mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-31 12:15:03 +08:00 
			
		
		
		
	Compare commits
	
		
			182 Commits
		
	
	
		
			codegen_tr
			...
			ciflow/tru
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 84cad15e82 | |||
| f4a9ac120c | |||
| bdd80556c7 | |||
| 483845a9c4 | |||
| 60bcb4ee88 | |||
| ee7434be82 | |||
| d049ed2cb1 | |||
| 9901d44418 | |||
| 6096c0fc74 | |||
| f6951cb8ea | |||
| 8887a33ede | |||
| 36a48e7e6d | |||
| c6a02eae5b | |||
| 6ecd6b23b6 | |||
| 3f69b4d9b4 | |||
| a04edcb27a | |||
| eb2bad5bb5 | |||
| a076b4d7ac | |||
| a988510c33 | |||
| 99e07c39ec | |||
| 610c09f8f4 | |||
| 61bad3c1ea | |||
| f89a7e9fe8 | |||
| f2c81635c8 | |||
| e214af6ae8 | |||
| 7ce723d21c | |||
| 4295a9a158 | |||
| 90d7be35e9 | |||
| 8d4e48831e | |||
| 90b30ebf7e | |||
| 173bcda436 | |||
| 6530bc70fb | |||
| 4c38887346 | |||
| 81fa4a204c | |||
| 4e6afa8c07 | |||
| 79aa88cc5d | |||
| fa4cb91846 | |||
| c58d0ad85d | |||
| 000f49551b | |||
| 9940e894ea | |||
| 27302a4932 | |||
| 507614ba43 | |||
| 86f9f1d0ab | |||
| 154e4d36e9 | |||
| a2b6afeac5 | |||
| 262830d86c | |||
| e4c01011c2 | |||
| a60d9e1f6d | |||
| f863550192 | |||
| 84b14f3a10 | |||
| 5121499f6b | |||
| 8f80892359 | |||
| cdb60e44eb | |||
| 25909d2629 | |||
| c7eee49525 | |||
| 621ba05107 | |||
| 39a70cead1 | |||
| d97f6550a2 | |||
| 516e58965a | |||
| b55b779ad3 | |||
| 74e53d0761 | |||
| 798a6d2be1 | |||
| b0e9c86971 | |||
| 661a56002f | |||
| c9bc00f016 | |||
| ec51b139e1 | |||
| eb83c3ca23 | |||
| 7924e3aacf | |||
| 78bcfcf870 | |||
| 1e2e7cb18b | |||
| 003601a70d | |||
| 1d58d5fe25 | |||
| de7fdfe41a | |||
| b31bad1b8f | |||
| 2efcf3ca98 | |||
| 761f946043 | |||
| 8aa465f18e | |||
| 0a5d68d92d | |||
| 42bd210fff | |||
| 1d13c314b3 | |||
| 0c9763a5a0 | |||
| 79a4a9c02e | |||
| 9d0b77f4cd | |||
| d486eee234 | |||
| cddd5f74ab | |||
| dfdb68e51f | |||
| 98c818320a | |||
| cc20b7ad72 | |||
| bc11a42b3f | |||
| 4fc06f2e0a | |||
| 82473c3d59 | |||
| b6a4236e5d | |||
| b04173be9b | |||
| 32ac38f85d | |||
| c9b49e506e | |||
| 6038e476e8 | |||
| 2c851c16e5 | |||
| 31584f2d91 | |||
| 0442125362 | |||
| fdcf402d82 | |||
| 13cda9b89e | |||
| fa6d911dda | |||
| 0db6bcc015 | |||
| 60ac039998 | |||
| 380d440d1c | |||
| 9038a30cee | |||
| 690c8c13b9 | |||
| 28ee6b62ed | |||
| 81577bdb3f | |||
| e67e3d95f3 | |||
| 27af8480ea | |||
| 6494cdc40c | |||
| ac7074efa2 | |||
| 263901cec4 | |||
| c12293dcbe | |||
| 5a4997dcae | |||
| 47f638eae7 | |||
| 882b834082 | |||
| b146ea411e | |||
| 8625ffbd45 | |||
| 0977cc4474 | |||
| d9a55faccc | |||
| 75b8295868 | |||
| defb6a80d8 | |||
| f8fccb1e48 | |||
| 5aac4cfce4 | |||
| baf91bbbfc | |||
| cbcb4f7768 | |||
| 2b93d5b450 | |||
| 6b7cd48e7e | |||
| bf5aa9e42e | |||
| b1eb6dede5 | |||
| 673060beae | |||
| 2e8e9a59a8 | |||
| fb277a5916 | |||
| 73fa0d0c63 | |||
| 36c21cc84e | |||
| 0b68814b44 | |||
| e64a814ae7 | |||
| 0b58d87aec | |||
| 757975ad50 | |||
| 291712026b | |||
| 3e77a2b478 | |||
| 82ef1b5db3 | |||
| 5f370f5c42 | |||
| 05b2e02cb4 | |||
| 12f742941d | |||
| 35180fafee | |||
| c746feb86a | |||
| c5f26db5bf | |||
| 18e99b6d45 | |||
| ab9e466928 | |||
| af4ba78543 | |||
| 282f39a4bc | |||
| a479769488 | |||
| 26c7375477 | |||
| d01f15152c | |||
| 4fae6968b1 | |||
| f9953e0f61 | |||
| 34ed7a8f0d | |||
| 2fde10d914 | |||
| 0a93295da0 | |||
| 4b898b51b9 | |||
| 550e3e6efb | |||
| 715449ca76 | |||
| 84d8d06fc3 | |||
| 60992d98b2 | |||
| 59e015e3a1 | |||
| 8904a5a7c9 | |||
| f5df9ca03a | |||
| 2998abd777 | |||
| e13580e41c | |||
| f3b8e15f20 | |||
| 5211f4c108 | |||
| ad9027b80d | |||
| a1005427bf | |||
| 35153d0846 | |||
| 7773a22cdb | |||
| 7cb467a169 | |||
| 12aac12b8d | |||
| 2b748d0a56 | |||
| 16745a882a | 
| @ -19,7 +19,7 @@ pip_install \ | ||||
|   transformers==4.36.2 | ||||
|  | ||||
| pip_install coloredlogs packaging | ||||
| pip_install onnxruntime==1.23.0 | ||||
| pip_install onnxruntime==1.23.1 | ||||
| pip_install onnxscript==0.5.4 | ||||
|  | ||||
| # Cache the transformers model to be used later by ONNX tests. We need to run the transformers | ||||
|  | ||||
| @ -334,12 +334,12 @@ sympy==1.13.3 | ||||
| #Pinned versions: | ||||
| #test that import: | ||||
|  | ||||
| onnx==1.18.0 | ||||
| onnx==1.19.1 | ||||
| #Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal | ||||
| #Pinned versions: | ||||
| #test that import: | ||||
|  | ||||
| onnxscript==0.5.3 | ||||
| onnxscript==0.5.4 | ||||
| #Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal | ||||
| #Pinned versions: | ||||
| #test that import: | ||||
|  | ||||
							
								
								
									
										354
									
								
								.claude/skills/pytorch-docstring.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										354
									
								
								.claude/skills/pytorch-docstring.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,354 @@ | ||||
| # PyTorch Docstring Writing Guide | ||||
|  | ||||
| This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in `torch/_tensor_docs.py` and `torch/nn/functional.py`. | ||||
|  | ||||
| ## General Principles | ||||
|  | ||||
| - Use **raw strings** (`r"""..."""`) for all docstrings to avoid issues with LaTeX/math backslashes | ||||
| - Follow **Sphinx/reStructuredText** (reST) format for documentation | ||||
| - Be **concise but complete** - include all essential information | ||||
| - Always include **examples** when possible | ||||
| - Use **cross-references** to related functions/classes | ||||
|  | ||||
| ## Docstring Structure | ||||
|  | ||||
| ### 1. Function Signature (First Line) | ||||
|  | ||||
| Start with the function signature showing all parameters: | ||||
|  | ||||
| ```python | ||||
| r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType | ||||
| ``` | ||||
|  | ||||
| **Notes:** | ||||
| - Include the function name | ||||
| - Show positional and keyword-only arguments (use `*` separator) | ||||
| - Include default values | ||||
| - Show return type annotation | ||||
| - This line should NOT end with a period | ||||
|  | ||||
| ### 2. Brief Description | ||||
|  | ||||
| Provide a one-line description of what the function does: | ||||
|  | ||||
| ```python | ||||
| r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor | ||||
|  | ||||
| Applies a 2D convolution over an input image composed of several input | ||||
| planes. | ||||
| ``` | ||||
|  | ||||
| ### 3. Mathematical Formulas (if applicable) | ||||
|  | ||||
| Use Sphinx math directives for mathematical expressions: | ||||
|  | ||||
| ```python | ||||
| .. math:: | ||||
|     \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} | ||||
| ``` | ||||
|  | ||||
| Or inline math: `:math:\`x^2\`` | ||||
|  | ||||
| ### 4. Cross-References | ||||
|  | ||||
| Link to related classes and functions using Sphinx roles: | ||||
|  | ||||
| - `:class:\`~torch.nn.ModuleName\`` - Link to a class | ||||
| - `:func:\`torch.function_name\`` - Link to a function | ||||
| - `:meth:\`~Tensor.method_name\`` - Link to a method | ||||
| - `:attr:\`attribute_name\`` - Reference an attribute | ||||
| - The `~` prefix shows only the last component (e.g., `Conv2d` instead of `torch.nn.Conv2d`) | ||||
|  | ||||
| **Example:** | ||||
| ```python | ||||
| See :class:`~torch.nn.Conv2d` for details and output shape. | ||||
| ``` | ||||
|  | ||||
| ### 5. Notes and Warnings | ||||
|  | ||||
| Use admonitions for important information: | ||||
|  | ||||
| ```python | ||||
| .. note:: | ||||
|     This function doesn't work directly with NLLLoss, | ||||
|     which expects the Log to be computed between the Softmax and itself. | ||||
|     Use log_softmax instead (it's faster and has better numerical properties). | ||||
|  | ||||
| .. warning:: | ||||
|     :func:`new_tensor` always copies :attr:`data`. If you have a Tensor | ||||
|     ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` | ||||
|     or :func:`torch.Tensor.detach`. | ||||
| ``` | ||||
|  | ||||
| ### 6. Args Section | ||||
|  | ||||
| Document all parameters with type annotations and descriptions: | ||||
|  | ||||
| ```python | ||||
| Args: | ||||
|     input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` | ||||
|     weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)` | ||||
|     bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None`` | ||||
|     stride (int or tuple): the stride of the convolving kernel. Can be a single number or a | ||||
|       tuple `(sH, sW)`. Default: 1 | ||||
| ``` | ||||
|  | ||||
| **Formatting rules:** | ||||
| - Parameter name in **lowercase** | ||||
| - Type in parentheses: `(Type)`, `(Type, optional)` for optional parameters | ||||
| - Description follows the type | ||||
| - For optional parameters, include "Default: ``value``" at the end | ||||
| - Use double backticks for inline code: ``` ``None`` ``` | ||||
| - Indent continuation lines by 2 spaces | ||||
|  | ||||
| ### 7. Keyword Args Section (if applicable) | ||||
|  | ||||
| Sometimes keyword arguments are documented separately: | ||||
|  | ||||
| ```python | ||||
| Keyword args: | ||||
|     dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. | ||||
|         Default: if None, same :class:`torch.dtype` as this tensor. | ||||
|     device (:class:`torch.device`, optional): the desired device of returned tensor. | ||||
|         Default: if None, same :class:`torch.device` as this tensor. | ||||
|     requires_grad (bool, optional): If autograd should record operations on the | ||||
|         returned tensor. Default: ``False``. | ||||
| ``` | ||||
|  | ||||
| ### 8. Returns Section (if needed) | ||||
|  | ||||
| Document the return value: | ||||
|  | ||||
| ```python | ||||
| Returns: | ||||
|     Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. | ||||
|         If ``hard=True``, the returned samples will be one-hot, otherwise they will | ||||
|         be probability distributions that sum to 1 across `dim`. | ||||
| ``` | ||||
|  | ||||
| Or simply include it in the function signature line if obvious from context. | ||||
|  | ||||
| ### 9. Examples Section | ||||
|  | ||||
| Always include examples when possible: | ||||
|  | ||||
| ```python | ||||
| Examples:: | ||||
|  | ||||
|     >>> inputs = torch.randn(33, 16, 30) | ||||
|     >>> filters = torch.randn(20, 16, 5) | ||||
|     >>> F.conv1d(inputs, filters) | ||||
|  | ||||
|     >>> # With square kernels and equal stride | ||||
|     >>> filters = torch.randn(8, 4, 3, 3) | ||||
|     >>> inputs = torch.randn(1, 4, 5, 5) | ||||
|     >>> F.conv2d(inputs, filters, padding=1) | ||||
| ``` | ||||
|  | ||||
| **Formatting rules:** | ||||
| - Use `Examples::` with double colon | ||||
| - Use `>>>` prompt for Python code | ||||
| - Include comments with `#` when helpful | ||||
| - Show actual output when it helps understanding (indent without `>>>`) | ||||
|  | ||||
| ### 10. External References | ||||
|  | ||||
| Link to papers or external documentation: | ||||
|  | ||||
| ```python | ||||
| .. _Link Name: | ||||
|     https://arxiv.org/abs/1611.00712 | ||||
| ``` | ||||
|  | ||||
| Reference them in text: ```See `Link Name`_``` | ||||
|  | ||||
| ## Method Types | ||||
|  | ||||
| ### Native Python Functions | ||||
|  | ||||
| For regular Python functions, use a standard docstring: | ||||
|  | ||||
| ```python | ||||
| def relu(input: Tensor, inplace: bool = False) -> Tensor: | ||||
|     r"""relu(input, inplace=False) -> Tensor | ||||
|  | ||||
|     Applies the rectified linear unit function element-wise. See | ||||
|     :class:`~torch.nn.ReLU` for more details. | ||||
|     """ | ||||
|     # implementation | ||||
| ``` | ||||
|  | ||||
| ### C-Bound Functions (using add_docstr) | ||||
|  | ||||
| For C-bound functions, use `_add_docstr`: | ||||
|  | ||||
| ```python | ||||
| conv1d = _add_docstr( | ||||
|     torch.conv1d, | ||||
|     r""" | ||||
| conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor | ||||
|  | ||||
| Applies a 1D convolution over an input signal composed of several input | ||||
| planes. | ||||
|  | ||||
| See :class:`~torch.nn.Conv1d` for details and output shape. | ||||
|  | ||||
| Args: | ||||
|     input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` | ||||
|     weight: filters of shape :math:`(\text{out\_channels} , kW)` | ||||
|     ... | ||||
| """, | ||||
| ) | ||||
| ``` | ||||
|  | ||||
| ### In-Place Variants | ||||
|  | ||||
| For in-place operations (ending with `_`), reference the original: | ||||
|  | ||||
| ```python | ||||
| add_docstr_all( | ||||
|     "abs_", | ||||
|     r""" | ||||
| abs_() -> Tensor | ||||
|  | ||||
| In-place version of :meth:`~Tensor.abs` | ||||
| """, | ||||
| ) | ||||
| ``` | ||||
|  | ||||
| ### Alias Functions | ||||
|  | ||||
| For aliases, simply reference the original: | ||||
|  | ||||
| ```python | ||||
| add_docstr_all( | ||||
|     "absolute", | ||||
|     r""" | ||||
| absolute() -> Tensor | ||||
|  | ||||
| Alias for :func:`abs` | ||||
| """, | ||||
| ) | ||||
| ``` | ||||
|  | ||||
| ## Common Patterns | ||||
|  | ||||
| ### Shape Documentation | ||||
|  | ||||
| Use LaTeX math notation for tensor shapes: | ||||
|  | ||||
| ```python | ||||
| :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` | ||||
| ``` | ||||
|  | ||||
| ### Reusable Argument Definitions | ||||
|  | ||||
| For commonly used arguments, define them once and reuse: | ||||
|  | ||||
| ```python | ||||
| common_args = parse_kwargs( | ||||
|     """ | ||||
|     dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. | ||||
|         Default: if None, same as this tensor. | ||||
| """ | ||||
| ) | ||||
|  | ||||
| # Then use with .format(): | ||||
| r""" | ||||
| ... | ||||
|  | ||||
| Keyword args: | ||||
|     {dtype} | ||||
|     {device} | ||||
| """.format(**common_args) | ||||
| ``` | ||||
|  | ||||
| ### Template Insertion | ||||
|  | ||||
| Insert reproducibility notes or other common text: | ||||
|  | ||||
| ```python | ||||
| r""" | ||||
| {tf32_note} | ||||
|  | ||||
| {cudnn_reproducibility_note} | ||||
| """.format(**reproducibility_notes, **tf32_notes) | ||||
| ``` | ||||
|  | ||||
| ## Complete Example | ||||
|  | ||||
| Here's a complete example showing all elements: | ||||
|  | ||||
| ```python | ||||
| def gumbel_softmax( | ||||
|     logits: Tensor, | ||||
|     tau: float = 1, | ||||
|     hard: bool = False, | ||||
|     eps: float = 1e-10, | ||||
|     dim: int = -1, | ||||
| ) -> Tensor: | ||||
|     r""" | ||||
|     Sample from the Gumbel-Softmax distribution and optionally discretize. | ||||
|  | ||||
|     Args: | ||||
|         logits (Tensor): `[..., num_features]` unnormalized log probabilities | ||||
|         tau (float): non-negative scalar temperature | ||||
|         hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors, | ||||
|               but will be differentiated as if it is the soft sample in autograd. Default: ``False`` | ||||
|         dim (int): A dimension along which softmax will be computed. Default: -1 | ||||
|  | ||||
|     Returns: | ||||
|         Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. | ||||
|             If ``hard=True``, the returned samples will be one-hot, otherwise they will | ||||
|             be probability distributions that sum to 1 across `dim`. | ||||
|  | ||||
|     .. note:: | ||||
|         This function is here for legacy reasons, may be removed from nn.Functional in the future. | ||||
|  | ||||
|     Examples:: | ||||
|         >>> logits = torch.randn(20, 32) | ||||
|         >>> # Sample soft categorical using reparametrization trick: | ||||
|         >>> F.gumbel_softmax(logits, tau=1, hard=False) | ||||
|         >>> # Sample hard categorical using "Straight-through" trick: | ||||
|         >>> F.gumbel_softmax(logits, tau=1, hard=True) | ||||
|  | ||||
|     .. _Link 1: | ||||
|         https://arxiv.org/abs/1611.00712 | ||||
|     """ | ||||
|     # implementation | ||||
| ``` | ||||
|  | ||||
| ## Quick Checklist | ||||
|  | ||||
| When writing a PyTorch docstring, ensure: | ||||
|  | ||||
| - [ ] Use raw string (`r"""`) | ||||
| - [ ] Include function signature on first line | ||||
| - [ ] Provide brief description | ||||
| - [ ] Document all parameters in Args section with types | ||||
| - [ ] Include default values for optional parameters | ||||
| - [ ] Use Sphinx cross-references (`:func:`, `:class:`, `:meth:`) | ||||
| - [ ] Add mathematical formulas if applicable | ||||
| - [ ] Include at least one example in Examples section | ||||
| - [ ] Add warnings/notes for important caveats | ||||
| - [ ] Link to related module class with `:class:` | ||||
| - [ ] Use proper math notation for tensor shapes | ||||
| - [ ] Follow consistent formatting and indentation | ||||
|  | ||||
| ## Common Sphinx Roles Reference | ||||
|  | ||||
| - `:class:\`~torch.nn.Module\`` - Class reference | ||||
| - `:func:\`torch.function\`` - Function reference | ||||
| - `:meth:\`~Tensor.method\`` - Method reference | ||||
| - `:attr:\`attribute\`` - Attribute reference | ||||
| - `:math:\`equation\`` - Inline math | ||||
| - `:ref:\`label\`` - Internal reference | ||||
| - ``` ``code`` ``` - Inline code (use double backticks) | ||||
|  | ||||
| ## Additional Notes | ||||
|  | ||||
| - **Indentation**: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions | ||||
| - **Line length**: Try to keep lines under 100 characters when possible | ||||
| - **Periods**: End sentences with periods, but not the signature line | ||||
| - **Backticks**: Use double backticks for code: ``` ``True`` ``None`` ``False`` ``` | ||||
| - **Types**: Common types are `Tensor`, `int`, `float`, `bool`, `str`, `tuple`, `list`, etc. | ||||
							
								
								
									
										7
									
								
								.github/actions/setup-rocm/action.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										7
									
								
								.github/actions/setup-rocm/action.yml
									
									
									
									
										vendored
									
									
								
							| @ -124,3 +124,10 @@ runs: | ||||
|       id: login-ecr | ||||
|       continue-on-error: true | ||||
|       uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1 | ||||
|  | ||||
|     - name: Preserve github env variables for use in docker | ||||
|       shell: bash | ||||
|       run: | | ||||
|         env | grep '^GITHUB' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}" | ||||
|         env | grep '^CI' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}" | ||||
|         env | grep '^RUNNER' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}" | ||||
|  | ||||
							
								
								
									
										2
									
								
								.github/ci_commit_pins/vision.txt
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/ci_commit_pins/vision.txt
									
									
									
									
										vendored
									
									
								
							| @ -1 +1 @@ | ||||
| faffd5cf673615583da6517275e361cb3dbc77e6 | ||||
| 1752fe6809b74921644866275ab80244b96e80bc | ||||
|  | ||||
							
								
								
									
										2
									
								
								.github/ci_commit_pins/xla.txt
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/ci_commit_pins/xla.txt
									
									
									
									
										vendored
									
									
								
							| @ -1 +1 @@ | ||||
| 0fa6e3129e61143224663e1ec67980d12b7ec4eb | ||||
| df6798dfb931ce7c7fe5bed2447cd1092a5981af | ||||
|  | ||||
							
								
								
									
										5
									
								
								.github/ci_configs/vllm/Dockerfile
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.github/ci_configs/vllm/Dockerfile
									
									
									
									
										vendored
									
									
								
							| @ -283,6 +283,9 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \ | ||||
|         uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \ | ||||
|     fi | ||||
|  | ||||
| RUN --mount=type=cache,target=/root/.cache/uv \ | ||||
|     uv pip install --system --pre apache-tvm-ffi==0.1.0b15 | ||||
|  | ||||
| # Install the vllm wheel from previous stage | ||||
| RUN --mount=type=cache,target=/root/.cache/uv \ | ||||
|     uv pip install --system /wheels/vllm/*.whl --verbose | ||||
| @ -295,6 +298,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \ | ||||
| ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0' | ||||
| ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list} | ||||
|  | ||||
| # TODO(elainewy): remove this once vllm commit is updated, and install flashinfer from pip | ||||
| # see https://github.com/pytorch/pytorch/pull/165274#issuecomment-3408531784 | ||||
| ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git" | ||||
| ARG FLASHINFER_GIT_REF="v0.2.14.post1" | ||||
|  | ||||
|  | ||||
							
								
								
									
										9
									
								
								.github/label_to_label.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										9
									
								
								.github/label_to_label.yml
									
									
									
									
										vendored
									
									
								
							| @ -15,6 +15,11 @@ | ||||
|   - "module: reinplacing" | ||||
|   then: | ||||
|   - "module: pt2-dispatcher" | ||||
| - any: | ||||
|   - "vllm-compile" | ||||
|   then: | ||||
|   - "module: vllm" | ||||
|   - "oncall: pt2" | ||||
| - any: | ||||
|   - "module: vmap" | ||||
|   then: | ||||
| @ -27,10 +32,6 @@ | ||||
|   - "module: pt2 optimizer" | ||||
|   then: | ||||
|   - "module: dynamo" | ||||
| - any: | ||||
|   - "module: flex attention" | ||||
|   then: | ||||
|   - "module: higher order operators" | ||||
| - any: | ||||
|   - "module: aotinductor" | ||||
|   then: | ||||
|  | ||||
							
								
								
									
										1
									
								
								.github/workflows/inductor-periodic.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/inductor-periodic.yml
									
									
									
									
										vendored
									
									
								
							| @ -88,7 +88,6 @@ jobs: | ||||
|     with: | ||||
|       build-environment: linux-jammy-rocm-py3_10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks | ||||
|       sync-tag: rocm-build | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|  | ||||
							
								
								
									
										3
									
								
								.github/workflows/pull.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.github/workflows/pull.yml
									
									
									
									
										vendored
									
									
								
							| @ -347,7 +347,8 @@ jobs: | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     needs: get-label-type | ||||
|     with: | ||||
|       sync-tag: linux-xpu-n-build | ||||
|       # This should sync with the build in xpu.yml but xpu uses a larger runner | ||||
|       # sync-tag: linux-xpu-n-build | ||||
|       runner_prefix: ${{ needs.get-label-type.outputs.label-type }} | ||||
|       build-environment: linux-jammy-xpu-n-py3.10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3 | ||||
|  | ||||
							
								
								
									
										1
									
								
								.github/workflows/rocm-mi300.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/rocm-mi300.yml
									
									
									
									
										vendored
									
									
								
							| @ -45,7 +45,6 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build-environment: linux-noble-rocm-py3.12-mi300 | ||||
|       docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3 | ||||
|       sync-tag: rocm-build | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" }, | ||||
|  | ||||
							
								
								
									
										1
									
								
								.github/workflows/rocm-mi355.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/rocm-mi355.yml
									
									
									
									
										vendored
									
									
								
							| @ -42,7 +42,6 @@ jobs: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build-environment: linux-noble-rocm-py3.12-mi355 | ||||
|       docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3 | ||||
|       sync-tag: rocm-build | ||||
|       test-matrix: | | ||||
|         { include: [ | ||||
|           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||
|  | ||||
							
								
								
									
										12
									
								
								.github/workflows/rocm-navi31.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.github/workflows/rocm-navi31.yml
									
									
									
									
										vendored
									
									
								
							| @ -26,11 +26,23 @@ jobs: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|  | ||||
|   get-label-type: | ||||
|     name: get-label-type | ||||
|     uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main | ||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||
|     with: | ||||
|       triggering_actor: ${{ github.triggering_actor }} | ||||
|       issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }} | ||||
|       curr_branch: ${{ github.head_ref || github.ref_name }} | ||||
|       curr_ref_type: ${{ github.ref_type }} | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-build: | ||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||
|     name: linux-jammy-rocm-py3.10 | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     needs: get-label-type | ||||
|     with: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 | ||||
|       sync-tag: rocm-build | ||||
|  | ||||
							
								
								
									
										12
									
								
								.github/workflows/rocm.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.github/workflows/rocm.yml
									
