Compare commits

..

1 Commits

Author SHA1 Message Date
f203b98062 Add check for MacOS26 to use different code path in SDPA 2025-11-17 15:38:19 -08:00
409 changed files with 3794 additions and 12524 deletions

View File

@ -1,19 +0,0 @@
# Aarch64 (ARM/Graviton) Support Scripts
Scripts for building aarch64 PyTorch PIP Wheels. These scripts build the following wheels:
* torch
* torchvision
* torchaudio
* torchtext
* torchdata
## Aarch64_ci_build.sh
This script is design to support CD operations within PyPi manylinux aarch64 container, and be executed in the container. It prepares the container and then executes __aarch64_wheel_ci_build.py__ to build the wheels. The script "assumes" the PyTorch repo is located at: ```/pytorch``` and will put the wheels into ```/artifacts```.
### Usage
```DESIRED_PYTHON=<PythonVersion> aarch64_ci_build.sh```
__NOTE:__ CI build is currently __EXPERMINTAL__
## Build_aarch64_wheel.py
This app allows a person to build using AWS EC3 resources and requires AWS-CLI and Boto3 with AWS credentials to support building EC2 instances for the wheel builds. Can be used in a codebuild CD or from a local system.
### Usage
```build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch <RCtag>```

View File

@ -1,53 +0,0 @@
#!/bin/bash
set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
# Set CUDA architecture lists to match x86 build_cuda.sh
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
fi
# Compress the fatbin with -compress-mode=size for CUDA 13
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
export TORCH_NVCC_FLAGS="-compress-mode=size"
# Bundle ptxas into the cu13 wheel, see https://github.com/pytorch/pytorch/issues/163801
export BUILD_BUNDLE_PTXAS=1
fi
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
source $SCRIPTPATH/aarch64_ci_setup.sh
###############################################################################
# Run aarch64 builder python
###############################################################################
cd /
# adding safe directory for git as the permissions will be
# on the mounted pytorch repo
git config --global --add safe.directory /pytorch
pip install -r /pytorch/requirements.txt
pip install auditwheel==6.2.0 wheel
if [ "$DESIRED_CUDA" = "cpu" ]; then
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
else
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
export USE_SYSTEM_NCCL=1
# Check if we should use NVIDIA libs from PyPI (similar to x86 build_cuda.sh logic)
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling CUDA libraries with wheel for aarch64."
else
echo "Using nvidia libs from pypi for aarch64."
echo "Updated PYTORCH_EXTRA_INSTALL_REQUIREMENTS for aarch64: $PYTORCH_EXTRA_INSTALL_REQUIREMENTS"
export USE_NVIDIA_PYPI_LIBS=1
fi
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
fi

View File

@ -1,21 +0,0 @@
#!/bin/bash
set -eux -o pipefail
# This script is used to prepare the Docker container for aarch64_ci_wheel_build.py python script
# By creating symlinks from desired /opt/python to /usr/local/bin/
NUMPY_VERSION=2.0.2
if [[ "$DESIRED_PYTHON" == "3.13" || "$DESIRED_PYTHON" == "3.13t" ]]; then
NUMPY_VERSION=2.1.2
fi
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
source $SCRIPTPATH/../manywheel/set_desired_python.sh
pip install -q numpy==${NUMPY_VERSION} pyyaml==6.0.2 scons==4.7.0 ninja==1.11.1 patchelf==0.17.2
for tool in python python3 pip pip3 ninja scons patchelf; do
ln -sf ${DESIRED_PYTHON_BIN_DIR}/${tool} /usr/local/bin;
done
python --version

View File

@ -1,333 +0,0 @@
#!/usr/bin/env python3
# encoding: UTF-8
import os
import shutil
from subprocess import check_call, check_output
def list_dir(path: str) -> list[str]:
"""'
Helper for getting paths for Python
"""
return check_output(["ls", "-1", path]).decode().split("\n")
def replace_tag(filename) -> None:
with open(filename) as f:
lines = f.readlines()
for i, line in enumerate(lines):
if line.startswith("Tag:"):
lines[i] = line.replace("-linux_", "-manylinux_2_28_")
print(f"Updated tag from {line} to {lines[i]}")
break
with open(filename, "w") as f:
f.writelines(lines)
def patch_library_rpath(
folder: str,
lib_name: str,
use_nvidia_pypi_libs: bool = False,
desired_cuda: str = "",
) -> None:
"""Apply patchelf to set RPATH for a library in torch/lib"""
lib_path = f"{folder}/tmp/torch/lib/{lib_name}"
if use_nvidia_pypi_libs:
# For PyPI NVIDIA libraries, construct CUDA RPATH
cuda_rpaths = [
"$ORIGIN/../../nvidia/cudnn/lib",
"$ORIGIN/../../nvidia/nvshmem/lib",
"$ORIGIN/../../nvidia/nccl/lib",
"$ORIGIN/../../nvidia/cusparselt/lib",
]
if "130" in desired_cuda:
cuda_rpaths.append("$ORIGIN/../../nvidia/cu13/lib")
else:
cuda_rpaths.extend(
[
"$ORIGIN/../../nvidia/cublas/lib",
"$ORIGIN/../../nvidia/cuda_cupti/lib",
"$ORIGIN/../../nvidia/cuda_nvrtc/lib",
"$ORIGIN/../../nvidia/cuda_runtime/lib",
"$ORIGIN/../../nvidia/cufft/lib",
"$ORIGIN/../../nvidia/curand/lib",
"$ORIGIN/../../nvidia/cusolver/lib",
"$ORIGIN/../../nvidia/cusparse/lib",
"$ORIGIN/../../nvidia/nvtx/lib",
"$ORIGIN/../../nvidia/cufile/lib",
]
)
# Add $ORIGIN for local torch libs
rpath = ":".join(cuda_rpaths) + ":$ORIGIN"
else:
# For bundled libraries, just use $ORIGIN
rpath = "$ORIGIN"
if os.path.exists(lib_path):
os.system(
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '{rpath}' --force-rpath {lib_name}"
)
def copy_and_patch_library(
src_path: str,
folder: str,
use_nvidia_pypi_libs: bool = False,
desired_cuda: str = "",
) -> None:
"""Copy a library to torch/lib and patch its RPATH"""
if os.path.exists(src_path):
lib_name = os.path.basename(src_path)
shutil.copy2(src_path, f"{folder}/tmp/torch/lib/{lib_name}")
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"""
Package the cuda wheel libraries
"""
folder = os.path.dirname(wheel_path)
os.mkdir(f"{folder}/tmp")
os.system(f"unzip {wheel_path} -d {folder}/tmp")
# Delete original wheel since it will be repackaged
os.system(f"rm {wheel_path}")
# Check if we should use PyPI NVIDIA libraries or bundle system libraries
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
if use_nvidia_pypi_libs:
print("Using nvidia libs from pypi - skipping CUDA library bundling")
# For PyPI approach, we don't bundle CUDA libraries - they come from PyPI packages
# We only need to bundle non-NVIDIA libraries
minimal_libs_to_copy = [
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
# Copy minimal libraries to unzipped_folder/torch/lib
for lib_path in minimal_libs_to_copy:
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
# Patch torch libraries used for searching libraries
torch_libs_to_patch = [
"libtorch.so",
"libtorch_cpu.so",
"libtorch_cuda.so",
"libtorch_cuda_linalg.so",
"libtorch_global_deps.so",
"libtorch_python.so",
"libtorch_nvshmem.so",
"libc10.so",
"libc10_cuda.so",
"libcaffe2_nvrtc.so",
"libshm.so",
]
for lib_name in torch_libs_to_patch:
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
else:
print("Bundling CUDA libraries with wheel")
# Original logic for bundling system CUDA libraries
# Common libraries for all CUDA versions
common_libs = [
# Non-NVIDIA system libraries
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
# Common CUDA libraries (same for all versions)
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
"/usr/local/cuda/lib64/libcusparse.so.12",
]
# CUDA version-specific libraries
if "13" in desired_cuda:
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
"/usr/local/cuda/lib64/libcublas.so.13",
"/usr/local/cuda/lib64/libcublasLt.so.13",
"/usr/local/cuda/lib64/libcudart.so.13",
"/usr/local/cuda/lib64/libcufft.so.12",
"/usr/local/cuda/lib64/libcusolver.so.12",
"/usr/local/cuda/lib64/libnvJitLink.so.13",
"/usr/local/cuda/lib64/libnvrtc.so.13",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.{minor_version}",
]
elif "12" in desired_cuda:
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
"/usr/local/cuda/lib64/libcudart.so.12",
"/usr/local/cuda/lib64/libcufft.so.11",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
]
else:
raise ValueError(f"Unsupported CUDA version: {desired_cuda}.")
# Combine all libraries
libs_to_copy = common_libs + version_specific_libs
# Copy libraries to unzipped_folder/torch/lib
for lib_path in libs_to_copy:
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
# Make sure the wheel is tagged with manylinux_2_28
for f in os.scandir(f"{folder}/tmp/"):
if f.is_dir() and f.name.endswith(".dist-info"):
replace_tag(f"{f.path}/WHEEL")
break
os.system(f"wheel pack {folder}/tmp/ -d {folder}")
os.system(f"rm -rf {folder}/tmp/")
def complete_wheel(folder: str) -> str:
"""
Complete wheel build and put in artifact location
"""
wheel_name = list_dir(f"/{folder}/dist")[0]
# Please note for cuda we don't run auditwheel since we use custom script to package
# the cuda dependencies to the wheel file using update_wheel() method.
# However we need to make sure filename reflects the correct Manylinux platform.
if "pytorch" in folder and not enable_cuda:
print("Repairing Wheel with AuditWheel")
check_call(["auditwheel", "repair", f"dist/{wheel_name}"], cwd=folder)
repaired_wheel_name = list_dir(f"/{folder}/wheelhouse")[0]
print(f"Moving {repaired_wheel_name} wheel to /{folder}/dist")
os.rename(
f"/{folder}/wheelhouse/{repaired_wheel_name}",
f"/{folder}/dist/{repaired_wheel_name}",
)
else:
repaired_wheel_name = list_dir(f"/{folder}/dist")[0]
print(f"Copying {repaired_wheel_name} to artifacts")
shutil.copy2(
f"/{folder}/dist/{repaired_wheel_name}", f"/artifacts/{repaired_wheel_name}"
)
return repaired_wheel_name
def parse_arguments():
"""
Parse inline arguments
"""
from argparse import ArgumentParser
parser = ArgumentParser("AARCH64 wheels python CD")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--build-only", action="store_true")
parser.add_argument("--test-only", type=str)
parser.add_argument("--enable-mkldnn", action="store_true")
parser.add_argument("--enable-cuda", action="store_true")
return parser.parse_args()
if __name__ == "__main__":
"""
Entry Point
"""
args = parse_arguments()
enable_mkldnn = args.enable_mkldnn
enable_cuda = args.enable_cuda
branch = check_output(
["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd="/pytorch"
).decode()
print("Building PyTorch wheel")
build_vars = ""
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
if enable_cuda:
build_vars += "MAX_JOBS=5 "
# Handle PyPI NVIDIA libraries vs bundled libraries
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
if use_nvidia_pypi_libs:
print("Configuring build for PyPI NVIDIA libraries")
# Configure for dynamic linking (matching x86 logic)
build_vars += "ATEN_STATIC_CUDA=0 USE_CUDA_STATIC_LINK=0 USE_CUPTI_SO=1 "
else:
print("Configuring build for bundled NVIDIA libraries")
# Keep existing static linking approach - already configured above
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
desired_cuda = os.getenv("DESIRED_CUDA")
if override_package_version is not None:
version = override_package_version
build_vars += (
f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version} PYTORCH_BUILD_NUMBER=1 "
)
elif branch in ["nightly", "main"]:
build_date = (
check_output(["git", "log", "--pretty=format:%cs", "-1"], cwd="/pytorch")
.decode()
.replace("-", "")
)
version = (
check_output(["cat", "version.txt"], cwd="/pytorch").decode().strip()[:-2]
)
if enable_cuda:
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date}+{desired_cuda} PYTORCH_BUILD_NUMBER=1 "
else:
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1 "
elif branch.startswith(("v1.", "v2.")):
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
if enable_mkldnn:
print("build pytorch with mkldnn+acl backend")
build_vars += "USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
build_vars += "ACL_ROOT_DIR=/acl "
if enable_cuda:
build_vars += "BLAS=NVPL "
else:
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/opt/OpenBLAS "
else:
print("build pytorch without mkldnn backend")
os.system(f"cd /pytorch; {build_vars} python3 -m build --wheel --no-isolation")
if enable_cuda:
print("Updating Cuda Dependency")
filename = os.listdir("/pytorch/dist/")
wheel_path = f"/pytorch/dist/{filename[0]}"
package_cuda_wheel(wheel_path, desired_cuda)
pytorch_wheel_name = complete_wheel("/pytorch/")
print(f"Build Complete. Created {pytorch_wheel_name}..")

