH_IMPL_FUNC(cat_out_mps)
" and out is on ",
out.device());
// TODO: For better performance by eliminating input tensor gathering and post transpose,
// TODO: it is better to keep the out tensor's memory format.
// TODO: dimension needs to be recomputed as:
// TODO: dim = 0 --> dim = 0; dim = 1 or 2 --> dim = out.dim()- dim; otherwise dim = dim-1
if (needsGather(out)) {
out.unsafeGetTensorImpl()->empty_tensor_restride(MemoryFormat::Contiguous);
}
std::vector<int64_t> size(notSkippedTensor.sizes().vec());
// Compute size of the result in the cat dimension
@ -338,9 +331,82 @@ TORCH_IMPL_FUNC(cat_out_mps)
has_large_tensor |= isTooLargeForMPSGraph(out);
if (has_large_tensor) {
return mps::cat_out_mps_impl<int64_t>(materialized_inputs, dimension, out);
} else {
return mps::cat_out_mps_impl<int32_t>(materialized_inputs, dimension, out);
return mps::cat_out_large_tensor_mps(materialized_inputs, dimension, out);
}
struct CachedGraph : public MPSCachedGraph {
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
std::vector<MPSGraphTensor*> inputTensors_;
MPSGraphTensor* outputTensor_ = nil;
};
@autoreleasepool {
std::string key = "cat_out_mps:" + std::to_string(dimension) + ":" +
(memory_format == MemoryFormat::ChannelsLast ? "NHWC" : "NCHW");
if (!all_same_dtype) {
key += getTensorsStringKey(input_tensors, true, all_same_sizes_and_stride);
} else {
key += ":" + getMPSTypeString(input_tensors[0].scalar_type(), true) + ":" + std::to_string(inputs.size());
}
for (auto idx : skipped_tensor_indices) {
key += "," + std::to_string(idx);
}
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
auto len_tensor_array = inputs.size() - skipped_tensor_indices.size();
std::vector<MPSGraphTensor*> castInputTensors(len_tensor_array);
newCachedGraph->inputTensors_.reserve(len_tensor_array);
for (const auto idx : c10::irange(len_tensor_array)) {
const Tensor& tensor = input_tensors[idx];
auto scalar_type = getMPSScalarType(tensor.scalar_type());
if (tensor.scalar_type() == kBool) {
scalar_type = MPSDataTypeInt8;
}
newCachedGraph->inputTensors_[idx] = mpsGraphUnrankedPlaceHolder(mpsGraph, scalar_type);
if (tensor.scalar_type() != out_dtype) {
castInputTensors[idx] = [mpsGraph castTensor:newCachedGraph->inputTensors_[idx]
toType:getMPSDataType(out_dtype)
name:@"castInput"];
} else {
castInputTensors[idx] = newCachedGraph->inputTensors_[idx];
}
}
auto inputTensorsArray = [NSArray arrayWithObjects:castInputTensors.data() count:len_tensor_array];
MPSGraphTensor* outputTensor = [mpsGraph concatTensors:inputTensorsArray
dimension:dimension // Maybe convert this from int64_t -> int32
name:nil];
if (getMPSDataType(out_dtype) == MPSDataTypeBool) {
outputTensor = [mpsGraph castTensor:outputTensor toType:MPSDataTypeBool name:@"outputTensor"];
}
newCachedGraph->outputTensor_ = outputTensor;
});
std::vector<Placeholder> inputPlaceholders;
int i = 0;
int t_idx = 0;
for (const Tensor& tensor : materialized_inputs) {
if (std::find(skipped_tensor_indices.begin(), skipped_tensor_indices.end(), i) == skipped_tensor_indices.end()) {
auto scalar_type = getMPSScalarType(tensor.scalar_type());
if (tensor.scalar_type() == kBool) {
scalar_type = MPSDataTypeInt8;
}
inputPlaceholders.emplace_back(cachedGraph->inputTensors_[t_idx], tensor, nullptr, true, scalar_type);
t_idx++;
}
i++;
}
auto outputDataType = getMPSScalarType(out.scalar_type());
Placeholder outputPlaceholder =
Placeholder(cachedGraph->outputTensor_, out, /*mpsShape=*/nil, /*gatherTensorData=*/false, outputDataType);
NSMutableDictionary* feeds = [[NSMutableDictionary new] autorelease];
for (auto& inputPlaceholder : inputPlaceholders) {
feeds[inputPlaceholder.getMPSGraphTensor()] = inputPlaceholder.getMPSGraphTensorData();
}
runMPSGraph(getCurrentMPSStream(), cachedGraph->graph(), feeds, outputPlaceholder);
}
}