									
									
									
										vendored
									
									
								
							| @ -26,11 +26,23 @@ jobs: | ||||
|       id-token: write | ||||
|       contents: read | ||||
|  | ||||
|   get-label-type: | ||||
|     name: get-label-type | ||||
|     uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main | ||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||
|     with: | ||||
|       triggering_actor: ${{ github.triggering_actor }} | ||||
|       issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }} | ||||
|       curr_branch: ${{ github.head_ref || github.ref_name }} | ||||
|       curr_ref_type: ${{ github.ref_type }} | ||||
|  | ||||
|   linux-jammy-rocm-py3_10-build: | ||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||
|     name: linux-jammy-rocm-py3.10 | ||||
|     uses: ./.github/workflows/_linux-build.yml | ||||
|     needs: get-label-type | ||||
|     with: | ||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||
|       build-environment: linux-jammy-rocm-py3.10 | ||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 | ||||
|       sync-tag: rocm-build | ||||
|  | ||||
| @ -833,8 +833,7 @@ exclude_patterns = [ | ||||
| command = [ | ||||
|     'python3', | ||||
|     'tools/linter/adapters/grep_linter.py', | ||||
|     '--pattern=cudaSetDevice(', | ||||
|     '--pattern=cudaGetDevice(', | ||||
|     '--pattern=(cudaSetDevice|cudaGetDevice)\\(', | ||||
|     '--linter-name=RAWCUDADEVICE', | ||||
|     '--error-name=raw CUDA API usage', | ||||
|     """--error-description=\ | ||||
| @ -1138,11 +1137,8 @@ command = [ | ||||
| [[linter]] | ||||
| code = 'WORKFLOWSYNC' | ||||
| include_patterns = [ | ||||
|     '.github/workflows/pull.yml', | ||||
|     '.github/workflows/trunk.yml', | ||||
|     '.github/workflows/periodic.yml', | ||||
|     '.github/workflows/mac-mps.yml', | ||||
|     '.github/workflows/slow.yml', | ||||
|     '.github/workflows/*.yml', | ||||
|     '.github/workflows/*.yaml', | ||||
| ] | ||||
| command = [ | ||||
|     'python3', | ||||
|  | ||||
| @ -31,9 +31,9 @@ Be careful when running untrusted models. This classification includes models cr | ||||
|  | ||||
| **Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing). | ||||
|  | ||||
| **Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) with `weights_only=True` is also secure to our knowledge even though it offers significantly larger surface of attack. Loading un-trusted checkpoint with `weights_only=False` MUST never be done. | ||||
|  | ||||
| **Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details. | ||||
|  | ||||
| Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs. | ||||
|  | ||||
| Important Note: The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance. | ||||
|  | ||||
|  | ||||
| @ -38,7 +38,7 @@ set_bool(AT_HIPSPARSELT_ENABLED CAFFE2_USE_HIPSPARSELT) | ||||
|  | ||||
| configure_file(Config.h.in "${CMAKE_CURRENT_SOURCE_DIR}/Config.h") | ||||
| # TODO: Do not generate CUDAConfig.h for ROCm BUILDS | ||||
| # At the moment, `jit_macors.h` include CUDAConfig.h for both CUDA and HIP builds | ||||
| # At the moment, `jit_macros.h` include CUDAConfig.h for both CUDA and HIP builds | ||||
| if(USE_CUDA OR USE_ROCM) | ||||
|   configure_file(cuda/CUDAConfig.h.in "${CMAKE_CURRENT_SOURCE_DIR}/cuda/CUDAConfig.h") | ||||
| endif() | ||||
| @ -289,14 +289,15 @@ IF(USE_FBGEMM_GENAI) | ||||
|  | ||||
|     set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON) | ||||
|  | ||||
|     set(fbgemm_genai_mx8mx8bf16_grouped | ||||
|     set(fbgemm_genai_cuh | ||||
|       "${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/" | ||||
|       "${FBGEMM_GENAI_SRCS}/" | ||||
|     ) | ||||
|  | ||||
|     target_include_directories(fbgemm_genai PRIVATE | ||||
|       ${FBGEMM_THIRD_PARTY}/cutlass/include | ||||
|       ${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include | ||||
|       ${fbgemm_genai_mx8mx8bf16_grouped} | ||||
|       ${fbgemm_genai_cuh} | ||||
|       ${FBGEMM_GENAI_SRCS}/common/include/   # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp | ||||
|       ${FBGEMM_GENAI_SRCS}/include/          # includes fbgemm_gpu/torch_ops.h | ||||
|     ) | ||||
|  | ||||
| @ -19,6 +19,7 @@ | ||||
| #include <ATen/detail/MPSHooksInterface.h> | ||||
| #include <ATen/detail/MTIAHooksInterface.h> | ||||
| #include <ATen/detail/PrivateUse1HooksInterface.h> | ||||
| #include <ATen/detail/XLAHooksInterface.h> | ||||
| #include <ATen/detail/XPUHooksInterface.h> | ||||
| #include <c10/core/QEngine.h> | ||||
| #include <c10/core/impl/DeviceGuardImplInterface.h> | ||||
| @ -88,6 +89,8 @@ class TORCH_API Context { | ||||
|       return at::detail::getHIPHooks(); | ||||
|     } else if (opt_device_type == at::kHPU) { | ||||
|       return at::detail::getHPUHooks(); | ||||
|     } else if (opt_device_type == at::kXLA) { | ||||
|       return at::detail::getXLAHooks(); | ||||
|     } else { | ||||
|       TORCH_CHECK( | ||||
|           false, | ||||
| @ -196,7 +199,7 @@ class TORCH_API Context { | ||||
|     return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU); | ||||
|   } | ||||
|   static bool hasXLA() { | ||||
|     return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA); | ||||
|     return detail::getXLAHooks().hasXLA(); | ||||
|   } | ||||
|   static bool hasXPU() { | ||||
|     return detail::getXPUHooks().hasXPU(); | ||||
|  | ||||
| @ -122,7 +122,7 @@ void FunctionalTensorWrapper::freeze_storage() const { | ||||
| //          |   have their own storages, but backends like functorch      | | ||||
| //         \/   are allowed to re-alias underneath the pass               \/ | ||||
| // . - - - - - - - - - - - - - .                             . - - - - - - - - - - - - - - - . | ||||
| // |    underyling_storage     |                             |      underyling_storage       | | ||||
| // |    underlying_storage     |                             |      underlying_storage       | | ||||
| // . - - - - - - - - - - - - - .                             . - - - - - - - - - - - - - - - . | ||||
| // | ||||
| // This constructor is only used by view ops. | ||||
|  | ||||
| @ -1534,7 +1534,7 @@ void TensorIteratorBase::build(TensorIteratorConfig& config) { | ||||
|  | ||||
|   // XLA and lazy tensors don't have storage, so they don't have an underlying data pointer. | ||||
|   // Nothing beyond this point is important for meta functions, so it's fine to exit early here. | ||||
|   // Extend the condition to MAIA tesnors as MAIA tensors also don't have storage. | ||||
|   // Extend the condition to MAIA tensors as MAIA tensors also don't have storage. | ||||
|   if (privateuse1_without_storage  || | ||||
|       common_device_.type() == DeviceType::XLA  || | ||||
|       common_device_.type() == DeviceType::IPU  || | ||||
|  | ||||
| @ -94,11 +94,11 @@ struct PinnedReserveSegment { | ||||
| struct TORCH_API HostStats { | ||||
|   // COUNT: total allocations (active) | ||||
|   Stat active_requests; | ||||
|   // SUM: bytes allocated/reserved by this memory alocator. (active) | ||||
|   // SUM: bytes allocated/reserved by this memory allocator. (active) | ||||
|   Stat active_bytes; | ||||
|   // COUNT: total allocations (active + free) | ||||
|   Stat allocations; | ||||
|   // SUM: bytes allocated/reserved by this memory alocator. This accounts | ||||
|   // SUM: bytes allocated/reserved by this memory allocator. This accounts | ||||
|   // for both free and in-use blocks. | ||||
|   Stat allocated_bytes; | ||||
|  | ||||
| @ -127,7 +127,7 @@ struct alignas(hardware_destructive_interference_size) HostStatsStaged { | ||||
|   // COUNT: total allocations (active + free) | ||||
|   // LOCK: access to this stat is protected by the allocator's blocks_mutex_ | ||||
|   Stat allocations; | ||||
|   // SUM: bytes allocated/reserved by this memory alocator. This accounts | ||||
|   // SUM: bytes allocated/reserved by this memory allocator. This accounts | ||||
|   // for both free and in-use blocks. | ||||
|   Stat allocated_bytes; | ||||
|   // COUNT: number of allocations per bucket (active) | ||||
| @ -455,7 +455,7 @@ struct CachingHostAllocatorImpl { | ||||
|   } | ||||
|  | ||||
|   void resetAccumulatedStats() { | ||||
|     // Reseting accumulated memory stats requires concurrently holding both the | ||||
|     // Resetting accumulated memory stats requires concurrently holding both the | ||||
|     // free list mutexes and the blocks mutex. Previously, this was only done in | ||||
|     // empty_cache function. | ||||
|     for (size_t i = 0; i < free_list_.size(); ++i) { | ||||
| @ -482,7 +482,7 @@ struct CachingHostAllocatorImpl { | ||||
|   } | ||||
|  | ||||
|   void resetPeakStats() { | ||||
|     // Reseting peak memory stats requires concurrently holding both the | ||||
|     // Resetting peak memory stats requires concurrently holding both the | ||||
|     // free list mutexes and the blocks mutex. Previously, this was only done in | ||||
|     // empty_cache function. | ||||
|     for (size_t i = 0; i < free_list_.size(); ++i) { | ||||
|  | ||||
| @ -59,9 +59,7 @@ struct TORCH_API Generator { | ||||
|  | ||||
|   explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl) | ||||
|    : impl_(std::move(gen_impl)) { | ||||
|     if (impl_.get() == nullptr) { | ||||
|       throw std::runtime_error("GeneratorImpl with nullptr is not supported"); | ||||
|     } | ||||
|     TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported"); | ||||
|   } | ||||
|  | ||||
|   bool operator==(const Generator& rhs) const { | ||||
|  | ||||
| @ -111,9 +111,7 @@ class TORCH_API TensorBase { | ||||
|   explicit TensorBase( | ||||
|       c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) | ||||
|       : impl_(std::move(tensor_impl)) { | ||||
|     if (impl_.get() == nullptr) { | ||||
|       throw std::runtime_error("TensorImpl with nullptr is not supported"); | ||||
|     } | ||||
|     TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported"); | ||||
|   } | ||||
|   TensorBase(const TensorBase&) = default; | ||||
|   TensorBase(TensorBase&&) noexcept = default; | ||||
|  | ||||
| @ -109,6 +109,10 @@ TORCH_LIBRARY_IMPL(_, AutogradHPU, m) { | ||||
|   m.fallback(AUTOGRAD_FALLBACK); | ||||
| } | ||||
|  | ||||
| TORCH_LIBRARY_IMPL(_, AutogradPrivateUse1, m) { | ||||
|   m.fallback(AUTOGRAD_FALLBACK); | ||||
| } | ||||
|  | ||||
| #undef AUTOGRAD_FALLBACK | ||||
|  | ||||
| } // namespace | ||||
|  | ||||
| @ -148,7 +148,7 @@ struct TORCH_API ClassType : public NamedType { | ||||
|  | ||||
|   void checkNotExist(const std::string& name, const std::string& what) const; | ||||
|  | ||||
|   // Attributes are stored in a specific slot at runtime for effiency. | ||||
|   // Attributes are stored in a specific slot at runtime for efficiency. | ||||
|   // When emitting instructions we specify the slot so that attribute access is | ||||
|   // a constant lookup | ||||
|   std::optional<size_t> findAttributeSlot(const std::string& name) const { | ||||
| @ -412,7 +412,7 @@ struct TORCH_API ClassType : public NamedType { | ||||
|   // Holds method attributes | ||||
|   std::weak_ptr<CompilationUnit> compilation_unit_; | ||||
|  | ||||
|   // Holds all atrributes, attribute details are found on ClassAttribute | ||||
|   // Holds all attributes, attribute details are found on ClassAttribute | ||||
|   std::vector<ClassAttribute> attributes_; | ||||
|   // Construct mirroring attributes_, only around due to the fact that `containedTypes()` method returns an ArrayRef. | ||||
|   // Never fill this without using the appropriate provideNewClassAttribute method | ||||
|  | ||||
| @ -442,11 +442,17 @@ RegistrationHandleRAII Dispatcher::registerFallback(DispatchKey dispatchKey, Ker | ||||
|  | ||||
|   auto idx = getDispatchTableIndexForDispatchKey(dispatchKey); | ||||
|   TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx); | ||||
|   // NB: Perserve BC for registering fallback for AutogradPrivateUse1 multiple time, | ||||
|   // refer to https://github.com/pytorch/pytorch/issues/163979 for more informations. | ||||
|   TORCH_CHECK( | ||||
|     !backendFallbackKernels_[idx].kernel.isValid(), | ||||
|     "Tried to register multiple backend fallbacks for the same dispatch key ", dispatchKey, "; previous registration ", | ||||
|     backendFallbackKernels_[idx].debug, ", new registration ", debug | ||||
|   ); | ||||
|       dispatchKey == DispatchKey::AutogradPrivateUse1 || | ||||
|           !backendFallbackKernels_[idx].kernel.isValid(), | ||||
|       "Tried to register multiple backend fallbacks for the same dispatch key ", | ||||
|       dispatchKey, | ||||
|       "; previous registration ", | ||||
|       backendFallbackKernels_[idx].debug, | ||||
|       ", new registration ", | ||||
|       debug); | ||||
|   // NB: inferred function schema is always nullptr for fallbacks, as fallbacks | ||||
|   // cannot be unboxed | ||||
|   backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug)); | ||||
| @ -531,7 +537,7 @@ int64_t Dispatcher::sequenceNumberForRunningRecordFunction(DispatchKey dispatchK | ||||
|  | ||||
|   // Note: this records a sequence number for both Autograd keys, and for | ||||
|   // non-Autograd keys where the dispatchKeySet still contains an autograd key. | ||||
|   // This means that we might collect the same sequence nubmer two different | ||||
|   // This means that we might collect the same sequence number two different | ||||
|   // events if they all occurred above Autograd and still had the Autograd | ||||
|   // dispatch key in the dispatch key set. | ||||
|   // However, this usually doesn't happen: normally the first call will | ||||
|  | ||||
| @ -585,7 +585,7 @@ class TORCH_API OperatorHandle { | ||||
|  | ||||
|   // We need to store this iterator in order to make | ||||
|   // Dispatcher::cleanup() fast -- it runs a lot on program | ||||
|   // termination (and presuambly library unloading). | ||||
|   // termination (and presumably library unloading). | ||||
|   std::list<Dispatcher::OperatorDef>::iterator operatorIterator_; | ||||
| }; | ||||
|  | ||||
|  | ||||
| @ -365,7 +365,7 @@ std::pair<const AnnotatedKernel&, const char*> OperatorEntry::computeDispatchTab | ||||
|   //          For autograd keys, we only use kernel from CompositeImplicitAutograd when there's no direct registration | ||||
|   //          to its corresponding backend key or CompositeExplicitAutograd. See Note [CompositeExplicitAutograd and CompositeImplicitAutograd]. | ||||
|   //          For AutogradOther, we eagerly return ambiguousAutogradOtherKernel() if there's registration to any of | ||||
|   //          its backends and ask backend extender to request a decicated Autograd key for the backend. | ||||
|   //          its backends and ask backend extender to request a dedicated Autograd key for the backend. | ||||
|   //          See Note [Ambiguity in AutogradOther kernel] for more details. | ||||
|   //          A CompositeExplicitAutograd kernel prevents CompositeImplicitAutograd kernel being used for Autograd keys, but it doesn't | ||||
|   //          cause confusion for AutogradOther. It's pretty straightforward to use Autograd (if available) | ||||
|  | ||||
| @ -261,7 +261,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) { | ||||
|     // | ||||
|     // There are 2 cases | ||||
|     // 1. something like 'aten::items.str(Dict(str, t) self) -> ((str, t)[])'. | ||||
|     // without the extra parenthesis, the c++ schem parser can not parse it. | ||||
|     // without the extra parenthesis, the c++ scheme parser can not parse it. | ||||
|     // 2. something like '-> ((str, str))'. Need extra parenthesis so the return | ||||
|     // type is a single tuple rather than two strings. | ||||
|     // PR (https://github.com/pytorch/pytorch/pull/23204) has more context about | ||||
|  | ||||
| @ -68,11 +68,7 @@ Symbol InternedStrings::_symbol(const std::string& s) { | ||||
|     return it->second; | ||||
|  | ||||
|   auto pos = s.find("::"); | ||||
|   if (pos == std::string::npos) { | ||||
|     std::stringstream ss; | ||||
|     ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s; | ||||
|     throw std::runtime_error(ss.str()); | ||||
|   } | ||||
|   TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s); | ||||
|   Symbol ns = _symbol("namespaces::" + s.substr(0, pos)); | ||||
|  | ||||
|   Symbol sym(sym_to_info_.size()); | ||||
| @ -121,12 +117,7 @@ std::string Symbol::domainString() const { | ||||
| } | ||||
|  | ||||
| Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) { | ||||
|   if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) { | ||||
|     std::ostringstream ss; | ||||
|     ss << "Symbol: domain string is expected to be prefixed with '" | ||||
|        << domain_prefix() << "', e.g. 'org.pytorch.aten'"; | ||||
|     throw std::runtime_error(ss.str()); | ||||
|   } | ||||
|   TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'"); | ||||
|   std::string qualString = d.substr(domain_prefix().size()) + "::" + s; | ||||
|   return fromQualString(qualString); | ||||
| } | ||||
|  | ||||
| @ -7,6 +7,7 @@ | ||||
| #include <ATen/core/jit_type.h> | ||||
| #include <ATen/core/stack.h> | ||||
| #include <ATen/core/type_factory.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <c10/util/StringUtil.h> | ||||
| #include <c10/util/hash.h> | ||||
| #include <c10/util/irange.h> | ||||
| @ -412,7 +413,7 @@ size_t IValue::hash(const IValue& v) { | ||||
|     case Tag::Enum: | ||||
|     case Tag::Stream: | ||||
|     case Tag::Uninitialized: | ||||
|       throw std::runtime_error( | ||||
|       TORCH_CHECK(false, | ||||
|           "unhashable type: '" + v.type()->repr_str() + "'"); | ||||
|   } | ||||
|   // the above switch should be exhaustive | ||||
|  | ||||
| @ -1176,7 +1176,7 @@ struct TORCH_API IValue final { | ||||
|   using HashIdentityIValueMap = | ||||
|       std::unordered_map<IValue, IValue, HashIdentityIValue, CompIdentityIValues>; | ||||
|  | ||||
|   // Chechs if this and rhs has a subvalues in common. | ||||
|   // Checks if this and rhs has a subvalues in common. | ||||
|   // [t1,t2] and [t2, t3] returns true. | ||||
|   bool overlaps(const IValue& rhs) const; | ||||
|  | ||||
|  | ||||
| @ -1501,7 +1501,7 @@ struct C10_EXPORT ivalue::Object final : c10::intrusive_ptr_target { | ||||
|   // However, the CompilationUnit holds ownership of the type's graphs, so | ||||
|   // inserting a constant object into a Graph would create a reference cycle if | ||||
|   // that constant object held a shared_ptr to its CU. For these objects we | ||||
|   // instatiate them with non-owning references to its CU | ||||
|   // instantiate them with non-owning references to its CU | ||||
|   Object(WeakOrStrongTypePtr type, size_t numSlots) : type_(std::move(type)) { | ||||
|     slots_.resize(numSlots); | ||||
|   } | ||||
|  | ||||
| @ -8,6 +8,7 @@ | ||||
| #include <ATen/core/type_factory.h> | ||||
| #include <ATen/core/qualified_name.h> | ||||
| #include <c10/util/TypeList.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <optional> | ||||
| #include <c10/core/SymFloat.h> | ||||
| #include <c10/core/SymBool.h> | ||||
| @ -116,10 +117,8 @@ struct SingleElementType : public SharedType { | ||||
|  | ||||
|  protected: | ||||
|   SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) { | ||||
|     if (!this->elem) { | ||||
|       throw std::runtime_error(c10::str( | ||||
|     TORCH_CHECK(this->elem, c10::str( | ||||
|             "Can not create ", typeKindToString(Kind), " with None type")); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|  private: | ||||
| @ -374,7 +373,7 @@ struct TORCH_API SymbolicShape { | ||||
|   // Unranked shape constructor. | ||||
|   SymbolicShape() : dims_(std::nullopt) {} | ||||
|  | ||||
|   // Known rank but unknown dimentions. | ||||
|   // Known rank but unknown dimensions. | ||||
|   SymbolicShape(std::optional<size_t> rank) : dims_(std::nullopt) { | ||||
|     if(!rank) { | ||||
|       return; | ||||
| @ -416,16 +415,12 @@ struct TORCH_API SymbolicShape { | ||||
|   } | ||||
|  | ||||
|   ShapeSymbol operator[](size_t i) const { | ||||
|     if (!dims_) { | ||||
|       throw std::runtime_error("Rank isn't fixed"); | ||||
|     } | ||||
|     TORCH_CHECK(dims_, "Rank isn't fixed"); | ||||
|     return (*dims_).at(i); | ||||
|   } | ||||
|  | ||||
|   ShapeSymbol at(size_t i) const { | ||||
|     if (!dims_) { | ||||
|       throw std::runtime_error("Rank isn't fixed"); | ||||
|     } | ||||
|     TORCH_CHECK(dims_, "Rank isn't fixed"); | ||||
|     return (*dims_).at(i); | ||||
|   } | ||||
|  | ||||
| @ -520,9 +515,7 @@ struct VaryingShape { | ||||
|   } | ||||
|  | ||||
|   const std::optional<T> &operator[](size_t i) const { | ||||
|     if (!dims_) { | ||||
|       throw std::runtime_error("Rank isn't fixed"); | ||||
|     } | ||||
|     TORCH_CHECK(dims_, "Rank isn't fixed"); | ||||
|     return (*dims_).at(i); | ||||
|   } | ||||
|  | ||||
| @ -891,9 +884,9 @@ struct TORCH_API ListType | ||||
|  | ||||
|   // global singleton | ||||
|   // Given an inner type T and an identifier, | ||||
|   // this function wil return the global singleton type pointer | ||||
|   // this function will return the global singleton type pointer | ||||
|   // the type List<T>. | ||||
|   // The extra "identifier" argument is needed beccause we have multiple container types | ||||
|   // The extra "identifier" argument is needed because we have multiple container types | ||||
|   // that all re-use this function (List<T>, array<T, N>, etc.) | ||||
|   static TypePtr get(const std::string& identifier, TypePtr inner); | ||||
|  | ||||
| @ -957,9 +950,7 @@ struct TORCH_API DictType : public SharedType { | ||||
|  | ||||
|   TypePtr createWithContained( | ||||
|       std::vector<TypePtr> contained_types) const override { | ||||
|     if (contained_types.size() != 2) { | ||||
|       throw std::runtime_error("Expected 2 contained types"); | ||||
|     } | ||||
|     TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types"); | ||||
|     return create(std::move(contained_types.at(0)), std::move(contained_types.at(1))); | ||||
|   } | ||||
|  | ||||
|  | ||||
| @ -185,11 +185,11 @@ struct TORCH_API Type { | ||||
|         : repr_(nullptr) {} | ||||
|  | ||||
|     /* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p) | ||||
|         : repr_(p) {} | ||||
|         : repr_(makeSingletonSharedPtr(p.get())) {} | ||||
|  | ||||
|     template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true> | ||||
|     /* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p) | ||||
|         : repr_(SingletonTypePtr<T>(p.get())) {} | ||||
|         : repr_(makeSingletonSharedPtr(static_cast<T*>(p.get()))) {} | ||||
|  | ||||
|  | ||||
|     // We need to support construction from T* for pybind. The problem | ||||
| @ -202,8 +202,8 @@ struct TORCH_API Type { | ||||
|     // Case 2: if T is exactly Type, we need to do a dynamic_cast to | ||||
|     // check if it's a SharedType and do the right thing. | ||||
|     // | ||||
|     // Case 3: Otherwise, T is not a SharedType. (debug-check this | ||||
|     // assumption!) Use a singleton pointer. | ||||
|     // Case 3: Otherwise, T is not a SharedType. Use a singleton | ||||
|     // pointer. | ||||
|  | ||||
|     template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true> | ||||
|     /* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {} | ||||
| @ -211,15 +211,15 @@ struct TORCH_API Type { | ||||
|     template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true> | ||||
|     /* implicit */ SingletonOrSharedTypePtr(T* p) { | ||||
|       if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) { | ||||
|         repr_ = Repr(shared_p->shared_from_this()); | ||||
|         repr_ = shared_p->shared_from_this(); | ||||
|       } else { | ||||
|         repr_ = Repr(p); | ||||
|         repr_ = makeSingletonSharedPtr(p); | ||||
|       } | ||||
|     } | ||||
|  | ||||
|     template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true> | ||||
|     /* implicit */ SingletonOrSharedTypePtr(T* p) | ||||
|         : repr_(p) { | ||||
|         : repr_(makeSingletonSharedPtr(p)) { | ||||
|       TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr); | ||||
|     } | ||||
|  | ||||
| @ -230,19 +230,19 @@ struct TORCH_API Type { | ||||
|     ~SingletonOrSharedTypePtr() = default; | ||||
|  | ||||
|     T* get() const { | ||||
|       return repr_.isSharedAndNonNull() ? repr_.shared_.repr_.get() : static_cast<T*>(repr_.rawRepr().first); | ||||
|       return repr_.get(); | ||||
|     } | ||||
|  | ||||
|     operator bool() const { | ||||
|       return repr_.isNonNull(); | ||||
|       return repr_ != nullptr; | ||||
|     } | ||||
|  | ||||
|     bool operator==(std::nullptr_t) const { | ||||
|       return !repr_.isNonNull(); | ||||
|       return repr_ == nullptr; | ||||
|     } | ||||
|  | ||||
|     bool operator!=(std::nullptr_t) const { | ||||
|       return repr_.isNonNull(); | ||||
|       return repr_ != nullptr; | ||||
|     } | ||||
|  | ||||
|     template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true> | ||||
| @ -255,138 +255,14 @@ struct TORCH_API Type { | ||||
|     } | ||||
|  | ||||
|   private: | ||||
|     // NOTE: SharedPtrWrapper exists to work around a baffling bug in | ||||
|     // nvcc; see comment in destroy() below. | ||||
|     struct SharedPtrWrapper { | ||||
|       SharedPtrWrapper(std::shared_ptr<T> &&x) | ||||
|           : repr_(std::move(x)) {} | ||||
|       std::shared_ptr<T> repr_; | ||||
|     }; | ||||
|     union Repr { | ||||
|       Repr() : Repr(nullptr) {} | ||||
|     // Use shared_ptr's aliasing constructor to create a non-owning pointer | ||||
|     // to a singleton. The lifetime is tied to the null shared_ptr, so there's | ||||
|     // no reference counting overhead for the singleton itself. | ||||
|     static std::shared_ptr<T> makeSingletonSharedPtr(T* ptr) { | ||||
|       return std::shared_ptr<T>(std::shared_ptr<T>(), ptr); | ||||
|     } | ||||
|  | ||||
|       explicit Repr(std::shared_ptr<T> x) | ||||
|           : shared_(std::move(x)) {} | ||||
|  | ||||
|       explicit Repr(std::nullptr_t) | ||||
|           : singletonRepr_(nullptr) {} | ||||
|  | ||||