View File

@ -1,999 +0,0 @@
#!/usr/bin/env python3
# This script is for building AARCH64 wheels using AWS EC2 instances.
# To generate binaries for the release follow these steps:
# 1. Update mappings for each of the Domain Libraries by adding new row to a table like this:
# "v1.11.0": ("0.11.0", "rc1"),
# 2. Run script with following arguments for each of the supported python versions and required tag, for example:
# build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch v1.11.0-rc3
import os
import subprocess
import sys
import time
from typing import Optional, Union
import boto3
# AMI images for us-east-1, change the following based on your ~/.aws/config
os_amis = {
"ubuntu20_04": "ami-052eac90edaa9d08f", # login_name: ubuntu
"ubuntu22_04": "ami-0c6c29c5125214c77", # login_name: ubuntu
"redhat8": "ami-0698b90665a2ddcf1", # login_name: ec2-user
}
ubuntu20_04_ami = os_amis["ubuntu20_04"]
def compute_keyfile_path(key_name: Optional[str] = None) -> tuple[str, str]:
if key_name is None:
key_name = os.getenv("AWS_KEY_NAME")
if key_name is None:
return os.getenv("SSH_KEY_PATH", ""), ""
homedir_path = os.path.expanduser("~")
default_path = os.path.join(homedir_path, ".ssh", f"{key_name}.pem")
return os.getenv("SSH_KEY_PATH", default_path), key_name
ec2 = boto3.resource("ec2")
def ec2_get_instances(filter_name, filter_value):
return ec2.instances.filter(
Filters=[{"Name": filter_name, "Values": [filter_value]}]
)
def ec2_instances_of_type(instance_type="t4g.2xlarge"):
return ec2_get_instances("instance-type", instance_type)
def ec2_instances_by_id(instance_id):
rc = list(ec2_get_instances("instance-id", instance_id))
return rc[0] if len(rc) > 0 else None
def start_instance(
key_name, ami=ubuntu20_04_ami, instance_type="t4g.2xlarge", ebs_size: int = 50
):
inst = ec2.create_instances(
ImageId=ami,
InstanceType=instance_type,
SecurityGroups=["ssh-allworld"],
KeyName=key_name,
MinCount=1,
MaxCount=1,
BlockDeviceMappings=[
{
"DeviceName": "/dev/sda1",
"Ebs": {
"DeleteOnTermination": True,
"VolumeSize": ebs_size,
"VolumeType": "standard",
},
}
],
)[0]
print(f"Create instance {inst.id}")
inst.wait_until_running()
running_inst = ec2_instances_by_id(inst.id)
print(f"Instance started at {running_inst.public_dns_name}")
return running_inst
class RemoteHost:
addr: str
keyfile_path: str
login_name: str
container_id: Optional[str] = None
ami: Optional[str] = None
def __init__(self, addr: str, keyfile_path: str, login_name: str = "ubuntu"):
self.addr = addr
self.keyfile_path = keyfile_path
self.login_name = login_name
def _gen_ssh_prefix(self) -> list[str]:
return [
"ssh",
"-o",
"StrictHostKeyChecking=no",
"-i",
self.keyfile_path,
f"{self.login_name}@{self.addr}",
"--",
]
@staticmethod
def _split_cmd(args: Union[str, list[str]]) -> list[str]:
return args.split() if isinstance(args, str) else args
def run_ssh_cmd(self, args: Union[str, list[str]]) -> None:
subprocess.check_call(self._gen_ssh_prefix() + self._split_cmd(args))
def check_ssh_output(self, args: Union[str, list[str]]) -> str:
return subprocess.check_output(
self._gen_ssh_prefix() + self._split_cmd(args)
).decode("utf-8")
def scp_upload_file(self, local_file: str, remote_file: str) -> None:
subprocess.check_call(
[
"scp",
"-i",
self.keyfile_path,
local_file,
f"{self.login_name}@{self.addr}:{remote_file}",
]
)
def scp_download_file(
self, remote_file: str, local_file: Optional[str] = None
) -> None:
if local_file is None:
local_file = "."
subprocess.check_call(
[
"scp",
"-i",
self.keyfile_path,
f"{self.login_name}@{self.addr}:{remote_file}",
local_file,
]
)
def start_docker(self, image="quay.io/pypa/manylinux2014_aarch64:latest") -> None:
self.run_ssh_cmd("sudo apt-get install -y docker.io")
self.run_ssh_cmd(f"sudo usermod -a -G docker {self.login_name}")
self.run_ssh_cmd("sudo service docker start")
self.run_ssh_cmd(f"docker pull {image}")
self.container_id = self.check_ssh_output(
f"docker run -t -d -w /root {image}"
).strip()
def using_docker(self) -> bool:
return self.container_id is not None
def run_cmd(self, args: Union[str, list[str]]) -> None:
if not self.using_docker():
return self.run_ssh_cmd(args)
assert self.container_id is not None
docker_cmd = self._gen_ssh_prefix() + [
"docker",
"exec",
"-i",
self.container_id,
"bash",
]
p = subprocess.Popen(docker_cmd, stdin=subprocess.PIPE)
p.communicate(
input=" ".join(["source .bashrc && "] + self._split_cmd(args)).encode(
"utf-8"
)
)
rc = p.wait()
if rc != 0:
raise subprocess.CalledProcessError(rc, docker_cmd)
def check_output(self, args: Union[str, list[str]]) -> str:
if not self.using_docker():
return self.check_ssh_output(args)
assert self.container_id is not None
docker_cmd = self._gen_ssh_prefix() + [
"docker",
"exec",
"-i",
self.container_id,
"bash",
]
p = subprocess.Popen(docker_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
(out, err) = p.communicate(
input=" ".join(["source .bashrc && "] + self._split_cmd(args)).encode(
"utf-8"
)
)
rc = p.wait()
if rc != 0:
raise subprocess.CalledProcessError(rc, docker_cmd, output=out, stderr=err)
return out.decode("utf-8")
def upload_file(self, local_file: str, remote_file: str) -> None:
if not self.using_docker():
return self.scp_upload_file(local_file, remote_file)
tmp_file = os.path.join("/tmp", os.path.basename(local_file))
self.scp_upload_file(local_file, tmp_file)
self.run_ssh_cmd(
["docker", "cp", tmp_file, f"{self.container_id}:/root/{remote_file}"]
)
self.run_ssh_cmd(["rm", tmp_file])
def download_file(self, remote_file: str, local_file: Optional[str] = None) -> None:
if not self.using_docker():
return self.scp_download_file(remote_file, local_file)
tmp_file = os.path.join("/tmp", os.path.basename(remote_file))
self.run_ssh_cmd(
["docker", "cp", f"{self.container_id}:/root/{remote_file}", tmp_file]
)
self.scp_download_file(tmp_file, local_file)
self.run_ssh_cmd(["rm", tmp_file])
def download_wheel(
self, remote_file: str, local_file: Optional[str] = None
) -> None:
if self.using_docker() and local_file is None:
basename = os.path.basename(remote_file)
local_file = basename.replace(
"-linux_aarch64.whl", "-manylinux2014_aarch64.whl"
)
self.download_file(remote_file, local_file)
def list_dir(self, path: str) -> list[str]:
return self.check_output(["ls", "-1", path]).split("\n")
def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
import socket
for i in range(attempt_cnt):
try:
with socket.create_connection((addr, port), timeout=timeout):
return
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
if i == attempt_cnt - 1:
raise
time.sleep(timeout)
def update_apt_repo(host: RemoteHost) -> None:
time.sleep(5)
host.run_cmd("sudo systemctl stop apt-daily.service || true")
host.run_cmd("sudo systemctl stop unattended-upgrades.service || true")
host.run_cmd(
"while systemctl is-active --quiet apt-daily.service; do sleep 1; done"
)
host.run_cmd(
"while systemctl is-active --quiet unattended-upgrades.service; do sleep 1; done"
)
host.run_cmd("sudo apt-get update")
time.sleep(3)
host.run_cmd("sudo apt-get update")
def install_condaforge(
host: RemoteHost, suffix: str = "latest/download/Miniforge3-Linux-aarch64.sh"
) -> None:
print("Install conda-forge")
host.run_cmd(f"curl -OL https://github.com/conda-forge/miniforge/releases/{suffix}")
host.run_cmd(f"sh -f {os.path.basename(suffix)} -b")
host.run_cmd(f"rm -f {os.path.basename(suffix)}")
if host.using_docker():
host.run_cmd("echo 'PATH=$HOME/miniforge3/bin:$PATH'>>.bashrc")
else:
host.run_cmd(
[
"sed",
"-i",
"'/^# If not running interactively.*/i PATH=$HOME/miniforge3/bin:$PATH'",
".bashrc",
]
)
def install_condaforge_python(host: RemoteHost, python_version="3.8") -> None:
if python_version == "3.6":
# Python-3.6 EOLed and not compatible with conda-4.11
install_condaforge(
host, suffix="download/4.10.3-10/Miniforge3-4.10.3-10-Linux-aarch64.sh"
)
host.run_cmd(f"conda install -y python={python_version} numpy pyyaml")
else:
install_condaforge(
host, suffix="download/4.11.0-4/Miniforge3-4.11.0-4-Linux-aarch64.sh"
)
# Pytorch-1.10 or older are not compatible with setuptools=59.6 or newer
host.run_cmd(
f"conda install -y python={python_version} numpy pyyaml setuptools>=59.5.0"
)
def embed_libgomp(host: RemoteHost, use_conda, wheel_name) -> None:
host.run_cmd("pip3 install auditwheel")
host.run_cmd(
"conda install -y patchelf" if use_conda else "sudo apt-get install -y patchelf"
)
from tempfile import NamedTemporaryFile
with NamedTemporaryFile() as tmp:
tmp.write(embed_library_script.encode("utf-8"))
tmp.flush()
host.upload_file(tmp.name, "embed_library.py")
print("Embedding libgomp into wheel")
if host.using_docker():
host.run_cmd(f"python3 embed_library.py {wheel_name} --update-tag")
else:
host.run_cmd(f"python3 embed_library.py {wheel_name}")
def checkout_repo(
host: RemoteHost,
*,
branch: str = "main",
url: str,
git_clone_flags: str,
mapping: dict[str, tuple[str, str]],
) -> Optional[str]:
for prefix in mapping:
if not branch.startswith(prefix):
continue
tag = f"v{mapping[prefix][0]}-{mapping[prefix][1]}"
host.run_cmd(f"git clone {url} -b {tag} {git_clone_flags}")
return mapping[prefix][0]
host.run_cmd(f"git clone {url} -b {branch} {git_clone_flags}")
return None
def build_torchvision(
host: RemoteHost,
*,
branch: str = "main",
use_conda: bool = True,
git_clone_flags: str,
run_smoke_tests: bool = True,
) -> str:
print("Checking out TorchVision repo")
build_version = checkout_repo(
host,
branch=branch,
url="https://github.com/pytorch/vision",
git_clone_flags=git_clone_flags,
mapping={
"v1.7.1": ("0.8.2", "rc2"),
"v1.8.0": ("0.9.0", "rc3"),
"v1.8.1": ("0.9.1", "rc1"),
"v1.9.0": ("0.10.0", "rc1"),
"v1.10.0": ("0.11.1", "rc1"),
"v1.10.1": ("0.11.2", "rc1"),
"v1.10.2": ("0.11.3", "rc1"),
"v1.11.0": ("0.12.0", "rc1"),
"v1.12.0": ("0.13.0", "rc4"),
"v1.12.1": ("0.13.1", "rc6"),
"v1.13.0": ("0.14.0", "rc4"),
"v1.13.1": ("0.14.1", "rc2"),
"v2.0.0": ("0.15.1", "rc2"),
"v2.0.1": ("0.15.2", "rc2"),
},
)
print("Building TorchVision wheel")
# Please note libnpg and jpeg are required to build image.so extension
if use_conda:
host.run_cmd("conda install -y libpng jpeg")
# Remove .so files to force static linking
host.run_cmd(
"rm miniforge3/lib/libpng.so miniforge3/lib/libpng16.so miniforge3/lib/libjpeg.so"
)
# And patch setup.py to include libz dependency for libpng
host.run_cmd(
[
'sed -i -e \'s/image_link_flags\\.append("png")/image_link_flags += ["png", "z"]/\' vision/setup.py'
]
)
build_vars = ""
if branch == "nightly":
version = host.check_output(
["if [ -f vision/version.txt ]; then cat vision/version.txt; fi"]
).strip()
if len(version) == 0:
# In older revisions, version was embedded in setup.py
version = (
host.check_output(["grep", '"version = \'"', "vision/setup.py"])
.strip()
.split("'")[1][:-2]
)
build_date = (
host.check_output("cd vision && git log --pretty=format:%s -1")
.strip()
.split()[0]
.replace("-", "")
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd vision && {build_vars} python3 -m build --wheel --no-isolation")
vision_wheel_name = host.list_dir("vision/dist")[0]
embed_libgomp(host, use_conda, os.path.join("vision", "dist", vision_wheel_name))
print("Copying TorchVision wheel")
host.download_wheel(os.path.join("vision", "dist", vision_wheel_name))
if run_smoke_tests:
host.run_cmd(
f"pip3 install {os.path.join('vision', 'dist', vision_wheel_name)}"
)
host.run_cmd("python3 vision/test/smoke_test.py")
print("Delete vision checkout")
host.run_cmd("rm -rf vision")
return vision_wheel_name
def build_torchdata(
host: RemoteHost,
*,
branch: str = "main",
use_conda: bool = True,
git_clone_flags: str = "",
) -> str:
print("Checking out TorchData repo")
git_clone_flags += " --recurse-submodules"
build_version = checkout_repo(
host,
branch=branch,
url="https://github.com/pytorch/data",
git_clone_flags=git_clone_flags,
mapping={
"v1.13.1": ("0.5.1", ""),
"v2.0.0": ("0.6.0", "rc5"),
"v2.0.1": ("0.6.1", "rc1"),
},
)
print("Building TorchData wheel")
build_vars = ""
if branch == "nightly":
version = host.check_output(
["if [ -f data/version.txt ]; then cat data/version.txt; fi"]
).strip()
build_date = (
host.check_output("cd data && git log --pretty=format:%s -1")
.strip()
.split()[0]
.replace("-", "")
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd data && {build_vars} python3 -m build --wheel --no-isolation")
wheel_name = host.list_dir("data/dist")[0]
embed_libgomp(host, use_conda, os.path.join("data", "dist", wheel_name))
print("Copying TorchData wheel")
host.download_wheel(os.path.join("data", "dist", wheel_name))
return wheel_name
def build_torchtext(
host: RemoteHost,
*,
branch: str = "main",
use_conda: bool = True,
git_clone_flags: str = "",
) -> str:
print("Checking out TorchText repo")
git_clone_flags += " --recurse-submodules"
build_version = checkout_repo(
host,
branch=branch,
url="https://github.com/pytorch/text",
git_clone_flags=git_clone_flags,
mapping={
"v1.9.0": ("0.10.0", "rc1"),
"v1.10.0": ("0.11.0", "rc2"),
"v1.10.1": ("0.11.1", "rc1"),
"v1.10.2": ("0.11.2", "rc1"),
"v1.11.0": ("0.12.0", "rc1"),
"v1.12.0": ("0.13.0", "rc2"),
"v1.12.1": ("0.13.1", "rc5"),
"v1.13.0": ("0.14.0", "rc3"),
"v1.13.1": ("0.14.1", "rc1"),
"v2.0.0": ("0.15.1", "rc2"),
"v2.0.1": ("0.15.2", "rc2"),
},
)
print("Building TorchText wheel")
build_vars = ""
if branch == "nightly":
version = host.check_output(
["if [ -f text/version.txt ]; then cat text/version.txt; fi"]
).strip()
build_date = (
host.check_output("cd text && git log --pretty=format:%s -1")
.strip()
.split()[0]
.replace("-", "")
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd text && {build_vars} python3 -m build --wheel --no-isolation")
wheel_name = host.list_dir("text/dist")[0]
embed_libgomp(host, use_conda, os.path.join("text", "dist", wheel_name))
print("Copying TorchText wheel")
host.download_wheel(os.path.join("text", "dist", wheel_name))
return wheel_name
def build_torchaudio(
host: RemoteHost,
*,
branch: str = "main",
use_conda: bool = True,
git_clone_flags: str = "",
) -> str:
print("Checking out TorchAudio repo")
git_clone_flags += " --recurse-submodules"
build_version = checkout_repo(
host,
branch=branch,
url="https://github.com/pytorch/audio",
git_clone_flags=git_clone_flags,
mapping={
"v1.9.0": ("0.9.0", "rc2"),
"v1.10.0": ("0.10.0", "rc5"),
"v1.10.1": ("0.10.1", "rc1"),
"v1.10.2": ("0.10.2", "rc1"),
"v1.11.0": ("0.11.0", "rc1"),
"v1.12.0": ("0.12.0", "rc3"),
"v1.12.1": ("0.12.1", "rc5"),
"v1.13.0": ("0.13.0", "rc4"),
"v1.13.1": ("0.13.1", "rc2"),
"v2.0.0": ("2.0.1", "rc3"),
"v2.0.1": ("2.0.2", "rc2"),
},
)
print("Building TorchAudio wheel")
build_vars = ""
if branch == "nightly":
version = (
host.check_output(["grep", '"version = \'"', "audio/setup.py"])
.strip()
.split("'")[1][:-2]
)
build_date = (
host.check_output("cd audio && git log --pretty=format:%s -1")
.strip()
.split()[0]
.replace("-", "")
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(
f"cd audio && export FFMPEG_ROOT=$(pwd)/third_party/ffmpeg && export USE_FFMPEG=1 \
&& ./packaging/ffmpeg/build.sh \
&& {build_vars} python3 -m build --wheel --no-isolation"
)
wheel_name = host.list_dir("audio/dist")[0]
embed_libgomp(host, use_conda, os.path.join("audio", "dist", wheel_name))
print("Copying TorchAudio wheel")
host.download_wheel(os.path.join("audio", "dist", wheel_name))
return wheel_name
def configure_system(
host: RemoteHost,
*,
compiler: str = "gcc-8",
use_conda: bool = True,
python_version: str = "3.8",
) -> None:
if use_conda:
install_condaforge_python(host, python_version)
print("Configuring the system")
if not host.using_docker():
update_apt_repo(host)
host.run_cmd("sudo apt-get install -y ninja-build g++ git cmake gfortran unzip")
else:
host.run_cmd("yum install -y sudo")
host.run_cmd("conda install -y ninja scons")
if not use_conda:
host.run_cmd(
"sudo apt-get install -y python3-dev python3-yaml python3-setuptools python3-wheel python3-pip"
)
host.run_cmd("pip3 install dataclasses typing-extensions")
if not use_conda:
print("Installing Cython + numpy from PyPy")
host.run_cmd("sudo pip3 install Cython")
host.run_cmd("sudo pip3 install numpy")
def build_domains(
host: RemoteHost,
*,
branch: str = "main",
use_conda: bool = True,
git_clone_flags: str = "",
) -> tuple[str, str, str, str]:
vision_wheel_name = build_torchvision(
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
)
audio_wheel_name = build_torchaudio(
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
)
data_wheel_name = build_torchdata(
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
)
text_wheel_name = build_torchtext(
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
)
return (vision_wheel_name, audio_wheel_name, data_wheel_name, text_wheel_name)
def start_build(
host: RemoteHost,
*,
branch: str = "main",
compiler: str = "gcc-8",
use_conda: bool = True,
python_version: str = "3.8",
pytorch_only: bool = False,
pytorch_build_number: Optional[str] = None,
shallow_clone: bool = True,
enable_mkldnn: bool = False,
) -> tuple[str, str, str, str, str]:
git_clone_flags = " --depth 1 --shallow-submodules" if shallow_clone else ""
if host.using_docker() and not use_conda:
print("Auto-selecting conda option for docker images")
use_conda = True
if not host.using_docker():
print("Disable mkldnn for host builds")
enable_mkldnn = False
configure_system(
host, compiler=compiler, use_conda=use_conda, python_version=python_version
)
if host.using_docker():
print("Move libgfortant.a into a standard location")
# HACK: pypa gforntran.a is compiled without PIC, which leads to the following error
# libgfortran.a(error.o)(.text._gfortrani_st_printf+0x34): unresolvable R_AARCH64_ADR_PREL_PG_HI21 relocation against symbol `__stack_chk_guard@@GLIBC_2.17' # noqa: E501, B950
# Workaround by copying gfortran library from the host
host.run_ssh_cmd("sudo apt-get install -y gfortran-8")
host.run_cmd("mkdir -p /usr/lib/gcc/aarch64-linux-gnu/8")
host.run_ssh_cmd(
[
"docker",
"cp",
"/usr/lib/gcc/aarch64-linux-gnu/8/libgfortran.a",
f"{host.container_id}:/opt/rh/devtoolset-10/root/usr/lib/gcc/aarch64-redhat-linux/10/",
]
)
print("Checking out PyTorch repo")
host.run_cmd(
f"git clone --recurse-submodules -b {branch} https://github.com/pytorch/pytorch {git_clone_flags}"
)
host.run_cmd("pytorch/.ci/docker/common/install_openblas.sh")
print("Building PyTorch wheel")
build_opts = ""
if pytorch_build_number is not None:
build_opts += f" -C--build-option=--build-number={pytorch_build_number}"
# Breakpad build fails on aarch64
build_vars = "USE_BREAKPAD=0 "
if branch == "nightly":
build_date = (
host.check_output("cd pytorch && git log --pretty=format:%s -1")
.strip()
.split()[0]
.replace("-", "")
)
version = host.check_output("cat pytorch/version.txt").strip()[:-2]
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1"
if branch.startswith(("v1.", "v2.")):
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1"
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
if enable_mkldnn:
host.run_cmd("pytorch/.ci/docker/common/install_acl.sh")
print("build pytorch with mkldnn+acl backend")
build_vars += " USE_MKLDNN=ON USE_MKLDNN_ACL=ON"
build_vars += " BLAS=OpenBLAS"
build_vars += " OpenBLAS_HOME=/opt/OpenBLAS"
build_vars += " ACL_ROOT_DIR=/acl"
host.run_cmd(
f"cd $HOME/pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
)
print("Repair the wheel")
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
ld_library_path = "/acl/build:$HOME/pytorch/build/lib"
host.run_cmd(
f"export LD_LIBRARY_PATH={ld_library_path} && auditwheel repair $HOME/pytorch/dist/{pytorch_wheel_name}"
)
print("replace the original wheel with the repaired one")
pytorch_repaired_wheel_name = host.list_dir("wheelhouse")[0]
host.run_cmd(
f"cp $HOME/wheelhouse/{pytorch_repaired_wheel_name} $HOME/pytorch/dist/{pytorch_wheel_name}"
)
else:
print("build pytorch without mkldnn backend")
host.run_cmd(
f"cd pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
)
print("Deleting build folder")
host.run_cmd("cd pytorch && rm -rf build")
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
embed_libgomp(host, use_conda, os.path.join("pytorch", "dist", pytorch_wheel_name))
print("Copying the wheel")
host.download_wheel(os.path.join("pytorch", "dist", pytorch_wheel_name))
print("Installing PyTorch wheel")
host.run_cmd(f"pip3 install pytorch/dist/{pytorch_wheel_name}")
if pytorch_only:
return (pytorch_wheel_name, None, None, None, None)
domain_wheels = build_domains(
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
)
return (pytorch_wheel_name, *domain_wheels)
embed_library_script = """
#!/usr/bin/env python3
from auditwheel.patcher import Patchelf
from auditwheel.wheeltools import InWheelCtx
from auditwheel.elfutils import elf_file_filter
from auditwheel.repair import copylib
from auditwheel.lddtree import lddtree
from subprocess import check_call
import os
import shutil
import sys
from tempfile import TemporaryDirectory
def replace_tag(filename):
with open(filename, 'r') as f:
lines = f.read().split("\\n")
for i,line in enumerate(lines):
if not line.startswith("Tag: "):
continue
lines[i] = line.replace("-linux_", "-manylinux2014_")
print(f'Updated tag from {line} to {lines[i]}')
with open(filename, 'w') as f:
f.write("\\n".join(lines))
class AlignedPatchelf(Patchelf):
def set_soname(self, file_name: str, new_soname: str) -> None:
check_call(['patchelf', '--page-size', '65536', '--set-soname', new_soname, file_name])
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
check_call(['patchelf', '--page-size', '65536', '--replace-needed', soname, new_soname, file_name])
def embed_library(whl_path, lib_soname, update_tag=False):
patcher = AlignedPatchelf()
out_dir = TemporaryDirectory()
whl_name = os.path.basename(whl_path)
tmp_whl_name = os.path.join(out_dir.name, whl_name)
with InWheelCtx(whl_path) as ctx:
torchlib_path = os.path.join(ctx._tmpdir.name, 'torch', 'lib')
ctx.out_wheel=tmp_whl_name
new_lib_path, new_lib_soname = None, None
for filename, elf in elf_file_filter(ctx.iter_files()):
if not filename.startswith('torch/lib'):
continue
libtree = lddtree(filename)
if lib_soname not in libtree['needed']:
continue
lib_path = libtree['libs'][lib_soname]['path']
if lib_path is None:
print(f"Can't embed {lib_soname} as it could not be found")
break
if lib_path.startswith(torchlib_path):
continue
if new_lib_path is None:
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
patcher.replace_needed(filename, lib_soname, new_lib_soname)
print(f'Replacing {lib_soname} with {new_lib_soname} for {filename}')
if update_tag:
# Add manylinux2014 tag
for filename in ctx.iter_files():
if os.path.basename(filename) != 'WHEEL':
continue
replace_tag(filename)
shutil.move(tmp_whl_name, whl_path)
if __name__ == '__main__':
embed_library(sys.argv[1], 'libgomp.so.1', len(sys.argv) > 2 and sys.argv[2] == '--update-tag')
"""
def run_tests(host: RemoteHost, whl: str, branch="main") -> None:
print("Configuring the system")
update_apt_repo(host)
host.run_cmd("sudo apt-get install -y python3-pip git")
host.run_cmd("sudo pip3 install Cython")
host.run_cmd("sudo pip3 install numpy")
host.upload_file(whl, ".")
host.run_cmd(f"sudo pip3 install {whl}")
host.run_cmd("python3 -c 'import torch;print(torch.rand((3,3))'")
host.run_cmd(f"git clone -b {branch} https://github.com/pytorch/pytorch")
host.run_cmd("cd pytorch/test; python3 test_torch.py -v")
def get_instance_name(instance) -> Optional[str]:
if instance.tags is None:
return None
for tag in instance.tags:
if tag["Key"] == "Name":
return tag["Value"]
return None
def list_instances(instance_type: str) -> None:
print(f"All instances of type {instance_type}")
for instance in ec2_instances_of_type(instance_type):
ifaces = instance.network_interfaces
az = ifaces[0].subnet.availability_zone if len(ifaces) > 0 else None
print(
f"{instance.id} {get_instance_name(instance)} {instance.public_dns_name} {instance.state['Name']} {az}"
)
def terminate_instances(instance_type: str) -> None:
print(f"Terminating all instances of type {instance_type}")
instances = list(ec2_instances_of_type(instance_type))
for instance in instances:
print(f"Terminating {instance.id}")
instance.terminate()
print("Waiting for termination to complete")
for instance in instances:
instance.wait_until_terminated()
def parse_arguments():
from argparse import ArgumentParser
parser = ArgumentParser("Build and test AARCH64 wheels using EC2")
parser.add_argument("--key-name", type=str)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--build-only", action="store_true")
parser.add_argument("--test-only", type=str)
group = parser.add_mutually_exclusive_group()
group.add_argument("--os", type=str, choices=list(os_amis.keys()))
group.add_argument("--ami", type=str)
parser.add_argument(
"--python-version",
type=str,
choices=[f"3.{d}" for d in range(6, 12)],
default=None,
)
parser.add_argument("--alloc-instance", action="store_true")
parser.add_argument("--list-instances", action="store_true")
parser.add_argument("--pytorch-only", action="store_true")
parser.add_argument("--keep-running", action="store_true")
parser.add_argument("--terminate-instances", action="store_true")
parser.add_argument("--instance-type", type=str, default="t4g.2xlarge")
parser.add_argument("--ebs-size", type=int, default=50)
parser.add_argument("--branch", type=str, default="main")
parser.add_argument("--use-docker", action="store_true")
parser.add_argument(
"--compiler",
type=str,
choices=["gcc-7", "gcc-8", "gcc-9", "clang"],
default="gcc-8",
)
parser.add_argument("--use-torch-from-pypi", action="store_true")
parser.add_argument("--pytorch-build-number", type=str, default=None)
parser.add_argument("--disable-mkldnn", action="store_true")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
ami = (
args.ami
if args.ami is not None
else os_amis[args.os]
if args.os is not None
else ubuntu20_04_ami
)
keyfile_path, key_name = compute_keyfile_path(args.key_name)
if args.list_instances:
list_instances(args.instance_type)
sys.exit(0)
if args.terminate_instances:
terminate_instances(args.instance_type)
sys.exit(0)
if len(key_name) == 0:
raise RuntimeError("""
Cannot start build without key_name, please specify
--key-name argument or AWS_KEY_NAME environment variable.""")
if len(keyfile_path) == 0 or not os.path.exists(keyfile_path):
raise RuntimeError(f"""
Cannot find keyfile with name: [{key_name}] in path: [{keyfile_path}], please
check `~/.ssh/` folder or manually set SSH_KEY_PATH environment variable.""")
# Starting the instance
inst = start_instance(
key_name, ami=ami, instance_type=args.instance_type, ebs_size=args.ebs_size
)
instance_name = f"{args.key_name}-{args.os}"
if args.python_version is not None:
instance_name += f"-py{args.python_version}"
inst.create_tags(
DryRun=False,
Tags=[
{
"Key": "Name",
"Value": instance_name,
}
],
)
addr = inst.public_dns_name
wait_for_connection(addr, 22)
host = RemoteHost(addr, keyfile_path)
host.ami = ami
if args.use_docker:
update_apt_repo(host)
host.start_docker()
if args.test_only:
run_tests(host, args.test_only)
sys.exit(0)
if args.alloc_instance:
if args.python_version is None:
sys.exit(0)
install_condaforge_python(host, args.python_version)
sys.exit(0)
python_version = args.python_version if args.python_version is not None else "3.10"
if args.use_torch_from_pypi:
configure_system(host, compiler=args.compiler, python_version=python_version)
print("Installing PyTorch wheel")
host.run_cmd("pip3 install torch")
build_domains(
host, branch=args.branch, git_clone_flags=" --depth 1 --shallow-submodules"
)
else:
start_build(
host,
branch=args.branch,
compiler=args.compiler,
python_version=python_version,
pytorch_only=args.pytorch_only,
pytorch_build_number=args.pytorch_build_number,
enable_mkldnn=not args.disable_mkldnn,
)
if not args.keep_running:
print(f"Waiting for instance {inst.id} to terminate")
inst.terminate()
inst.wait_until_terminated()

View File

@ -1,87 +0,0 @@
#!/usr/bin/env python3
import os
import shutil
import sys
from subprocess import check_call
from tempfile import TemporaryDirectory
from auditwheel.elfutils import elf_file_filter
from auditwheel.lddtree import lddtree
from auditwheel.patcher import Patchelf
from auditwheel.repair import copylib
from auditwheel.wheeltools import InWheelCtx
def replace_tag(filename):
with open(filename) as f:
lines = f.read().split("\\n")
for i, line in enumerate(lines):
if not line.startswith("Tag: "):
continue
lines[i] = line.replace("-linux_", "-manylinux2014_")
print(f"Updated tag from {line} to {lines[i]}")
with open(filename, "w") as f:
f.write("\\n".join(lines))
class AlignedPatchelf(Patchelf):
def set_soname(self, file_name: str, new_soname: str) -> None:
check_call(
["patchelf", "--page-size", "65536", "--set-soname", new_soname, file_name]
)
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
check_call(
[
"patchelf",
"--page-size",
"65536",
"--replace-needed",
soname,
new_soname,
file_name,
]
)
def embed_library(whl_path, lib_soname, update_tag=False):
patcher = AlignedPatchelf()
out_dir = TemporaryDirectory()
whl_name = os.path.basename(whl_path)
tmp_whl_name = os.path.join(out_dir.name, whl_name)
with InWheelCtx(whl_path) as ctx:
torchlib_path = os.path.join(ctx._tmpdir.name, "torch", "lib")
ctx.out_wheel = tmp_whl_name
new_lib_path, new_lib_soname = None, None
for filename, _ in elf_file_filter(ctx.iter_files()):
if not filename.startswith("torch/lib"):
continue
libtree = lddtree(filename)
if lib_soname not in libtree["needed"]:
continue
lib_path = libtree["libs"][lib_soname]["path"]
if lib_path is None:
print(f"Can't embed {lib_soname} as it could not be found")
break
if lib_path.startswith(torchlib_path):
continue
if new_lib_path is None:
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
patcher.replace_needed(filename, lib_soname, new_lib_soname)
print(f"Replacing {lib_soname} with {new_lib_soname} for {filename}")
if update_tag:
# Add manylinux2014 tag
for filename in ctx.iter_files():
if os.path.basename(filename) != "WHEEL":
continue
replace_tag(filename)
shutil.move(tmp_whl_name, whl_path)
if __name__ == "__main__":
embed_library(
sys.argv[1], "libgomp.so.1", len(sys.argv) > 2 and sys.argv[2] == "--update-tag"
)

View File

@ -188,7 +188,7 @@ case "$tag" in
fi
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.1
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes

View File

@ -60,16 +60,14 @@ EOF
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated rocm-llvm-dev
fi
if [[ $(ver $ROCM_VERSION) -lt $(ver 7.1) ]]; then
# precompiled miopen kernels added in ROCm 3.5, renamed in ROCm 5.5, removed in ROCm 7.1
# search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
fi
# precompiled miopen kernels added in ROCm 3.5, renamed in ROCm 5.5
# search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
fi
# ROCm 6.0 had a regression where journal_mode was enabled on the kdb files resulting in permission errors at runtime

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# post merge of https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -402,6 +402,3 @@ scikit-build==0.18.1
pyre-extensions==0.0.32
tabulate==0.9.0
#Description: These package are needed to build FBGEMM and torchrec on PyTorch CI
Jinja2==3.1.6
#Description: required for torch.distributed.debug

View File

@ -4,14 +4,17 @@ set -ex
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
# Source the common build script for architecture-specific configurations (MKLDNN, ACL, etc.)
source "${SCRIPTPATH}/../pytorch/build.sh" || true
case "${GPU_ARCH_TYPE:-BLANK}" in
cuda)
cuda | cuda-aarch64)
bash "${SCRIPTPATH}/build_cuda.sh"
;;
rocm)
bash "${SCRIPTPATH}/build_rocm.sh"
;;
cpu | cpu-cxx11-abi | cpu-s390x)
cpu | cpu-cxx11-abi | cpu-aarch64 | cpu-s390x)
bash "${SCRIPTPATH}/build_cpu.sh"
;;
xpu)

View File

@ -18,12 +18,31 @@ retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Detect architecture first
ARCH=$(uname -m)
echo "Detected architecture: $ARCH"
PLATFORM=""
# TODO move this into the Docker images
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
PLATFORM="manylinux_2_28_x86_64"
# Set platform based on architecture
case $ARCH in
x86_64)
PLATFORM="manylinux_2_28_x86_64"
;;
aarch64)
PLATFORM="manylinux_2_28_aarch64"
;;
s390x)
PLATFORM="manylinux_2_28_s390x"
;;
*)
echo "Unsupported architecture: $ARCH"
exit 1
;;
esac
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
retry dnf install -q -y zip openssl
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
@ -38,6 +57,8 @@ else
exit 1
fi
echo "Platform set to: $PLATFORM"
# We use the package name to test the package by passing this to 'pip install'
# This is the env variable that setup.py uses to name the package. Note that
# pip 'normalizes' the name first by changing all - to _
@ -299,8 +320,8 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
# ROCm workaround for roctracer dlopens
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
patchedpath=$(fname_without_so_number $destpath)
# Keep the so number for XPU dependencies and libgomp.so.1 to avoid twice load
elif [[ "$DESIRED_CUDA" == *"xpu"* || "$filename" == "libgomp.so.1" ]]; then
# Keep the so number for XPU dependencies, libgomp.so.1, ACL libraries, and NVPL libraries to avoid twice load
elif [[ "$DESIRED_CUDA" == *"xpu"* || "$filename" == "libgomp.so.1" || "$filename" == libarm_compute* || "$filename" == libnvpl* || "$filename" == "libgfortran.so.5" ]]; then
patchedpath=$destpath
else
patchedpath=$(fname_with_sha256 $destpath)
@ -346,9 +367,22 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
done
# create Manylinux 2_28 tag this needs to happen before regenerate the RECORD
if [[ $PLATFORM == "manylinux_2_28_x86_64" && $GPU_ARCH_TYPE != "cpu-s390x" && $GPU_ARCH_TYPE != "xpu" ]]; then
# Support all architectures (x86_64, aarch64, s390x)
if [[ "$IS_MANYLINUX2_28" == "1" && $GPU_ARCH_TYPE != "xpu" ]]; then
wheel_file=$(echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/WHEEL/g')
sed -i -e s#linux_x86_64#"${PLATFORM}"# $wheel_file;
echo "Updating wheel tag for $ARCH architecture"
# Replace linux_* with manylinux_2_28_* based on architecture
case $ARCH in
x86_64)
sed -i -e 's#linux_x86_64#manylinux_2_28_x86_64#g' $wheel_file
;;
aarch64)
sed -i -e 's#linux_aarch64#manylinux_2_28_aarch64#g' $wheel_file
;;
s390x)
sed -i -e 's#linux_s390x#manylinux_2_28_s390x#g' $wheel_file
;;
esac
fi
# regenerate the RECORD file with new hashes

