Compare commits

...

84 Commits

Author SHA1 Message Date
cb930ff08c Tag gradient acc in node 2025-11-11 14:25:48 -08:00
f6a79b2a4a [inductor] Wrap pallas_call in jax.jit (#167441)
My understanding is this is needed for performance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167441
Approved by: https://github.com/oulgen
2025-11-10 17:29:56 +00:00
2fcf41dd8e Add the ruff rule and skip everything for now (#167360)
Part of https://github.com/pytorch/pytorch/issues/164878
We can start narrowing the skips and remove them as PRs keep landing.

This PR is just to setup the scaffolding, fix will be in follow up
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167360
Approved by: https://github.com/janeyx99
2025-11-10 17:10:15 +00:00
31ccd8f13e [AOTI] Fix a mixed-device bug for scatter_add (#167341)
Summary: Fix https://github.com/pytorch/pytorch/issues/166841. AOTI incorrectly generates a call to aoti_torch_cuda_scatter_reduce_two_out while the op should actually run on CPU. Fix by using the correct device when calling _generate_scatter_fallback in the wrapper codegen.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167341
Approved by: https://github.com/yushangdi
2025-11-10 16:59:44 +00:00
59307ca1bc [BE] adding documentation (#167334)
`torch.ao.quantization` and `torch.fx.experimental`

<img width="833" height="518" alt="Screenshot 2025-11-07 at 3 20 54 PM" src="https://github.com/user-attachments/assets/47b72f28-29bd-4bab-b41f-24d97419e411" />
<img width="892" height="560" alt="Screenshot 2025-11-07 at 3 20 45 PM" src="https://github.com/user-attachments/assets/129825ab-6706-41f2-964d-8774debab18c" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167334
Approved by: https://github.com/janeyx99
2025-11-10 14:46:42 +00:00
c28475db7c Update slow tests (#166844)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166844
Approved by: https://github.com/pytorchbot
2025-11-10 12:39:27 +00:00
74aec83841 [xla hash update] update the pinned xla hash (#167452)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned xla hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167452
Approved by: https://github.com/pytorchbot
2025-11-10 12:03:01 +00:00
52e744d68a [DTensor] Support convert StridedShard to shard order and vice versa (#166740)
We plan to use `StridedShard` to express `shard_order`. This PR adds the function to support the conversion between `StridedShard` and `shard_order`.

I moved some test related function into torch/testing/_internal/common_utils.py. We may only care about **_dtensor_spec.py** and **test_utils.py** in this PR for the review.

### How to convert shard order to StridedShard:
Considering the example:
- placements = $[x_0, x_1, x_2, x_3, x_4]$, all $x_?$ are shard on the same tensor dim.

Let's see how the shard order will impact the split_factor (sf). We loop from right to left in the placements to construct the split_factor by assuming different shard order. Starting from $x_4$, this should be a normal shard.

Then $x_3$. There are two possibilities, $x_3$'s order can be before $x_4$. If so, $x_3$'s sf=1, because $x_3$ is before $x_4$ in the placements. Else $x_3$'s order is after $x_4$, then the $x_3$'s sf should be the mesh dim size of $x_4$, which is $T(x_4)$:
<img width="820" height="431" alt="image" src="https://github.com/user-attachments/assets/f53b4b24-2523-42cc-ad6f-41f3c280db70" />

We can use this method to decide on the split factor for $x_2$, $x_1$ and so on.

### How to convert StridedShard to shard order:
This follows the same method above. We check all possible paths and use the real split_factor to see which path matchs the split_factor. If no such matches, the StridedShard is unable to be converted to shard order.

---

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166740
Approved by: https://github.com/ezyang
2025-11-10 09:35:10 +00:00
3cfbf98ea9 [xpu][feature] Add XPU support on torch.accelerator.get_memory_info (#162564)
# Motivation
Support XPU for `torch.accelerator.get_memory_info`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162564
Approved by: https://github.com/albanD
ghstack dependencies: #156812
2025-11-10 05:34:49 +00:00
47db55258b [MPS] sparse sparse mm (#167013)
Sparse sparse mm op implementation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167013
Approved by: https://github.com/malfet
2025-11-10 05:27:49 +00:00
50af6f3393 [MPS] erfinv for sparse mps (#166711)
Should be merged after #166708
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166711
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-11-10 05:25:31 +00:00
e545ba2d34 [DTensor] Fix Conv behavior for replicate stategy (#167402)
Pass `dim_map` to `_requires_data_exchange` and return False if both spatial and channels dimensions are replicated

Modify `test_conv1d` and `test_conv3d` to check values rather than just shape, and replicate `conv3d` across batch dimension

In general, feels like current Convolution implementation was written to work only if tensor is sharded across last dimention

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167402
Approved by: https://github.com/ezyang
2025-11-10 05:13:42 +00:00
a058bbdd6f [xpu][test] Enable profiler test for XPU (#165423)
Fixes #165130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165423
Approved by: https://github.com/EikanWang, https://github.com/atalman, https://github.com/mlazos
2025-11-10 04:02:59 +00:00
2c78080ec0 Register functorch XPU/HPU dispatch keys (#167095)
Fixes TestOperatorsXPU.test_data_write_errors_under_transform_xpu https://github.com/intel/torch-xpu-ops/issues/2237

Tests on other devices throw runtime error "_mutating directly with `.data` inside functorch transform is not allowed._", but XPU/HPU fails earlier on `_has_compatible_shallow_copy_type`. This check is not met only when calling tensor.data inside functorch call.

```cpp
bool _has_compatible_shallow_copy_type(const Tensor& self, const Tensor& from) {
  return self.unsafeGetTensorImpl()->has_compatible_shallow_copy_type(
      from.key_set());
}
```

### t.data
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `XPU, ADInplaceOrView, AutogradXPU, AutocastXPU` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU` |

### t.data inside functorch transform
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `ADInplaceOrView, AutogradOther, FuncTorchGradWrapper` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU, FuncTorchGradWrapper` |

### t.data inside functorch transform + XPU dispatch key
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `XPU, ADInplaceOrView, AutogradXPU, AutocastXPU, FuncTorchGradWrapper` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU, FuncTorchGradWrapper` |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167095
Approved by: https://github.com/guangyey, https://github.com/albanD
2025-11-10 03:10:22 +00:00
fe6615e397 Swap pallas test shard to 12.8 (#167428)
Getting some weird failures building cuda13, lets stick to what we know works
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167428
Approved by: https://github.com/jansel
2025-11-10 02:42:35 +00:00
abf31db2cc Introduce a new API torch.accelerator.get_memory_info (#156812)
# Motivation
`torch.cuda.mem_get_info` and `torch.xpu.mem_get_info` are widely used in other popular repos, such as
- 076313bd09/python/sglang/srt/utils.py (L378),
- 7ecc2d7f39/src/accelerate/utils/modeling.py (L822),
- 7ba34b1241/vllm/worker/worker.py (L150).
-
This PR introduces a unified API `torch.accelerator.get_memory_info` to cover this scenario.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156812
Approved by: https://github.com/albanD
2025-11-10 01:57:39 +00:00
a4c7856112 [Inductor][Grouped Gemm] Add Blackwell CuTeDSL Kernel (#167340)
Summary: This is a reland of https://github.com/pytorch/pytorch/pull/165036, which previously contained a minor bug in the logic that determined whether the kernel should be enabled. As a result, it was incorrectly activated on non-Blackwell GPUs.

Test Plan:
Inductor test (fbcode):
`INDUCTOR_TEST_DISABLE_FRESH_CACHE=1 TORCHINDUCTOR_CACHE_DIR=~/cutetest buck2 run mode/opt //caffe2/test/inductor:cutedsl_grouped_mm -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -m "ovr_config//third-party/pypi/nvidia-cutlass-dsl/constraints:4.2.1"`

Tritonbench (fbcode):
`clear; CUDA_VISIBLE_DEVICES=7 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 buck2 run mode/opt //pytorch/tritonbench:run -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -m "ovr_config//third-party/pypi/nvidia-cutlass-dsl/constraints:4.2.1" -- --op grouped_gemm --only aten_grouped_mm,preprocessed_pt2_cute_grouped_mm --precision bf16  --num-inputs 1 --metrics tflops,accuracy`

Tritonbench(oss):
`clear; CUDA_VISIBLE_DEVICES=2 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 python run.py --op grouped_gemm --only aten_grouped_mm,preprocessed_pt2_triton_grouped_mm --precision bf16  --num-inputs 1 --metrics tflops,accuracy`

Unit Tests(oss):
`clear; python test/inductor/test_cutedsl_grouped_mm.py`

Differential Revision: D86537373

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167340
Approved by: https://github.com/jananisriram
2025-11-10 00:29:07 +00:00
afb014541b Separately handle null data_ptr storages when creating unique ID (#167405)
## Summary
Previously fake/functionalized tensors that have `null` storage_ptr could segfault when checking for `.expired()` on weak storage ref, so handle `nullptr` storages separately, without checking their weakrefs.

Diagnosis and PR created by codex
------
[Codex Task](https://chatgpt.com/codex/tasks/task_e_690ea8790054832f90eaffb37ee0d8c8)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167405
Approved by: https://github.com/Skylion007
2025-11-09 23:13:56 +00:00
b91a2ab892 [2/N] Use context managers (#167404)
This PR fixes more context manager usage in Python code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167404
Approved by: https://github.com/mlazos
2025-11-09 13:38:14 +00:00
14a845a4ec [2/N] Use Python 3.10 typing (#167167)
This PR applies new `Union` and `Optional` typing syntax to some files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167167
Approved by: https://github.com/XuehaiPan, https://github.com/mlazos
2025-11-09 12:11:45 +00:00
5135ace3a3 Enable ruff UP035 rule (#167307)
This PR enables `UP035` rule of ruff.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167307
Approved by: https://github.com/Lucaskabela
2025-11-09 06:40:03 +00:00
e7c1905837 Fix test_fsdp_logging (#167312)
- The logger name in test_fully_shard_logging.py was wrong so the logs didn't happen.
- The `device` variable in test_fully_shard_logging is expected to be a string, so quote it
- `unittest.skipIf` is used so importing `unittest` instead of `unittest.mock` is required

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167312
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-11-09 05:38:11 +00:00
9cf623a209 Update inductor-unittest.yml (#167417)
i see failures like https://github.com/pytorch/pytorch/actions/runs/19189378182/job/54865171317?pr=167389

maybe this will fix it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167417
Approved by: https://github.com/yf225
2025-11-09 05:08:00 +00:00
06aa3ef3d3 Move types from typing_extensions to typing (#167185)
This PR moves some implemented types from typing_extensions to typing due to the recent update to Python 3.10.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167185
Approved by: https://github.com/janeyx99
2025-11-09 02:50:18 +00:00
0384104e23 Update pythoncapi_compat.h to 11cb80f2652cb2fe5231bf60b9dd98c83a4e25f4 (#167413)
Second attempt for https://github.com/pytorch/pytorch/pull/167138 with fixes for name conflicts in downstream packages.

Should slightly simplify https://github.com/pytorch/pytorch/pull/166342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167413
Approved by: https://github.com/Skylion007
2025-11-09 02:14:33 +00:00
325ec98009 [13/N] Apply ruff UP035 rule (#167048)
This PR continues to apply ruff UP035 rule to test code and some remaining torch files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167048
Approved by: https://github.com/Skylion007
2025-11-09 01:47:38 +00:00
47acdea74a another version of fixing CachingHostAllocatorImpl destructor (#167408)
Another version of #167347 that won't break xpu and should correctly handle runtime changes of `pinned_use_background_threads()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167408
Approved by: https://github.com/yingufan, https://github.com/Skylion007
2025-11-09 00:20:54 +00:00
71606b289c [BugFix] Fix compute_error in coo_mean_time and csr_mean_time (#166795)
The csr timing loop is nested inside the coo loop. duplicated and inconsistent measurements.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166795
Approved by: https://github.com/cyyever, https://github.com/ezyang
2025-11-08 23:57:15 +00:00
e342a7509a [pallas backend] add cpu backend and parametrize the tests (#167388)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167388
Approved by: https://github.com/jansel
2025-11-08 23:11:35 +00:00
27ac58bd70 Optimize global save-plan validation (#166820)
## Summary
- Fixes #163548 by replacing the quadratic chunk-overlap scan in `_validate_global_plan` with a sweep-line pass that sorts chunk intervals and keeps an active set via `bisect_right`, giving O(n log n) behavior for metadata validation.
- Add focused tests in `TestValidateGlobalPlan` covering overlapping and non-overlapping shard layouts to lock in the faster path.