View File

@ -706,7 +706,6 @@
variants: function, method
dispatch:
NestedTensorCPU, NestedTensorHPU, NestedTensorCUDA: NestedTensor_all
tags: reduction
- func: all.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor
@ -716,7 +715,6 @@
cpp_no_default_args: ['dim']
dispatch:
CompositeExplicitAutograd: all_dims_default
tags: reduction
- func: all.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
@ -725,7 +723,6 @@
CPU, CUDA: all_out
MPS: all_out_mps
MTIA: all_out_mtia
tags: reduction
- func: all.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
@ -734,16 +731,13 @@
CPU, CUDA: all_dims_out
CompositeExplicitAutograd: all_dims_out_default
cpp_no_default_args: ['dim']
tags: reduction
- func: all.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: all.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: allclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> bool
variants: function, method
@ -755,14 +749,14 @@
device_check: NoCheck # TensorIterator
structured_delegate: any.out
variants: function, method
tags: [core, reduction]
tags: core
- func: any.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
structured_delegate: any.dims_out
variants: function, method
cpp_no_default_args: ['dim']
tags: [core, reduction]
tags: core
dispatch:
CompositeExplicitAutograd: any_dims_default
@ -772,7 +766,6 @@
dispatch:
CPU, CUDA: any_out
MPS: any_out_mps
tags: reduction
- func: any.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
@ -781,16 +774,13 @@
CPU, CUDA: any_dims_out
CompositeExplicitAutograd: any_dims_out_default
cpp_no_default_args: ['dim']
tags: reduction
- func: any.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: any.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: arange(Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
dispatch:
@ -836,27 +826,25 @@
structured_delegate: argmax.out
device_check: NoCheck # TensorIterator
variants: function, method
tags: [core, reduction]
tags: core
- func: argmax.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU, CUDA: argmax_out
MPS: argmax_out_mps
tags: reduction
- func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
structured_delegate: argmin.out
device_check: NoCheck # TensorIterator
variants: function, method
tags: [core, reduction]
tags: core
- func: argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU, CUDA: argmin_out
MPS: argmin_out_mps
tags: reduction
- func: acosh(Tensor self) -> Tensor
variants: function, method
@ -1382,7 +1370,6 @@
dispatch:
SparseCPU: bmm_sparse_cpu
SparseCUDA: bmm_sparse_cuda
SparseMPS: bmm_sparse_mps
NestedTensorCPU: bmm_nested
NestedTensorCUDA: bmm_nested_cuda
tags: core
@ -1398,7 +1385,6 @@
MTIA: bmm_out_mtia
SparseCPU: bmm_out_sparse_cpu
SparseCUDA: bmm_out_sparse_cuda
SparseMPS: bmm_out_sparse_mps
SparseCsrCUDA: bmm_out_sparse_csr_cuda
- func: bmm.dtype(Tensor self, Tensor mat2, ScalarType out_dtype) -> Tensor
@ -1881,14 +1867,12 @@
CUDA: count_nonzero_cuda
MPS: count_nonzero_mps
autogen: count_nonzero.dim_IntList_out
tags: reduction
- func: count_nonzero(Tensor self, int? dim=None) -> Tensor
variants: function, method
dispatch:
CompositeExplicitAutograd: count_nonzero
autogen: count_nonzero.out
tags: reduction
- func: cov(Tensor self, *, int correction=1, Tensor? fweights=None, Tensor? aweights=None) -> Tensor
variants: function, method
@ -3809,23 +3793,19 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: logsumexp
tags: reduction
- func: logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
# calls squeeze
CompositeExplicitAutogradNonFunctional: logsumexp_out
tags: reduction
- func: logsumexp.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: logsumexp.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor
@ -3875,7 +3855,6 @@
device_check: NoCheck # TensorIterator
structured_delegate: aminmax.out
variants: function, method
tags: reduction
- func: aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)
device_check: NoCheck # TensorIterator
@ -3883,7 +3862,6 @@
dispatch:
CPU, CUDA, MTIA: aminmax_out
MPS: aminmax_out_mps
tags: reduction
- func: _compute_linear_combination(Tensor input, Tensor coefficients) -> Tensor
dispatch:
@ -3899,7 +3877,7 @@
variants: function, method
dispatch:
QuantizedCPU, QuantizedCUDA: qmax
tags: [core, reduction]
tags: core
- func: max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
device_check: NoCheck # TensorIterator
@ -3909,16 +3887,13 @@
dispatch:
CPU, CUDA, MTIA: max_out
MPS: max_out_mps
tags: reduction
- func: max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
device_check: NoCheck # TensorIterator
tags: reduction
- func: value_selecting_reduction_backward(Tensor grad, int dim, Tensor indices, SymInt[] sizes, bool keepdim) -> Tensor
variants: function
@ -3931,14 +3906,13 @@
- func: amax(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor
variants: function, method
structured_delegate: amax.out
tags: [core, reduction]
tags: core
- func: amax.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU, CUDA, MTIA: amax_out
MPS: amax_out_mps
tags: reduction
# Return: (Tensor output, Tensor indices)
- func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
@ -4000,14 +3974,13 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: mean
tags: [core, reduction]
tags: core
# For normal naming convention this should be `mean.out`. However since we already have `mean.out` we have to rename this.
- func: mean.dtype_out(Tensor self, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CompositeExplicitAutograd: mean_dtype_out
tags: reduction
- func: mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
structured_delegate: mean.out
@ -4015,7 +3988,7 @@
variants: function, method
dispatch:
QuantizedCPU: mean_quantized_cpu
tags: [core, reduction]
tags: core
- func: mean.out(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
structured: True
@ -4024,16 +3997,13 @@
CPU, CUDA: mean_out
MPS: mean_out_mps
QuantizedCPU: mean_out_quantized_cpu
tags: reduction
- func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: nanmean(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
device_check: NoCheck # Composite
@ -4096,7 +4066,7 @@
variants: function, method
dispatch:
QuantizedCPU, QuantizedCUDA: qmin
tags: [core, reduction]
tags: core
- func: min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)
device_check: NoCheck # TensorIterator
@ -4106,28 +4076,24 @@
dispatch:
CPU, CUDA, MTIA: min_out
MPS: min_out_mps
tags: reduction
- func: min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: min.names_dim_min(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)
device_check: NoCheck # TensorIterator
tags: reduction
- func: amin(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor
variants: function, method
structured_delegate: amin.out
tags: [core, reduction]
tags: core
- func: amin.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU, CUDA, MTIA: amin_out
MPS: amin_out_mps
tags: reduction
# TODO: Add this function to MPS dispatch key so that we avoid declaring it in
# native_functions.yaml
@ -4207,7 +4173,7 @@
structured_delegate: mm.out
variants: function, method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: _sparse_mm
SparseCPU, SparseCUDA: _sparse_mm
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm
tags: core
@ -5892,7 +5858,6 @@
SparseCPU, SparseCUDA, SparseMPS, SparseMeta: sum_coo
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sum_csr
autogen: sum.out
tags: reduction
- func: sum.dim_IntList(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
# TODO: Align the signature of sum.dim_IntList and _sparse_csr_sum.dim_dtype
@ -5903,12 +5868,11 @@
NestedTensorCPU: NestedTensor_sum_dim_CPU
SparseCPU, SparseCUDA, SparseMPS: sum_sparse_coo
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sum_sparse_compressed
tags: [core, reduction]
tags: core
- func: sum.dim_DimnameList(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: sum.IntList_out(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
structured: True
@ -5916,11 +5880,9 @@
dispatch:
