Compare commits

..

17 Commits

1102 changed files with 19405 additions and 36992 deletions

View File

@ -15,8 +15,6 @@ fi
# Compress the fatbin with -compress-mode=size for CUDA 13
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
export TORCH_NVCC_FLAGS="-compress-mode=size"
# Bundle ptxas into the cu13 wheel, see https://github.com/pytorch/pytorch/issues/163801
export BUILD_BUNDLE_PTXAS=1
fi
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"

View File

@ -372,7 +372,7 @@ if __name__ == "__main__":
else:
print("build pytorch without mkldnn backend")
os.system(f"cd /pytorch; {build_vars} python3 -m build --wheel --no-isolation")
os.system(f"cd /pytorch; {build_vars} python3 setup.py bdist_wheel")
if enable_cuda:
print("Updating Cuda Dependency")
filename = os.listdir("/pytorch/dist/")

View File

@ -241,7 +241,7 @@ def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
try:
with socket.create_connection((addr, port), timeout=timeout):
return
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
except (ConnectionRefusedError, socket.timeout): # noqa: PERF203
if i == attempt_cnt - 1:
raise
time.sleep(timeout)
@ -442,7 +442,7 @@ def build_torchvision(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd vision && {build_vars} python3 -m build --wheel --no-isolation")
host.run_cmd(f"cd vision && {build_vars} python3 setup.py bdist_wheel")
vision_wheel_name = host.list_dir("vision/dist")[0]
embed_libgomp(host, use_conda, os.path.join("vision", "dist", vision_wheel_name))
@ -497,7 +497,7 @@ def build_torchdata(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd data && {build_vars} python3 -m build --wheel --no-isolation")
host.run_cmd(f"cd data && {build_vars} python3 setup.py bdist_wheel")
wheel_name = host.list_dir("data/dist")[0]
embed_libgomp(host, use_conda, os.path.join("data", "dist", wheel_name))
@ -553,7 +553,7 @@ def build_torchtext(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd text && {build_vars} python3 -m build --wheel --no-isolation")
host.run_cmd(f"cd text && {build_vars} python3 setup.py bdist_wheel")
wheel_name = host.list_dir("text/dist")[0]
embed_libgomp(host, use_conda, os.path.join("text", "dist", wheel_name))
@ -614,7 +614,7 @@ def build_torchaudio(
host.run_cmd(
f"cd audio && export FFMPEG_ROOT=$(pwd)/third_party/ffmpeg && export USE_FFMPEG=1 \
&& ./packaging/ffmpeg/build.sh \
&& {build_vars} python3 -m build --wheel --no-isolation"
&& {build_vars} python3 setup.py bdist_wheel"
)
wheel_name = host.list_dir("audio/dist")[0]
@ -726,7 +726,7 @@ def start_build(
print("Building PyTorch wheel")
build_opts = ""
if pytorch_build_number is not None:
build_opts += f" -C--build-option=--build-number={pytorch_build_number}"
build_opts += f" --build-number {pytorch_build_number}"
# Breakpad build fails on aarch64
build_vars = "USE_BREAKPAD=0 "
if branch == "nightly":
@ -747,8 +747,7 @@ def start_build(
print("build pytorch with mkldnn+acl backend")
build_vars += " USE_MKLDNN=ON USE_MKLDNN_ACL=ON"
host.run_cmd(
f"cd $HOME/pytorch && export ACL_ROOT_DIR=$HOME/ComputeLibrary && "
f"{build_vars} python3 -m build --wheel --no-isolation{build_opts}"
f"cd $HOME/pytorch && export ACL_ROOT_DIR=$HOME/ComputeLibrary && {build_vars} python3 setup.py bdist_wheel{build_opts}"
)
print("Repair the wheel")
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
@ -764,7 +763,7 @@ def start_build(
else:
print("build pytorch without mkldnn backend")
host.run_cmd(
f"cd pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
f"cd pytorch && {build_vars} python3 setup.py bdist_wheel{build_opts}"
)
print("Deleting build folder")
@ -1005,7 +1004,7 @@ if __name__ == "__main__":
install_condaforge_python(host, args.python_version)
sys.exit(0)
python_version = args.python_version if args.python_version is not None else "3.10"
python_version = args.python_version if args.python_version is not None else "3.9"
if args.use_torch_from_pypi:
configure_system(host, compiler=args.compiler, python_version=python_version)

View File

@ -69,8 +69,7 @@ RUN bash ./install_cuda.sh 13.0
ENV DESIRED_CUDA=13.0
FROM ${ROCM_IMAGE} as rocm
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
ENV PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
ENV MKLROOT /opt/intel

View File

@ -36,12 +36,6 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)
echo "ERROR: Unknown docker tag ${DOCKER_TAG_PREFIX}"

View File

@ -84,8 +84,8 @@ fi
_UCX_COMMIT=7836b165abdbe468a2f607e7254011c07d788152
_UCC_COMMIT=430e241bf5d38cbc73fc7a6b89155397232e3f96
if [[ "$image" == *rocm* ]]; then
_UCX_COMMIT=29831d319e6be55cb8c768ca61de335c934ca39e
_UCC_COMMIT=9f4b242cbbd8b1462cbc732eb29316cdfa124b77
_UCX_COMMIT=cc312eaa4655c0cc5c2bcd796db938f90563bcf6
_UCC_COMMIT=0c0fc21559835044ab107199e334f7157d6a0d3d
fi
tag=$(echo $image | awk -F':' '{print $2}')
@ -175,6 +175,20 @@ case "$tag" in
fi
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.4
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-noble-rocm-alpha-py3)
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
@ -182,9 +196,6 @@ case "$tag" in
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-jammy-xpu-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
@ -251,10 +262,13 @@ case "$tag" in
TRITON_CPU=yes
;;
pytorch-linux-jammy-linter)
PYTHON_VERSION=3.10
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
PYTHON_VERSION=3.9
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter)
PYTHON_VERSION=3.10
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
@ -441,3 +455,12 @@ elif [ "$HAS_TRITON" = "yes" ]; then
echo "expecting triton to not be installed, but it is"
exit 1
fi
# Sanity check cmake version. Executorch reinstalls cmake and I'm not sure if
# they support 4.0.0 yet, so exclude them from this check.
CMAKE_VERSION=$(drun cmake --version)
if [[ "$EXECUTORCH" != *yes* && "$CMAKE_VERSION" != *4.* ]]; then
echo "CMake version is not 4.0.0:"
drun cmake --version
exit 1
fi

View File

@ -1 +1 @@
v2.28.3-1
v2.27.5-1

View File

@ -1 +1 @@
v2.28.3-1
v2.27.7-1

View File

@ -1 +1 @@
bbb06c0334a6772b92d24bde54956e675c8c6604
5ae38bdb0dc066c5823e34dc9797afb9de42c866

View File

@ -42,6 +42,12 @@ EOF
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -66,15 +66,15 @@ if [ -n "${UBUNTU_VERSION}" ] && [ -n "${GCC_VERSION}" ] && [[ "${GCC_VERSION}"
# Triton needs at least gcc-9 to build
apt-get install -y g++-9
CXX=g++-9 conda_run python -m build --wheel --no-isolation
CXX=g++-9 conda_run python setup.py bdist_wheel
elif [ -n "${UBUNTU_VERSION}" ] && [ -n "${CLANG_VERSION}" ]; then
# Triton needs <filesystem> which surprisingly is not available with clang-9 toolchain
add-apt-repository -y ppa:ubuntu-toolchain-r/test
apt-get install -y g++-9
CXX=g++-9 conda_run python -m build --wheel --no-isolation
CXX=g++-9 conda_run python setup.py bdist_wheel
else
conda_run python -m build --wheel --no-isolation
conda_run python setup.py bdist_wheel
fi
# Copy the wheel to /opt for multi stage docker builds

View File

@ -40,16 +40,12 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -0,0 +1,71 @@
FROM centos:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ENV PATH /opt/rh/gcc-toolset-11/root/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# change to a valid repo
RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Linux-*.repo
# enable to install ninja-build
RUN sed -i 's|enabled=0|enabled=1|g' /etc/yum.repos.d/CentOS-Linux-PowerTools.repo
RUN yum -y update
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which zlib-devel sudo
RUN yum install -y autoconf automake make cmake gdb gcc-toolset-11-gcc-c++
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# Install python
FROM base as python
RUN yum install -y openssl-devel zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel
ADD common/install_cpython.sh install_cpython.sh
RUN bash ./install_cpython.sh && rm install_cpython.sh
FROM base as conda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN /opt/conda/bin/conda install -y cmake
FROM base as intel
# Install MKL
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=conda /opt/conda /opt/conda
ENV PATH=/opt/conda/bin:$PATH
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM base as jni
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM base as final
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=intel /opt/intel /opt/intel
COPY --from=conda /opt/conda /opt/conda
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
RUN yum install -y ninja-build

View File

@ -43,6 +43,12 @@ case ${image} in
MANY_LINUX_VERSION="2_28_aarch64"
OPENBLAS_VERSION="v0.3.30"
;;
manylinuxcxx11-abi-builder:cpu-cxx11-abi)
TARGET=final
GPU_IMAGE=""
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
MANY_LINUX_VERSION="cxx11-abi"
;;
manylinuxs390x-builder:cpu-s390x)
TARGET=final
GPU_IMAGE=s390x/almalinux:8
@ -76,7 +82,7 @@ case ${image} in
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
TARGET=rocm_final
@ -84,10 +90,6 @@ case ${image} in
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -10,11 +10,6 @@ boto3==1.35.42
#Pinned versions: 1.19.12, 1.16.34
#test that import:
build==1.3.0
#Description: A simple, correct Python build frontend.
#Pinned versions: 1.3.0
#test that import:
click
#Description: Command Line Interface Creation Kit
#Pinned versions:
@ -98,9 +93,8 @@ librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
#Pinned versions:
#test that import:
mypy==1.16.0 ; platform_system != "Windows"
mypy==1.16.0
# Pin MyPy version because new errors are likely to appear with each release
# Skip on Windows as lots of type annotations are POSIX specific
#Description: linter
#Pinned versions: 1.16.0
#test that import: test_typing.py, test_type_hints.py
@ -111,12 +105,14 @@ networkx==2.8.8
#Pinned versions: 2.8.8
#test that import: functorch
ninja==1.11.1.4
ninja==1.11.1.3
#Description: build system. Used in some tests. Used in build to generate build
#time tracing information
#Pinned versions: 1.11.1.4
#Pinned versions: 1.11.1.3
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#Description: Just-In-Time Compiler for Numerical Functions
@ -137,7 +133,7 @@ numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
numpy==1.22.4; python_version == "3.10"
numpy==1.22.4; python_version == "3.9" or python_version == "3.10"
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
numpy==2.1.2; python_version >= "3.13"
@ -172,9 +168,9 @@ pillow==11.0.0
#Pinned versions: 10.3.0
#test that import:
protobuf==5.29.5
protobuf==5.29.4
#Description: Google's data interchange format
#Pinned versions: 5.29.5
#Pinned versions: 5.29.4
#test that import: test_tensorboard.py, test/onnx/*
psutil
@ -329,6 +325,8 @@ pywavelets==1.7.0 ; python_version >= "3.12"
lxml==5.3.0
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries
PyGithub==2.3.0
sympy==1.13.3
@ -378,7 +376,7 @@ dataclasses_json==0.6.7
#Pinned versions: 0.6.7
#test that import:
cmake==3.31.6
cmake==4.0.0
#Description: required for building
tlparse==0.4.0