## Testing
- python test/distributed/checkpoint/test_planner.py -k ValidateGlobalPlan

## Benchmarks
| chunks | old runtime | new runtime |
|--------|-------------|-------------|
| 1 024  | 0.121 s     | 0.0014 s    |
| 2 048  | 0.486 s     | 0.0027 s    |
| 4 096  | 2.474 s     | 0.0058 s    |
| 8 192  | 8.014 s     | 0.0126 s    |
| 16 384 | 32.740 s    | 0.026 s     |

@ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166820
Approved by: https://github.com/LucasLLC, https://github.com/Skylion007
2025-11-08 20:59:44 +00:00
406719c3da [MPS] SparseMps mv op (#166708)
Should be merged after #166561
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166708
Approved by: https://github.com/Skylion007
2025-11-08 20:03:49 +00:00
957570e4a3 [dynamo][guards] 1/N Guard selectively for DTensor (#165824)
A few internal jobs are observing very high guard overhead for DTensor.
Since we own DTensor, we can make those guards way faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165824
Approved by: https://github.com/Lucaskabela, https://github.com/bdhirsh
2025-11-08 19:28:28 +00:00
eeb6c96a89 [vision hash update] update the pinned vision hash (#167391)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vision hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167391
Approved by: https://github.com/pytorchbot
2025-11-08 05:58:11 +00:00
0b12e49795 [Inductor] Decouple flags for optimization and debug symbols (#167385)
Summary:
What: Decouple flags for optimization and debug symbols

Why: The current flag for debug symbols only compiles the .so binary in unoptimized mode

Differential Revision: D86363355

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167385
Approved by: https://github.com/hl475, https://github.com/jansel
2025-11-08 05:13:38 +00:00
87646e5db4 [dynamo][ac] Return all intermediates as outputs for AC Hop (#167192)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167192
Approved by: https://github.com/zou3519
2025-11-08 03:56:39 +00:00
29d6bb79e1 Use context managers (SIM115) (#166928)
This PR changes code to use context managers if possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166928
Approved by: https://github.com/Lucaskabela
2025-11-08 03:09:16 +00:00
c2924bbafa [dynamo] replace raise Unsupported(...) with unimplemented(...) (#167255)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167255
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos, https://github.com/zou3519
ghstack dependencies: #167150
2025-11-08 02:01:12 +00:00
a2f109dcc3 [dynamo] rename unimplemented_v2 -> unimplemented (#167150)
Also force the new `unimplemented`/old `unimplemented_v2` to explicitly specify the `gb_type`, `context`, `explanation`, and `hints` args.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167150
Approved by: https://github.com/mlazos, https://github.com/zou3519
2025-11-08 01:49:53 +00:00
ba5ffa2dca [5/N] Use key in dict for existence checks (#167311)
This PR uses `key in dict` expressions for existence checks of dict elements in Python code. This operation is more efficient than `key in dict.keys()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167311
Approved by: https://github.com/janeyx99, https://github.com/Lucaskabela
2025-11-08 01:43:12 +00:00
c131e4b390 Revert "[CP] Correctly compile create_cp_block_mask (#167153)"
This reverts commit 5a9ae7cefe679ff925a0aa7b9f5782fc93d4ef29.

Reverted https://github.com/pytorch/pytorch/pull/167153 on behalf of https://github.com/donigian due to breaking internal tests D86529123 ([comment](https://github.com/pytorch/pytorch/pull/167153#issuecomment-3505563239))
2025-11-08 01:33:13 +00:00
7fd15aa2bd Additional fix on top of D85172267 (#167267) (#167279)
Summary:

It seems
D80948073
has caused some issue on a lowering pkg built on trunk: https://fburl.com/mlhub/o6p60pno
error log: P2001933683
which we were able to lower successfully in older ien pkg: https://fburl.com/mlhub/1ro094zo

D85172267 fixed this issue for the if conditional, but issue still exists for the else conditional. Logic is moved right before if-else to cover both cases

Test Plan:
checkout D85605372

buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.platform=platform010 -c fbcode.nvcc_arch=a100,h100 -c fbcode.split-dwarf=true -c fbcode.dwp=true -c fbcode.enable_distributed_thinlto=true -c fbcode.use_link_groups=true fbcode//inference_enablement/model_processing/infra/components/lowering/re:re_cinder -- -r "$(cat ./fbcode/minimal_viable_ai/umia_v1/ig/ss_omni_exp/re_lower_aoti.json)"

with the diff, no issue was encountered.

Reviewed By: tissue3

Differential Revision: D86474796

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167279
Approved by: https://github.com/pianpwk
2025-11-08 01:28:49 +00:00
c45c966031 subproc_pool: Fix quiesce waitcounter (#167350)
Summary:
I was inspecting running jobs, and the quiesce waitcounter wasn't showing up.
Turns out this was a bad copy paste.

Test Plan: Primarily inspection

Reviewed By: masnesral

Differential Revision: D86457409

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167350
Approved by: https://github.com/aorenste, https://github.com/masnesral
2025-11-08 01:12:18 +00:00
d18c742779 [HOP][print]Add make_fx for the proxy with graph module print (#166920)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166920
Approved by: https://github.com/angelayi
ghstack dependencies: #166660
2025-11-08 00:34:24 +00:00
4957ae5838 Add API to annotate disjoint backward and handle in AC (#166536)
This adds zero-bubble / DualPipeV support for (S)AC

Before:
- AC will always retrigger recompute upon every distinct backward.

After:
- Any checkpointed regions encountered by backward under the same instance of this context manager will only trigger recompute at most once, even if there are multiple calls to backward.
- Backward calls under the same instance of this context manager must execute over non-overlapping regions of the backward graph even if retain_graph=True.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166536
Approved by: https://github.com/albanD
2025-11-08 00:21:25 +00:00
31d6d3ef5c [easy] Add new torch/csrc/stable/c/shim.h to existing nitpick (#167367)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167367
Approved by: https://github.com/janeyx99, https://github.com/malfet
2025-11-08 00:13:03 +00:00
2325c511e7 [dynamo] Make sym node vt creation via SymNodeVariable create (#167189)
This will help in the next PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167189
Approved by: https://github.com/williamwen42, https://github.com/zou3519
ghstack dependencies: #167160
2025-11-07 23:58:13 +00:00
d865156967 [dynamo][hops] Overwrite proxy of the original VT to the subgraph outputs (#167160)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167160
Approved by: https://github.com/zou3519
2025-11-07 23:58:13 +00:00
fbc0bd2e90 [DTensor][be] getting rid of unneccesary Partial check for norm functions (#167247)
**Summary:** While the implementation is correct, these checks are just a subset of the Partial placement checks that are done in https://github.com/pytorch/pytorch/pull/165962. This means for ops aten.linalg_vector_norm.default and aten._foreach_norm.Scalar, we're unnecessarily checking for Partial placements twice.

**Test Cases**
1. pytest test/distributed/tensor/test_math_ops.py -k test_vector_norm_partial
2. pytest test/distributed/tensor/test_math_ops.py -k test_foreach_norm_partial
3. pytest test/distributed/tensor/test_math_ops.py -k test_partial_reduction_ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167247
Approved by: https://github.com/XilunWu
2025-11-07 23:49:29 +00:00
70f5f55abf [Inductor-FX] Allocate tensors on device type instead of indexed device (#167358)
# Problem
The FX backend currently allocates tensors on an exact device index, such as `"cuda:0"`. In contrast, the Python backend allocates on a device type, such as `"cuda"`. This avoids edge cases where fake tensor propagation can fail due to mismatched devices.

# Fix
Allocate tensors on `device.type` instead of the device.

# Test plan
Added a CI test passing in sample inputs on an indexed device, and checking that the output device in the generated FX graph is not indexed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167358
Approved by: https://github.com/mlazos, https://github.com/nandesuka, https://github.com/eellison
2025-11-07 23:48:54 +00:00
69ecb562e7 [PT2 Compiler] Add annotation for dynamo disabled callables (#166341)
Summary: To make torch.export compatible with PT2 compile (which is done on top of exported model) we need to store torch._dynamo.disable attributes in exported model and later restore this after unflattening of exported model. This diff will add annotations to all nodes with torch._dynamo.disable, which will be preserved during exporting.

Test Plan:
```
buck test mode/opt caffe2/test:test_export -- 'test_dynamo_disable_annotations'
```
https://www.internalfb.com/intern/testinfra/testrun/6473924770741560

Differential Revision: D85302730

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166341
Approved by: https://github.com/williamwen42, https://github.com/angelayi
2025-11-07 23:28:00 +00:00
5062abe4e7 [CI][serialization] Fix exception regexes with Python-3.14 (#167333)
Not sure why, but running some tests (for example `test_weights_only_safe_globals_build`) with `pytest` in 3.14 makes global name `test_serialization.ClassThatUsesBuildInstruction` instead of expected `__main__.ClassThatUsesBuildInstruction`
Also, change expected exception type from `AttributeError` to `PicklingError`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167333
Approved by: https://github.com/atalman
2025-11-07 23:22:36 +00:00
c7007e7584 Update Kineto Submodule (#167343)
Summary: Title

Test Plan: CI

Differential Revision: D86538778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167343
Approved by: https://github.com/Skylion007, https://github.com/aaronenyeshi
2025-11-07 23:06:58 +00:00
09705ca9b2 [dynamo][guards] Fix mem leak in tensor subclass metadata guard (#167352)
Use cls instead of the object. Earlier the metadata guard was holding on
to the Dtensor causing mem leak.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167352
Approved by: https://github.com/Skylion007
2025-11-07 23:01:15 +00:00
ea6b0b5d0f add missing cpp standard lib in HeaderOnlyArrayRef.h (#167337)
Fixes #167315
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167337
Approved by: https://github.com/janeyx99
2025-11-07 23:00:08 +00:00
bbf852d87f Revert "Remove python workaround for ContextDecorator (#167049)"
This reverts commit 13d2cc7bd26e32cafff0377dda1c5ddc8d04c4ce.

Reverted https://github.com/pytorch/pytorch/pull/167049 on behalf of https://github.com/donigian due to breaking internal tests D86342845 ([comment](https://github.com/pytorch/pytorch/pull/167049#issuecomment-3505251296))
2025-11-07 22:32:45 +00:00
6392b986e7 Revert "[13/N] Apply ruff UP035 rule (#167048)"
This reverts commit ea44f12bce3eb05eaa9fa34943a3ffae04647fa5.

Reverted https://github.com/pytorch/pytorch/pull/167048 on behalf of https://github.com/donigian due to breaking internal tests D86342860 ([comment](https://github.com/pytorch/pytorch/pull/167048#issuecomment-3505232522))
2025-11-07 22:25:01 +00:00
32d30d96cf [ROCm][CI] unconditionally add gfx950, gfx115x to PYTORCH_ROCM_ARCH (#167299)
Included gfx950, gfx1150, and gfx1151 unconditionally in PYTORCH_ROCM_ARCH. Removed the ROCm 7.0 version check and refactored the architecture list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167299
Approved by: https://github.com/jeffdaily
2025-11-07 21:47:59 +00:00
46516efa85 [BE] use undeprecated from/to in libtorch_agnostic tests (#167126)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167126
Approved by: https://github.com/Skylion007
ghstack dependencies: #164991, #165152, #165153, #165953
2025-11-07 21:31:30 +00:00
84b2147b85 Introducing the StableIValue representation of list :D (#165953)
Some important notes:
a) Just like IValues steal the ownership of ArrayRefs and any std::vectors in order to convert the inner elements into IValues, we do the same thing with StableIValue. This O(N) traverse is ineluctable.
b) As a result, since StableIValues are owning and our contract is that to<T>(StableIValue) transfers ownership, you cannot ever convert from StableIValue to a nonowning HeaderOnlyArrayRef<V>.

We handle memory similar to AtenTensorHandle, but we have a StableListHandle!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165953
Approved by: https://github.com/malfet
ghstack dependencies: #164991, #165152, #165153
2025-11-07 21:31:30 +00:00
1727a71cb6 Create pallas test shard (#167143)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167143
Approved by: https://github.com/malfet
ghstack dependencies: #167243
2025-11-07 21:05:54 +00:00
fb9e10fe25 Revert "Update pythoncapi_compat.h (#167138)"
This reverts commit c90a976370945af052bb7b0db86240fa6f321cd6.