View File

@ -15,6 +15,10 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
EXTRA_CAFFE2_CMAKE_FLAGS=()
fi
# Detect architecture
ARCH=$(uname -m)
echo "Building CPU wheel for architecture: $ARCH"
WHEELHOUSE_DIR="wheelhousecpu"
LIBTORCH_HOUSE_DIR="libtorch_housecpu"
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
@ -34,8 +38,10 @@ elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
if [[ "$(uname -m)" == "s390x" ]]; then
if [[ "$ARCH" == "s390x" ]]; then
LIBGOMP_PATH="/usr/lib/s390x-linux-gnu/libgomp.so.1"
elif [[ "$ARCH" == "aarch64" ]]; then
LIBGOMP_PATH="/usr/lib/aarch64-linux-gnu/libgomp.so.1"
else
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
fi
@ -49,6 +55,34 @@ DEPS_SONAME=(
"libgomp.so.1"
)
# Add ARM-specific library dependencies for CPU builds
if [[ "$ARCH" == "aarch64" ]]; then
echo "Adding ARM-specific CPU library dependencies"
# ARM Compute Library (if available)
if [[ -d "/acl/build" ]]; then
echo "Adding ARM Compute Library for CPU"
DEPS_LIST+=(
"/acl/build/libarm_compute.so"
"/acl/build/libarm_compute_graph.so"
)
DEPS_SONAME+=(
"libarm_compute.so"
"libarm_compute_graph.so"
)
fi
# ARM system libraries
DEPS_LIST+=(
"/usr/lib64/libgfortran.so.5"
"/opt/OpenBLAS/lib/libopenblas.so.0"
)
DEPS_SONAME+=(
"libgfortran.so.5"
"libopenblas.so.0"
)
fi
rm -rf /usr/local/cuda*
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"

View File

@ -29,6 +29,10 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
EXTRA_CAFFE2_CMAKE_FLAGS=()
fi
# Detect architecture
ARCH=$(uname -m)
echo "Building for architecture: $ARCH"
# Determine CUDA version and architectures to build for
#
# NOTE: We should first check `DESIRED_CUDA` when determining `CUDA_VERSION`,
@ -53,34 +57,60 @@ fi
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
# Function to remove architectures from a list
remove_archs() {
local result="$1"
shift
for arch in "$@"; do
result="${result//${arch};/}"
done
echo "$result"
}
# Function to filter CUDA architectures for aarch64
# aarch64 ARM GPUs only support certain compute capabilities
# Keep: 8.0 (A100), 9.0+ (Hopper, Grace Hopper, newer)
# Remove: < 8.0 (no ARM GPUs), 8.6 (x86_64 RTX 3090/A6000 only)
filter_aarch64_archs() {
local arch_list="$1"
# Explicitly remove architectures not needed on aarch64
arch_list=$(remove_archs "$arch_list" "5.0" "6.0" "7.0" "7.5" "8.6")
echo "$arch_list"
}
# Base: Common architectures across all modern CUDA versions
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0"
case ${CUDA_VERSION} in
#removing sm_50-sm_60 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
#however we would like to keep sm_70 architecture see: https://github.com/pytorch/pytorch/issues/157517
12.8)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0"
;;
12.9)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX"
# WAR to resolve the ld error in libtorch build with CUDA 12.9
12.6) TORCH_CUDA_ARCH_LIST="5.0;6.0;${TORCH_CUDA_ARCH_LIST}" ;; # Only 12.6 includes Legacy Maxwell/Pascal that will be removed in future releases
12.8) TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};10.0;12.0" ;; # +Hopper/Blackwell support
12.9) TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};10.0;12.0+PTX" # +Hopper/Blackwell support + PTX for forward compatibility
if [[ "$PACKAGE_TYPE" == "libtorch" ]]; then
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST//7.0;/}" # Remove 7.0 to resolve the ld error
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST//8.6;/}" # Remove 8.6 for libtorch
fi
;;
13.0)
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX"
;;
12.6)
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
;;
*)
echo "unknown cuda version $CUDA_VERSION"
exit 1
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;$([[ "$ARCH" == "aarch64" ]] && echo "11.0;" || echo "")12.0+PTX"
export TORCH_NVCC_FLAGS="-compress-mode=size"
export BUILD_BUNDLE_PTXAS=1
;;
*) echo "unknown cuda version $CUDA_VERSION"; exit 1 ;;
esac
# Filter for aarch64: Remove < 8.0 and 8.6
[[ "$ARCH" == "aarch64" ]] && TORCH_CUDA_ARCH_LIST=$(filter_aarch64_archs "$TORCH_CUDA_ARCH_LIST")
echo "TORCH_CUDA_ARCH_LIST set to: $TORCH_CUDA_ARCH_LIST"
export TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
echo "${TORCH_CUDA_ARCH_LIST}"
# Disable MAGMA for aarch64 as pre-built libraries are x86-64 only
if [[ "$ARCH" == "aarch64" ]]; then
echo "Disabling MAGMA for aarch64 architecture"
export USE_MAGMA=0
fi
# Package directories
WHEELHOUSE_DIR="wheelhouse$cuda_version_nodot"
LIBTORCH_HOUSE_DIR="libtorch_house$cuda_version_nodot"
@ -244,6 +274,51 @@ else
exit 1
fi
# Add ARM-specific library dependencies
if [[ "$ARCH" == "aarch64" ]]; then
echo "Adding ARM-specific library dependencies"
# ARM Compute Library (if available)
if [[ -d "/acl/build" ]]; then
echo "Adding ARM Compute Library"
DEPS_LIST+=(
"/acl/build/libarm_compute.so"
"/acl/build/libarm_compute_graph.so"
)
DEPS_SONAME+=(
"libarm_compute.so"
"libarm_compute_graph.so"
)
fi
# ARM system libraries
DEPS_LIST+=(
"/lib64/libgomp.so.1"
"/usr/lib64/libgfortran.so.5"
)
DEPS_SONAME+=(
"libgomp.so.1"
"libgfortran.so.5"
)
# NVPL libraries (ARM optimized BLAS/LAPACK)
if [[ -d "/usr/local/lib" && -f "/usr/local/lib/libnvpl_blas_lp64_gomp.so.0" ]]; then
echo "Adding NVPL libraries for ARM"
DEPS_LIST+=(
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0"
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0"
"/usr/local/lib/libnvpl_lapack_core.so.0"
"/usr/local/lib/libnvpl_blas_core.so.0"
)
DEPS_SONAME+=(
"libnvpl_lapack_lp64_gomp.so.0"
"libnvpl_blas_lp64_gomp.so.0"
"libnvpl_lapack_core.so.0"
"libnvpl_blas_core.so.0"
)
fi
fi
# run_tests.sh requires DESIRED_CUDA to know what tests to exclude
export DESIRED_CUDA="$cuda_version_nodot"
@ -251,9 +326,11 @@ export DESIRED_CUDA="$cuda_version_nodot"
rm -rf /usr/local/cuda || true
ln -s "/usr/local/cuda-${CUDA_VERSION}" /usr/local/cuda
# Switch `/usr/local/magma` to the desired CUDA version
rm -rf /usr/local/magma || true
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
# Switch `/usr/local/magma` to the desired CUDA version (skip for aarch64)
if [[ "$ARCH" != "aarch64" ]]; then
rm -rf /usr/local/magma || true
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
fi
export CUDA_VERSION=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev) # 10.0.130
export CUDA_VERSION_SHORT=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev | cut -f1,2 -d".") # 10.0

View File

@ -21,87 +21,3 @@ if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
fi
mkdir -p "$pytest_reports_dir" || true
##########################################
# copied from .ci/pytorch/common_utils.sh
##########################################
function get_pinned_commit() {
cat .github/ci_commit_pins/"${1}".txt
}
function pip_install_whl() {
# This is used to install PyTorch and other build artifacts wheel locally
# without using any network connection
# Convert the input arguments into an array
local args=("$@")
# Check if the first argument contains multiple paths separated by spaces
if [[ "${args[0]}" == *" "* ]]; then
# Split the string by spaces into an array
IFS=' ' read -r -a paths <<< "${args[0]}"
# Loop through each path and install individually
for path in "${paths[@]}"; do
echo "Installing $path"
python3 -mpip install --no-index --no-deps "$path"
done
else
# Loop through each argument and install individually
for path in "${args[@]}"; do
echo "Installing $path"
python3 -mpip install --no-index --no-deps "$path"
done
fi
}
function pip_build_and_install() {
local build_target=$1
local wheel_dir=$2
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
python3 -m pip wheel \
--no-build-isolation \
--no-deps \
-w "${wheel_dir}" \
"${build_target}"
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
}
function install_torchvision() {
local orig_preload
local commit
commit=$(get_pinned_commit vision)
orig_preload=${LD_PRELOAD}
if [ -n "${LD_PRELOAD}" ]; then
# Silence dlerror to work-around glibc ASAN bug, see https://sourceware.org/bugzilla/show_bug.cgi?id=27653#c9
echo 'char* dlerror(void) { return "";}'|gcc -fpic -shared -o "${HOME}/dlerror.so" -x c -
LD_PRELOAD=${orig_preload}:${HOME}/dlerror.so
fi
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
# Not sure if both are needed, but why not
export FORCE_CUDA=1
export WITH_CUDA=1
fi
pip_build_and_install "git+https://github.com/pytorch/vision.git@${commit}" dist/vision
if [ -n "${LD_PRELOAD}" ]; then
LD_PRELOAD=${orig_preload}
fi
}

View File

@ -19,7 +19,7 @@ git config --global --add safe.directory /var/lib/jenkins/workspace
if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
# TODO: This can be removed later once vision is also part of the Docker image
install_torchvision
pip install -q --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
# JIT C++ extensions require ninja, so put it into PATH.
export PATH="/var/lib/jenkins/.local/bin:$PATH"
# NB: ONNX test is fast (~15m) so it's ok to retry it few more times to avoid any flaky issue, we

View File

@ -86,10 +86,20 @@ else
fi
fi
# Enable MKLDNN with ARM Compute Library for ARM builds
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
export USE_MKLDNN=1
# ACL is required for aarch64 builds
if [[ ! -d "/acl" ]]; then
echo "ERROR: ARM Compute Library not found at /acl"
echo "ACL is required for aarch64 builds. Check Docker image setup."
exit 1
fi
export USE_MKLDNN_ACL=1
export ACL_ROOT_DIR=/acl
echo "ARM Compute Library enabled for MKLDNN: ACL_ROOT_DIR=/acl"
fi
if [[ "$BUILD_ENVIRONMENT" == *riscv64* ]]; then

View File

@ -1250,97 +1250,6 @@ test_custom_script_ops() {
assert_git_not_dirty
}
test_libtorch_agnostic_targetting() {
echo "Testing libtorch_agnostic runs correctly on TORCH_TARGET_VERSION"
REPO_DIR=$(pwd)
WHEEL_DIR="${REPO_DIR}/test/cpp_extensions/.wheels"
# Build wheel with current PyTorch (this has TORCH_TARGET_VERSION 2_9_0)
echo "Building 2.9 extension wheel with current PyTorch..."
pushd test/cpp_extensions/libtorch_agnostic_2_9_extension
time python setup.py bdist_wheel
# Save the wheel
mkdir -p "$WHEEL_DIR"
cp dist/*.whl "$WHEEL_DIR/"
WHEEL_FILE=$(find "$WHEEL_DIR" -maxdepth 1 -name "*.whl" -type f | head -1)
echo "Built wheel: $(basename "$WHEEL_FILE")"
popd
# Create venv and install PyTorch 2.9
python -m venv venv_pytorch_2_9
# shellcheck disable=SC1091
. venv_pytorch_2_9/bin/activate
# Clear PYTHONPATH to avoid using the development PyTorch
echo "Clearing PYTHONPATH to use only venv packages..."
unset PYTHONPATH
# Upgrade pip to latest version
echo "Upgrading pip to latest version..."
pip install --upgrade pip
pip --version
echo "Installing PyTorch 2.9..."
# Install from release channel only
PYTORCH_VERSION="2.9.0"
# Extract CUDA version from BUILD_ENVIRONMENT (e.g., "cuda12.1" -> "cu121")
if [[ "$BUILD_ENVIRONMENT" =~ cuda([0-9]+)\.([0-9]+) ]]; then
CUDA_MAJOR="${BASH_REMATCH[1]}"
CUDA_MINOR="${BASH_REMATCH[2]}"
CUDA_VERSION="cu${CUDA_MAJOR}${CUDA_MINOR}"
echo " Detected CUDA ${CUDA_MAJOR}.${CUDA_MINOR} from BUILD_ENVIRONMENT, using ${CUDA_VERSION}"
else
# Default to CPU build
CUDA_VERSION="cpu"
echo " No CUDA detected in BUILD_ENVIRONMENT, using CPU build"
fi
if pip install torch=="${PYTORCH_VERSION}" --index-url https://download.pytorch.org/whl/${CUDA_VERSION}/; then
echo "Installed PyTorch ${PYTORCH_VERSION} from release channel (${CUDA_VERSION})"
else
echo " FAILED to install PyTorch 2.9.0 from release channel"
echo " URL: https://download.pytorch.org/whl/${CUDA_VERSION}/"
deactivate
rm -rf venv_pytorch_2_9
return 1
fi
INSTALLED_VERSION=$(python -c "import torch; print(torch.__version__)" 2>/dev/null || echo "unknown")
echo " Installed version: $INSTALLED_VERSION"
# Install test dependencies
echo "Installing test dependencies..."
pip install expecttest numpy unittest-xml-reporting
# Install the pre-built wheel
echo ""
echo "Installing pre-built 2.9 extension wheel (built with PyTorch 2.10)..."
pip install "$WHEEL_FILE"
echo "Installed $(basename "$WHEEL_FILE") into PyTorch 2.9 environment"
# Run tests with PyTorch 2.9 runtime (2.10 tests will be skipped automatically)
echo ""
echo "Running tests with PyTorch 2.9 runtime (using wheel built on PyTorch 2.10)..."
if time python test/cpp_extensions/test_libtorch_agnostic.py -v; then
echo ""
echo " Wheel built with current torch and TORCH_TARGET_VERSION 2_9_0 works with PyTorch 2.9 runtime!"
else
echo "targeting test failed"
deactivate
rm -rf venv_pytorch_2_9 "$WHEEL_DIR"
return 1
fi
deactivate
rm -rf venv_pytorch_2_9 "$WHEEL_DIR"
assert_git_not_dirty
}
test_jit_hooks() {
echo "Testing jit hooks in cpp"
HOOK_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/jit-hook-build"
@ -1813,8 +1722,6 @@ elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" == 'default' ]];
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
test_forward_backward_compatibility
# Do NOT add tests after bc check tests, see its comment.
elif [[ "${TEST_CONFIG}" == *libtorch_agnostic_targetting* ]]; then
test_libtorch_agnostic_targetting
elif [[ "${TEST_CONFIG}" == *xla* ]]; then
install_torchvision
build_xla

7
.github/labeler.yml vendored
View File

@ -91,6 +91,13 @@
"ciflow/trunk":
- .ci/docker/ci_commit_pins/triton.txt
"oncall: distributed":
- torch/csrc/distributed/**
- torch/distributed/**
- torch/nn/parallel/**
- test/distributed/**
- torch/testing/_internal/distributed/**
"release notes: distributed (checkpoint)":
- torch/distributed/checkpoint/**
- test/distributed/checkpoint/**

View File

@ -260,11 +260,8 @@ jobs:
"${DOCKER_IMAGE}"
)
docker exec -t -w "${PYTORCH_ROOT}" "${container_name}" bash -c "bash .circleci/scripts/binary_populate_env.sh"
if [[ ${BUILD_ENVIRONMENT} == *"aarch64"* ]]; then
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/aarch64_linux/aarch64_ci_build.sh"
else
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
fi
# Unified build script for all architectures (x86_64, aarch64, s390x)
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
- name: Chown artifacts
if: ${{ steps.filter.outputs.is-test-matrix-empty == 'False' && inputs.build_environment != 'linux-s390x-binary-manywheel' }}

View File

@ -330,6 +330,8 @@ jobs:
-e PR_NUMBER \
-e SHA1 \
-e BRANCH \
-e SCCACHE_BUCKET \
-e SCCACHE_REGION \
-e XLA_CUDA \
-e XLA_CLANG_CACHE_S3_BUCKET_NAME \
-e SKIP_SCCACHE_INITIALIZATION=1 \

View File

@ -75,8 +75,7 @@ jobs:
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter,
# TODO: Re-enable me when docker pin update happens
# pytorch-linux-jammy-py3-clang12-executorch,
pytorch-linux-jammy-py3-clang12-executorch,
pytorch-linux-jammy-py3.12-triton-cpu,
pytorch-linux-noble-riscv64-py3.12-gcc14
]

View File

@ -85,7 +85,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3-inductor-benchmarks
runner: linux.c7i.2xlarge
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_xpu", shard: 1, num_shards: 5, runner: "linux.idc.xpu" },
@ -108,41 +108,41 @@ jobs:
]}
secrets: inherit
# xpu-n-py3_10-inductor-benchmark-test-nightly:
# permissions:
# id-token: write
# contents: read
# if: github.event_name != 'workflow_dispatch'
# name: xpu-n-py3.10-inductor-benchmark
# uses: ./.github/workflows/_xpu-test.yml
# needs: xpu-n-py3_10-inductor-benchmark-build
# with:
# build-environment: linux-noble-xpu-n-py3.10
# dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
# docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
# test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
# timeout-minutes: 720
# # Disable monitor in perf tests for more investigation
# disable-monitor: true
# monitor-log-interval: 10
# monitor-data-collect-interval: 2
# secrets: inherit
xpu-n-py3_10-inductor-benchmark-test-nightly:
permissions:
id-token: write
contents: read
if: github.event_name != 'workflow_dispatch'
name: xpu-n-py3.10-inductor-benchmark
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-noble-xpu-n-py3.10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
# Disable monitor in perf tests for more investigation
disable-monitor: true
monitor-log-interval: 10
monitor-data-collect-interval: 2
secrets: inherit
# xpu-n-py3_10-inductor-benchmark-test:
# permissions:
# id-token: write
# contents: read
# if: github.event_name == 'workflow_dispatch'
# name: xpu-n-py3.10-inductor-test
# uses: ./.github/workflows/_xpu-test.yml
# needs: xpu-n-py3_10-inductor-benchmark-build
# with:
# build-environment: linux-noble-xpu-n-py3.10
# dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
# docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
# test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
# timeout-minutes: 720
# disable-monitor: false
# monitor-log-interval: 15
# monitor-data-collect-interval: 4
# secrets: inherit
xpu-n-py3_10-inductor-benchmark-test:
permissions:
id-token: write
contents: read
if: github.event_name == 'workflow_dispatch'
name: xpu-n-py3.10-inductor-test
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-noble-xpu-n-py3.10
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
disable-monitor: false
monitor-log-interval: 15
monitor-data-collect-interval: 4
secrets: inherit

View File

@ -24,8 +24,7 @@ jobs:
name: opmicrobenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.c7i.2xlarge
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '8.0 9.0'
@ -36,16 +35,16 @@ jobs:
]}
secrets: inherit
# opmicrobenchmark-test:
# name: opmicrobenchmark-test
# uses: ./.github/workflows/_linux-test.yml
# needs: opmicrobenchmark-build
# with:
# timeout-minutes: 500
# build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
# docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
# test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
# secrets: inherit
opmicrobenchmark-test:
name: opmicrobenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: opmicrobenchmark-build
with:
timeout-minutes: 500
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
secrets: inherit
# B200 runner
opmicrobenchmark-build-b200:
@ -53,8 +52,7 @@ jobs:
name: opmicrobenchmark-build-b200
uses: ./.github/workflows/_linux-build.yml
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.c7i.4xlarge
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
@ -64,39 +62,39 @@ jobs:
]}
secrets: inherit
# opmicrobenchmark-test-b200:
# name: opmicrobenchmark-test-b200
# uses: ./.github/workflows/_linux-test.yml
# needs: opmicrobenchmark-build-b200
# with:
# timeout-minutes: 500
# build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
# docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
# test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
# aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
# secrets: inherit
opmicrobenchmark-test-b200:
name: opmicrobenchmark-test-b200
uses: ./.github/workflows/_linux-test.yml
needs: opmicrobenchmark-build-b200
with:
timeout-minutes: 500
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit
# ROCM MI300 runner
# opmicrobenchmark-build-rocm:
# if: github.repository_owner == 'pytorch'
# name: opmicrobenchmark-build-rocm
# uses: ./.github/workflows/_linux-build.yml
# with:
# build-environment: linux-jammy-rocm-py3_10
# docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
# test-matrix: |
# { include: [
# { config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
# ]}
# secrets: inherit
opmicrobenchmark-build-rocm:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build-rocm
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-rocm-py3_10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit
# opmicrobenchmark-test-rocm:
# name: opmicrobenchmark-test-rocm
# uses: ./.github/workflows/_rocm-test.yml
# needs: opmicrobenchmark-build-rocm
# with:
# timeout-minutes: 500
# build-environment: linux-jammy-rocm-py3_10
# docker-image: ${{ needs.opmicrobenchmark-build-rocm.outputs.docker-image }}
# test-matrix: ${{ needs.opmicrobenchmark-build-rocm.outputs.test-matrix }}
# secrets: inherit
opmicrobenchmark-test-rocm:
name: opmicrobenchmark-test-rocm
uses: ./.github/workflows/_rocm-test.yml
needs: opmicrobenchmark-build-rocm
with:
timeout-minutes: 500
build-environment: linux-jammy-rocm-py3_10
docker-image: ${{ needs.opmicrobenchmark-build-rocm.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build-rocm.outputs.test-matrix }}
secrets: inherit