|       explicit Repr(SingletonTypePtr<T> p) | ||||
|           : singletonRepr_(p.get()) {} | ||||
|  | ||||
|       ~Repr() { | ||||
|         destroy(); | ||||
|       } | ||||
|  | ||||
|       // NOTE: the only non-UB way to access our null state is through | ||||
|       // rawRepr(), because our copy operation doesn't preserve which | ||||
|       // union member is active for null pointers. | ||||
|       Repr(const Repr& rhs) { | ||||
|         if (rhs.isSharedAndNonNull()) { | ||||
|           new (&shared_) SharedPtrWrapper(rhs.shared_); | ||||
|         } else { | ||||
|           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||
|           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr); | ||||
|           singletonRepr_.unused_ = nullptr; | ||||
|         } | ||||
|       } | ||||
|  | ||||
|       Repr(Repr&& rhs) noexcept { | ||||
|         if (rhs.isSharedAndNonNull()) { | ||||
|           new (&shared_) SharedPtrWrapper(std::move(rhs.shared_)); | ||||
|         } else { | ||||
|           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||
|           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr); | ||||
|           singletonRepr_.unused_ = nullptr; | ||||
|         } | ||||
|       } | ||||
|  | ||||
|       Repr& operator=(const Repr& rhs) { | ||||
|         if (&rhs == this) { | ||||
|           return *this; | ||||
|         } | ||||
|         if (rhs.isSharedAndNonNull()) { | ||||
|           if (isSharedAndNonNull()) { | ||||
|             shared_ = rhs.shared_; | ||||
|           } else { | ||||
|             new (&shared_) SharedPtrWrapper(rhs.shared_); | ||||
|           } | ||||
|         } else { | ||||
|           if (isSharedAndNonNull()) { | ||||
|             destroy(); | ||||
|           } | ||||
|           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||
|           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr); | ||||
|           singletonRepr_.unused_ = nullptr; | ||||
|         } | ||||
|         return *this; | ||||
|       } | ||||
|  | ||||
|       Repr& operator=(Repr&& rhs) noexcept { | ||||
|         if (&rhs == this) { | ||||
|           return *this; | ||||
|         } | ||||
|         if (rhs.isSharedAndNonNull()) { | ||||
|           if (isSharedAndNonNull()) { | ||||
|             shared_ = std::move(rhs.shared_); | ||||
|           } else { | ||||
|             new (&shared_) SharedPtrWrapper(std::move(rhs.shared_)); | ||||
|           } | ||||
|         } else { | ||||
|           if (isSharedAndNonNull()) { | ||||
|             destroy(); | ||||
|           } | ||||
|           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||
|           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr); | ||||
|           singletonRepr_.unused_ = nullptr; | ||||
|         } | ||||
|         return *this; | ||||
|       } | ||||
|  | ||||
|       SharedPtrWrapper shared_; | ||||
|  | ||||
|       struct SingletonRepr { | ||||
|         explicit SingletonRepr(T* s) : singleton_(s) {} | ||||
|         T* singleton_; | ||||
|         void* unused_ = nullptr; | ||||
|       } singletonRepr_; | ||||
|       struct RawRepr { | ||||
|         void* first; | ||||
|         void* nullIfSingleton_; | ||||
|       }; | ||||
|  | ||||
|       // It is UB to read the singleton part of Repr if it was | ||||
|       // constructed as a shared_ptr and vice versa, but memcpying out | ||||
|       // the representation is always OK, so here's an accessor to obey | ||||
|       // the letter of the law. | ||||
|       RawRepr rawRepr() const { | ||||
|         RawRepr repr{}; | ||||
|         memcpy(&repr, reinterpret_cast<const char *>(this), sizeof(RawRepr)); | ||||
|         return repr; | ||||
|       } | ||||
|  | ||||
|       bool isNonNull() const { | ||||
|         auto repr = rawRepr(); | ||||
|         TORCH_INTERNAL_ASSERT_DEBUG_ONLY(repr.nullIfSingleton_ == nullptr || repr.first != nullptr); | ||||
|         return repr.first != nullptr; | ||||
|       } | ||||
|  | ||||
|       bool isSharedAndNonNull() const { | ||||
|         return rawRepr().nullIfSingleton_ != nullptr; | ||||
|       } | ||||
|  | ||||
|      private: | ||||
|       void destroy() { | ||||
|         if (isSharedAndNonNull()) { | ||||
|           // Without SharedPtrWrapper, this line would read | ||||
|           // `shared_.~shared_ptr()` and nvcc would complain with | ||||
|           // "error: expected primary-expression before '>' token" | ||||
|           // referring to the "t" in "shared_ptr". SharedPtrWrapper | ||||
|           // exists to work around this compiler bug. | ||||
|           shared_.~SharedPtrWrapper(); | ||||
|         } | ||||
|       } | ||||
|     } repr_; | ||||
|     std::shared_ptr<T> repr_; | ||||
|   }; | ||||
|  | ||||
|   using TypePtr = SingletonOrSharedTypePtr<Type>; | ||||
|  | ||||
| @ -21,7 +21,7 @@ namespace c10 { | ||||
|  | ||||
| namespace detail { | ||||
| // The first argument of the schema might be of type DispatchKeySet, in which case we remove it. | ||||
| // We do this because every argument in a function schema is expected to be convertable | ||||
| // We do this because every argument in a function schema is expected to be convertible | ||||
| // to an ivalue, but DispatchKeySet is not a type we want the jit to be aware of. | ||||
| // See Note [Plumbing Keys Through The Dispatcher] | ||||
| template<class KernelFunctor> | ||||
|  | ||||
| @ -251,7 +251,7 @@ TEST(OperatorRegistrationTest, whenRegisteringCPUTensorType_thenCanOnlyCallUnbox | ||||
|   callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CPU), dummyTensor(c10::DispatchKey::CUDA)); | ||||
|   EXPECT_TRUE(called_kernel_cpu); | ||||
|  | ||||
|   // Ensure that disptach key from tensor is not used here. | ||||
|   // Ensure that dispatch key from tensor is not used here. | ||||
|   called_kernel_cpu = false; | ||||
|   expectThrows<c10::Error>([&] { | ||||
|     callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CUDA), dummyTensor(c10::DispatchKey::CPU)); | ||||
|  | ||||
| @ -172,7 +172,7 @@ VaryingShape<Stride> TensorType::computeStrideProps( | ||||
|   // The logic below follows what TensorIterator uses in its logic: | ||||
|   //   1. Fast_set_up is the short-cut to identify a. channels_last and | ||||
|   //      b. contiguous format, which is what we have in the below logic. | ||||
|   //   2. In more generla cases, it does best effort to preserve permutatoin. | ||||
|   //   2. In more general cases, it does best effort to preserve permutatoin. | ||||
|   if (is_channels_last_strides_2d(sizes, strides) || is_channels_last_strides_3d(sizes, strides)) { | ||||
|     // case 1.a. short cut channels last | ||||
|     std::iota(stride_indices.rbegin() + 1, stride_indices.rend() - 1, 2); | ||||
|  | ||||
| @ -8,6 +8,7 @@ | ||||
| #include <ATen/core/jit_type.h> | ||||
| #include <c10/macros/Macros.h> | ||||
| #include <c10/util/env.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <c10/util/flat_hash_map.h> | ||||
| #include <c10/util/irange.h> | ||||
| #include <array> | ||||
| @ -826,9 +827,7 @@ TupleType::TupleType( | ||||
|     : NamedType(TypeKind::TupleType, std::move(name)), | ||||
|       elements_(std::move(elements)), | ||||
|       has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) { | ||||
|         if (!v) { | ||||
|           throw std::runtime_error("Can not create tuple with None type"); | ||||
|         } | ||||
|         TORCH_CHECK(v, "Can not create tuple with None type"); | ||||
|         return v->hasFreeVariables(); | ||||
|       })), schema_(std::move(schema)) { | ||||
|  | ||||
|  | ||||
| @ -104,71 +104,6 @@ class Vectorized<float> { | ||||
|     } | ||||
|     return b; | ||||
|   } | ||||
|   // Implementation is picked from | ||||
|   // https://github.com/ARM-software/ComputeLibrary/blob/v25.01/src/core/NEON/SVEMath.inl#L105 | ||||
|   inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) const { | ||||
|     const auto c1 = | ||||
|         svreinterpret_f32_u32(svdup_n_u32(0x3f7ffff6)); // x^1: 0x1.ffffecp-1f | ||||
|     const auto c2 = | ||||
|         svreinterpret_f32_u32(svdup_n_u32(0x3efffedb)); // x^2: 0x1.fffdb6p-2f | ||||
|     const auto c3 = | ||||
|         svreinterpret_f32_u32(svdup_n_u32(0x3e2aaf33)); // x^3: 0x1.555e66p-3f | ||||
|     const auto c4 = | ||||
|         svreinterpret_f32_u32(svdup_n_u32(0x3d2b9f17)); // x^4: 0x1.573e2ep-5f | ||||
|     const auto c5 = | ||||
|         svreinterpret_f32_u32(svdup_n_u32(0x3c072010)); // x^5: 0x1.0e4020p-7f | ||||
|     const auto shift = svreinterpret_f32_u32( | ||||
|         svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f | ||||
|     const auto inv_ln2 = svreinterpret_f32_u32( | ||||
|         svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f | ||||
|     const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32( | ||||
|         0xbf317200)); // -ln(2) from bits  -1 to -19: -0x1.62e400p-1f | ||||
|     const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32( | ||||
|         0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f | ||||
|     const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity()); | ||||
|     const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5) | ||||
|     const auto zero = svdup_n_f32(0.f); | ||||
|     const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125) | ||||
|     // Range reduction: | ||||
|     //   e^x = 2^n * e^r | ||||
|     // where: | ||||
|     //   n = floor(x / ln(2)) | ||||
|     //   r = x - n * ln(2) | ||||
|     // | ||||
|     // By adding x / ln(2) with 2^23 + 127 (shift): | ||||
|     //   * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 | ||||
|     //   forces decimal part | ||||
|     //     of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. | ||||
|     //     n) + 127 will occupy the whole fraction part of z in FP32 format. | ||||
|     //     Subtracting 2^23 + 127 (shift) from z will result in the integer part | ||||
|     //     of x / ln(2) (i.e. n) because the decimal part has been pushed out | ||||
|     //     and lost. | ||||
|     //   * The addition of 127 makes the FP32 fraction part of z ready to be | ||||
|     //   used as the exponent | ||||
|     //     in FP32 format. Left shifting z by 23 bits will result in 2^n. | ||||
|     const auto z = svmla_f32_z(pg, shift, x, inv_ln2); | ||||
|     const auto n = svsub_f32_z(pg, z, shift); | ||||
|     const auto scale = svreinterpret_f32_u32( | ||||
|         svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n | ||||
|     // The calculation of n * ln(2) is done using 2 steps to achieve accuracy | ||||
|     // beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in | ||||
|     // term of accuracy and performance. | ||||
|     const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi); | ||||
|     const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo); | ||||
|     // Compute the truncated Taylor series of e^r. | ||||
|     //   poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5) | ||||
|     const auto r2 = svmul_f32_z(pg, r, r); | ||||
|     const auto p1 = svmul_f32_z(pg, c1, r); | ||||
|     const auto p23 = svmla_f32_z(pg, c2, c3, r); | ||||
|     const auto p45 = svmla_f32_z(pg, c4, c5, r); | ||||
|     const auto p2345 = svmla_f32_z(pg, p23, p45, r2); | ||||
|     const auto p12345 = svmla_f32_z(pg, p1, p2345, r2); | ||||
|     auto poly = svmla_f32_z(pg, scale, p12345, scale); | ||||
|     // Handle underflow and overflow. | ||||
|     poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly); | ||||
|     poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly); | ||||
|     return poly; | ||||
|   } | ||||
|   static Vectorized<float> loadu(const void* ptr, int64_t count = size()) { | ||||
|     if (count == size()) | ||||
|       return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr)); | ||||
| @ -313,11 +248,41 @@ class Vectorized<float> { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1)); | ||||
|   } | ||||
|   // Implementation copied from Arm Optimized Routines: | ||||
|   // https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/sve/expf.c | ||||
|   Vectorized<float> exp_u20() const { | ||||
|     return exp(); | ||||
|     // special case to handle special inputs that are too large or too small | ||||
|     // i.e. where there's at least one element x, s.t. |x| >= 87.3... | ||||
|     svbool_t is_special_case = svacgt(svptrue_b32(), values, 0x1.5d5e2ap+6f); | ||||
|     if (svptest_any(svptrue_b32(), is_special_case)) { | ||||
|       return exp(); | ||||
|     } | ||||
|     const svfloat32_t ln2_hi = svdup_n_f32(0x1.62e4p-1f); | ||||
|     const svfloat32_t ln2_lo = svdup_n_f32(0x1.7f7d1cp-20f); | ||||
|     const svfloat32_t c1 = svdup_n_f32(0.5f); | ||||
|     const svfloat32_t inv_ln2 = svdup_n_f32(0x1.715476p+0f); | ||||
|  | ||||
|     const float shift = 0x1.803f8p17f; | ||||
|  | ||||
|     /* n = round(x/(ln2/N)).  */ | ||||
|     svfloat32_t z = svmad_x(svptrue_b32(), inv_ln2, values, shift); | ||||
|     svfloat32_t n = svsub_x(svptrue_b32(), z, shift); | ||||
|  | ||||
|     /* r = x - n*ln2/N.  */ | ||||
|     svfloat32_t r = values; | ||||
|     r = svmls_x(svptrue_b32(), r, n, ln2_hi); | ||||
|     r = svmls_x(svptrue_b32(), r, n, ln2_lo); | ||||
|  | ||||
|     /* scale = 2^(n/N).  */ | ||||
|     svfloat32_t scale = svexpa(svreinterpret_u32(z)); | ||||
|  | ||||
|     /* poly(r) = exp(r) - 1 ~= r + 0.5 r^2.  */ | ||||
|     svfloat32_t r2 = svmul_x(svptrue_b32(), r, r); | ||||
|     svfloat32_t poly = svmla_x(svptrue_b32(), r, r2, c1); | ||||
|     return svmla_x(svptrue_b32(), scale, scale, poly); | ||||
|   } | ||||
|   Vectorized<float> fexp_u20() const { | ||||
|     return exp(); | ||||
|     return exp_u20(); | ||||
|   } | ||||
|   Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF( | ||||
|       { return Vectorized<float>(Sleef_fmodfx_sve(values, q)); }, | ||||
| @ -453,9 +418,11 @@ class Vectorized<float> { | ||||
|         ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH); | ||||
|  | ||||
|     // Step 2: Calculate exp(2 * x), where x is the clamped value. | ||||
|     // svmul_f32_z computes 2 * x, and svexp_f32_z computes the exponential of | ||||
|     // the result. | ||||
|     svfloat32_t exp2x = svexp_f32_z(ptrue, svmul_f32_z(ptrue, CONST_2, x)); | ||||
|     // svmul_f32_z computes 2 * x, and exp_u20() computes the exponential of | ||||
|     // the result (via Vectorized<float>, then auto-converts back to | ||||
|     // svfloat32_t). | ||||
|     svfloat32_t exp2x = | ||||
|         Vectorized<float>(svmul_f32_z(ptrue, CONST_2, x)).exp_u20(); | ||||
|  | ||||
|     // Step 3: Calculate the numerator of the tanh function, which is exp(2x) | ||||
|     // - 1. | ||||
|  | ||||
| @ -6,6 +6,7 @@ | ||||
| #ifdef __aarch64__ | ||||
| #if !defined(CPU_CAPABILITY_SVE) | ||||
| #include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_double_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_float_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_half_neon.h> | ||||
| #include <ATen/cpu/vec/vec128/vec128_int_aarch64.h> | ||||
|  | ||||
| @ -354,9 +354,47 @@ class Vectorized<c10::BFloat16> : public Vectorized16< | ||||
|  | ||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs) | ||||
|   Vectorized frac() const; | ||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg) | ||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc) | ||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt) | ||||
|  | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   Vectorized<c10::BFloat16> neg() const { | ||||
|     return -values; | ||||
|   } | ||||
|   Vectorized<c10::BFloat16> reciprocal() const { | ||||
|     return 1.0f / values; | ||||
|   } | ||||
|   Vectorized<c10::BFloat16> operator==( | ||||
|       const Vectorized<c10::BFloat16>& other) const { | ||||
|     return values == other.values; | ||||
|   } | ||||
|  | ||||
|   Vectorized<c10::BFloat16> operator!=( | ||||
|       const Vectorized<c10::BFloat16>& other) const { | ||||
|     return values != other.values; | ||||
|   } | ||||
|  | ||||
|   Vectorized<c10::BFloat16> operator<( | ||||
|       const Vectorized<c10::BFloat16>& other) const { | ||||
|     return values < other.values; | ||||
|   } | ||||
|  | ||||
|   Vectorized<c10::BFloat16> operator<=( | ||||
|       const Vectorized<c10::BFloat16>& other) const { | ||||
|     return values <= other.values; | ||||
|   } | ||||
|  | ||||
|   Vectorized<c10::BFloat16> operator>( | ||||
|       const Vectorized<c10::BFloat16>& other) const { | ||||
|     return values > other.values; | ||||
|   } | ||||
|  | ||||
|   Vectorized<c10::BFloat16> operator>=( | ||||
|       const Vectorized<c10::BFloat16>& other) const { | ||||
|     return values >= other.values; | ||||
|   } | ||||
| #else | ||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg) | ||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal) | ||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==) | ||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=) | ||||
| @ -364,6 +402,7 @@ class Vectorized<c10::BFloat16> : public Vectorized16< | ||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=) | ||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>) | ||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=) | ||||
| #endif | ||||
|  | ||||
| #undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD | ||||
| #undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD | ||||
| @ -412,28 +451,52 @@ template <> | ||||
| Vectorized<c10::BFloat16> inline operator+( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   return x + y; | ||||
| #else | ||||
|   return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<c10::BFloat16> inline operator-( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   return x - y; | ||||
| #else | ||||
|   return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<c10::BFloat16> inline operator*( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   return x * y; | ||||
| #else | ||||
|   return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<c10::BFloat16> inline operator/( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   return x / y; | ||||
| #else | ||||
|   return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| // frac. Implement this here so we can use subtraction | ||||
| @ -544,12 +607,19 @@ Vectorized<c10::BFloat16> inline fmadd( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b, | ||||
|     const Vectorized<c10::BFloat16>& c) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   bfloat16x8_t z = c; | ||||
|   return x * y + z; | ||||
| #else | ||||
|   // NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16!  Also, | ||||
|   // vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered | ||||
|   // elements, not the bottom and top half, so they don't seem | ||||
|   // particularly useful here. Ideally we would include dot product in | ||||
|   // the Vectorized interface... | ||||
|   return a * b + c; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template <> | ||||
| @ -557,8 +627,15 @@ Vectorized<c10::BFloat16> inline fnmadd( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b, | ||||
|     const Vectorized<c10::BFloat16>& c) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   bfloat16x8_t z = c; | ||||
|   return (-x) * y + z; | ||||
| #else | ||||
|   // See NOTE [BF16 FMA] above. | ||||
|   return -a * b + c; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template <> | ||||
| @ -566,8 +643,15 @@ Vectorized<c10::BFloat16> inline fmsub( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b, | ||||
|     const Vectorized<c10::BFloat16>& c) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   bfloat16x8_t z = c; | ||||
|   return x * y - z; | ||||
| #else | ||||
|   // See NOTE [BF16 FMA] above. | ||||
|   return a * b - c; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| template <> | ||||
| @ -575,8 +659,15 @@ Vectorized<c10::BFloat16> inline fnmsub( | ||||
|     const Vectorized<c10::BFloat16>& a, | ||||
|     const Vectorized<c10::BFloat16>& b, | ||||
|     const Vectorized<c10::BFloat16>& c) { | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
|   bfloat16x8_t x = a; | ||||
|   bfloat16x8_t y = b; | ||||
|   bfloat16x8_t z = c; | ||||
|   return (-x) * y - z; | ||||
| #else | ||||
|   // See NOTE [BF16 FMA] above. | ||||
|   return -a * b - c; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #endif // !defined(C10_MOBILE) && defined(__aarch64__) | ||||
|  | ||||
| @ -5,6 +5,129 @@ | ||||
| namespace at::vec { | ||||
| inline namespace CPU_CAPABILITY { | ||||
| #if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)) | ||||
|  | ||||
| // Enable auto-vectorization for GCC-13+ and clang-17+ | ||||
| // GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001 | ||||
| #if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17)) | ||||
|  | ||||
| template <typename from_type, typename to_type> | ||||
| inline void convertImpl( | ||||
|     const from_type* __restrict src, | ||||
|     to_type* __restrict dst, | ||||
|     int64_t n) { | ||||
|   uint64_t len = static_cast<uint64_t>(n); | ||||
|   for (uint64_t i = 0; i < len; i++) { | ||||
|     dst[i] = static_cast<to_type>(src[i]); | ||||
|   } | ||||
| } | ||||
|  | ||||
| #define CONVERT_TEMPLATE(from_type, to_type)                           \ | ||||
|   template <>                                                          \ | ||||
|   inline void convert(const from_type* src, to_type* dst, int64_t n) { \ | ||||
|     return convertImpl<from_type, to_type>(src, dst, n);               \ | ||||
|   } | ||||
|  | ||||
| CONVERT_TEMPLATE(uint8_t, uint8_t) | ||||
| CONVERT_TEMPLATE(uint8_t, int8_t) | ||||
| CONVERT_TEMPLATE(uint8_t, int16_t) | ||||
| CONVERT_TEMPLATE(uint8_t, int32_t) | ||||
| CONVERT_TEMPLATE(uint8_t, int64_t) | ||||
| CONVERT_TEMPLATE(uint8_t, float) | ||||
| CONVERT_TEMPLATE(uint8_t, double) | ||||
| CONVERT_TEMPLATE(int8_t, uint8_t) | ||||
| CONVERT_TEMPLATE(int8_t, int8_t) | ||||
| CONVERT_TEMPLATE(int8_t, int16_t) | ||||
| CONVERT_TEMPLATE(int8_t, int32_t) | ||||
| CONVERT_TEMPLATE(int8_t, int64_t) | ||||
| CONVERT_TEMPLATE(int8_t, float) | ||||
| CONVERT_TEMPLATE(int8_t, double) | ||||
| CONVERT_TEMPLATE(int16_t, uint8_t) | ||||
| CONVERT_TEMPLATE(int16_t, int8_t) | ||||
| CONVERT_TEMPLATE(int16_t, int16_t) | ||||
| CONVERT_TEMPLATE(int16_t, int32_t) | ||||
| CONVERT_TEMPLATE(int16_t, int64_t) | ||||
| CONVERT_TEMPLATE(int16_t, float) | ||||
| CONVERT_TEMPLATE(int16_t, double) | ||||
| CONVERT_TEMPLATE(int32_t, uint8_t) | ||||
| CONVERT_TEMPLATE(int32_t, int8_t) | ||||
| CONVERT_TEMPLATE(int32_t, int16_t) | ||||
| CONVERT_TEMPLATE(int32_t, int32_t) | ||||
| CONVERT_TEMPLATE(int32_t, int64_t) | ||||
| CONVERT_TEMPLATE(int32_t, float) | ||||
| CONVERT_TEMPLATE(int32_t, double) | ||||
| CONVERT_TEMPLATE(int64_t, uint8_t) | ||||
| CONVERT_TEMPLATE(int64_t, int8_t) | ||||
| CONVERT_TEMPLATE(int64_t, int16_t) | ||||
| CONVERT_TEMPLATE(int64_t, int32_t) | ||||
| CONVERT_TEMPLATE(int64_t, int64_t) | ||||
| CONVERT_TEMPLATE(int64_t, float) | ||||
| CONVERT_TEMPLATE(int64_t, double) | ||||
| CONVERT_TEMPLATE(float, uint8_t) | ||||
| CONVERT_TEMPLATE(float, int8_t) | ||||
| CONVERT_TEMPLATE(float, int16_t) | ||||
| CONVERT_TEMPLATE(float, int32_t) | ||||
| CONVERT_TEMPLATE(float, int64_t) | ||||
| CONVERT_TEMPLATE(float, float) | ||||
| CONVERT_TEMPLATE(float, double) | ||||
| CONVERT_TEMPLATE(double, uint8_t) | ||||
| CONVERT_TEMPLATE(double, int8_t) | ||||
| CONVERT_TEMPLATE(double, int16_t) | ||||
| CONVERT_TEMPLATE(double, int32_t) | ||||
| CONVERT_TEMPLATE(double, int64_t) | ||||
| CONVERT_TEMPLATE(double, float) | ||||
| CONVERT_TEMPLATE(double, double) | ||||
| #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||
|  | ||||
| #define CONVERT_FROM_FP16_TEMPLATE(to_type)                            \ | ||||
|   template <>                                                          \ | ||||
|   inline void convert(const at::Half* src, to_type* dst, int64_t n) {  \ | ||||
|     const float16_t* srcPtr = reinterpret_cast<const float16_t*>(src); \ | ||||
|     return convertImpl<float16_t, to_type>(srcPtr, dst, n);            \ | ||||
|   } | ||||
|  | ||||
| #define CONVERT_TO_FP16_TEMPLATE(from_type)                             \ | ||||
|   template <>                                                           \ | ||||
|   inline void convert(const from_type* src, at::Half* dst, int64_t n) { \ | ||||
|     float16_t* dstPtr = reinterpret_cast<float16_t*>(dst);              \ | ||||
|     return convertImpl<from_type, float16_t>(src, dstPtr, n);           \ | ||||
|   } | ||||
|  | ||||
| CONVERT_FROM_FP16_TEMPLATE(uint8_t) | ||||
| CONVERT_FROM_FP16_TEMPLATE(int8_t) | ||||
| CONVERT_FROM_FP16_TEMPLATE(int16_t) | ||||
| CONVERT_FROM_FP16_TEMPLATE(int32_t) | ||||
| CONVERT_FROM_FP16_TEMPLATE(int64_t) | ||||
| CONVERT_FROM_FP16_TEMPLATE(float16_t) | ||||
| CONVERT_FROM_FP16_TEMPLATE(float) | ||||
| CONVERT_FROM_FP16_TEMPLATE(double) | ||||
| CONVERT_TO_FP16_TEMPLATE(uint8_t) | ||||
| CONVERT_TO_FP16_TEMPLATE(int8_t) | ||||
| CONVERT_TO_FP16_TEMPLATE(int16_t) | ||||
| CONVERT_TO_FP16_TEMPLATE(int32_t) | ||||
| CONVERT_TO_FP16_TEMPLATE(int64_t) | ||||
| CONVERT_TO_FP16_TEMPLATE(float) | ||||
| CONVERT_TO_FP16_TEMPLATE(double) | ||||
| #endif | ||||
| #ifdef __ARM_FEATURE_BF16 | ||||
| CONVERT_TEMPLATE(bfloat16_t, uint8_t) | ||||
| CONVERT_TEMPLATE(bfloat16_t, int8_t) | ||||
| CONVERT_TEMPLATE(bfloat16_t, int16_t) | ||||
| CONVERT_TEMPLATE(bfloat16_t, int32_t) | ||||
| CONVERT_TEMPLATE(bfloat16_t, int64_t) | ||||
| CONVERT_TEMPLATE(bfloat16_t, bfloat16_t) | ||||
| CONVERT_TEMPLATE(bfloat16_t, float) | ||||
| CONVERT_TEMPLATE(bfloat16_t, double) | ||||
| CONVERT_TEMPLATE(uint8_t, bfloat16_t) | ||||
| CONVERT_TEMPLATE(int8_t, bfloat16_t) | ||||
| CONVERT_TEMPLATE(int16_t, bfloat16_t) | ||||
| CONVERT_TEMPLATE(int32_t, bfloat16_t) | ||||
| CONVERT_TEMPLATE(int64_t, bfloat16_t) | ||||
| CONVERT_TEMPLATE(float, bfloat16_t) | ||||
| CONVERT_TEMPLATE(double, bfloat16_t) | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|  | ||||
| template <typename src_t> | ||||
| struct VecConvert< | ||||
|     float, | ||||
|  | ||||
							