Reverted https://github.com/pytorch/pytorch/pull/167138 on behalf of https://github.com/donigian due to Sorry but this is breaking internally. See diff D86458778 for details. ([comment](https://github.com/pytorch/pytorch/pull/167138#issuecomment-3504895388))
2025-11-07 20:53:14 +00:00
4e277e6323 inductor: compile_worker - Fix potential race condition with quiesce waitcounters (#167025)
Summary:
If quiesce ends up called twice (which is likely not possible with the timer based implementation, but possible with either manual calls, or with the context manager implementation), this assertion fires.

Instead make this assertion tolerant to rentrant calling of quiesce

Test Plan: Added a explicit test which calls quiesce twice.

Differential Revision: D86251534

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167025
Approved by: https://github.com/masnesral
2025-11-07 20:49:34 +00:00
ba327b7a5c [BE][Typing][Dynamo] Type torch/_dynamo/variables/functions.py (#167103)
Provides type coverage to torch/_dynamo/variables/dicts.py

Coverage report:
`mypy torch/_dynamo/variables/functions.py --linecount-report /tmp/coverage_log`

Compare before to after - we go from 0 lines and 0 funcs covered to 2698 lines and 166 funcs covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167103
Approved by: https://github.com/mlazos, https://github.com/fxdawnn
2025-11-07 20:38:08 +00:00
8eb21304ab [DTensor] ignore fresh unbacked symbols in shard prop (#166989)
This fixes 2 issues with the DTensor data-dependent test case:

1) ShapeEnv not found when doing shard prop on data-dependent ops - fix was to detect the outer tracing fake mode. Maybe ShardingPropagator should just own a FakeMode & ShapeEnv for these purposes? The previous behavior was to initialize a new fake mode on every call.

2) Pending unbacked symbols not found. This happens because DTensor dispatch runs fake prop twice, once while figuring out the output sharding: 2bba37309b/torch/distributed/tensor/_sharding_prop.py (L175) and again to actually get the resulting local tensor: 2bba37309b/torch/distributed/tensor/_dispatch.py (L254-L255) With data-dependent ops, both calls will produce an unbacked symbol, but symbols in the first invocation are never surfaced, producing this error, so we ignore pending symbols from this site.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166989
Approved by: https://github.com/ezyang
2025-11-07 20:18:41 +00:00
b83a3f6e87 compile time comm benchmarking (#167100)
Adds an option to do compile time collective benchmarking for comms/compute overlap scheduling. As with the comm benchmarks, these are all gathered, and each rank uses the median result to ensure consistency. thanks to @ruisizhang123 who had done this previously.

We log the compile time benchmark, the inductor analytic result, and the nccl estimator result to tlparse.

TODO:
- mechanism to seed collective estimates with the existing tlparse (or perfetto) to use for deterministic, pgo'd estimates
- interpolate results between powers of 2, and also do the actual benchmarking for latency calculation. both of these need to be meta aware since reduce scatter needs to be divisible by group_size, not hard but leaving for a subsequent pr.

Example output tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/eellison/custom/rank_0/-_0_0_0/node_runtime_estimation_10.json?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167100
Approved by: https://github.com/IvanKobzarev
2025-11-07 20:13:37 +00:00
289b47e657 [MPS] empty matrix x vec mul fix (#166561)
Fixes empty matrix x vector. Discovered when implementing an op for sparse tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166561
Approved by: https://github.com/eqy, https://github.com/albanD
2025-11-07 20:05:46 +00:00
c20308b79e [Test CI] Bump ruff to 0.14.4 (#167286)
This PR bumps ruff to 0.14.4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167286
Approved by: https://github.com/janeyx99, https://github.com/Skylion007
2025-11-07 20:05:10 +00:00
4c41e9bde7 making TORCH_CHECK_{COND} non-fatal (#167004)
TORCH_CHECK is non-fatal by design, but TORCH_CHECK_{COND} macros are fatal. this is confusing, and we should limit fatality to the set of debug macros.

Differential Revision: D86168955

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167004
Approved by: https://github.com/malfet
2025-11-07 19:48:19 +00:00
2f5223564e [ez] Remove experiment for uploading all test runs (#167133)
reverts #165484

after #166988 they are just uploaded while its running
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167133
Approved by: https://github.com/malfet
2025-11-07 19:38:36 +00:00
28615a765d Fix: list index out of range with softmax when using 0 dim (#166547)
Fixes #163971

Problem:
PyTorch's inductor compiler crashed with IndexError: list index out of range when compiling code that uses  0-dimensional tensors with operations like torch.softmax(scalar_tensor, dim=0).

A 0-dim tensor has shape = torch.Size([]) (empty shape)

```
ndim = 0 (zero dimensions)

len(shape) = 0 (no indices to access)

# Line 972: Pad other_shape to match inp dimensions
other_shape = [1] * (inp_ndim - len(other_shape)) + list(other_shape)

# For scalar tensors:
# inp_ndim = 0  # as input is scalar
# other_shape = []
# Result: [1] * (0 - 0) + [] = [] (still empty!)

dim = match.kwargs["dim"]  # dim = 0
if isinstance(dim, int):
    dim = (dim,)

# crash is happening here!
return all(statically_known_true(other_shape[d] == 1) for d in dim)
#                                 ^^^^^^^^^^^^^^^^
#                                 Tries other_shape[0] but other_shape = [] (empty!)
#                                 → IndexError: list index out of range
```

The function _other_is_broadcasted_in_dim() is an optimization check for a softmax fusion pattern. It verifies whether it's safe to rewrite:

```
# From
scaled = inp * other
result = scaled - scaled.amax(dim, keepdim=True)

# To this more stable form:
result = (inp - inp.amax(dim, keepdim=True)) * other
```

The optimization is only valid if other is constant across the reduction dimension (i.e., broadcasted to size 1 in that dimension). Otherwise, scaling changes which element is the maximum.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166547
Approved by: https://github.com/jansel
2025-11-07 19:32:43 +00:00
d1446ad75c Register floor_divide.out for MTIA (#167280)
Differential Revision: D86468749

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167280
Approved by: https://github.com/albanD
2025-11-07 19:31:51 +00:00
e401a56b96 [ez] Remove some dead code from test artifact related files (#166966)
Remove circle ci path since it's no longer used

Remove function that is not used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166966
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-11-07 18:14:44 +00:00
22650c89fb [ROCm] Update skip_if_lt_x_gpu to work with MultiProcContinuous class (#167281)
- Since MultiProcContinuous class spawns one process per GPU and runs UT in each of the processes, we need to ensure we are propagating the exit code associated with skip all the way to the main worker thread that spawned all the child processes.
- This commit also updates several UTs that are meant for 4 GPUs but incorrectly calls skip_if_lt_x_gpu with 2 as an input. Examples:
    - test_replicate_with_fsdp.py
    - test_dtensor_resharding.py
    - test_state_dict.py
    - test_functional_api.py: Fix typo. multi-accelerator doesn't exit, replaced with multi-gpu
    - test_op_strategy.py: world_size was hardcoded
    - test_math_ops.py: UT written for 4 GPU, so skipping for anything less
    - test_schedule_multiproc.py: All UTs in this suite are required to run on 2+ GPUs, therefore, adding skips if less than 4 GPUs are supplied

Fixes https://github.com/pytorch/pytorch/issues/166875

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167281
Approved by: https://github.com/jeffdaily
2025-11-07 18:11:48 +00:00
c62a17a2fb [ez] Remove some unused vars in common_utils.py (#166453)
I can't find where these are used
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166453
Approved by: https://github.com/malfet
2025-11-07 18:09:40 +00:00
713e289ae7 [dynamo][pytree] support more optree functions by polyfill the underlying CXX functions directly (#167292)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167292
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #167221, #167211
2025-11-07 18:09:19 +00:00
69784a0dbe [dynamo][pytree] add polyfills for optree path APIs (#167211)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167211
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #167221
2025-11-07 17:53:32 +00:00
3c2409c465 Refactor recursive call of collect_temp_source (#166714)
Recursive function call creates a reference cycle: closure <- function <- cell inside closure
Capturing self (PyCodegen instance) in same closure prolongs it's life until next gc.collect() which might result in worse resource management

After the introduction of e9209e0 OOM issues has been observed. Looking for reference cycles one has been uncovered that would result in the prolonging lifetime of tensors. As the result of that OOM issues might occur. Such a dependency chain has been uncovered:
<img width="1059" height="540" alt="image" src="https://github.com/user-attachments/assets/359a8534-e7cd-491f-be40-547c2af5cbbc" />

At the end of it a reference cycle can be found that consists of a closure for function collect_temp_source, the function itself, and a cell object inside closure that would point to the function due to the recursive call.

This issue can either be resolved by removing recurrency or removing PyCodegen instance from the closure.
Another precaution that can be made is to explicitly empty f_locals dict. This way we cut the tensor from the chain leading to reference cycle.

Fixes #166721

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166714
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007, https://github.com/jeromean, https://github.com/williamwen42, https://github.com/mlazos
2025-11-07 17:52:54 +00:00
724cd32b0c [PT2 Compiler] Add flag in dynamo disable wrapper to indicate reursive disable (#165790)
Summary: After torch._dynamo.disable is applied, wrapped method does not have any flag to indicate whether it was disabled recursively or not. This flag is needed if to preserve dynamo disable methods in torch.export-ed model

Test Plan:
```
buck test mode/opt caffe2/test/dynamo:test_dynamo -- 'test_disable_recursive_flags'
````
https://www.internalfb.com/intern/testinfra/testrun/7599824674075603

Differential Revision: D84949143

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165790
Approved by: https://github.com/angelayi, https://github.com/williamwen42
2025-11-07 17:48:20 +00:00
b62935d1a5 fix alpha beta in decomp (#167317)
fix for https://github.com/pytorch/pytorch/issues/167313

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167317
Approved by: https://github.com/zou3519
ghstack dependencies: #161404
2025-11-07 17:42:13 +00:00
ccc8c117dc Codeowner/Labeler updates post-Blas-reorgs (#167130)
Summary:

Previous PRs have split out scaled/grouped Blas routines into
their own files. This updates the codeowners and labeler to reflect
those changes.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167130
Approved by: https://github.com/drisspg
2025-11-07 17:27:41 +00:00
86db4de10f [PP] PP Runtime Features for supporting Graph Based execution (#167277)
Allow overriding UNSHARD, RESHARD and REDUCE_GRAD actions.
Enable running pp backward without torch.grad.is_enabled().

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167277
Approved by: https://github.com/wconstab
2025-11-07 17:11:14 +00:00
12860892f8 Revert "[Inductor][Grouped Gemm] Add Blackwell CuTeDSL Kernel (#167182)"
This reverts commit 77b70970f70d53de71b9703ad4c3199d714c535a.

Reverted https://github.com/pytorch/pytorch/pull/167182 on behalf of https://github.com/NikhilAPatel due to breaks local source build ([comment](https://github.com/pytorch/pytorch/pull/167182#issuecomment-3503598156))
2025-11-07 16:45:23 +00:00
694592ac1e Move enrich_profiler_metadata config import out of gm.recompile() (#167114)
Fixes T243967987

Move `enrich_profiler_metadata` from `torch._dynamo.config` to `torch.fx.experimental._config`.

We cannot import anything inside recompile(), it made some perf regress internally. We move the config so we can import it at the top of `graph_module.py` without causing any circular import.