View File

@ -49,86 +49,85 @@ jobs:
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
# linux-jammy-py3_10-gcc11-build:
# name: linux-jammy-py3.10-gcc11
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-gcc11
# docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "docs_test", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "backwards_compat", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
# { config: "distributed", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "distributed", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "numpy_2_x", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
# { config: "libtorch_agnostic_targetting", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# ]}
# secrets: inherit
linux-jammy-py3_10-gcc11-build:
name: linux-jammy-py3.10-gcc11
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "docs_test", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "backwards_compat", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
{ config: "distributed", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "distributed", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "numpy_2_x", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
]}
secrets: inherit
# linux-jammy-py3_10-gcc11-test:
# name: linux-jammy-py3.10-gcc11
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-py3_10-gcc11-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-gcc11
# docker-image: ${{ needs.linux-jammy-py3_10-gcc11-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_10-gcc11-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-py3_10-gcc11-test:
name: linux-jammy-py3.10-gcc11
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-py3_10-gcc11-build
- target-determination
with:
build-environment: linux-jammy-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
# linux-docs:
# name: linux-docs
# uses: ./.github/workflows/_docs.yml
# needs: linux-jammy-py3_10-gcc11-build
# with:
# build-environment: linux-jammy-py3.10-gcc11
# docker-image: ${{ needs.linux-jammy-py3_10-gcc11-build.outputs.docker-image }}
# secrets: inherit
linux-docs:
name: linux-docs
uses: ./.github/workflows/_docs.yml
needs: linux-jammy-py3_10-gcc11-build
with:
build-environment: linux-jammy-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-py3_10-gcc11-build.outputs.docker-image }}
secrets: inherit
# linux-jammy-py3_10-gcc11-no-ops:
# name: linux-jammy-py3.10-gcc11-no-ops
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-gcc11-no-ops
# docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 1 },
# ]}
# secrets: inherit
linux-jammy-py3_10-gcc11-no-ops:
name: linux-jammy-py3.10-gcc11-no-ops
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-gcc11-no-ops
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
# linux-jammy-py3_10-gcc11-pch:
# name: linux-jammy-py3.10-gcc11-pch
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-gcc11-pch
# docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 1 },
# ]}
# secrets: inherit
linux-jammy-py3_10-gcc11-pch:
name: linux-jammy-py3.10-gcc11-pch
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-gcc11-pch
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
linux-jammy-py3_10-clang18-asan-build:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner: linux.r7i.2xlarge
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
@ -145,219 +144,219 @@ jobs:
sync-tag: asan-build
secrets: inherit
# linux-jammy-py3_10-clang18-asan-test:
# name: linux-jammy-py3.10-clang18-asan
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-py3_10-clang18-asan-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-clang18-asan
# docker-image: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.test-matrix }}
# sync-tag: asan-test
# secrets: inherit
linux-jammy-py3_10-clang18-asan-test:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-py3_10-clang18-asan-build
- target-determination
with:
build-environment: linux-jammy-py3.10-clang18-asan
docker-image: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.test-matrix }}
sync-tag: asan-test
secrets: inherit
# linux-jammy-py3_10-clang12-onnx-build:
# name: linux-jammy-py3.10-clang12-onnx
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-clang12-onnx
# docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-onnx
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
# { config: "default", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
# ]}
# secrets: inherit
linux-jammy-py3_10-clang12-onnx-build:
name: linux-jammy-py3.10-clang12-onnx
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang12-onnx
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-onnx
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
{ config: "default", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
]}
secrets: inherit
# linux-jammy-py3_10-clang12-onnx-test:
# name: linux-jammy-py3.10-clang12-onnx
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-py3_10-clang12-onnx-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-clang12-onnx
# docker-image: ${{ needs.linux-jammy-py3_10-clang12-onnx-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_10-clang12-onnx-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-py3_10-clang12-onnx-test:
name: linux-jammy-py3.10-clang12-onnx
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-py3_10-clang12-onnx-build
- target-determination
with:
build-environment: linux-jammy-py3.10-clang12-onnx
docker-image: ${{ needs.linux-jammy-py3_10-clang12-onnx-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-onnx-build.outputs.test-matrix }}
secrets: inherit
# linux-jammy-py3_10-clang12-build:
# name: linux-jammy-py3.10-clang12
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-clang12
# docker-image-name: ci-image:pytorch-linux-jammy-py3.10-clang12
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "crossref", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "crossref", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "einops", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" }
# ]}
# secrets: inherit
linux-jammy-py3_10-clang12-build:
name: linux-jammy-py3.10-clang12
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang12
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-clang12
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "crossref", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "crossref", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "einops", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" }
]}
secrets: inherit
# linux-jammy-py3_10-clang12-test:
# name: linux-jammy-py3.10-clang12
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-py3_10-clang12-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-clang12
# docker-image: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-py3_10-clang12-test:
name: linux-jammy-py3.10-clang12
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-py3_10-clang12-build
- target-determination
with:
build-environment: linux-jammy-py3.10-clang12
docker-image: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
secrets: inherit
# linux-jammy-py3_13-clang12-build:
# name: linux-jammy-py3.13-clang12
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.13-clang12
# docker-image-name: ci-image:pytorch-linux-jammy-py3.13-clang12
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# { config: "crossref", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "crossref", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# { config: "einops", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" }
# ]}
# secrets: inherit
linux-jammy-py3_13-clang12-build:
name: linux-jammy-py3.13-clang12
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.13-clang12
docker-image-name: ci-image:pytorch-linux-jammy-py3.13-clang12
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "crossref", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "crossref", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "einops", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" }
]}
secrets: inherit
# linux-jammy-py3_13-clang12-test:
# name: linux-jammy-py3.13-clang12
# uses: ./.github/workflows/_linux-test.yml
# needs: linux-jammy-py3_13-clang12-build
# with:
# build-environment: linux-jammy-py3.13-clang12
# docker-image: ${{ needs.linux-jammy-py3_13-clang12-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_13-clang12-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-py3_13-clang12-test:
name: linux-jammy-py3.13-clang12
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-py3_13-clang12-build
with:
build-environment: linux-jammy-py3.13-clang12
docker-image: ${{ needs.linux-jammy-py3_13-clang12-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_13-clang12-build.outputs.test-matrix }}
secrets: inherit
# linux-jammy-cuda12_8-cudnn9-py3_10-clang12-build:
# name: linux-jammy-cuda12.8-cudnn9-py3.10-clang12
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-cuda12.8-cudnn9-py3.10-clang12
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 1 },
# ]}
# secrets: inherit
linux-jammy-cuda12_8-cudnn9-py3_10-clang12-build:
name: linux-jammy-cuda12.8-cudnn9-py3.10-clang12
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-cudnn9-py3.10-clang12
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
# linux-jammy-cpu-py3_10-gcc11-bazel-test:
# name: linux-jammy-cpu-py3.10-gcc11-bazel-test
# uses: ./.github/workflows/_bazel-build-test.yml
# needs: get-label-type
# with:
# runner: "${{ needs.get-label-type.outputs.label-type }}linux.large"
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11-bazel-test
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
# cuda-version: cpu
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
# ]}
# secrets: inherit
linux-jammy-cpu-py3_10-gcc11-bazel-test:
name: linux-jammy-cpu-py3.10-gcc11-bazel-test
uses: ./.github/workflows/_bazel-build-test.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.large"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-bazel-test
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-version: cpu
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
]}
secrets: inherit
# linux-jammy-py3_10-gcc11-mobile-lightweight-dispatch-build:
# name: linux-jammy-py3.10-gcc11-mobile-lightweight-dispatch-build
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-gcc11-mobile-lightweight-dispatch-build
# docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
# build-generates-artifacts: false
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 1 },
# ]}
# secrets: inherit
linux-jammy-py3_10-gcc11-mobile-lightweight-dispatch-build:
name: linux-jammy-py3.10-gcc11-mobile-lightweight-dispatch-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-gcc11-mobile-lightweight-dispatch-build
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
build-generates-artifacts: false
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
# linux-jammy-rocm-py3_10-build:
# # don't run build twice on main
# if: github.event_name == 'pull_request'
# name: linux-jammy-rocm-py3.10
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-rocm-py3.10
# docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
# sync-tag: rocm-build
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.2" },
# { config: "default", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.2" },
# { config: "default", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.2" },
# ]}
# secrets: inherit
linux-jammy-rocm-py3_10-build:
# don't run build twice on main
if: github.event_name == 'pull_request'
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.2" },
{ config: "default", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.2" },
{ config: "default", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.2" },
]}
secrets: inherit
# linux-jammy-cuda12_8-py3_10-gcc9-inductor-build:
# name: cuda12.8-py3.10-gcc9-sm75
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm75
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
# cuda-arch-list: '7.5'
# test-matrix: |
# { include: [
# { config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
# ]}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-inductor-build:
name: cuda12.8-py3.10-gcc9-sm75
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm75
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
cuda-arch-list: '7.5'
test-matrix: |
{ include: [
{ config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
]}
secrets: inherit
# linux-jammy-cuda12_8-py3_10-gcc9-inductor-test:
# name: cuda12.8-py3.10-gcc9-sm75
# uses: ./.github/workflows/_linux-test.yml
# needs: linux-jammy-cuda12_8-py3_10-gcc9-inductor-build
# with:
# build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm75
# docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-inductor-test:
name: cuda12.8-py3.10-gcc9-sm75
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-cuda12_8-py3_10-gcc9-inductor-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm75
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
secrets: inherit
# linux-noble-xpu-n-py3_10-build:
# name: linux-noble-xpu-n-py3.10
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# # This should sync with the build in xpu.yml but xpu uses a larger runner
# # sync-tag: linux-xpu-n-build
# runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
# build-environment: linux-noble-xpu-n-py3.10
# docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },
# { config: "default", shard: 2, num_shards: 4, runner: "linux.idc.xpu" },
# { config: "default", shard: 3, num_shards: 4, runner: "linux.idc.xpu" },
# { config: "default", shard: 4, num_shards: 4, runner: "linux.idc.xpu" },
# ]}
# secrets: inherit
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# This should sync with the build in xpu.yml but xpu uses a larger runner
# sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },
{ config: "default", shard: 2, num_shards: 4, runner: "linux.idc.xpu" },
{ config: "default", shard: 3, num_shards: 4, runner: "linux.idc.xpu" },
{ config: "default", shard: 4, num_shards: 4, runner: "linux.idc.xpu" },
]}
secrets: inherit

View File

@ -49,68 +49,68 @@ jobs:
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
# linux-jammy-cuda12_8-py3_10-gcc11-sm86-build:
# name: linux-jammy-cuda12.8-py3.10-gcc11-sm86
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm86
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
# cuda-arch-list: 8.6
# test-matrix: |
# { include: [
# { config: "slow", shard: 1, num_shards: 3, runner: "linux.g5.4xlarge.nvidia.gpu" },
# { config: "slow", shard: 2, num_shards: 3, runner: "linux.g5.4xlarge.nvidia.gpu" },
# { config: "slow", shard: 3, num_shards: 3, runner: "linux.g5.4xlarge.nvidia.gpu" },
# ]}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm86-build:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm86
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm86
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: 8.6
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 3, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "slow", shard: 2, num_shards: 3, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "slow", shard: 3, num_shards: 3, runner: "linux.g5.4xlarge.nvidia.gpu" },
]}
secrets: inherit
# linux-jammy-cuda12_8-py3_10-gcc11-sm86-test:
# name: linux-jammy-cuda12.8-py3.10-gcc11-sm86
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-cuda12_8-py3_10-gcc11-sm86-build
# - target-determination
# with:
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm86
# docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm86-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm86-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm86-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm86
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm86-build
- target-determination
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm86
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm86-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm86-build.outputs.test-matrix }}
secrets: inherit
# linux-jammy-py3_10-clang12-build:
# name: linux-jammy-py3.10-clang12
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-clang12
# docker-image-name: ci-image:pytorch-linux-jammy-py3.10-clang12
# test-matrix: |
# { include: [
# { config: "slow", shard: 1, num_shards: 2, runner: "linux.2xlarge" },
# { config: "slow", shard: 2, num_shards: 2, runner: "linux.2xlarge" },
# ]}
# secrets: inherit
linux-jammy-py3_10-clang12-build:
name: linux-jammy-py3.10-clang12
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang12
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-clang12
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.2xlarge" },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.2xlarge" },
]}
secrets: inherit
# linux-jammy-py3_10-clang12-test:
# name: linux-jammy-py3.10-clang12
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-py3_10-clang12-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-clang12
# docker-image: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-py3_10-clang12-test:
name: linux-jammy-py3.10-clang12
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-py3_10-clang12-build
- target-determination
with:
build-environment: linux-jammy-py3.10-clang12
docker-image: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-py3_10-clang18-asan-build:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner: linux.r7i.2xlarge
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
@ -123,15 +123,15 @@ jobs:
sync-tag: asan-build
secrets: inherit
# linux-jammy-py3_10-clang18-asan-test:
# name: linux-jammy-py3.10-clang18-asan
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-py3_10-clang18-asan-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-clang18-asan
# docker-image: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.test-matrix }}
# sync-tag: asan-test
# secrets: inherit
linux-jammy-py3_10-clang18-asan-test:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-py3_10-clang18-asan-build
- target-determination
with:
build-environment: linux-jammy-py3.10-clang18-asan
docker-image: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3_10-clang18-asan-build.outputs.test-matrix }}
sync-tag: asan-test
secrets: inherit

View File

@ -54,7 +54,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.r7i.4xlarge
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
@ -65,14 +65,14 @@ jobs:
# config: "smoke_b200" maps to test_python_smoke_b200() in .ci/pytorch/test.sh
secrets: inherit
# linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
# name: linux-jammy-cuda12.8-py3.10-gcc11-sm100
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-cuda12_8-py3_10-gcc11-sm100-build
# with:
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
# docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
# aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -56,252 +56,251 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
build-generates-artifacts: false
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.c7i.2xlarge"
runner: "linux.c7i.4xlarge"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
# linux-jammy-cuda12_8-py3_10-gcc11-build:
# name: linux-jammy-cuda12.8-py3.10-gcc11
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
# cuda-arch-list: '7.5 8.9'
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
# { config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
# { config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
# { config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
# { config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
# { config: "distributed", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
# { config: "distributed", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
# { config: "distributed", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
# { config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
# { config: "libtorch_agnostic_targetting", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
# ]}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-build:
name: linux-jammy-cuda12.8-py3.10-gcc11
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '7.5 8.9'
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "distributed", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
{ config: "distributed", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
{ config: "distributed", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
{ config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
]}
secrets: inherit
# linux-jammy-cuda12_8-py3_10-gcc11-test:
# name: linux-jammy-cuda12.8-py3.10-gcc11
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-cuda12_8-py3_10-gcc11-build
# - target-determination
# with:
# timeout-minutes: 360
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11
# docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-test:
name: linux-jammy-cuda12.8-py3.10-gcc11
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build
- target-determination
with:
timeout-minutes: 360
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
# no-ops builds test USE_PER_OPERATOR_HEADERS=0 where ATen/ops is not generated
# linux-jammy-cuda12_8-py3_10-gcc11-no-ops-build:
# name: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 1 },
# ]}
# secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-no-ops-build:
name: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-no-ops
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
]}
secrets: inherit
# macos-py3-arm64-build:
# if: github.repository_owner == 'pytorch'
# name: macos-py3-arm64
# uses: ./.github/workflows/_mac-build.yml
# with:
# sync-tag: macos-py3-arm64-build
# build-environment: macos-py3-arm64
# runner-type: macos-m1-stable
# build-generates-artifacts: true
# # To match the one pre-installed in the m1 runners
# python-version: 3.12.7
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 3, runner: "macos-m1-stable" },
# { config: "default", shard: 2, num_shards: 3, runner: "macos-m1-stable" },
# { config: "default", shard: 3, num_shards: 3, runner: "macos-m1-stable" },
# { config: "mps", shard: 1, num_shards: 1, runner: "macos-m1-14" },
# { config: "mps", shard: 1, num_shards: 1, runner: "macos-m2-15" },
# ]}
# secrets: inherit
macos-py3-arm64-build:
if: github.repository_owner == 'pytorch'
name: macos-py3-arm64
uses: ./.github/workflows/_mac-build.yml
with:
sync-tag: macos-py3-arm64-build
build-environment: macos-py3-arm64
runner-type: macos-m1-stable
build-generates-artifacts: true
# To match the one pre-installed in the m1 runners
python-version: 3.12.7
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 3, runner: "macos-m1-stable" },
{ config: "default", shard: 2, num_shards: 3, runner: "macos-m1-stable" },
{ config: "default", shard: 3, num_shards: 3, runner: "macos-m1-stable" },
{ config: "mps", shard: 1, num_shards: 1, runner: "macos-m1-14" },
{ config: "mps", shard: 1, num_shards: 1, runner: "macos-m2-15" },
]}
secrets: inherit
# macos-py3-arm64-test:
# name: macos-py3-arm64
# uses: ./.github/workflows/_mac-test.yml
# needs:
# - macos-py3-arm64-build
# - target-determination
# with:
# build-environment: macos-py3-arm64
# # Same as the build job
# python-version: 3.12.7
# test-matrix: ${{ needs.macos-py3-arm64-build.outputs.test-matrix }}
# disable-monitor: false
# secrets: inherit
macos-py3-arm64-test:
name: macos-py3-arm64
uses: ./.github/workflows/_mac-test.yml
needs:
- macos-py3-arm64-build
- target-determination
with:
build-environment: macos-py3-arm64
# Same as the build job
python-version: 3.12.7
test-matrix: ${{ needs.macos-py3-arm64-build.outputs.test-matrix }}
disable-monitor: false
secrets: inherit
# win-vs2022-cpu-py3-build:
# name: win-vs2022-cpu-py3
# uses: ./.github/workflows/_win-build.yml
# needs: get-label-type
# with:
# build-environment: win-vs2022-cpu-py3
# cuda-version: cpu
# runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
# { config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
# { config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
# { config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
# ]}
# secrets: inherit
win-vs2022-cpu-py3-build:
name: win-vs2022-cpu-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2022-cpu-py3
cuda-version: cpu
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
]}
secrets: inherit
# win-vs2022-cpu-py3-test:
# name: win-vs2022-cpu-py3
# uses: ./.github/workflows/_win-test.yml
# needs:
# - win-vs2022-cpu-py3-build
# - target-determination
# with:
# build-environment: win-vs2022-cpu-py3
# cuda-version: cpu
# test-matrix: ${{ needs.win-vs2022-cpu-py3-build.outputs.test-matrix }}
# disable-monitor: false
# secrets: inherit
win-vs2022-cpu-py3-test:
name: win-vs2022-cpu-py3
uses: ./.github/workflows/_win-test.yml
needs:
- win-vs2022-cpu-py3-build
- target-determination
with:
build-environment: win-vs2022-cpu-py3
cuda-version: cpu
test-matrix: ${{ needs.win-vs2022-cpu-py3-build.outputs.test-matrix }}
disable-monitor: false
secrets: inherit
# win-vs2022-cuda12_8-py3-build:
# name: win-vs2022-cuda12.8-py3
# uses: ./.github/workflows/_win-build.yml
# needs: get-label-type
# with:
# build-environment: win-vs2022-cuda12.8-py3
# cuda-version: "12.8"
# runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
# secrets: inherit
win-vs2022-cuda12_8-py3-build:
name: win-vs2022-cuda12.8-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2022-cuda12.8-py3
cuda-version: "12.8"
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
secrets: inherit
# linux-jammy-rocm-py3_10-build:
# if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
# name: linux-jammy-rocm-py3.10
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-rocm-py3.10
# docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
# sync-tag: rocm-build
# test-matrix: |
# { include: [
# { config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
# { config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
# { config: "distributed", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.4" },
# ]}
# secrets: inherit
linux-jammy-rocm-py3_10-build:
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "distributed", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.4" },
]}
secrets: inherit
# linux-jammy-rocm-py3_10-test:
# if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
# permissions:
# id-token: write
# contents: read
# name: linux-jammy-rocm-py3.10
# uses: ./.github/workflows/_rocm-test.yml
# needs:
# - linux-jammy-rocm-py3_10-build
# - target-determination
# with:
# build-environment: linux-jammy-rocm-py3.10
# docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
# tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
# secrets: inherit
linux-jammy-rocm-py3_10-test:
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
secrets: inherit
# inductor-build:
# name: inductor-build
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# build-environment: linux-jammy-cuda12.8-py3.12-gcc9-sm80
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
# cuda-arch-list: '8.0'
# secrets: inherit
inductor-build:
name: inductor-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
cuda-arch-list: '8.0'
secrets: inherit
# Test cross-compiled models with Windows libs extracted from wheel
# cross-compile-linux-test:
# name: cross-compile-linux-test
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - linux-jammy-cuda12_8-py3_10-gcc11-build
# - get-label-type
# - win-vs2022-cuda12_8-py3-build
# with:
# build-environment: linux-jammy-cuda12.8-py3.10-gcc11
# docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
# test-matrix: |
# { include: [
# { config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" },
# ]}
# secrets: inherit
cross-compile-linux-test:
name: cross-compile-linux-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build
- get-label-type
- win-vs2022-cuda12_8-py3-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: |
{ include: [
{ config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" },
]}
secrets: inherit
# verify-cachebench-cpu-build:
# name: verify-cachebench-cpu-build
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3.10-gcc11
# docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
# test-matrix: |
# { include: [
# { config: "verify_cachebench", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# ]}
# secrets: inherit
verify-cachebench-cpu-build:
name: verify-cachebench-cpu-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
test-matrix: |
{ include: [
{ config: "verify_cachebench", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
]}
secrets: inherit
# verify-cachebench-cpu-test:
# name: verify-cachebench-cpu-test
# uses: ./.github/workflows/_linux-test.yml
# needs:
# - verify-cachebench-cpu-build
# - target-determination
# with:
# build-environment: linux-jammy-py3.10-gcc11
# docker-image: ${{ needs.verify-cachebench-cpu-build.outputs.docker-image }}
# test-matrix: ${{ needs.verify-cachebench-cpu-build.outputs.test-matrix }}
# secrets: inherit
verify-cachebench-cpu-test:
name: verify-cachebench-cpu-test
uses: ./.github/workflows/_linux-test.yml
needs:
- verify-cachebench-cpu-build
- target-determination
with:
build-environment: linux-jammy-py3.10-gcc11
docker-image: ${{ needs.verify-cachebench-cpu-build.outputs.docker-image }}
test-matrix: ${{ needs.verify-cachebench-cpu-build.outputs.test-matrix }}
secrets: inherit
# linux-jammy-py3-clang12-executorch-build:
# name: linux-jammy-py3-clang12-executorch
# uses: ./.github/workflows/_linux-build.yml
# needs: get-label-type
# with:
# runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# build-environment: linux-jammy-py3-clang12-executorch
# docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-executorch
# test-matrix: |
# { include: [
# { config: "executorch", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
# ]}
# secrets: inherit
linux-jammy-py3-clang12-executorch-build:
name: linux-jammy-py3-clang12-executorch
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3-clang12-executorch
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang12-executorch
test-matrix: |
{ include: [
{ config: "executorch", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
]}
secrets: inherit
# linux-jammy-py3-clang12-executorch-test:
# name: linux-jammy-py3-clang12-executorch
# uses: ./.github/workflows/_linux-test.yml
# needs: linux-jammy-py3-clang12-executorch-build
# with:
# build-environment: linux-jammy-py3-clang12-executorch
# docker-image: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.test-matrix }}
# secrets: inherit
linux-jammy-py3-clang12-executorch-test:
name: linux-jammy-py3-clang12-executorch
uses: ./.github/workflows/_linux-test.yml
needs: linux-jammy-py3-clang12-executorch-build
with:
build-environment: linux-jammy-py3-clang12-executorch
docker-image: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-py3_10-gcc11-full-debug-build-only:
name: linux-jammy-py3.10-gcc11-full-debug-build-only
@ -309,7 +308,7 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.c7i.2xlarge
runner: linux.2xlarge.memory
build-environment: linux-jammy-py3.10-gcc11-full-debug-build-only
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
secrets: inherit

View File

@ -43,8 +43,7 @@ jobs:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm
cuda-arch-list: '8.0 8.9 9.0'
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.r7i.4xlarge
runner: linux.24xlarge.memory
test-matrix: |
{ include: [
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
@ -66,14 +65,14 @@ jobs:
]}
secrets: inherit
# vllm-test-sm89:
# name: ci-vllm-test
# uses: ./.github/workflows/_linux-test.yml
# needs: [
# torch-build,
# ]
# with:
# build-environment: linux-jammy-cuda12.8-py3.12-gcc11
# docker-image: ${{ needs.torch-build.outputs.docker-image }}
# test-matrix: ${{ needs.torch-build.outputs.test-matrix }}
# secrets: inherit
vllm-test-sm89:
name: ci-vllm-test
uses: ./.github/workflows/_linux-test.yml
needs: [
torch-build,
]
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image: ${{ needs.torch-build.outputs.docker-image }}
test-matrix: ${{ needs.torch-build.outputs.test-matrix }}
secrets: inherit

View File

@ -35,7 +35,7 @@ jobs:
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-jammy-xpu-n-1-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-1-py3
runner: linux.c7i.2xlarge
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
@ -56,7 +56,7 @@ jobs:
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
runner: linux.c7i.2xlarge
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 12, runner: "linux.idc.xpu" },
@ -74,39 +74,39 @@ jobs:
]}
secrets: inherit
# linux-noble-xpu-n-py3_10-test:
# name: linux-noble-xpu-n-py3.10
# uses: ./.github/workflows/_xpu-test.yml
# needs: linux-noble-xpu-n-py3_10-build
# permissions:
# id-token: write
# contents: read
# with:
# build-environment: linux-noble-xpu-n-py3.10
# docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
# test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
# secrets: inherit
linux-noble-xpu-n-py3_10-test:
name: linux-noble-xpu-n-py3.10
uses: ./.github/workflows/_xpu-test.yml
needs: linux-noble-xpu-n-py3_10-build
permissions:
id-token: write
contents: read
with:
build-environment: linux-noble-xpu-n-py3.10
docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
secrets: inherit
# windows-xpu-n-1-build:
# if: github.repository_owner == 'pytorch'
# name: win-vs2022-xpu-n-1-py3
# uses: ./.github/workflows/_win-build.yml
# with:
# build-environment: win-vs2022-xpu-n-1-py3
# cuda-version: cpu
# use-xpu: true
# xpu-version: '2025.1'
# vc-year: '2022'
# secrets: inherit
windows-xpu-n-1-build:
if: github.repository_owner == 'pytorch'
name: win-vs2022-xpu-n-1-py3
uses: ./.github/workflows/_win-build.yml
with:
build-environment: win-vs2022-xpu-n-1-py3
cuda-version: cpu
use-xpu: true
xpu-version: '2025.1'
vc-year: '2022'
secrets: inherit
# windows-xpu-n-build:
# if: github.repository_owner == 'pytorch'
# name: win-vs2022-xpu-n-py3
# uses: ./.github/workflows/_win-build.yml
# with:
# build-environment: win-vs2022-xpu-n-py3
# cuda-version: cpu
# use-xpu: true
# xpu-version: '2025.2'
# vc-year: '2022'
# secrets: inherit
windows-xpu-n-build:
if: github.repository_owner == 'pytorch'
name: win-vs2022-xpu-n-py3
uses: ./.github/workflows/_win-build.yml
with:
build-environment: win-vs2022-xpu-n-py3
cuda-version: cpu
use-xpu: true
xpu-version: '2025.2'
vc-year: '2022'
secrets: inherit