View File

@ -1,30 +1,24 @@
sphinx==5.3.0
sphinx==6.2.1
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
#Pinned versions: 7.2.6
standard-imghdr==3.13.0; python_version >= "3.13"
#Description: This is needed by Sphinx, so it needs to be added here.
# The reasons are as follows:
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@1657ad2fc1acdc98aa719eebecbb0128a7c13ce4#egg=pytorch_sphinx_theme2
sphinx-remove-toctrees==1.0.0.post1
#Description: This is used to generate PyTorch docs
#Pinned versions: 1.0.0.post1
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.
sphinxcontrib.katex==0.8.6
sphinxcontrib.katex==0.9.10
#Description: This is used to generate PyTorch docs
#Pinned versions: 0.8.6
#Pinned versions: 0.9.10
sphinxext-opengraph==0.9.1
#Description: This is used to generate PyTorch docs
#Pinned versions: 0.9.1
sphinx_sitemap==2.6.0
sphinx_sitemap==2.7.1
#Description: This is used to generate sitemap for PyTorch docs
#Pinned versions: 2.6.0
#Pinned versions: 2.7.1
matplotlib==3.5.3 ; python_version < "3.13"
matplotlib==3.6.3 ; python_version >= "3.13"
@ -36,17 +30,17 @@ tensorboard==2.18.0 ; python_version >= "3.13"
#Description: This is used to generate PyTorch docs
#Pinned versions: 2.13.0
breathe==4.34.0
breathe==4.35.0
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 4.34.0
#Pinned versions: 4.35.0
exhale==0.2.3
exhale==0.3.7
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 0.2.3
#Pinned versions: 0.3.7
docutils==0.16
docutils==0.18.1
#Description: This is used to generate PyTorch C++ docs
#Pinned versions: 0.16
#Pinned versions: 0.18.1
bs4==0.0.1
#Description: This is used to generate PyTorch C++ docs
@ -56,13 +50,24 @@ IPython==8.12.0
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 8.12.0
<<<<<<< HEAD
myst-nb==0.17.2
#Description: This is used to generate PyTorch functorch and torch.compile docs.
#Pinned versions: 0.17.2
=======
myst-nb==1.2.0
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 1.2.0
>>>>>>> 195382ce28e (Update)
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
python-etcd==0.4.5
sphinx-copybutton==0.5.0
sphinx-design==0.4.0
sphinx-copybutton==0.5.2
sphinx-design==0.6.1
sphinxcontrib-mermaid==1.0.0
<<<<<<< HEAD
myst-parser==0.18.1
=======
myst-parser==3.0.1
myst-nb
>>>>>>> 195382ce28e (Update)

View File

@ -41,6 +41,7 @@ def sample_vllm_test_library():
"pytest -v -s basic_correctness/test_cumem.py",
"pytest -v -s basic_correctness/test_basic_correctness.py",
"pytest -v -s basic_correctness/test_cpu_offload.py",
"VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py",
],
},
"vllm_basic_models_test": {
@ -67,12 +68,15 @@ def sample_vllm_test_library():
"-v",
"-s",
"entrypoints/llm",
"--ignore=entrypoints/llm/test_lazy_outlines.py",
"--ignore=entrypoints/llm/test_generate.py",
"--ignore=entrypoints/llm/test_generate_multiple_loras.py",
"--ignore=entrypoints/llm/test_collective_rpc.py",
]
),
"pytest -v -s entrypoints/llm/test_generate.py",
"pytest -v -s entrypoints/offline_mode",
"pytest -v -s entrypoints/llm/test_lazy_outlines.py",
"pytest -v -s entrypoints/llm/test_generate.py ",
"VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode",
],
},
"vllm_regression_test": {

View File

@ -1,11 +1,11 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_ROCM ?= 7.0
DESIRED_ROCM ?= 6.4
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
PACKAGE_NAME = magma-rocm
# inherit this from underlying docker image, do not pass this env var to docker
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma-rocm/build_magma.sh
.PHONY: all
all: magma-rocm70
all: magma-rocm64
all: magma-rocm63
@ -25,11 +24,6 @@ clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-rocm70
magma-rocm70: DESIRED_ROCM := 7.0
magma-rocm70:
$(DOCKER_RUN)
.PHONY: magma-rocm64
magma-rocm64: DESIRED_ROCM := 6.4
magma-rocm64:

View File

@ -6,8 +6,8 @@ set -eou pipefail
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
# Folders for the build
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
# Fetch magma sources and verify checksum
pushd ${PACKAGE_DIR}
git clone https://github.com/jeffdaily/magma
git clone https://bitbucket.org/icl/magma.git
pushd magma
git checkout ${MAGMA_VERSION}
popd

View File

@ -142,7 +142,7 @@ time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python -m build --wheel --no-isolation --outdir /tmp/$WHEELHOUSE_DIR
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
echo "Finished setup.py bdist at $(date)"
# Build libtorch packages

View File

@ -104,7 +104,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling -m pip install . -v --no-build-isolation at $(date)"
echo "Calling 'python -m pip install .' at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"

View File

@ -290,13 +290,13 @@ else
WERROR=1 python setup.py clean
WERROR=1 python -m build --wheel --no-isolation
WERROR=1 python setup.py bdist_wheel
else
python setup.py clean
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
source .ci/pytorch/install_cache_xla.sh
fi
python -m build --wheel --no-isolation
python setup.py bdist_wheel
fi
pip_install_whl "$(echo dist/*.whl)"

View File

@ -58,7 +58,7 @@ time python tools/setup_helpers/generate_code.py \
# Build the docs
pushd docs/cpp
time make VERBOSE=1 html
time make VERBOSE=1 html -j
popd
popd

View File

@ -35,12 +35,11 @@ fi
print_cmake_info
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python -m build --wheel --no-isolation
USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
else
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python -m build --wheel --no-isolation -C--build-option=--plat-name=macosx_11_0_arm64
# NB: we always build with distributed; USE_DISTRIBUTED turns off all
# backends (specifically the gloo backend), so test that this case works too
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
fi
if which sccache > /dev/null; then
print_sccache_stats

View File

@ -13,9 +13,13 @@ if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available(
fi
popd
python -mpip install -r requirements.txt
# enable debug asserts in serialization
export TORCH_SERIALIZATION_DEBUG=1
python -mpip install --no-input -r requirements.txt
setup_test_python() {
# The CircleCI worker hostname doesn't resolve to an address.
# This environment variable makes ProcessGroupGloo default to
@ -55,7 +59,7 @@ test_python_shard() {
setup_test_python
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "$1" "$NUM_TEST_SHARDS"
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --shard "$1" "$NUM_TEST_SHARDS"
assert_git_not_dirty
}

View File

@ -26,7 +26,6 @@ if [[ "${SHARD_NUMBER:-2}" == "2" ]]; then
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
time python test/run_test.py --verbose -i distributed/test_aten_comm_compute_reordering
time python test/run_test.py --verbose -i distributed/test_store
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
time python test/run_test.py --verbose -i distributed/test_pg_wrapper

View File

@ -83,6 +83,10 @@ rm -rf pytorch || true
pushd "$pt_checkout"
pushd docs
# Profile the docs build to see what is taking the longest
python -m cProfile -o docs_build.prof -m sphinx.cmd.build -b html -d build/doctrees source build/html
python -c "import pstats; p = pstats.Stats('docs_build.prof'); p.sort_stats('cumtime').print_stats(50)"
# Build the docs
if [ "$is_main_doc" = true ]; then
build_docs html || exit $?

View File

@ -322,29 +322,23 @@ test_python_shard() {
# modify LD_LIBRARY_PATH to ensure it has the conda env.
# This set of tests has been shown to be buggy without it for the split-build
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_python() {
# shellcheck disable=SC2086
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
assert_git_not_dirty
}
test_python_smoke() {
# Smoke tests for H100/B200
# Smoke tests for H100
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_python_smoke_b200() {
# Targeted smoke tests for B200 - staged approach to avoid too many failures
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_h100_distributed() {
# Distributed tests at H100
time python test/run_test.py --include distributed/_composable/test_composability/test_pp_composability.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
@ -390,7 +384,6 @@ test_dynamo_wrapped_shard() {
--exclude-distributed-tests \
--exclude-torch-export-tests \
--exclude-aot-dispatch-tests \
--exclude-quantization-tests \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose \
--upload-artifacts-while-running
@ -435,7 +428,7 @@ test_inductor_distributed() {
# this runs on both single-gpu and multi-gpu instance. It should be smart about skipping tests that aren't supported
# with if required # gpus aren't available
python test/run_test.py --include distributed/test_dynamo_distributed distributed/test_inductor_collectives distributed/test_aten_comm_compute_reordering distributed/test_compute_comm_reordering --verbose
python test/run_test.py --include distributed/test_dynamo_distributed distributed/test_inductor_collectives distributed/test_compute_comm_reordering --verbose
assert_git_not_dirty
}
@ -1163,12 +1156,6 @@ test_distributed() {
fi
}
test_quantization() {
echo "Testing quantization"
python test/test_quantization.py
}
test_rpc() {
echo "Testing RPC C++ tests"
# NB: the ending test_rpc must match the current function name for the current
@ -1415,7 +1402,7 @@ EOF
pip3 install -r requirements.txt
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
python -m build --wheel --no-isolation -C--build-option=--bdist-dir="base_bdist_tmp" --outdir "base_dist"
python setup.py bdist_wheel --bdist-dir="base_bdist_tmp" --dist-dir="base_dist"
python -mpip install base_dist/*.whl
echo "::endgroup::"
@ -1586,7 +1573,7 @@ test_executorch() {
test_linux_aarch64() {
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops profiler/test_memory_profiler \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops \
distributed/elastic/timer/api_test distributed/elastic/timer/local_timer_example distributed/elastic/timer/local_timer_test \
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
@ -1617,7 +1604,7 @@ test_operator_benchmark() {
test_inductor_set_cpu_affinity
cd benchmarks/operator_benchmark/pt_extension
python -m pip install . -v --no-build-isolation
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
@ -1630,25 +1617,6 @@ test_operator_benchmark() {
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
cd benchmarks/operator_benchmark/pt_extension
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
for OP_BENCHMARK_TESTS in matmul mm addmm bmm; do
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
--benchmark-name "PyTorch operator microbenchmark" --use-compile
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}.json" \
--benchmark-name "PyTorch operator microbenchmark"
done
}
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
(cd test && python -c "import torch; print(torch.__config__.show())")
@ -1681,8 +1649,6 @@ elif [[ "${TEST_CONFIG}" == *executorch* ]]; then
test_executorch
elif [[ "$TEST_CONFIG" == 'jit_legacy' ]]; then
test_python_legacy_jit
elif [[ "$TEST_CONFIG" == 'quantization' ]]; then
test_quantization
elif [[ "${BUILD_ENVIRONMENT}" == *libtorch* ]]; then
# TODO: run some C++ tests
echo "no-op at the moment"
@ -1705,8 +1671,6 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
test_operator_benchmark cpu ${TEST_MODE}
fi
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
test_operator_microbenchmark
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
@ -1809,14 +1773,10 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
test_xpu_bin
elif [[ "${TEST_CONFIG}" == smoke ]]; then
test_python_smoke
elif [[ "${TEST_CONFIG}" == smoke_b200 ]]; then
test_python_smoke_b200
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == "b200-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else

View File

@ -70,7 +70,7 @@ sccache --zero-stats
sccache --show-stats
# Build the wheel
python -m build --wheel --no-build-isolation
python setup.py bdist_wheel
if ($LASTEXITCODE -ne 0) { exit 1 }
# Install the wheel locally

View File

@ -130,14 +130,14 @@ if "%USE_CUDA%"=="1" (
:: Print all existing environment variable for debugging
set
python -m build --wheel --no-isolation
python setup.py bdist_wheel
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
sccache --show-stats
python -c "import os, glob; os.system('python -mpip install --no-index --no-deps ' + glob.glob('dist/*.whl')[0])"
(
if "%BUILD_ENVIRONMENT%"=="" (
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%\envs\py_tmp` in Command Prompt before running Git Bash.
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3` in Command Prompt before running Git Bash.
) else (
copy /Y "dist\*.whl" "%PYTORCH_FINAL_PACKAGE_DIR%"

View File

@ -3,12 +3,12 @@ if "%BUILD_ENVIRONMENT%"=="" (
) else (
set CONDA_PARENT_DIR=C:\Jenkins
)
set CONDA_ROOT_DIR=%CONDA_PARENT_DIR%\Miniconda3
:: Be conservative here when rolling out the new AMI with conda. This will try
:: to install conda as before if it couldn't find the conda installation. This
:: can be removed eventually after we gain enough confidence in the AMI
if not exist %CONDA_ROOT_DIR% (
if not exist %CONDA_PARENT_DIR%\Miniconda3 (
set INSTALL_FRESH_CONDA=1
)
@ -17,14 +17,10 @@ if "%INSTALL_FRESH_CONDA%"=="1" (
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_ROOT_DIR%
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_PARENT_DIR%\Miniconda3
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
:: Activate conda so that we can use its commands, i.e. conda, python, pip
call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%
:: Activate conda so that we can use its commands, i.e. conda, python, pip
call conda activate py_tmp
call pip install -r .ci/docker/requirements-ci.txt
call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3

View File

@ -14,7 +14,7 @@ if not errorlevel 0 exit /b
:: build\torch. Rather than changing all these references, making a copy of torch folder
:: from conda to the current workspace is easier. The workspace will be cleaned up after
:: the job anyway
xcopy /s %CONDA_ROOT_DIR%\envs\py_tmp\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
xcopy /s %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
pushd .
if "%VC_VERSION%" == "" (

View File

@ -25,7 +25,7 @@ echo Copying over test times file
robocopy /E "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.additional_ci_files" "%PROJECT_DIR_WIN%\.additional_ci_files"
echo Run nn tests
python run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
python run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
if ERRORLEVEL 1 goto fail
popd