We also cannot delete the old config right now because some internal tests rely on copies of the old `graph_module.py` cpp file in unit tests. But I think we should be able to delete the old config soon after this PR lands.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167114
Approved by: https://github.com/angelayi
2025-11-07 16:12:47 +00:00
285748e838 fix the cpp_builder error under riscv (#167071)
**fix the cpp_builder error under riscv**

`g++: error: ‘-march=native’: ISA string must begin with rv32 or rv64`

(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]   File "/usr/local/lib64/python3.11/site-packages/torch/_inductor/cpp_builder.py", line 1718, in build
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]     run_compile_cmd(build_cmd, cwd=_build_tmp_dir)
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]   File "/usr/local/lib64/python3.11/site-packages/torch/_inductor/cpp_builder.py", line 401, in run_compile_cmd
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]     _run_compile_cmd(cmd_line, cwd)
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]   File "/usr/local/lib64/python3.11/site-packages/torch/_inductor/cpp_builder.py", line 396, in _run_compile_cmd
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]     raise exc.CppCompileError(cmd, output) from e
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] torch._inductor.exc.InductorError: CppCompileError: C++ compile error
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] Command:
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] g++ /tmp/tmpv8qz53jp/header.hpp -D TORCH_INDUCTOR_CPP_WRAPPER -D STANDALONE_TORCH_HEADER -D C10_USING_CUSTOM_GENERATED_MACROS -fPIC -O3 -DNDEBUG -fno-trapping-math -funsafe-math-optimizations -ffinite-math-only -fno-signed-zeros -fno-math-errno -fexcess-precision=fast -fno-finite-math-only -fno-unsafe-math-optimizations -ffp-contract=off -fno-tree-loop-vectorize -march=native -Wall -std=c++17 -Wno-unused-variable -Wno-unknown-pragmas -fopenmp -I/usr/include/python3.11 -I/usr/local/lib64/python3.11/site-packages/torch/include -I/usr/local/lib64/python3.11/site-packages/torch/include/torch/csrc/api/include -D_GLIBCXX_USE_CXX11_ABI=1 -E -P -o /tmp/tmpv8qz53jp/header.i
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779]
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] Output:
(EngineCore_DP0 pid=14414) ERROR 11-04 18:36:01 [core.py:779] g++: error: ‘-march=native’: ISA string must begin with rv32 or rv64

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167071
Approved by: https://github.com/malfet
2025-11-07 16:01:30 +00:00
304 changed files with 5938 additions and 3028 deletions

View File

@ -36,11 +36,7 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)

View File

@ -260,6 +260,12 @@ case "$tag" in
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-py3.12-pallas)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
PALLAS=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
@ -381,6 +387,7 @@ docker build \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "PALLAS=${PALLAS}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \

View File

@ -0,0 +1 @@
0.8.0

View File

@ -0,0 +1,40 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
# Get the pinned JAX version (same for all CUDA versions)
JAX_VERSION=$(get_pinned_commit /ci_commit_pins/jax)
function install_jax_12() {
echo "Installing JAX ${JAX_VERSION} with CUDA 12 support"
pip_install "jax[cuda12]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 12"
}
function install_jax_13() {
echo "Installing JAX ${JAX_VERSION} with CUDA 13 support"
pip_install "jax[cuda13]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 13"
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4|12.6|12.6.*|12.8|12.8.*|12.9|12.9.*) install_jax_12;
;;
13.0|13.0.*) install_jax_13;
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -49,11 +49,7 @@ case ${DOCKER_TAG_PREFIX} in
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -87,11 +87,7 @@ case ${image} in
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -143,6 +143,15 @@ COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG PALLAS
ARG CUDA_VERSION
# Install JAX with CUDA support (for Pallas)
COPY ./common/install_jax.sh install_jax.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/jax.txt /ci_commit_pins/jax.txt
RUN if [ -n "${PALLAS}" ]; then bash ./install_jax.sh ${CUDA_VERSION}; fi
RUN rm -f install_jax.sh common_utils.sh /ci_commit_pins/jax.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./

View File

@ -8,9 +8,11 @@ from abc import ABC, abstractmethod
try:
from typing import Any, Callable, Required, TypedDict # Python 3.11+
from collections.abc import Callable # Python 3.11+
from typing import Any, Required, TypedDict
except ImportError:
from typing import Any, Callable, TypedDict
from collections.abc import Callable
from typing import Any, TypedDict
from typing_extensions import Required # Fallback for Python <3.11

View File

@ -168,14 +168,16 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/umf/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Enable XCCL build
export USE_XCCL=1
export USE_MPI=0
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
export USE_KINETO=0
export TORCH_XPU_ARCH_LIST=pvc
fi

View File

@ -208,6 +208,8 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
fi
@ -824,6 +826,11 @@ test_inductor_halide() {
assert_git_not_dirty
}
test_inductor_pallas() {
python test/run_test.py --include inductor/test_pallas.py --verbose
assert_git_not_dirty
}
test_inductor_triton_cpu() {
python test/run_test.py --include inductor/test_triton_cpu_backend.py inductor/test_torchinductor_strided_blocks.py --verbose
assert_git_not_dirty
@ -1724,6 +1731,8 @@ elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
test_inductor_halide
elif [[ "${TEST_CONFIG}" == *inductor-pallas* ]]; then
test_inductor_pallas
elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then

View File

@ -1 +1 @@
ca2212438fdd8ce29b66999ed70ed54b0f9372d1
ccb801b88af136454798b945175c4c87e636ac33

View File

@ -1 +1 @@
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a

9
.github/labeler.yml vendored
View File

@ -138,7 +138,8 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -148,7 +149,8 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -158,7 +160,8 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm

View File

@ -10,3 +10,4 @@
pathFilter:
- 'torch/csrc/inductor/aoti_torch/c/*'
- 'torch/csrc/inductor/aoti_torch/generated/*'
- 'torch/csrc/stable/c/*'

View File

@ -1,10 +1,11 @@
# Delete old branches
import os
import re
from collections.abc import Callable
from datetime import datetime
from functools import lru_cache
from pathlib import Path
from typing import Any, Callable
from typing import Any
from github_utils import gh_fetch_json_dict, gh_graphql
from gitutils import GitRepo

View File

@ -8,10 +8,11 @@ import re
import subprocess
import sys
import warnings
from collections.abc import Callable
from enum import Enum
from functools import cache
from logging import info
from typing import Any, Callable, Optional
from typing import Any, Optional
from urllib.request import Request, urlopen
import yaml

View File

@ -11,7 +11,8 @@ import sys
import time
import urllib
import urllib.parse
from typing import Any, Callable, Optional
from collections.abc import Callable
from typing import Any, Optional
from urllib.request import Request, urlopen

View File

@ -3,8 +3,9 @@
import json
import os
import warnings
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Callable, cast, Optional, Union
from typing import Any, cast, Optional, Union
from urllib.error import HTTPError
from urllib.parse import quote
from urllib.request import Request, urlopen

View File

@ -4,10 +4,10 @@ import os
import re
import tempfile
from collections import defaultdict
from collections.abc import Iterator
from collections.abc import Callable, Iterator
from datetime import datetime
from functools import wraps
from typing import Any, Callable, cast, Optional, TypeVar, Union
from typing import Any, cast, Optional, TypeVar, Union
T = TypeVar("T")

View File

@ -17,12 +17,12 @@ import re
import time
import urllib.parse
from collections import defaultdict
from collections.abc import Iterable
from collections.abc import Callable, Iterable
from dataclasses import dataclass
from functools import cache
from pathlib import Path
from re import Pattern
from typing import Any, Callable, cast, NamedTuple, Optional
from typing import Any, cast, NamedTuple, Optional
from warnings import warn
import yaml

View File

@ -67,6 +67,7 @@ jobs:
pytorch-linux-jammy-py3.10-gcc11,
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-cuda12.8-py3.12-pallas,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-noble-xpu-n-py3,
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,

View File

@ -81,6 +81,32 @@ jobs:
test-matrix: ${{ needs.inductor-halide-build.outputs.test-matrix }}
secrets: inherit
inductor-pallas-build:
name: inductor-pallas-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-py3.12-pallas
cuda-arch-list: '8.9'
runner: linux.8xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
test-matrix: |
{ include: [
{ config: "inductor-pallas", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.12xlarge.nvidia.gpu" },
]}
secrets: inherit
inductor-pallas-test:
name: inductor-pallas-test
uses: ./.github/workflows/_linux-test.yml
needs: inductor-pallas-build
with:
build-environment: linux-jammy-py3.12-gcc11
docker-image: ${{ needs.inductor-pallas-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-pallas-build.outputs.test-matrix }}
secrets: inherit
inductor-triton-cpu-build:
name: inductor-triton-cpu-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -1402,7 +1402,7 @@ init_command = [
'--dry-run={{DRYRUN}}',
'usort==1.0.8.post1',
'isort==6.0.1',
'ruff==0.13.1', # sync with RUFF
'ruff==0.14.4', # sync with RUFF
]
is_formatter = true
@ -1537,7 +1537,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.13.1', # sync with PYFMT
'ruff==0.14.4', # sync with PYFMT
]
is_formatter = true

View File

@ -210,8 +210,12 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision GEMMs
# Low Precision & Grouped GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/GroupedBlas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/ScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -94,6 +94,11 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
}
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
c10::DeviceIndex device_index) {
const auto device_type = getAccelerator(true).value();
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
}
} // namespace at::accelerator
namespace at {

View File

@ -226,8 +226,8 @@ template <
typename B = HostBlock<S>>
struct CachingHostAllocatorImpl {
virtual ~CachingHostAllocatorImpl() {
active_ = false;
if (pinned_use_background_threads()) {
if (active_) {
active_ = false;
getBackgroundThreadPool()->waitWorkComplete();
}
}
@ -260,6 +260,7 @@ struct CachingHostAllocatorImpl {
if (pinned_use_background_threads()) {
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
active_ = true;
getBackgroundThreadPool()->run([&]() {
while (active_) {
process_events();
@ -683,9 +684,9 @@ struct CachingHostAllocatorImpl {
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
// Indicates whether the object is active.
// Indicates whether the event-processing thread pool is active.
// Set to false in the destructor to signal background threads to stop.
std::atomic<bool> active_{true};
std::atomic<bool> active_{false};
protected:
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
};

View File

@ -157,6 +157,8 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::Negative,
DispatchKey::Conjugate,
DispatchKey::XLA,
DispatchKey::XPU,
DispatchKey::HPU,
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,

View File

@ -141,6 +141,9 @@ static Tensor& addmv_out_mps_impl(const Tensor& self,
};
MPSStream* stream = at::mps::getCurrentMPSStream();
if (result.numel() == 0) {
return result;
}
Tensor matMulVec = at::mm(mat, vec.unsqueeze(1)).squeeze(1);
@autoreleasepool {

View File

@ -2803,7 +2803,7 @@
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA, MPS: floor_divide_out
CPU, CUDA, MPS, MTIA: floor_divide_out
SparseCPU, SparseCUDA, SparseMPS: floor_divide_out_sparse_zerodim
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
@ -4292,6 +4292,7 @@
dispatch:
SparseCPU: sparse_sparse_matmul_cpu
SparseCUDA: sparse_sparse_matmul_cuda
SparseMPS: sparse_sparse_matmul_mps
autogen: _sparse_sparse_matmul.out
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
@ -4383,7 +4384,7 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: mv
SparseCPU, SparseCUDA: mv_sparse
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
@ -9832,7 +9833,7 @@
structured_delegate: erfinv.out
variants: method, function
dispatch:
SparseCPU, SparseCUDA: erfinv_sparse
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr
tags: pointwise
@ -9841,7 +9842,7 @@
structured_delegate: erfinv.out
variants: method
dispatch:
SparseCPU, SparseCUDA: erfinv_sparse_
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_
tags: pointwise
@ -9851,7 +9852,7 @@
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: erfinv_out
SparseCPU, SparseCUDA: erfinv_sparse_out
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_out
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out
tags: pointwise