View File

@ -144,7 +144,7 @@ inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
}
inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ')';
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
return out;
}

View File

@ -9,7 +9,7 @@ namespace indexing {
const EllipsisIndexType Ellipsis = EllipsisIndexType();
std::ostream& operator<<(std::ostream& stream, const Slice& slice) {
stream << slice.start() << ':' << slice.stop() << ':' << slice.step();
stream << slice.start() << ":" << slice.stop() << ":" << slice.step();
return stream;
}
@ -31,12 +31,12 @@ std::ostream& operator<<(std::ostream& stream, const TensorIndex& tensor_index)
}
std::ostream& operator<<(std::ostream& stream, const std::vector<TensorIndex>& tensor_indices) {
stream << '(';
stream << "(";
for (const auto i : c10::irange(tensor_indices.size())) {
stream << tensor_indices[i];
if (i < tensor_indices.size() - 1) stream << ", ";
}
stream << ')';
stream << ")";
return stream;
}

View File

@ -113,7 +113,7 @@ void TensorNames::checkUnique(const char* op_name) const {
std::ostream& operator<<(std::ostream& out, const TensorName& tensorname) {
out << tensorname.name_ << " (index ";
out << tensorname.origin_idx_ << " of ";
out << tensorname.origin_ << ')';
out << tensorname.origin_ << ")";
return out;
}

View File

@ -13,9 +13,9 @@ std::ostream& operator<<(std::ostream & out, const TensorGeometryArg& t) {
if (t.pos == 0) {
// 0 is distinguished; it usually indicates 'self' or the return
// tensor
out << '\'' << t.name << '\'';
out << "'" << t.name << "'";
} else {
out << "argument #" << t.pos << " '" << t.name << '\'';
out << "argument #" << t.pos << " '" << t.name << "'";
}
return out;
}
@ -154,7 +154,7 @@ void checkSameGPU(CheckedFrom c, const TensorArg& t1, const TensorArg& t2) {
oss << "Tensor for " << t2 << " is on CPU, ";
}
oss << "but expected " << ((!t1->is_cpu() && !t2->is_cpu()) ? "them" : "it")
<< " to be on GPU (while checking arguments for " << c << ')';
<< " to be on GPU (while checking arguments for " << c << ")";
TORCH_CHECK(false, oss.str());
}
TORCH_CHECK(
@ -199,7 +199,7 @@ void checkScalarTypes(CheckedFrom c, const TensorArg& t,
i++;
}
oss << "; but got " << t->toString()
<< " instead (while checking arguments for " << c << ')';
<< " instead (while checking arguments for " << c << ")";
TORCH_CHECK(false, oss.str());
}
}

View File

@ -43,8 +43,8 @@ std::string get_mkldnn_version() {
// https://github.com/intel/ideep/issues/29
{
const dnnl_version_t* ver = dnnl_version();
ss << "Intel(R) MKL-DNN v" << ver->major << '.' << ver->minor << '.' << ver->patch
<< " (Git Hash " << ver->hash << ')';
ss << "Intel(R) MKL-DNN v" << ver->major << "." << ver->minor << "." << ver->patch
<< " (Git Hash " << ver->hash << ")";
}
#else
ss << "MKLDNN not found";
@ -81,7 +81,7 @@ std::string get_openmp_version() {
break;
}
if (ver_str) {
ss << " (a.k.a. OpenMP " << ver_str << ')';
ss << " (a.k.a. OpenMP " << ver_str << ")";
}
}
#else
@ -135,38 +135,38 @@ std::string show_config() {
#if defined(__GNUC__)
{
ss << " - GCC " << __GNUC__ << '.' << __GNUC_MINOR__ << '\n';
ss << " - GCC " << __GNUC__ << "." << __GNUC_MINOR__ << "\n";
}
#endif
#if defined(__cplusplus)
{
ss << " - C++ Version: " << __cplusplus << '\n';
ss << " - C++ Version: " << __cplusplus << "\n";
}
#endif
#if defined(__clang_major__)
{
ss << " - clang " << __clang_major__ << '.' << __clang_minor__ << '.' << __clang_patchlevel__ << '\n';
ss << " - clang " << __clang_major__ << "." << __clang_minor__ << "." << __clang_patchlevel__ << "\n";
}
#endif
#if defined(_MSC_VER)
{
ss << " - MSVC " << _MSC_FULL_VER << '\n';
ss << " - MSVC " << _MSC_FULL_VER << "\n";
}
#endif
#if AT_MKL_ENABLED()
ss << " - " << get_mkl_version() << '\n';
ss << " - " << get_mkl_version() << "\n";
#endif
#if AT_MKLDNN_ENABLED()
ss << " - " << get_mkldnn_version() << '\n';
ss << " - " << get_mkldnn_version() << "\n";
#endif
#ifdef _OPENMP
ss << " - " << get_openmp_version() << '\n';
ss << " - " << get_openmp_version() << "\n";
#endif
#if AT_BUILD_WITH_LAPACK()
@ -183,7 +183,7 @@ std::string show_config() {
ss << " - Cross compiling on MacOSX\n";
#endif
ss << " - "<< used_cpu_capability() << '\n';
ss << " - "<< used_cpu_capability() << "\n";
if (hasCUDA()) {
ss << detail::getCUDAHooks().showConfig();
@ -200,10 +200,10 @@ std::string show_config() {
ss << " - Build settings: ";
for (const auto& pair : caffe2::GetBuildOptions()) {
if (!pair.second.empty()) {
ss << pair.first << '=' << pair.second << ", ";
ss << pair.first << "=" << pair.second << ", ";
}
}
ss << '\n';
ss << "\n";
// TODO: do HIP
// TODO: do XLA

View File

@ -209,7 +209,7 @@ struct CodeTemplate {
// to indent correctly in the context.
void emitIndent(std::ostream& out, size_t indent) const {
for ([[maybe_unused]] const auto i : c10::irange(indent)) {
out << ' ';
out << " ";
}
}
void emitStringWithIndents(

View File

@ -10,7 +10,7 @@ std::ostream& operator<<(std::ostream& out, const Dimname& dimname) {
if (dimname.type() == NameType::WILDCARD) {
out << "None";
} else {
out << '\'' << dimname.symbol().toUnqualString() << '\'';
out << "'" << dimname.symbol().toUnqualString() << "'";
}
return out;
}

View File

@ -5,7 +5,7 @@
namespace at {
std::ostream& operator<<(std::ostream& out, const Range& range) {
out << "Range[" << range.begin << ", " << range.end << ']';
out << "Range[" << range.begin << ", " << range.end << "]";
return out;
}

View File

@ -71,7 +71,7 @@ void TensorBase::enforce_invariants() {
void TensorBase::print() const {
if (defined()) {
std::cerr << '[' << toString() << ' ' << sizes() << ']' << '\n';
std::cerr << "[" << toString() << " " << sizes() << "]" << '\n';
} else {
std::cerr << "[UndefinedTensor]" << '\n';
}

View File

@ -9,8 +9,8 @@ APIVitals VitalsAPI;
std::ostream& operator<<(std::ostream& os, TorchVital const& tv) {
for (const auto& m : tv.attrs) {
os << "[TORCH_VITAL] " << tv.name << '.' << m.first << "\t\t "
<< m.second.value << '\n';
os << "[TORCH_VITAL] " << tv.name << "." << m.first << "\t\t "
<< m.second.value << "\n";
}
return os;
}

View File

@ -100,18 +100,18 @@ inline bool operator==(const AliasInfo& lhs, const AliasInfo& rhs) {
// this does match the way things are represented in the schema
inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
out << '(';
out << "(";
bool first = true;
for (const auto& set : aliasInfo.beforeSets()) {
if (first) {
first = false;
} else {
out << '|';
out << "|";
}
out << set.toUnqualString();
}
if (aliasInfo.isWrite()) {
out << '!';
out << "!";
}
if (aliasInfo.beforeSets() != aliasInfo.afterSets()) {
out << " -> ";
@ -120,12 +120,12 @@ inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
if (first) {
first = false;
} else {
out << '|';
out << "|";
}
out << set.toUnqualString();
}
}
out << ')';
out << ")";
return out;
}
} // namespace c10

View File

@ -198,7 +198,7 @@ inline void swap(Blob& lhs, Blob& rhs) noexcept {
}
inline std::ostream& operator<<(std::ostream& out, const Blob& v) {
return out << "Blob[" << v.TypeName() << ']';
return out << "Blob[" << v.TypeName() << "]";
}
} // namespace caffe2

View File

@ -456,8 +456,8 @@ bool ClassType::isSubtypeOfExt(const Type& rhs, std::ostream* why_not) const {
*why_not << "Method on class '" << repr_str()
<< "' (1) is not compatible with interface '"
<< rhs.repr_str() << "' (2)\n"
<< " (1) " << self_method->getSchema() << '\n'
<< " (2) " << schema << '\n';
<< " (1) " << self_method->getSchema() << "\n"
<< " (2) " << schema << "\n";
}
return false;
}

View File

@ -100,7 +100,7 @@ struct TORCH_API ClassType : public NamedType {
std::string repr_str() const override {
std::stringstream ss;
ss << str()
<< " (of Python compilation unit at: " << compilation_unit().get() << ')';
<< " (of Python compilation unit at: " << compilation_unit().get() << ")";
return ss.str();
}

View File

@ -58,12 +58,12 @@ std::string DispatchKeyExtractor::dumpState() const {
std::ostringstream oss;
for (const auto i : c10::irange(c10::utils::bitset::NUM_BITS())) {
if (dispatch_arg_indices_reverse_.get(i)) {
oss << '1';
oss << "1";
} else {
oss << '0';
oss << "0";
}
}
oss << ' ' << nonFallthroughKeys_ << '\n';
oss << " " << nonFallthroughKeys_ << "\n";
return oss.str();
}

View File

@ -69,8 +69,8 @@ private:
void _print_dispatch_trace(const std::string& label, const std::string& op_name, const DispatchKeySet& dispatchKeySet) {
auto nesting_value = dispatch_trace_nesting_value();
for (int64_t i = 0; i < nesting_value; ++i) std::cerr << ' ';
std::cerr << label << " op=[" << op_name << "], key=[" << toString(dispatchKeySet.highestPriorityTypeId()) << ']' << std::endl;
for (int64_t i = 0; i < nesting_value; ++i) std::cerr << " ";
std::cerr << label << " op=[" << op_name << "], key=[" << toString(dispatchKeySet.highestPriorityTypeId()) << "]" << std::endl;
}
} // namespace detail

View File

@ -570,7 +570,7 @@ void OperatorEntry::checkInvariants() const {
std::string OperatorEntry::listAllDispatchKeys() const {
std::ostringstream str;
str << '[';
str << "[";
bool has_kernels = false;
for (auto k : allDispatchKeysInFullSet()) {
@ -584,7 +584,7 @@ std::string OperatorEntry::listAllDispatchKeys() const {
str << k;
has_kernels = true;
}
str << ']';
str << "]";
return str.str();
}
@ -683,12 +683,12 @@ void OperatorEntry::setReportErrorCallback_(std::unique_ptr<c10::SafePyObject> c
// This WON'T report backend fallbacks.
std::string OperatorEntry::dumpState() const {
std::ostringstream oss;
oss << "name: " << name_ << '\n';
oss << "name: " << name_ << "\n";
if (schema_) {
oss << "schema: " << schema_->schema << '\n';
oss << "debug: " << schema_->debug << '\n';
oss << "schema: " << schema_->schema << "\n";
oss << "debug: " << schema_->debug << "\n";
oss << "alias analysis kind: " << toString(schema_->schema.aliasAnalysis())
<< (schema_->schema.isDefaultAliasAnalysisKind() ? " (default)" : "") << '\n';
<< (schema_->schema.isDefaultAliasAnalysisKind() ? " (default)" : "") << "\n";
} else {
oss << "schema: (none)\n";
}

View File

@ -7,7 +7,7 @@
namespace c10 {
void FunctionSchema::dump() const {
std::cout << *this << '\n';
std::cout << *this << "\n";
}
const std::vector<Argument>& FunctionSchema::getCorrectList(SchemaArgType type) const {
@ -210,9 +210,9 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
out << schema.name();
if (!schema.overload_name().empty()) {
out << '.' << schema.overload_name();
out << "." << schema.overload_name();
}
out << '(';
out << "(";
bool seen_kwarg_only = false;
for (const auto i : c10::irange(schema.arguments().size())) {
@ -273,7 +273,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
}
if (need_paren) {
out << '(';
out << "(";
}
for (const auto i : c10::irange(returns.size())) {
if (i > 0) {
@ -288,7 +288,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
out << "...";
}
if (need_paren) {
out << ')';
out << ")";
}
return out;
}
@ -471,7 +471,7 @@ bool FunctionSchema::isForwardCompatibleWith(
if (!arguments().at(i).isForwardCompatibleWith(old.arguments().at(i))) {
if (why_not) {
why_not
<< '\'' << arguments().at(i).name() << '\''
<< "'" << arguments().at(i).name() << "'"
<< " is not forward compatible with the older version of the schema";
}
return false;
@ -511,7 +511,7 @@ bool FunctionSchema::isForwardCompatibleWith(
.isForwardCompatibleWith(old.arguments().at(i))) {
if (why_not) {
why_not << "Out argument '"
<< '\'' << arguments().at(i).name()
<< "'" << arguments().at(i).name()
<< " is not FC with the older version of the schema";
}
return false;

View File

@ -571,7 +571,7 @@ inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
if (arg.N()) {
N = std::to_string(*arg.N());
}
out << '[' << N << ']';
out << "[" << N << "]";
} else {
out << unopt_type->str();
}
@ -582,15 +582,15 @@ inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
}
if (is_opt) {
out << '?';
out << "?";
}
if (!arg.name().empty()) {
out << ' ' << arg.name();
out << " " << arg.name();
}
if (arg.default_value()) {
out << '=';
out << "=";
if ((type->kind() == c10::TypeKind::StringType ||
unopt_type->kind() == c10::TypeKind::StringType) &&
arg.default_value().value().isString()) {

View File

@ -66,7 +66,7 @@ bool operator==(const ivalue::Tuple& lhs, const ivalue::Tuple& rhs) {
}
std::ostream& operator<<(std::ostream& out, const ivalue::EnumHolder& v) {
out << v.qualifiedClassName() << '.' << v.name();
out << v.qualifiedClassName() << "." << v.name();
return out;
}
@ -526,7 +526,7 @@ std::ostream& printMaybeAnnotatedList(
!elementTypeCanBeInferredFromMembers(list_elem_type)) {
out << "annotate(" << the_list.type<c10::Type>()->annotation_str() << ", ";
printList(out, the_list.toListRef(), "[", "]", formatter);
out << ')';
out << ")";
return out;
} else {
return printList(out, the_list.toListRef(), "[", "]", formatter);
@ -538,7 +538,7 @@ std::ostream& printDict(
std::ostream& out,
const Dict& v,
const IValueFormatter& formatter) {
out << '{';
out << "{";
bool first = true;
for (const auto& pair : v) {
@ -552,7 +552,7 @@ std::ostream& printDict(
first = false;
}
out << '}';
out << "}";
return out;
}
}
@ -565,8 +565,8 @@ static std::ostream& printMaybeAnnotatedDict(
auto value_type = the_dict.type()->castRaw<DictType>()->getValueType();
if (the_dict.toGenericDict().empty() ||
!elementTypeCanBeInferredFromMembers(value_type)) {
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ',';
printDict(out, the_dict.toGenericDict(), formatter) << ')';
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ",";
printDict(out, the_dict.toGenericDict(), formatter) << ")";
} else {
return printDict(out, the_dict.toGenericDict(), formatter);
}
@ -577,7 +577,7 @@ static std::ostream& printComplex(std::ostream & out, const IValue & v) {
c10::complex<double> d = v.toComplexDouble();
IValue real(d.real()), imag(std::abs(d.imag()));
auto sign = d.imag() >= 0 ? '+' : '-';
return out << real << sign << imag << 'j';
return out << real << sign << imag << "j";
}
std::ostream& IValue::repr(
@ -605,9 +605,9 @@ std::ostream& IValue::repr(
if (static_cast<double>(i) == d) {
// -0.0 (signed zero) needs to be parsed as -0.
if (i == 0 && std::signbit(d)) {
return out << '-' << i << '.';
return out << "-" << i << ".";
}
return out << i << '.';
return out << i << ".";
}
}
auto orig_prec = out.precision();
@ -643,20 +643,20 @@ std::ostream& IValue::repr(
device_stream << v.toDevice();
out << "torch.device(";
c10::printQuotedString(out, device_stream.str());
return out << ')';
return out << ")";
}
case IValue::Tag::Generator: {
auto generator = v.toGenerator();
out << "torch.Generator(device=";
c10::printQuotedString(out, generator.device().str());
out << ", seed=" << generator.current_seed() << ')';
out << ", seed=" << generator.current_seed() << ")";
return out;
}
case IValue::Tag::GenericDict:
return printMaybeAnnotatedDict(out, v, formatter);
case IValue::Tag::Enum: {
auto enum_holder = v.toEnumHolder();
return out << enum_holder->qualifiedClassName() << '.' <<
return out << enum_holder->qualifiedClassName() << "." <<
enum_holder->name();
}
case IValue::Tag::Object: {
@ -801,7 +801,7 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
if (c == FP_NORMAL || c == FP_ZERO) {
int64_t i = static_cast<int64_t>(d);
if (static_cast<double>(i) == d) {
return out << i << '.';
return out << i << ".";
}
}
auto orig_prec = out.precision();
@ -852,7 +852,7 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
return printDict(out, v.toGenericDict(), formatter);
case IValue::Tag::PyObject: {
auto py_obj = v.toPyObject();
return out << "<PyObject at" << py_obj << '>';
return out << "<PyObject at" << py_obj << ">";
}
case IValue::Tag::Generator:
return out << "Generator";
@ -862,22 +862,22 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
// TODO we should attempt to call __str__ if the object defines it.
auto obj = v.toObject();
// print this out the way python would do it
return out << '<' << obj->name() << " object at " << obj.get() << '>';
return out << "<" << obj->name() << " object at " << obj.get() << ">";
}
case IValue::Tag::Enum: {
auto enum_holder = v.toEnumHolder();
return out << "Enum<" << enum_holder->unqualifiedClassName() << '.' <<
enum_holder->name() << '>';
return out << "Enum<" << enum_holder->unqualifiedClassName() << "." <<
enum_holder->name() << ">";
}
}
return out << "<Invalid IValue tag=" << std::to_string(static_cast<uint32_t>(v.tag)) << '>';
return out << "<Invalid IValue tag=" << std::to_string(static_cast<uint32_t>(v.tag)) << ">";
}
#undef TORCH_FORALL_TAGS
void IValue::dump() const {
std::cout << *this << '\n';
std::cout << *this << "\n";
}
std::shared_ptr<ClassType> ivalue::Object::type() const {
@ -1050,7 +1050,7 @@ c10::intrusive_ptr<ivalue::Object> ivalue::Object::deepcopy(
std::stringstream err;
err << "Cannot serialize custom bound C++ class";
if (auto qualname = type()->name()) {
err << ' ' << qualname->qualifiedName();
err << " " << qualname->qualifiedName();
}
err << ". Please define serialization methods via def_pickle() for "
"this class.";

View File

@ -211,7 +211,7 @@ struct TORCH_API OptionalType : public UnionType {
std::string str() const override {
std::stringstream ss;
ss << getElementType()->str() << '?';
ss << getElementType()->str() << "?";
return ss.str();
}
@ -240,7 +240,7 @@ struct TORCH_API OptionalType : public UnionType {
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
std::stringstream ss;
ss << "Optional[" << getElementType()->annotation_str(printer) << ']';
ss << "Optional[" << getElementType()->annotation_str(printer) << "]";
return ss.str();
}
};
@ -906,7 +906,7 @@ struct TORCH_API ListType
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
std::stringstream ss;
ss << "List[" << getElementType()->annotation_str(printer) << ']';
ss << "List[" << getElementType()->annotation_str(printer) << "]";
return ss.str();
}
};
@ -946,7 +946,7 @@ struct TORCH_API DictType : public SharedType {
std::string str() const override {
std::stringstream ss;
ss << "Dict(" << getKeyType()->str() << ", " << getValueType()->str()
<< ')';
<< ")";
return ss.str();
}
@ -1018,7 +1018,7 @@ struct TORCH_API FutureType
std::string str() const override {
std::stringstream ss;
ss << "Future(" << getElementType()->str() << ')';
ss << "Future(" << getElementType()->str() << ")";
return ss.str();
}
TypePtr createWithContained(
@ -1041,7 +1041,7 @@ struct TORCH_API FutureType
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
std::stringstream ss;
ss << "Future[" << getElementType()->annotation_str(printer) << ']';
ss << "Future[" << getElementType()->annotation_str(printer) << "]";
return ss.str();
}
};
@ -1060,7 +1060,7 @@ struct TORCH_API AwaitType
std::string str() const override {
std::stringstream ss;
ss << "Await(" << getElementType()->str() << ')';
ss << "Await(" << getElementType()->str() << ")";
return ss.str();
}
TypePtr createWithContained(
@ -1083,7 +1083,7 @@ struct TORCH_API AwaitType
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
std::stringstream ss;
ss << "Await[" << getElementType()->annotation_str(printer) << ']';
ss << "Await[" << getElementType()->annotation_str(printer) << "]";
return ss.str();
}
};
@ -1102,7 +1102,7 @@ struct TORCH_API RRefType
std::string str() const override {
std::stringstream ss;
ss << "RRef(" << getElementType()->str() << ')';
ss << "RRef(" << getElementType()->str() << ")";
return ss.str();
}
TypePtr createWithContained(
@ -1115,7 +1115,7 @@ struct TORCH_API RRefType
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
std::stringstream ss;
ss << "RRef[" << getElementType()->annotation_str(printer) << ']';
ss << "RRef[" << getElementType()->annotation_str(printer) << "]";
return ss.str();
}
};

View File

@ -11,7 +11,7 @@ std::string toString(const OperatorName& opName) {
std::ostream& operator<<(std::ostream& os, const OperatorName& opName) {
os << opName.name;
if (!opName.overload_name.empty()) {
os << '.' << opName.overload_name;
os << "." << opName.overload_name;
}
return os;
}

View File

@ -65,7 +65,7 @@ VaryingShape<T> VaryingShape<T>::merge(const VaryingShape<T>& other) const {
template <typename T>
std::ostream& operator<<(std::ostream& out, const VaryingShape<T>& vs) {
out << '(';
out << "(";
if (!vs.size()) {
out << "*)";
return out;
@ -79,10 +79,10 @@ std::ostream& operator<<(std::ostream& out, const VaryingShape<T>& vs) {
if (v.has_value()) {
out << v.value();
} else {
out << '*';
out << "*";
}
}
out << ')';
out << ")";
return out;
}
@ -105,7 +105,7 @@ std::ostream& operator<<(
}
auto sizes_opt = ss.sizes();
os << '(';
os << "(";
for (size_t i = 0; i < rank_opt.value(); i++) {
if (i > 0) {
os << ", ";
@ -113,10 +113,10 @@ std::ostream& operator<<(
if(sizes_opt.has_value() && sizes_opt.value()[i].is_static()) {
os << sizes_opt.value()[i];
} else {
os << '*';
os << "*";
}
}
os << ')';
os << ")";
return os;
}
@ -131,17 +131,17 @@ std::ostream& operator<<(std::ostream& os, const ShapeSymbol& s) {
}
std::ostream& operator<<(std::ostream& os, const Stride& s) {
os << '{';
os << "{";
if (s.stride_index_.has_value()) {
os << *s.stride_index_;
} else {
os << '*';
os << "*";
}
os << ':';
os << ":";
if (s.stride_.has_value()) {
os << *s.stride_;
} else {
os << '*';
os << "*";
}
os << '}';
return os;