								
								
									
										586
									
								
								aten/src/ATen/cpu/vec/vec128/vec128_double_neon.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										586
									
								
								aten/src/ATen/cpu/vec/vec128/vec128_double_neon.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,586 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include <ATen/cpu/vec/intrinsics.h> | ||||
| #include <ATen/cpu/vec/vec_base.h> | ||||
| #include <c10/macros/Macros.h> | ||||
| #include <c10/util/irange.h> | ||||
| #include <cmath> | ||||
|  | ||||
| namespace at::vec { | ||||
| // Note [CPU_CAPABILITY namespace] | ||||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
| // This header, and all of its subheaders, will be compiled with | ||||
| // different architecture flags for each supported set of vector | ||||
| // intrinsics. So we need to make sure they aren't inadvertently | ||||
| // linked together. We do this by declaring objects in an `inline | ||||
| // namespace` which changes the name mangling, but can still be | ||||
| // accessed as `at::vec`. | ||||
| inline namespace CPU_CAPABILITY { | ||||
|  | ||||
| template <> | ||||
| struct is_vec_specialized_for<double> : std::bool_constant<true> {}; | ||||
|  | ||||
| template <> | ||||
| class Vectorized<double> { | ||||
|  private: | ||||
|   float64x2_t values; | ||||
|  | ||||
|  public: | ||||
|   using value_type = double; | ||||
|   using size_type = int; | ||||
|   static constexpr size_type size() { | ||||
|     return 2; | ||||
|   } | ||||
|   Vectorized() { | ||||
|     values = vdupq_n_f64(0.0); | ||||
|   } | ||||
|   Vectorized(float64x2_t v) : values(v) {} | ||||
|   Vectorized(double val) { | ||||
|     values = vdupq_n_f64(val); | ||||
|   } | ||||
|   template < | ||||
|       typename... Args, | ||||
|       typename = std::enable_if_t<(sizeof...(Args) == size())>> | ||||
|   Vectorized(Args... vals) { | ||||
|     __at_align__ double buffer[size()] = {vals...}; | ||||
|     values = vld1q_f64(buffer); | ||||
|   } | ||||
|   operator float64x2_t() const { | ||||
|     return values; | ||||
|   } | ||||
|   template <int64_t mask> | ||||
|   static Vectorized<double> blend( | ||||
|       const Vectorized<double>& a, | ||||
|       const Vectorized<double>& b) { | ||||
|     // Build an array of flags: each bit of element is 1 if the corresponding | ||||
|     // bit in 'mask' is set, 0 otherwise. | ||||
|     uint64x2_t maskArray = { | ||||
|         (mask & 1ULL) ? 0xFFFFFFFFFFFFFFFF : 0, | ||||
|         (mask & 2ULL) ? 0xFFFFFFFFFFFFFFFF : 0}; | ||||
|     // Use BSL to select elements from b where the mask is 1, else from a | ||||
|     return vbslq_f64(maskArray, b.values, a.values); | ||||
|   } | ||||
|   static Vectorized<double> blendv( | ||||
|       const Vectorized<double>& a, | ||||
|       const Vectorized<double>& b, | ||||
|       const Vectorized<double>& mask_) { | ||||
|     return vbslq_f64(vreinterpretq_u64_f64(mask_.values), b.values, a.values); | ||||
|   } | ||||
|   template <typename step_t> | ||||
|   static Vectorized<double> arange( | ||||
|       double base = 0., | ||||
|       step_t step = static_cast<step_t>(1)) { | ||||
|     return {base, base + static_cast<double>(step)}; | ||||
|   } | ||||
|   static inline Vectorized<double> set( | ||||
|       const Vectorized<double>& a, | ||||
|       const Vectorized<double>& b, | ||||
|       int64_t count = size()) { | ||||
|     if (count == 0) { | ||||
|       return a; | ||||
|     } else if (count >= 2) { | ||||
|       return b; | ||||
|     } else { | ||||
|       float64x2_t c = {b.values[0], a.values[1]}; | ||||
|       return c; | ||||
|     } | ||||
|   } | ||||
|   static Vectorized<double> loadu(const void* ptr, int64_t count = size()) { | ||||
|     if (count == size()) { | ||||
|       return vld1q_f64(reinterpret_cast<const double*>(ptr)); | ||||
|     } else if (count == 1) { | ||||
|       float64x1_t x = vld1_f64(reinterpret_cast<const double*>(ptr)); | ||||
|       float64x1_t z = {0.0}; | ||||
|       return vcombine_f64(x, z); | ||||
|     } else { | ||||
|       return vdupq_n_f64(0.0); | ||||
|     } | ||||
|   } | ||||
|   void store(void* ptr, int64_t count = size()) const { | ||||
|     if (count == size()) { | ||||
|       vst1q_f64(reinterpret_cast<double*>(ptr), values); | ||||
|     } else if (count == 1) { | ||||
|       vst1_f64(reinterpret_cast<double*>(ptr), vget_low_f64(values)); | ||||
|     } | ||||
|   } | ||||
|   const double& operator[](int idx) const = delete; | ||||
|   double& operator[](int idx) = delete; | ||||
|   int64_t zero_mask() const { | ||||
|     // returns an integer mask where all zero elements are translated to 1-bit | ||||
|     // and others are translated to 0-bit | ||||
|     uint64x2_t cmpReg = vceqzq_f64(values); | ||||
|     uint64x2_t mask = {1, 2}; | ||||
|     uint64x2_t res = vandq_u64(cmpReg, mask); | ||||
|     return res[0] | res[1]; | ||||
|   } | ||||
|   Vectorized<double> isnan() const { | ||||
|     // NaN check | ||||
|     return vreinterpretq_f64_u32( | ||||
|         vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, values)))); | ||||
|   } | ||||
|   bool has_inf_nan() const { | ||||
|     Vectorized<double> x = vsubq_f64(values, values); | ||||
|     float64x2_t r = x.isnan(); | ||||
|     uint64x2_t u = vreinterpretq_u64_f64(r); | ||||
|     return u[0] | u[1]; | ||||
|   } | ||||
|   Vectorized<double> map(double (*f)(double)) const { | ||||
|     float64x2_t result; | ||||
|     result[0] = f(values[0]); | ||||
|     result[1] = f(values[1]); | ||||
|     return result; | ||||
|   } | ||||
|   Vectorized<double> map2( | ||||
|       const Vectorized<double>& second, | ||||
|       double (*const f)(double, double)) const { | ||||
|     float64x2_t result; | ||||
|     result[0] = f(values[0], second.values[0]); | ||||
|     result[1] = f(values[1], second.values[1]); | ||||
|     return result; | ||||
|   } | ||||
|   Vectorized<double> abs() const { | ||||
|     return vabsq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> angle() const { | ||||
|     auto zero = Vectorized<double>(0.0); | ||||
|     auto pi = Vectorized<double>(c10::pi<double>); | ||||
|     auto tmp = blendv(zero, pi, vreinterpretq_f64_u64(vcltzq_f64(values))); | ||||
|     return blendv(tmp, *this, isnan()); | ||||
|   } | ||||
|   Vectorized<double> real() const { | ||||
|     return *this; | ||||
|   } | ||||
|   Vectorized<double> imag() const { | ||||
|     return Vectorized<double>(0.0); | ||||
|   } | ||||
|   Vectorized<double> conj() const { | ||||
|     return *this; | ||||
|   } | ||||
|   Vectorized<double> acos() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_acosd2_u10(values)), map(std::acos)); | ||||
|   } | ||||
|   Vectorized<double> acosh() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_acoshd2_u10(values)), map(std::acosh)); | ||||
|   } | ||||
|   Vectorized<double> asin() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_asind2_u10(values)), map(std::asin)); | ||||
|   } | ||||
|   Vectorized<double> asinh() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_asinhd2_u10(values)), map(std::asinh)); | ||||
|   } | ||||
|   Vectorized<double> atan() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_atand2_u10(values)), map(std::atan)); | ||||
|   } | ||||
|   Vectorized<double> atanh() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_atanhd2_u10(values)), map(std::atanh)); | ||||
|   } | ||||
|   Vectorized<double> atan2(const Vectorized<double>& b) const {USE_SLEEF( | ||||
|       { return Vectorized<double>(Sleef_atan2d2_u10(values, b)); }, | ||||
|       { | ||||
|         __at_align__ double tmp[size()]; | ||||
|         __at_align__ double tmp_b[size()]; | ||||
|         store(tmp); | ||||
|         b.store(tmp_b); | ||||
|         for (int64_t i = 0; i < size(); i++) { | ||||
|           tmp[i] = std::atan2(tmp[i], tmp_b[i]); | ||||
|         } | ||||
|         return loadu(tmp); | ||||
|       })} Vectorized<double> copysign(const Vectorized<double>& sign) const { | ||||
|       USE_SLEEF( | ||||
|           { return Vectorized<double>(Sleef_copysignd2(values, sign)); }, | ||||
|           { | ||||
|             __at_align__ double tmp[size()]; | ||||
|             __at_align__ double tmp_sign[size()]; | ||||
|             store(tmp); | ||||
|             sign.store(tmp_sign); | ||||
|             for (int64_t i = 0; i < size(); i++) { | ||||
|               tmp[i] = std::copysign(tmp[i], tmp_sign[i]); | ||||
|             } | ||||
|             return loadu(tmp); | ||||
|           })} Vectorized<double> erf() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_erfd2_u10(values)), map(std::erf)); | ||||
|   } | ||||
|   Vectorized<double> erfc() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_erfcd2_u15(values)), map(std::erfc)); | ||||
|   } | ||||
|   Vectorized<double> exp() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_expd2_u10(values)), map(std::exp)); | ||||
|   } | ||||
|   Vectorized<double> exp2() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_exp2d2_u10(values)), map(std::exp2)); | ||||
|   } | ||||
|   Vectorized<double> expm1() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_expm1d2_u10(values)), map(std::expm1)); | ||||
|   } | ||||
|   Vectorized<double> fmod(const Vectorized<double>& q) const {USE_SLEEF( | ||||
|       { return Vectorized<double>(Sleef_fmodd2(values, q)); }, | ||||
|       { | ||||
|         __at_align__ double tmp[size()]; | ||||
|         __at_align__ double tmp_q[size()]; | ||||
|         store(tmp); | ||||
|         q.store(tmp_q); | ||||
|         for (int64_t i = 0; i < size(); i++) { | ||||
|           tmp[i] = std::fmod(tmp[i], tmp_q[i]); | ||||
|         } | ||||
|         return loadu(tmp); | ||||
|       })} Vectorized<double> hypot(const Vectorized<double>& b) const { | ||||
|       USE_SLEEF( | ||||
|           { return Vectorized<double>(Sleef_hypotd2_u05(values, b)); }, | ||||
|           { | ||||
|             __at_align__ double tmp[size()]; | ||||
|             __at_align__ double tmp_b[size()]; | ||||
|             store(tmp); | ||||
|             b.store(tmp_b); | ||||
|             for (int64_t i = 0; i < size(); i++) { | ||||
|               tmp[i] = std::hypot(tmp[i], tmp_b[i]); | ||||
|             } | ||||
|             return loadu(tmp); | ||||
|           })} Vectorized<double> i0() const { | ||||
|     return map(calc_i0); | ||||
|   } | ||||
|   Vectorized<double> nextafter(const Vectorized<double>& b) const {USE_SLEEF( | ||||
|       { return Vectorized<double>(Sleef_nextafterd2(values, b)); }, | ||||
|       { | ||||
|         __at_align__ double tmp[size()]; | ||||
|         __at_align__ double tmp_b[size()]; | ||||
|         store(tmp); | ||||
|         b.store(tmp_b); | ||||
|         for (int64_t i = 0; i < size(); ++i) { | ||||
|           tmp[i] = std::nextafter(tmp[i], tmp_b[i]); | ||||
|         } | ||||
|         return loadu(tmp); | ||||
|       })} Vectorized<double> log() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_logd2_u10(values)), map(std::log)); | ||||
|   } | ||||
|   Vectorized<double> log2() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_log2d2_u10(values)), map(std::log2)); | ||||
|   } | ||||
|   Vectorized<double> log10() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_log10d2_u10(values)), map(std::log10)); | ||||
|   } | ||||
|   Vectorized<double> log1p() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_log1pd2_u10(values)), map(std::log1p)); | ||||
|   } | ||||
|   Vectorized<double> frac() const; | ||||
|   Vectorized<double> sin() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_sind2_u10(values)), map(std::sin)); | ||||
|   } | ||||
|   Vectorized<double> sinh() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_sinhd2_u10(values)), map(std::sinh)); | ||||
|   } | ||||
|   Vectorized<double> cos() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_cosd2_u10(values)), map(std::cos)); | ||||
|   } | ||||
|   Vectorized<double> cosh() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_coshd2_u10(values)), map(std::cosh)); | ||||
|   } | ||||
|   Vectorized<double> pow(const Vectorized<double>& b) const {USE_SLEEF( | ||||
|       { return Vectorized<double>(Sleef_powd2_u10(values, b)); }, | ||||
|       { | ||||
|         __at_align__ double tmp[size()]; | ||||
|         __at_align__ double tmp_b[size()]; | ||||
|         store(tmp); | ||||
|         b.store(tmp_b); | ||||
|         for (int64_t i = 0; i < size(); i++) { | ||||
|           tmp[i] = std::pow(tmp[i], tmp_b[i]); | ||||
|         } | ||||
|         return loadu(tmp); | ||||
|       })} // Comparison using the _CMP_**_OQ predicate. | ||||
|           //   `O`: get false if an operand is NaN | ||||
|           //   `Q`: do not raise if an operand is NaN | ||||
|   Vectorized<double> tan() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_tand2_u10(values)), map(std::tan)); | ||||
|   } | ||||
|   Vectorized<double> tanh() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_tanhd2_u10(values)), map(std::tanh)); | ||||
|   } | ||||
|   Vectorized<double> lgamma() const { | ||||
|     return USE_SLEEF( | ||||
|         Vectorized<double>(Sleef_lgammad2_u10(values)), map(std::lgamma)); | ||||
|   } | ||||
|   Vectorized<double> erfinv() const { | ||||
|     return map(calc_erfinv); | ||||
|   } | ||||
|   Vectorized<double> exp_u20() const { | ||||
|     return exp(); | ||||
|   } | ||||
|   Vectorized<double> fexp_u20() const { | ||||
|     return exp(); | ||||
|   } | ||||
|   Vectorized<double> i0e() const { | ||||
|     return map(calc_i0e); | ||||
|   } | ||||
|   Vectorized<double> digamma() const { | ||||
|     return map(calc_digamma); | ||||
|   } | ||||
|   Vectorized<double> igamma(const Vectorized<double>& x) const { | ||||
|     __at_align__ double tmp[size()]; | ||||
|     __at_align__ double tmp_x[size()]; | ||||
|     store(tmp); | ||||
|     x.store(tmp_x); | ||||
|     for (int64_t i = 0; i < size(); i++) { | ||||
|       tmp[i] = calc_igamma(tmp[i], tmp_x[i]); | ||||
|     } | ||||
|     return loadu(tmp); | ||||
|   } | ||||
|   Vectorized<double> igammac(const Vectorized<double>& x) const { | ||||
|     __at_align__ double tmp[size()]; | ||||
|     __at_align__ double tmp_x[size()]; | ||||
|     store(tmp); | ||||
|     x.store(tmp_x); | ||||
|     for (int64_t i = 0; i < size(); i++) { | ||||
|       tmp[i] = calc_igammac(tmp[i], tmp_x[i]); | ||||
|     } | ||||
|     return loadu(tmp); | ||||
|   } | ||||
|   Vectorized<double> ceil() const { | ||||
|     return vrndpq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> floor() const { | ||||
|     return vrndmq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> neg() const { | ||||
|     return vnegq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> round() const { | ||||
|     return vrndiq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> trunc() const { | ||||
|     return vrndq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> sqrt() const { | ||||
|     return vsqrtq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> reciprocal() const { | ||||
|     return vdivq_f64(vdupq_n_f64(1.0), values); | ||||
|   } | ||||
|   Vectorized<double> rsqrt() const { | ||||
|     return vdivq_f64(vdupq_n_f64(1.0), vsqrtq_f64(values)); | ||||
|   } | ||||
|   double reduce_add() const { | ||||
|     return vaddvq_f64(values); | ||||
|   } | ||||
|   double reduce_max() const { | ||||
|     return vmaxvq_f64(values); | ||||
|   } | ||||
|   Vectorized<double> operator==(const Vectorized<double>& other) const { | ||||
|     return Vectorized<double>( | ||||
|         vreinterpretq_f64_u64(vceqq_f64(values, other.values))); | ||||
|   } | ||||
|  | ||||
|   Vectorized<double> operator!=(const Vectorized<double>& other) const { | ||||
|     float64x2_t r0 = vreinterpretq_f64_u32( | ||||
|         vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, other.values)))); | ||||
|     return Vectorized<double>(r0); | ||||
|   } | ||||
|  | ||||
|   Vectorized<double> operator<(const Vectorized<double>& other) const { | ||||
|     return Vectorized<double>( | ||||
|         vreinterpretq_f64_u64(vcltq_f64(values, other.values))); | ||||
|   } | ||||
|  | ||||
|   Vectorized<double> operator<=(const Vectorized<double>& other) const { | ||||
|     return Vectorized<double>( | ||||
|         vreinterpretq_f64_u64(vcleq_f64(values, other.values))); | ||||
|   } | ||||
|  | ||||
|   Vectorized<double> operator>(const Vectorized<double>& other) const { | ||||
|     return Vectorized<double>( | ||||
|         vreinterpretq_f64_u64(vcgtq_f64(values, other.values))); | ||||
|   } | ||||
|  | ||||
|   Vectorized<double> operator>=(const Vectorized<double>& other) const { | ||||
|     return Vectorized<double>( | ||||
|         vreinterpretq_f64_u64(vcgeq_f64(values, other.values))); | ||||
|   } | ||||
|  | ||||
|   Vectorized<double> eq(const Vectorized<double>& other) const; | ||||
|   Vectorized<double> ne(const Vectorized<double>& other) const; | ||||
|   Vectorized<double> gt(const Vectorized<double>& other) const; | ||||
|   Vectorized<double> ge(const Vectorized<double>& other) const; | ||||
|   Vectorized<double> lt(const Vectorized<double>& other) const; | ||||
|   Vectorized<double> le(const Vectorized<double>& other) const; | ||||
| }; | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator+( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vaddq_f64(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator-( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vsubq_f64(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator*( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vmulq_f64(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator/( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vdivq_f64(a, b); | ||||
| } | ||||
|  | ||||
| // frac. Implement this here so we can use subtraction | ||||
| Vectorized<double> inline Vectorized<double>::frac() const { | ||||
|   return *this - this->trunc(); | ||||
| } | ||||
|  | ||||
| // Implements the IEEE 754 201X `maximum` operation, which propagates NaN if | ||||
| // either input is a NaN. | ||||
| template <> | ||||
| Vectorized<double> inline maximum( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vmaxq_f64(a, b); | ||||
| } | ||||
|  | ||||
| // Implements the IEEE 754 201X `minimum` operation, which propagates NaN if | ||||
| // either input is a NaN. | ||||
| template <> | ||||
| Vectorized<double> inline minimum( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vminq_f64(a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline clamp( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& min, | ||||
|     const Vectorized<double>& max) { | ||||
|   return vminq_f64(max, vmaxq_f64(min, a)); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline clamp_max( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& max) { | ||||
|   return vminq_f64(max, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline clamp_min( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& min) { | ||||
|   return vmaxq_f64(min, a); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator&( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vreinterpretq_f64_u64( | ||||
|       vandq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b))); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator|( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vreinterpretq_f64_u64( | ||||
|       vorrq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b))); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline operator^( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b) { | ||||
|   return vreinterpretq_f64_u64( | ||||
|       veorq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b))); | ||||
| } | ||||
|  | ||||
| inline Vectorized<double> Vectorized<double>::eq( | ||||
|     const Vectorized<double>& other) const { | ||||
|   return (*this == other) & Vectorized<double>(1.0); | ||||
| } | ||||
|  | ||||
| inline Vectorized<double> Vectorized<double>::ne( | ||||
|     const Vectorized<double>& other) const { | ||||
|   return (*this != other) & Vectorized<double>(1.0); | ||||
| } | ||||
|  | ||||
| inline Vectorized<double> Vectorized<double>::gt( | ||||
|     const Vectorized<double>& other) const { | ||||
|   return (*this > other) & Vectorized<double>(1.0); | ||||
| } | ||||
|  | ||||
| inline Vectorized<double> Vectorized<double>::ge( | ||||
|     const Vectorized<double>& other) const { | ||||
|   return (*this >= other) & Vectorized<double>(1.0); | ||||
| } | ||||
|  | ||||
| inline Vectorized<double> Vectorized<double>::lt( | ||||
|     const Vectorized<double>& other) const { | ||||
|   return (*this < other) & Vectorized<double>(1.0); | ||||
| } | ||||
|  | ||||
| inline Vectorized<double> Vectorized<double>::le( | ||||
|     const Vectorized<double>& other) const { | ||||
|   return (*this <= other) & Vectorized<double>(1.0); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline fmadd( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b, | ||||
|     const Vectorized<double>& c) { | ||||
|   return vfmaq_f64(c, a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline fnmadd( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b, | ||||
|     const Vectorized<double>& c) { | ||||
|   return vfmsq_f64(c, a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline fmsub( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b, | ||||
|     const Vectorized<double>& c) { | ||||
|   return vfmaq_f64(vnegq_f64(c), a, b); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<double> inline fnmsub( | ||||
|     const Vectorized<double>& a, | ||||
|     const Vectorized<double>& b, | ||||
|     const Vectorized<double>& c) { | ||||
|   return vfmsq_f64(vnegq_f64(c), a, b); | ||||
| } | ||||
|  | ||||
| } // namespace CPU_CAPABILITY | ||||
| } // namespace at::vec | ||||
| @ -307,11 +307,49 @@ class Vectorized<float> { | ||||
|   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp) | ||||
|   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2) | ||||
|   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1) | ||||
|   // Implementation copied from Arm Optimized Routine | ||||
|   // https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c | ||||
|   Vectorized<float> exp_u20() const { | ||||
|     return exp(); | ||||
|     // bail out to sleef if it's a special case: | ||||
|     // i.e. there's an input s.t. |input| > 87.3.... | ||||
|     const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f); | ||||
|     uint32x4_t cmp = vcagtq_f32(values, special_bound); | ||||
|     if (vpaddd_u64(vreinterpretq_u64_u32(cmp)) != 0) { | ||||
|       return exp(); | ||||
|     } | ||||
|  | ||||
|     const float32x4_t inv_ln2 = vdupq_n_f32(0x1.715476p+0f); | ||||
|     const float ln2_hi = 0x1.62e4p-1f; | ||||
|     const float ln2_lo = 0x1.7f7d1cp-20f; | ||||
|     const float c0 = 0x1.0e4020p-7f; | ||||
|     const float c2 = 0x1.555e66p-3f; | ||||
|     const float32x4_t ln2_c02 = {ln2_hi, ln2_lo, c0, c2}; | ||||
|  | ||||
|     const uint32x4_t exponent_bias = vdupq_n_u32(0x3f800000); | ||||
|     const float32x4_t c1 = vdupq_n_f32(0x1.573e2ep-5f); | ||||
|     const float32x4_t c3 = vdupq_n_f32(0x1.fffdb6p-2f); | ||||
|     const float32x4_t c4 = vdupq_n_f32(0x1.ffffecp-1f); | ||||
|  | ||||
|     /* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)] | ||||
|       x = ln2*n + r, with r in [-ln2/2, ln2/2].  */ | ||||
|  | ||||
|     float32x4_t n = vrndaq_f32(vmulq_f32(values, inv_ln2)); | ||||
|     float32x4_t r = vfmsq_laneq_f32(values, n, ln2_c02, 0); | ||||
|     r = vfmsq_laneq_f32(r, n, ln2_c02, 1); | ||||
|     uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_s32(vcvtq_s32_f32(n)), 23); | ||||
|     float32x4_t scale = vreinterpretq_f32_u32(vaddq_u32(e, exponent_bias)); | ||||
|  | ||||
|     float32x4_t r2 = vmulq_f32(r, r); | ||||
|     float32x4_t p = vfmaq_laneq_f32(c1, r, ln2_c02, 2); | ||||
|     float32x4_t q = vfmaq_laneq_f32(c3, r, ln2_c02, 3); | ||||
|     q = vfmaq_f32(q, p, r2); | ||||
|     p = vmulq_f32(c4, r); | ||||
|     float32x4_t poly = vfmaq_f32(p, q, r2); | ||||
|  | ||||
|     return vfmaq_f32(scale, poly, scale); | ||||
|   } | ||||
|   Vectorized<float> fexp_u20() const { | ||||
|     return exp(); | ||||
|     return exp_u20(); | ||||
|   } | ||||
|   DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME( | ||||
|       fmod, | ||||
| @ -540,42 +578,6 @@ inline Vectorized<float> Vectorized<float>::le( | ||||
|   return (*this <= other) & Vectorized<float>(1.0f); | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline void convert(const float* src, int32_t* dst, int64_t n) { | ||||
|   int64_t i; | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (i = 0; i <= (n - Vectorized<float>::size()); | ||||
|        i += Vectorized<float>::size()) { | ||||
|     vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i))); | ||||
|   } | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (; i < n; i++) { | ||||
|     dst[i] = static_cast<int32_t>(src[i]); | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline void convert(const int32_t* src, float* dst, int64_t n) { | ||||
|   int64_t i; | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (i = 0; i <= (n - Vectorized<float>::size()); | ||||
|        i += Vectorized<float>::size()) { | ||||
|     vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i))); | ||||
|   } | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (; i < n; i++) { | ||||
|     dst[i] = static_cast<float>(src[i]); | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <> | ||||
| Vectorized<float> inline fmadd( | ||||
|     const Vectorized<float>& a, | ||||
| @ -632,8 +634,7 @@ inline Vectorized<float> Vectorized<float>::erf() const { | ||||
|   // - exp(- x * x) | ||||
|   auto pow_2 = (*this) * (*this); | ||||
|   auto neg_pow_2 = pow_2 ^ neg_zero_vec; | ||||
|   auto tmp4 = neg_pow_2.map( | ||||
|       std::exp); // This can be swapped for a faster implementation of exp. | ||||
|   auto tmp4 = neg_pow_2.exp(); | ||||
|   auto tmp5 = tmp4 ^ neg_zero_vec; | ||||
|   // erf(x) = sign(x) * (1 - r * t * exp(- x * x)) | ||||
|   auto tmp6 = t * tmp5; | ||||
|  | ||||
| @ -234,7 +234,7 @@ class Vectorized<c10::Half> : public Vectorized16< | ||||
|         vshlq_u16(vandq_u16(is_zero_vec, vdupq_n_u16(1)), shift); | ||||
|     return vaddvq_u16(bits_vec); | ||||
| #else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||
|     // use known working implmentation. | ||||
|     // use known working implementation. | ||||
|     __at_align__ value_type tmp[size()]; | ||||
|     store(tmp); | ||||
|     int mask = 0; | ||||
| @ -569,46 +569,6 @@ inline Vectorized<c10::Half> Vectorized<c10::Half>::le( | ||||
|   return (*this <= other) & Vectorized<c10::Half>(1); | ||||
| } | ||||
|  | ||||
| // These are global functions, so the defaults in vec_base.h should | ||||
| // work fine if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC is not available. | ||||
| #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||
| template <> | ||||
| inline void convert(const float16_t* src, int16_t* dst, int64_t n) { | ||||
|   int64_t i; | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (i = 0; i <= (n - Vectorized<c10::Half>::size()); | ||||
|        i += Vectorized<c10::Half>::size()) { | ||||
|     vst1q_s16(dst + i, vcvtq_s16_f16(vld1q_f16(src + i))); | ||||
|   } | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (; i < n; i++) { | ||||
|     dst[i] = static_cast<int16_t>(src[i]); | ||||
|   } | ||||
| } | ||||
|  | ||||
| template <> | ||||
| inline void convert(const int16_t* src, float16_t* dst, int64_t n) { | ||||
|   int64_t i; | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (i = 0; i <= (n - Vectorized<c10::Half>::size()); | ||||
|        i += Vectorized<c10::Half>::size()) { | ||||
|     vst1q_f16(dst + i, vcvtq_f16_s16(vld1q_s16(src + i))); | ||||
|   } | ||||
| #ifndef __msvc_cl__ | ||||
| #pragma unroll | ||||
| #endif | ||||
|   for (; i < n; i++) { | ||||
|     dst[i] = static_cast<float16_t>(src[i]); | ||||
|   } | ||||
| } | ||||
| #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||
|  | ||||
| template <> | ||||
| Vectorized<c10::Half> inline fmadd( | ||||
|     const Vectorized<c10::Half>& a, | ||||
|  | ||||
| @ -1740,7 +1740,7 @@ Vectorized<int16_t> inline shift_256_16( | ||||
|  | ||||
|   // Control masks for shuffle operation, treating 256 bits as an | ||||
|   // array of 16-bit elements, and considering pairs of neighboring | ||||
|   // elements.  Specifially, a mask named "ctl_M_N" (M,N in [0,1], and | ||||
|   // elements.  Specifically, a mask named "ctl_M_N" (M,N in [0,1], and | ||||
|   // M!=N) is set so that shuffle will move element with index M from | ||||
|   // input pair into element with index N in output pair, and element | ||||
|   // with index M in output pair will be set to all 0s. | ||||
| @ -1875,7 +1875,7 @@ Vectorized<T> inline shift_256_8( | ||||
|  | ||||
|   // Control masks for shuffle operation, treating 256 bits as an | ||||
|   // array of 8-bit elements, and considering quadruples of | ||||
|   // neighboring elements.  Specifially, a mask named "ctl_M_N" (M,N | ||||
|   // neighboring elements.  Specifically, a mask named "ctl_M_N" (M,N | ||||
|   // in [0,1,2,3], and M!=N) is set so that shuffle will move element | ||||
|   // with index M from input quadruple into element with index N in | ||||
|   // output quadruple, and other elements in output quadruple will be | ||||
|  | ||||
| @ -143,7 +143,7 @@ class Vectorized<double> { | ||||
|       const Vectorized<double>& a, | ||||
|       const Vectorized<double>& b, | ||||
|       const Vectorized<double>& mask) { | ||||
|     // the mask used here returned by comparision of vec256 | ||||
|     // the mask used here returned by comparison of vec256 | ||||
|  | ||||
|     return { | ||||
|         vec_sel(a._vec0, b._vec0, mask._vecb0), | ||||
|  | ||||
| @ -142,7 +142,7 @@ class Vectorized<float> { | ||||
|       const Vectorized<float>& a, | ||||
|       const Vectorized<float>& b, | ||||
|       const Vectorized<float>& mask) { | ||||
|     // the mask used here returned by comparision of vec256 | ||||
|     // the mask used here returned by comparison of vec256 | ||||
|     // assuming this we can use the same mask directly with vec_sel | ||||
|     return { | ||||
|         vec_sel(a._vec0, b._vec0, mask._vecb0), | ||||
|  | ||||
| @ -202,7 +202,7 @@ class Vectorized<int16_t> { | ||||
|       const Vectorized<int16_t>& a, | ||||
|       const Vectorized<int16_t>& b, | ||||
|       const Vectorized<int16_t>& mask) { | ||||
|     // the mask used here returned by comparision of vec256 | ||||
|     // the mask used here returned by comparison of vec256 | ||||
|     // assuming this we can use the same mask directly with vec_sel | ||||
|     // warning intel style mask will not work properly | ||||
|     return { | ||||
|  | ||||
| @ -155,7 +155,7 @@ class Vectorized<int32_t> { | ||||
|       const Vectorized<int32_t>& a, | ||||
|       const Vectorized<int32_t>& b, | ||||
|       const Vectorized<int32_t>& mask) { | ||||
|     // the mask used here returned by comparision of vec256 | ||||
|     // the mask used here returned by comparison of vec256 | ||||
|     // assuming this we can use the same mask directly with vec_sel | ||||
|     // warning intel style mask will not work properly | ||||
|     return { | ||||
|  | ||||
| @ -119,7 +119,7 @@ class Vectorized<int64_t> { | ||||
|       const Vectorized<int64_t>& a, | ||||
|       const Vectorized<int64_t>& b, | ||||
|       const Vectorized<int64_t>& mask) { | ||||
|     // the mask used here returned by comparision of vec256 | ||||
|     // the mask used here returned by comparison of vec256 | ||||
|  | ||||
|     return { | ||||
|         vec_sel(a._vec0, b._vec0, mask._vecb0), | ||||
|  | ||||
| @ -397,7 +397,7 @@ inline Vectorized<bool> operator&&( | ||||
|   const __m512i* other_ = reinterpret_cast<const __m512i*>(other.as_bytes()); | ||||
|   __m512i out = _mm512_and_si512(*self_, *other_); | ||||
|   Vectorized<bool> ret; | ||||
|   // We do not have a constructer that takes __m512i, so we need to memcpy | ||||
|   // We do not have a constructor that takes __m512i, so we need to memcpy | ||||
|   std::memcpy(ret, &out, ret.size() * sizeof(bool)); | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| @ -1852,7 +1852,7 @@ Vectorized<T> inline shift_512_8( | ||||
|  | ||||
|   // Control masks for shuffle operation, treating 512 bits as an | ||||
|   // array of 8-bit elements, and considering pairs of neighboring | ||||
|   // elements.  Specifially, a mask named "ctl_M_N" (M,N in [0,1], and | ||||
|   // elements.  Specifically, a mask named "ctl_M_N" (M,N in [0,1], and | ||||
|   // M!=N) is set so that shuffle will move element with index M from | ||||
|   // input pair into element with index N in output pair, and element | ||||
|   // with index M in output pair will be set to all 0s. | ||||
|  | ||||
| @ -634,7 +634,7 @@ struct Vectorized { | ||||
|   } | ||||
|   Vectorized<T> neg() const { | ||||
|     // NB: the trailing return type is needed because we need to coerce the | ||||
|     // return value back to T in the case of unary operator- incuring a | ||||
|     // return value back to T in the case of unary operator- incurring a | ||||
|     // promotion | ||||
|     return map([](T x) -> T { return -x; }); | ||||
|   } | ||||
|  | ||||
| @ -1958,7 +1958,7 @@ void scaled_gemm( | ||||
|     ScalarType result_dtype, | ||||
|     bool use_fast_accum, | ||||
|     const std::optional<Tensor>& alpha) { | ||||
|   // Note: see `cublasCommonArgs` for various non-intuitive manupulations | ||||
|   // Note: see `cublasCommonArgs` for various non-intuitive manipulations | ||||
|   // of input arguments to this function. | ||||
|   const auto computeType = CUBLAS_COMPUTE_32F; | ||||
|   const auto scaleType = CUDA_R_32F; | ||||
|  | ||||
| @ -168,11 +168,9 @@ void CUDAGraph::instantiate() { | ||||
|   // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597 | ||||
|   // cudaGraphInstantiateWithFlags | ||||
|   // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ga2c652a24ba93e52b99a47bec0888233 | ||||
| #if !defined(USE_ROCM) || ROCM_VERSION >= 60200 | ||||
|   int version = 0; | ||||
|   AT_CUDA_CHECK(cudaDriverGetVersion(&version)); | ||||
|   if (version < 11040) { | ||||
| #endif | ||||
|     // Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people, | ||||
|     // who prefer not to report error message through these arguments moving forward | ||||
|     // (they prefer return value, or errors on api calls internal to the capture) | ||||
| @ -183,13 +181,11 @@ void CUDAGraph::instantiate() { | ||||
| #endif | ||||
| //Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory. | ||||
| //It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch. | ||||
| #if !defined(USE_ROCM) || ROCM_VERSION >= 60200 | ||||
|   } else { | ||||
|     AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_, | ||||
|                                                 graph_, | ||||
|                                                 cudaGraphInstantiateFlagAutoFreeOnLaunch)); | ||||
|   } | ||||
| #endif | ||||
|   has_graph_exec_ = true; | ||||
| } | ||||
|  | ||||
| @ -311,7 +307,7 @@ CUDAGraph::~CUDAGraph() { | ||||
| // There are recent HIP changes where hipGraphExecDestroy doesn't immediately free memory. | ||||
| // They wait for next sync point in order to free the memory, this is to ensure that all | ||||
| // hipGraphLaunch are finished before we release any memory. This feature was enabled in rocm6.2. | ||||
| // We need to ensure all async opreations finish before deleting the object. | ||||
| // We need to ensure all async operations finish before deleting the object. | ||||
| #if (defined(USE_ROCM) && ROCM_VERSION >= 60200) | ||||
|   if (capture_dev_ != UNDEFINED_DEVICE) // check if capture_dev_ contains the real device id | ||||
|   { | ||||
|  | ||||
							
								
								