View File

@ -10,6 +10,10 @@
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_coalesce_native.h>
#include <ATen/ops/repeat_interleave_native.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/_sparse_sparse_matmul_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/add_native.h>
@ -888,5 +892,114 @@ static void sparse_mask_intersection_out_mps_kernel(
/*coalesce_mask=*/false);
}
Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
TORCH_CHECK(mat1_.is_sparse() && mat2_.is_sparse(),
"sparse_sparse_matmul_mps: both inputs must be sparse COO tensors");
TORCH_CHECK(mat1_.is_mps() && mat2_.is_mps(),
"sparse_sparse_matmul_mps: both inputs must be on MPS device");
TORCH_CHECK(mat1_.dim() == 2 && mat2_.dim() == 2,
"sparse_sparse_matmul_mps: both inputs must be 2D matrices");
TORCH_CHECK(mat1_.dense_dim() == 0 && mat2_.dense_dim() == 0,
"sparse_sparse_matmul_mps: only scalar values supported (dense_dim == 0)");
TORCH_CHECK(mat1_.size(1) == mat2_.size(0),
"mat1 and mat2 shapes cannot be multiplied (", mat1_.size(0), "x", mat1_.size(1), " and ", mat2_.size(0), "x", mat2_.size(1), ")");
TORCH_CHECK(mat1_.scalar_type() == mat2_.scalar_type(),
"sparse_sparse_matmul_mps: mat1 dtype ", mat1_.scalar_type(),
" does not match mat2 dtype ", mat2_.scalar_type());
const auto device = mat1_.device();
auto A = mat1_.coalesce();
auto B = mat2_.coalesce();
const auto I = A.size(0);
const auto K = A.size(1);
const auto N = B.size(1);
const auto nnzA = A._nnz();
const auto nnzB = B._nnz();
// Early empty result, return an empty, coalesced tensor
if (I == 0 || N == 0 || K == 0 || nnzA == 0 || nnzB == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
const auto computeDtype = at::result_type(mat1_, mat2_);
auto A_idx = A._indices().contiguous();
auto A_val = A._values().to(computeDtype).contiguous();
auto A_i = A_idx.select(0, 0).contiguous();
auto A_k = A_idx.select(0, 1).contiguous();
auto B_idx = B._indices().contiguous();
auto B_val = B._values().to(computeDtype).contiguous();
auto B_k = B_idx.select(0, 0).contiguous();
auto B_j = B_idx.select(0, 1).contiguous();
// csr-style row pointers for B by k (the shared dimension)
Tensor row_ptr_B;
{
auto batch_ptr = at::tensor({0LL, nnzB}, at::device(device).dtype(at::kLong));
row_ptr_B = at::empty({K + 1}, at::device(device).dtype(at::kLong));
build_row_ptr_per_batch_mps(B_k, batch_ptr, /*B=*/1, /*I=*/K, row_ptr_B);
}
auto row_ptr_B_lo = row_ptr_B.narrow(0, 0, K);
auto row_ptr_B_hi = row_ptr_B.narrow(0, 1, K);
auto deg_B = row_ptr_B_hi.sub(row_ptr_B_lo);
auto counts = deg_B.index_select(0, A_k);
const int64_t P = counts.sum().item<int64_t>();
if (P == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
auto group_ids = repeat_interleave_mps(counts);
// exclusive cumsum of counts
auto offsets = cumsum(counts, /*dim=*/0).sub(counts);
auto offsets_gather = offsets.index_select(0, group_ids);
auto within = at::arange(P, at::device(device).dtype(at::kLong)).sub(offsets_gather);
// Map each output element to its source B row and position
auto k_per_out = A_k.index_select(0, group_ids);
auto start_in_B = row_ptr_B.index_select(0, k_per_out);
auto seg_index = start_in_B.add(within);
// Assemble candidate coo pairs and values
auto i_out = A_i.index_select(0, group_ids).contiguous();
auto j_out = B_j.index_select(0, seg_index).contiguous();
auto vA_out = A_val.index_select(0, group_ids).contiguous();
auto vB_out = B_val.index_select(0, seg_index).contiguous();
auto v_out = vA_out.mul(vB_out);
// build (2, P) indices
auto out_indices = at::empty({2, P}, at::device(device).dtype(at::kLong)).contiguous();
out_indices.select(0, 0).copy_(i_out);
out_indices.select(0, 1).copy_(j_out);
auto result = _sparse_coo_tensor_unsafe(
out_indices, v_out, {I, N}, mat1_.options().dtype(computeDtype));
result = result.coalesce();
if (result.scalar_type() != mat1_.scalar_type()) {
auto cast_vals = result._values().to(mat1_.scalar_type());
auto out = _sparse_coo_tensor_unsafe(result._indices(), cast_vals, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
return result;
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -52,19 +52,18 @@ def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time

View File

@ -1,6 +1,8 @@
#pragma once
#include <c10/core/SafePyObject.h>
#include <c10/macros/Export.h>
#include <optional>
namespace c10 {
@ -15,7 +17,8 @@ struct C10_API AutogradState {
bool inference_mode,
bool fw_grad_mode,
bool multithreading_enabled)
: grad_mode_(grad_mode),
: graph_exec_group_(std::nullopt),
grad_mode_(grad_mode),
inference_mode_(inference_mode),
fw_grad_mode_(fw_grad_mode),
multithreading_enabled_(multithreading_enabled),
@ -41,6 +44,10 @@ struct C10_API AutogradState {
view_replay_enabled_ = view_replay_enabled;
}
void set_graph_exec_group(std::optional<SafePyObject> group) {
graph_exec_group_ = std::move(group);
}
bool get_grad_mode() const {
return grad_mode_;
}
@ -61,7 +68,12 @@ struct C10_API AutogradState {
return view_replay_enabled_;
}
const std::optional<SafePyObject>& get_graph_exec_group() const {
return graph_exec_group_;
}
private:
std::optional<SafePyObject> graph_exec_group_;
bool grad_mode_ : 1;
bool inference_mode_ : 1;
bool fw_grad_mode_ : 1;

View File

@ -96,6 +96,10 @@ struct C10_API DeviceAllocator : public c10::Allocator {
// Resets peak memory usage statistics for the specified device
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
// Return the free memory size and total memory size in bytes for the
// specified device.
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) = 0;
};
// This function is used to get the DeviceAllocator for a specific device type

View File

@ -345,6 +345,13 @@ class CUDAAllocator : public DeviceAllocator {
c10::DeviceIndex device,
std::shared_ptr<AllocatorState> pps) = 0;
virtual std::string name() = 0;
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
c10::DeviceGuard device_guard({at::kCUDA, device});
size_t free = 0;
size_t total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
return {free, total};
}
};
// Allocator object, statically initialized

View File

@ -66,6 +66,15 @@ def define_targets(rules):
],
)
rules.cc_test(
name = "util/nofatal_test",
srcs = ["util/nofatal_test.cpp"],
deps = [
"//c10/util:base",
"@com_google_googletest//:gtest_main",
],
)
rules.cc_test(
name = "util/ssize_test",
srcs = ["util/ssize_test.cpp"],

View File

@ -0,0 +1,53 @@
#include <gtest/gtest.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
namespace {
template <typename T>
inline void expectThrowsEq(T&& fn, const char* expected_msg) {
try {
std::forward<T>(fn)();
} catch (const c10::Error& e) {
EXPECT_TRUE(
std::string(e.what_without_backtrace()).find(expected_msg) !=
std::string::npos);
return;
}
ADD_FAILURE() << "Expected to throw exception with message \"" << expected_msg
<< "\" but didn't throw";
}
} // namespace
TEST(NofatalTest, TorchCheckComparisons) {
// quick make sure that no-op works as expected
TORCH_CHECK_EQ(1, 1) << "i am a silly message " << 1;
expectThrowsEq(
[]() { TORCH_CHECK_EQ(1, 2) << "i am a silly message " << 1; },
"Check failed: 1 == 2 (1 vs. 2). i am a silly message 1");
expectThrowsEq(
[]() { TORCH_CHECK_NE(2, 2); }, "Check failed: 2 != 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LT(2, 2); }, "Check failed: 2 < 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LE(3, 2); }, "Check failed: 3 <= 2 (3 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GT(2, 2); }, "Check failed: 2 > 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GE(2, 3); }, "Check failed: 2 >= 3 (2 vs. 3).");
expectThrowsEq(
[]() {
void* p = nullptr;
TORCH_CHECK_NOTNULL(p);
},
"Check failed: 'p' must be non NULL.");
#if GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
// if dbg build, DCHECK should result in deth
EXPECT_DEATH(TORCH_DCHECK_EQ(1, 2), "Check failed");
#else
TORCH_DCHECK_EQ(1, 2); // no-op
#endif
#endif // GTEST_HAS_DEATH_TEST
}

View File

@ -702,6 +702,98 @@ namespace c10::detail {
#define TORCH_CHECK_ARG(cond, argN, ...) \
TORCH_CHECK(cond, "invalid argument ", argN, ": ", __VA_ARGS__)
#ifndef FATAL_IF
#ifdef C10_USE_GLOG
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::google::GLOG_FATAL) \
.stream()
#else
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL).stream()
#endif
#endif
#ifndef NON_FATAL_IF
#ifdef C10_USE_GLOG
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger( \
__FILE__, __LINE__, ::google::GLOG_FATAL, false) \
.stream()
#else
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL, false) \
.stream()
#endif
#endif
// Binary comparison check macros
#define TORCH_CHECK_OP(val1, val2, op) \
NON_FATAL_IF(((val1)op(val2))) \
<< "Check failed: " #val1 " " #op " " #val2 " (" << (val1) << " vs. " \
<< (val2) << "). "
#define TORCH_DCHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << "). "
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
// Debug versions of TORCH_CHECK_OP macros
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_DCHECK_OP(val1, val2, >)
#else // !NDEBUG
// Optimized versions - generate no code
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >)
#endif // NDEBUG
// Null pointer check macro
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), false)
#ifndef NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), true)
#else // !NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ----------------------------------------------------------------------------
// Deprecated macros
// ----------------------------------------------------------------------------

View File

@ -291,6 +291,32 @@ namespace c10 {
using fLB::FLAGS_logtostderr;
using fLI::FLAGS_minloglevel;
using fLI::FLAGS_v;
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: stream_(), severity_(severity), exit_on_fatal_(exit_on_fatal) {}
MessageLogger::~MessageLogger() noexcept(false) {
if (severity_ == ::google::GLOG_FATAL) {
DealWithFatal();
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
LOG(FATAL) << stream_.str();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
C10_DEFINE_int(
@ -412,17 +438,16 @@ void ShowLogInfoToStderr() {
FLAGS_caffe2_log_level = GLOG_INFO;
}
MessageLogger::MessageLogger(const char* file, int line, int severity)
: severity_(severity) {
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: severity_(severity), exit_on_fatal_(exit_on_fatal) {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
}
#ifdef ANDROID
tag_ = "native";
#else // !ANDROID
tag_ = "";
#endif // ANDROID
time_t rawtime = 0;
time(&rawtime);
@ -458,7 +483,7 @@ MessageLogger::MessageLogger(const char* file, int line, int severity)
}
// Output the contents of the stream to the proper channel on destruction.
MessageLogger::~MessageLogger() {
MessageLogger::~MessageLogger() noexcept(false) {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
@ -498,6 +523,18 @@ MessageLogger::~MessageLogger() {
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
abort();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
#endif // !C10_USE_GLOG

74
c10/util/logging_common.h Normal file
View File

@ -0,0 +1,74 @@
#ifndef C10_UTIL_LOGGING_COMMON_H_
#define C10_UTIL_LOGGING_COMMON_H_
#include <c10/macros/Export.h>
#include <sstream>
namespace c10 {
// MessageLogger that throws exceptions instead of aborting (glog version)
// or logs and may abort (non-glog version).
class C10_API MessageLogger {
public:
MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal = true);
~MessageLogger() noexcept(false);
// Return the stream associated with the logger object.
std::stringstream& stream();
private:
// When there is a fatal log, and fatal == true, we abort
// otherwise, we throw.
void DealWithFatal();
#if defined(ANDROID) && !defined(C10_USE_GLOG)
const char* tag_{"native"};
#endif
std::stringstream stream_;
int severity_;
bool exit_on_fatal_;
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class C10_API LoggerVoidify {
public:
LoggerVoidify() = default;
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const std::ostream& s [[maybe_unused]]) {}
};
// Forward declarations for CheckNotNull functions
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal = true);
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal = true);
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal = true);
} // namespace c10
#endif // C10_UTIL_LOGGING_COMMON_H_

View File

@ -47,57 +47,53 @@ INSTANTIATE_FOR_CONTAINER(set)
#endif
#include <c10/util/logging_common.h>
#include <glog/logging.h>
// Additional macros on top of glog
#define TORCH_CHECK_EQ(val1, val2) CHECK_EQ(val1, val2)
#define TORCH_CHECK_NE(val1, val2) CHECK_NE(val1, val2)
#define TORCH_CHECK_LE(val1, val2) CHECK_LE(val1, val2)
#define TORCH_CHECK_LT(val1, val2) CHECK_LT(val1, val2)
#define TORCH_CHECK_GE(val1, val2) CHECK_GE(val1, val2)
#define TORCH_CHECK_GT(val1, val2) CHECK_GT(val1, val2)
namespace c10 {
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) DCHECK_EQ(val1, val2)
#define TORCH_DCHECK_NE(val1, val2) DCHECK_NE(val1, val2)
#define TORCH_DCHECK_LE(val1, val2) DCHECK_LE(val1, val2)
#define TORCH_DCHECK_LT(val1, val2) DCHECK_LT(val1, val2)
#define TORCH_DCHECK_GE(val1, val2) DCHECK_GE(val1, val2)
#define TORCH_DCHECK_GT(val1, val2) DCHECK_GT(val1, val2)
#else // !NDEBUG
// These versions generate no code in optimized mode.
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
DCHECK_EQ(val1, val2)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
DCHECK_NE(val1, val2)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
DCHECK_LE(val1, val2)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
DCHECK_LT(val1, val2)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
DCHECK_GE(val1, val2)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
DCHECK_GT(val1, val2)
#endif // NDEBUG
[[noreturn]] void ThrowEnforceNotMet(
const char* file,
const int line,
const char* condition,
const std::string& msg,
const void* caller);
// Check that a pointer is not null.
#define TORCH_CHECK_NOTNULL(val) CHECK_NOTNULL(val)
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
if (t == nullptr) {
MessageLogger(file, line, ::google::GLOG_FATAL, fatal).stream()
<< "Check failed: '" << names << "' must be non NULL. ";
}
return t;
}
#ifndef NDEBUG
// Debug only version of TORCH_CHECK_NOTNULL
#define TORCH_DCHECK_NOTNULL(val) DCHECK_NOTNULL(val)
#else // !NDEBUG
// Optimized version - generates no code.
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
DCHECK_NOTNULL(val)
#endif // NDEBUG
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
} // namespace c10
// Log with source location information override (to be used in generic
// warning/error handlers implemented as functions, not macros)