View File

@ -67,7 +67,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
bool has_valid_strides_info = ndim > 0 &&
value->strides().isComplete() && value->strides().size() == ndim;
out << '(';
out << "(";
size_t i = 0;
bool symbolic = type_verbosity() == TypeVerbosity::Symbolic;
for (i = 0; i < *ndim; ++i) {
@ -79,7 +79,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
} else if (symbolic) {
out << value->symbolic_sizes().at(i);
} else {
out << '*';
out << "*";
}
}
if (has_valid_strides_info &&
@ -91,7 +91,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
}
out << value->strides()[i].value();
}
out << ']';
out << "]";
}
if (type_verbosity() >= TypeVerbosity::Full) {
if (value->requiresGrad()) {
@ -107,12 +107,12 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
out << "device=" << *value->device();
}
}
out << ')';
out << ")";
} else {
if (type_verbosity() >= TypeVerbosity::Full) {
size_t i = 0;
if (value->requiresGrad()) {
out << '('
out << "("
<< "requires_grad=" << *value->requiresGrad();
i++;
}
@ -120,7 +120,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
out << ((i++ > 0) ? ", " : "(") << "device=" << *value->device();
}
if (i > 0) {
out << ')';
out << ")";
}
}
}
@ -133,18 +133,18 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
out << *prim << "[]";
} else if (t.kind() == TypeKind::OptionalType) {
auto prim = t.castRaw<OptionalType>()->getElementType();
out << *prim << '?';
out << *prim << "?";
} else if(t.kind() == TypeKind::FutureType) {
auto elem = t.castRaw<FutureType>()->getElementType();
out << "Future[" << *elem << ']';
out << "Future[" << *elem << "]";
} else if(t.kind() == TypeKind::RRefType) {
auto elem = t.castRaw<RRefType>()->getElementType();
out << "RRef[" << *elem << ']';
out << "RRef[" << *elem << "]";
} else if(auto tup = t.cast<TupleType>()) {
if (tup->schema()) {
out << "NamedTuple";
}
out << '(';
out << "(";
for(size_t i = 0; i < tup->elements().size(); ++i) {
if(i > 0)
out << ", ";
@ -160,7 +160,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
out << *(tup->elements()[i]);
}
}
out << ')';
out << ")";
} else if (t.kind() == TypeKind::FunctionType) {
out << "Function";
} else {
@ -475,7 +475,7 @@ std::optional<TypePtr> unifyTypeList(
why_not << "Could not unify type list since element " << i << " of type "
<< elements.at(i)->repr_str()
<< " did not match the types before it ("
<< ret_type->repr_str() << ')';
<< ret_type->repr_str() << ")";
return std::nullopt;
}
ret_type = *maybe_unified;
@ -907,13 +907,13 @@ std::string TupleType::str() const {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
ss << name()->qualifiedName();
} else {
ss << '(';
ss << "(";
for(size_t i = 0; i < elements().size(); ++i) {
if(i > 0)
ss << ", ";
ss << elements()[i]->str();
}
ss << ')';
ss << ")";
}
return ss.str();
}
@ -1003,8 +1003,8 @@ bool InterfaceType::isSubTypeImpl(
*why_not << "Method on interface '" << lhs.repr_str()
<< "' (1) is not compatible with interface '"
<< rhs.repr_str() << "' (2)\n"
<< " (1) " << *self_schema << '\n'
<< " (2) " << schema << '\n';
<< " (1) " << *self_schema << "\n"
<< " (2) " << schema << "\n";
return false;
}
return false;
@ -1078,7 +1078,7 @@ SymbolicShape SymbolicShape::merge(const SymbolicShape& other) const {
}
void SymbolicShape::dump() const {
std::cout << *this << '\n';
std::cout << *this << "\n";
}
bool EnumType::isSubtypeOfExt(const Type& rhs, std::ostream* why_not) const {

View File

@ -205,9 +205,9 @@ UnionType::UnionType(std::vector<TypePtr> reference, TypeKind kind) : SharedType
for (const auto i : c10::irange(reference.size())) {
msg << reference[i]->repr_str();
if (i > 0) {
msg << ',';
msg << ",";
}
msg << ' ';
msg << " ";
}
msg << "} has the single type " << types_[0]->repr_str()
<< ". Use the common supertype instead of creating a Union"

View File

@ -80,7 +80,7 @@ std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
}
stream << buf[i];
}
stream << ']';
stream << "]";
return stream;
}

View File

@ -55,7 +55,7 @@ std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
}
stream << buf[i];
}
stream << ']';
stream << "]";
return stream;
}

View File

@ -411,16 +411,16 @@ std::string CUDAHooks::showConfig() const {
// HIP_VERSION value format was changed after ROCm v4.2 to include the patch number
if(v < 500) {
// If major=xx, minor=yy then format -> xxyy
oss << (v / 100) << '.' << (v % 10);
oss << (v / 100) << "." << (v % 10);
}
else {
// If major=xx, minor=yy & patch=zzzzz then format -> xxyyzzzzz
oss << (v / 10000000) << '.' << (v / 100000 % 100) << '.' << (v % 100000);
oss << (v / 10000000) << "." << (v / 100000 % 100) << "." << (v % 100000);
}
#else
oss << (v / 1000) << '.' << (v / 10 % 100);
oss << (v / 1000) << "." << (v / 10 % 100);
if (v % 10 != 0) {
oss << '.' << (v % 10);
oss << "." << (v % 10);
}
#endif
};
@ -431,16 +431,16 @@ std::string CUDAHooks::showConfig() const {
oss << " - HIP Runtime ";
#endif
printCudaStyleVersion(runtimeVersion);
oss << '\n';
oss << "\n";
// TODO: Make HIPIFY understand CUDART_VERSION macro
#if !defined(USE_ROCM)
if (runtimeVersion != CUDART_VERSION) {
oss << " - Built with CUDA Runtime ";
printCudaStyleVersion(CUDART_VERSION);
oss << '\n';
oss << "\n";
}
oss << " - NVCC architecture flags: " << NVCC_FLAGS_EXTRA << '\n';
oss << " - NVCC architecture flags: " << NVCC_FLAGS_EXTRA << "\n";
#endif
#if !defined(USE_ROCM)
@ -448,9 +448,9 @@ std::string CUDAHooks::showConfig() const {
auto printCudnnStyleVersion = [&](size_t v) {
oss << (v / 1000) << '.' << (v / 100 % 10);
oss << (v / 1000) << "." << (v / 100 % 10);
if (v % 100 != 0) {
oss << '.' << (v % 100);
oss << "." << (v % 100);
}
};
@ -461,22 +461,22 @@ std::string CUDAHooks::showConfig() const {
if (cudnnCudartVersion != CUDART_VERSION) {
oss << " (built against CUDA ";
printCudaStyleVersion(cudnnCudartVersion);
oss << ')';
oss << ")";
}
oss << '\n';
oss << "\n";
if (cudnnVersion != CUDNN_VERSION) {
oss << " - Built with CuDNN ";
printCudnnStyleVersion(CUDNN_VERSION);
oss << '\n';
oss << "\n";
}
#endif
#else
// TODO: Check if miopen has the functions above and unify
oss << " - MIOpen " << MIOPEN_VERSION_MAJOR << '.' << MIOPEN_VERSION_MINOR << '.' << MIOPEN_VERSION_PATCH << '\n';
oss << " - MIOpen " << MIOPEN_VERSION_MAJOR << "." << MIOPEN_VERSION_MINOR << "." << MIOPEN_VERSION_PATCH << "\n";
#endif
#if AT_MAGMA_ENABLED()
oss << " - Magma " << MAGMA_VERSION_MAJOR << '.' << MAGMA_VERSION_MINOR << '.' << MAGMA_VERSION_MICRO << '\n';
oss << " - Magma " << MAGMA_VERSION_MAJOR << "." << MAGMA_VERSION_MINOR << "." << MAGMA_VERSION_MICRO << "\n";
#endif
return oss.str();

View File

@ -42,7 +42,7 @@ static inline void launch_jitted_vectorized_kernel_dynamic(
// The cache key includes all the parameters to generate_code + vec_size + dev_idx
std::stringstream ss;
ss << nInputs << '_' << nOutputs << f;
ss << nInputs << "_" << nOutputs << f;
ss << f_inputs_type_str << compute_type_str << result_type_str;
ss << static_cast<int>(at::cuda::jit::BinaryFuncVariant::NoScalar);
ss << extra_args_types;
@ -144,7 +144,7 @@ static inline void launch_jitted_unrolled_kernel_dynamic(
// The cache key includes all the parameters to generate_code + dev_idx
std::stringstream ss;
ss << nInputs << '_' << nOutputs << f;
ss << nInputs << "_" << nOutputs << f;
ss << f_inputs_type_str << compute_type_str << result_type_str;
ss << contiguous << dynamic_casting;
ss << static_cast<int>(at::cuda::jit::BinaryFuncVariant::NoScalar);

View File

@ -52,10 +52,10 @@ TuningContext* getTuningContext() {
std::ostream& operator<<(std::ostream& stream, const ResultEntry& entry) {
static const bool blaslog = c10::utils::get_env("PYTORCH_TUNABLEOP_BLAS_LOG") == "1";
if (!blaslog) {
return stream << entry.key_ << ',' << entry.time_;
return stream << entry.key_ << "," << entry.time_;
}
else {
return stream << entry.key_ << ',' << entry.time_ << ",BLAS_PARAMS: " << entry.blas_sig_;
return stream << entry.key_ << "," << entry.time_ << ",BLAS_PARAMS: " << entry.blas_sig_;
}
}
@ -156,10 +156,10 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std
if (isNew) {
static const bool blaslog = c10::utils::get_env("PYTORCH_TUNABLEOP_BLAS_LOG") == "1";
if (!blaslog) {
untuned_file << op_signature << ',' << params_signature << std::endl;
untuned_file << op_signature << "," << params_signature << std::endl;
}
else {
untuned_file << op_signature << ',' << params_signature << ",BLAS_PARAMS: " << blas_signature << std::endl;
untuned_file << op_signature << "," << params_signature << ",BLAS_PARAMS: " << blas_signature << std::endl;
}
TUNABLE_LOG3("Untuned,", op_signature, ",", params_signature);
}
@ -201,7 +201,7 @@ void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const
if(!file_exists || file_empty) {
for(const auto& [key, val] : validators) {
(*realtime_out_) << "Validator," << key << ',' << val << std::endl;
(*realtime_out_) << "Validator," << key << "," << val << std::endl;
realtime_out_->flush();
}
validators_written_ = true;
@ -219,7 +219,7 @@ void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std
return;
}
(*realtime_out_) << op_sig << ',' << param_sig << ',' << result << std::endl;
(*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl;
realtime_out_->flush(); //ensure immediate write to disk
TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result);

View File

@ -93,31 +93,31 @@ std::string cudnnTypeToString(cudnnDataType_t dtype) {
return "CUDNN_DATA_UINT8x4";
default:
std::ostringstream oss;
oss << "(unknown data-type " << static_cast<int>(dtype) << ')';
oss << "(unknown data-type " << static_cast<int>(dtype) << ")";
return oss.str();
}
}
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << '\n';
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
int nbDims = 0;
int dimA[CUDNN_DIM_MAX];
int strideA[CUDNN_DIM_MAX];
cudnnDataType_t dtype{};
cudnnGetTensorNdDescriptor(d.desc(), CUDNN_DIM_MAX, &dtype, &nbDims, dimA, strideA);
out << " type = " << cudnnTypeToString(dtype) << '\n';
out << " nbDims = " << nbDims << '\n';
out << " type = " << cudnnTypeToString(dtype) << "\n";
out << " nbDims = " << nbDims << "\n";
// Read out only nbDims of the arrays!
out << " dimA = ";
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
out << i << ", ";
}
out << '\n';
out << "\n";
out << " strideA = ";
for (auto i : ArrayRef<int>{strideA, static_cast<size_t>(nbDims)}) {
out << i << ", ";
}
out << '\n';
out << "\n";
return out;
}
@ -168,27 +168,27 @@ std::string cudnnMemoryFormatToString(cudnnTensorFormat_t tformat) {
return "CUDNN_TENSOR_NHWC";
default:
std::ostringstream oss;
oss << "(unknown cudnn tensor format " << static_cast<int>(tformat) << ')';
oss << "(unknown cudnn tensor format " << static_cast<int>(tformat) << ")";
return oss.str();
}
}
std::ostream& operator<<(std::ostream & out, const FilterDescriptor& d) {
out << "FilterDescriptor " << static_cast<void*>(d.desc()) << '\n';
out << "FilterDescriptor " << static_cast<void*>(d.desc()) << "\n";
int nbDims = 0;
int dimA[CUDNN_DIM_MAX];
cudnnDataType_t dtype{};
cudnnTensorFormat_t tformat{};
cudnnGetFilterNdDescriptor(d.desc(), CUDNN_DIM_MAX, &dtype, &tformat, &nbDims, dimA);
out << " type = " << cudnnTypeToString(dtype) << '\n';
out << " tensor_format = " << cudnnMemoryFormatToString(tformat) << '\n';
out << " nbDims = " << nbDims << '\n';
out << " type = " << cudnnTypeToString(dtype) << "\n";
out << " tensor_format = " << cudnnMemoryFormatToString(tformat) << "\n";
out << " nbDims = " << nbDims << "\n";
// Read out only nbDims of the arrays!
out << " dimA = ";
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
out << i << ", ";
}
out << '\n';
out << "\n";
return out;
}

View File

@ -346,15 +346,15 @@ void foreachTensorInplaceWithFlag(std::vector<IValue>& args, int64_t begin, int6
}
std::ostream& operator<< (std::ostream& os, const DynamicLayer& layer) {
os << layer.layerId() << ':' << layer.key();
os << layer.layerId() << ":" << layer.key();
return os;
}
std::ostream& operator<< (std::ostream& os, const std::vector<DynamicLayer>& dls) {
os << "DynamicLayerStack[ ";
for (const auto& layer : dls) {
os << layer << ' ';
os << layer << " ";
}
os << ']';
os << "]";
return os;
}

View File

@ -22,7 +22,7 @@ void dumpTensor(std::ostream& ss, const Tensor& tensor) {
if (batched) {
ss << "Batched[lvl=" << batched->level() << " dim=" << batched->bdim() << ", ";
dumpTensor(ss, batched->value());
ss << ']';
ss << "]";
return;
}
ss << "Tensor" << tensor.sizes();
@ -36,7 +36,7 @@ void dumpTensor(std::ostream& ss, const Tensor& tensor) {
ss << "dead, ";
}
dumpTensor(ss, wrapped->value());
ss << ']';
ss << "]";
}
void TensorWrapper::refreshMetadata() {

View File

@ -73,32 +73,32 @@ std::string miopenTypeToString(miopenDataType_t dtype) {
return "miopenBFloat16";
default:
std::ostringstream oss;
oss << "(unknown data-type " << static_cast<int>(dtype) << ')';
oss << "(unknown data-type " << static_cast<int>(dtype) << ")";
return oss.str();
}
}
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << '\n';
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
int nbDims = 0;
int dimA[MIOPEN_DIM_MAX];
int strideA[MIOPEN_DIM_MAX];
miopenDataType_t dtype;
miopenGetTensorDescriptorSize(d.desc(), &nbDims);
miopenGetTensorDescriptor(d.desc(), &dtype, dimA, strideA);
out << " type = " << miopenTypeToString(dtype) << '\n';
out << " nbDims = " << nbDims << '\n';
out << " type = " << miopenTypeToString(dtype) << "\n";
out << " nbDims = " << nbDims << "\n";
// Read out only nbDims of the arrays!
out << " dimA = ";
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
out << i << ", ";
}
out << '\n';
out << "\n";
out << " strideA = ";
for (auto i : ArrayRef<int>{strideA, static_cast<size_t>(nbDims)}) {
out << i << ", ";
}
out << '\n';
out << "\n";
return out;
}

View File

@ -22,6 +22,7 @@ enum class MacOSVersion : uint32_t {
MACOS_VER_15_0_PLUS,
MACOS_VER_15_1_PLUS,
MACOS_VER_15_2_PLUS,
MACOS_VER_26_0_PLUS,
};
//-----------------------------------------------------------------

View File

@ -65,6 +65,7 @@ bool MPSDevice::isMacOS13Plus(MacOSVersion version) const {
static bool _macos_15_0_plus = is_os_version_at_least(15, 0);
static bool _macos_15_1_plus = is_os_version_at_least(15, 1);
static bool _macos_15_2_plus = is_os_version_at_least(15, 2);
static bool _macos_26_0_plus = is_os_version_at_least(26, 0);
switch (version) {
case MacOSVersion::MACOS_VER_14_4_PLUS:
@ -75,6 +76,8 @@ bool MPSDevice::isMacOS13Plus(MacOSVersion version) const {
return _macos_15_1_plus;
case MacOSVersion::MACOS_VER_15_2_PLUS:
return _macos_15_2_plus;
case MacOSVersion::MACOS_VER_26_0_PLUS:
return _macos_26_0_plus;
default:
return false;
}

View File

@ -91,7 +91,7 @@ struct OperationInfo : BaseInfo {
std::stringstream kernelStr;
kernelStr << kernelName;
for (const Tensor& tensor : tensors) {
kernelStr << ':' << BaseInfo::buildTensorString(tensor, includeBufferId);
kernelStr << ":" << BaseInfo::buildTensorString(tensor, includeBufferId);
}
return kernelStr.str();
}

View File

@ -39,9 +39,9 @@ std::string BaseInfo::buildTensorString(const Tensor& tensor, bool includeBuffer
// see comments for INCLUDE_BUFFER_ID
if (includeBufferId && deviceType == at::kMPS) {
id<MTLBuffer> buffer = __builtin_bit_cast(id<MTLBuffer>, tensor.storage().data());
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer)) << ':' << buffer.retainCount << ')';
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer)) << ":" << buffer.retainCount << ")";
}
tensorStr << ':' << tensor.scalar_type() << tensor.sizes();
tensorStr << ":" << tensor.scalar_type() << tensor.sizes();
return tensorStr.str();
} else {
return "undefined";

View File

@ -167,7 +167,7 @@ static void check_args(CheckedFrom c, IntArrayRef args, size_t expected_size, co
std::stringstream ss;
ss << arg_name << " should be greater than zero but got (";
std::copy(args.begin(), args.end() - 1, std::ostream_iterator<int>(ss,", "));
ss << args.back() << ")" << " (while checking arguments for " << c << ')';
ss << args.back() << ")" << " (while checking arguments for " << c << ")";
TORCH_CHECK(false, ss.str());
}
}

View File

@ -639,7 +639,7 @@ static std::ostream& operator<<(std::ostream & out, const ConvParams<T>& params)
<< " deterministic = " << params.deterministic
<< " cudnn_enabled = " << params.cudnn_enabled
<< " allow_tf32 = " << params.allow_tf32
<< '}';
<< "}";
return out;
}

View File

@ -847,7 +847,7 @@ Tensor stft(const Tensor& self, const int64_t n_fft, const std::optional<int64_t
<< ", hop_length=" << hop_length << ", win_length=" << win_length \
<< ", window="; \
if (window.defined()) { \
SS << window.toString() << '{' << window.sizes() << '}'; \
SS << window.toString() << "{" << window.sizes() << "}"; \
} else { \
SS << "None"; \
} \
@ -1046,7 +1046,7 @@ Tensor istft(const Tensor& self, const int64_t n_fft, const std::optional<int64_
<< ", hop_length=" << hop_length << ", win_length=" << win_length \
<< ", window="; \
if (window.defined()) { \
SS << window.toString() << '{' << window.sizes() << '}'; \
SS << window.toString() << "{" << window.sizes() << "}"; \
} else { \
SS << "None"; \
} \

View File

@ -523,7 +523,7 @@ Tensor _functional_assert_async_msg_cpu(
}
void _print(std::string_view s) {
std::cout << s << '\n';
std::cout << s << "\n";
}
// Sorting-based algorithm for isin(); used when the number of test elements is

View File

@ -346,9 +346,8 @@ void dispatch_bf16_grouped_kernel_on_tile_size(
bool small = (M <= 128 || N <= 128);
cudaDeviceProp* properties = at::cuda::getCurrentDeviceProperties();
const bool sm10x = properties != nullptr && properties->major == 10;
const bool sm11x = properties != nullptr && properties->major == 11;
if (sm10x || sm11x) {
if (sm10x) {
if (small){
bf16bf16_grouped_gemm_impl_sm90_sm100<
cutlass::arch::Sm100,

View File

@ -607,8 +607,6 @@ _scaled_grouped_mm_cuda_v2(
// scale shape checks
_check_scales_blocked(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
_check_scales_blocked(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */);
// swizze checks
TORCH_CHECK_VALUE(swizzle_a_enum.size() == 1 && swizzle_b_enum.size() == 1, "Expected single swizzle argument");
return _mx8_mx8_bf16_grouped_mm_fbgemm(
mat_a,
mat_b,

View File

@ -5,69 +5,11 @@
#include <cuda_bf16.h>
#endif
// ROCm 6.3 is planned to have these functions, but until then here they are.
#if defined(USE_ROCM)
#include <device_functions.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bf16.h>
__device__ inline __hip_bfloat162 preview_unsafeAtomicAdd(__hip_bfloat162* address, __hip_bfloat162 value) {
#if (defined(__gfx942__)) && \
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2bf16)
typedef unsigned short __attribute__((ext_vector_type(2))) vec_short2;
static_assert(sizeof(vec_short2) == sizeof(__hip_bfloat162_raw));
union {
__hip_bfloat162_raw bf162_raw;
vec_short2 vs2;
} u{static_cast<__hip_bfloat162_raw>(value)};
u.vs2 = __builtin_amdgcn_flat_atomic_fadd_v2bf16((vec_short2*)address, u.vs2);
return static_cast<__hip_bfloat162>(u.bf162_raw);
#else
static_assert(sizeof(unsigned int) == sizeof(__hip_bfloat162_raw));
union u_hold {
__hip_bfloat162_raw h2r;
unsigned int u32;
};
u_hold old_val, new_val;
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
do {
new_val.h2r = __hadd2(old_val.h2r, value);
} while (!__hip_atomic_compare_exchange_strong(
(unsigned int*)address, &old_val.u32, new_val.u32,
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
return old_val.h2r;
#endif
}
__device__ inline __half2 preview_unsafeAtomicAdd(__half2* address, __half2 value) {
#if (defined(__gfx942__)) && \
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2f16)
// The api expects an ext_vector_type of half
typedef _Float16 __attribute__((ext_vector_type(2))) vec_fp162;
static_assert(sizeof(vec_fp162) == sizeof(__half2_raw));
union {
__half2_raw h2r;
vec_fp162 fp16;
} u {static_cast<__half2_raw>(value)};
u.fp16 = __builtin_amdgcn_flat_atomic_fadd_v2f16((vec_fp162*)address, u.fp16);
return static_cast<__half2>(u.h2r);
#else
static_assert(sizeof(__half2_raw) == sizeof(unsigned int));
union u_hold {
__half2_raw h2r;
unsigned int u32;
};
u_hold old_val, new_val;
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
do {
new_val.h2r = __hadd2(old_val.h2r, value);
} while (!__hip_atomic_compare_exchange_strong(
(unsigned int*)address, &old_val.u32, new_val.u32,
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
return old_val.h2r;
#endif
}
#define ATOMICADD preview_unsafeAtomicAdd
#define ATOMICADD unsafeAtomicAdd
#define NATIVE_ZERO_BF16 __float2bfloat16(0.0f)
#else
#define ATOMICADD atomicAdd

View File

@ -11,7 +11,7 @@ static inline std::ostream& operator<<(std::ostream& out, dim3 dim) {
if (dim.y == 1 && dim.z == 1) {
out << dim.x;
} else {
out << '[' << dim.x << ',' << dim.y << ',' << dim.z << ']';
out << "[" << dim.x << "," << dim.y << "," << dim.z << "]";
}
return out;
}
@ -27,7 +27,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
out << "input_mult=[";
for (int i = 0; i < 3; i++) {
if (i != 0) {
out << ',';
out << ",";
}
out << config.input_mult[i];
}
@ -35,7 +35,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
out << "output_mult=[";
for (int i = 0; i < 2; i++) {
if (i != 0) {
out << ',';
out << ",";
}
out << config.output_mult[i];
}
@ -49,7 +49,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
out << "block=" << config.block() << ", ";
out << "grid=" << config.grid() << ", ";
out << "global_memory_size=" << config.global_memory_size();
out << ')';
out << ")";
return out;
}