View File

@ -38,14 +38,7 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
fi
# TODO: Move both of them to Windows AMI
python -m pip install tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
# Copied from https://github.com/pytorch/test-infra/blob/be01a40157c36cd5a48391fdf44a7bc3ebd4c7e3/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1#L16 with some adjustments
# pytest-rerunfailures==10.3 as 10.2 fails with INTERNALERROR> pluggy._manager.PluginValidationError: unknown hook 'pytest_configure_node'
# scipy from 1.6.3 to 1.10
# expecttest from 0.1.3 to 0.3.0
# xdoctest from 1.0.2 to 1.3.0
python -m pip install "future==0.18.2" "hypothesis==5.35.1" "expecttest==0.3.0" "librosa>=0.6.2" "scipy==1.10.1" "psutil==5.9.1" "pynvml==11.4.1" "pillow==9.2.0" "unittest-xml-reporting<=3.2.0,>=2.0.0" "pytest==7.1.3" "pytest-xdist==2.5.0" "pytest-flakefinder==1.1.0" "pytest-rerunfailures==10.3" "pytest-shard==0.1.2" "sympy==1.11.1" "xdoctest==1.3.0" "pygments==2.12.0" "opt-einsum>=3.3" "networkx==2.8.8" "mpmath==1.2.1" "pytest-cpp==2.3.0" "boto3==1.35.42"
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
# Install Z3 optional dependency for Windows builds.
python -m pip install z3-solver==4.15.1.0
@ -59,6 +52,9 @@ python -m pip install parameterized==0.8.1
# Install pulp for testing ilps under torch\distributed\_tools
python -m pip install pulp==2.9.0
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
python -m pip install expecttest==0.3.0
run_tests() {
# Run nvidia-smi if available
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do

View File

@ -48,7 +48,7 @@ sccache --zero-stats
sccache --show-stats
:: Call PyTorch build script
python -m build --wheel --no-isolation --outdir "%PYTORCH_FINAL_PACKAGE_DIR%"
python setup.py bdist_wheel -d "%PYTORCH_FINAL_PACKAGE_DIR%"
:: show sccache stats
sccache --show-stats

View File

@ -28,5 +28,5 @@ start /wait "" python-amd64.exe /quiet InstallAllUsers=1 PrependPath=0 Include_t
if errorlevel 1 exit /b 1
set "PATH=%CD%\Python\Scripts;%CD%\Python;%PATH%"
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel build
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel
if errorlevel 1 exit /b 1

View File

@ -86,7 +86,7 @@ copy /Y "%LIBTORCH_PREFIX%-%PYTORCH_BUILD_VERSION%.zip" "%PYTORCH_FINAL_PACKAGE_
goto build_end
:pytorch
%PYTHON_EXEC% -m build --wheel --no-isolation --outdir "%PYTORCH_FINAL_PACKAGE_DIR%"
%PYTHON_EXEC% setup.py bdist_wheel -d "%PYTORCH_FINAL_PACKAGE_DIR%"
:build_end
IF ERRORLEVEL 1 exit /b 1

View File

@ -63,7 +63,7 @@ if errorlevel 1 exit /b 1
call %CONDA_HOME%\condabin\activate.bat testenv
if errorlevel 1 exit /b 1
call conda install -y -q -c conda-forge libuv=1.51
call conda install -y -q -c conda-forge libuv=1.39
call conda install -y -q intel-openmp
echo "install and test libtorch"

View File

@ -18,7 +18,7 @@ if "%DESIRED_PYTHON%" == "3.9" %PYTHON_EXEC% -m pip install numpy==2.0.2 cmake
%PYTHON_EXEC% -m pip install pyyaml
%PYTHON_EXEC% -m pip install mkl-include mkl-static
%PYTHON_EXEC% -m pip install boto3 requests ninja typing_extensions setuptools==72.1.0
%PYTHON_EXEC% -m pip install boto3 ninja typing_extensions setuptools==72.1.0
where cmake.exe

View File

@ -143,8 +143,7 @@ case $desired_python in
RENAME_WHEEL=false
;;
3.13t)
echo "Using 3.13t deps"
mac_version='macosx-11.0-arm64'
echo "Using 3.13 deps"
NUMPY_PINNED_VERSION="==2.1.0"
RENAME_WHEEL=false
;;
@ -178,7 +177,8 @@ source ~/${desired_python}-build/bin/activate
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements.txt"
retry brew install libomp
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
# For USE_DISTRIBUTED=1 on macOS, this enables gloo, which needs libuv, which
# is build as part of tensorpipe submodule
export USE_DISTRIBUTED=1
export USE_MKLDNN=OFF
@ -186,11 +186,11 @@ export USE_QNNPACK=OFF
export BUILD_TEST=OFF
pushd "$pytorch_rootdir"
echo "Calling -m build --wheel --no-isolation at $(date)"
echo "Calling setup.py bdist_wheel at $(date)"
_PYTHON_HOST_PLATFORM=${mac_version} ARCHFLAGS="-arch arm64" python -m build --wheel --no-isolation --outdir "$whl_tmp_dir" -C--plat-name="${mac_version//[-.]/_}"
_PYTHON_HOST_PLATFORM=${mac_version} ARCHFLAGS="-arch arm64" python setup.py bdist_wheel -d "$whl_tmp_dir" --plat-name "${mac_version//[-.]/_}"
echo "Finished -m build --wheel --no-isolation at $(date)"
echo "Finished setup.py bdist_wheel at $(date)"
if [[ $package_type != 'libtorch' ]]; then
echo "delocating wheel dependencies"

View File

@ -0,0 +1,47 @@
#!/bin/bash
# =================== The following code **should** be executed inside Docker container ===================
# Install dependencies
sudo apt-get -y update
sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.ci/pytorch/common_utils.sh"
echo "functorch_doc_push_script.sh: Invoked with $*"
set -ex
version=${DOCS_VERSION:-nightly}
echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
pip -q install -r requirements.txt
make html
popd
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
pushd functorch_ghpages
if [ $version == "main" ]; then
version=nightly
fi
git rm -rf "$version" || true
mv "$pt_checkout/functorch/docs/build/html" "$version"
git add "$version" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin gh-pages
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -69,8 +69,6 @@ readability-string-compare,
'
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
WarningsAsErrors: '*'
LineFilter:
- name: '/usr/include/.*'
CheckOptions:
cppcoreguidelines-special-member-functions.AllowSoleDefaultDtor: true
cppcoreguidelines-special-member-functions.AllowImplicitlyDeletedCopyOrMove: true

View File

@ -1,10 +1,6 @@
---
name: "⚠️ CI SEV"
about: Tracking incidents for PyTorch's CI infra.
title: ''
labels: ''
assignees: ''
---
> NOTE: Remember to label this issue with "`ci: sev`"

View File

@ -1,18 +0,0 @@
---
name: DISABLE AUTOREVERT
about: Disables autorevert when open
title: "❌​\U0001F519 [DISABLE AUTOREVERT]"
labels: 'ci: disable-autorevert'
assignees: ''
---
This issue, while open, disables the autorevert functionality.
More details can be found [here](https://github.com/pytorch/test-infra/blob/main/aws/lambda/pytorch-auto-revert/README.md)
## Why are you disabling autorevert?
## Links to any issues/commits/errors that shows the source of problem

View File

@ -1,10 +1,8 @@
---
name: Disable CI jobs (PyTorch Dev Infra only)
about: Use this template to disable CI jobs
title: DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]
labels: 'module: ci'
assignees: ''
title: "DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]"
labels: "module: ci"
---
> For example, DISABLED pull / win-vs2022-cpu-py3 / test (default). Once

View File

@ -22,9 +22,6 @@ self-hosted-runner:
- linux.arm64.m7g.4xlarge
- linux.arm64.m7g.4xlarge.ephemeral
- linux.arm64.r7g.12xlarge.memory
- linux.aws.h100
- linux.aws.h100.4
- linux.aws.h100.8
- linux.4xlarge.nvidia.gpu
- linux.8xlarge.nvidia.gpu
- linux.16xlarge.nvidia.gpu

View File

@ -6,12 +6,6 @@ inputs:
cuda-version:
description: which cuda version to install, 'cpu' for none
required: true
python-version:
required: false
type: string
default: "3.10"
description: |
The python version to be used. Will be 3.10 by default
runs:
using: composite
@ -44,24 +38,18 @@ runs:
CONDA="C:\Jenkins\Miniconda3\condabin\conda.bat"
{
echo "CONDA=${CONDA}";
echo "CONDA_RUN=${CONDA} run --no-capture-output";
echo "CONDA_BUILD=${CONDA} run conda-build";
echo "CONDA_INSTALL=${CONDA} install";
} >> "${GITHUB_ENV}"
- name: Setup Python3
env:
PYTHON_VERSION: ${{ inputs.python-version }}
shell: bash
run: |
set +e
set -x
# Create new py_tmp env with python-version
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp libuv
PYTHON3=$(${CONDA_RUN} -n py_tmp which python3)
PYTHON3=$(${CONDA_RUN} which python3)
EXIT_CODE=$?
if [[ "${EXIT_CODE}" == "0" ]]; then
@ -74,7 +62,7 @@ runs:
# installation, which is Python 3 based. Its Python is default to Python 3. Further, there
# is also the Miniconda installation that is Python 2 based, and both can be installed if
# needed. In both cases, Python binary is just called python
PYTHON=$(${CONDA_RUN} -n py_tmp which python)
PYTHON=$(${CONDA_RUN} which python)
EXIT_CODE=$?
if [[ "${EXIT_CODE}" == "0" ]]; then

View File

@ -1 +1 @@
78a47f87ce259a48f0391fa9ae15add05ea7432b
9d1c50a5ac8726f4af0d4a4e85ad4d26a674ad26

View File

@ -1 +1 @@
0fc62aa26a30ed7ca419d285f285cb5ba02c4394
c77852e117bdf056c8e9a087e51d6f65cf6ba53d

View File

@ -525,21 +525,6 @@
- Lint
- pull
- name: typechecking
patterns:
- 'pyrefly.toml'
- 'mypy.ini'
- 'mypy-strict.ini'
approved_by:
- lolpack
- maggiemoss
- ndmitchell
- kinto0
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: superuser
patterns:
- '*'

View File

@ -1,44 +1,41 @@
tracking_issue: 24422
ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-symm-mem
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
- ciflow/h100
- ciflow/h100-cutlass-backend
- ciflow/h100-distributed
- ciflow/h100-symm-mem
- ciflow/triton_binaries
- ciflow/inductor
- ciflow/inductor-cu126
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-compare
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-compare
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-cu126
- ciflow/linux-aarch64
- ciflow/mps
- ciflow/nightly
- ciflow/op-benchmark
- ciflow/periodic
- ciflow/periodic-rocm-mi300
- ciflow/pull
- ciflow/quantization-periodic
- ciflow/riscv64
- ciflow/rocm
- ciflow/rocm-mi300
- ciflow/s390
- ciflow/riscv64
- ciflow/slow
- ciflow/torchbench
- ciflow/triton_binaries
- ciflow/trunk
- ciflow/unstable
- ciflow/vllm
- ciflow/win-arm64
- ciflow/xpu
- ciflow/vllm
- ciflow/torchbench
- ciflow/op-benchmark
- ciflow/pull
- ciflow/h100
- ciflow/h100-distributed
- ciflow/win-arm64
- ciflow/h100-symm-mem
- ciflow/h100-cutlass-backend
retryable_workflows:
- pull
- trunk
@ -47,4 +44,4 @@ retryable_workflows:
- inductor-A100-perf-nightly
labeler_config: labeler.yml
label_to_label_config: label_to_label.yml
mergebot: true
mergebot: True

View File

@ -1,5 +1,4 @@
boto3==1.35.42
build==1.2.2.post1
cmake==3.27.*
expecttest==0.3.0
fbscribelogger==0.1.7

View File

@ -30,7 +30,7 @@ CUDA_ARCHES_CUDNN_VERSION = {
}
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
ROCM_ARCHES = ["6.4", "7.0"]
ROCM_ARCHES = ["6.3", "6.4"]
XPU_ARCHES = ["xpu"]
@ -53,7 +53,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
@ -70,7 +70,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
@ -87,7 +87,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "

View File

@ -127,6 +127,53 @@ LINUX_BINARY_BUILD_WORFKLOWS = [
),
]
ROCM_SMOKE_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="manywheel",
build_variant="rocm",
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.LINUX,
arches=["6.4"],
python_versions=["3.9"],
),
ciflow_config=CIFlowConfig(
labels={
LABEL_CIFLOW_BINARIES,
LABEL_CIFLOW_BINARIES_WHEEL,
LABEL_CIFLOW_ROCM,
},
isolated_workflow=True,
),
branches="main",
),
]
LINUX_BINARY_SMOKE_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="manywheel",
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.LINUX,
arches=["12.8"],
python_versions=["3.12"],
),
branches="main",
),
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="libtorch",
build_variant=generate_binary_build_matrix.RELEASE,
build_configs=generate_binary_build_matrix.generate_libtorch_matrix(
OperatingSystem.LINUX,
generate_binary_build_matrix.RELEASE,
arches=["cpu"],
libtorch_variants=["shared-with-deps"],
),
branches="main",
),
]
WINDOWS_BINARY_BUILD_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.WINDOWS,
@ -212,6 +259,39 @@ WINDOWS_BINARY_BUILD_WORKFLOWS = [
),
]
WINDOWS_BINARY_SMOKE_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.WINDOWS,
package_type="libtorch",
build_variant=generate_binary_build_matrix.RELEASE,
build_configs=generate_binary_build_matrix.generate_libtorch_matrix(
OperatingSystem.WINDOWS,
generate_binary_build_matrix.RELEASE,
arches=["cpu"],
libtorch_variants=["shared-with-deps"],
),
branches="main",
ciflow_config=CIFlowConfig(
isolated_workflow=True,
),
),
BinaryBuildWorkflow(
os=OperatingSystem.WINDOWS,
package_type="libtorch",
build_variant=generate_binary_build_matrix.DEBUG,
build_configs=generate_binary_build_matrix.generate_libtorch_matrix(
OperatingSystem.WINDOWS,
generate_binary_build_matrix.DEBUG,
arches=["cpu"],
libtorch_variants=["shared-with-deps"],
),
branches="main",
ciflow_config=CIFlowConfig(
isolated_workflow=True,
),
),
]
MACOS_BINARY_BUILD_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.MACOS_ARM64,
@ -292,10 +372,23 @@ def main() -> None:
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
S390X_BINARY_BUILD_WORKFLOWS,
),
(
# Give rocm it's own workflow file
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
ROCM_SMOKE_WORKFLOWS,
),
(
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
LINUX_BINARY_SMOKE_WORKFLOWS,
),
(
jinja_env.get_template("windows_binary_build_workflow.yml.j2"),
WINDOWS_BINARY_BUILD_WORKFLOWS,
),
(
jinja_env.get_template("windows_binary_build_workflow.yml.j2"),
WINDOWS_BINARY_SMOKE_WORKFLOWS,
),
(
jinja_env.get_template("macos_binary_build_workflow.yml.j2"),
MACOS_BINARY_BUILD_WORKFLOWS,

View File

@ -71,15 +71,12 @@ jobs:
with:!{{ upload.binary_env_as_input(config) }}
{%- if "aarch64" in build_environment %}
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
{%- elif "s390x" in build_environment %}
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
timeout-minutes: 420
{%- elif config["gpu_arch_type"] == "rocm" %}
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
{%- elif "conda" in build_environment and config["gpu_arch_type"] == "cuda" %}
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.24xlarge.ephemeral

View File

@ -187,6 +187,8 @@ jobs:
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
uses: pytorch/test-infra/.github/actions/setup-nvidia@main
with:
driver-version: ${{ startsWith(inputs.GPU_ARCH_VERSION, '13') && '580.65.06' || '570.133.07' }}
if: ${{ inputs.GPU_ARCH_TYPE == 'cuda' && steps.filter.outputs.is-test-matrix-empty == 'False' }}
- name: configure aws credentials

View File

@ -67,14 +67,18 @@ jobs:
# an OOM issue when running the job, so this upgrades the runner from 4xlarge
# to the next available tier of 12xlarge. So much memory just to generate cpp
# doc
runner: ${{ inputs.runner_prefix }}linux.12xlarge.memory
runner: ${{ inputs.runner_prefix }}linux.12xlarge
# TODO: Nightly cpp docs take longer and longer to finish (more than 3h now)
# Let's try to figure out how this can be improved
timeout-minutes: 360
- docs_type: python
runner: ${{ inputs.runner_prefix }}linux.2xlarge
# It takes less than 30m to finish python docs unless there are issues
timeout-minutes: 30
timeout-minutes: 60
- docs_type: functorch
runner: ${{ inputs.runner_prefix }}linux.2xlarge
# It takes less than 15m to finish functorch docs unless there are issues
timeout-minutes: 15
# Set a fixed name for this job instead of using the current matrix-generated name, i.e. build-docs (cpp, linux.12xlarge, 180)
# The current name requires updating the database last docs push query from test-infra every time the matrix is updated
name: build-docs-${{ matrix.docs_type }}-${{ inputs.push }}

View File

@ -2,12 +2,6 @@ name: Get Changed Files
on:
workflow_call:
inputs:
all_files:
description: "Whether to return all files instead of just changed files"
required: false
type: boolean
default: false
outputs:
changed-files:
description: "List of changed files (space-separated) or '*' if not in a PR"
@ -32,23 +26,17 @@ jobs:
# Get the PR number from the github context
PR_NUMBER="${{ github.event.number }}"
# Check if all_files is requested
if [ "${{ inputs.all_files }}" = "true" ]; then
echo "all_files input is true, returning all files"
echo "changed-files=*" >> "$GITHUB_OUTPUT"
else
# Use gh CLI to get changed files in the PR with explicit repo
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
# Use gh CLI to get changed files in the PR with explicit repo
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
if [ -z "$CHANGED_FILES" ]; then
echo "No changed files found, setting to '*'"
CHANGED_FILES="*"
fi
echo "Changed files: $CHANGED_FILES"
echo "changed-files=$CHANGED_FILES" >> "$GITHUB_OUTPUT"
if [ -z "$CHANGED_FILES" ]; then
echo "No changed files found, setting to '*'"
CHANGED_FILES="*"
fi
echo "Changed files: $CHANGED_FILES"
echo "changed-files=$CHANGED_FILES" >> "$GITHUB_OUTPUT"
else
echo "Not in PR context, setting changed files to '*'"
echo "changed-files=*" >> "$GITHUB_OUTPUT"

View File

@ -273,8 +273,6 @@ jobs:
TEST_CONFIG: ${{ matrix.config }}
SHARD_NUMBER: ${{ matrix.shard }}
NUM_TEST_SHARDS: ${{ matrix.num_shards }}
EXTRA_FLAGS: ${{ matrix.extra_flags || '' }}
OP_BENCHMARK_TESTS: ${{ matrix.op_benchmark_tests }}
REENABLED_ISSUES: ${{ steps.keep-going.outputs.reenabled-issues }}
CONTINUE_THROUGH_ERROR: ${{ steps.keep-going.outputs.keep-going }}
VERBOSE_TEST_LOGS: ${{ steps.keep-going.outputs.ci-verbose-test-logs }}

View File

@ -151,7 +151,7 @@ jobs:
BUILD_WHEEL: 1
MAX_JOBS: 8
CUDA_VERSION: ${{ inputs.cuda-version }}
PYTHON_VERSION: "3.10"
PYTHON_VERSION: "3.9"
SCCACHE_BUCKET: "ossci-compiler-cache"
SCCACHE_S3_KEY_PREFIX: ${{ github.workflow }}
SCCACHE_REGION: us-east-1

View File

@ -184,7 +184,7 @@ jobs:
env:
USE_CUDA: ${{ inputs.cuda-version != 'cpu' && '1' || '0' }}
INSTALL_WINDOWS_SDK: 1
PYTHON_VERSION: "3.10"
PYTHON_VERSION: 3.9
CONTINUE_THROUGH_ERROR: ${{ steps.keep-going.outputs.keep-going }}
VERBOSE_TEST_LOGS: ${{ steps.keep-going.outputs.ci-verbose-test-logs }}
TEST_SHOWLOCALS: ${{ steps.keep-going.outputs.ci-test-showlocals }}

View File

@ -1,60 +0,0 @@
name: Limited CI for symmetric memory tests on B200
on:
pull_request:
paths:
- .github/workflows/b200-symm-mem.yml
workflow_dispatch:
push:
tags:
- ciflow/b200-symm-mem/*
schedule:
- cron: 22 8 * * * # about 1:22am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "b200-symm-mem", shard: 1, num_shards: 1, runner: "linux.dgx.b200.8" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -36,7 +36,7 @@ jobs:
runs-on: linux.9xlarge.ephemeral
strategy:
matrix:
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.4", "rocm7.0", "cpu"]
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.3", "rocm6.4", "cpu"]
steps:
- name: Build docker image
uses: pytorch/pytorch/.github/actions/binary-docker-build@main

View File

@ -52,8 +52,8 @@ jobs:
{ tag: "cuda12.9" },
{ tag: "cuda12.8" },
{ tag: "cuda12.6" },
{ tag: "rocm6.3" },
{ tag: "rocm6.4" },
{ tag: "rocm7.0" },
{ tag: "cpu" },
]
steps:

View File

@ -34,7 +34,7 @@ jobs:
id-token: write
strategy:
matrix:
rocm_version: ["70", "64"]
rocm_version: ["64", "63"]
steps:
- name: Checkout PyTorch
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -52,10 +52,11 @@ jobs:
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.3", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxcxx11-abi-builder", tag: "cpu-cxx11-abi", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "xpu", runner: "linux.9xlarge.ephemeral" },
]
runs-on: ${{ needs.get-label-type.outputs.label-type }}${{ matrix.runner }}

View File

@ -50,12 +50,12 @@ jobs:
strategy:
fail-fast: false
matrix:
py_vers: [ "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
device: ["cuda", "rocm", "xpu", "aarch64"]
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
include:
- device: "rocm"
rocm_version: "7.0"
rocm_version: "6.4"
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
- device: "cuda"
rocm_version: ""
@ -108,6 +108,9 @@ jobs:
# Determine python executable for given version
case $PY_VERS in
3.9)
PYTHON_EXECUTABLE=/opt/python/cp39-cp39/bin/python
;;
3.10)
PYTHON_EXECUTABLE=/opt/python/cp310-cp310/bin/python
;;
@ -191,7 +194,7 @@ jobs:
strategy:
fail-fast: false
matrix:
py_vers: [ "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
device: ["xpu"]
timeout-minutes: 40
env:

View File

@ -35,7 +35,6 @@ jobs:
contents: write
outputs:
pt_release_name: ${{ steps.release_name.outputs.pt_release_name }}
pt_pep517_release_name: ${{ steps.release_name.outputs.pt_pep517_release_name }}
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
@ -54,12 +53,8 @@ jobs:
tag_or_branch="${tag_or_branch#refs/heads/}"
# replace directory separators with _ in branch name
tag_or_branch="${tag_or_branch//\//_}"
torch_version="$(python -c 'from tools.generate_torch_version import get_torch_version; print(get_torch_version())')"
{
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch";
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz";
echo "PT_PEP517_RELEASE_FILE=torch-${torch_version}.tar.gz";
} >> "$GITHUB_ENV"
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch" >> "$GITHUB_ENV"
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz" >> "$GITHUB_ENV"
- name: Checkout optional submodules
run: python3 tools/optional_submodules.py
- name: Copy docs requirements for inclusion
@ -69,47 +64,30 @@ jobs:
cp .ci/docker/requirements-docs.txt docs/requirements.txt
- name: Create source distribution
run: |
# Create new folder with specified name so extracting the archive yields that
rm -rf "/tmp/$PT_RELEASE_NAME"
cp -r "$PWD" "/tmp/$PT_RELEASE_NAME"
mv "/tmp/$PT_RELEASE_NAME" .
# Cleanup
rm -rf "$PT_RELEASE_NAME"/{.circleci,.ci}
find "$PT_RELEASE_NAME" -name '.git*' -exec rm -rv {} \; || true
# Create archive
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
- name: Create PEP 517 compatible source distribution
run: |
pip install build==1.2.2.post1 || exit 1
python -m build --sdist || exit 1
cd dist || exit 1
# Create new folder with specified name so extracting the archive yields that
rm -rf "/tmp/$PT_RELEASE_NAME"
cp -r "$PWD" "/tmp/$PT_RELEASE_NAME"
mv "/tmp/$PT_RELEASE_NAME" .
# Cleanup
rm -rf "$PT_RELEASE_NAME"/{.circleci,.ci}
find "$PT_RELEASE_NAME" -name '.git*' -exec rm -rv {} \; || true
# Create archive
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
- name: Upload source distribution for release
if: ${{ github.event_name == 'release' }}
uses: softprops/action-gh-release@da05d552573ad5aba039eaac05058a918a7bf631 # v2.2.2
with:
files: |
${{ env.PT_RELEASE_FILE }}
${{ env.PT_PEP517_RELEASE_FILE }}
- name: Upload source distribution to GHA artifacts # for release tags
files: ${{env.PT_RELEASE_FILE}}
- name: Upload source distribution to GHA artifacts for release tags
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
with:
name: ${{ env.PT_RELEASE_FILE }}
path: ${{ env.PT_RELEASE_FILE }}
- name: Upload PEP 517 source distribution to GHA artifacts # for release tags
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
with:
name: ${{ env.PT_PEP517_RELEASE_FILE }}
path: dist/${{ env.PT_PEP517_RELEASE_FILE }}
- name: Set output
id: release_name
run: |
{
echo "pt_release_name=${{ env.PT_RELEASE_FILE }}";
echo "pt_pep517_release_name=${{ env.PT_PEP517_RELEASE_FILE }}";
} >> "${GITHUB_OUTPUT}"
run: echo "pt_release_name=${{ env.PT_RELEASE_NAME }}.tar.gz" >> "${GITHUB_OUTPUT}"
upload_source_code_to_s3:
if: ${{ github.repository == 'pytorch/pytorch' && github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
@ -125,9 +103,6 @@ jobs:
- uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
with:
name: ${{ needs.release.outputs.pt_release_name }}
- uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
with:
name: ${{ needs.release.outputs.pt_pep517_release_name }}
- name: Configure AWS credentials(PyTorch account)
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
@ -138,9 +113,7 @@ jobs:
s3-bucket: pytorch
s3-prefix: source_code/test
if-no-files-found: warn
path: |
${{ needs.release.outputs.pt_release_name }}
${{ needs.release.outputs.pt_pep517_release_name }}
path: ${{ needs.release.outputs.pt_release_name }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name }}