View File

@ -13,6 +13,7 @@
#include <vector>
#include <c10/util/Flags.h>
#include <c10/util/logging_common.h>
const char CAFFE2_SEVERITY_PREFIX[] = "FEWIV";
@ -24,61 +25,40 @@ const int GLOG_ERROR = 2;
const int GLOG_WARNING = 1;
const int GLOG_INFO = 0;
class C10_API MessageLogger {
public:
MessageLogger(const char* file, int line, int severity);
~MessageLogger();
// Return the stream associated with the logger object.
std::stringstream& stream() {
return stream_;
}
private:
// When there is a fatal log, we simply abort.
void DealWithFatal() {
abort();
}
const char* tag_;
std::stringstream stream_;
int severity_;
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class C10_API LoggerVoidify {
public:
LoggerVoidify() = default;
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const std::ostream& s [[maybe_unused]]) {}
};
// Log a message and terminate.
template <class T>
void LogMessageFatal(const char* file, int line, const T& message) {
MessageLogger(file, line, GLOG_FATAL).stream() << message;
}
// Helpers for TORCH_CHECK_NOTNULL(). Two are necessary to support both raw
// pointers and smart pointers.
template <typename T>
T& CheckNotNullCommon(const char* file, int line, const char* names, T& t) {
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
if (t == nullptr) {
LogMessageFatal(file, line, std::string(names));
MessageLogger(file, line, GLOG_FATAL, fatal).stream()
<< "Check failed: '" << names << "' must be non NULL. ";
}
return t;
}
template <typename T>
T* CheckNotNull(const char* file, int line, const char* names, T* t) {
return CheckNotNullCommon(file, line, names, t);
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
template <typename T>
T& CheckNotNull(const char* file, int line, const char* names, T& t) {
return CheckNotNullCommon(file, line, names, t);
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
} // namespace c10
@ -136,65 +116,6 @@ static_assert(
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_##n).stream()
#endif // NDEBUG
#define TORCH_CHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << ") "
// TORCH_CHECK_OP macro definitions
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
#ifndef NDEBUG
// Debug only versions of TORCH_CHECK_OP macros.
#define TORCH_DCHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
#else // !NDEBUG
// These versions generate no code in optimized mode.
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, >)
#endif // NDEBUG
// Check that a pointer is not null.
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull( \
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
#ifndef NDEBUG
// Debug only version of TORCH_CHECK_NOTNULL
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull( \
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
#else // !NDEBUG
// Optimized version - generates no code.
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ---------------------- Support for std objects --------------------------
// These are adapted from glog to support a limited set of logging capability
// for STL objects.

View File

@ -926,15 +926,14 @@ class DeviceCachingAllocator {
(release_cached_blocks() && alloc_block(params, true));
}
if (!block_found) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device);
auto device_total = device_prop.global_mem_size;
const auto& raw_device = c10::xpu::get_raw_device(device);
const auto device_total =
raw_device.get_info<sycl::info::device::global_mem_size>();
// Estimate the available device memory when the SYCL runtime does not
// support the corresponding aspect (ext_intel_free_memory).
size_t device_free = device_prop.global_mem_size -
size_t device_free = device_total -
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
.current;
auto& raw_device = c10::xpu::get_raw_device(device);
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
// affected devices.
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
@ -1052,21 +1051,37 @@ class DeviceCachingAllocator {
}
}
std::pair<size_t, size_t> getMemoryInfo() {
const auto& device = c10::xpu::get_raw_device(device_index);
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
TORCH_CHECK(
device.has(sycl::aspect::ext_intel_free_memory),
"The device (",
device.get_info<sycl::info::device::name>(),
") doesn't support querying the available free memory. ",
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
"to help us prioritize its implementation.");
const size_t free =
device.get_info<sycl::ext::intel::info::device::free_memory>();
return {free, total};
}
double getMemoryFraction() {
if (!set_fraction) {
return 1.0;
}
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
return static_cast<double>(allowed_memory_maximum) /
static_cast<double>(device_prop.global_mem_size);
static_cast<double>(device_total);
}
void setMemoryFraction(double fraction) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
auto device_total = device_prop.global_mem_size;
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
set_fraction = true;
}
@ -1240,6 +1255,11 @@ class XPUAllocator : public DeviceAllocator {
c10::xpu::get_raw_device(dev_to_access));
}
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
assertValidDevice(device);
return device_allocators[device]->getMemoryInfo();
}
double getMemoryFraction(DeviceIndex device) {
assertValidDevice(device);
return device_allocators[device]->getMemoryFraction();

View File

@ -40,6 +40,7 @@
:nosignatures:
empty_cache
get_memory_info
max_memory_allocated
max_memory_reserved
memory_allocated

View File

@ -382,20 +382,6 @@ coverage_ignore_functions = [
# torch.ao.quantization.backend_config.tensorrt
"get_tensorrt_backend_config",
"get_tensorrt_backend_config_dict",
# torch.ao.quantization.backend_config.utils
"entry_to_pretty_str",
"get_fused_module_classes",
"get_fuser_method_mapping",
"get_fusion_pattern_to_extra_inputs_getter",
"get_fusion_pattern_to_root_node_getter",
"get_module_to_qat_module",
"get_pattern_to_dtype_configs",
"get_pattern_to_input_type_to_index",
"get_qat_module_classes",
"get_root_module_to_quantized_reference_module",
"pattern_to_human_readable",
"remove_boolean_dispatch_from_name",
# torch.ao.quantization.backend_config.x86
"get_x86_backend_config",
# torch.ao.quantization.fuse_modules
"fuse_known_modules",
@ -426,25 +412,6 @@ coverage_ignore_functions = [
"insert_observers_for_model",
"prepare",
"propagate_dtypes_for_known_nodes",
# torch.ao.quantization.fx.utils
"all_node_args_except_first",
"all_node_args_have_no_tensors",
"assert_and_get_unique_device",
"collect_producer_nodes",
"create_getattr_from_value",
"create_node_from_old_node_preserve_meta",
"get_custom_module_class_keys",
"get_linear_prepack_op_for_dtype",
"get_new_attr_name_with_prefix",
"get_non_observable_arg_indexes_and_types",
"get_qconv_prepack_op",
"get_skipped_module_name_and_classes",
"graph_module_from_producer_nodes",
"maybe_get_next_module",
"node_arg_is_bias",
"node_arg_is_weight",
"return_arg_list",
# torch.ao.quantization.pt2e.graph_utils
"bfs_trace_with_node_process",
"find_sequential_partitions",
"get_equivalent_types",
@ -860,80 +827,10 @@ coverage_ignore_functions = [
"get_latency_of_one_partition",
"get_latency_of_partitioned_graph",
"get_partition_to_latency_mapping",
# torch.fx.experimental.proxy_tensor
"decompose",
"disable_autocast_cache",
"disable_proxy_modes_tracing",
"dispatch_trace",
"extract_val",
"fake_signature",
"fetch_sym_proxy",
"fetch_object_proxy",
"get_innermost_proxy_mode",
"get_isolated_graphmodule",
"get_proxy_slot",
"get_torch_dispatch_modes",
"has_proxy_slot",
"is_sym_node",
"maybe_handle_decomp",
"proxy_call",
"set_meta",
"set_original_aten_op",
"set_proxy_slot",
"snapshot_fake",
"thunkify",
"track_tensor",
"track_tensor_tree",
"wrap_key",
"wrapper_and_args_for_make_fx",
# torch.fx.experimental.recording
"record_shapeenv_event",
"replay_shape_env_events",
"shape_env_check_state_equal",
# torch.fx.experimental.sym_node
"ceil_impl",
"floor_ceil_helper",
"floor_impl",
"method_to_operator",
"sympy_is_channels_last_contiguous_2d",
"sympy_is_channels_last_contiguous_3d",
"sympy_is_channels_last_strides_2d",
"sympy_is_channels_last_strides_3d",
"sympy_is_channels_last_strides_generic",
"sympy_is_contiguous",
"sympy_is_contiguous_generic",
"to_node",
"wrap_node",
"sym_sqrt",
# torch.fx.experimental.symbolic_shapes
"bind_symbols",
"cast_symbool_to_symint_guardless",
"create_contiguous",
"error",
"eval_guards",
"eval_is_non_overlapping_and_dense",
"expect_true",
"find_symbol_binding_fx_nodes",
"free_symbols",
"free_unbacked_symbols",
"fx_placeholder_targets",
"fx_placeholder_vals",
"guard_bool",
"guard_float",
"guard_int",
"guard_scalar",
"has_hint",
"has_symbolic_sizes_strides",
"is_channels_last_contiguous_2d",
"is_channels_last_contiguous_3d",
"is_channels_last_strides_2d",
"is_channels_last_strides_3d",
"is_contiguous",
"is_non_overlapping_and_dense_indicator",
"is_nested_int",
"is_symbol_binding_fx_node",
"is_symbolic",
# torch.fx.experimental.unification.core
"reify",
# torch.fx.experimental.unification.match
"edge",
@ -971,24 +868,6 @@ coverage_ignore_functions = [
"reverse_dict",
# torch.fx.experimental.unification.multipledispatch.variadic
"isvariadic",
# torch.fx.experimental.unification.unification_tools
"assoc",
"assoc_in",
"dissoc",
"first",
"get_in",
"getter",
"groupby",
"itemfilter",
"itemmap",
"keyfilter",
"keymap",
"merge",
"merge_with",
"update_in",
"valfilter",
"valmap",
# torch.fx.experimental.unification.utils
"freeze",
"hashable",
"raises",