									
										192
									
								
								aten/src/ATen/cuda/CUDAGreenContext.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										192
									
								
								aten/src/ATen/cuda/CUDAGreenContext.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,192 @@ | ||||
| #include <ATen/cuda/CUDAGreenContext.h> | ||||
|  | ||||
| namespace at::cuda { | ||||
|   GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) { | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     int driver_version; | ||||
|     C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version)); | ||||
|     TORCH_CHECK( | ||||
|         driver_version >= 12080, "cuda driver too old to use green context!"); | ||||
|     CUcontext pctx = nullptr; | ||||
|     C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx)); | ||||
|     if (C10_UNLIKELY(!pctx)) { | ||||
|       TORCH_WARN( | ||||
|           "Attempted to create a green context but" | ||||
|           " there was no primary context! Creating a primary context..."); | ||||
|  | ||||
|       cudaFree(0); | ||||
|     } | ||||
|  | ||||
|     CUdevice device; | ||||
|     device_id_ = device_id; | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id)); | ||||
|  | ||||
|     // Get device resources | ||||
|     CUdevResource device_resource; | ||||
|     C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_( | ||||
|         device, &device_resource, CU_DEV_RESOURCE_TYPE_SM)); | ||||
|  | ||||
|     // Split resources | ||||
|     std::vector<CUdevResource> result(1); | ||||
|     auto result_data = result.data(); | ||||
|     unsigned int nb_groups = 1; | ||||
|     CUdevResource remaining; | ||||
|  | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_( | ||||
|             result_data, | ||||
|             &nb_groups, | ||||
|             &device_resource, | ||||
|             &remaining, | ||||
|             0, // default flags | ||||
|             num_sms)); | ||||
|  | ||||
|     TORCH_CHECK(nb_groups == 1, "Failed to create single resource group"); | ||||
|  | ||||
|     // Generate resource descriptor | ||||
|     CUdevResourceDesc desc; | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_( | ||||
|             &desc, result_data, 1)); | ||||
|  | ||||
|     // Create green context | ||||
|     // CU_GREEN_CTX_DEFAULT_STREAM is required per docs: | ||||
|     // https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html | ||||
|     C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_( | ||||
|         &green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM)); | ||||
|  | ||||
|     // Convert to regular context | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_)); | ||||
|     TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!"); | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   std::unique_ptr<GreenContext> GreenContext::create( | ||||
|       uint32_t num_sms, | ||||
|       std::optional<uint32_t> device_id) { | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     if (!device_id.has_value()) { | ||||
|       device_id = at::cuda::current_device(); | ||||
|     } | ||||
|     return std::make_unique<GreenContext>(device_id.value(), num_sms); | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   // Implement move operations | ||||
|   GreenContext::GreenContext(GreenContext&& other) noexcept{ | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     device_id_ = std::exchange(other.device_id_, -1); | ||||
|     green_ctx_ = std::exchange(other.green_ctx_, nullptr); | ||||
|     context_ = std::exchange(other.context_, nullptr); | ||||
|     parent_stream_ = std::exchange(other.parent_stream_, nullptr); | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{ | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     if (this != &other) { | ||||
|       // Clean up current resources | ||||
|       if (green_ctx_) { | ||||
|         CUcontext current = nullptr; | ||||
|         C10_CUDA_DRIVER_CHECK( | ||||
|             c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t)); | ||||
|         if (current == context_) { | ||||
|           TORCH_CHECK( | ||||
|               false, | ||||
|               "attempting to overwrite current green ctx " | ||||
|               "when it is active!"); | ||||
|         } | ||||
|         C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_)); | ||||
|       } | ||||
|  | ||||
|       // Take ownership of other's resources | ||||
|       device_id_ = std::exchange(other.device_id_, -1); | ||||
|       green_ctx_ = std::exchange(other.green_ctx_, nullptr); | ||||
|       context_ = std::exchange(other.context_, nullptr); | ||||
|       parent_stream_ = std::exchange(other.parent_stream_, nullptr); | ||||
|     } | ||||
|     return *this; | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   GreenContext::~GreenContext() noexcept{ | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_)); | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   // Get the underlying CUDA context | ||||
|   CUcontext GreenContext::getContext() const { | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     return context_; | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   // Get the underlying green context | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|   CUgreenCtx GreenContext::getGreenContext() const { | ||||
|     return green_ctx_; | ||||
|   } | ||||
| #endif | ||||
|  | ||||
|   // Make this context current | ||||
|   void GreenContext::setContext() { | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     auto current_stream = c10::cuda::getCurrentCUDAStream(); | ||||
|     parent_stream_ = current_stream.stream(); | ||||
|  | ||||
|     at::cuda::CUDAEvent ev; | ||||
|     ev.record(current_stream); | ||||
|  | ||||
|     CUcontext current = nullptr; | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t)); | ||||
|     if (!current) { | ||||
|       C10_CUDA_DRIVER_CHECK( | ||||
|           c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_)); | ||||
|     } else { | ||||
|       C10_CUDA_DRIVER_CHECK( | ||||
|           c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_)); | ||||
|     } | ||||
|     // currently hardcodes the new green context to use the default stream | ||||
|     // TODO(eqy): consider creating a new stream if e.g., it allows interop | ||||
|     // with CUDA Graph captures etc. | ||||
|     auto default_stream = c10::cuda::getDefaultCUDAStream(); | ||||
|     ev.block(default_stream); | ||||
|     c10::cuda::setCurrentCUDAStream(default_stream); | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   void GreenContext::popContext() { | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|     // see above note about stream being hardcoded to the default stream | ||||
|     at::cuda::CUDAEvent ev; | ||||
|     ev.record(c10::cuda::getCurrentCUDAStream()); | ||||
|     CUcontext popped; | ||||
|     C10_CUDA_DRIVER_CHECK( | ||||
|         c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped)); | ||||
|     TORCH_INTERNAL_ASSERT( | ||||
|         popped == context_, "expected popped context to be the current ctx"); | ||||
|     ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_)); | ||||
| #else | ||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); | ||||
| #endif | ||||
|   } | ||||
| } // namespace at::cuda | ||||
							
								
								
									
										53
									
								
								aten/src/ATen/cuda/CUDAGreenContext.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								aten/src/ATen/cuda/CUDAGreenContext.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,53 @@ | ||||
| #pragma once | ||||
| #include <ATen/cuda/CUDAEvent.h> | ||||
|  | ||||
| #if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED) | ||||
| #include <c10/cuda/driver_api.h> | ||||
| #include <cuda.h> | ||||
| #include <memory> | ||||
| #include <stdexcept> | ||||
| #include <vector> | ||||
| #define CUDA_HAS_GREEN_CONTEXT 1 | ||||
| #else | ||||
| #define CUDA_HAS_GREEN_CONTEXT 0 | ||||
| #endif | ||||
|  | ||||
| namespace at::cuda { | ||||
|  | ||||
| class TORCH_CUDA_CPP_API GreenContext { | ||||
|  public: | ||||
|   GreenContext(uint32_t device_id, uint32_t num_sms); | ||||
|  | ||||
|   static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id); | ||||
|  | ||||
|   // Delete copy constructor and assignment | ||||
|   GreenContext(const GreenContext&) = delete; | ||||
|   GreenContext& operator=(const GreenContext&) = delete; | ||||
|  | ||||
|   // Implement move operations | ||||
|   GreenContext(GreenContext&& other) noexcept; | ||||
|   GreenContext& operator=(GreenContext&& other) noexcept; | ||||
|   ~GreenContext() noexcept; | ||||
|  | ||||
|   // Get the underlying CUDA context | ||||
|   CUcontext getContext() const; | ||||
|  | ||||
|   // Get the underlying green context | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|   CUgreenCtx getGreenContext() const; | ||||
| #endif | ||||
|  | ||||
|   // Make this context current | ||||
|   void setContext(); | ||||
|  | ||||
|   void popContext(); | ||||
|  | ||||
|  private: | ||||
| #if CUDA_HAS_GREEN_CONTEXT | ||||
|   int32_t device_id_ = -1; | ||||
|   CUgreenCtx green_ctx_ = nullptr; | ||||
|   CUcontext context_ = nullptr; | ||||
|   cudaStream_t parent_stream_ = nullptr; | ||||
| #endif | ||||
| }; | ||||
| } // namespace at::cuda | ||||
							
								
								
									
										270
									
								
								aten/src/ATen/cuda/CUDAScaledBlas.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										270
									
								
								aten/src/ATen/cuda/CUDAScaledBlas.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,270 @@ | ||||
| #include <cstdint> | ||||
| #include <c10/util/typeid.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <c10/util/SmallVector.h> | ||||
| #include <c10/core/Scalar.h> | ||||
| #include <c10/core/ScalarType.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS | ||||
| #include <ATen/core/Tensor.h> | ||||
| #include <ATen/core/NamedTensor.h> | ||||
| #include <ATen/Dispatch.h> | ||||
| #include <ATen/ExpandUtils.h> | ||||
| #include <ATen/OpMathType.h> | ||||
| #include <ATen/TensorUtils.h> | ||||
| #include <ATen/cuda/CUDABlas.h> | ||||
| #include <ATen/cuda/tunable/Tunable.h> | ||||
| #include <ATen/cuda/tunable/TunableGemm.h> | ||||
| #include <ATen/native/Resize.h> | ||||
| #include <c10/util/MaybeOwned.h> | ||||
| #include <ATen/native/GroupedMMUtils.h> | ||||
| #include <ATen/native/cuda/RowwiseScaledMM.h> | ||||
| #include <ATen/native/cuda/ScaledGroupMM.h> | ||||
| #include <ATen/native/cuda/GroupMM.h> | ||||
| #include <ATen/ceil_div.h> | ||||
|  | ||||
| #ifdef USE_FBGEMM_GENAI | ||||
| #include <fbgemm_gpu/torch_ops.h> | ||||
| #endif | ||||
|  | ||||
| #ifndef AT_PER_OPERATOR_HEADERS | ||||
| #include <ATen/Functions.h> | ||||
| #include <ATen/NativeFunctions.h> | ||||
| #else | ||||
| #include <ATen/ops/_addmm_activation_native.h> | ||||
| #include <ATen/ops/_efficientzerotensor.h> | ||||
| #include <ATen/ops/_scaled_mm_native.h> | ||||
| #include <ATen/ops/_unsafe_view_native.h> | ||||
| #include <ATen/ops/abs.h> | ||||
| #include <ATen/ops/addmm_native.h> | ||||
| #include <ATen/ops/addmv_native.h> | ||||
| #include <ATen/ops/baddbmm_native.h> | ||||
| #include <ATen/ops/bmm_native.h> | ||||
| #include <ATen/ops/copy_native.h> | ||||
| #include <ATen/ops/dot_native.h> | ||||
| #include <ATen/ops/empty.h> | ||||
| #include <ATen/ops/empty_strided.h> | ||||
| #include <ATen/ops/gelu.h> | ||||
| #include <ATen/ops/max.h> | ||||
| #include <ATen/ops/mm_native.h> | ||||
| #include <ATen/ops/mul.h> | ||||
| #include <ATen/ops/relu.h> | ||||
| #include <ATen/ops/ones.h> | ||||
| #include <ATen/ops/scalar_tensor_native.h> | ||||
| #include <ATen/ops/vdot_native.h> | ||||
| #endif | ||||
|  | ||||
| using at::blas::ScalingType; | ||||
| using at::blas::SwizzleType; | ||||
|  | ||||
| namespace at::cuda::scaled { | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8, | ||||
|  * Each needs a single scale, {Tensorwise (float)} | ||||
|  */ | ||||
| bool check_tensorwise_recipe(c10::ScalarType type_a, | ||||
|                              std::vector<ScalingType>& recipe_a, | ||||
|                              ArrayRef<Tensor>& scales_a, | ||||
|                              c10::ScalarType type_b, | ||||
|                              std::vector<ScalingType>& recipe_b, | ||||
|                              ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scale each, {Tensorwise, float} | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|   // Need {Blockwise_1x32, e8m0} for A & B | ||||
|   if (recipe_a[0] != ScalingType::TensorWise) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != ScalingType::TensorWise) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8, | ||||
|  * Each needs scales, {Rowwise (float)} | ||||
|  */ | ||||
| bool check_rowwise_recipe(c10::ScalarType type_a, | ||||
|                              std::vector<ScalingType>& recipe_a, | ||||
|                              ArrayRef<Tensor>& scales_a, | ||||
|                              c10::ScalarType type_b, | ||||
|                              std::vector<ScalingType>& recipe_b, | ||||
|                              ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scale each, {Tensorwise, float} | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {RowWise, dp32} for A & B | ||||
|   if (recipe_a[0] != ScalingType::RowWise) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != ScalingType::RowWise) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * Two-level scaling, canonical NVFP4 | ||||
|  * Both inputs must be fp4 | ||||
|  * A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)} | ||||
|  */ | ||||
| bool check_nvfp4_recipe(c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp4 | ||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 2 scales, 2 recipes for each input | ||||
|   if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]} | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Single-level scaling, what PyT currently understands | ||||
|  * Both inputs must be fp4 | ||||
|  * A, B need 1 scale, {Blockwise_1x16 (e4m3)} | ||||
|  */ | ||||
| bool check_nvfp4_recipe_single_scale | ||||
|                        (c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp4 | ||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 2 scales, 2 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]} | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x16) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x16) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8 | ||||
|  * A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float) | ||||
|  */ | ||||
| bool check_deepseek_recipe(ScalingType expected_recipe_a, | ||||
|                            ScalingType expected_recipe_b, | ||||
|                            c10::ScalarType type_a, | ||||
|                            std::vector<ScalingType>& recipe_a, | ||||
|                            ArrayRef<Tensor>& scales_a, | ||||
|                            c10::ScalarType type_b, | ||||
|                            std::vector<ScalingType>& recipe_b, | ||||
|                            ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scales, 1 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B | ||||
|   if (recipe_a[0] != expected_recipe_a) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != expected_recipe_b) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8 | ||||
|  * A, B must have 1 scale each, {Blockwise_1x32, e8m0} | ||||
|  */ | ||||
| bool check_mxfp8_recipe(c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scales, 1 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x32, e8m0} for A & B | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp4 | ||||
|  * A, B must have 1 scale each, {Blockwise_1x32, e8m0} | ||||
|  */ | ||||
| bool check_mxfp4_recipe(c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp4 | ||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scales, 1 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x32, e8m0} for A & B | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| } // namespace at::native::cuda::blas::scaled | ||||
							
								
								
									
										174
									
								
								aten/src/ATen/cuda/CUDAScaledBlas.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										174
									
								
								aten/src/ATen/cuda/CUDAScaledBlas.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,174 @@ | ||||
| #include <cstdint> | ||||
| #include <c10/util/typeid.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <c10/util/SmallVector.h> | ||||
| #include <c10/core/Scalar.h> | ||||
| #include <c10/core/ScalarType.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS | ||||
| #include <ATen/core/Tensor.h> | ||||
| #include <ATen/core/NamedTensor.h> | ||||
| #include <ATen/Dispatch.h> | ||||
| #include <ATen/ExpandUtils.h> | ||||
| #include <ATen/OpMathType.h> | ||||
| #include <ATen/TensorUtils.h> | ||||
| #include <ATen/cuda/CUDABlas.h> | ||||
| #include <ATen/cuda/tunable/Tunable.h> | ||||
| #include <ATen/cuda/tunable/TunableGemm.h> | ||||
| #include <ATen/native/Resize.h> | ||||
| #include <c10/util/MaybeOwned.h> | ||||
| #include <ATen/native/GroupedMMUtils.h> | ||||
| #include <ATen/native/cuda/RowwiseScaledMM.h> | ||||
| #include <ATen/native/cuda/ScaledGroupMM.h> | ||||
| #include <ATen/native/cuda/GroupMM.h> | ||||
| #include <ATen/ceil_div.h> | ||||
|  | ||||
| #ifdef USE_FBGEMM_GENAI | ||||
| #include <fbgemm_gpu/torch_ops.h> | ||||
| #endif | ||||
|  | ||||
| #ifndef AT_PER_OPERATOR_HEADERS | ||||
| #include <ATen/Functions.h> | ||||
| #include <ATen/NativeFunctions.h> | ||||
| #else | ||||
| #include <ATen/ops/_addmm_activation_native.h> | ||||
| #include <ATen/ops/_efficientzerotensor.h> | ||||
| #include <ATen/ops/_scaled_mm_native.h> | ||||
| #include <ATen/ops/_unsafe_view_native.h> | ||||
| #include <ATen/ops/abs.h> | ||||
| #include <ATen/ops/addmm_native.h> | ||||
| #include <ATen/ops/addmv_native.h> | ||||
| #include <ATen/ops/baddbmm_native.h> | ||||
| #include <ATen/ops/bmm_native.h> | ||||
| #include <ATen/ops/copy_native.h> | ||||
| #include <ATen/ops/dot_native.h> | ||||
| #include <ATen/ops/empty.h> | ||||
| #include <ATen/ops/empty_strided.h> | ||||
| #include <ATen/ops/gelu.h> | ||||
| #include <ATen/ops/max.h> | ||||
| #include <ATen/ops/mm_native.h> | ||||
| #include <ATen/ops/mul.h> | ||||
| #include <ATen/ops/relu.h> | ||||
| #include <ATen/ops/ones.h> | ||||
| #include <ATen/ops/scalar_tensor_native.h> | ||||
| #include <ATen/ops/vdot_native.h> | ||||
| #endif | ||||
|  | ||||
| using at::blas::ScalingType; | ||||
| using at::blas::SwizzleType; | ||||
|  | ||||
| namespace at::cuda::scaled { | ||||
|  | ||||
| static bool _scaled_mm_allowed_device(bool sm90_only=false, bool sm100_only=false) { | ||||
| #ifdef USE_ROCM | ||||
|     static const std::vector<std::string> archs = { | ||||
|         "gfx942", | ||||
| #if ROCM_VERSION >= 60300 | ||||
|         "gfx1200", "gfx1201", | ||||
| #endif | ||||
| #if ROCM_VERSION >= 60500 | ||||
|         "gfx950" | ||||
| #endif | ||||
|     }; | ||||
|     return at::detail::getCUDAHooks().isGPUArch(archs); | ||||
| #else | ||||
|     auto dprops = at::cuda::getCurrentDeviceProperties(); | ||||
|  | ||||
|     if (sm90_only || sm100_only) { | ||||
|       return (sm90_only && dprops->major == 9) || (sm100_only && dprops->major == 10); | ||||
|     } else { | ||||
|       return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9); | ||||
|     } | ||||
| #endif | ||||
| } | ||||
|  | ||||
| #ifdef USE_ROCM | ||||
| static bool _scaled_mm_is_fnuz() { | ||||
|     return at::detail::getCUDAHooks().isGPUArch({"gfx942"}); | ||||
| } | ||||
| #endif | ||||
| /** | ||||
|  * Track concrete implementations available | ||||
|  */ | ||||
| enum class ScaledGemmImplementation { | ||||
|   NONE = 0, | ||||
|   TENSORWISE_TENSORWISE = 1, | ||||
|   ROWWISE_ROWWISE = 2, | ||||
|   BLOCK_128x128_1x128 = 3, | ||||
|   BLOCK_1x128_128x128 = 4, | ||||
|   BLOCK_1x128_1x128 = 5, | ||||
|   MXFP8_MXFP8 = 6, | ||||
|   NVFP4_NVFP4 = 7, | ||||
|   NVFP4_NVFP4_SINGLE_SCALE = 8, | ||||
|   MXFP4_MXFP4 = 9, | ||||
| }; | ||||
|  | ||||
| /** | ||||
|  * Convert passed int (enum) from python back into a | ||||
|  * strictly-typed enum | ||||
|  */ | ||||
| template <class EnumType, class ArrayType> | ||||
| std::vector<EnumType> convert_int_to_enum(ArrayType& v) { | ||||
|   std::vector<EnumType> converted; | ||||
|   converted.reserve(v.size()); | ||||
|  | ||||
|   for (auto vi : v) { | ||||
|     converted.push_back(static_cast<EnumType>(vi)); | ||||
|   } | ||||
|   return converted; | ||||
| } | ||||
|  | ||||
| bool check_tensorwise_recipe(c10::ScalarType, | ||||
|                              std::vector<ScalingType>&, | ||||
|                              ArrayRef<Tensor>&, | ||||
|                              c10::ScalarType, | ||||
|                              std::vector<ScalingType>&, | ||||
|                              ArrayRef<Tensor>&); | ||||
|  | ||||
|  | ||||
| bool check_rowwise_recipe(c10::ScalarType, | ||||
|                              std::vector<ScalingType>&, | ||||
|                              ArrayRef<Tensor>&, | ||||
|                              c10::ScalarType, | ||||
|                              std::vector<ScalingType>&, | ||||
|                              ArrayRef<Tensor>&); | ||||
|  | ||||
| bool check_nvfp4_recipe(c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&, | ||||
|                         c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&); | ||||
|  | ||||
| bool check_nvfp4_recipe_single_scale | ||||
|                        (c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&, | ||||
|                         c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&); | ||||
|  | ||||
| bool check_deepseek_recipe(ScalingType, | ||||
|                            ScalingType, | ||||
|                            c10::ScalarType, | ||||
|                            std::vector<ScalingType>&, | ||||
|                            ArrayRef<Tensor>&, | ||||
|                            c10::ScalarType, | ||||
|                            std::vector<ScalingType>&, | ||||
|                            ArrayRef<Tensor>&); | ||||
|  | ||||
| bool check_mxfp8_recipe(c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&, | ||||
|                         c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&); | ||||
|  | ||||
| bool check_mxfp4_recipe(c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&, | ||||
|                         c10::ScalarType, | ||||
|                         std::vector<ScalingType>&, | ||||
|                         ArrayRef<Tensor>&); | ||||
|  | ||||
| } // namespace at::native::cuda::blas::scaled | ||||
| @ -137,7 +137,7 @@ struct CUDACachingHostAllocatorImpl | ||||
|   void free_block_slowpath(Block* block) { | ||||
|     auto start = std::chrono::steady_clock::now(); | ||||
|     // Users may change the allocator config at will. torch unit tests do this. | ||||
|     // However, allocations using cudaHostRegister should use corresonding | ||||
|     // However, allocations using cudaHostRegister should use corresponding | ||||
|     // cudaHostUnregister and similarly for cudaHostAlloc / cudaFreeHost. | ||||
|     void* ptr = block->ptr_; | ||||
|     bool use_register = false; | ||||
|  | ||||
| @ -70,11 +70,7 @@ | ||||
| #define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max() | ||||
| #endif | ||||
|  | ||||
| #if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM) | ||||
|  | ||||
| #if !defined(USE_ROCM) | ||||
| namespace at_cuda_detail { | ||||
| #endif | ||||
| #if defined(USE_ROCM) | ||||
|  | ||||
| // backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16 | ||||
|  | ||||
| @ -96,10 +92,6 @@ template <> | ||||
| struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>: | ||||
|        ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {}; | ||||
|  | ||||
| #if !defined(USE_ROCM) | ||||
| } // namespace at_cuda_detail | ||||
| #endif | ||||
|  | ||||
| #endif | ||||
|  | ||||
| #if !defined(USE_ROCM) | ||||
| @ -121,7 +113,7 @@ struct cuda_type<c10::Half> { | ||||
|   using type = __half; | ||||
| }; | ||||
|  | ||||
| #if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16() | ||||
| #if !defined(USE_ROCM) | ||||
|  | ||||
| template<> | ||||
| struct cuda_type<c10::BFloat16> { | ||||
| @ -203,36 +195,6 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera | ||||
|   *out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b)); | ||||
| } | ||||
|  | ||||
| #if !CUB_SUPPORTS_FUTURE_VALUE() | ||||
| template<typename ValueT, typename InputIteratorT> | ||||
| struct chained_iterator { | ||||
|   using iterator_category = std::random_access_iterator_tag; | ||||
|   using difference_type   = std::ptrdiff_t; | ||||
|   using value_type        = ValueT; | ||||
|   using pointer           = ValueT*; | ||||
|   using reference         = ValueT&; | ||||
|  | ||||
|   InputIteratorT iter; | ||||
|   ValueT *first; | ||||
|   difference_type offset = 0; | ||||
|  | ||||
|   __device__ ValueT operator[](difference_type i) { | ||||
|     i +=  offset; | ||||
|     if (i == 0) { | ||||
|       return *first; | ||||
|     } else { | ||||
|       return ValueT(iter[i - 1]); | ||||
|     } | ||||
|   } | ||||
|   __device__ chained_iterator operator+(difference_type i) { | ||||
|     return chained_iterator{iter, first, i}; | ||||
|   } | ||||
|   __device__ ValueT operator*() { | ||||
|     return (*this)[0]; | ||||
|   } | ||||
| }; | ||||
| #endif | ||||
|  | ||||
| // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, | ||||
| // so split at int_max/2 | ||||
| constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30 | ||||
| @ -277,25 +239,6 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | ||||
|         first_elem_ptr, | ||||
|         scan_op); | ||||
|     C10_CUDA_KERNEL_LAUNCH_CHECK(); | ||||
| #if !CUB_SUPPORTS_FUTURE_VALUE() | ||||
|     using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>; | ||||
|     using tuple = typename ArgIndexInputIterator::value_type; | ||||
|     auto input_iter_transform = [=] __device__ (const tuple &x)->input_t  { | ||||
|       if (x.key == 0) { | ||||
|         return *first_elem_ptr; | ||||
|       } else { | ||||
|         return x.value; | ||||
|       } | ||||
|     }; | ||||
|     auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)( | ||||
|       ArgIndexInputIterator(input + i), input_iter_transform); | ||||
|     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, | ||||
|         input_, | ||||
|         output + i, | ||||
|         scan_op, | ||||
|         size_cub, | ||||
|         at::cuda::getCurrentCUDAStream()); | ||||
| #else | ||||
|     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, | ||||
|         input + i + 1, | ||||
|         output + i, | ||||
| @ -303,7 +246,6 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | ||||
|         ::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr), | ||||
|         size_cub, | ||||
|         at::cuda::getCurrentCUDAStream()); | ||||
| #endif | ||||
|   } | ||||
| #endif | ||||
| } | ||||
| @ -555,16 +497,6 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | ||||
|         first_elem_ptr, | ||||
|         scan_op); | ||||
|     C10_CUDA_KERNEL_LAUNCH_CHECK(); | ||||
| #if !CUB_SUPPORTS_FUTURE_VALUE() | ||||
|     auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{ | ||||
|       input + i, first_elem_ptr}; | ||||
|     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, | ||||
|         input_, | ||||
|         output + i, | ||||
|         scan_op, | ||||
|         size_cub, | ||||
|         at::cuda::getCurrentCUDAStream()); | ||||
| #else | ||||
|     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, | ||||
|         input + i, | ||||
|         output + i, | ||||
| @ -572,7 +504,6 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | ||||
|         ::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr), | ||||
|         size_cub, | ||||
|         at::cuda::getCurrentCUDAStream()); | ||||
| #endif | ||||
|   } | ||||
| #endif | ||||
| } | ||||
|  | ||||
| @ -4,7 +4,7 @@ | ||||
| #include <ATen/cuda/CUDAConfig.h> | ||||
|  | ||||
| // NOTE: These templates are intentionally not defined in this header, | ||||
| // which aviods re-compiling them for each translation unit. If you get | ||||
| // which avoids re-compiling them for each translation unit. If you get | ||||
| // a link error, you need to add an explicit instantiation for your | ||||
| // types in cub.cu | ||||
|  | ||||
|  | ||||
| @ -10,14 +10,6 @@ | ||||
| #define CUB_VERSION 200001 | ||||
| #endif | ||||
|  | ||||
| // cub sort support for __nv_bfloat16 is added to cub 1.13 in: | ||||
| // https://github.com/NVIDIA/cub/pull/306 | ||||
| #if CUB_VERSION >= 101300 | ||||
| #define CUB_SUPPORTS_NV_BFLOAT16() true | ||||
| #else | ||||
| #define CUB_SUPPORTS_NV_BFLOAT16() false | ||||
| #endif | ||||
|  | ||||
| // cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in: | ||||
| // https://github.com/NVIDIA/cub/pull/326 | ||||
| // CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake | ||||
| @ -28,14 +20,6 @@ | ||||
| #define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false | ||||
| #endif | ||||
|  | ||||
| // cub support for cub::FutureValue is added to cub 1.15 in: | ||||
| // https://github.com/NVIDIA/cub/pull/305 | ||||
| #if CUB_VERSION >= 101500 | ||||
| #define CUB_SUPPORTS_FUTURE_VALUE() true | ||||
| #else | ||||
| #define CUB_SUPPORTS_FUTURE_VALUE() false | ||||
| #endif | ||||
|  | ||||
| // There were many bc-breaking changes in major version release of CCCL v3.0.0 | ||||
| // Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html | ||||
| #if CUB_VERSION >= 200800 | ||||
|  | ||||
| @ -38,7 +38,7 @@ GemmTunableOp_float_NT,nt_25088_4096_64,1219,1.262 | ||||
| GemmTunableOp_float_NT,nt_4096_4096_64,1216,0.033 | ||||
| ``` | ||||
|  | ||||
| Note the "Validator" lines. If you change a library verison, or ROCm version, or PyTorch version, TunableOp will detect | ||||
| Note the "Validator" lines. If you change a library version, or ROCm version, or PyTorch version, TunableOp will detect | ||||
| this and reject the tunings file because the prior tunings are likely affected by other software changes. | ||||
|  | ||||
| The remaining lines are the tuned solutions for each TunableOp encountered during your execution. Each line consists of | ||||
|  | ||||
| @ -235,7 +235,7 @@ class TunableOp { | ||||
|       // numeric check option is controlled by non-static env var, so check it once per tuned operator | ||||
|       bool do_numerics_check = ctx->IsNumericsCheckEnabled(); | ||||
|  | ||||
|       // calcaulte a reference answer for numerical check | ||||
|       // calculate a reference answer for numerical check | ||||
|       if (do_numerics_check) { | ||||
|         reference_params = params->DeepCopy(false); | ||||
|         TORCH_CHECK(ops_[ResultEntry::Default()]->Call(reference_params) == OK); | ||||
|  | ||||
| @ -12,7 +12,7 @@ namespace at { | ||||
|  | ||||
| // AcceleratorHooksInterface is a shared interface provided by all | ||||
| // accelerators to allow generic code. | ||||
| // This inferface is hook-based as it corresponds to all the functions | ||||
| // This interface is hook-based as it corresponds to all the functions | ||||
| // that are going to be called in a generic way from the CPU code. | ||||
|  | ||||
| struct TORCH_API AcceleratorHooksInterface { | ||||
|  | ||||
| @ -38,7 +38,7 @@ struct TORCH_API PrivateUse1HooksInterface : AcceleratorHooksInterface { | ||||
|  | ||||
|   Generator getNewGenerator( | ||||
|       [[maybe_unused]] DeviceIndex device_index = -1) const override { | ||||
|     // TODO(FFFrog): Perserved for BC and will be removed in the future. | ||||
|     // TODO(FFFrog): Preserved for BC and will be removed in the future. | ||||
|     if (at::GetGeneratorPrivate().has_value()) | ||||
|       return at::GetGeneratorForPrivateuse1(device_index); | ||||
|  | ||||
|  | ||||
							
								
								