View File

@ -59,6 +59,7 @@ jobs:
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-rocm-n-py3,
pytorch-linux-noble-rocm-n-py3,
pytorch-linux-noble-rocm-alpha-py3,
pytorch-linux-jammy-rocm-n-py3-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12,
pytorch-linux-jammy-py3.10-gcc11,
@ -69,7 +70,7 @@ jobs:
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter,
pytorch-linux-jammy-py3-clang12-executorch,
pytorch-linux-jammy-py3.12-triton-cpu,
pytorch-linux-noble-riscv64-py3.12-gcc14

View File

@ -62,7 +62,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -128,11 +128,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -174,11 +174,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -220,11 +220,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -265,7 +265,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -331,11 +331,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -377,11 +377,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -423,11 +423,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -468,7 +468,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -534,11 +534,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -580,11 +580,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -626,11 +626,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -671,7 +671,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -737,11 +737,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -783,11 +783,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -829,11 +829,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -874,7 +874,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -940,11 +940,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -986,11 +986,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1032,11 +1032,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1077,7 +1077,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -1143,11 +1143,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1189,11 +1189,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1235,11 +1235,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1280,7 +1280,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -1346,11 +1346,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1392,11 +1392,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1438,11 +1438,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -316,6 +316,120 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_3-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: libtorch-rocm6_3-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm6_3-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm6_3-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm6_3-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm6.3
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm6_3-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm6_3-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm6_3-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_4-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -333,7 +447,6 @@ jobs:
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm6_4-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
@ -430,118 +543,3 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm7_0-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm7_0-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm7_0-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm7_0-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm7.0
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm7_0-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm7_0-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm7_0-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

View File

@ -0,0 +1,87 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
# Generation script: .github/scripts/generate_ci_workflows.py
name: linux-binary-libtorch-release
on:
push:
branches:
- main
tags:
- 'ciflow/trunk/*'
workflow_dispatch:
permissions:
id-token: write
env:
# Needed for conda builds
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
AWS_DEFAULT_REGION: us-east-1
BINARY_ENV_FILE: /tmp/env
BUILD_ENVIRONMENT: linux-binary-libtorch-release
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
PYTORCH_ROOT: /pytorch
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SKIP_ALL_TESTS: 0
concurrency:
group: linux-binary-libtorch-release-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
libtorch-cpu-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cpu
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: libtorch-cpu-shared-with-deps-release
build_environment: linux-binary-libtorch-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-cpu-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cpu-shared-with-deps-release-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cpu
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-cpu-shared-with-deps-release
build_environment: linux-binary-libtorch-release
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.4xlarge
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -0,0 +1,88 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
# Generation script: .github/scripts/generate_ci_workflows.py
name: linux-binary-manywheel
on:
push:
branches:
- main
tags:
- 'ciflow/trunk/*'
workflow_dispatch:
permissions:
id-token: write
env:
# Needed for conda builds
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
AWS_DEFAULT_REGION: us-east-1
BINARY_ENV_FILE: /tmp/env
BUILD_ENVIRONMENT: linux-binary-manywheel
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
PYTORCH_ROOT: /pytorch
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SKIP_ALL_TESTS: 0
concurrency:
group: linux-binary-manywheel-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
manywheel-py3_12-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_8-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_12-cuda12_8-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,135 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
# Generation script: .github/scripts/generate_ci_workflows.py
name: linux-binary-manywheel-rocm
on:
push:
branches:
- main
tags:
- 'ciflow/binaries/*'
- 'ciflow/binaries_wheel/*'
- 'ciflow/rocm/*'
workflow_dispatch:
permissions:
id-token: write
env:
# Needed for conda builds
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
AWS_DEFAULT_REGION: us-east-1
BINARY_ENV_FILE: /tmp/env
BUILD_ENVIRONMENT: linux-binary-manywheel-rocm
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
PYTORCH_ROOT: /pytorch
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SKIP_ALL_TESTS: 0
concurrency:
group: linux-binary-manywheel-rocm-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
manywheel-py3_9-rocm6_4-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-rocm6_4
build_environment: linux-binary-manywheel-rocm
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-rocm6_4-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_9-rocm6_4-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.9"
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: manywheel-py3_9-rocm6_4
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: manylinux2_28-builder
custom-tag-prefix: rocm6.4
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm

View File

@ -0,0 +1,261 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/windows_binary_build_workflow.yml.j2
# Generation script: .github/scripts/generate_ci_workflows.py
name: windows-binary-libtorch-debug
on:
push:
branches:
- main
workflow_dispatch:
env:
# Needed for conda builds
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
AWS_DEFAULT_REGION: us-east-1
BUILD_ENVIRONMENT: windows-binary-libtorch-debug
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SKIP_ALL_TESTS: 1
OS: windows
concurrency:
group: windows-binary-libtorch-debug-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
libtorch-cpu-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cpu-shared-with-deps-debug
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cpu-shared-with-deps-debug-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cpu-shared-with-deps-debug-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cpu-shared-with-deps-debug
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1

View File

@ -0,0 +1,261 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/windows_binary_build_workflow.yml.j2
# Generation script: .github/scripts/generate_ci_workflows.py
name: windows-binary-libtorch-release
on:
push:
branches:
- main
workflow_dispatch:
env:
# Needed for conda builds
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
AWS_DEFAULT_REGION: us-east-1
BUILD_ENVIRONMENT: windows-binary-libtorch-release
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SKIP_ALL_TESTS: 1
OS: windows
concurrency:
group: windows-binary-libtorch-release-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
libtorch-cpu-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cpu-shared-with-deps-release
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cpu-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cpu-shared-with-deps-release-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cpu
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cpu-shared-with-deps-release
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1

View File

@ -31,8 +31,6 @@ jobs:
if: github.repository_owner == 'pytorch'
name: Get changed files
uses: ./.github/workflows/_get-changed-files.yml
with:
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') }}
lintrunner-clang:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
@ -55,7 +53,7 @@ jobs:
with:
timeout: 120
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
docker-image: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter
docker-image: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter
# NB: A shallow checkout won't work here because calculate-docker-image requires a full checkout
# to run git rev-parse HEAD~:.ci/docker when a new image is needed
fetch-depth: 0
@ -266,10 +264,10 @@ jobs:
with:
submodules: false
fetch-depth: 1
- name: Setup Python 3.10
- name: Setup Python 3.9
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.10'
python-version: '3.9'
architecture: x64
cache: pip
- name: Install dependencies

View File

@ -1,46 +0,0 @@
name: operator_microbenchmark
on:
push:
tags:
- ciflow/op-benchmark/*
workflow_dispatch:
schedule:
# Run at 06:00 UTC everyday
- cron: 0 6 * * *
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
opmicrobenchmark-build:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '8.0 9.0'
test-matrix: |
{ include: [
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.h100" },
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
]}
secrets: inherit
opmicrobenchmark-test:
name: opmicrobenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: opmicrobenchmark-build
with:
timeout-minutes: 500
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -59,14 +59,13 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.4-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11
cuda-arch-list: 7.5
test-matrix: |
{ include: [
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
]}
secrets: inherit
@ -113,13 +112,13 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-build:
name: linux-jammy-cuda12.8-py3.10-gcc9
linux-jammy-cuda12_8-py3_9-gcc9-build:
name: linux-jammy-cuda12.8-py3.9-gcc9
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
cuda-arch-list: 8.6
test-matrix: |
@ -129,14 +128,14 @@ jobs:
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-test:
name: linux-jammy-cuda12.8-py3.10-gcc9
linux-jammy-cuda12_8-py3_9-gcc9-test:
name: linux-jammy-cuda12.8-py3.9-gcc9
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-cuda12_8-py3_10-gcc9-build
needs: linux-jammy-cuda12_8-py3_9-gcc9-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.test-matrix }}
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-debug-build:

View File

@ -343,14 +343,14 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
linux-jammy-xpu-n-py3_9-build:
name: linux-jammy-xpu-n-py3.9
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-jammy-xpu-n-py3.10
build-environment: linux-jammy-xpu-n-py3.9
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
test-matrix: |
{ include: [

View File

@ -1,54 +0,0 @@
name: quantization-periodic
on:
push:
tags:
- ciflow/quantization-periodic/*
workflow_dispatch:
schedule:
# run weekly
- cron: "45 0 * * 0"
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-default-label-prefix:
name: get-default-label-prefix
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
periodic-quantization-build:
name: periodic-quantization-build
uses: ./.github/workflows/_linux-build.yml
needs: get-default-label-prefix
with:
runner_prefix: "${{ needs.get-default-label-prefix.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-cudnn9-py3-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '8.9'
test-matrix: |
{ include: [
{ config: "quantization", shard: 1, num_shards: 1, runner: "${{ needs.get-default-label-prefix.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
]}
secrets: inherit
periodic-test-quantization:
name: periodic-test-quantization
uses: ./.github/workflows/_linux-test.yml
needs: periodic-quantization-build
with:
build-environment: linux-jammy-cuda12.8-cudnn9-py3-gcc11
docker-image: ${{ needs.periodic-quantization-build.outputs.docker-image }}
test-matrix: ${{ needs.periodic-quantization-build.outputs.test-matrix }}
secrets: inherit

View File

@ -38,7 +38,7 @@ jobs:
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-rocm-py3.12-mi355
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
docker-image-name: ci-image:pytorch-linux-noble-rocm-alpha-py3
sync-tag: rocm-build
test-matrix: |
{ include: [

View File

@ -1,76 +0,0 @@
# B200 Smoke Tests CI Workflow
#
# This workflow runs smoke tests on B200 hardware
#
# Flow:
# 1. Builds PyTorch with CUDA 12.8+ and sm100 architecture for B200
# 2. Runs smoke tests on linux.dgx.b200 runner
# 3. Tests executed are defined in .ci/pytorch/test.sh -> test_python_smoke() function
#
# Triggered by:
# - Pull requests modifying this workflow file
# - Manual dispatch
# - Schedule (every 6 hours)
# - Adding ciflow/b200 label to a PR (creates ciflow/b200/* tag)
name: B200 Smoke Tests
on:
pull_request:
paths:
- .github/workflows/test-b200.yml
workflow_dispatch:
schedule:
- cron: 0 4,10,16,22 * * * # every 6 hours
push:
tags:
- ciflow/b200/*
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm100-build:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "smoke_b200", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
]}
# config: "smoke_b200" maps to test_python_smoke_b200() in .ci/pytorch/test.sh
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -53,3 +53,27 @@ jobs:
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-py3_9-clang9-xla-build:
name: linux-jammy-py3_9-clang9-xla
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.9-clang9-xla
docker-image-name: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/xla_base:v1.3-lite
test-matrix: |
{ include: [
{ config: "xla", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.12xlarge" },
]}
secrets: inherit
linux-jammy-py3_9-clang9-xla-test:
name: linux-jammy-py3_9-clang9-xla
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-py3_9-clang9-xla-build
with:
build-environment: linux-jammy-py3.9-clang9-xla
docker-image: ${{ needs.linux-jammy-py3_9-clang9-xla-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_9-clang9-xla-build.outputs.test-matrix }}
secrets: inherit