View File

@ -12,6 +12,37 @@ These APIs are experimental and subject to change without notice.
.. autoclass:: torch.fx.experimental.sym_node.DynamicInt
```
## torch.fx.experimental.sym_node
```{eval-rst}
.. currentmodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. automodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
is_channels_last_contiguous_2d
is_channels_last_contiguous_3d
is_channels_last_strides_2d
is_channels_last_strides_3d
is_contiguous
is_non_overlapping_and_dense_indicator
method_to_operator
sympy_is_channels_last_contiguous_2d
sympy_is_channels_last_contiguous_3d
sympy_is_channels_last_strides_2d
sympy_is_channels_last_strides_3d
sympy_is_channels_last_strides_generic
sympy_is_contiguous
sympy_is_contiguous_generic
```
## torch.fx.experimental.symbolic_shapes
```{eval-rst}
@ -69,6 +100,25 @@ These APIs are experimental and subject to change without notice.
rebind_unbacked
resolve_unbacked_bindings
is_accessor_node
cast_symbool_to_symint_guardless
create_contiguous
error
eval_guards
eval_is_non_overlapping_and_dense
find_symbol_binding_fx_nodes
free_symbols
free_unbacked_symbols
fx_placeholder_targets
fx_placeholder_vals
guard_bool
guard_float
guard_int
guard_scalar
has_hint
has_symbolic_sizes_strides
is_nested_int
is_symbol_binding_fx_node
is_symbolic
```
## torch.fx.experimental.proxy_tensor
@ -91,4 +141,46 @@ These APIs are experimental and subject to change without notice.
get_proxy_mode
maybe_enable_thunkify
maybe_disable_thunkify
decompose
disable_autocast_cache
disable_proxy_modes_tracing
extract_val
fake_signature
fetch_object_proxy
fetch_sym_proxy
has_proxy_slot
is_sym_node
maybe_handle_decomp
proxy_call
set_meta
set_original_aten_op
set_proxy_slot
snapshot_fake
```
## torch.fx.experimental.unification.unification_tools
```{eval-rst}
.. currentmodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. automodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
assoc
assoc_in
dissoc
first
keyfilter
keymap
merge
merge_with
update_in
valfilter
valmap

View File

@ -1134,7 +1134,6 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.refinement_types
.. py:module:: torch.fx.experimental.rewriter
.. py:module:: torch.fx.experimental.schema_type_annotation
.. py:module:: torch.fx.experimental.sym_node
.. py:module:: torch.fx.experimental.unification.core
.. py:module:: torch.fx.experimental.unification.dispatch
.. py:module:: torch.fx.experimental.unification.match
@ -1144,7 +1143,6 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.unification.multipledispatch.dispatcher
.. py:module:: torch.fx.experimental.unification.multipledispatch.utils
.. py:module:: torch.fx.experimental.unification.multipledispatch.variadic
.. py:module:: torch.fx.experimental.unification.unification_tools
.. py:module:: torch.fx.experimental.unification.utils
.. py:module:: torch.fx.experimental.unification.variable
.. py:module:: torch.fx.experimental.unify_refinements

View File

@ -134,6 +134,23 @@ Quantization to work with this as well.
ObservationType
```
## torch.ao.quantization.backend_config.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.backend_config.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
entry_to_pretty_str
pattern_to_human_readable
remove_boolean_dispatch_from_name
```
## torch.ao.quantization.fx.custom_config
This module contains a few CustomConfig classes that's used in both eager mode and FX graph mode quantization
@ -154,6 +171,30 @@ This module contains a few CustomConfig classes that's used in both eager mode a
StandaloneModuleConfigEntry
```
## torch.ao.quantization.fx.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.fx.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
all_node_args_except_first
all_node_args_have_no_tensors
collect_producer_nodes
create_getattr_from_value
create_node_from_old_node_preserve_meta
graph_module_from_producer_nodes
maybe_get_next_module
node_arg_is_bias
node_arg_is_weight
return_arg_list
```
## torch.ao.quantization.quantizer
```{eval-rst}

View File

@ -172,9 +172,9 @@ ignore = [
"SIM102", "SIM103", "SIM112", # flake8-simplify code styles
"SIM105", # these ignores are from flake8-simplify. please fix or ignore with commented reason
"SIM108", # SIM108 ignored because we prefer if-else-block instead of ternary expression
"SIM110",
"SIM110", # Checks for for loops that can be replaced with a builtin function, like any or all.
"SIM114", # Combine `if` branches using logical `or` operator
"SIM115",
"SIM115", # Checks for cases where files are opened without using a context manager.
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
@ -184,7 +184,6 @@ ignore = [
"TC006",
# TODO: Remove Python-3.10 specific suppressions
"B905",
"UP035",
]
select = [
"B",
@ -261,6 +260,7 @@ select = [
"TRY401", # verbose-log-message
"UP",
"YTT",
"S101",
]
[tool.ruff.lint.pyupgrade]
@ -340,6 +340,39 @@ keep-runtime-typing = true
"tools/linter/**" = [
"LOG015" # please fix
]
"benchmarks/**" = [
"S101"
]
"test/**" = [
"S101"
]
"torchgen/**" = [
"S101"
]
"torch/**" = [
"S101"
]
"tools/**" = [
"S101"
]
"setup.py" = [
"S101"
]
"functorch/**" = [
"S101"
]
"docs/**" = [
"S101"
]
"android/**" = [
"S101"
]
".github/**" = [
"S101"
]
".ci/**" = [
"S101"
]
[tool.codespell]
ignore-words = "tools/linter/dictionary.txt"

View File

@ -1646,8 +1646,7 @@ def main() -> None:
mirror_files_into_torchgen()
if RUN_BUILD_DEPS:
build_deps()
mirror_inductor_external_kernels()
mirror_inductor_external_kernels()
(
ext_modules,

View File

@ -208,7 +208,7 @@ class _BaseDataSparsiferTestCase(TestCase):
assert len(sparsifier1.data_groups) == len(sparsifier2.data_groups)
state1 = state_dict1["state"]
for name in state1.keys():
for name in state1:
# compare mask
assert name in sparsifier2.state
assert "mask" in sparsifier2.state[name]

View File

@ -119,7 +119,7 @@ class TestBaseSparsifier(TestCase):
for idx in range(len(sparsifier0.groups)):
mg0 = sparsifier0.groups[idx]
mg1 = sparsifier1.groups[idx]
for key in mg0.keys():
for key in mg0:
assert key in mg1
if key == "module":
# We cannot compare modules as they are different

View File

@ -67,13 +67,13 @@ Tensor sgd_out_of_place(
void boxed_sgd_out_of_place(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = sgd_out_of_place(
to<Tensor>(stack[0]),
to<Tensor>(stack[1]),
float(to<double>(stack[2])),
to<double>(stack[3]),
to<bool>(stack[4]));
torch::stable::detail::to<Tensor>(stack[0]),
torch::stable::detail::to<Tensor>(stack[1]),
float(torch::stable::detail::to<double>(stack[2])),
torch::stable::detail::to<double>(stack[3]),
torch::stable::detail::to<bool>(stack[4]));
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY(libtorch_agnostic, m) {
@ -89,8 +89,8 @@ Tensor identity(Tensor t) {
}
void boxed_identity(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = identity(to<Tensor>(stack[0]));
stack[0] = from(res);
Tensor res = identity(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -108,14 +108,14 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CPU, m) {
Tensor my_abs(Tensor t) {
const auto num_args = 1;
StableIValue stack[num_args];
stack[0] = from(t);
stack[0] = torch::stable::detail::from(t);
aoti_torch_call_dispatcher("aten::abs", "", stack);
return to<Tensor>(stack[0]);
return torch::stable::detail::to<Tensor>(stack[0]);
}
void boxed_my_abs(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_abs(to<Tensor>(stack[0]));
stack[0] = from(tensor_res);
Tensor tensor_res = my_abs(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(tensor_res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -132,21 +132,21 @@ Tensor my_ones_like(Tensor t, StableIValue device) {
auto mf = aoti_torch_memory_format_contiguous_format();
stack[0] = from(t);
stack[1] = from(std::optional(t.scalar_type())); // dtype
stack[2] = from(std::nullopt); // layout
stack[3] = from(std::optional(device)); // device
stack[4] = from(std::optional(false)); // pin_memory
stack[5] = from(std::optional(mf)); // memory_format
stack[0] = torch::stable::detail::from(t);
stack[1] = torch::stable::detail::from(std::optional(t.scalar_type())); // dtype
stack[2] = torch::stable::detail::from(std::nullopt); // layout
stack[3] = torch::stable::detail::from(std::optional(device)); // device
stack[4] = torch::stable::detail::from(std::optional(false)); // pin_memory
stack[5] = torch::stable::detail::from(std::optional(mf)); // memory_format
aoti_torch_call_dispatcher("aten::ones_like", "", stack);
return to<Tensor>(stack[0]);
return torch::stable::detail::to<Tensor>(stack[0]);
}
void boxed_my_ones_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = my_ones_like(to<Tensor>(stack[0]), stack[1]);
stack[0] = from(res);
Tensor res = my_ones_like(torch::stable::detail::to<Tensor>(stack[0]), stack[1]);
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -159,28 +159,28 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
std::tuple<Tensor, Tensor, bool> exp_neg_is_leaf(Tensor t1, Tensor t2, Tensor t3) {
StableIValue stack_exp[1];
stack_exp[0] = from(t1);
stack_exp[0] = torch::stable::detail::from(t1);
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
StableIValue stack_neg[1];
stack_neg[0] = from(t2);
stack_neg[0] = torch::stable::detail::from(t2);
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
StableIValue stack_is_leaf[1];
stack_is_leaf[0] = from(t3);
stack_is_leaf[0] = torch::stable::detail::from(t3);
aoti_torch_call_dispatcher("aten::is_leaf", "", stack_is_leaf);
return std::make_tuple(
to<Tensor>(stack_exp[0]),
to<Tensor>(stack_neg[0]),
to<bool>(stack_is_leaf[0]));
torch::stable::detail::to<Tensor>(stack_exp[0]),
torch::stable::detail::to<Tensor>(stack_neg[0]),
torch::stable::detail::to<bool>(stack_is_leaf[0]));
}
void boxed_exp_neg_is_leaf(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto tuple = exp_neg_is_leaf(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<Tensor>(stack[2]));
stack[0] = from(std::get<0>(tuple));
stack[1] = from(std::get<1>(tuple));
stack[2] = from(std::get<2>(tuple));
auto tuple = exp_neg_is_leaf(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<Tensor>(stack[2]));
stack[0] = torch::stable::detail::from(std::get<0>(tuple));
stack[1] = torch::stable::detail::from(std::get<1>(tuple));
stack[2] = torch::stable::detail::from(std::get<2>(tuple));
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -193,15 +193,15 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
Tensor neg_exp(Tensor t) {
StableIValue stack[1];
stack[0] = from(t);
stack[0] = torch::stable::detail::from(t);
aoti_torch_call_dispatcher("aten::exp", "", stack);
aoti_torch_call_dispatcher("aten::neg", "", stack);
return to<Tensor>(stack[0]);
return torch::stable::detail::to<Tensor>(stack[0]);
}
void boxed_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = neg_exp(to<Tensor>(stack[0]));
stack[0] = from(res);
Tensor res = neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -214,10 +214,10 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
Tensor divide_neg_exp(Tensor t) {
StableIValue stack_neg[1];
stack_neg[0] = from(t);
stack_neg[0] = torch::stable::detail::from(t);
StableIValue stack_exp[1];
stack_exp[0] = from(t);
stack_exp[0] = torch::stable::detail::from(t);
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
@ -225,12 +225,12 @@ Tensor divide_neg_exp(Tensor t) {
stack_div[0] = stack_neg[0];
stack_div[1] = stack_exp[0];
aoti_torch_call_dispatcher("aten::divide", "Tensor", stack_div);
return to<Tensor>(stack_div[0]);
return torch::stable::detail::to<Tensor>(stack_div[0]);
}
void boxed_divide_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = divide_neg_exp(to<Tensor>(stack[0]));
stack[0] = from(res);
Tensor res = divide_neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -246,8 +246,8 @@ bool is_contiguous(Tensor t) {
}
void boxed_is_contiguous(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
bool res = is_contiguous(to<Tensor>(stack[0]));
stack[0] = from(res);
bool res = is_contiguous(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -263,9 +263,9 @@ Tensor my_transpose(Tensor t, int64_t dim0, int64_t dim1) {
}
void boxed_my_transpose(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_transpose(to<Tensor>(stack[0]), to<int64_t>(stack[1]), to<int64_t>(stack[2]));
auto res = my_transpose(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<int64_t>(stack[1]), torch::stable::detail::to<int64_t>(stack[2]));
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
Tensor my_empty_like(Tensor t) {
@ -273,8 +273,8 @@ Tensor my_empty_like(Tensor t) {
}
void boxed_empty_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_empty_like(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_empty_like(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
bool my_is_cpu(Tensor t) {
@ -283,8 +283,8 @@ bool my_is_cpu(Tensor t) {
void boxed_my_is_cpu(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_is_cpu(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_is_cpu(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor fill_infinity(Tensor t) {
@ -296,8 +296,8 @@ void boxed_fill_infinity(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
auto res = fill_infinity(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = fill_infinity(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_pad(Tensor t) {
@ -310,8 +310,8 @@ void boxed_my_pad(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
auto res = my_pad(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_pad(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_narrow(Tensor t, int64_t dim, int64_t start, int64_t length) {
@ -323,11 +323,11 @@ void boxed_my_narrow(
uint64_t num_args,
uint64_t num_outputs) {
auto res = my_narrow(
to<Tensor>(stack[0]),
to<int64_t>(stack[1]),
to<int64_t>(stack[2]),
to<int64_t>(stack[3]));
stack[0] = from(res);
torch::stable::detail::to<Tensor>(stack[0]),
torch::stable::detail::to<int64_t>(stack[1]),
torch::stable::detail::to<int64_t>(stack[2]),
torch::stable::detail::to<int64_t>(stack[3]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_new_empty_dtype_variant(Tensor t) {
@ -342,8 +342,8 @@ Tensor my_new_empty_dtype_variant(Tensor t) {
}
void boxed_my_new_empty_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_empty_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_new_empty_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_new_zeros_dtype_variant(Tensor t) {
@ -352,8 +352,8 @@ Tensor my_new_zeros_dtype_variant(Tensor t) {
}
void boxed_my_new_zeros_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_zeros_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_new_zeros_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
@ -361,8 +361,8 @@ Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
}
void boxed_my_copy_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_copy_(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<bool>(stack[2]));
stack[0] = from(tensor_res);
Tensor tensor_res = my_copy_(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<bool>(stack[2]));
stack[0] = torch::stable::detail::from(tensor_res);
}
Tensor my_clone(Tensor t) {
@ -370,8 +370,8 @@ Tensor my_clone(Tensor t) {
}
void boxed_my_clone(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_clone(to<Tensor>(stack[0]));
stack[0] = from(tensor_res);
Tensor tensor_res = my_clone(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(tensor_res);
}
@ -408,8 +408,8 @@ Tensor my_zero_(Tensor t) {
}
void boxed_my_zero_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_zero_(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_zero_(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_amax(Tensor t) {
@ -417,8 +417,8 @@ Tensor my_amax(Tensor t) {
}
void boxed_my_amax(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_amax(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_amax(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_amax_vec(Tensor t) {
@ -426,8 +426,8 @@ Tensor my_amax_vec(Tensor t) {
}
void boxed_my_amax_vec(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_amax_vec(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_amax_vec(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -464,8 +464,8 @@ void boxed_test_default_constructor(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
bool res = test_default_constructor(to<bool>(stack[0]));
stack[0] = from(res);
bool res = test_default_constructor(torch::stable::detail::to<bool>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -478,6 +478,56 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my_amax_vec", &boxed_my_amax_vec);
}
std::vector<Tensor> my__foreach_mul(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
aoti_torch_call_dispatcher("aten::_foreach_mul", "List", stack.data());
return torch::stable::detail::to<std::vector<Tensor>>(stack[0]);
}
void boxed_my__foreach_mul(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
// Why is the following NOT torch::stable::detail::to<HeaderOnlyArrayRef<Tensor>>(stack[0])? Because calling `to`
// on a StableIValue means that the result is owning its underlying data now! HeaderOnlyArrayRef
// is not owning, so it cannot safely steward the result of the torch::stable::detail::to<>.
auto res = my__foreach_mul(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
void my__foreach_mul_(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
aoti_torch_call_dispatcher("aten::_foreach_mul_", "List", stack.data());
}
void boxed_my__foreach_mul_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
my__foreach_mul_(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
}
std::vector<Tensor> make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) {
// This function tests that my__foreach_mul can take in std::initializer_lists
// in addition to std::vectors.
Tensor t1_1 = my_clone(t1);
Tensor t1_2 = my_clone(t1);
Tensor t2_1 = my_clone(t2);
Tensor t2_2 = my_clone(t2);
return my__foreach_mul({t1_1, t2_1}, {t1_2, t2_2});
}
void boxed_make_tensor_clones_and_call_foreach(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = make_tensor_clones_and_call_foreach(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
m.def("my__foreach_mul(Tensor[] self, Tensor[] other) -> Tensor[]");
m.def("my__foreach_mul_(Tensor(a!)[] self, Tensor[] other) -> ()");
m.def("make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) -> Tensor[]");
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my__foreach_mul", &boxed_my__foreach_mul);
m.impl("my__foreach_mul_", &boxed_my__foreach_mul_);
m.impl("make_tensor_clones_and_call_foreach", &boxed_make_tensor_clones_and_call_foreach);
}
// Test functions for torch::stable::accelerator APIs
#ifdef LAE_USE_CUDA
@ -500,8 +550,8 @@ void boxed_test_device_guard(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
int res = test_device_guard(static_cast<int64_t>(to<int64_t>(stack[0])));
stack[0] = from(res);
int res = test_device_guard(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
stack[0] = torch::stable::detail::from(res);
}
int64_t test_device_guard_set_index() {
@ -520,7 +570,7 @@ void boxed_test_device_guard_set_index(
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_device_guard_set_index();
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
int64_t test_stream(int32_t device_index) {
@ -536,8 +586,8 @@ void boxed_test_stream(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_stream(static_cast<int64_t>(to<int64_t>(stack[0])));
stack[0] = from(res);
int64_t res = test_stream(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
stack[0] = torch::stable::detail::from(res);
}
int64_t test_get_current_device_index() {
@ -549,7 +599,7 @@ void boxed_test_get_current_device_index(
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_get_current_device_index();
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -565,4 +615,5 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("test_stream", &boxed_test_stream);
m.impl("test_get_current_device_index", &boxed_test_get_current_device_index);
}
#endif // LAE_USE_CUDA