CPU, CUDA: sum_out
MPS: sum_out_mps
tags: reduction
- func: sum.DimnameList_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
# TODO: this function will be replaced once nested expand semantics have been settled on
- func: _nested_sum_backward(Tensor grad, Tensor self, int[1]? dim, bool keepdim=False) -> Tensor
@ -5932,13 +5894,11 @@
dispatch:
CPU, CUDA: nansum
MPS: nansum_mps
tags: reduction
- func: nansum.out(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
dispatch:
CPU, CUDA: nansum_out
MPS: nansum_out_mps
tags: reduction
- func: hash_tensor(Tensor self, int[1] dim=[], *, bool keepdim=False, int mode=0) -> Tensor
variants: function, method
@ -6002,13 +5962,11 @@
device_check: NoCheck # TensorIterator
variants: function, method
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
@ -6017,19 +5975,16 @@
CPU, CUDA: std
MPS: std_mps
QuantizedCPU: std_quantized_cpu
tags: reduction
- func: std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
@ -6038,51 +5993,42 @@
CPU, CUDA: std_mean
MPS: std_mean_mps
autogen: std_mean.correction_out
tags: reduction
- func: std_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std_mean.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
tags: reduction
- func: std.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA: std_out
QuantizedCPU: std_out_quantized_cpu
tags: reduction
- func: std.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: std.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: std.correction_names_out(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
variants: function
tags: reduction
- func: prod(Tensor self, *, ScalarType? dtype=None) -> Tensor
device_check: NoCheck # TensorIterator
@ -6091,13 +6037,13 @@
CPU, CUDA: prod
MPS: prod_mps
autogen: prod.out
tags: [core, reduction]
tags: core
- func: prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
structured_delegate: prod.int_out
device_check: NoCheck # TensorIterator
variants: function, method
tags: [core, reduction]
tags: core
- func: prod.int_out(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
structured: True
@ -6105,16 +6051,13 @@
dispatch:
CPU, CUDA: prod_out
MPS: prod_out_mps
tags: reduction
- func: prod.dim_Dimname(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: prod.Dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: t(Tensor(a) self) -> Tensor(a)
device_check: NoCheck
@ -6575,12 +6518,11 @@
device_check: NoCheck # TensorIterator
variants: function, method
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: [core, reduction]
tags: core
cpp_no_default_args: ["unbiased"]
- func: var.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor
@ -6589,52 +6531,43 @@
dispatch:
CPU, CUDA: var
MPS: var_mps
MTIA: var_mtia
tags: [core, reduction]
tags: core
- func: var.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA: var_out
tags: reduction
- func: var.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: var.correction_names_out(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
variants: function
tags: reduction
- func: var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
@ -6643,18 +6576,15 @@
CPU, CUDA: var_mean
MPS: var_mean_mps
autogen: var_mean.correction_out
tags: reduction
- func: var_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
cpp_no_default_args: ["unbiased"]
tags: reduction
- func: var_mean.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)
device_check: NoCheck # TensorIterator
variants: function
tags: reduction
- func: view_as(Tensor(a) self, Tensor other) -> Tensor(a)
variants: method
@ -6914,7 +6844,6 @@
dispatch:
CompositeExplicitAutograd: norm
autogen: norm.ScalarOpt_dtype_out
tags: reduction
- func: norm.Scalar(Tensor self, Scalar p=2) -> Tensor
device_check: NoCheck # TensorIterator
@ -6922,7 +6851,6 @@
dispatch:
CompositeExplicitAutograd: norm
autogen: norm.Scalar_out
tags: reduction
- func: norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor
structured_delegate: norm.dtype_out
@ -6930,7 +6858,6 @@
variants: function, method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: sparse_dtype_norm
tags: reduction
- func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor
structured_delegate: norm.out
@ -6938,7 +6865,6 @@
variants: function, method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: sparse_norm
tags: reduction
- func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)
structured: True
@ -6946,7 +6872,6 @@
dispatch:
CPU, CUDA: norm_dtype_out
MPS: norm_dtype_out_mps
tags: reduction
- func: norm.out(Tensor self, Scalar? p, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
@ -6954,26 +6879,21 @@
dispatch:
CPU, CUDA: norm_out
MPS: norm_out_mps
tags: reduction
# These four redispatch in their implementation, so OK to be CompositeImplicitAutograd
- func: norm.names_ScalarOpt_dim_dtype(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: norm.names_ScalarOpt_dim(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False) -> Tensor
device_check: NoCheck # TensorIterator
variants: function, method
tags: reduction
- func: norm.names_dtype_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: norm.names_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
tags: reduction
- func: frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)
variants: method, function
@ -7191,7 +7111,6 @@
MTIA: addmm_out_mtia
SparseCPU: addmm_out_sparse_dense_cpu
SparseCUDA: addmm_out_sparse_dense_cuda
SparseMPS: addmm_out_sparse_dense_mps
SparseCsrCPU: addmm_out_sparse_compressed_cpu
SparseCsrCUDA: addmm_out_sparse_compressed_cuda
@ -7201,7 +7120,6 @@
dispatch:
SparseCPU: addmm_sparse_dense_cpu
SparseCUDA: addmm_sparse_dense_cuda
SparseMPS: addmm_sparse_dense_mps
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: addmm_sparse_compressed_dense
tags: core
@ -7466,7 +7384,7 @@
- func: sparse_mask(Tensor self, Tensor mask) -> Tensor
variants: method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: sparse_mask
SparseCPU, SparseCUDA: sparse_mask
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_mask_sparse_compressed
autogen: sparse_mask.out
@ -10159,14 +10077,12 @@
CPU, CUDA: min
MPS: min_mps
QuantizedCPU: min_quantized_cpu
tags: [reduction]
- func: min.unary_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA: min_unary_out
QuantizedCPU: min_quantized_unary_out
tags: [reduction]
- func: fmin(Tensor self, Tensor other) -> Tensor
structured_delegate: fmin.out
@ -10189,7 +10105,6 @@
CPU, CUDA: max
MPS: max_mps
QuantizedCPU: max_quantized_cpu
tags: [reduction]
- func: fmax(Tensor self, Tensor other) -> Tensor
structured_delegate: fmax.out
@ -10236,7 +10151,6 @@
dispatch:
CPU, CUDA: max_unary_out
QuantizedCPU: max_quantized_unary_out
tags: [reduction]
- func: minimum(Tensor self, Tensor other) -> Tensor
structured_delegate: minimum.out
@ -10356,7 +10270,6 @@
device_check: NoCheck # TensorIterator
structured_delegate: all.all_out
variants: method, function
tags: reduction
- func: all.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck
@ -10365,7 +10278,6 @@
CPU, CUDA: all_all_out
MTIA: all_all_out_mtia
MPS: all_all_out_mps
tags: reduction
- func: any(Tensor self) -> Tensor
device_check: NoCheck # TensorIterator
@ -10373,7 +10285,7 @@
variants: method, function
dispatch:
SparseCPU, SparseCUDA, SparseMPS: any_sparse
tags: [core, reduction]
tags: core
- func: any.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck
@ -10381,7 +10293,6 @@
dispatch:
CPU, CUDA: any_all_out
MPS: any_all_out_mps
tags: reduction
- func: renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
@ -14433,7 +14344,6 @@
python_module: linalg
variants: function
structured_delegate: linalg_vector_norm.out
tags: reduction
- func: linalg_vector_norm.out(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
python_module: linalg
@ -14441,7 +14351,6 @@
dispatch:
CPU, CUDA: linalg_vector_norm_out
MPS: linalg_vector_norm_out_mps
tags: reduction
- func: linalg_matrix_norm(Tensor self, Scalar ord, int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
python_module: linalg