1
.gitignore vendored
View File

@ -82,7 +82,6 @@ torch/return_types.pyi
torch/nn/functional.pyi
torch/utils/data/datapipes/datapipe.pyi
torch/csrc/autograd/generated/*
torch/csrc/functionalization/generated/*
torch/csrc/lazy/generated/*.[!m]*
torch_compile_debug/
# Listed manually because some files in this directory are not generated

View File

@ -49,7 +49,7 @@ init_command = [
'mccabe==0.7.0',
'pycodestyle==2.14.0',
'pyflakes==3.4.0',
'torchfix==0.4.0 ; python_version >= "3.10" and python_version < "3.13"',
'torchfix==0.4.0 ; python_version >= "3.9" and python_version < "3.13"',
]
@ -123,7 +123,6 @@ is_formatter = true
code = 'MYPY'
include_patterns = [
'setup.py',
'functorch/dim/**/*.py',
'torch/**/*.py',
'torch/**/*.pyi',
'caffe2/**/*.py',
@ -153,7 +152,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==1.26.4 ; python_version >= "3.9" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'mypy==1.16.0',
@ -196,7 +195,6 @@ exclude_patterns = [
'tools/test/gen_operators_yaml_test.py',
'tools/test/gen_oplist_test.py',
'tools/test/test_selective_build.py',
'tools/experimental/dynamic_shapes/torchfuzz/**',
]
command = [
'python3',
@ -1453,7 +1451,7 @@ init_command = [
'--dry-run={{DRYRUN}}',
'usort==1.0.8.post1',
'isort==6.0.1',
'ruff==0.13.1', # sync with RUFF
'ruff==0.12.9', # sync with RUFF
]
is_formatter = true
@ -1587,7 +1585,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.13.1', # sync with PYFMT
'ruff==0.12.9', # sync with PYFMT
]
is_formatter = true

View File

@ -22,7 +22,6 @@ COMMON_COPTS = [
"-DHAVE_SHM_UNLINK=1",
"-D_FILE_OFFSET_BITS=64",
"-DUSE_FBGEMM",
"-DUSE_DISTRIBUTED",
"-DAT_PER_OPERATOR_HEADERS",
"-DATEN_THREADING=NATIVE",
"-DNO_CUDNN_DESTROY_HANDLE",
@ -91,8 +90,6 @@ generated_cpu_cpp = [
"aten/src/ATen/NativeMetaFunctions.h",
"aten/src/ATen/RegistrationDeclarations.h",
"aten/src/ATen/VmapGeneratedPlumbing.h",
"aten/src/ATen/ViewMetaClasses.h",
"aten/src/ATen/ViewMetaClasses.cpp",
"aten/src/ATen/core/aten_interned_strings.h",
"aten/src/ATen/core/enum_tag.h",
"aten/src/ATen/core/TensorBody.h",
@ -813,7 +810,7 @@ cc_library(
name = "torch_python",
srcs = libtorch_python_core_sources
+ if_cuda(libtorch_python_cuda_sources)
+ if_cuda(libtorch_python_distributed_sources)
+ libtorch_python_distributed_sources
+ GENERATED_AUTOGRAD_PYTHON,
hdrs = glob([
"torch/csrc/generic/*.cpp",
@ -835,6 +832,36 @@ pybind_extension(
],
)
cc_library(
name = "functorch",
hdrs = glob([
"functorch/csrc/dim/*.h",
]),
srcs = glob([
"functorch/csrc/dim/*.cpp",
]),
deps = [
":aten_nvrtc",
":torch_python",
"@pybind11",
],
)
pybind_extension(
name = "functorch/_C",
copts=[
"-DTORCH_EXTENSION_NAME=_C"
],
srcs = [
"functorch/csrc/init_dim_only.cpp",
],
deps = [
":functorch",
":torch_python",
":aten_nvrtc",
],
)
cc_binary(
name = "torch/bin/torch_shm_manager",
srcs = [
@ -875,6 +902,7 @@ py_library(
],
data = [
":torch/_C.so",
":functorch/_C.so",
":torch/bin/torch_shm_manager",
],
)
@ -1077,7 +1105,6 @@ test_suite(
"aten/src/ATen/templates/LazyNonNativeIr.h",
"aten/src/ATen/templates/RegisterDispatchKey.cpp",
"aten/src/ATen/templates/RegisterDispatchDefinitions.ini",
"aten/src/ATen/templates/ViewMetaClassesPythonBinding.cpp",
"aten/src/ATen/native/native_functions.yaml",
"aten/src/ATen/native/tags.yaml",
"aten/src/ATen/native/ts_native_functions.yaml",

View File

@ -1,4 +1,5 @@
cmake_minimum_required(VERSION 3.27 FATAL_ERROR)
# cmake_policy(SET CMP0022 NEW) cmake_policy(SET CMP0023 NEW)
# Use compiler ID "AppleClang" instead of "Clang" for XCode. Not setting this
# sometimes makes XCode C compiler gets detected as "Clang", even when the C++
@ -180,8 +181,9 @@ elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(ppc64le)")
set(CPU_POWER ON)
endif()
# For non-supported platforms, turn USE_DISTRIBUTED off by default. It is not
# tested and likely won't work without additional changes.
# For non-supported platforms, turn USE_DISTRIBUTED off by default.
# NB: USE_DISTRIBUTED simply disables the backend; distributed code
# still gets built
if(NOT LINUX AND NOT WIN32)
set(USE_DISTRIBUTED
OFF
@ -261,11 +263,11 @@ option(USE_PYTORCH_METAL "Use Metal for PyTorch iOS build" OFF)
option(USE_PYTORCH_METAL_EXPORT "Export Metal models on MacOSX desktop" OFF)
option(USE_NATIVE_ARCH "Use -march=native" OFF)
cmake_dependent_option(USE_MPS "Use MPS for macOS build" ON "MPS_FOUND" OFF)
option(USE_DISTRIBUTED "Use distributed" ON)
option(USE_DISTRIBUTED "Enable default distributed backends" ON)
cmake_dependent_option(USE_NCCL "Use NCCL" ON
"USE_DISTRIBUTED;USE_CUDA OR USE_ROCM;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_XCCL "Use XCCL" ON
"USE_XPU;UNIX;NOT APPLE" OFF)
"USE_DISTRIBUTED;USE_XPU;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON USE_NCCL OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON "USE_NCCL;NOT WIN32" OFF)
cmake_dependent_option(USE_STATIC_NCCL "Use static NCCL" OFF "USE_NCCL" OFF)
@ -437,12 +439,11 @@ if(WIN32)
PATH_SUFFIXES lib
NO_DEFAULT_PATH)
if(NOT libuv_tmp_LIBRARY)
set(USE_DISTRIBUTED OFF)
set(USE_GLOO OFF)
message(
WARNING
"Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.51' to install libuv."
"Libuv is not installed in current conda env. Set USE_GLOO to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.39' to install libuv."
)
else()
set(ENV{libuv_ROOT} ${libuv_tmp_LIBRARY}/../../)
@ -888,28 +889,23 @@ cmake_dependent_option(
"(USE_CUDA AND NOT MSVC) OR USE_ROCM"
OFF)
IF(USE_ROCM AND "gfx942" IN_LIST PYTORCH_ROCM_ARCH)
message(WARNING "Setting USE_FBGEMM_GENAI for gfx942 to ON by default, doing ROCM build")
set(USE_FBGEMM_GENAI_DEFAULT ON)
elseif(USE_CUDA AND "$ENV{TORCH_CUDA_ARCH_LIST}" MATCHES "10.0" AND CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8 AND NOT WIN32)
message(STATUS "Setting USE_FBGEMM_GENAI to ON by default , doing CUDA build for SM100a")
set(USE_FBGEMM_GENAI_DEFAULT ON)
else()
set(USE_FBGEMM_GENAI_DEFAULT OFF)
endif()
cmake_dependent_option(
USE_FBGEMM_GENAI
"Whether to build FBGEMM GenAI quantized GEMM kernels.\
Will be disabled if not supported by the platform"
${USE_FBGEMM_GENAI_DEFAULT}
"(USE_CUDA AND NOT MSVC) OR USE_ROCM"
ON
"USE_ROCM"
OFF)
IF(USE_FBGEMM_GENAI AND USE_ROCM AND NOT "gfx942" IN_LIST PYTORCH_ROCM_ARCH)
message(WARNING "Unsupported ROCM arch for FBGEMM GenAI, will set USE_FBGEMM_GENAI to OFF")
set(USE_FBGEMM_GENAI off)
endif()
# Set USE_FBGEMM_GENAI to ON for CUDA build on SM100.
if(USE_CUDA AND "$ENV{TORCH_CUDA_ARCH_LIST}" MATCHES "10.0" AND CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8 AND NOT WIN32)
message(STATUS "Setting USE_FBGEMM_GENAI to ON, doing CUDA build for SM100a")
set(USE_FBGEMM_GENAI ON)
endif()
# CAVEAT: Again, Flash Attention2 will error while building for sm52 while Mem
@ -1395,6 +1391,10 @@ endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()
if(BUILD_FUNCTORCH)
add_subdirectory(functorch)
endif()
# Parse custom debug info
if(DEFINED USE_CUSTOM_DEBINFO)
string(REPLACE ";" " " SOURCE_FILES "${USE_CUSTOM_DEBINFO}")
@ -1486,4 +1486,4 @@ else()
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()
endif()

View File

@ -1,61 +1,20 @@
# Reference: https://setuptools.pypa.io/en/latest/userguide/miscellaneous.html
# Include individual top-level files
include CITATION.cff
include CODEOWNERS
include Dockerfile
include LICENSE
include MANIFEST.in
include Makefile
include NOTICE
include .bc-linter.yml
include .clang-format .clang-tidy
include .cmakelintrc
include .coveragerc
include .dockerignore
include .editorconfig
include .flake8
include .gdbinit
include .lintrunner.toml
include .lldbinit
include codex_setup.sh
include docker.Makefile
include pyrefly.toml
include ubsan.supp
# Include bazel and BUCK related files
include BUILD.bazel BUCK.oss
include WORKSPACE
include *.bzl
include .bazelignore .bazelrc .bazelversion
# Include general configuration files
include *.ini
# Include important top-level information
include *.md
# Include technical text files at the moment, comprises
# version.txt, CMakeLists.txt, requirements.txt
include *.txt
# Include ctags configuration
include .ctags.d/*.ctags
# Include subfolders completely
graft .devcontainer
graft .vscode
# Include source files in SDist
include CMakeLists.txt
include *.bzl *.bazel .bazel* BUILD *.BUILD BUILD.* WORKSPACE
include BUCK BUCK.*
include requirements*.txt
include version.txt
include [Mm]akefile *.[Mm]akefile [Mm]akefile.*
include [Dd]ockerfile *.[Dd]ockerfile [Dd]ockerfile.* .dockerignore
graft android
graft aten
graft benchmarks
graft binaries
graft c10
graft caffe2
graft cmake
graft docs
graft functorch
graft ios
graft mypy_plugins
graft scripts
graft test
graft third_party
graft tools
graft torch
@ -63,37 +22,29 @@ graft torchgen
# FIXME: torch-xla build during codegen will fail if include this file in wheel
exclude torchgen/BUILD.bazel
# The following exclusions omit parts from third-party dependencies that
# contain invalid symlinks[1] and that are not needed for pytorch, such as
# bindings for unused languages
prune third_party/flatbuffers/java
prune third_party/flatbuffers/kotlin
prune third_party/ittapi/rust
prune third_party/nccl/pkg/debian
prune third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-*
# The following document is also an invalid symlink[1] and superfluous
exclude third_party/flatbuffers/docs/source/CONTRIBUTING.md
# Omit autogenerated code
prune torchgen/packaged
# Omit caches, compiled, and scm related content
prune */__pycache__
prune **/.github
prune **/.gitlab
global-exclude *.o *.obj *.so *.dylib *.a *.pxd *.dll *.lib
global-exclude *.py[cod] *.swp *~
global-exclude .git .git-blame-ignore-revs .gitattributes .gitignore .gitmodules
global-exclude .gitlab-ci.yml
# Misc files and directories in SDist
include *.md
include CITATION.cff
include LICENSE NOTICE
include mypy*.ini
graft benchmarks
graft docs
graft mypy_plugins
graft scripts
# Misc files needed for custom setuptools command
include .gitignore
include .gitmodules
# [1] Invalid symlinks for the purposes of Python source distributions are,
# according to the source distribution format[2] links pointing outside the
# destination directory or links with a `..` component, which is those of
# concern here.
# Include test suites in SDist
graft test
include pytest.ini
include .coveragerc
# [2] https://packaging.python.org/en/latest/specifications/source-distribution-format/#source-distribution-archive-features
# Prune generated/compiled files
prune torchgen/packaged
prune */__pycache__
global-exclude *.o *.obj *.so *.a *.dylib *.pxd *.dll *.lib *.py[cod]
prune */.git
global-exclude .git *~ *.swp