View File

@ -958,9 +958,8 @@ void dispatch_fp8_rowwise_kernel_on_sm(
const bool sm89 = properties != nullptr && properties->major == 8 && properties->minor == 9;
const bool sm9x = properties != nullptr && properties->major == 9;
const bool sm10x = properties != nullptr && properties->major == 10;
const bool sm11x = properties != nullptr && properties->major == 11;
const bool sm12x = properties != nullptr && properties->major == 12;
if (!(sm89 || sm9x || sm10x || sm11x || sm12x)) {
if (!(sm89 || sm9x || sm10x || sm12x)) {
TORCH_CHECK(
false, "Rowwise scaling is not currently supported on your device");
}
@ -969,7 +968,7 @@ void dispatch_fp8_rowwise_kernel_on_sm(
dispatch_fp8_rowwise_kernel_on_cluster_size_and_transpose<
/*ArchTag=*/cutlass::arch::Sm90,
Types...>(XQ, WQ, x_scale, w_scale, bias, out);
} else if (sm10x || sm11x) {
} else if (sm10x) {
dispatch_fp8_rowwise_kernel_on_cluster_size_and_transpose<
/*ArchTag=*/cutlass::arch::Sm100,
Types...>(XQ, WQ, x_scale, w_scale, bias, out);

View File

@ -364,9 +364,9 @@ void f8f8bf16_grouped_gemm_impl_sm90(
// reinterpret_cast<ProblemShape::UnderlyingProblemShape*>(
// stride_output_h + group_count);
// std::cout << "PTRS " << mat_a.data_ptr() << ' ' << mat_b.data_ptr() << "
// std::cout << "PTRS " << mat_a.data_ptr() << " " << mat_b.data_ptr() << "
// "
// << out.data_ptr() << ' ' << scale_a.data_ptr() << ' '
// << out.data_ptr() << " " << scale_a.data_ptr() << " "
// << scale_b.data_ptr() << "\n";
// for (int i = 0; i < group_count; i++) {
// std::cout << "A " << (void*)inputA_ptrs_h[i] << "\n";

View File

@ -1057,14 +1057,14 @@ std::string generate_code(
// TODO these arrays are potentially of the different types, use function
// traits to determine the types
declare_load_arrays << f_inputs_type << " arg" << std::to_string(i)
<< '[' << std::to_string(thread_work_size) << "];\n";
<< "[" << std::to_string(thread_work_size) << "];\n";
}
env.s("declare_load_arrays", declare_load_arrays.str());
std::stringstream declare_store_arrays;
for (int i = 0; i < nOutputs; i++) {
declare_store_arrays << result_type << " out" << std::to_string(i)
<< '[' << std::to_string(thread_work_size) << "];\n";
<< "[" << std::to_string(thread_work_size) << "];\n";
}
env.s("declare_store_arrays", declare_store_arrays.str());
@ -1217,7 +1217,7 @@ std::string generate_code(
for (const auto i : c10::irange(nInputs)){
auto i_string = std::to_string(i);
vector_inputs << "auto * input" << i_string <<
" = reinterpret_cast<const scalar_t*>(data[" << i_string << '+' << nOutputs << "])" <<
" = reinterpret_cast<const scalar_t*>(data[" << i_string << "+" << nOutputs << "])" <<
" + block_work_size * idx;\n";
}
env.s("vector_inputs", vector_inputs.str());
@ -1543,17 +1543,17 @@ NvrtcFunction jit_pwise_function(
// Constructs file path by appending constructed cubin name to cache path
std::stringstream ss;
ss << *cache_dir << '/';
ss << *cache_dir << "/";
ss << kernel_name;
#ifdef USE_ROCM
ss << "_arch" << prop->gcnArchName;
#else
ss << "_arch" << cuda_major << '.' << cuda_minor;
ss << "_arch" << cuda_major << "." << cuda_minor;
#endif
ss << "_nvrtc" << nvrtc_major << '.' << nvrtc_minor;
ss << "_nvrtc" << nvrtc_major << "." << nvrtc_minor;
ss << (compile_to_sass ? "_sass" : "_ptx");
ss << '_' << code.length();
ss << '_' << hash_code;
ss << "_" << code.length();
ss << "_" << hash_code;
file_path = ss.str();
std::ifstream readin{file_path, std::ios::in | std::ifstream::binary};

View File

@ -82,15 +82,15 @@ namespace native {
std::ostream& operator<<(std::ostream& out, const ConvolutionParams& params) {
out << "ConvolutionParams \n"
<< " memory_format = " << params.memory_format << '\n'
<< " data_type = " << cudnnTypeToString(params.dataType) << '\n'
<< " padding = " << ArrayRef<int>{params.padding} << '\n'
<< " stride = " << ArrayRef<int>{params.stride} << '\n'
<< " dilation = " << ArrayRef<int>{params.dilation} << '\n'
<< " groups = " << params.groups << '\n'
<< " memory_format = " << params.memory_format << "\n"
<< " data_type = " << cudnnTypeToString(params.dataType) << "\n"
<< " padding = " << ArrayRef<int>{params.padding} << "\n"
<< " stride = " << ArrayRef<int>{params.stride} << "\n"
<< " dilation = " << ArrayRef<int>{params.dilation} << "\n"
<< " groups = " << params.groups << "\n"
<< " deterministic = " << (params.deterministic ? "true" : "false")
<< '\n'
<< " allow_tf32 = " << (params.allow_tf32 ? "true" : "false") << '\n';
<< "\n"
<< " allow_tf32 = " << (params.allow_tf32 ? "true" : "false") << "\n";
return out;
}
@ -173,16 +173,16 @@ std::string repro_from_args(const ConvolutionParams& params) {
at::globalContext().float32Precision(
at::Float32Backend::CUDA, at::Float32Op::MATMUL) ==
at::Float32Precision::TF32)
<< '\n';
<< "\n";
ss << "torch.backends.cudnn.benchmark = "
<< pybool(at::globalContext().benchmarkCuDNN()) << '\n';
<< pybool(at::globalContext().benchmarkCuDNN()) << "\n";
ss << "torch.backends.cudnn.deterministic = " << pybool(params.deterministic)
<< '\n';
<< "\n";
ss << "torch.backends.cudnn.allow_tf32 = " << pybool(params.allow_tf32)
<< '\n';
<< "\n";
ss << "data = torch.randn(" << ArrayRef<int>(params.input_size, dim)
<< ", dtype=" << full_dtype << ", ";
ss << "device='cuda', requires_grad=True)" << to_channels_last << '\n';
ss << "device='cuda', requires_grad=True)" << to_channels_last << "\n";
ss << "net = torch.nn.Conv" << dim - 2 << "d(" << in_channels << ", "
<< out_channels << ", ";
ss << "kernel_size=" << ArrayRef<int>(&params.weight_size[2], dim - 2)
@ -192,7 +192,7 @@ std::string repro_from_args(const ConvolutionParams& params) {
ss << "dilation=" << ArrayRef<int>(params.dilation, dim - 2) << ", ";
ss << "groups=" << params.groups << ")\n";
ss << "net = net.cuda()." << partial_dtype << "()" << to_channels_last
<< '\n';
<< "\n";
ss << "out = net(data)\n";
ss << "out.backward(torch.randn_like(out))\n";
ss << "torch.cuda.synchronize()\n\n";

View File

@ -93,10 +93,11 @@ std::ostream& operator<<(std::ostream& out, const ConvolutionArgs& args) {
<< "input: " << args.idesc // already has a trailing newline
<< "output: " << args.odesc // already has a trailing newline
<< "weight: " << args.wdesc // already has a trailing newline
<< "Pointer addresses: " << '\n'
<< " input: " << args.input.const_data_ptr() << '\n'
<< " output: " << args.output.const_data_ptr() << '\n'
<< " weight: " << args.weight.const_data_ptr() << '\n';
<< "Pointer addresses: "
<< "\n"
<< " input: " << args.input.const_data_ptr() << "\n"
<< " output: " << args.output.const_data_ptr() << "\n"
<< " weight: " << args.weight.const_data_ptr() << "\n";
return out;
}

View File

@ -115,7 +115,7 @@ std::ostream& operator<<(
std::copy(
strides.begin(), strides.end() - 1, std::ostream_iterator<int>(oss, ","));
oss << sizes.back();
output << oss.str() << '}';
output << oss.str() << "}";
return output;
}

View File

@ -53,7 +53,7 @@ std::ostream& operator<<(std::ostream& out, const ConvParams& params) {
<< " transposed = " << params.transposed
<< " output_padding = " << IntArrayRef{params.output_padding}
<< " groups = " << params.groups << " benchmark = " << params.benchmark
<< " deterministic = " << params.deterministic << '}';
<< " deterministic = " << params.deterministic << "}";
return out;
}

View File

@ -5,7 +5,6 @@
#include <ATen/native/Resize.h>
#include <ATen/native/mkldnn/xpu/detail/oneDNN.h>
#include <ATen/native/xpu/Blas.h>
#include <ATen/xpu/XPUScaledBlas.h>
#include <torch/library.h>
#ifndef AT_PER_OPERATOR_HEADERS
@ -340,399 +339,4 @@ Tensor _scaled_mm_xpu(
out);
}
using acceptance_fn = std::function<bool(
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&)>;
using namespace std::placeholders;
namespace scaled_blas = at::native::onednn::scaled;
using scaled_blas::convert_int_to_enum;
using scaled_blas::ScaledGemmImplementation;
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 2>
scale_kernel_dispatch = {{
{"tensorwise_tensorwise",
scaled_blas::check_tensorwise_recipe,
ScaledGemmImplementation::TENSORWISE_TENSORWISE},
{"rowwise_rowwise",
scaled_blas::check_rowwise_recipe,
ScaledGemmImplementation::ROWWISE_ROWWISE},
}};
Tensor& _scaled_tensorwise_tensorwise(
const Tensor& mat_a,
const Tensor& mat_b,
const Tensor& scale_a,
const Tensor& scale_b,
const std::optional<Tensor>& bias,
const c10::ScalarType out_dtype,
bool use_fast_accum,
Tensor& out) {
// Restrictions:
// A, B are FP8, scales are fp32
TORCH_CHECK_VALUE(
isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()),
"mat_a and mat_b must be fp8 types, got: ",
mat_a.scalar_type(),
mat_b.scalar_type());
TORCH_CHECK_VALUE(
scale_a.numel() == 1 && scale_a.scalar_type() == kFloat,
"scale_a must have 1 Float element")
TORCH_CHECK_VALUE(
scale_b.numel() == 1 && scale_b.scalar_type() == kFloat,
"scale_b must have 1 Float element")
auto scaling_choice_a = ScalingType::TensorWise;
auto scaling_choice_b = ScalingType::TensorWise;
_scaled_gemm(
mat_a,
mat_b,
scale_a,
scale_b,
scaling_choice_a,
scaling_choice_b,
bias,
use_fast_accum,
out);
return out;
}
Tensor& _scaled_rowwise_rowwise(
const Tensor& mat_a,
const Tensor& mat_b,
const Tensor& scale_a,
const Tensor& scale_b,
const std::optional<Tensor>& bias,
const c10::ScalarType out_dtype,
bool use_fast_accum,
Tensor& out) {
// Restrictions:
// A, B are FP8, scales are fp32, shape M/N for A/B
TORCH_CHECK_VALUE(
isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()),
"mat_a and mat_b must be fp8 types, got: ",
mat_a.scalar_type(),
mat_b.scalar_type());
TORCH_CHECK_VALUE(
scale_a.size(0) == mat_a.size(0) && scale_a.size(1) == 1,
"scale_a must have shape [",
mat_a.size(0),
", 1], got [",
scale_a.sizes(),
"]");
TORCH_CHECK_VALUE(
scale_a.numel() == mat_a.size(0) && scale_a.scalar_type() == kFloat,
"scale_a must have ",
mat_a.size(0),
" Float elements, got ",
scale_a.numel())
TORCH_CHECK_VALUE(
scale_b.numel() == mat_b.size(1) && scale_b.scalar_type() == kFloat,
"scale_b must have ",
mat_b.size(1),
" Float elements, got ",
scale_b.numel())
TORCH_CHECK_VALUE(
scale_a.stride(1) == 1,
"expected scale_a.stride(1) to be 1, but got ",
scale_a.stride(1));
TORCH_CHECK_VALUE(
scale_b.stride(1) == 1,
"expected scale_b.stride(1) to be 1, but got ",
scale_b.stride(1));
auto scaling_choice_a = ScalingType::RowWise;
auto scaling_choice_b = ScalingType::RowWise;
_scaled_gemm(
mat_a,
mat_b,
scale_a,
scale_b,
scaling_choice_a,
scaling_choice_b,
bias,
use_fast_accum,
out);
return out;
}
// V2: Computes matrix multiply + bias while applying scaling to input and
// output matrices Scales are only applicable when matrices are of Float8 type
// and assumed to be equal to 1.0 by default. If output matrix type is 16 or
// 32-bit type, scale_result is not applied. Known limitations:
// - Only works if mat1 is row-major and mat2 is column-major
// - Only works if matrices sizes are divisible by 32
// - If 1-dimensional tensors are used then scale_a should be size =
// mat1.size(0)
// and scale_b should have size = to mat2.size(1)
// Arguments:
// - `mat_a`: the first operand of the matrix multiply, can be type
// `torch.float8_e4m3fn` or `torch.float8_e5m2`
// - `mat_b`: the second operand of the matrix multiply, can be type
// `torch.float8_e4m3fn` or `torch.float8_e5m2`
// - `scale_a`: a tensor with the inverse scale of `mat1`, whose
// shape/strides/dtype depend on the scaling scheme
// - `scale_recipe_a`: An integer corresponding to an enum describing the
// scaling scheme used for `scale_a`
// - `swizzle_a`: An integer corresponding to a `SwizzleType` enum describing
// the swizzling scheme for `scale_a`.
// Not supported for XPU for now.
// - `scale_b`: a tensor with the inverse scale of `mat2`, whose
// shape/strides/dtype depend on the scaling scheme
// - `scale_recipe_b`: An integer corresponding to an enum describing the
// scaling scheme used for `scale_b`
// - `swizzle_b`: An integer corresponding to a `SwizzleType` enum describing
// the swizzling scheme for `scale_b`.
// Not supported for XPU for now.
// - `bias`: the bias, can be type `torch.float16` or `torch.bfloat16`
// - `out_dtype`: the output dtype, can either be a float8 or a higher
// precision floating point type
// - `contraction_dim`: describe which dimensions are `K` in the matmul.
// Not supported for XPU. Should always be empty.
// - `use_fast_accum`: Not supported for XPU, should always be false.
// - `out`: a reference to the output tensor
Tensor& _scaled_mm_xpu_v2_out(
const Tensor& mat_a,
const Tensor& mat_b,
ArrayRef<Tensor> scale_a,
IntArrayRef scale_recipe_a,
IntArrayRef swizzle_a,
ArrayRef<Tensor> scale_b,
IntArrayRef scale_recipe_b,
IntArrayRef swizzle_b,
const std::optional<Tensor>& bias,
const std::optional<c10::ScalarType> out_dtype,
IntArrayRef contraction_dim,
bool use_fast_accum,
Tensor& out) {
TORCH_CHECK_VALUE(mat_a.dim() == 2, "mat_a must be a matrix");
TORCH_CHECK_VALUE(mat_b.dim() == 2, "mat_b must be a matrix");
// If any of M, K, N is 0 - return early (the tensorwise/rowwise float8 gemm
// kernels do not support this case).
if (mat_a.size(0) == 0 || mat_a.size(1) == 0 || mat_b.size(1) == 0) {
// `out` was created with `at::empty`. In the case where we are multiplying
// MxK by KxN and K is the zero dim, we need to initialize here to properly
// return a tensor of zeros.
at::native::resize_output(out, {mat_a.size(0), mat_b.size(1)});
if (mat_a.size(1) == 0) {
out.zero_();
}
return out;
}
// Note: The `contraction_dim` is not actually used for now. We will need to
// align this code when upstreamed CUDA code is done. Currently, only keeps
// the code here for check.
// Check if the input matrix sizes can be multiplied
// - if optional contraction dims are provided, use those
// -- mostly for < 1B formats (i.e. nvfp4x2) where cheap .t() is not
// available.
if (contraction_dim.size() > 0) {
TORCH_CHECK_VALUE(
contraction_dim.size() == 2,
"contraction_dim must have exactly 2 elements");
auto mat_a_dim = contraction_dim[0];
auto mat_b_dim = contraction_dim[1];
TORCH_CHECK_VALUE(
mat_a.size(mat_a_dim) == mat_b.size(mat_b_dim),
"mat_a and mat_b shapes cannot be multiplied (",
mat_a.size(0),
"x",
mat_a.size(1),
" and ",
mat_b.size(0),
"x",
mat_b.size(1),
") ",
"with contraction dims mat_a: ",
mat_a_dim,
", mat_b: ",
mat_b_dim);
} else {
TORCH_CHECK_VALUE(
mat_a.size(1) == mat_b.size(0),
"mat_a and mat_b shapes cannot be multiplied (",
mat_a.size(0),
"x",
mat_a.size(1),
" and ",
mat_b.size(0),
"x",
mat_b.size(1),
")");
}
TORCH_CHECK_VALUE(
!bias || bias->numel() == mat_b.sizes()[1],
"Bias must be size ",
mat_b.sizes()[1],
" but got ",
bias->numel());
TORCH_CHECK_VALUE(
!out_dtype || *out_dtype == out.scalar_type(),
"out_dtype must match output matrix type");
if (bias) {
TORCH_CHECK_VALUE(
bias->scalar_type() == kFloat ||
bias->scalar_type() == c10::ScalarType::BFloat16 ||
bias->scalar_type() == c10::ScalarType::Half,
"Bias must be Float32 or BFloat16 or Half, but got ",
bias->scalar_type());
}
{
auto bias_ = bias.value_or(Tensor());
// NOLINTNEXTLINE(*c-array*)
TensorArg targs[]{
{out, "out", 0},
{mat_a, "mat_a", 1},
{mat_b, "mat_b", 2},
{bias_, "bias", 3},
{scale_a[0], "scale_a", 4},
{scale_b[0], "scale_b", 5}};
checkAllSameGPU(__func__, targs);
}
// Align with CUDA's default out to be bf16
auto out_dtype_ = out_dtype.value_or(c10::ScalarType::BFloat16);
// Conversion of implicitly-defined enums to explicit
auto scale_recipe_a_enum = convert_int_to_enum<ScalingType>(scale_recipe_a);
auto swizzle_a_enum = convert_int_to_enum<SwizzleType>(swizzle_a);
auto scale_recipe_b_enum = convert_int_to_enum<ScalingType>(scale_recipe_b);
auto swizzle_b_enum = convert_int_to_enum<SwizzleType>(swizzle_b);
// XPU does not support swizzle for now. So directly return false.
TORCH_CHECK_VALUE(
swizzle_a_enum[0] == at::blas::SwizzleType::NO_SWIZZLE &&
swizzle_b_enum[0] == at::blas::SwizzleType::NO_SWIZZLE,
"XPU does not support swizzle yet.");
// at this point we can start working out what we want to be doing
// Try to do as few steps as possible.
// NOTE: support is deliberately sparse, can explicitly enumerate all
// combinations allowed. Do this via a list of defined (name, acceptance,
// concrete_impl) tuples.
bool found_impl = false;
ScaledGemmImplementation gemm_impl = ScaledGemmImplementation::NONE;
for (const auto& fn_entry : scale_kernel_dispatch) {
const auto [name, accept_fn, scaled_gemm_impl] = fn_entry;
bool ok = accept_fn(
mat_a.scalar_type(),
scale_recipe_a_enum,
scale_a,
mat_b.scalar_type(),
scale_recipe_b_enum,
scale_b);
if (ok) {
gemm_impl = scaled_gemm_impl;
found_impl = true;
break;
}
}
TORCH_CHECK_VALUE(
found_impl,
"Invalid scaling configuration.\n"
"- For TensorWise scaling, a and b should be float8, scales should be float and singletons.\n"
"- For RowWise scaling, a and b should be float8, scales should be float, scale_a should be (",
mat_a.size(0),
", 1) and scale_b should be (1, ",
mat_b.size(1),
"), and both should be contiguous.\n"
"Got mat_a.dtype()=",
mat_a.scalar_type(),
", scale_a[0].dtype()=",
scale_a[0].scalar_type(),
", scale_a[0].size()=",
scale_a[0].sizes(),
", scale_a[0].stride()=",
scale_a[0].strides(),
", ",
"mat_b.dtype()=",
mat_b.scalar_type(),
", scale_b[0].dtype()=",
scale_b[0].scalar_type(),
", scale_b[0].size()=",
scale_b[0].sizes(),
" and scale_b[0].stride()=",
scale_b[0].strides());
at::native::resize_output(out, {mat_a.size(0), mat_b.size(1)});
auto bias_ = bias.value_or(Tensor());
// dispatch to appropriate lower-level calls for error checking & execution
if (gemm_impl == ScaledGemmImplementation::TENSORWISE_TENSORWISE) {
return _scaled_tensorwise_tensorwise(
mat_a,
mat_b,
scale_a[0],
scale_b[0],
bias,
out_dtype_,
use_fast_accum,
out);
} else if (gemm_impl == ScaledGemmImplementation::ROWWISE_ROWWISE) {
return _scaled_rowwise_rowwise(
mat_a,
mat_b,
scale_a[0],
scale_b[0],
bias,
out_dtype_,
use_fast_accum,
out);
} else {
TORCH_CHECK_VALUE(
false, "Invalid state - found an implementation, but not really");
}
}
Tensor _scaled_mm_xpu_v2(
const Tensor& mat_a,
const Tensor& mat_b,
ArrayRef<Tensor> scale_a,
IntArrayRef scale_recipe_a,
IntArrayRef swizzle_a,
ArrayRef<Tensor> scale_b,
IntArrayRef scale_recipe_b,
IntArrayRef swizzle_b,
const std::optional<Tensor>& bias,
const std::optional<c10::ScalarType> out_dtype,
IntArrayRef contraction_dim,
bool use_fast_accum) {
const auto out_dtype_ = out_dtype.value_or(mat_a.scalar_type());
Tensor out = at::empty({0}, mat_a.options().dtype(out_dtype_));
return _scaled_mm_xpu_v2_out(
mat_a,
mat_b,
scale_a,
scale_recipe_a,
swizzle_a,
scale_b,
scale_recipe_b,
swizzle_b,
bias,
out_dtype,
contraction_dim,
use_fast_accum,
out);
}
} // namespace at::native