View File

@ -184,23 +184,15 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_tensor_affine_ba
0 & \text{ else }
\end{cases}
*/
bool is_bfloat16 = (X.scalar_type() == at::kBFloat16);
at::Tensor X_ = is_bfloat16 ? X.to(ScalarType::Float) : X;
at::Tensor dY_ = is_bfloat16 ? dY.to(ScalarType::Float) : dY;
at::Tensor scale_ = is_bfloat16 ? scale.to(ScalarType::Float) : scale;
at::Tensor zero_point_ = is_bfloat16 ? zero_point.to(ScalarType::Float) : zero_point;
float scale_val = scale_[0].item<float>();
float scale_val = scale[0].item<float>();
float inv_scale_val = 1.0f / scale_val;
int64_t zero_point_val = native::_get_zero_point_from_tensor(zero_point_, quant_min, quant_max, false);
int64_t zero_point_val = native::_get_zero_point_from_tensor(zero_point, quant_min, quant_max, false);
TORCH_CHECK(dY_.scalar_type() == ScalarType::Float);
TORCH_CHECK(X_.scalar_type() == ScalarType::Float);
TORCH_CHECK(scale_.scalar_type() == ScalarType::Float);
TORCH_CHECK(zero_point_.scalar_type() == ScalarType::Float);
TORCH_CHECK(X_.numel() == dY_.numel(), "`X` and `dY` are not the same size");
TORCH_CHECK(dY.scalar_type() == ScalarType::Float);
TORCH_CHECK(X.scalar_type() == ScalarType::Float);
TORCH_CHECK(scale.scalar_type() == ScalarType::Float);
TORCH_CHECK(zero_point.scalar_type() == ScalarType::Float);
TORCH_CHECK(X.numel() == dY.numel(), "`X` and `dY` are not the same size");
TORCH_CHECK(
quant_min <= 0 && quant_max >= 0,
"`quant_min` should be less than or \
@ -208,28 +200,28 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_tensor_affine_ba
TORCH_CHECK(
zero_point_val >= quant_min && zero_point_val <= quant_max,
"`zero_point` must be between `quant_min` and `quant_max`.");
if (X_.numel() <= 0) {
if (X.numel() <= 0) {
return std::make_tuple(X, scale, zero_point);
}
auto dX = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dScale_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dZeroPoint_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dX = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto dScale_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto dZeroPoint_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto iter = TensorIteratorConfig()
.add_output(dX)
.add_output(dScale_vec)
.add_output(dZeroPoint_vec)
.add_input(X_)
.add_input(dY_)
.add_input(X)
.add_input(dY)
.build();
fake_quant_grad_learnable_tensor_stub(
X_.device().type(), iter, scale_val, inv_scale_val, zero_point_val, quant_min, quant_max, grad_factor);
X.device().type(), iter, scale_val, inv_scale_val, zero_point_val, quant_min, quant_max, grad_factor);
// The total sums over the scale and zero point gradient vectors are what will be returned in the end.
auto dScale = dScale_vec.sum().unsqueeze(0).to(scale_.device());
auto dZeroPoint = dZeroPoint_vec.sum().unsqueeze(0).to(zero_point_.device());
auto dScale = dScale_vec.sum().unsqueeze(0).to(scale.device());
auto dZeroPoint = dZeroPoint_vec.sum().unsqueeze(0).to(zero_point.device());
return std::make_tuple(dX, dScale, dZeroPoint);
}

View File

@ -3551,7 +3551,7 @@ void dequantize_tensor_per_tensor_affine_cpu(
#if defined(__ARM_NEON__) || defined(__aarch64__)
constexpr static int PARALLEL_THRESHOLD = 1 << 20;
const static int PARALLEL_THRESHOLD = 1 << 20;
// Generic template defaults to naive quantize implementation
template <typename T>

View File

@ -1388,7 +1388,7 @@ namespace at::native {
TORCH_CHECK(act_scale.numel() == 1 && act_zero_point.numel() <= 1,
"onednn int8 linear: act scale/zp size should be 1/<=1");
static std::optional<at::Tensor> other = std::nullopt;
constexpr std::string_view binary_post_op = "none";
static const std::string_view binary_post_op = "none";
int64_t act_zp = act_zero_point.numel() == 1 ? act_zero_point.item().toLong() : 0;
return linear_int8_with_onednn_weight(
act, act_scale.item().toDouble(), act_zp,

View File

@ -16,8 +16,8 @@ namespace {
#ifdef USE_PYTORCH_QNNPACK
constexpr static float qnnpack_softmax_output_scale = 0x1.0p-8f;
constexpr static int qnnpack_softmax_output_zero_point = 0;
const static float qnnpack_softmax_output_scale = 0x1.0p-8f;
const static int qnnpack_softmax_output_zero_point = 0;
bool is_qnnpack_compatible(
const Tensor& qx,