View File

@ -161,7 +161,7 @@ They require JetPack 4.2 and above, and [@dusty-nv](https://github.com/dusty-nv)
#### Prerequisites
If you are installing from source, you will need:
- Python 3.10 or later
- Python 3.9 or later
- A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required, on Linux)
- Visual Studio or Visual Studio Build Tool (Windows only)
@ -275,7 +275,7 @@ conda install pkg-config libuv
pip install mkl-static mkl-include
# Add these packages if torch.distributed is needed.
# Distributed package support on Windows is a prototype feature and is subject to changes.
conda install -c conda-forge libuv=1.51
conda install -c conda-forge libuv
```
#### Install PyTorch

View File

@ -317,20 +317,10 @@ IF(USE_FBGEMM_GENAI)
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
# Only compile for gfx942 for now.
# This is rather hacky, I could not figure out a clean solution :(
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
endif()
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)

View File

@ -401,13 +401,30 @@ T* toDLPackImpl(const Tensor& src) {
// The following code detects whether the src follows
// a continuous pattern. If the src follows such pattern (common-case)
// then we do not need to normalize the strides.
bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1;
bool need_normalize_strides = false;
int64_t expected_stride = 1;
for (int i = src.dim() - 1; i >= 0; i--) {
// detect if we do not meet continuous pattern
// and the size is 1, so there is opportunity to normalize
if (src.stride(i) != expected_stride && src.size(i) == 1) {
need_normalize_strides = true;
break;
}
expected_stride *= src.size(i);
}
// less common case, try normalizing the strides
if (need_normalize_strides) {
// create a new tensor with possibly normalized strides
// gh-83069
auto shape = src.sizes();
view = src.as_strided(shape, {1}, src.storage_offset());
auto strides = src.strides().vec();
for (int i = 0; i < src.dim(); i++) {
if (shape[i] < 2) {
strides[i] = 1;
}
}
view = src.as_strided(shape, strides, src.storage_offset());
}
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);

View File

@ -468,7 +468,7 @@ inline Tensor _sum_to(
// if we assume no reduction due to unbacked we ensure that at runtime.
TORCH_MAYBE_SYM_CHECK(
sym_eq(shape[i - leading_dims], sizes[i]),
"non-reduction path was assumed due to unbacked symbols expected those two sizes to be the same:",
"non-reduction path was assumed due to unabcked symbols expected those two sizes to be the same:",
shape[i - leading_dims],
", ",
sizes[i])

View File

@ -9,6 +9,11 @@
namespace at::functionalization {
ViewMeta ViewMeta::to_out_idx(int64_t out_idx) {
if (out_idx == this->out_index) return *this;
return ViewMeta(forward_fn, reverse_fn, has_symbolic_inputs, is_multi_output, is_as_strided, out_idx);
}
// Note [Functionalization: Alias Removal Part 2]
// See Note [Functionalization: Alias Removal] for more details.
// This function applies a single update from one of the views to the StorageImpl.
@ -37,12 +42,12 @@ namespace at::functionalization {
static const Tensor apply_update(const FunctionalStorageImpl::Update& update, const Tensor& base) {
at::Tensor t = update.new_val;
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
if (update.view_metas.empty()) { return t; }
if (update.view_metas.empty()) return t;
std::vector<at::Tensor> tmp_values({base});
tmp_values.reserve(update.view_metas.size());
for (size_t i = 0; i < update.view_metas.size() - 1; ++i) {
at::Tensor next_view = update.view_metas[i]->forward(tmp_values.back());
at::Tensor next_view = update.view_metas[i].forward_fn(tmp_values.back(), update.view_metas[i].out_index);
// NB: We only actually need tmp_values for ops like select/slice/diagonal/squeeze/as_strided
// All of these ops require additional information to recover the sizes of the original tensor.
// If need to, we could probably apply this optimization and only bother computing tmp_values
@ -50,8 +55,9 @@ static const Tensor apply_update(const FunctionalStorageImpl::Update& update, co
tmp_values.push_back(std::move(next_view));
}
for(int64_t i = static_cast<int64_t>(update.view_metas.size()) - 1; i >= 0; --i) {
int64_t out_idx = update.view_metas[i].out_index;
// Each view inverse is implemented in ViewInverses.cpp.
t = update.view_metas[i]->reverse(tmp_values[i], t);
t = update.view_metas[i].reverse_fn(tmp_values[i], t, out_idx);
}
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
return t;
@ -105,13 +111,13 @@ FunctionalStorageImpl::FunctionalStorageImpl(const Tensor& base)
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(base_));
}
void FunctionalStorageImpl::add_update(const Tensor& updated_val, const std::vector<std::shared_ptr<ViewMeta>>& metas) {
void FunctionalStorageImpl::add_update(const Tensor& updated_val, const std::vector<ViewMeta>& metas) {
TORCH_CHECK(!frozen_, "cannot mutate tensors with frozen storage");
if (metas.size() > 1) {
for (size_t i = 1; i < metas.size(); ++i) {
// Skipping this check for XLA. Would be good to add it back, but it is failing XLA CI
TORCH_CHECK(updated_val.device().type() == c10::DeviceType::XLA || !metas[i]->is_as_strided,
TORCH_CHECK(updated_val.device().type() == c10::DeviceType::XLA || !metas[i].is_as_strided,
"During torch.compile, encountered a mutation on a view chain of length ", metas.size(), ", where view ", i,
" was an as_strided() call. as_strided() is non-compositional, and therefore is not possible to functionalize properly today,"
"so this behavior is banned in compile. As a workaround, you can either remove the mutation from the model code, or you "

View File

@ -8,89 +8,44 @@ namespace at::functionalization {
// See Note [Functionalization Pass In Core]
enum class InverseReturnMode {
/// Specifies that functional inverses should always return a view.
AlwaysView,
/// Specifies that functional inverses should always return a non-view / copy.
NeverView,
/// Specifies that functional inverses should return a view unless a (copying)
/// scatter
/// inverse exists, in which case that will be used instead.
/// This avoids as_strided() calls that can be difficult for subclasses to
/// handle.
ViewOrScatterInverse,
};
#define FUNCTIONALIZATION_VIEWMETA_NAME(TYPE) \
static const char* name() { \
return #TYPE; \
}
#define FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(...) \
using SerializableTuple = std::tuple<__VA_ARGS__>
// ViewMeta is a class used by the functionalization pass to navigate between
// a base tensor and a view tensor.
// For example, if I call `b = a.view1(...)`
// the functionalization pass will generate and store a ViewMeta specialization
// for `view1` operation on b that looks like:
// the functionalization pass will generate and store a ViewMeta on b that looks
// like:
//
// struct TORCH_API view1_ViewMeta : public ViewMeta {
// FUNCTIONALIZATION_VIEWMETA_NAME(view1_ViewMeta);
// FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
// bool /* reapply_views */,
// const std::vector<int64_t>&);
//
// view1_ViewMeta(const SerializableTuple& tpl)
// : view1_ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
//
// view1_ViewMeta(bool reapply_views, const std::vector<int64_t>& size)
// : ViewMeta(/*has_symbolic_inputs=*/false),
// reapply_views(reapply_views),
// size(size) {}
//
// Tensor forward(const Tensor& base) override {
// return base.view1(...);
// ViewMeta(
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
// return base.view1(...);
// },
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
// int64_t mutated_view_idx) -> at::Tensor {
// return at::functionalization::impl::view1_inverse(base, mutated_view,
// ...);
// }
//
// Tensor reverse(const Tensor& base, const Tensor& mutated_view) override {
// return at::functionalization::impl::view1_inverse(base, mutated_view,
// ...);
// }
// The forward_fn lambda describes how to replay view1 on a tensor.
//
// SerializableTuple to_serializable_tuple() {
// return std::make_tuple(reapply_views, size);
// }
//
// bool reapply_views;
// std::vector<int64_t> size;
// };
//
// The forward function describes how to replay view1 on a tensor.
//
// The reverse function describes how, given a tensor that is already a view,
// The reverse_fn lambda describes how, given a tensor that is already a view,
// how to get the corresponding base tensor. See Note [Functionalization Pass:
// View Inverses] for details.
//
// `SerializedTuple` is a typedef that defines an `std::tuple<...>` type
// representing the `ViewMeta` instance state. Methods that take in/return such
// a type are used for supporting pickle serialization.
struct ViewMeta {
ViewMeta(
std::function<Tensor(const Tensor&, int64_t)> forward,
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
bool has_symbolic_inputs,
bool is_multi_output = false,
bool is_as_strided = false,
int64_t out_idx = 0)
: out_index(out_idx),
: forward_fn(std::move(forward)),
reverse_fn(std::move(reverse)),
out_index(out_idx),
is_multi_output(is_multi_output),
is_as_strided(is_as_strided),
has_symbolic_inputs(has_symbolic_inputs) {}
virtual ~ViewMeta() = default;
virtual Tensor forward(const Tensor& base) = 0;
virtual Tensor reverse(const Tensor& base, const Tensor& mutated_view) = 0;
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
// See Note [out_idx in ViewMeta]
int64_t out_index;
@ -102,17 +57,10 @@ struct ViewMeta {
// Tells us if this view operation has any symbolic inputs
bool has_symbolic_inputs;
// Returns a new ViewMeta with the same forward/reverse
// Returns a copy of the current ViewMeta, if out_idx matches the current
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
// functions, but a new out index.
//
// This method should be implemented by those `ViewMeta` that have more than
// one output.
virtual std::shared_ptr<ViewMeta> to_out_index(int64_t out_index) {
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"ViewMeta::to_out_index not implemented. ",
"Likely because there's only one output.");
}
ViewMeta to_out_idx(int64_t out_idx);
};
// FunctionalStorageImpl is a subclass of StorageImpl used by the
@ -145,14 +93,14 @@ struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const at::Tensor new_val;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const std::vector<std::shared_ptr<ViewMeta>> view_metas;
const std::vector<ViewMeta> view_metas;
};
explicit FunctionalStorageImpl(const Tensor& value);
void add_update(
const Tensor& updated_val,
const std::vector<std::shared_ptr<ViewMeta>>& view_metas);
const std::vector<ViewMeta>& view_metas);
bool apply_updates();
const Tensor& base() {
return base_;

View File

@ -129,19 +129,17 @@ void FunctionalTensorWrapper::freeze_storage() const {
// - view_value: The output tensor that we need to wrap.
// - base: The "base" of the view that `view_value` was generated from.
// See Note [Functionalization: Alias Removal Part 2] for more details on the mutation replay logic.
FunctionalTensorWrapper::FunctionalTensorWrapper(
const Tensor& view_value,
const FunctionalTensorWrapper* base,
const std::shared_ptr<functionalization::ViewMeta>& meta)
: c10::TensorImpl(
c10::DispatchKeySet(DispatchKey::Functionalize),
view_value.dtype(),
base->storage().data_ptr().device()),
value_(view_value),
is_multi_output_view_(
base->is_multi_output_view_ || meta->is_multi_output),
was_storage_changed_(base->was_storage_changed_),
is_symbolic_(base->is_symbolic_) {
FunctionalTensorWrapper::FunctionalTensorWrapper(const Tensor& view_value, const FunctionalTensorWrapper* base, const functionalization::ViewMeta& meta)
: c10::TensorImpl(
c10::DispatchKeySet(DispatchKey::Functionalize),
view_value.dtype(),
base->storage().data_ptr().device()
),
value_(view_value),
is_multi_output_view_(base->is_multi_output_view_ || meta.is_multi_output),
was_storage_changed_(base->was_storage_changed_),
is_symbolic_(base->is_symbolic_)
{
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(value_));
TORCH_INTERNAL_ASSERT(!value_.key_set().has(c10::DispatchKey::Functionalize));
set_constructor_metadata();
@ -150,10 +148,11 @@ FunctionalTensorWrapper::FunctionalTensorWrapper(
view_metas_ = base->view_metas_; // copy
}
view_metas_.push_back(meta);
maybe_mark_symbolic(meta.get());
maybe_mark_symbolic(meta);
storage_ = base->storage_; // alias this tensor's storage with the base tensor's
}
functionalization::FunctionalStorageImpl* FunctionalTensorWrapper::functional_storage_impl() const {
return static_cast<functionalization::FunctionalStorageImpl*>(storage_.unsafeGetStorageImpl());
}
@ -177,18 +176,18 @@ bool FunctionalTensorWrapper::is_up_to_date() const {
}