View File

@ -69,75 +69,139 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
auto out = at::empty({batchSize, num_head, qSize, headSize}, query.options());
auto attn = at::empty({batchSize, num_head, qSize, maxSeqLength}, query.options());
auto scale_factor = sdp::calculate_scale(query, scale).expect_float();
static const bool is_macOS_26_0_or_newer = is_macos_13_or_newer(MacOSVersion::MACOS_VER_26_0_PLUS);
@autoreleasepool {
auto mkey = __func__ + getTensorsStringKey({query, key, value}) + ":" + std::to_string(is_causal) + ":" +
std::to_string(attn_mask.has_value());
auto cachedGraph =
LookUpOrCreateCachedGraph<CachedGraph>(mkey, [&, q_ = query, k_ = key, v_ = value](auto mpsGraph, auto graph) {
auto qTensor = mpsGraphRankedPlaceHolder(mpsGraph, q_);
auto kTensor = mpsGraphRankedPlaceHolder(mpsGraph, k_);
auto vTensor = mpsGraphRankedPlaceHolder(mpsGraph, v_);
auto kT = [mpsGraph transposeTensor:kTensor dimension:2 withDimension:3 name:nil];
auto scaleTensor = [mpsGraph constantWithScalar:scale_factor
shape:getMPSShape({1})
dataType:MPSDataTypeFloat32];
auto maskedMM = [mpsGraph matrixMultiplicationWithPrimaryTensor:qTensor secondaryTensor:kT name:nil];
CachedGraph* cachedGraph;
//if(is_macOS_26_0_or_newer) {
if(true) {
cachedGraph =
LookUpOrCreateCachedGraph<CachedGraph>(mkey, [&, q_ = query, k_ = key, v_ = value](auto mpsGraph, auto graph) {
auto qTensor = mpsGraphRankedPlaceHolder(mpsGraph, q_);
auto kTensor = mpsGraphRankedPlaceHolder(mpsGraph, k_);
auto vTensor = mpsGraphRankedPlaceHolder(mpsGraph, v_);
if (macOS15_0_plus && [maskedMM dataType] == MPSDataTypeFloat32) {
// bug in MacOS15, without this trick SDPA leaks memory, adding 0.0f gets ignored(still takes SDPA sequence
// path which leaks)
auto oneTensor = [mpsGraph constantWithScalar:1e-20f shape:getMPSShape({1}) dataType:MPSDataTypeFloat32];
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM secondaryTensor:oneTensor name:nil];
}
if (is_causal) {
MPSShape* maskShape = @[@(qSize), @(maxSeqLength)];
auto x = [mpsGraph coordinateAlongAxis:-1 withShape:@[@(qSize), @1] name:nil];
auto y = [mpsGraph coordinateAlongAxis:-2 withShape:@[@1, @(maxSeqLength)] name:nil];
auto isLess = [mpsGraph lessThanOrEqualToWithPrimaryTensor:x secondaryTensor:y name:nil];
auto causalMask = [mpsGraph selectWithPredicateTensor:isLess
truePredicateTensor:[mpsGraph constantWithScalar:0 dataType:qTensor.dataType]
falsePredicateTensor:[mpsGraph constantWithScalar:-INFINITY dataType:qTensor.dataType]
name:nil];
graph->maskTensor = causalMask;
} else if (attn_mask) {
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
}
// upcasting to float32 if needed to improve precision when multiplying by the scale factor
maskedMM = castMPSTensor(mpsGraph, maskedMM, MPSDataTypeFloat32);
maskedMM = [mpsGraph multiplicationWithPrimaryTensor:maskedMM secondaryTensor:scaleTensor name:nil];
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
// Overwrites expected NANs in sm with zeros.
// auto negInfTensor = [mpsGraph constantWithScalar:-INFINITY shape:maskedMM.shape dataType:maskedMM.dataType];
// auto elem_neg_inf = [mpsGraph equalWithPrimaryTensor:maskedMM secondaryTensor:negInfTensor name:nil];
// auto all_neg_infs_along_axis = [mpsGraph reductionAndWithTensor:elem_neg_inf axis:3 name:nil];
// auto zero_mask = [mpsGraph broadcastTensor:all_neg_infs_along_axis toShape:maskedMM.shape name:nil];
// auto zeroTensor = [mpsGraph constantWithScalar:0.0 shape:maskedMM.shape dataType:maskedMM.dataType];
//
// auto sm = [mpsGraph softMaxWithTensor:maskedMM axis:3 name:nil];
// MPSGraphTensor* correctedSM = [mpsGraph selectWithPredicateTensor:zero_mask
// truePredicateTensor:zeroTensor
// falsePredicateTensor:sm
// name:nil];
//
// auto output = [mpsGraph matrixMultiplicationWithPrimaryTensor:correctedSM secondaryTensor:vTensor name:nil];
if (is_causal) {
auto causalMask = [mpsGraph constantWithScalar:1.0f
shape:getMPSShape({qSize, maxSeqLength})
dataType:MPSDataTypeBool];
causalMask = [mpsGraph bandPartWithTensor:causalMask numLower:-1 numUpper:0 name:nil];
auto minusInf = [mpsGraph constantWithScalar:-1e20 shape:maskedMM.shape dataType:maskedMM.dataType];
maskedMM = [mpsGraph selectWithPredicateTensor:causalMask
truePredicateTensor:maskedMM
falsePredicateTensor:minusInf
name:nil];
} else if (attn_mask) {
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM
secondaryTensor:castMPSTensor(mpsGraph, graph->maskTensor, maskedMM.dataType)
name:nil];
}
MPSGraphTensor* output;
if(graph->maskTensor != nil) {
output = [mpsGraph scaledDotProductAttentionWithQueryTensor:qTensor
keyTensor:kTensor
valueTensor:vTensor
maskTensor:graph->maskTensor
scale:scale_factor
name:@"MPSGraph SDPA"];
} else {
output = [mpsGraph scaledDotProductAttentionWithQueryTensor:qTensor
keyTensor:kTensor
valueTensor:vTensor
scale:scale_factor
name:@"MPSGraph SDPA"];
}
graph->qTensor = qTensor;
graph->kTensor = kTensor;
graph->vTensor = vTensor;
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
// graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
});
} else {
cachedGraph =
LookUpOrCreateCachedGraph<CachedGraph>(mkey, [&, q_ = query, k_ = key, v_ = value](auto mpsGraph, auto graph) {
auto qTensor = mpsGraphRankedPlaceHolder(mpsGraph, q_);
auto kTensor = mpsGraphRankedPlaceHolder(mpsGraph, k_);
auto vTensor = mpsGraphRankedPlaceHolder(mpsGraph, v_);
auto kT = [mpsGraph transposeTensor:kTensor dimension:2 withDimension:3 name:nil];
auto scaleTensor = [mpsGraph constantWithScalar:scale_factor
shape:getMPSShape({1})
dataType:MPSDataTypeFloat32];
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
// Overwrites expected NANs in sm with zeros.
auto negInfTensor = [mpsGraph constantWithScalar:-INFINITY shape:maskedMM.shape dataType:maskedMM.dataType];
auto elem_neg_inf = [mpsGraph equalWithPrimaryTensor:maskedMM secondaryTensor:negInfTensor name:nil];
auto all_neg_infs_along_axis = [mpsGraph reductionAndWithTensor:elem_neg_inf axis:3 name:nil];
auto zero_mask = [mpsGraph broadcastTensor:all_neg_infs_along_axis toShape:maskedMM.shape name:nil];
auto zeroTensor = [mpsGraph constantWithScalar:0.0 shape:maskedMM.shape dataType:maskedMM.dataType];
auto maskedMM = [mpsGraph matrixMultiplicationWithPrimaryTensor:qTensor secondaryTensor:kT name:nil];
auto sm = [mpsGraph softMaxWithTensor:maskedMM axis:3 name:nil];
MPSGraphTensor* correctedSM = [mpsGraph selectWithPredicateTensor:zero_mask
truePredicateTensor:zeroTensor
falsePredicateTensor:sm
name:nil];
if (macOS15_0_plus && [maskedMM dataType] == MPSDataTypeFloat32) {
// bug in MacOS15, without this trick SDPA leaks memory, adding 0.0f gets ignored(still takes SDPA sequence
// path which leaks)
auto oneTensor = [mpsGraph constantWithScalar:1e-20f shape:getMPSShape({1}) dataType:MPSDataTypeFloat32];
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM secondaryTensor:oneTensor name:nil];
}
auto output = [mpsGraph matrixMultiplicationWithPrimaryTensor:correctedSM secondaryTensor:vTensor name:nil];
graph->qTensor = qTensor;
graph->kTensor = kTensor;
graph->vTensor = vTensor;
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
});
// upcasting to float32 if needed to improve precision when multiplying by the scale factor
maskedMM = castMPSTensor(mpsGraph, maskedMM, MPSDataTypeFloat32);
maskedMM = [mpsGraph multiplicationWithPrimaryTensor:maskedMM secondaryTensor:scaleTensor name:nil];
if (is_causal) {
auto causalMask = [mpsGraph constantWithScalar:1.0f
shape:getMPSShape({qSize, maxSeqLength})
dataType:MPSDataTypeBool];
causalMask = [mpsGraph bandPartWithTensor:causalMask numLower:-1 numUpper:0 name:nil];
auto minusInf = [mpsGraph constantWithScalar:-1e20 shape:maskedMM.shape dataType:maskedMM.dataType];
maskedMM = [mpsGraph selectWithPredicateTensor:causalMask
truePredicateTensor:maskedMM
falsePredicateTensor:minusInf
name:nil];
} else if (attn_mask) {
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM
secondaryTensor:castMPSTensor(mpsGraph, graph->maskTensor, maskedMM.dataType)
name:nil];
}
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
// Overwrites expected NANs in sm with zeros.
auto negInfTensor = [mpsGraph constantWithScalar:-INFINITY shape:maskedMM.shape dataType:maskedMM.dataType];
auto elem_neg_inf = [mpsGraph equalWithPrimaryTensor:maskedMM secondaryTensor:negInfTensor name:nil];
auto all_neg_infs_along_axis = [mpsGraph reductionAndWithTensor:elem_neg_inf axis:3 name:nil];
auto zero_mask = [mpsGraph broadcastTensor:all_neg_infs_along_axis toShape:maskedMM.shape name:nil];
auto zeroTensor = [mpsGraph constantWithScalar:0.0 shape:maskedMM.shape dataType:maskedMM.dataType];
auto sm = [mpsGraph softMaxWithTensor:maskedMM axis:3 name:nil];
MPSGraphTensor* correctedSM = [mpsGraph selectWithPredicateTensor:zero_mask
truePredicateTensor:zeroTensor
falsePredicateTensor:sm
name:nil];
auto output = [mpsGraph matrixMultiplicationWithPrimaryTensor:correctedSM secondaryTensor:vTensor name:nil];
graph->qTensor = qTensor;
graph->kTensor = kTensor;
graph->vTensor = vTensor;
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
});
}
auto qPlaceholder = Placeholder(cachedGraph->qTensor, query);
auto kPlaceholder = Placeholder(cachedGraph->kTensor, key);
auto vPlaceholder = Placeholder(cachedGraph->vTensor, value);
auto outputPlaceholder = Placeholder(cachedGraph->outputTensor, out);
auto attnPlaceholder = Placeholder(cachedGraph->attnTensor, attn);
// auto attnPlaceholder = Placeholder(cachedGraph->attnTensor, attn);
NSDictionary* feeds = nil;
if (!attn_mask) {
feeds = dictionaryFromPlaceholders(qPlaceholder, kPlaceholder, vPlaceholder);
@ -145,7 +209,8 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
auto mPlaceholder = Placeholder(cachedGraph->maskTensor, *attn_mask);
feeds = dictionaryFromPlaceholders(qPlaceholder, kPlaceholder, vPlaceholder, mPlaceholder);
}
NSDictionary* outs = dictionaryFromPlaceholders(outputPlaceholder, attnPlaceholder);
// NSDictionary* outs = dictionaryFromPlaceholders(outputPlaceholder, attnPlaceholder);
NSDictionary* outs = dictionaryFromPlaceholders(outputPlaceholder);
runMPSGraph(getCurrentMPSStream(), cachedGraph->graph(), feeds, outs);
}

View File

@ -301,12 +301,12 @@ class AvgPoolMicrokernelTester {
ASSERT_NEAR(
float(int32_t(y[i * yStride() + k])), yFP[i * kc() + k], 0.5001f)
<< "at pixel " << i << ", channel " << k << ", n = " << n()
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
ASSERT_EQ(
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
<< "at pixel " << i << ", channel " << k << ", n = " << n()
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
}
}
@ -396,12 +396,12 @@ class AvgPoolMicrokernelTester {
ASSERT_NEAR(
float(int32_t(y[i * yStride() + k])), yFP[i * kc() + k], 0.5001f)
<< "at pixel " << i << ", channel " << k << ", n = " << n()
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
ASSERT_EQ(
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
<< "at pixel " << i << ", channel " << k << ", n = " << n()
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
}
}

View File

@ -232,7 +232,7 @@ class MaxPoolMicrokernelTester {
ASSERT_EQ(
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
<< "at pixel " << i << ", channel " << k << ", n = " << n()
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
<< "), kc = " << kc();
}
}

View File

@ -17,7 +17,7 @@ inline std::vector<T> _expand_param_if_needed(
std::ostringstream ss;
ss << "expected " << param_name << " to be a single integer value or a "
<< "list of " << expected_dim << " values to match the convolution "
<< "dimensions, but got " << param_name << '=' << list_param;
<< "dimensions, but got " << param_name << "=" << list_param;
TORCH_CHECK(false, ss.str());
} else {
return list_param.vec();

View File

@ -358,9 +358,9 @@ std::string Adapter::stringize() const {
std::string device_type = get_device_type_str(properties.deviceType);
VkPhysicalDeviceLimits limits = properties.limits;
ss << '{' << std::endl;
ss << "{" << std::endl;
ss << " Physical Device Info {" << std::endl;
ss << " apiVersion: " << v_major << '.' << v_minor << std::endl;
ss << " apiVersion: " << v_major << "." << v_minor << std::endl;
ss << " driverversion: " << properties.driverVersion << std::endl;
ss << " deviceType: " << device_type << std::endl;
ss << " deviceName: " << properties.deviceName << std::endl;
@ -371,7 +371,7 @@ std::string Adapter::stringize() const {
#define PRINT_LIMIT_PROP_VEC3(name) \
ss << " " << std::left << std::setw(36) << #name << limits.name[0] \
<< ',' << limits.name[1] << ',' << limits.name[2] << std::endl;
<< "," << limits.name[1] << "," << limits.name[2] << std::endl;
ss << " Physical Device Limits {" << std::endl;
PRINT_LIMIT_PROP(maxImageDimension1D);
@ -425,7 +425,7 @@ std::string Adapter::stringize() const {
;
}
ss << " ]" << std::endl;
ss << '}';
ss << "}";
return ss.str();
}

View File

@ -33,7 +33,7 @@ std::ostream& operator<<(std::ostream& out, const VkResult result) {
VK_RESULT_CASE(VK_ERROR_FORMAT_NOT_SUPPORTED)
VK_RESULT_CASE(VK_ERROR_FRAGMENTED_POOL)
default:
out << "VK_ERROR_UNKNOWN (VkResult " << result << ')';
out << "VK_ERROR_UNKNOWN (VkResult " << result << ")";
break;
}
return out;
@ -46,7 +46,7 @@ std::ostream& operator<<(std::ostream& out, const VkResult result) {
//
std::ostream& operator<<(std::ostream& out, const SourceLocation& loc) {
out << loc.function << " at " << loc.file << ':' << loc.line;
out << loc.function << " at " << loc.file << ":" << loc.line;
return out;
}
@ -66,7 +66,7 @@ Error::Error(SourceLocation source_location, const char* cond, std::string msg)
: msg_(std::move(msg)), source_location_{source_location} {
std::ostringstream oss;
oss << "Exception raised from " << source_location_ << ": ";
oss << '(' << cond << ") is false! ";
oss << "(" << cond << ") is false! ";
oss << msg_;
what_ = oss.str();
}

View File

@ -173,8 +173,8 @@ void QueryPool::extract_results() {
static std::string stringize(const VkExtent3D& extents) {
std::stringstream ss;
ss << '{' << extents.width << ", " << extents.height << ", " << extents.depth
<< '}';
ss << "{" << extents.width << ", " << extents.height << ", " << extents.depth
<< "}";
return ss.str();
}

View File

@ -149,7 +149,7 @@ VKAPI_ATTR VkBool32 VKAPI_CALL debug_report_callback_fn(
(void)flags;
std::stringstream stream;
stream << layer_prefix << ' ' << message_code << ' ' << message << std::endl;
stream << layer_prefix << " " << message_code << " " << message << std::endl;
const std::string log = stream.str();
std::cout << log;

View File

@ -253,7 +253,7 @@ using vec4 = vec<4u>;
// uvec3 is the type representing tensor extents. Useful for debugging.
inline std::ostream& operator<<(std::ostream& os, const uvec3& v) {
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ')';
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ")";
return os;
}

View File

@ -246,7 +246,7 @@ void TestToCFloat() {
void TestToString() {
Tensor b = ones({3, 7}) * .0000001f;
std::stringstream s;
s << b << '\n';
s << b << "\n";
std::string expect = "1e-07 *";
ASSERT_EQ_RESOLVED(s.str().substr(0, expect.size()), expect);
}

View File

@ -33,7 +33,7 @@ struct Foo {
static void apply(Tensor a, Tensor b) {
scalar_type s = 1;
std::stringstream ss;
ss << "hello, dispatch: " << a.toString() << s << '\n';
ss << "hello, dispatch: " << a.toString() << s << "\n";
auto data = (scalar_type*)a.data_ptr();
(void)data;
}
@ -73,8 +73,8 @@ TEST(TestScalar, TestScalar) {
Scalar bar = 3.0;
Half h = bar.toHalf();
Scalar h2 = h;
cout << "H2: " << h2.toDouble() << ' ' << what.toFloat() << ' '
<< bar.toDouble() << ' ' << what.isIntegral(false) << '\n';
cout << "H2: " << h2.toDouble() << " " << what.toFloat() << " "
<< bar.toDouble() << " " << what.isIntegral(false) << "\n";
auto gen = at::detail::getDefaultCPUGenerator();
{
// See Note [Acquire lock when using random generators]
@ -84,7 +84,7 @@ TEST(TestScalar, TestScalar) {
}
if (at::hasCUDA()) {
auto t2 = zeros({4, 4}, at::kCUDA);
cout << &t2 << '\n';
cout << &t2 << "\n";
}
auto t = ones({4, 4});
@ -129,7 +129,7 @@ TEST(TestScalar, TestScalar) {
std::stringstream ss;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
ASSERT_NO_THROW(
ss << "hello, dispatch" << x.toString() << s << '\n');
ss << "hello, dispatch" << x.toString() << s << "\n");
auto data = (scalar_t*)x.data_ptr();
(void)data;
});

View File

@ -1,5 +1,5 @@
#include <ATen/ATen.h>
int main() {
std::cout << at::ones({3,4}, at::CPU(at::kFloat)) << '\n';
std::cout << at::ones({3,4}, at::CPU(at::kFloat)) << "\n";
}

View File

@ -1828,9 +1828,9 @@ namespace {
#endif
EXPECT_EQ(u16, c10::detail::fp16_ieee_from_fp32_value(f32s[i]))
<< "Test failed for float to uint16 " << f32s[i] << '\n';
<< "Test failed for float to uint16 " << f32s[i] << "\n";
EXPECT_EQ(x, c10::detail::fp16_ieee_to_fp32_value(u16))
<< "Test failed for uint16 to float " << u16 << '\n';
<< "Test failed for uint16 to float " << u16 << "\n";
}
}
TEST(FP8E4M3Test, FP8E4M3ConversionFloat) {
@ -1848,10 +1848,10 @@ namespace {
EXPECT_TRUE(std::isnan(f32));
} else {
EXPECT_EQ(f32, c10::detail::fp8e4m3fn_to_fp32_value(input))
<< "Test failed for u8 to float " << input << '\n';
<< "Test failed for u8 to float " << input << "\n";
}
EXPECT_EQ(u8, c10::detail::fp8e4m3fn_from_fp32_value(f32))
<< "Test failed for float to u8 " << f32 << '\n';
<< "Test failed for float to u8 " << f32 << "\n";
}
}
TEST(FP8E4M3Test, FP8E4M3BinaryAdd) {
@ -2015,10 +2015,10 @@ namespace {
EXPECT_TRUE(std::isnan(f32));
} else {
EXPECT_EQ(f32, c10::detail::fp8e5m2_to_fp32_value(input))
<< "Test failed for u8 to float " << input << '\n';
<< "Test failed for u8 to float " << input << "\n";
}
EXPECT_EQ(u8, c10::detail::fp8e5m2_from_fp32_value(f32))
<< "Test failed for float to u8 " << f32 << '\n';
<< "Test failed for float to u8 " << f32 << "\n";
}
}
TEST(FP8E5M2Test, FP8E5M2BinaryAdd) {

View File

@ -19,7 +19,7 @@ TEST(Vitals, Basic) {
c10::utils::set_env("TORCH_VITAL", "1");
TORCH_VITAL_DEFINE(Testing);
TORCH_VITAL(Testing, Attribute0) << 1;
TORCH_VITAL(Testing, Attribute1) << '1';
TORCH_VITAL(Testing, Attribute1) << "1";
TORCH_VITAL(Testing, Attribute2) << 1.0f;
TORCH_VITAL(Testing, Attribute3) << 1.0;
auto t = at::ones({1, 1});

View File

@ -129,14 +129,14 @@ void showRtol(const at::Tensor& a, const at::Tensor& b) {
std::cout << "Max Diff allowed: " << maxDiff << std::endl;
if (diff.sizes().size() == 2) {
for (const auto y : c10::irange(diff.sizes()[0])) {
std::cout << y << ':';
std::cout << y << ":";
for (const auto x : c10::irange(diff.sizes()[1])) {
float diff_xy = diff[y][x].item<float>();
if (diff_xy > maxDiff) {
std::cout << std::setw(5) << x;
}
else {
std::cout << std::setw(5) << ' ';
std::cout << std::setw(5) << " ";
}
}
std::cout << std::endl;
@ -3276,7 +3276,7 @@ TEST_F(VulkanAPITest, masked_fill_invalidinputs_exceptions) {
void print_shape(const std::vector<int64_t>& shape) {
for (const auto& num : shape) {
std::cout << num << ' ';
std::cout << num << " ";
}
}
@ -3367,7 +3367,7 @@ void test_masked_fill_scalar(
print_shape(tmp_curr_input_shape);
std::cout << "], and mask of shape [";
print_shape(tmp_curr_mask_shape);
std::cout << ']' << std::endl;
std::cout << "]" << std::endl;
}
ASSERT_TRUE(check);
@ -4542,9 +4542,9 @@ void test_softmax(const at::IntArrayRef shape, bool log_softmax = false) {
if (!check) {
std::cout << "Softmax test failed on axis " << dim << "for tensor dims {";
for (uint32_t place = 0; place < shape.size() - 1; place++) {
std::cout << shape[place] << ' ';
std::cout << shape[place] << " ";
}
std::cout << shape.back() << '}' << std::endl;
std::cout << shape.back() << "}" << std::endl;
showRtol(out_cpu, out_vulkan.cpu());
}
ASSERT_TRUE(check);

View File

@ -95,7 +95,7 @@ void showRtol(
std::cout << "Max Diff found is: " << diff.max().item<double>() << std::endl;
if (diff.sizes().size() == 2) {
for (const auto y : c10::irange(diff.sizes()[0])) {
std::cout << y << ':';
std::cout << y << ":";
for (const auto x : c10::irange(diff.sizes()[1])) {
double diff_xy = diff[y][x].item<double>();
if (diff_xy > maxDiff) {
@ -109,7 +109,7 @@ void showRtol(
}
}
} else {
std::cout << std::setw(5) << ' ';
std::cout << std::setw(5) << " ";
}
}
std::cout << std::endl;
@ -148,19 +148,19 @@ using at::native::vulkan::api::utils::ivec4;
using at::native::vulkan::api::utils::vec4;
std::ostream& operator<<(std::ostream& os, const vec4& v) {
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
<< v.data[3u] << ')';
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
<< v.data[3u] << ")";
return os;
}
std::ostream& operator<<(std::ostream& os, const ivec3& v) {
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ')';
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ")";
return os;
}
std::ostream& operator<<(std::ostream& os, const ivec4& v) {
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
<< v.data[3u] << ')';
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
<< v.data[3u] << ")";
return os;
}
@ -3379,51 +3379,51 @@ bool _test_quantized_linear(
showRtol(out_cpu_dequant, out_vk_to_cpu_dequant);
}
if (xpos != -1 && ypos != -1) {
std::cout << "\nFailure caused on row/col: " << ypos << '/' << xpos
<< '\n';
std::cout << "\nFailure caused on row/col: " << ypos << "/" << xpos
<< "\n";
std::cout << "Input tensor scale: " << scale << " zerop: " << zero_point
<< '\n';
std::cout << "Input tensor row " << ypos << '\n';
<< "\n";
std::cout << "Input tensor row " << ypos << "\n";
for (int i = 0; i < input_cpu.sizes()[1]; i++) {
std::cout << input_cpu[ypos][i].item<double>() << ", ";
}
std::cout << '\n';
std::cout << "\n";
std::cout << "Weight tensor scale: " << w_scale
<< " zerop: " << w_zero_point << '\n';
std::cout << "Weight tensor col " << xpos << '\n';
<< " zerop: " << w_zero_point << "\n";
std::cout << "Weight tensor col " << xpos << "\n";
for (int i = 0; i < weight.sizes()[1]; i++) {
std::cout << weight[xpos][i].item<double>() << ", ";
}
std::cout << '\n';
std::cout << "\n";
std::cout << "Input tensor quantized row " << ypos << " with dtype "
<< (input_quant_dtype_int8 ? "QInt8" : "QUInt8") << '\n';
<< (input_quant_dtype_int8 ? "QInt8" : "QUInt8") << "\n";
for (int i = 0; i < input_cpu.sizes()[1]; i++) {
std::cout << input_cpu_quantized[ypos][i].item<double>() << ", ";
}
std::cout << '\n';
std::cout << "\n";
std::cout << "Weight tensor quantized col " << xpos << " with dtype "
<< (weight_quant_dtype_int8 ? "QInt8" : "QUInt8") << '\n';
<< (weight_quant_dtype_int8 ? "QInt8" : "QUInt8") << "\n";
for (int i = 0; i < weight.sizes()[1]; i++) {
std::cout << weight_cpu_quantized[xpos][i].item<double>() << ", ";
}
std::cout << '\n';
std::cout << "\n";
std::cout << "bias tensor\n";
for (int i = 0; i < bias.sizes()[0]; i++) {
std::cout << bias[i].item<double>() << ", ";
}
std::cout << '\n';
std::cout << "\n";
std::cout << "out_scale: " << out_scale
<< " out_zero_point: " << out_zero_point << '\n';
<< " out_zero_point: " << out_zero_point << "\n";
std::cout << "cpu unmatched output: "
<< out_cpu_dequant[ypos][xpos].item<double>() << '\n';
<< out_cpu_dequant[ypos][xpos].item<double>() << "\n";
std::cout << "vk unmatched output: "
<< out_vk_to_cpu_dequant[ypos][xpos].item<double>() << '\n';
<< out_vk_to_cpu_dequant[ypos][xpos].item<double>() << "\n";
}
}
return check;

Some files were not shown because too many files have changed in this diff Show More