View File

@ -1,9 +1,6 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/SparseTensorUtils.h>
#include <ATen/ExpandUtils.h>
#include <ATen/native/mps/OperationUtils.h>
#include <ATen/native/sparse/SparseStubs.h>
#include <ATen/native/sparse/SparseBinaryOpIntersectionCommon.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -16,11 +13,7 @@
#include <ATen/ops/mul_native.h>
#include <ATen/ops/empty_native.h>
#include <ATen/ops/zeros_native.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/argsort.h>
#include <ATen/ops/result_type.h>
#include <ATen/ops/bmm_native.h>
#include <ATen/ops/addmm_native.h>
#include <ATen/ops/copy_sparse_to_sparse.h>
#include <ATen/ops/mul.h>
#endif
@ -36,305 +29,6 @@ static auto& lib = MetalShaderLibrary::getBundledLibrary();
#include <ATen/native/mps/Mul_metallib.h>
#endif
static Tensor& s_addmm_out_sparse_dense_mps(
Tensor& r,
const Tensor& t,
const SparseTensor& sparse_,
const Tensor& dense,
const Scalar& beta,
const Scalar& alpha) {
TORCH_CHECK(sparse_.sparse_dim() == 2, "addmm: sparse_dim must be 2, got ", sparse_.sparse_dim());
TORCH_CHECK(sparse_.dense_dim() == 0, "addmm: sparse values must be 0-dense-dim, got ", sparse_.dense_dim());
TORCH_CHECK(dense.dim() == 2, "addmm: 'dense' must be 2D, got ", dense.dim());
TORCH_CHECK(t.dim() == 2, "addmm: 't' must be 2D, got ", t.dim());
const int64_t I = sparse_.size(0);
const int64_t J = sparse_.size(1);
const int64_t K = dense.size(1);
TORCH_CHECK(dense.size(0) == J,
"addmm: dense (mat2) dim0 must be ", J, ", got ", dense.size(0));
TORCH_CHECK(t.size(0) == I && t.size(1) == K,
"addmm: 't' shape must be (", I, ", ", K, "), got (", t.size(0), ", ", t.size(1), ")");
r.resize_({I, K});
auto sparse = sparse_.coalesce();
const int64_t nnz = sparse._nnz();
if (nnz == 0 || I == 0 || K == 0) {
at::mul_out(r, t, beta);
return r;
}
const auto v_dtype = sparse._values().scalar_type();
const auto d_dtype = dense.scalar_type();
const auto t_dtype = t.scalar_type();
auto compute_dtype = c10::promoteTypes(c10::promoteTypes(v_dtype, d_dtype), t_dtype);
TORCH_CHECK(canCast(compute_dtype, r.scalar_type()),
"Can't convert computed type ", compute_dtype, " to output ", r.scalar_type());
auto indices2d = sparse._indices().contiguous();
auto values = sparse._values().to(compute_dtype);
auto dense_c = dense.to(compute_dtype).contiguous();
auto t_c = t.to(compute_dtype).contiguous();
const bool out_needs_cast = (r.scalar_type() != compute_dtype) || !r.is_contiguous();
Tensor out_buf = out_needs_cast
? at::empty({I, K}, r.options().dtype(compute_dtype))
: r;
auto out_contig = out_buf.contiguous();
auto device = r.device();
auto stream = getCurrentMPSStream();
const float alpha_f = alpha.to<float>();
const float beta_f = beta.to<float>();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
const std::string func = "spmm_addmm_coo_" + mps::scalarToMetalTypeString(values);
auto pso = lib.getPipelineStateForFunc(func);
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t gridX = static_cast<uint32_t>(K);
const uint32_t gridZ = static_cast<uint32_t>(I);
const uint32_t tgW = std::min<uint32_t>(gridX, tew);
MTLSize grid = MTLSizeMake(gridX, 1, gridZ);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
indices2d,
values,
dense_c,
t_c,
out_contig,
std::array<uint32_t, 3>{static_cast<uint32_t>(I),
static_cast<uint32_t>(J),
static_cast<uint32_t>(K)},
std::array<float, 2>{alpha_f, beta_f},
static_cast<uint32_t>(nnz));
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
if (out_needs_cast) {
r.copy_(out_contig.to(r.scalar_type()));
}
return r;
}
static void build_batch_ptr_mps(
const Tensor& indices_dim0,
int64_t B,
Tensor& batch_ptr
) {
// Builds an array of pointers which point to each batches elements. Example:
// idx_b = [0, 0, 0, 1, 1, 2, 2, 2, 2] // 9 non-zero elements
// └─────┘ └──┘ └─────────┘
// batch 0 batch 1 batch 2
// batch_ptr = [0, 3, 5, 9]
// │ │ │ └─ end of batch 2 (total nnz)
// │ │ └──── batch 2 starts at index 5
// │ └─────── batch 1 starts at index 3
// └────────── batch 0 starts at index 0
TORCH_CHECK(indices_dim0.is_mps() && batch_ptr.is_mps(), "MPS device expected");
auto device = indices_dim0.device();
auto stream = getCurrentMPSStream();
const int64_t nnz = indices_dim0.numel();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("build_batch_ptr_from_sorted_batches");
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t Q = static_cast<uint32_t>(B + 1);
const uint32_t tgW = std::min<uint32_t>(Q, tew);
MTLSize grid = MTLSizeMake(Q, 1, 1);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
indices_dim0,
batch_ptr,
std::array<uint32_t, 2>{static_cast<uint32_t>(nnz),
static_cast<uint32_t>(B)});
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
}
static void build_row_ptr_per_batch_mps(
const Tensor& rows,
const Tensor& batch_ptr,
int64_t B,
int64_t I,
Tensor& row_ptr
) {
// Build per-batch CSR-style row pointer arrays from row indices sorted by batch
// Given:
// rows: 1-D array of length nnz with row ids in [0, I), sorted within each batch
// batch_ptr: length B+1, where [batch_ptr[b], batch_ptr[b+1]) is the subrange for batch b
// Produces:
// - row_ptr: shape [B, I+1]
//
// Example (B = 2, I = 4):
// rows = [0, 0, 1, 3, 0, 2, 2] // 7 non-zero elements
// └─── batch 0 ──┘ └─ batch 1 ─┘
// batch_ptr = [0, 4, 7]
// │ │ └─ end of batch 1 (total nnz)
// │ └──── end of batch 0/start of batch 1
// └─────── start of batch 0
//
// per-batch row pointers (I+1 entries each):
// row_ptr[0] = [0, 2, 3, 3, 4]