									
										23
									
								
								aten/src/ATen/detail/XLAHooksInterface.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								aten/src/ATen/detail/XLAHooksInterface.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,23 @@ | ||||
| #include <ATen/detail/XLAHooksInterface.h> | ||||
|  | ||||
| namespace at { | ||||
| namespace detail { | ||||
|  | ||||
| const XLAHooksInterface& getXLAHooks() { | ||||
|   auto create_impl = [] { | ||||
|     // Create XLA hooks using the registry | ||||
|     auto hooks = XLAHooksRegistry()->Create("torch_xla::detail::XLAHooks", XLAHooksArgs{}); | ||||
|     if (hooks) { | ||||
|       return hooks; | ||||
|     } | ||||
|     // If hooks creation fails, fall back to default implementation | ||||
|     return std::make_unique<XLAHooksInterface>(); | ||||
|   }; | ||||
|   static auto hooks = create_impl(); | ||||
|   return *hooks; | ||||
| } | ||||
| } // namespace detail | ||||
|  | ||||
| C10_DEFINE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs) | ||||
|  | ||||
| } // namespace at | ||||
							
								
								
									
										79
									
								
								aten/src/ATen/detail/XLAHooksInterface.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								aten/src/ATen/detail/XLAHooksInterface.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,79 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include <c10/core/Device.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <c10/util/Registry.h> | ||||
|  | ||||
| #include <ATen/detail/AcceleratorHooksInterface.h> | ||||
|  | ||||
| C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-parameter") | ||||
|  | ||||
| namespace at { | ||||
|  | ||||
| constexpr const char* XLA_HELP = | ||||
|   "This error has occurred because you are trying " | ||||
|   "to use some XLA functionality, but the XLA library has not been " | ||||
|   "loaded by the dynamic linker. You must load xla libraries by `import torch_xla`"; | ||||
|  | ||||
| struct TORCH_API XLAHooksInterface : AcceleratorHooksInterface { | ||||
|   ~XLAHooksInterface() override = default; | ||||
|  | ||||
|   void init() const override { | ||||
|     TORCH_CHECK(false, "Cannot initialize XLA without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   virtual bool hasXLA() const { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   virtual std::string showConfig() const { | ||||
|     TORCH_CHECK( | ||||
|         false, | ||||
|         "Cannot query detailed XLA version without torch_xla library. ", | ||||
|         XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   const Generator& getDefaultGenerator( | ||||
|       [[maybe_unused]] DeviceIndex device_index = -1) const override { | ||||
|     TORCH_CHECK( | ||||
|         false, "Cannot get default XLA generator without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   Generator getNewGenerator( | ||||
|       [[maybe_unused]] DeviceIndex device_index = -1) const override { | ||||
|     TORCH_CHECK(false, "Cannot get XLA generator without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   virtual DeviceIndex getCurrentDevice() const override { | ||||
|     TORCH_CHECK(false, "Cannot get current XLA device without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   Device getDeviceFromPtr(void* /*data*/) const override { | ||||
|     TORCH_CHECK(false, "Cannot get device of pointer on XLA without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   Allocator* getPinnedMemoryAllocator() const override { | ||||
|     TORCH_CHECK(false, "Cannot get XLA pinned memory allocator without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
|   bool isPinnedPtr(const void* data) const override { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   bool hasPrimaryContext(DeviceIndex device_index) const override { | ||||
|     TORCH_CHECK(false, "Cannot query primary context without torch_xla library. ", XLA_HELP); | ||||
|   } | ||||
|  | ||||
| }; | ||||
|  | ||||
| struct TORCH_API XLAHooksArgs {}; | ||||
|  | ||||
| TORCH_DECLARE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs); | ||||
| #define REGISTER_XLA_HOOKS(clsname) \ | ||||
|   C10_REGISTER_CLASS(XLAHooksRegistry, clsname, clsname) | ||||
|  | ||||
| namespace detail { | ||||
| TORCH_API const XLAHooksInterface& getXLAHooks(); | ||||
| } // namespace detail | ||||
| } // namespace at | ||||
| C10_DIAGNOSTIC_POP() | ||||
| @ -283,7 +283,7 @@ inline void boxed_existing_bdim_all_batch_rule( | ||||
| // Use when all tensors arguments accept one (normal) batch dim. | ||||
| // This batching rule expands the batch dim on all Tensors, reshapes it into | ||||
| // dim 0, calls the op, and then reshapes the batch dim out of dim 0. | ||||
| // This is not the most efficient thing; if there are alternatives, plese try | ||||
| // This is not the most efficient thing; if there are alternatives, please try | ||||
| // to use them. Use this only as a last resort. | ||||
| #define EXISTING_BDIM_ALL_BOXED(op) \ | ||||
|   m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_existing_bdim_all_batch_rule>()); | ||||
|  | ||||
| @ -384,7 +384,7 @@ fourOutputs solve_ex_batch_rule( | ||||
|  | ||||
|   // NOTE [ solve_ex Batch Rule Contiguity ] | ||||
|   // A determines whether or not linalg_solve takes an optimized path. We need the check on A_ to match the one run on | ||||
|   // A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behvaior | ||||
|   // A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behavior | ||||
|   // differs based on whether or not the optimized path was taken | ||||
|   const auto batched_A_was_contiguous = A_bdim.has_value() ? at::select(A, *A_bdim, 0).is_contiguous() : A.is_contiguous(); | ||||
|   if (batched_A_was_contiguous && !A.is_complex()) { | ||||
|  | ||||
| @ -282,7 +282,7 @@ static std::tuple<Tensor, std::optional<int64_t>> _softmax_backward_batch_rule( | ||||
|  | ||||
|   dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim); | ||||
|  | ||||
|   // Not sure why output_ needs to be marked as .contiguous(). Someting must | ||||
|   // Not sure why output_ needs to be marked as .contiguous(). Something must | ||||
|   // have changed in PyTorch (and output of softmax is probably always contiguous) | ||||
|   return std::make_tuple(at::_softmax_backward_data(grad_output_, output_.contiguous(), dim, input_dtype), 0); | ||||
| } | ||||
|  | ||||
| @ -224,7 +224,7 @@ static Tensor safeStack(TensorList tensors) { | ||||
|   // is possible for the backward function to return an undefined grad for some | ||||
|   // grad_input for each example. In that case, we return an undefined grad. | ||||
|   // | ||||
|   // It is theoretically posssible for *some* of the examples to produce an | ||||
|   // It is theoretically possible for *some* of the examples to produce an | ||||
|   // undefined grad (a kernel could peek at the gradient values and return an | ||||
|   // undefined tensor if it determines the gradient is full of zeros). We | ||||
|   // could handle this by treating the undefined grad as a zero-filled tensor | ||||
|  | ||||
| @ -113,7 +113,7 @@ SymIntArrayRef BatchedTensorImpl::sym_sizes_custom() const { | ||||
|   return sym_sizes_default(); | ||||
| } | ||||
|  | ||||
| // The following are publically exposed as methods of Tensor | ||||
| // The following are publicly exposed as methods of Tensor | ||||
|  | ||||
| IntArrayRef BatchedTensorImpl::strides_custom() const { | ||||
|   return strides_default(); | ||||
|  | ||||
| @ -37,7 +37,7 @@ namespace at::functorch  { | ||||
| // how to perform the transform. | ||||
| // | ||||
| // TODO: we can excise DynamicLayer in favor of Interpreter, | ||||
| // But I am going to leave it for now as a compatiblity shim to avoid | ||||
| // But I am going to leave it for now as a compatibility shim to avoid | ||||
| // needing to refactor a lot of callsites... | ||||
| struct TORCH_API DynamicLayer { | ||||
|   explicit DynamicLayer( | ||||
|  | ||||
| @ -88,7 +88,7 @@ std::ostream& operator<<(std::ostream& os, const TransformType& t); | ||||
| // >>> VmapInterpreterPtr(&interpreter).batchSize() | ||||
| // | ||||
| // Finally, Interpreter::process switches on the type of the interpreter | ||||
| // and calls one of {Transform}Intepreter::processImpl under the hood. | ||||
| // and calls one of {Transform}Interpreter::processImpl under the hood. | ||||
| // Same for Interpreter::sendToNextInterpreter :) | ||||
|  | ||||
| struct VmapInterpreterMeta { | ||||
|  | ||||
| @ -733,7 +733,7 @@ TORCH_LIBRARY_IMPL(_, FuncTorchBatched, m) { | ||||
| } | ||||
|  | ||||
| TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) { | ||||
|   // still legacy b/c teturns multiple tensors | ||||
|   // still legacy b/c returns multiple tensors | ||||
|   m.impl("split.Tensor", split_batching_rule); | ||||
|   m.impl("split_with_sizes", split_with_sizes_batching_rule); | ||||
|   m.impl("split_with_sizes_copy", split_with_sizes_copy_batching_rule); | ||||
|  | ||||
| @ -158,7 +158,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t | ||||
|       endKernelCoalescing(); | ||||
|       id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder]; | ||||
|  | ||||
|       // For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26 | ||||
|       // For some reason fillBufferfor stopped working for length > 4Gb on MacOS 26 | ||||
|       // See https://github.com/pytorch/pytorch/issues/163962 | ||||
|       // Workaround by batching copy commands into 4Gb chunks | ||||
|       constexpr size_t max_copy_size = 0x100000000; // 4GB | ||||
|  | ||||
| @ -148,7 +148,7 @@ inline void checkInputsSolver(const Tensor& A, | ||||
|  | ||||
| inline bool is_row_or_column_contiguous(const Tensor& t) { | ||||
|   // This could be made more general, similar to how it's checked in matmul, which would allow to | ||||
|   // ellide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky. | ||||
|   // elide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky. | ||||
|   // We choose to be conservative for simplicity | ||||
|   return t.is_contiguous() || t.transpose(-2, -1).is_contiguous(); | ||||
| } | ||||
|  | ||||
| @ -11,6 +11,8 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto | ||||
|               "pixel_shuffle expects a positive upscale_factor, but got ", | ||||
|               upscale_factor); | ||||
|   int64_t c = self.size(-3); | ||||
|   TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor, | ||||
|         "upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor); | ||||
|   int64_t upscale_factor_squared = upscale_factor * upscale_factor; | ||||
|   TORCH_CHECK(c % upscale_factor_squared == 0, | ||||
|               "pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of " | ||||
|  | ||||
| @ -21,7 +21,7 @@ enum class fft_norm_mode { | ||||
| // NOTE [ Fourier Transform Conjugate Symmetry ] | ||||
| // | ||||
| // Real-to-complex Fourier transform satisfies the conjugate symmetry. That is, | ||||
| // assuming X is the transformed K-dimensionsal signal, we have | ||||
| // assuming X is the transformed K-dimensional signal, we have | ||||
| // | ||||
| //     X[i_1, ..., i_K] = X[j_i, ..., j_K]*, | ||||
| // | ||||
|  | ||||
| @ -128,7 +128,7 @@ at::Tensor PackedLinearWeight::apply_impl( | ||||
|   auto* input_tr_ptr = | ||||
|       reinterpret_cast<uint8_t*>(input_tr.data_ptr<c10::quint8>()); | ||||
|   // TODO: Activation transpose before and after the kernel can be removed if we | ||||
|   // keep activation tensor always tranposed. | ||||
|   // keep activation tensor always transposed. | ||||
|   fbgemm::transpose_simd<uint8_t>( | ||||
|       batch_size, K, input_ptr, K, input_tr_ptr, batch_size); | ||||
|  | ||||
|  | ||||
| @ -520,7 +520,7 @@ cpu_adaptive_avg_pool3d_channels_last( | ||||
|       scalar_t* out = output_data + i * channels; | ||||
|       int64_t size = channels; | ||||
|  | ||||
|       // Note: For oridinary usage scenario, each out lane should | ||||
|       // Note: For ordinary usage scenario, each out lane should | ||||
|       //   fit in L1 cache; otherwise consider block dim C. | ||||
|       // Pass I: zero the out lane | ||||
|       int64_t d1 = 0; | ||||
|  | ||||
| @ -259,11 +259,20 @@ inline void winograd_f2k3_input_transform_inplace__rvv( | ||||
|   const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4); | ||||
|   const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4); | ||||
|   const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4); | ||||
|  | ||||
|   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0); | ||||
|   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1); | ||||
|   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2); | ||||
|   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3); | ||||
|   /* GCC 14.2 (RISC-V RVV) ICE workaround: | ||||
|    * Avoid single-statement read-modify-write on MEM_REF like: | ||||
|    *   *input_tile_val = | ||||
|    *     __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val); | ||||
|    * This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin) | ||||
|    * with -march=rv64gcv. Use a temporary then write back. | ||||
|    * Do NOT refactor into the single-statement form. Clang is unaffected. | ||||
|    */ | ||||
|   vfloat32m1x4_t tmp_input_tile_val = *input_tile_val; | ||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0); | ||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1); | ||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2); | ||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3); | ||||
|   *input_tile_val = tmp_input_tile_val; | ||||
| } | ||||
|  | ||||
| inline void winograd_f2k3_output_transform_inplace__rvv( | ||||
| @ -277,9 +286,15 @@ inline void winograd_f2k3_output_transform_inplace__rvv( | ||||
|   const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4); | ||||
|   const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4); | ||||
|   const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4); | ||||
|  | ||||
|   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0); | ||||
|   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1); | ||||
|   /* GCC 14.2 (RISC-V RVV) ICE workaround — see note above. | ||||
|    * Keep the temporary + write-back pattern to avoid ICE. | ||||
|    * Do NOT rewrite into: | ||||
|    *   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val); | ||||
|    */ | ||||
|   vfloat32m1x4_t tmp_output_tile_val = *input_tile_val; | ||||
|   tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0); | ||||
|   tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1); | ||||
|   *input_tile_val = tmp_output_tile_val; | ||||
| } | ||||
|  | ||||
| inline vfloat32m1_t | ||||
| @ -300,11 +315,17 @@ inline void winograd_f2k3_kernel_transform__rvv( | ||||
|   const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4); | ||||
|   const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4); | ||||
|   vfloat32m1_t half_g0_plus_g2 =  __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4); | ||||
|  | ||||
|   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0); | ||||
|   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1)); | ||||
|   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1)); | ||||
|   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2); | ||||
|   /* GCC 14.2 (RISC-V RVV) ICE workaround — see note above. | ||||
|    * Keep the temporary + write-back pattern to avoid ICE. | ||||
|    * Do NOT rewrite into: | ||||
|    *   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val); | ||||
|    */ | ||||
|   vfloat32m1x4_t tmp_transform = *transform; | ||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0); | ||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1)); | ||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1)); | ||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2); | ||||
|   *transform = tmp_transform; | ||||
| } | ||||
|  | ||||
| inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) { | ||||
|  | ||||
| @ -34,7 +34,7 @@ struct Dist { | ||||
|   //     finish :   This tells what to do with the aggregated value to compute | ||||
|   //                the norm. Generally this is the result of val ^ (1 / p). | ||||
|   //     backward : This is the gradient for that norm. Arguments are pretty | ||||
|   //                self explanitory. | ||||
|   //                self explanatory. | ||||
|   // | ||||
|   // There are a few cases where these aren't used. The 0 norm has no backward, | ||||
|   // because it's always 0, so that's shortcircuited earlier. There's a special | ||||
|  | ||||
| @ -30,7 +30,7 @@ vec::Vectorized<scalar_t> is_nan_vec(vec::Vectorized<scalar_t> vec) { | ||||
|   return vec.isnan(); | ||||
| } | ||||
|  | ||||
| // TODO: use is_integeral/is_same to check the scalar_t and simplify the implementation | ||||
| // TODO: use is_integral/is_same to check the scalar_t and simplify the implementation | ||||
| // currently it does not work | ||||
| template <> | ||||
| vec::Vectorized<unsigned char> is_nan_vec<unsigned char>(vec::Vectorized<unsigned char> vec) { | ||||
|  | ||||
| @ -74,7 +74,7 @@ it to sum up the entire array into a single value. | ||||
|  | ||||
| `ReduceOpsKernel.cpp` uses the `CPU_CAPABILITY_*` macros to "know" under which | ||||
| compiler flags it is currently compiled. This allows the programmer to write | ||||
| generic code, which will be compiled under multipled compilation settings. | ||||
| generic code, which will be compiled under multiplied compilation settings. | ||||
|  | ||||
| `../ReduceOps.cpp` now includes the header `ReduceOpsKernel.h`, which contains | ||||
| a generic definition of `sumImplAll`. This function allows the user to reduce | ||||
|  | ||||
| @ -889,7 +889,7 @@ void ImagingResampleHorizontalConvolution8u( | ||||
|             _mm_loadu_si128((__m128i *) (lineIn_min + stride * i))), | ||||
|             _mm_loadu_si128((__m128i *) (lineIn_min + stride * (i + 4))), 1); | ||||
|  | ||||
|         // Extract lower part of each lane, cast to epi16 and reoder RGBARGBA -> RRGGBBAA | ||||
|         // Extract lower part of each lane, cast to epi16 and reorder RGBARGBA -> RRGGBBAA | ||||
|         // RGBA: pix1 = [ | ||||
|         //   r0 0 r1 0  g0 0 g1 0  b0 0 b1 0  a0 0 a1 0 | ||||
|         //   r4 0 r5 0  g4 0 g5 0  b4 0 b5 0  a4 0 a5 0 | ||||
|  | ||||
| @ -240,7 +240,7 @@ _PS256_CONST(coscof_p2,  4.166664568298827E-002); | ||||
| _PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI | ||||
|  | ||||
|  | ||||
| /* evaluation of 8 sines at onces using AVX intrinsics | ||||
| /* evaluation of 8 sines at once using AVX intrinsics | ||||
|  | ||||
|    The code is the exact rewriting of the cephes sinf function. | ||||
|    Precision is excellent as long as x < 8192 (I did not bother to | ||||
|  | ||||
| @ -311,7 +311,7 @@ void GroupNormKernelImplChannelsLastInternal( | ||||
|   const bool gamma_null = (gamma_data == nullptr); | ||||
|   const bool beta_null = beta_data == nullptr; | ||||
|  | ||||
|   // NB: About algorithm choosen: | ||||
|   // NB: About algorithm chosen: | ||||
|   // | ||||
|   // On channels last, GroupNorm has a input shape of {N, H, W, GD}, | ||||
|   // Mean and rstd are collected per each n and g, which involves reduction | ||||
|  | ||||
| @ -930,7 +930,7 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel( | ||||
|         } | ||||
|       }; | ||||
|  | ||||
|   // Dynamically Quantize the float32 input to 8 bit assymetric | ||||
|   // Dynamically Quantize the float32 input to 8 bit asymmetric | ||||
|   input_quant_pack_8bit_channelwise(m, k, lhs_f32, (int8_t*)lhs_qa8dx); | ||||
|  | ||||
|   const size_t lhs_stride = | ||||
| @ -1163,7 +1163,7 @@ void dyn_quant_matmul_4bit_kernel( | ||||
|   const int64_t weight_packed_size = | ||||
|       kleidiai::kai_pack_rhs_int4_size(N, K, block_size); | ||||
|   if (weight_packed_size == packed_weights.numel()) { | ||||
|     // KleidiAI interface intenally handles the Channelwise and groupwise | ||||
|     // KleidiAI interface internally handles the Channelwise and groupwise | ||||
|     // distinction | ||||
|     kleidiai::kai_quant_pack_lhs_int4_mm( | ||||
|         output, inp, packed_weights, M, N, K, block_size); | ||||
|  | ||||
| @ -13,6 +13,7 @@ | ||||
| #include <ATen/OpMathType.h> | ||||
| #include <ATen/TensorUtils.h> | ||||
| #include <ATen/cuda/CUDABlas.h> | ||||
| #include <ATen/cuda/CUDAScaledBlas.h> | ||||
| #include <ATen/cuda/tunable/Tunable.h> | ||||
| #include <ATen/cuda/tunable/TunableGemm.h> | ||||
| #include <ATen/native/Resize.h> | ||||
| @ -360,7 +361,7 @@ static bool isInputCompliesAddmmCudaLt(Tensor& result, const Tensor& self, const | ||||
|       // and the leading stride is at least max(1, other dim length), so we might | ||||
|       // end up with contiguous cols but not rows (i.e. holes between different rows) | ||||
|       // and vice versa. | ||||
|       mat2_sizes[0] < 65535 * 32 && mat2_sizes[1] < 65535 * 32 && | ||||
|       && mat2_sizes[0] < 65535 * 32 && mat2_sizes[1] < 65535 * 32 && | ||||
|       mat1_sizes[0] < 65535 * 32 && mat1_sizes[1] < 65535 * 32 && | ||||
|       && ( | ||||
|         // filter by dtype | ||||
| @ -504,7 +505,7 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma | ||||
|   // Handle whether to use the Lt interface { | ||||
|   static bool persistent_disable_addmm_cuda_lt = isGloballyDisabledAddmmCudaLt(self.device()); | ||||
|   // if lt path fails, we recurse back into this function here and force the lt path to off | ||||
|   // we cannot update varible disable_addmm_cuda_lt from above since it is static and would be permanent | ||||
|   // we cannot update variable disable_addmm_cuda_lt from above since it is static and would be permanent | ||||
|   bool disable_addmm_cuda_lt = persistent_disable_addmm_cuda_lt || disable_addmm_cuda_lt_override; | ||||
|   #ifdef USE_ROCM | ||||
|   // Conditioned on the device index, which is not persistent | ||||
| @ -1628,104 +1629,6 @@ _scaled_mm_out_cuda(const Tensor& mat1, const Tensor& mat2, | ||||
|   return _scaled_gemm(mat1, mat2, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out); | ||||
| } | ||||
|  | ||||
| namespace { | ||||
|   void _check_scales_fp8_rowwise(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) { | ||||
|     // Checks scales for 2d or 3d target tensors (`mat`). | ||||
|     if (mat.dim() == 2) { | ||||
|       TORCH_CHECK( | ||||
|           scale.dim() == 1, | ||||
|           "scale must be a 1D tensor, but got ", | ||||
|           scale.dim(), | ||||
|           "D, arg ", | ||||
|           arg_idx); | ||||
|       TORCH_CHECK( | ||||
|           scale.is_contiguous(), "scale must be contiguous for arg ", arg_idx); | ||||
|       TORCH_CHECK( | ||||
|           scale.size(0) == mat.size(dim) * scale_multiplier, | ||||
|           "scale must have the same length as mat for arg ", | ||||
|           arg_idx); | ||||
|     } else { | ||||
|       TORCH_CHECK( | ||||
|           scale.dim() == 2, | ||||
|           "scale must be a 2D tensor, but got ", | ||||
|           scale.dim(), | ||||
|           "D for arg ", | ||||
|           arg_idx); | ||||
|       TORCH_CHECK( | ||||
|           scale.stride(1) == 1, | ||||
|           "scale must be contiguous in the last dimension for arg ", | ||||
|           arg_idx); | ||||
|       TORCH_CHECK( | ||||
|           scale.size(0) == mat.size(0), | ||||
|           "scale must have the same batch dimension as mat for arg ", | ||||
|           arg_idx); | ||||
|       TORCH_CHECK( | ||||
|           scale.size(1) == mat.size(1 + dim), | ||||
|           "scale must have the same first dimension as mat for arg ", | ||||
|           arg_idx); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void _check_scales_mxfp8(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx) { | ||||
|     // Checks scales for 2d or 3d target tensors (`mat`). | ||||
|     if (mat.dim() == 2) { | ||||
|       // For MXFP8, 2d tensors have variable size groups represented as subtensors, | ||||
|       // that are converted to blocked padded format individually, | ||||
|       // so we can't check the scale sizes without doing a d2h sync to get the group sizes here. | ||||
|       TORCH_CHECK( | ||||
|         scale.dim() == mat.dim(), | ||||
|         "for mxfp8, scale must have same number of dimensions as parent tensor, but got mat.dim() = ", mat.dim(), " and scale.dim() = ", scale.dim(), " for arg ", arg_idx); | ||||
|  | ||||
|       // LHS mat shape (M, total_K) -> scale shape (rounded_up(M, 128), rounded_up_per_group(K/32, 4)) | ||||
|       // RHS mat shape (total_K, N) -> scale shape (rounded_up(N, 128), rounded_up_per_group(K/32, 4)) | ||||
|       //   * weight is transposed prior to the call, scale stays non-transposed. | ||||
|       bool LHS = arg_idx == 0; | ||||
|       int scale_dim_to_check = 0; | ||||
|       int mat_dim_to_check = LHS ? 0 : 1; | ||||
|       TORCH_CHECK( | ||||
|           scale.size(scale_dim_to_check) >= mat.size(mat_dim_to_check), | ||||
|           "for mxfp8, arg ", arg_idx, " tensor shape (", mat.size(0), ", ", mat.size(1), ") ", | ||||
|           "must have scale.shape[", scale_dim_to_check, "] >= ", mat.size(mat_dim_to_check), " but got scale.shape=(", scale.size(0), ", ", scale.size(1), ")"); | ||||
|     } else { | ||||
|       // For MXFP8, 3d tensors have static group sizes (stack of 2d tensors), | ||||
|       // so we can check the exact expected scale sizes here without a d2h sync. | ||||
|       auto round_up = [](auto x, auto y) { | ||||
|           return ((x + y - 1) / y) * y; | ||||
|       }; | ||||
|  | ||||
|       // TODO: this is for 3d tensor in 2d-3d case specifically. | ||||
|       // We'll need to support 3d-3d and 3d-2d cases once mxfp8 grouped gemm supports them. | ||||
|       int64_t G = mat.size(0); | ||||
|       int64_t K = mat.size(1); | ||||
|       int64_t N = mat.size(2); | ||||
|       int64_t blocked_scale_K = round_up(K/32, 4); | ||||
|       int64_t blocked_scale_N = round_up(N, 128); | ||||
|  | ||||
|       // fbgemm expects stack of flattened blocked scales for 3d tensor, shape (G, blocked_scale_K * blocked_scale_N). | ||||
|       TORCH_CHECK( | ||||
|         scale.dim() == mat.dim() - 1, | ||||
|         "for mxfp8 2d-3d grouped GEMM, the 3d tensor of shape (G,K,N) must have a 2d scale of shape (G, blocked_scale_K * blocked_scale_N), but scale is ", scale.dim(), "D for arg ", arg_idx | ||||
|       ); | ||||
|       TORCH_CHECK( | ||||
|         scale.size(0) == G && scale.size(1) == blocked_scale_K * blocked_scale_N, | ||||
|         "for mxfp8, the tensor shape (", G, ", ", K, ", ", N, ") must have scale shape (", G, ",", blocked_scale_K, ",", blocked_scale_N, ") for arg ", arg_idx | ||||
|       ); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void check_scale(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) { | ||||
|     bool using_fp8_rowwise = scale.scalar_type() == kFloat; | ||||
|     bool using_mxfp8 = scale.scalar_type() == at::kFloat8_e8m0fnu; | ||||
|     if (using_fp8_rowwise) { | ||||
|       _check_scales_fp8_rowwise(mat, scale, dim, arg_idx, scale_multiplier); | ||||
|     } else if (using_mxfp8) { | ||||
|       _check_scales_mxfp8(mat, scale, dim, arg_idx); | ||||
|     } else { | ||||
|       TORCH_CHECK(false, "scale must be float32 or float8_e8m0fnu, but got ", scale.dtype()); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| Tensor | ||||
| _scaled_mm_cuda(const Tensor& mat_a, const Tensor& mat_b, | ||||
|           const Tensor& scale_a, | ||||