// See Note [Functionalization Pass - Inplace View Ops]
void FunctionalTensorWrapper::mutate_view_meta(const std::shared_ptr<at::functionalization::ViewMeta>& meta) {
void FunctionalTensorWrapper::mutate_view_meta(const at::functionalization::ViewMeta& meta) {
view_metas_.push_back(meta);
// Manually track the fact that this tensor received a metadata mutation!
has_metadata_mutation_ = true;
// Mark this tensor as being symbolic if there are any symbolic inputs used by the view operation.
maybe_mark_symbolic(meta.get());
maybe_mark_symbolic(meta);
// Note [Functionalization Pass - Inplace View Ops]
// So, these ops are special - they're mutation AND view ops. They get special codegen.
// An example is transpose_, e.g. `a.transpose_()`
// Calling transpose_() should ensure that a gets an alias, and append the new ViewMeta to a's current list of ViewMetas.
at::AutoDispatchSkipFunctionalize guard;
value_ = meta->forward(value_);
value_ = meta.forward_fn(value_, meta.out_index);
TORCH_INTERNAL_ASSERT(!value_.key_set().has(c10::DispatchKey::Functionalize));
}
@ -369,8 +368,15 @@ void FunctionalTensorWrapper::sync_() {
regenerate_from_base();
}
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& FunctionalTensorWrapper::view_metas() const {
return view_metas_;
Tensor FunctionalTensorWrapper::apply_view_metas(const Tensor& base) {
auto t = base;
// Reapply views to get the viewed tensor from the base in alias_
for (auto& view_meta: view_metas_) {
t = view_meta.forward_fn(t, view_meta.out_index);
}
return t;
}
void FunctionalTensorWrapper::regenerate_from_base() {
@ -379,7 +385,7 @@ void FunctionalTensorWrapper::regenerate_from_base() {
auto t = storage_impl->base();
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
t = at::functionalization::impl::apply_view_meta_sequence(t, view_metas_);
t = apply_view_metas(t);
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
replace_(t, /*from_lazy_regenerate=*/true);
@ -721,11 +727,11 @@ bool isFunctionalTensor(const std::optional<Tensor>& t) {
}
bool isFunctionalTensor(const c10::List<::std::optional<Tensor>>& t_list) {
if (t_list.empty()) { return false; }
if (t_list.empty()) return false;
auto functional_count = 0;
for (const auto i : c10::irange(t_list.size())) {
auto const & e= t_list[i];
if (!e.has_value() || !e->defined()) { continue; }
if (!e.has_value() || !e->defined()) continue;
if (isFunctionalTensor(e)) {
++functional_count;
}
@ -735,10 +741,10 @@ bool isFunctionalTensor(const c10::List<::std::optional<Tensor>>& t_list) {
template <typename T>
static bool isFunctionalTensorIListRef(c10::IListRef<T> list) {
if (list.size() == 0) { return false; }
if (list.size() == 0) return false;
auto functional_count = 0;
for (const auto& tensor : list) {
if (!tensor.defined()) { continue; }
if (!tensor.defined()) continue;
if (isFunctionalTensor(tensor)) {
++functional_count;
}
@ -756,28 +762,20 @@ void freeze_functional_tensor(const Tensor& tensor) {
functional_base_impl->freeze_storage();
}
Tensor create_functional_tensor_with_view_meta(
const at::Tensor& view_to_wrap,
const at::Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta,
int64_t out_idx) {
Tensor create_functional_tensor_with_view_meta(const at::Tensor& view_to_wrap, const at::Tensor& base, functionalization::ViewMeta meta, int64_t out_idx) {
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(view_to_wrap));
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(base));
auto functional_base_impl = at::functionalization::impl::unsafeGetFunctionalWrapper(base);
auto meta_ = meta;
if (out_idx != 0) {
// Note [out_idx in ViewMeta]
// When a view op outputs multiple tensors, each output needs its own separate ViewMeta.
// Each ViewMeta also tracks the index of the particular output tensor, which is needed in the reverse function.
meta_ = meta->to_out_index(out_idx);
meta = meta.to_out_idx(out_idx);
}
return at::detail::make_tensor<FunctionalTensorWrapper>(view_to_wrap, functional_base_impl, meta_);
return at::detail::make_tensor<FunctionalTensorWrapper>(view_to_wrap, functional_base_impl, meta);
}
std::vector<Tensor> create_functional_tensor_with_view_meta(
ITensorListRef view_to_wrap,
const at::Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta) {
std::vector<Tensor> create_functional_tensor_with_view_meta(ITensorListRef view_to_wrap, const at::Tensor& base, const functionalization::ViewMeta& meta) {
std::vector<Tensor> outputs(view_to_wrap.size());
int64_t i = 0;
for (const auto& tensor : view_to_wrap) {
@ -787,22 +785,12 @@ std::vector<Tensor> create_functional_tensor_with_view_meta(
return outputs;
}
void mutate_view_meta(const at::Tensor& self, const std::shared_ptr<functionalization::ViewMeta>& meta) {
void mutate_view_meta(const at::Tensor& self, const functionalization::ViewMeta& meta) {
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(self));
auto self_impl = at::functionalization::impl::unsafeGetFunctionalWrapper(self);
self_impl->mutate_view_meta(meta);
}
Tensor apply_view_meta_sequence(
const Tensor& base,
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& sequence) {
Tensor r = base;
for (auto& vm : sequence) {
r = vm->forward(r);
}
return r;
}
// Note [Propagating strides in the functionalization pass]
// In order to properly compute stride information, the functionalization pass
// calls each {view} reference implementations with meta tensors.
@ -896,7 +884,7 @@ void functionalize_op_helper(const c10::OperatorHandle& op, torch::jit::Stack* s
const auto& ivalue = returns[idx];
if (ivalue.isTensor()) {
const auto& t = ivalue.toTensor();
if (!t.defined()) { continue; }
if (!t.defined()) continue;
at::functionalization::impl::sync(t);
auto t_new = c10::IValue(at::functionalization::impl::from_functional_tensor(t));
(*stack)[returns_begin + idx] = t_new;

View File

@ -56,7 +56,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
explicit FunctionalTensorWrapper(
const Tensor& view_value,
const FunctionalTensorWrapper* base,
const std::shared_ptr<functionalization::ViewMeta>& meta);
const functionalization::ViewMeta& meta);
// Get the underlying, actual tensor, that doesn't know anything about
// functionalization.
@ -99,17 +99,17 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
->are_all_mutations_under_no_grad_or_inference_mode();
}
void maybe_mark_symbolic(functionalization::ViewMeta* meta) {
is_symbolic_ = is_symbolic_ | meta->has_symbolic_inputs;
void maybe_mark_symbolic(const functionalization::ViewMeta& meta) {
is_symbolic_ = is_symbolic_ | meta.has_symbolic_inputs;
}
bool is_symbolic() const {
return is_symbolic_;
}
// Retrieves the ViewMeta sequence of this tensor.
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& view_metas()
const;
// Runs the forward_fn of every ViewMeta collected in the current instance
// to some other base.
Tensor apply_view_metas(const Tensor& base);
// Sync's the underlying tensor with its alias, if it's out of date. This
// involves two steps: 1) Apply any pending updates/mutations to the alias 2)
@ -146,8 +146,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
// from the base tensor. This method is used by inplace-view ops like
// transpose_. It appends a ViewMeta to the existing stack, and refreshes the
// tensor by replaying the views off of the alias.
void mutate_view_meta(
const std::shared_ptr<at::functionalization::ViewMeta>& meta);
void mutate_view_meta(const at::functionalization::ViewMeta& meta);
// Custom implementation of self.set_(src)
void set__impl(const FunctionalTensorWrapper* other);
@ -286,7 +285,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
bool is_symbolic_ = false;
size_t generation_ = 0;
std::vector<std::shared_ptr<at::functionalization::ViewMeta>> view_metas_;
std::vector<at::functionalization::ViewMeta> view_metas_;
protected:
static void copy_tensor_metadata(
@ -378,20 +377,16 @@ TORCH_API void propagate_xla_data_direct(
Tensor create_functional_tensor_with_view_meta(
const Tensor& view_to_wrap,
const Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta,
functionalization::ViewMeta meta,
int64_t out_idx = 0);
std::vector<Tensor> create_functional_tensor_with_view_meta(
ITensorListRef view_to_wrap,
const Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta);
const functionalization::ViewMeta& meta);
void mutate_view_meta(
const Tensor& self,
const std::shared_ptr<functionalization::ViewMeta>& meta);
TORCH_API Tensor apply_view_meta_sequence(
const Tensor& base,
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& sequence);
const functionalization::ViewMeta& meta);
void set_sizes_strides_offset(const Tensor& out, const Tensor& meta_out);
void set_sizes_strides_offset(

View File

@ -1,5 +1,3 @@
#include <ATen/FunctionalizeFallbackKernel.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/EmptyTensor.h>
@ -9,6 +7,7 @@
#include <torch/library.h>
#include <c10/util/irange.h>
#include <c10/util/strides.h>
#include <ATen/EmptyTensor.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/ATen.h>
@ -29,31 +28,6 @@
#include <utility>
#endif
namespace at::functionalization {
Tensor resize__ViewMeta::forward(const Tensor& base) {
if (reapply_views) {
return base.as_strided(size, c10::contiguous_strides(size));
} else {
return at::as_strided_copy(base, size, c10::contiguous_strides(size));
}
}
Tensor resize__ViewMeta::reverse(const Tensor& base, const Tensor& mutated_view) {
return base.as_strided_scatter(
mutated_view, size, c10::contiguous_strides(size));
}
Tensor _unsafe_view_ViewMeta::forward(const Tensor& base) {
return at::_unsafe_view_symint(base, size);
}
Tensor _unsafe_view_ViewMeta::reverse(const Tensor& base, const Tensor& mutated_view) {
return at::_unsafe_view_symint(mutated_view, base.sym_sizes());
}
} // namespace at::functionalization
namespace {
void functionalizeFallback(const c10::OperatorHandle& op, c10::DispatchKeySet dispatchKeySet [[maybe_unused]], torch::jit::Stack* stack) {
const auto& schema = op.schema();
@ -132,9 +106,7 @@ namespace {
const auto& ivalue = returns[idx];
if (ivalue.isTensor() && should_wrap_outputs) {
const auto& t = ivalue.toTensor();
if (!t.defined()) {
continue;
}
if (!t.defined()) continue;
auto t_new = c10::IValue(at::functionalization::impl::to_functional_tensor(t));
(*stack)[returns_begin + idx] = t_new;
} else if (ivalue.isTensorList() && should_wrap_outputs) {
@ -197,8 +169,19 @@ static const at::Tensor & resize__functionalization(c10::DispatchKeySet dispatch
// The output of resizing is equivalent to taking a slice of a larger tensor.
// We have to emulate this "slicing" with an as_strided call.
auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS();
auto view_meta = std::make_shared<at::functionalization::resize__ViewMeta>(
reapply_views, size.vec());
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
[reapply_views = reapply_views, size = size.vec()](const at::Tensor & base, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
if (reapply_views) {
return base.as_strided(size, c10::contiguous_strides(size));
} else {
return at::as_strided_copy(base, size, c10::contiguous_strides(size));
}
},
[size = size.vec()](const at::Tensor & base, const at::Tensor & mutated_view, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
return base.as_strided_scatter(mutated_view, size, c10::contiguous_strides(size));
},
/*has_symbolic_inputs=*/false
);
at::functionalization::impl::mutate_view_meta(self, view_meta);
return self;
}
@ -317,11 +300,17 @@ static at::Tensor _unsafe_view_functionalize(const at::Tensor & self, at::SymInt
tmp_output = at::_unsafe_view_symint(self_, size);
}
bool has_symbolic_inputs = std::any_of(
size.begin(), size.end(), [=](auto& s) { return s.is_symbolic(); });
auto view_meta =
std::make_shared<at::functionalization::_unsafe_view_ViewMeta>(
has_symbolic_inputs, size.vec());
bool has_symbolic_inputs = std::any_of(size.begin(), size.end(), [=](auto& s) { return s.is_symbolic(); });
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
[size = size.vec()](const at::Tensor & base, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
return at::_unsafe_view_symint(base, size);
},
[size = size.vec()](const at::Tensor & base, const at::Tensor & mutated_view, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
return at::_unsafe_view_symint(mutated_view, base.sym_sizes());
},
/*has_symbolic_inputs=*/has_symbolic_inputs
);
auto out = at::functionalization::impl::create_functional_tensor_with_view_meta(tmp_output, self, std::move(view_meta));
// See Note [Propagating strides in the functionalization pass]

Some files were not shown because too many files have changed in this diff Show More