// row_ptr[1] = [0, 1, 1, 3, 3]
// laid out in memory: [0, 2, 3, 3, 4, 0, 1, 1, 3, 3]
TORCH_CHECK(rows.is_mps() && batch_ptr.is_mps() && row_ptr.is_mps(), "MPS device expected");
auto stream = getCurrentMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("build_row_ptr_from_sorted_rows_by_batch");
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t Qx = static_cast<uint32_t>(I + 1);
const uint32_t Qy = static_cast<uint32_t>(B);
const uint32_t tgW = std::min<uint32_t>(Qx, tew);
MTLSize grid = MTLSizeMake(Qx, Qy, 1);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
rows,
batch_ptr,
row_ptr,
std::array<uint32_t, 2>{static_cast<uint32_t>(I),
static_cast<uint32_t>(B)});
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
}
Tensor& bmm_out_sparse_mps(const SparseTensor& self_, const Tensor& mat2_, Tensor& result_) {
TORCH_CHECK(result_.is_mps(), "bmm_sparse: expected 'out' to be MPS, got ", result_.device());
TORCH_CHECK(self_.is_mps(), "bmm_sparse: expected 'self' to be MPS, got ", self_.device());
TORCH_CHECK(mat2_.is_mps(), "bmm_sparse: expected 'mat2' to be MPS, got ", mat2_.device());
TORCH_CHECK(self_.dense_dim() == 0, "bmm_sparse: Tensor 'self' must have 0 dense dims, but has ", self_.dense_dim());
TORCH_CHECK(self_.sparse_dim() == 3, "bmm_sparse: Tensor 'self' must have 3 sparse dims, but has ", self_.sparse_dim());
TORCH_CHECK(mat2_.dim() == 3, "bmm_sparse: Tensor 'mat2' must have 3 dims, but has ", mat2_.dim());
TORCH_CHECK(self_.size(0) == mat2_.size(0), "bmm_sparse: 'self.size(0)' and 'mat2.size(0)' must match");
TORCH_CHECK(self_.size(2) == mat2_.size(1), "bmm_sparse: 'self.size(2)' and 'mat2.size(1)' must match");
const int64_t B = self_.size(0);
const int64_t I = self_.size(1);
const int64_t J = self_.size(2);
const int64_t K = mat2_.size(2);
auto self = self_.coalesce();
const int64_t nnz = self._nnz();
if (nnz == 0) {
return result_.zero_();
}
const auto computeDtype = at::kFloat;
auto indices = self._indices();
auto values = self._values();
auto values_c = values.scalar_type() == computeDtype ? values : values.to(computeDtype);
auto mat2_c = mat2_.scalar_type() == computeDtype ? mat2_ : mat2_.to(computeDtype);
auto mat2_contig = mat2_c.contiguous();
auto idx_b = indices.select(0, 0).contiguous();
auto idx_i = indices.select(0, 1).contiguous();
auto idx_j = indices.select(0, 2).contiguous();
// builds an array of pointers of where the batch_idx's pointer starts and ends
// look in function for better explanation
auto batch_ptr = at::empty({B + 1}, at::device(result_.device()).dtype(kLong));
build_batch_ptr_mps(idx_b, B, batch_ptr);
// build row_ptr per batch: for each (b, i) get [start, end) into rows/cols/vals
auto row_ptr = at::empty({B * (I + 1)}, at::device(result_.device()).dtype(kLong));
build_row_ptr_per_batch_mps(idx_i, batch_ptr, B, I, row_ptr);
const bool out_needs_cast = (result_.scalar_type() != computeDtype) || !result_.is_contiguous();
Tensor out_buf = out_needs_cast
? at::empty({B, I, K}, result_.options().dtype(computeDtype))
: result_;
auto out_contig = out_buf.contiguous();
auto stream = getCurrentMPSStream();
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("spmm_bmm_coo_rows_grouped_" + mps::scalarToMetalTypeString(values));
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
const uint32_t tew = pso.threadExecutionWidth;
const uint32_t tgW = std::min<uint32_t>((uint32_t)K, tew);
// One threadgroup per (row i, batch b), lanes cover K
MTLSize grid = MTLSizeMake(tgW, (uint32_t)I, (uint32_t)B);
MTLSize tgs = MTLSizeMake(tgW, 1, 1);
mtl_setArgs(enc,
idx_i,
idx_j,
values_c,
mat2_contig,
out_contig,
row_ptr,
std::array<uint32_t, 4>{(uint32_t)B, (uint32_t)I, (uint32_t)J, (uint32_t)K});
[enc dispatchThreads:grid threadsPerThreadgroup:tgs];
}
});
if (out_needs_cast) {
result_.copy_(out_contig.to(result_.scalar_type()));
}
return result_;
}
Tensor bmm_sparse_mps(const Tensor& self, const Tensor& mat2) {
Tensor result = at::zeros({self.size(0), self.size(1), mat2.size(2)}, mat2.options());
return bmm_out_sparse_mps(self, mat2, result);
}
Tensor& addmm_out_sparse_dense_mps(
const Tensor& self,
const SparseTensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha,
Tensor& result) {
c10::MaybeOwned<Tensor> b_self = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out");
return s_addmm_out_sparse_dense_mps(result, *b_self, mat1, mat2, beta, alpha);
}
Tensor addmm_sparse_dense_mps(
const Tensor& self,
const SparseTensor& mat1,
const Tensor& mat2,
const Scalar& beta,
const Scalar& alpha
) {
c10::MaybeOwned<Tensor> b_self = expand_size(self, {mat1.size(0), mat2.size(1)}, "addmm_out");
Tensor result = at::empty({0}, self.options());
return s_addmm_out_sparse_dense_mps(result, *b_self, mat1, mat2, beta, alpha);
}
static SparseTensor& mul_out_dense_sparse_mps(
const Tensor& dense,
const Tensor& sparse,
@ -742,137 +436,4 @@ SparseTensor& add_out_sparse_mps(const SparseTensor& self,
return out;
}
using OptTensor = std::optional<Tensor>;
static void sparse_mask_apply_out_mps_kernel(
Tensor& result,
const Tensor& src_in,
const Tensor& mask_in,
bool accumulate_matches,
bool require_same_sizes,
bool coalesce_mask) {
TORCH_CHECK(src_in.is_sparse() && mask_in.is_sparse(),
"sparse_mask: expected both inputs to be sparse COO");
TORCH_CHECK(src_in.is_mps() && mask_in.is_mps(),
"sparse_mask: expected tensors to be on MPS device");
TORCH_CHECK(src_in.sparse_dim() == mask_in.sparse_dim(),
"sparse_mask: sparse_dim mismatch: ", src_in.sparse_dim(), " vs ", mask_in.sparse_dim());