| @ -1740,261 +1643,26 @@ _scaled_mm_cuda(const Tensor& mat_a, const Tensor& mat_b, | ||||
|   return _scaled_mm_out_cuda(mat_a, mat_b, scale_a, scale_b, bias, scale_result, out_dtype, use_fast_accum, out); | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Track concrete implementations available | ||||
|  */ | ||||
| enum class ScaledGemmImplementation { | ||||
|   NONE = 0, | ||||
|   TENSORWISE_TENSORWISE = 1, | ||||
|   ROWWISE_ROWWISE = 2, | ||||
|   BLOCK_128x128_1x128 = 3, | ||||
|   BLOCK_1x128_128x128 = 4, | ||||
|   BLOCK_1x128_1x128 = 5, | ||||
|   MXFP8_MXFP8 = 6, | ||||
|   NVFP4_NVFP4 = 7, | ||||
|   NVFP4_NVFP4_SINGLE_SCALE = 8, | ||||
|   MXFP4_MXFP4 = 9, | ||||
| }; | ||||
|  | ||||
| /** | ||||
|  * Convert passed int (enum) from python back into a | ||||
|  * strictly-typed enum | ||||
|  */ | ||||
| template <class EnumType, class ArrayType> | ||||
| std::vector<EnumType> convert_int_to_enum(ArrayType& v) { | ||||
|   std::vector<EnumType> converted; | ||||
|   converted.reserve(v.size()); | ||||
|  | ||||
|   for (auto vi : v) { | ||||
|     converted.push_back(static_cast<EnumType>(vi)); | ||||
|   } | ||||
|   return converted; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8, | ||||
|  * Each needs a single scale, {Tensorwise (float)} | ||||
|  */ | ||||
| bool check_tensorwise_recipe(c10::ScalarType type_a, | ||||
|                              std::vector<ScalingType>& recipe_a, | ||||
|                              ArrayRef<Tensor>& scales_a, | ||||
|                              c10::ScalarType type_b, | ||||
|                              std::vector<ScalingType>& recipe_b, | ||||
|                              ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scale each, {Tensorwise, float} | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|   // Need {Blockwise_1x32, e8m0} for A & B | ||||
|   if (recipe_a[0] != ScalingType::TensorWise) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != ScalingType::TensorWise) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8, | ||||
|  * Each needs scales, {Rowwise (float)} | ||||
|  */ | ||||
| bool check_rowwise_recipe(c10::ScalarType type_a, | ||||
|                              std::vector<ScalingType>& recipe_a, | ||||
|                              ArrayRef<Tensor>& scales_a, | ||||
|                              c10::ScalarType type_b, | ||||
|                              std::vector<ScalingType>& recipe_b, | ||||
|                              ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scale each, {Tensorwise, float} | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {RowWise, dp32} for A & B | ||||
|   if (recipe_a[0] != ScalingType::RowWise) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != ScalingType::RowWise) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * Two-level scaling, canonical NVFP4 | ||||
|  * Both inputs must be fp4 | ||||
|  * A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)} | ||||
|  */ | ||||
| bool check_nvfp4_recipe(c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp4 | ||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 2 scales, 2 recipes for each input | ||||
|   if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]} | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Single-level scaling, what PyT currently understands | ||||
|  * Both inputs must be fp4 | ||||
|  * A, B need 1 scale, {Blockwise_1x16 (e4m3)} | ||||
|  */ | ||||
| bool check_nvfp4_recipe_single_scale | ||||
|                        (c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp4 | ||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 2 scales, 2 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]} | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x16) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x16) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8 | ||||
|  * A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float) | ||||
|  */ | ||||
| bool check_deepseek_recipe(ScalingType expected_recipe_a, | ||||
|                            ScalingType expected_recipe_b, | ||||
|                            c10::ScalarType type_a, | ||||
|                            std::vector<ScalingType>& recipe_a, | ||||
|                            ArrayRef<Tensor>& scales_a, | ||||
|                            c10::ScalarType type_b, | ||||
|                            std::vector<ScalingType>& recipe_b, | ||||
|                            ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scales, 1 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B | ||||
|   if (recipe_a[0] != expected_recipe_a) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; | ||||
|   if (recipe_b[0] != expected_recipe_b) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp8 | ||||
|  * A, B must have 1 scale each, {Blockwise_1x32, e8m0} | ||||
|  */ | ||||
| bool check_mxfp8_recipe(c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp8 | ||||
|   if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scales, 1 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x32, e8m0} for A & B | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Both inputs must be fp4 | ||||
|  * A, B must have 1 scale each, {Blockwise_1x32, e8m0} | ||||
|  */ | ||||
| bool check_mxfp4_recipe(c10::ScalarType type_a, | ||||
|                         std::vector<ScalingType>& recipe_a, | ||||
|                         ArrayRef<Tensor>& scales_a, | ||||
|                         c10::ScalarType type_b, | ||||
|                         std::vector<ScalingType>& recipe_b, | ||||
|                         ArrayRef<Tensor>& scales_b) { | ||||
|   // both types must be fp4 | ||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // 1 scales, 1 recipes for each input | ||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   // Need {Blockwise_1x32, e8m0} for A & B | ||||
|   if (recipe_a[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|   if (recipe_b[0] != ScalingType::BlockWise1x32) return false; | ||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; | ||||
|  | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>; | ||||
| using namespace std::placeholders; | ||||
|  | ||||
| namespace scaled_blas = at::cuda::scaled; | ||||
| using scaled_blas::ScaledGemmImplementation; | ||||
| using scaled_blas::convert_int_to_enum; | ||||
|  | ||||
| std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 9> scale_kernel_dispatch = {{ | ||||
|   { "tensorwise_tensorwise", check_tensorwise_recipe, ScaledGemmImplementation::TENSORWISE_TENSORWISE }, | ||||
|   { "rowwise_rowwise", check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE}, | ||||
|   { "block_1x128_128x128", std::bind(check_deepseek_recipe, ScalingType::BlockWise1x128, ScalingType::BlockWise128x128, _1, _2, _3, _4, _5, _6), | ||||
|   { "tensorwise_tensorwise", scaled_blas::check_tensorwise_recipe, ScaledGemmImplementation::TENSORWISE_TENSORWISE }, | ||||
|   { "rowwise_rowwise", scaled_blas::check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE}, | ||||
|   { "block_1x128_128x128", std::bind(scaled_blas::check_deepseek_recipe, ScalingType::BlockWise1x128, ScalingType::BlockWise128x128, _1, _2, _3, _4, _5, _6), | ||||
|     ScaledGemmImplementation::BLOCK_1x128_128x128}, | ||||
|   { "block_128x128_1x128", std::bind(check_deepseek_recipe, ScalingType::BlockWise128x128, ScalingType::BlockWise1x128, _1, _2, _3, _4, _5, _6), | ||||
|   { "block_128x128_1x128", std::bind(scaled_blas::check_deepseek_recipe, ScalingType::BlockWise128x128, ScalingType::BlockWise1x128, _1, _2, _3, _4, _5, _6), | ||||
|     ScaledGemmImplementation::BLOCK_128x128_1x128}, | ||||
|   { "block_1x128_1x128", std::bind(check_deepseek_recipe, ScalingType::BlockWise1x128, ScalingType::BlockWise1x128, _1, _2, _3, _4, _5, _6), | ||||
|   { "block_1x128_1x128", std::bind(scaled_blas::check_deepseek_recipe, ScalingType::BlockWise1x128, ScalingType::BlockWise1x128, _1, _2, _3, _4, _5, _6), | ||||
|     ScaledGemmImplementation::BLOCK_1x128_1x128}, | ||||
|   { "nvfp4_nvfp4", check_nvfp4_recipe, ScaledGemmImplementation::NVFP4_NVFP4}, | ||||
|   { "nvfp4_nvfp4_single_scale", check_nvfp4_recipe_single_scale, ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE }, | ||||
|   { "mxfp8_mxfp8", check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}, | ||||
|   { "mxfp4_mxfp4", check_mxfp4_recipe, ScaledGemmImplementation::MXFP4_MXFP4}}}; | ||||
|   { "nvfp4_nvfp4", scaled_blas::check_nvfp4_recipe, ScaledGemmImplementation::NVFP4_NVFP4}, | ||||
|   { "nvfp4_nvfp4_single_scale", scaled_blas::check_nvfp4_recipe_single_scale, ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE }, | ||||
|   { "mxfp8_mxfp8", scaled_blas::check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}, | ||||
|   { "mxfp4_mxfp4", scaled_blas::check_mxfp4_recipe, ScaledGemmImplementation::MXFP4_MXFP4}}}; | ||||
|  | ||||
| Tensor& | ||||
| _scaled_tensorwise_tensorwise( | ||||
| @ -2596,410 +2264,6 @@ _scaled_mm_cuda_v2( | ||||
|                       out); | ||||
| } | ||||
|  | ||||
| // 2d-2d and 2d-3d | ||||
| // scaling=MXFP8 | ||||
| // CUDA-only | ||||
| Tensor& | ||||
| _mx8_mx8_bf16_grouped_mm_fbgemm( | ||||
|         const Tensor& mat_a, | ||||
|         const Tensor& mat_b, | ||||
|         const Tensor& scale_a, | ||||
|         const SwizzleType& swizzle_a, | ||||
|         const Tensor& scale_b, | ||||
|         const SwizzleType& swizzle_b, | ||||
|         const std::optional<at::Tensor>& offs, | ||||
|         Tensor& out) { | ||||
|     const bool a_is_2d = mat_a.dim() == 2; | ||||
|     const bool b_is_2d = mat_b.dim() == 2; | ||||
|     bool b_is_3d = mat_b.dim() == 3; | ||||
|     bool is_2d_2d = a_is_2d && b_is_2d; | ||||
|     bool is_2d_3d = a_is_2d && b_is_3d; | ||||
|     TORCH_CHECK_VALUE(is_2d_2d || is_2d_3d, "MXFP8 grouped GEMM currently only supports 2d-2d and 2d-3d cases"); | ||||
|     TORCH_CHECK_VALUE(offs.has_value(), "MXFP8 2d-2d and 2d-3d grouped GEMMs requires offsets"); | ||||
|     TORCH_CHECK_VALUE(out.scalar_type() == at::kBFloat16, "Only bf16 out_dtype is supported for MXFP8 grouped gemm"); | ||||
|     // MXFP8 expects float8_e8m0fnu scales. | ||||
|     TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu, | ||||
|         "For MXFP8 grouped gemm, both scales must be float8_e8m0fnu tensors."); | ||||
| #ifdef USE_ROCM | ||||
|     TORCH_CHECK_VALUE(swizzle_a == SwizzleType::NO_SWIZZLE && swizzle_b == SwizzleType::NO_SWIZZLE, | ||||
|         "For ROCM MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_NONE"); | ||||
| #else | ||||
|     TORCH_CHECK_VALUE(swizzle_a == SwizzleType::SWIZZLE_32_4_4 && swizzle_b == SwizzleType::SWIZZLE_32_4_4, | ||||
|         "For CUDA MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_32_4_4"); | ||||
| #endif | ||||
|  | ||||
| #if defined(USE_FBGEMM_GENAI) and !defined(USE_ROCM) | ||||
|     fbgemm_gpu::mx8mx8bf16_grouped_mm( | ||||
|         mat_a, | ||||
|         mat_b, | ||||
|         scale_a, | ||||
|         scale_b, | ||||
|         offs.value(), | ||||
|         out); | ||||
| #else | ||||
|     TORCH_CHECK_NOT_IMPLEMENTED(false, "mxfp8_mxfp8 grouped gemm requires compile with USE_FBGEMM_GENAI"); | ||||
| #endif | ||||
|     return out; | ||||
| } | ||||
|  | ||||
| // 2d-2d and 2d-3d cases | ||||
| // scaling=rowwise | ||||
| // CUDA-only | ||||
| Tensor& | ||||
| _f8_f8_bf16_rowwise_grouped_mm_cuda( | ||||
|           const Tensor& mat_a, | ||||
|           const Tensor& mat_b, | ||||
|           const Tensor& scale_a, | ||||
|           const Tensor& scale_b, | ||||
|           const std::optional<Tensor>& offs, | ||||
|           const std::optional<Tensor>& bias, | ||||
|           const bool use_fast_accum, | ||||
|           Tensor& out) { | ||||
|   TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_a.scalar_type()); | ||||
|   TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_b.scalar_type()); | ||||
|  | ||||
|   at::cuda::detail::f8f8bf16_grouped_mm( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       bias, | ||||
|       use_fast_accum, | ||||
|       out); | ||||
|     return out; | ||||
| } | ||||
|  | ||||
| // 2d-2d and 2d-3d cases | ||||
| // scaling=rowwise | ||||
| // only being called for rocm | ||||
| Tensor& | ||||
| _f8_f8_bf16_rowwise_grouped_mm_rocm( | ||||
|       const Tensor& mat_a, | ||||
|       const Tensor& mat_b, | ||||
|       const Tensor& scale_a, | ||||
|       const Tensor& scale_b, | ||||
|       const std::optional<Tensor>& offs, | ||||
|       Tensor& out) { | ||||
|   TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_a.scalar_type()); | ||||
|   TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_b.scalar_type()); | ||||
|  | ||||
| #if defined(USE_FBGEMM_GENAI) && defined(USE_ROCM) | ||||
|   fbgemm_gpu::f8f8bf16_rowwise_grouped_mm( | ||||
|       mat_a, | ||||
|       // FBGEMM expects B matrix shape to be (.., N, K) | ||||
|       mat_b.transpose(-2, -1), | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       out); | ||||
| #else | ||||
|   TORCH_CHECK_NOT_IMPLEMENTED(false, "grouped gemm is not supported without USE_FBGEMM_GENAI on ROCM") | ||||
| #endif | ||||
|   return out; | ||||
|  | ||||
| } | ||||
|  | ||||
| // Dispatch f8 x f8 -> bf16 row-wise scaled to rocm/cuda | ||||
| Tensor& | ||||
| _f8_f8_bf16_rowwise_grouped_mm( | ||||
|       const Tensor& mat_a, | ||||
|       const Tensor& mat_b, | ||||
|       const Tensor& scale_a, | ||||
|       const Tensor& scale_b, | ||||
|       const std::optional<Tensor>& offs, | ||||
|       const std::optional<Tensor>& bias, | ||||
|       bool use_fast_accum, | ||||
|       Tensor& out) { | ||||
|   // FP8 per-tensor and per-row scaling expect fp32 scales. | ||||
|   TORCH_CHECK_VALUE(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat, | ||||
|       "For grouped FP8 rowwise, both scales must be float32 tensors"); | ||||
| #ifndef USE_ROCM | ||||
|   return _f8_f8_bf16_rowwise_grouped_mm_cuda( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       bias, | ||||
|       use_fast_accum, | ||||
|       out); | ||||
| #else | ||||
|   // NOTE: ignore use_fast_accum | ||||
|   TORCH_CHECK_VALUE(!bias.has_value(), "ROCM grouped gemm does not support bias") | ||||
|   return _f8_f8_bf16_rowwise_grouped_mm_rocm( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       out); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| Tensor | ||||
| _scaled_grouped_mm_cuda( | ||||
|         const Tensor& mat_a, | ||||
|         const Tensor& mat_b, | ||||
|         const Tensor& scale_a, | ||||
|         const Tensor& scale_b, | ||||
|         const std::optional<at::Tensor>& offs, | ||||
|         const std::optional<at::Tensor>& bias, | ||||
|         const std::optional<at::Tensor>& scale_result, | ||||
|         std::optional<c10::ScalarType> out_dtype, | ||||
|         bool use_fast_accum) { | ||||
|   bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true); | ||||
|   TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+"); | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed"); | ||||
|   TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed"); | ||||
|   TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d"); | ||||
|   TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d"); | ||||
|   const bool a_is_2d = mat_a.dim() == 2; | ||||
|   const bool b_is_2d = mat_b.dim() == 2; | ||||
|  | ||||
|   // NOTE(slayton): For sub-1B formats want contraction_dim argument? | ||||
|   if (!a_is_2d || !b_is_2d) { | ||||
|     TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match"); | ||||
|   } | ||||
|   TORCH_CHECK_VALUE( | ||||
|     mat_a.size(-1) % 16 == 0, | ||||
|     "Expected trailing dimension of mat_a to be divisible by 16 ", | ||||
|     "but got mat1 shape: (", | ||||
|     mat_a.sizes(), | ||||
|     ")."); | ||||
|   TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0, | ||||
|     "Expected mat_b shape to be divisible by 16 ", | ||||
|     "but got mat_b shape: (", | ||||
|     mat_b.sizes(), | ||||
|     ")."); | ||||
|  | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet"); | ||||
|   TORCH_CHECK_VALUE(!scale_result.has_value(), "Scale result not supported yet"); | ||||
|   TORCH_CHECK_VALUE(offs.has_value() ==  (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix"); | ||||
|  | ||||
|   // NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present. | ||||
|   //       for rowwise, no offsets implies 3d-3d and is handled by lower-level | ||||
|   //       routines | ||||
|   if (offs.has_value()) { | ||||
|     TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D"); | ||||
|     TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32"); | ||||
|   } | ||||
|   // FP8 per-tensor and per-row scaling expect fp32 scales. | ||||
|   // MXFP8 expects float8_e8m0fnu scales. | ||||
|   TORCH_CHECK_VALUE( | ||||
|       (scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat) || | ||||
|       (scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu), | ||||
|       "For FP8 tensorwise and rowwise, both scales must both be float32 tensors. For MXFP8, scales must both be float8_e8m0fnu tensors."); | ||||
|  | ||||
|   const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1; | ||||
|   check_scale(mat_a, scale_a, 0 ,0, scale_multiplier); | ||||
|   check_scale(mat_b, scale_b, 1, 1, scale_multiplier); | ||||
|  | ||||
|   const auto out_dtype_ = out_dtype.value_or(kBFloat16); | ||||
|   TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm"); | ||||
|  | ||||
|   Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_); | ||||
|  | ||||
| #if defined(USE_FBGEMM_GENAI) && defined(USE_CUDA) && !defined(USE_ROCM) | ||||
|   // MXFP8 grouped GEMM dispatching | ||||
|   bool is_mx8mx8bf16 = ( | ||||
|     mat_a.scalar_type() == at::kFloat8_e4m3fn && mat_b.scalar_type() == at::kFloat8_e4m3fn && | ||||
|     scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu | ||||
|   ); | ||||
| #else | ||||
|   bool is_mx8mx8bf16 = false; | ||||
| #endif | ||||
|  | ||||
|   if (is_mx8mx8bf16) { | ||||
|     // Note: Passing implied SwizzleType here, correctness of scale previously checked | ||||
|     //       in `check_scale` call | ||||
|     return _mx8_mx8_bf16_grouped_mm_fbgemm( | ||||
|         mat_a, | ||||
|         mat_b, | ||||
|         scale_a, | ||||
|         SwizzleType::SWIZZLE_32_4_4, | ||||
|         scale_b, | ||||
|         SwizzleType::SWIZZLE_32_4_4, | ||||
|         offs.value(), | ||||
|         out); | ||||
|   } | ||||
|  | ||||
|   // If we're not MXFP8, then we're row-wise scaling. | ||||
|   return _f8_f8_bf16_rowwise_grouped_mm( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       bias, | ||||
|       use_fast_accum, | ||||
|       out); | ||||
| } | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 2> scale_grouped_kernel_dispatch = {{ | ||||
|   { "rowwise_rowwise", check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE}, | ||||
|   { "mxfp8_mxfp8", check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}}}; | ||||
|  | ||||
| } // anonymous namespace | ||||
|  | ||||
| Tensor | ||||
| _scaled_grouped_mm_cuda_v2( | ||||
|           const Tensor& mat_a, const Tensor& mat_b, | ||||
|           ArrayRef<Tensor> scale_a, | ||||
|           IntArrayRef scale_recipe_a, | ||||
|           IntArrayRef swizzle_a, | ||||
|           ArrayRef<Tensor> scale_b, | ||||
|           IntArrayRef scale_recipe_b, | ||||
|           IntArrayRef swizzle_b, | ||||
|           const std::optional<Tensor>& offs, | ||||
|           const std::optional<Tensor>& bias, | ||||
|           const std::optional<c10::ScalarType> out_dtype, | ||||
|           IntArrayRef contraction_dim, | ||||
|           bool use_fast_accum) { | ||||
|   bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true); | ||||
|   TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+"); | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed"); | ||||
|   TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed"); | ||||
|   TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d"); | ||||
|   TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d"); | ||||
|   const bool a_is_2d = mat_a.dim() == 2; | ||||
|   const bool b_is_2d = mat_b.dim() == 2; | ||||
|  | ||||
|   // NOTE(slayton): For sub-1B formats want contraction_dim argument? | ||||
|   if (!a_is_2d || !b_is_2d) { | ||||
|     if (contraction_dim.size() > 0) { | ||||
|       const int dim_a = contraction_dim[0], dim_b = mat_b.size(contraction_dim[1]); | ||||
|       TORCH_CHECK_VALUE(mat_a.size(dim_a) == mat_b.size(dim_b), | ||||
|           "Contraction dimensions (", dim_a, ",", dim_b, ") of mat_a and mat_b must match, got: ", mat_a.size(dim_a), " and ", | ||||
|           mat_b.size(dim_b)); | ||||
|       // Note: only (-1, -2) is currently supported | ||||
|       TORCH_CHECK_VALUE(dim_a == -1 && dim_b == -2, "Curently contraction dims must be (-1, -2) only"); | ||||
|     } else { | ||||
|       TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match"); | ||||
|     } | ||||
|   } | ||||
|   TORCH_CHECK_VALUE( | ||||
|     mat_a.size(-1) % 16 == 0, | ||||
|     "Expected trailing dimension of mat_a to be divisible by 16 ", | ||||
|     "but got mat1 shape: (", | ||||
|     mat_a.sizes(), | ||||
|     ")."); | ||||
|   TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0, | ||||
|     "Expected mat_b shape to be divisible by 16 ", | ||||
|     "but got mat_b shape: (", | ||||
|     mat_b.sizes(), | ||||
|     ")."); | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet"); | ||||
|   TORCH_CHECK_VALUE(offs.has_value() ==  (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix"); | ||||
|  | ||||
|   // NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present. | ||||
|   //       for rowwise, no offsets implies 3d-3d and is handled by lower-level | ||||
|   //       routines | ||||
|   if (offs.has_value()) { | ||||
|     TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D"); | ||||
|     TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32"); | ||||
|   } | ||||
|  | ||||
|   const auto out_dtype_ = out_dtype.value_or(kBFloat16); | ||||
|   TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm"); | ||||
|  | ||||
|   Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_); | ||||
|  | ||||
|   // Conversion of implicitly-defined enums to explicit | ||||
|   auto scale_recipe_a_enum = convert_int_to_enum<ScalingType>(scale_recipe_a); | ||||
|   auto swizzle_a_enum = convert_int_to_enum<SwizzleType>(swizzle_a); | ||||
|   auto scale_recipe_b_enum = convert_int_to_enum<ScalingType>(scale_recipe_b); | ||||
|   auto swizzle_b_enum = convert_int_to_enum<SwizzleType>(swizzle_b); | ||||
|  | ||||
|   // at this point we can start working out what we want to be doing | ||||
|   // Try to do as few steps as possible. | ||||
|   // NOTE: support is deliberately sparse, can explicitly enumerate all combinations allowed. | ||||
|   // Do this via a list of defined (name, acceptance, concrete_impl) tuples. | ||||
|   ScaledGemmImplementation gemm_impl = ScaledGemmImplementation::NONE; | ||||
|   for (const auto& fn_entry : scale_grouped_kernel_dispatch) { | ||||
|     const auto [name, accept_fn, scaled_gemm_impl] = fn_entry; | ||||
|     bool ok = accept_fn(mat_a.scalar_type(), | ||||
|                         scale_recipe_a_enum, | ||||
|                         scale_a, | ||||
|                         mat_b.scalar_type(), | ||||
|                         scale_recipe_b_enum, | ||||
|                         scale_b); | ||||
|     if (ok) { | ||||
|       gemm_impl = scaled_gemm_impl; | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|   TORCH_CHECK_VALUE(gemm_impl != ScaledGemmImplementation::NONE, | ||||
|       "No gemm implementation was found"); | ||||
|  | ||||
|   switch (gemm_impl) { | ||||
|     case ScaledGemmImplementation::ROWWISE_ROWWISE: { | ||||
|       const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1; | ||||
|       _check_scales_fp8_rowwise(mat_a, scale_a[0], 0 /* dim */ , 0 /* arg_idx */, scale_multiplier); | ||||
|       _check_scales_fp8_rowwise(mat_b, scale_b[0], 1 /* dim */ , 1 /* arg_idx */, scale_multiplier); | ||||
|       return _f8_f8_bf16_rowwise_grouped_mm( | ||||
|           mat_a, | ||||
|           mat_b, | ||||
|           scale_a[0], | ||||
|           scale_b[0], | ||||
|           offs, | ||||
|           bias, | ||||
|           use_fast_accum, | ||||
|           out); | ||||
|     } | ||||
|     case ScaledGemmImplementation::MXFP8_MXFP8: { | ||||
|       _check_scales_mxfp8(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */); | ||||
|       _check_scales_mxfp8(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */); | ||||
|       return _mx8_mx8_bf16_grouped_mm_fbgemm( | ||||
|           mat_a, | ||||
|           mat_b, | ||||
|           scale_a[0], | ||||
|           swizzle_a_enum[0], | ||||
|           scale_b[0], | ||||
|           swizzle_b_enum[0], | ||||
|           offs.value(), | ||||
|           out); | ||||
|     } | ||||
|     default: | ||||
|       TORCH_CHECK_NOT_IMPLEMENTED(false, | ||||
|           "_scaled_grouped_mm_cuda_v2 is in an inconsistent state - should never reach here"); | ||||
|   } | ||||
| } | ||||
|  | ||||
| Tensor _grouped_mm_cuda(const Tensor& mat_a, const Tensor& mat_b, | ||||
| const std::optional<at::Tensor>& offs, | ||||
| const std::optional<at::Tensor>& bias, | ||||
| std::optional<c10::ScalarType> out_dtype) { | ||||
|   _grouped_mm_validate_inputs(mat_a, mat_b, offs, bias, out_dtype); | ||||
|   bool a_b_and_out_are_bf16 = ( | ||||
|     mat_a.dtype() == at::kBFloat16 && | ||||
|     mat_b.dtype() == at::kBFloat16 && | ||||
|     out_dtype.value_or(at::kBFloat16) == at::kBFloat16 | ||||
|   ); | ||||
| #ifndef USE_ROCM | ||||
|   bool use_fast_path = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true) && a_b_and_out_are_bf16; | ||||
| #else | ||||
|   // _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used. | ||||
|   // the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm | ||||
|   bool use_fast_path = false; | ||||
| #endif | ||||
|   const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype); | ||||
|   Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_); | ||||
|   if (use_fast_path) { | ||||
|     // fast path, no d2h sync needed | ||||
|     at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out); | ||||
|   } else { | ||||
|     _grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out); | ||||
|   } | ||||
|   return out; | ||||
| } | ||||
|  | ||||
| static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const at::ScalarType out_dtype, bool is_bmm, const std::optional<Tensor>& self_baddbmm = std::nullopt) { | ||||
|   // ref ATen/native/LinearAlgebra.cpp common_checks_baddbmm_bmm | ||||
|   TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor"); | ||||
|  | ||||
| @ -494,7 +494,7 @@ void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG gen) | ||||
|       auto value = static_cast<scalar_t>(rand * range + from); | ||||
|       // reverse the bounds of curand4 from (0, 1] to [0, 1) | ||||
|       // Note that this method is from legacy THCTensorRandom and is likely to give | ||||
|       // you more 0-s, since, the probability of gettings 1-s is higher than 0-s and | ||||
|       // you more 0-s, since, the probability of getting 1-s is higher than 0-s and | ||||
|       // by reversing the bounds, we are flipping the probabilities of 1-s and 0-s. | ||||
|       // BEFORE TOUCHING THIS CODE READ: https://github.com/pytorch/pytorch/issues/16706 | ||||
|       auto reverse_bound_value = value == to ? from : value; | ||||
|  | ||||
							