if (require_same_sizes) {
TORCH_CHECK(src_in.sizes().equals(mask_in.sizes()),
"sparse_mask: sizes must match exactly (no broadcasting)");
}
auto src = src_in.coalesce();
auto mask = coalesce_mask ? mask_in.coalesce() : mask_in;
const int64_t src_nnz = src._nnz();
const int64_t mask_nnz = mask._nnz();
const int64_t sd = src.sparse_dim();
result.sparse_resize_(mask.sizes(), mask.sparse_dim(), mask.dense_dim());
auto commonDtype = at::result_type(src, mask);
TORCH_CHECK(canCast(commonDtype, result.scalar_type()),
"Can't convert result type ", commonDtype, " to output ", result.scalar_type());
if (mask_nnz == 0) {
alias_into_sparse(
result,
mask._indices().narrow(1, 0, 0),
at::empty({0}, result.options().dtype(result.scalar_type())));
result._coalesced_(mask.is_coalesced());
return;
}
TORCH_CHECK(sd > 0 || (src_nnz <= 1 && mask_nnz <= 1),
"sparse_mask: invalid sparse_dim or nnz");
if (sd == 0) {
auto out_indices = mask._indices().narrow(1, 0, 1);
auto out_values = src_nnz
? src._values().narrow(0, 0, 1).to(commonDtype)
: at::zeros({1}, at::device(result.device()).dtype(commonDtype));
alias_into_sparse(result, out_indices, out_values);
result._coalesced_(mask.is_coalesced());
return;
}
if (src_nnz == 0) {
auto out_indices = mask._indices().contiguous();
auto src_values = src._values().to(commonDtype);
auto out_val_sizes = src_values.sizes().vec();
out_val_sizes[0] = mask_nnz;
auto out_values = at::zeros(out_val_sizes, src_values.options());
alias_into_sparse(result, out_indices, out_values);
result._coalesced_(mask.is_coalesced());
return;
}
auto mask_indices = mask._indices().contiguous();
auto src_indices = src._indices().contiguous();
auto src_values = src._values().to(commonDtype).contiguous();
auto mask_keys = flatten_indices(mask_indices, mask.sizes().slice(0, sd)).contiguous();
auto src_keys = flatten_indices(src_indices, src.sizes().slice(0, sd)).contiguous();
const bool A_is_src = (src_nnz <= mask_nnz);
const int64_t lenA = A_is_src ? src_nnz : mask_nnz;
const int64_t lenB = A_is_src ? mask_nnz : src_nnz;
auto A_keys = A_is_src ? src_keys : mask_keys;
auto B_keys = A_is_src ? mask_keys : src_keys;
const auto device = result.device();
auto stream = getCurrentMPSStream();
auto outA_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
auto outB_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
auto counter = at::zeros({1}, at::device(device).dtype(at::kInt));
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
static_cast<uint32_t>(lenB), A_is_src);
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
}
});
const int64_t M = static_cast<int64_t>(counter.item<int32_t>());
auto out_val_sizes = src_values.sizes().vec();
out_val_sizes[0] = mask_nnz;
auto out_values = at::zeros(out_val_sizes, src_values.options());
if (M > 0) {
auto src_match = outA_idx.narrow(0, 0, M);
auto mask_match = outB_idx.narrow(0, 0, M);
auto src_rows = src_values.index_select(0, src_match);
if (accumulate_matches) {
out_values.index_add_(0, mask_match, src_rows);
} else {
out_values.index_copy_(0, mask_match, src_rows);
}
}
alias_into_sparse(result, mask_indices, out_values);
result._coalesced_(mask.is_coalesced());
}
static void sparse_mask_intersection_out_mps_kernel(
Tensor& result,
const Tensor& lhs,
const Tensor& rhs,
const OptTensor& = std::nullopt) {
sparse_mask_apply_out_mps_kernel(
result,
/*src_in=*/lhs,
/*mask_in=*/rhs,
/*accumulate_matches=*/false,
/*require_same_sizes=*/false,
/*coalesce_mask=*/false);
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -1,105 +1,7 @@
#include <metal_stdlib>
#include <c10/metal/indexing.h>
#include <c10/metal/utils.h>
using namespace c10::metal;
using namespace metal;
inline uint lower_bound_i64(device const long* arr, uint lo, uint hi, long key) {
uint l = lo, r = hi;
while (l < r) {
uint m = (l + r) >> 1;
long v = arr[m];
if (v < key) {
l = m + 1;
} else {
r = m;
}
}
return l;
}
inline uint upper_bound_i64(device const long* arr, uint lo, uint hi, long key) {
uint l = lo, r = hi;
while (l < r) {
uint m = (l + r) >> 1;
long v = arr[m];
if (v <= key) {
l = m + 1;
} else {
r = m;
}
}
return l;
}
kernel void build_row_ptr_from_sorted_rows_by_batch(
device const long* rows [[buffer(0)]],
device const long* batch_ptr [[buffer(1)]],
device long* row_ptr [[buffer(2)]],
constant uint2& dims [[buffer(3)]],
uint3 tid [[thread_position_in_grid]])
{
const uint I = dims.x;
const uint B = dims.y;
const uint i = tid.x;
const uint b = tid.y;
if (b >= B || i > I) return;
const uint base = (uint)batch_ptr[b];
const uint lim = (uint)batch_ptr[b + 1];
const ulong out_base = (ulong)b * (ulong)(I + 1);
if (i == I) {
row_ptr[out_base + (ulong)I] = (long)lim;
} else {
const long key = (long)i;
const uint pos = lower_bound_i64(rows, base, lim, key);
row_ptr[out_base + (ulong)i] = (long)pos;
}
}
template <typename T>
kernel void spmm_bmm_coo_rows_grouped(
device const long* rows [[buffer(0)]],
device const long* cols [[buffer(1)]],
device const T* vals [[buffer(2)]],
device const T* dense [[buffer(3)]],
device T* out [[buffer(4)]],
device const long* row_ptr [[buffer(5)]],
constant uint4& dims [[buffer(6)]],
uint3 tid [[thread_position_in_grid]],
uint3 ltid [[thread_position_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]])
{
const uint B = dims.x;
const uint I = dims.y;
const uint J = dims.z;
const uint K = dims.w;
const uint b = tid.z;
const uint i = tid.y;
const uint lane = ltid.x;
const uint tgW = tptg.x;
const ulong rp_base = (ulong)b * (ulong)(I + 1);
const uint start = (uint)row_ptr[rp_base + (ulong)i];
const uint end = (uint)row_ptr[rp_base + (ulong)i + 1];
for (uint k = lane; k < K; k += tgW) {
auto acc = static_cast<accum_t<T>>(T(0));
for (uint p = start; p < end; ++p) {
const uint c = (uint)cols[p];
const auto v = static_cast<accum_t<T>>(vals[p]);
const uint d_off = ((b * J) + c) * K + k;
const auto d = static_cast<accum_t<T>>(dense[d_off]);
acc += mul(v, d);
}
const uint y_off = ((b * I) + i) * K + k;
out[y_off] = static_cast<T>(acc);
}
}
template <typename T>
kernel void dense_sparse_mul_kernel(
@ -127,9 +29,9 @@ kernel void dense_sparse_mul_kernel(
ulong dense_idx = (ulong)key * (ulong)view_cols + (ulong)col;
ulong val_idx = (ulong)i * (ulong)view_cols + (ulong)col;
const auto a = static_cast<accum_t<T>>(values[val_idx]);
const auto b = static_cast<accum_t<T>>(dense[dense_idx]);
out_values[val_idx] = static_cast<T>(mul(a, b));
const auto a = static_cast<float>(values[val_idx]);
const auto b = static_cast<float>(dense[dense_idx]);
out_values[val_idx] = static_cast<T>(a * b);
}
kernel void intersect_binary_search(
@ -214,76 +116,6 @@ kernel void fused_gather_mul_kernel(
}
}
kernel void build_batch_ptr_from_sorted_batches(
device const long* batches [[buffer(0)]],
device long* batch_ptr [[buffer(1)]],
constant uint2& nnz_B [[buffer(2)]],
uint3 tid [[thread_position_in_grid]])
{
uint b = tid.x;
uint nnz = nnz_B.x;
uint batch = nnz_B.y;
if (b == batch) {
batch_ptr[b] = (long)nnz;
return;
}
uint lo = 0;
uint hi = nnz;
long key = (long)b;
while (lo < hi) {
uint mid = (lo + hi) >> 1;
long v = batches[mid];
if (v < key) lo = mid + 1;
else hi = mid;
}
batch_ptr[b] = (long)lo;
}
template <typename T>
kernel void spmm_addmm_coo(
device const long* indices2d [[buffer(0)]],
device const T* vals [[buffer(1)]],
device const T* dense [[buffer(2)]],
device const T* t_in [[buffer(3)]],
device T* out [[buffer(4)]],
constant uint3& dims [[buffer(5)]],
constant float2& alpha_beta [[buffer(6)]],
constant uint& nnz [[buffer(7)]],
uint3 tid [[thread_position_in_grid]])
{
const uint K = dims.z;
const uint k = tid.x;
const uint i = tid.z;
const float alpha = alpha_beta.x;
const float beta = alpha_beta.y;
device const long* rows = indices2d;
device const long* cols = indices2d + nnz;
const uint start = lower_bound_i64(rows, 0u, nnz, (long)i);
const uint end = upper_bound_i64(rows, 0u, nnz, (long)i);
// accumulator is float for scalar/half/bfloat and float2 for float2
auto acc = static_cast<accum_t<T>>(T(0));
for (uint p = start; p < end; ++p) {
const uint c = (uint)cols[p];
const auto v = static_cast<accum_t<T>>(vals[p]);
const uint dense_off = c * K + k;
const auto d = static_cast<accum_t<T>>(dense[dense_off]);
acc += mul(v, d);
}
const uint off = i * K + k;
const auto base = (beta != 0.0f) ? (static_cast<accum_t<T>>(t_in[off]) * beta) : static_cast<accum_t<T>>(T(0));
const auto y = base + alpha * acc;
out[off] = static_cast<T>(y);
}
#define INSTANTIATE_DENSE_SPARSE_MUL(DTYPE) \
template [[host_name("dense_sparse_mul_kernel_" #DTYPE)]] kernel void \
dense_sparse_mul_kernel<DTYPE>( \
@ -298,8 +130,6 @@ kernel void spmm_addmm_coo(
INSTANTIATE_DENSE_SPARSE_MUL(float);
INSTANTIATE_DENSE_SPARSE_MUL(half);
INSTANTIATE_DENSE_SPARSE_MUL(bfloat);
INSTANTIATE_DENSE_SPARSE_MUL(long);
INSTANTIATE_DENSE_SPARSE_MUL(float2);
#define INSTANTIATE_FUSED_GATHER_MUL(DTYPE) \
template [[host_name("fused_gather_mul_kernel_" #DTYPE)]] kernel void \
@ -315,36 +145,6 @@ INSTANTIATE_DENSE_SPARSE_MUL(float2);
constant uint2& dims_output [[buffer(8)]], \
uint3 gid [[thread_position_in_grid]]);
INSTANTIATE_FOR_FLOAT_TYPES(INSTANTIATE_FUSED_GATHER_MUL);
#define INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED(DTYPE) \
template [[host_name("spmm_bmm_coo_rows_grouped_" #DTYPE)]] kernel void \
spmm_bmm_coo_rows_grouped<DTYPE>( \
device const long* rows [[buffer(0)]], \
device const long* cols [[buffer(1)]], \
device const DTYPE* vals [[buffer(2)]], \
device const DTYPE* dense [[buffer(3)]], \
device DTYPE* out [[buffer(4)]], \
device const long* row_ptr [[buffer(5)]], \
constant uint4& dims [[buffer(6)]], \
uint3 tid [[thread_position_in_grid]], \
uint3 ltid [[thread_position_in_threadgroup]], \
uint3 tptg [[threads_per_threadgroup]]);
INSTANTIATE_FOR_ALL_TYPES(INSTANTIATE_SPMM_BMM_COO_ROWS_GROUPED);
#define INSTANTIATE_SPMM_ADDMM_COO(DTYPE) \
template [[host_name("spmm_addmm_coo_" #DTYPE)]] kernel void \
spmm_addmm_coo<DTYPE>( \
device const long* indices2d [[buffer(0)]], \
device const DTYPE* vals [[buffer(1)]], \
device const DTYPE* dense [[buffer(2)]], \
device const DTYPE* t_in [[buffer(3)]], \
device DTYPE* out [[buffer(4)]], \
constant uint3& dims [[buffer(5)]], \
constant float2& alpha_beta [[buffer(6)]], \
constant uint& nnz [[buffer(7)]], \
uint3 tid [[thread_position_in_grid]]);
INSTANTIATE_FOR_ALL_TYPES(INSTANTIATE_SPMM_ADDMM_COO);
INSTANTIATE_FUSED_GATHER_MUL(float);
INSTANTIATE_FUSED_GATHER_MUL(half);
INSTANTIATE_FUSED_GATHER_MUL(bfloat);

View File

@ -93,7 +93,3 @@
This operator does not support cudagraphs. The presence of this tag on an operator will cause
Inductor to split the graph around this operator. Note that operators without this tag may still
not support CUDAGraphs. Inductor may have other hardcoded lists around that.
- tag: reduction
desc: |
This tag indicates that an operator performs a reduction operation, computing aggregate values
(sum, mean, max, min, etc.) across one or more dimensions of the input tensor(s).

Some files were not shown because too many files have changed in this diff Show More