								
								
									
										574
									
								
								aten/src/ATen/native/cuda/GroupedBlas.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										574
									
								
								aten/src/ATen/native/cuda/GroupedBlas.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,574 @@ | ||||
| #include <cstdint> | ||||
| #include <c10/util/typeid.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #include <c10/util/SmallVector.h> | ||||
| #include <c10/core/Scalar.h> | ||||
| #include <c10/core/ScalarType.h> | ||||
| #include <c10/util/Exception.h> | ||||
| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS | ||||
| #include <ATen/core/Tensor.h> | ||||
| #include <ATen/core/NamedTensor.h> | ||||
| #include <ATen/Dispatch.h> | ||||
| #include <ATen/ExpandUtils.h> | ||||
| #include <ATen/OpMathType.h> | ||||
| #include <ATen/TensorUtils.h> | ||||
| #include <ATen/cuda/CUDABlas.h> | ||||
| #include <ATen/cuda/CUDAScaledBlas.h> | ||||
| #include <ATen/cuda/tunable/Tunable.h> | ||||
| #include <ATen/cuda/tunable/TunableGemm.h> | ||||
| #include <ATen/native/Resize.h> | ||||
| #include <c10/util/MaybeOwned.h> | ||||
| #include <ATen/native/GroupedMMUtils.h> | ||||
| #include <ATen/native/cuda/RowwiseScaledMM.h> | ||||
| #include <ATen/native/cuda/ScaledGroupMM.h> | ||||
| #include <ATen/native/cuda/GroupMM.h> | ||||
| #include <ATen/ceil_div.h> | ||||
|  | ||||
| #ifdef USE_FBGEMM_GENAI | ||||
| #include <fbgemm_gpu/torch_ops.h> | ||||
| #endif | ||||
|  | ||||
| #ifndef AT_PER_OPERATOR_HEADERS | ||||
| #include <ATen/Functions.h> | ||||
| #include <ATen/NativeFunctions.h> | ||||
| #else | ||||
| #include <ATen/ops/_addmm_activation_native.h> | ||||
| #include <ATen/ops/_efficientzerotensor.h> | ||||
| #include <ATen/ops/_scaled_mm_native.h> | ||||
| #include <ATen/ops/_unsafe_view_native.h> | ||||
| #include <ATen/ops/abs.h> | ||||
| #include <ATen/ops/addmm_native.h> | ||||
| #include <ATen/ops/addmv_native.h> | ||||
| #include <ATen/ops/baddbmm_native.h> | ||||
| #include <ATen/ops/bmm_native.h> | ||||
| #include <ATen/ops/copy_native.h> | ||||
| #include <ATen/ops/dot_native.h> | ||||
| #include <ATen/ops/empty.h> | ||||
| #include <ATen/ops/empty_strided.h> | ||||
| #include <ATen/ops/gelu.h> | ||||
| #include <ATen/ops/max.h> | ||||
| #include <ATen/ops/mm_native.h> | ||||
| #include <ATen/ops/mul.h> | ||||
| #include <ATen/ops/relu.h> | ||||
| #include <ATen/ops/ones.h> | ||||
| #include <ATen/ops/scalar_tensor_native.h> | ||||
| #include <ATen/ops/vdot_native.h> | ||||
| #endif | ||||
|  | ||||
| using at::blas::ScalingType; | ||||
| using at::blas::SwizzleType; | ||||
|  | ||||
| namespace scaled_blas = at::cuda::scaled; | ||||
| using scaled_blas::ScaledGemmImplementation; | ||||
| using scaled_blas::convert_int_to_enum; | ||||
| using scaled_blas::_scaled_mm_allowed_device; | ||||
|  | ||||
| namespace at::native { | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| // 2d-2d and 2d-3d | ||||
| // scaling=MXFP8 | ||||
| // CUDA-only | ||||
| Tensor& | ||||
| _mx8_mx8_bf16_grouped_mm_fbgemm( | ||||
|         const Tensor& mat_a, | ||||
|         const Tensor& mat_b, | ||||
|         const Tensor& scale_a, | ||||
|         const SwizzleType& swizzle_a, | ||||
|         const Tensor& scale_b, | ||||
|         const SwizzleType& swizzle_b, | ||||
|         const std::optional<at::Tensor>& offs, | ||||
|         Tensor& out) { | ||||
|     const bool a_is_2d = mat_a.dim() == 2; | ||||
|     const bool b_is_2d = mat_b.dim() == 2; | ||||
|     bool b_is_3d = mat_b.dim() == 3; | ||||
|     bool is_2d_2d = a_is_2d && b_is_2d; | ||||
|     bool is_2d_3d = a_is_2d && b_is_3d; | ||||
|     TORCH_CHECK_VALUE(is_2d_2d || is_2d_3d, "MXFP8 grouped GEMM currently only supports 2d-2d and 2d-3d cases"); | ||||
|     TORCH_CHECK_VALUE(offs.has_value(), "MXFP8 2d-2d and 2d-3d grouped GEMMs requires offsets"); | ||||
|     TORCH_CHECK_VALUE(out.scalar_type() == at::kBFloat16, "Only bf16 out_dtype is supported for MXFP8 grouped gemm"); | ||||
|     // MXFP8 expects float8_e8m0fnu scales. | ||||
|     TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu, | ||||
|         "For MXFP8 grouped gemm, both scales must be float8_e8m0fnu tensors."); | ||||
| #ifdef USE_ROCM | ||||
|     TORCH_CHECK_VALUE(swizzle_a == SwizzleType::NO_SWIZZLE && swizzle_b == SwizzleType::NO_SWIZZLE, | ||||
|         "For ROCM MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_NONE"); | ||||
| #else | ||||
|     TORCH_CHECK_VALUE(swizzle_a == SwizzleType::SWIZZLE_32_4_4 && swizzle_b == SwizzleType::SWIZZLE_32_4_4, | ||||
|         "For CUDA MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_32_4_4"); | ||||
| #endif | ||||
|  | ||||
| #if defined(USE_FBGEMM_GENAI) and !defined(USE_ROCM) | ||||
|     fbgemm_gpu::mx8mx8bf16_grouped_mm( | ||||
|         mat_a, | ||||
|         mat_b, | ||||
|         scale_a, | ||||
|         scale_b, | ||||
|         offs.value(), | ||||
|         out); | ||||
| #else | ||||
|     TORCH_CHECK_NOT_IMPLEMENTED(false, "mxfp8_mxfp8 grouped gemm requires compile with USE_FBGEMM_GENAI"); | ||||
| #endif | ||||
|     return out; | ||||
| } | ||||
|  | ||||
| // 2d-2d and 2d-3d cases | ||||
| // scaling=rowwise | ||||
| // CUDA-only | ||||
| Tensor& | ||||
| _f8_f8_bf16_rowwise_grouped_mm_cuda( | ||||
|           const Tensor& mat_a, | ||||
|           const Tensor& mat_b, | ||||
|           const Tensor& scale_a, | ||||
|           const Tensor& scale_b, | ||||
|           const std::optional<Tensor>& offs, | ||||
|           const std::optional<Tensor>& bias, | ||||
|           const bool use_fast_accum, | ||||
|           Tensor& out) { | ||||
|   TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_a.scalar_type()); | ||||
|   TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_b.scalar_type()); | ||||
|  | ||||
|   at::cuda::detail::f8f8bf16_grouped_mm( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       bias, | ||||
|       use_fast_accum, | ||||
|       out); | ||||
|     return out; | ||||
| } | ||||
|  | ||||
| // 2d-2d and 2d-3d cases | ||||
| // scaling=rowwise | ||||
| // only being called for rocm | ||||
| Tensor& | ||||
| _f8_f8_bf16_rowwise_grouped_mm_rocm( | ||||
|       const Tensor& mat_a, | ||||
|       const Tensor& mat_b, | ||||
|       const Tensor& scale_a, | ||||
|       const Tensor& scale_b, | ||||
|       const std::optional<Tensor>& offs, | ||||
|       Tensor& out) { | ||||
|   TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_a.scalar_type()); | ||||
|   TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_b.scalar_type()); | ||||
|  | ||||
| #if defined(USE_FBGEMM_GENAI) && defined(USE_ROCM) | ||||
|   fbgemm_gpu::f8f8bf16_rowwise_grouped_mm( | ||||
|       mat_a, | ||||
|       // FBGEMM expects B matrix shape to be (.., N, K) | ||||
|       mat_b.transpose(-2, -1), | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       out); | ||||
| #else | ||||
|   TORCH_CHECK_NOT_IMPLEMENTED(false, "grouped gemm is not supported without USE_FBGEMM_GENAI on ROCM") | ||||
| #endif | ||||
|   return out; | ||||
|  | ||||
| } | ||||
|  | ||||
| // Dispatch f8 x f8 -> bf16 row-wise scaled to rocm/cuda | ||||
| Tensor& | ||||
| _f8_f8_bf16_rowwise_grouped_mm( | ||||
|       const Tensor& mat_a, | ||||
|       const Tensor& mat_b, | ||||
|       const Tensor& scale_a, | ||||
|       const Tensor& scale_b, | ||||
|       const std::optional<Tensor>& offs, | ||||
|       const std::optional<Tensor>& bias, | ||||
|       bool use_fast_accum, | ||||
|       Tensor& out) { | ||||
|   // FP8 per-tensor and per-row scaling expect fp32 scales. | ||||
|   TORCH_CHECK_VALUE(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat, | ||||
|       "For grouped FP8 rowwise, both scales must be float32 tensors"); | ||||
| #ifndef USE_ROCM | ||||
|   return _f8_f8_bf16_rowwise_grouped_mm_cuda( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       bias, | ||||
|       use_fast_accum, | ||||
|       out); | ||||
| #else | ||||
|   // NOTE: ignore use_fast_accum | ||||
|   TORCH_CHECK_VALUE(!bias.has_value(), "ROCM grouped gemm does not support bias") | ||||
|   return _f8_f8_bf16_rowwise_grouped_mm_rocm( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       out); | ||||
| #endif | ||||
| } | ||||
|  | ||||
| void _check_scales_fp8_rowwise(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) { | ||||
|   // Checks scales for 2d or 3d target tensors (`mat`). | ||||
|   if (mat.dim() == 2) { | ||||
|     TORCH_CHECK( | ||||
|         scale.dim() == 1, | ||||
|         "scale must be a 1D tensor, but got ", | ||||
|         scale.dim(), | ||||
|         "D, arg ", | ||||
|         arg_idx); | ||||
|     TORCH_CHECK( | ||||
|         scale.is_contiguous(), "scale must be contiguous for arg ", arg_idx); | ||||
|     TORCH_CHECK( | ||||
|         scale.size(0) == mat.size(dim) * scale_multiplier, | ||||
|         "scale must have the same length as mat for arg ", | ||||
|         arg_idx); | ||||
|   } else { | ||||
|     TORCH_CHECK( | ||||
|         scale.dim() == 2, | ||||
|         "scale must be a 2D tensor, but got ", | ||||
|         scale.dim(), | ||||
|         "D for arg ", | ||||
|         arg_idx); | ||||
|     TORCH_CHECK( | ||||
|         scale.stride(1) == 1, | ||||
|         "scale must be contiguous in the last dimension for arg ", | ||||
|         arg_idx); | ||||
|     TORCH_CHECK( | ||||
|         scale.size(0) == mat.size(0), | ||||
|         "scale must have the same batch dimension as mat for arg ", | ||||
|         arg_idx); | ||||
|     TORCH_CHECK( | ||||
|         scale.size(1) == mat.size(1 + dim), | ||||
|         "scale must have the same first dimension as mat for arg ", | ||||
|         arg_idx); | ||||
|   } | ||||
| } | ||||
|  | ||||
| void _check_scales_mxfp8(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx) { | ||||
|   // Checks scales for 2d or 3d target tensors (`mat`). | ||||
|   if (mat.dim() == 2) { | ||||
|     // For MXFP8, 2d tensors have variable size groups represented as subtensors, | ||||
|     // that are converted to blocked padded format individually, | ||||
|     // so we can't check the scale sizes without doing a d2h sync to get the group sizes here. | ||||
|     TORCH_CHECK( | ||||
|       scale.dim() == mat.dim(), | ||||
|       "for mxfp8, scale must have same number of dimensions as parent tensor, but got mat.dim() = ", mat.dim(), " and scale.dim() = ", scale.dim(), " for arg ", arg_idx); | ||||
|  | ||||
|     // LHS mat shape (M, total_K) -> scale shape (rounded_up(M, 128), rounded_up_per_group(K/32, 4)) | ||||
|     // RHS mat shape (total_K, N) -> scale shape (rounded_up(N, 128), rounded_up_per_group(K/32, 4)) | ||||
|     //   * weight is transposed prior to the call, scale stays non-transposed. | ||||
|     bool LHS = arg_idx == 0; | ||||
|     int scale_dim_to_check = 0; | ||||
|     int mat_dim_to_check = LHS ? 0 : 1; | ||||
|     TORCH_CHECK( | ||||
|         scale.size(scale_dim_to_check) >= mat.size(mat_dim_to_check), | ||||
|         "for mxfp8, arg ", arg_idx, " tensor shape (", mat.size(0), ", ", mat.size(1), ") ", | ||||
|         "must have scale.shape[", scale_dim_to_check, "] >= ", mat.size(mat_dim_to_check), " but got scale.shape=(", scale.size(0), ", ", scale.size(1), ")"); | ||||
|   } else { | ||||
|     // For MXFP8, 3d tensors have static group sizes (stack of 2d tensors), | ||||
|     // so we can check the exact expected scale sizes here without a d2h sync. | ||||
|     auto round_up = [](auto x, auto y) { | ||||
|         return ((x + y - 1) / y) * y; | ||||
|     }; | ||||
|  | ||||
|     // TODO: this is for 3d tensor in 2d-3d case specifically. | ||||
|     // We'll need to support 3d-3d and 3d-2d cases once mxfp8 grouped gemm supports them. | ||||
|     int64_t G = mat.size(0); | ||||
|     int64_t K = mat.size(1); | ||||
|     int64_t N = mat.size(2); | ||||
|     int64_t blocked_scale_K = round_up(K/32, 4); | ||||
|     int64_t blocked_scale_N = round_up(N, 128); | ||||
|  | ||||
|     // fbgemm expects stack of flattened blocked scales for 3d tensor, shape (G, blocked_scale_K * blocked_scale_N). | ||||
|     TORCH_CHECK( | ||||
|       scale.dim() == mat.dim() - 1, | ||||
|       "for mxfp8 2d-3d grouped GEMM, the 3d tensor of shape (G,K,N) must have a 2d scale of shape (G, blocked_scale_K * blocked_scale_N), but scale is ", scale.dim(), "D for arg ", arg_idx | ||||
|     ); | ||||
|     TORCH_CHECK( | ||||
|       scale.size(0) == G && scale.size(1) == blocked_scale_K * blocked_scale_N, | ||||
|       "for mxfp8, the tensor shape (", G, ", ", K, ", ", N, ") must have scale shape (", G, ",", blocked_scale_K, ",", blocked_scale_N, ") for arg ", arg_idx | ||||
|     ); | ||||
|   } | ||||
| } | ||||
|  | ||||
| void check_scale(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) { | ||||
|   bool using_fp8_rowwise = scale.scalar_type() == kFloat; | ||||
|   bool using_mxfp8 = scale.scalar_type() == at::kFloat8_e8m0fnu; | ||||
|   if (using_fp8_rowwise) { | ||||
|     _check_scales_fp8_rowwise(mat, scale, dim, arg_idx, scale_multiplier); | ||||
|   } else if (using_mxfp8) { | ||||
|     _check_scales_mxfp8(mat, scale, dim, arg_idx); | ||||
|   } else { | ||||
|     TORCH_CHECK(false, "scale must be float32 or float8_e8m0fnu, but got ", scale.dtype()); | ||||
|   } | ||||
| } | ||||
|  | ||||
| } // namespace | ||||
|  | ||||
| Tensor | ||||
| _scaled_grouped_mm_cuda( | ||||
|         const Tensor& mat_a, | ||||
|         const Tensor& mat_b, | ||||
|         const Tensor& scale_a, | ||||
|         const Tensor& scale_b, | ||||
|         const std::optional<at::Tensor>& offs, | ||||
|         const std::optional<at::Tensor>& bias, | ||||
|         const std::optional<at::Tensor>& scale_result, | ||||
|         std::optional<c10::ScalarType> out_dtype, | ||||
|         bool use_fast_accum) { | ||||
|   bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true); | ||||
|   TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+"); | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed"); | ||||
|   TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed"); | ||||
|   TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d"); | ||||
|   TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d"); | ||||
|   const bool a_is_2d = mat_a.dim() == 2; | ||||
|   const bool b_is_2d = mat_b.dim() == 2; | ||||
|  | ||||
|   // NOTE(slayton): For sub-1B formats want contraction_dim argument? | ||||
|   if (!a_is_2d || !b_is_2d) { | ||||
|     TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match"); | ||||
|   } | ||||
|   TORCH_CHECK_VALUE( | ||||
|     mat_a.size(-1) % 16 == 0, | ||||
|     "Expected trailing dimension of mat_a to be divisible by 16 ", | ||||
|     "but got mat1 shape: (", | ||||
|     mat_a.sizes(), | ||||
|     ")."); | ||||
|   TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0, | ||||
|     "Expected mat_b shape to be divisible by 16 ", | ||||
|     "but got mat_b shape: (", | ||||
|     mat_b.sizes(), | ||||
|     ")."); | ||||
|  | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet"); | ||||
|   TORCH_CHECK_VALUE(!scale_result.has_value(), "Scale result not supported yet"); | ||||
|   TORCH_CHECK_VALUE(offs.has_value() ==  (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix"); | ||||
|  | ||||
|   // NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present. | ||||
|   //       for rowwise, no offsets implies 3d-3d and is handled by lower-level | ||||
|   //       routines | ||||
|   if (offs.has_value()) { | ||||
|     TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D"); | ||||
|     TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32"); | ||||
|   } | ||||
|   // FP8 per-tensor and per-row scaling expect fp32 scales. | ||||
|   // MXFP8 expects float8_e8m0fnu scales. | ||||
|   TORCH_CHECK_VALUE( | ||||
|       (scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat) || | ||||
|       (scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu), | ||||
|       "For FP8 tensorwise and rowwise, both scales must both be float32 tensors. For MXFP8, scales must both be float8_e8m0fnu tensors."); | ||||
|  | ||||
|   const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1; | ||||
|   check_scale(mat_a, scale_a, 0 ,0, scale_multiplier); | ||||
|   check_scale(mat_b, scale_b, 1, 1, scale_multiplier); | ||||
|  | ||||
|   const auto out_dtype_ = out_dtype.value_or(kBFloat16); | ||||
|   TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm"); | ||||
|  | ||||
|   Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_); | ||||
|  | ||||
| #if defined(USE_FBGEMM_GENAI) && defined(USE_CUDA) && !defined(USE_ROCM) | ||||
|   // MXFP8 grouped GEMM dispatching | ||||
|   bool is_mx8mx8bf16 = ( | ||||
|     mat_a.scalar_type() == at::kFloat8_e4m3fn && mat_b.scalar_type() == at::kFloat8_e4m3fn && | ||||
|     scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu | ||||
|   ); | ||||
| #else | ||||
|   bool is_mx8mx8bf16 = false; | ||||
| #endif | ||||
|  | ||||
|   if (is_mx8mx8bf16) { | ||||
|     // Note: Passing implied SwizzleType here, correctness of scale previously checked | ||||
|     //       in `check_scale` call | ||||
|     return _mx8_mx8_bf16_grouped_mm_fbgemm( | ||||
|         mat_a, | ||||
|         mat_b, | ||||
|         scale_a, | ||||
|         SwizzleType::SWIZZLE_32_4_4, | ||||
|         scale_b, | ||||
|         SwizzleType::SWIZZLE_32_4_4, | ||||
|         offs.value(), | ||||
|         out); | ||||
|   } | ||||
|  | ||||
|   // If we're not MXFP8, then we're row-wise scaling. | ||||
|   return _f8_f8_bf16_rowwise_grouped_mm( | ||||
|       mat_a, | ||||
|       mat_b, | ||||
|       scale_a, | ||||
|       scale_b, | ||||
|       offs, | ||||
|       bias, | ||||
|       use_fast_accum, | ||||
|       out); | ||||
| } | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>; | ||||
|  | ||||
| std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 2> scale_grouped_kernel_dispatch = {{ | ||||
|   { "rowwise_rowwise", scaled_blas::check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE}, | ||||
|   { "mxfp8_mxfp8", scaled_blas::check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}}}; | ||||
|  | ||||
| } // anonymous namespace | ||||
|  | ||||
| Tensor | ||||
| _scaled_grouped_mm_cuda_v2( | ||||
|           const Tensor& mat_a, const Tensor& mat_b, | ||||
|           ArrayRef<Tensor> scale_a, | ||||
|           IntArrayRef scale_recipe_a, | ||||
|           IntArrayRef swizzle_a, | ||||
|           ArrayRef<Tensor> scale_b, | ||||
|           IntArrayRef scale_recipe_b, | ||||
|           IntArrayRef swizzle_b, | ||||
|           const std::optional<Tensor>& offs, | ||||
|           const std::optional<Tensor>& bias, | ||||
|           const std::optional<c10::ScalarType> out_dtype, | ||||
|           IntArrayRef contraction_dim, | ||||
|           bool use_fast_accum) { | ||||
|   bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true); | ||||
|   TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+"); | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed"); | ||||
|   TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed"); | ||||
|   TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d"); | ||||
|   TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d"); | ||||
|   const bool a_is_2d = mat_a.dim() == 2; | ||||
|   const bool b_is_2d = mat_b.dim() == 2; | ||||
|  | ||||
|   // NOTE(slayton): For sub-1B formats want contraction_dim argument? | ||||
|   if (!a_is_2d || !b_is_2d) { | ||||
|     if (contraction_dim.size() > 0) { | ||||
|       const int dim_a = contraction_dim[0], dim_b = mat_b.size(contraction_dim[1]); | ||||
|       TORCH_CHECK_VALUE(mat_a.size(dim_a) == mat_b.size(dim_b), | ||||
|           "Contraction dimensions (", dim_a, ",", dim_b, ") of mat_a and mat_b must match, got: ", mat_a.size(dim_a), " and ", | ||||
|           mat_b.size(dim_b)); | ||||
|       // Note: only (-1, -2) is currently supported | ||||
|       TORCH_CHECK_VALUE(dim_a == -1 && dim_b == -2, "Curently contraction dims must be (-1, -2) only"); | ||||
|     } else { | ||||
|       TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match"); | ||||
|     } | ||||
|   } | ||||
|   TORCH_CHECK_VALUE( | ||||
|     mat_a.size(-1) % 16 == 0, | ||||
|     "Expected trailing dimension of mat_a to be divisible by 16 ", | ||||
|     "but got mat1 shape: (", | ||||
|     mat_a.sizes(), | ||||
|     ")."); | ||||
|   TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0, | ||||
|     "Expected mat_b shape to be divisible by 16 ", | ||||
|     "but got mat_b shape: (", | ||||
|     mat_b.sizes(), | ||||
|     ")."); | ||||
|  | ||||
|   TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet"); | ||||
|   TORCH_CHECK_VALUE(offs.has_value() ==  (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix"); | ||||
|  | ||||
|   // NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present. | ||||
|   //       for rowwise, no offsets implies 3d-3d and is handled by lower-level | ||||
|   //       routines | ||||
|   if (offs.has_value()) { | ||||
|     TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D"); | ||||
|     TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32"); | ||||
|   } | ||||
|  | ||||
|   const auto out_dtype_ = out_dtype.value_or(kBFloat16); | ||||
|   TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm"); | ||||
|  | ||||
|   Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_); | ||||
|  | ||||
|   // Conversion of implicitly-defined enums to explicit | ||||
|   auto scale_recipe_a_enum = convert_int_to_enum<ScalingType>(scale_recipe_a); | ||||
|   auto swizzle_a_enum = convert_int_to_enum<SwizzleType>(swizzle_a); | ||||
|   auto scale_recipe_b_enum = convert_int_to_enum<ScalingType>(scale_recipe_b); | ||||
|   auto swizzle_b_enum = convert_int_to_enum<SwizzleType>(swizzle_b); | ||||
|  | ||||
|   // at this point we can start working out what we want to be doing | ||||
|   // Try to do as few steps as possible. | ||||
|   // NOTE: support is deliberately sparse, can explicitly enumerate all combinations allowed. | ||||
|   // Do this via a list of defined (name, acceptance, concrete_impl) tuples. | ||||
|   ScaledGemmImplementation gemm_impl = ScaledGemmImplementation::NONE; | ||||
|   for (const auto& fn_entry : scale_grouped_kernel_dispatch) { | ||||
|     const auto [name, accept_fn, scaled_gemm_impl] = fn_entry; | ||||
|     bool ok = accept_fn(mat_a.scalar_type(), | ||||
|                         scale_recipe_a_enum, | ||||
|                         scale_a, | ||||
|                         mat_b.scalar_type(), | ||||
|                         scale_recipe_b_enum, | ||||
|                         scale_b); | ||||
|     if (ok) { | ||||
|       gemm_impl = scaled_gemm_impl; | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|   TORCH_CHECK_VALUE(gemm_impl != ScaledGemmImplementation::NONE, | ||||
|       "No gemm implementation was found"); | ||||
|  | ||||
|   switch (gemm_impl) { | ||||
|     case ScaledGemmImplementation::ROWWISE_ROWWISE: { | ||||
|       const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1; | ||||
|       _check_scales_fp8_rowwise(mat_a, scale_a[0], 0 /* dim */ , 0 /* arg_idx */, scale_multiplier); | ||||
|       _check_scales_fp8_rowwise(mat_b, scale_b[0], 1 /* dim */ , 1 /* arg_idx */, scale_multiplier); | ||||
|       return _f8_f8_bf16_rowwise_grouped_mm( | ||||
|           mat_a, | ||||
|           mat_b, | ||||
|           scale_a[0], | ||||
|           scale_b[0], | ||||
|           offs, | ||||
|           bias, | ||||
|           use_fast_accum, | ||||
|           out); | ||||
|     } | ||||
|     case ScaledGemmImplementation::MXFP8_MXFP8: { | ||||
|       _check_scales_mxfp8(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */); | ||||
|       _check_scales_mxfp8(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */); | ||||
|       return _mx8_mx8_bf16_grouped_mm_fbgemm( | ||||
|           mat_a, | ||||
|           mat_b, | ||||
|           scale_a[0], | ||||
|           swizzle_a_enum[0], | ||||
|           scale_b[0], | ||||
|           swizzle_b_enum[0], | ||||
|           offs.value(), | ||||
|           out); | ||||
|     } | ||||
|     default: | ||||
|       TORCH_CHECK_NOT_IMPLEMENTED(false, | ||||
|           "_scaled_grouped_mm_cuda_v2 is in an inconsistent state - should never reach here"); | ||||
|   } | ||||
| } | ||||
|  | ||||
| Tensor _grouped_mm_cuda(const Tensor& mat_a, const Tensor& mat_b, | ||||
| const std::optional<at::Tensor>& offs, | ||||
| const std::optional<at::Tensor>& bias, | ||||
| std::optional<c10::ScalarType> out_dtype) { | ||||
|   _grouped_mm_validate_inputs(mat_a, mat_b, offs, bias, out_dtype); | ||||
|   bool a_b_and_out_are_bf16 = ( | ||||
|     mat_a.dtype() == at::kBFloat16 && | ||||
|     mat_b.dtype() == at::kBFloat16 && | ||||
|     out_dtype.value_or(at::kBFloat16) == at::kBFloat16 | ||||
|   ); | ||||
| #ifndef USE_ROCM | ||||
|   bool use_fast_path = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true) && a_b_and_out_are_bf16; | ||||
| #else | ||||
|   // _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used. | ||||
|   // the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm | ||||
|   bool use_fast_path = false; | ||||
| #endif | ||||
|   const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype); | ||||
|   Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_); | ||||
|   if (use_fast_path) { | ||||
|     // fast path, no d2h sync needed | ||||
|     at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out); | ||||
|   } else { | ||||
|     _grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out); | ||||
|   } | ||||
|   return out; | ||||
| } | ||||
|  | ||||
| } // namespace at::native | ||||
| @ -6,7 +6,7 @@ | ||||
| #endif | ||||
|  | ||||
| // ROCm 6.3 is planned to have these functions, but until then here they are. | ||||
| #if defined(USE_ROCM) && ROCM_VERSION >= 60201 | ||||
| #if defined(USE_ROCM) | ||||
| #include <device_functions.h> | ||||
| #include <hip/hip_fp16.h> | ||||
| #include <hip/hip_bf16.h> | ||||
| @ -115,9 +115,7 @@ __device__ __forceinline__ void fastSpecializedAtomicAdd( | ||||
|     index_t index, | ||||
|     const index_t numel, | ||||
|     scalar_t value) { | ||||
| #if (                      \ | ||||
|     (defined(USE_ROCM) && ROCM_VERSION < 60201) || \ | ||||
|     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700))) | ||||
| #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)) | ||||
|   gpuAtomicAddNoReturn( | ||||
|       reinterpret_cast<at::Half*>(tensor) + index, | ||||
|       static_cast<at::Half>(value)); | ||||
| @ -160,9 +158,7 @@ __device__ __forceinline__ void fastSpecializedAtomicAdd( | ||||
|     index_t index, | ||||
|     const index_t numel, | ||||
|     scalar_t value) { | ||||
| #if (                      \ | ||||
|     (defined(USE_ROCM) && ROCM_VERSION < 60201) || \ | ||||
|     (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))) | ||||
| #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)) | ||||
|   gpuAtomicAddNoReturn( | ||||
|       reinterpret_cast<at::BFloat16*>(tensor) + index, | ||||
|       static_cast<at::BFloat16>(value)); | ||||
|  | ||||
| @ -154,7 +154,7 @@ REGISTER_CUDA_DISPATCH(lstsq_stub, &lazy_lstsq_kernel) | ||||
|  | ||||
| // Old style dispatches | ||||
| // torch_cuda_linalg dynamic library should have a global constructor | ||||
| // that calls regiserLinaglDispatch so in order ot lazy bind | ||||
| // that calls registerLinalgDispatch so in order ot lazy bind | ||||
| // old style dispatch all one have to do is to load library and call disp.func_name | ||||
| // Protect from infinite recursion by initializing dispatch to self and checking | ||||
| // that values are different after linalg library were loaded | ||||
|  | ||||
| @ -1,18 +1,17 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include <ATen/OpMathType.h> | ||||
| #include <ATen/cuda/detail/OffsetCalculator.cuh> | ||||
| #include <ATen/detail/FunctionTraits.h> | ||||
| #include <ATen/native/TensorIterator.h> | ||||
| #include <ATen/native/TensorIteratorDynamicCasting.h> | ||||
| #include <ATen/cuda/detail/OffsetCalculator.cuh> | ||||
| #include <ATen/OpMathType.h> | ||||
| #include <ATen/native/cuda/thread_constants.h> | ||||
|  | ||||
| #include <thrust/tuple.h> | ||||
|  | ||||
| #include <ATen/native/cuda/MemoryAccess.cuh> | ||||
|  | ||||
| #include <tuple> | ||||
|  | ||||
|  | ||||
|  | ||||
| namespace at::native { | ||||
|  | ||||
| template<int N> | ||||
| @ -62,7 +61,11 @@ __device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) { | ||||
|   #pragma unroll | ||||
|   for (int i = 0; i < elems_per_thread; i++) { | ||||
|     if (policy.check_inbounds(i)) { | ||||
| #if defined(__HIP__) | ||||
|       results[i] = c10::guts::apply(f, args[i]); | ||||
| #else | ||||
|       results[i] = std::apply(f, args[i]); | ||||
| #endif | ||||
|     } | ||||
|   } | ||||
|  | ||||
|  | ||||
| @ -115,9 +115,23 @@ __device__ scalar_t reduce(Op op, PTA tensor, int plane) { | ||||
|   // first the reductions each thread does separately | ||||
|   scalar_t sum = static_cast<scalar_t>(0); | ||||
|   for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) { | ||||
| #if defined(USE_ROCM) | ||||
|     constexpr int UNRL = 4; // load deserilize factor | ||||
|     scalar_t tmp[UNRL]; | ||||
|     for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x*UNRL) { | ||||
| #pragma unroll | ||||
|       for (int u = 0; u < UNRL; u++) | ||||
|         tmp[u] = op(batch, plane, std::min((int)tensor.size(2)-1, (int)(x+u*blockDim.x))); | ||||
| #pragma unroll | ||||
|       for (int u = 0; u < UNRL; u++) | ||||
|         if (x+u*blockDim.x < tensor.size(2)) | ||||
|           sum += tmp[u]; | ||||
|     } | ||||
| #else | ||||
|     for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) { | ||||
|       sum += op(batch, plane, x); | ||||
|     } | ||||
| #endif | ||||
|   } | ||||
|   __shared__ scalar_t shared[C10_WARP_SIZE]; | ||||
|   SumReduceOp<scalar_t> reduce_op; | ||||
| @ -292,6 +306,22 @@ __global__ void batch_norm_collect_statistics_kernel( | ||||
|   stat_accscalar_t var_n = 0; | ||||
|   int n = 0; | ||||
|   for (int batch = threadIdx.y; batch < input.size(0); batch += blockDim.y) { | ||||
| #if defined(USE_ROCM) | ||||
|     constexpr int UNRL = 4; | ||||
|     stat_accscalar_t v_[UNRL]; | ||||
|     for (int x = threadIdx.x; x < input.size(2); x += blockDim.x*UNRL) { | ||||
|       for (int u = 0; u < UNRL; u++) | ||||
|         v_[u] = input[batch][plane][std::min(x+u*blockDim.x, input.size(2)-1)]; | ||||
|       for (int u = 0; u < UNRL; u++) { | ||||
|         if (x+u*blockDim.x < input.size(2)) { | ||||
|           stat_accscalar_t d1 = v_[u] - avg; | ||||
|           n++; | ||||
|           avg += d1 / n; | ||||
|           var_n += d1 * (v_[u] - avg); | ||||
|         } | ||||
|       } | ||||
|     } | ||||
| #else | ||||
|     for (int x = threadIdx.x; x < input.size(2); x += blockDim.x) { | ||||
|       stat_accscalar_t v = input[batch][plane][x]; | ||||
|       stat_accscalar_t d1 = v - avg; | ||||
| @ -299,6 +329,7 @@ __global__ void batch_norm_collect_statistics_kernel( | ||||
|       avg += d1 / n; | ||||
|       var_n += d1 * (v - avg); | ||||
|     } | ||||
| #endif | ||||
|   } | ||||
|  | ||||
|   // first warpSum to get one value per thread to | ||||
|  | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user
	