View File

@ -333,3 +333,45 @@ def my_new_zeros_dtype_variant(t) -> Tensor:
Returns: New zeros tensor
"""
return torch.ops.libtorch_agnostic.my_new_zeros_dtype_variant.default(t)
def my__foreach_mul_(tensors, others) -> ():
"""
Updates tensors to be the result of pointwise multiplying with others.
Args:
tensors: list of tensors
others: list of tensors (with the same corresponding shapes as tensors)
Returns: nothing, tensors is updated in place.
"""
torch.ops.libtorch_agnostic.my__foreach_mul_.default(tensors, others)
def my__foreach_mul(tensors, others) -> list[Tensor]:
"""
Returns a list of tensors that are the results of pointwise multiplying
tensors and others.
Args:
tensors: list of tensors
others: list of tensors (with the same corresponding shapes as tensors)
Returns: list of multiplied tensors
"""
return torch.ops.libtorch_agnostic.my__foreach_mul.default(tensors, others)
def make_tensor_clones_and_call_foreach(t1, t2) -> list[Tensor]:
"""
Returns a list of 2 tensors corresponding to the square of the inputs.
Args:
t1: Tensor
t2: Tensor
Returns: list of [t1^2, t2^2]
"""
return torch.ops.libtorch_agnostic.make_tensor_clones_and_call_foreach.default(
t1, t2
)

View File

@ -367,6 +367,57 @@ if not IS_WINDOWS:
self.assertNotEqual(result.data_ptr(), expected.data_ptr())
self.assertEqual(result.stride(), expected.stride())
def test_my__foreach_mul_(self, device):
import libtorch_agnostic
N = 5
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
tensors_c = [t.clone() for t in tensors]
others = [torch.rand(32, 16, device=device) for _ in range(N)]
libtorch_agnostic.ops.my__foreach_mul_(tensors, others)
expected_values = torch._foreach_mul(tensors_c, others)
for tensor_t, expected_t in zip(tensors, expected_values):
self.assertEqual(tensor_t, expected_t)
def test_my__foreach_mul(self, device):
import libtorch_agnostic
N = 5
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
others = [torch.rand(32, 16, device=device) for _ in range(N)]
result = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
expected = torch._foreach_mul(tensors, others)
for result_t, expected_t in zip(result, expected):
self.assertEqual(result_t, expected_t)
def _make_cuda_tensors(prior_mem):
cuda_res = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
self.assertGreater(torch.cuda.memory_allocated(device), prior_mem)
expected = torch._foreach_mul(tensors, others)
for result_t, expected_t in zip(cuda_res, expected):
self.assertEqual(result_t, expected_t)
if tensors[0].is_cuda:
init_mem = torch.cuda.memory_allocated(device)
for _ in range(3):
_make_cuda_tensors(init_mem)
curr_mem = torch.cuda.memory_allocated(device)
self.assertEqual(curr_mem, init_mem)
def test_make_tensor_clones_and_call_foreach(self, device):
import libtorch_agnostic
t1 = torch.rand(2, 5, device=device)
t2 = torch.rand(3, 4, device=device)
result = libtorch_agnostic.ops.make_tensor_clones_and_call_foreach(t1, t2)
self.assertEqual(result[0], t1 * t1)
self.assertEqual(result[1], t2 * t2)
instantiate_device_type_tests(TestLibtorchAgnostic, globals(), except_for=None)
if __name__ == "__main__":

View File

@ -1,6 +1,5 @@
# Owner(s): ["module: unknown"]
import os
import tempfile
from backend import get_custom_backend_library_path, Model, to_custom_backend
@ -41,14 +40,11 @@ class TestCustomBackend(TestCase):
self.test_execute()
# Save and load.
f = tempfile.NamedTemporaryFile(delete=False)
try:
with tempfile.NamedTemporaryFile() as f:
f.close()
torch.jit.save(self.model, f.name)
loaded = torch.jit.load(f.name)
finally:
os.unlink(f.name)
self.model = loaded
self.model = loaded
# Test execution again.
self.test_execute()

View File

@ -1,6 +1,5 @@
# Owner(s): ["module: unknown"]
import os.path
import sys
import tempfile
import unittest
@ -144,16 +143,13 @@ def forward(self, arg0_1):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually.
file = tempfile.NamedTemporaryFile(delete=False)
try:
with tempfile.NamedTemporaryFile() as file:
file.close()
model.save(file.name)
loaded = torch.jit.load(file.name)
finally:
os.unlink(file.name)
output = loaded.forward(torch.ones(5))
self.assertTrue(output.allclose(torch.ones(5) + 1))
output = loaded.forward(torch.ones(5))
self.assertTrue(output.allclose(torch.ones(5) + 1))
if __name__ == "__main__":

View File

@ -1,7 +1,7 @@
# Owner(s): ["module: fsdp"]
import functools
import os
import unittest.mock
import unittest
import torch.distributed as dist
from torch._dynamo.test_case import run_tests
@ -37,9 +37,9 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import fully_shard
logger = logging.getLogger("torch.distributed._composable.fsdp")
logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
logger.setLevel(logging.DEBUG)
device = {device_type.type}
device = '{device_type.type}'
torch.manual_seed(0)
model = nn.Sequential(*[nn.Linear(4, 4, device=device, bias=False) for _ in range(2)])
for layer in model:

View File

@ -76,7 +76,7 @@ class ReplicateTest(MultiProcessTestCase):
store=dist.FileStore(self.file_name, self.world_size),
)
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_replicate_transformer(self):
"""
This tests that replicate works on a transformer model with fully_shard and replicate layers
@ -126,7 +126,7 @@ class ReplicateTest(MultiProcessTestCase):
for parameter in layer.parameters():
self.assertEqual(parameter.placements, (Shard(dim=0),))
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_replicate_transformer_managed_modules(self):
"""
This tests that replicate managed modules works properly. In this test we use a Transformer Module with 3 layers,
@ -178,7 +178,7 @@ class ReplicateTest(MultiProcessTestCase):
replicate_model = replicate(replicate_model)
self.assertEqual(len(_get_managed_modules((replicate_model,))), 21)
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_replicate_tp_device_mesh(self):
"""
This tests that a user can pass in a device mesh to replicate a module
@ -206,7 +206,7 @@ class ReplicateTest(MultiProcessTestCase):
self.assertEqual(parameter.device_mesh.shape, (2,))
self.assertEqual(parameter.placements, (Replicate(),))
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_train_replicate_fsdp(self):
"""
Tests that replicate_model has the same behavior as original model when training
@ -253,7 +253,7 @@ class ReplicateTest(MultiProcessTestCase):
self.assertEqual(replicate_loss, loss)
check_sharded_parity(self, model, replicate_model)
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_train_parity_2d_mlp(self):
"""
Verifies when a device mesh is passed in, the model has the same behavior as the original model when training

View File

@ -80,7 +80,7 @@ class TestSACILP(TestCase):
# postprocessing due to the fact that for ModTracker, the post backward hook
# is not being called for modules whose inputs don't require gradients
# TODO: fix this in ModTracker and ensure it does not lead to any perf regression
if _ModState.POST_BW not in mod_stats.snapshots.keys():
if _ModState.POST_BW not in mod_stats.snapshots:
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
copy.deepcopy(last_snapshot)
)

View File

@ -16,7 +16,7 @@ from torch.distributed.argparse_util import check_env, env
class ArgParseUtilTest(unittest.TestCase):
def setUp(self):
# remove any lingering environment variables
for e in os.environ.keys():
for e in os.environ.keys(): # noqa: SIM118
if e.startswith("PET_"):
del os.environ[e]

View File

@ -207,7 +207,7 @@ class TestDefaultStager(TestCase):
for i, result in enumerate(staged_results):
self.assertIsInstance(result, dict)
# Verify the result contains the expected keys
for key in state_dicts[i].keys():
for key in state_dicts[i]:
self.assertIn(key, result)
stager.close()

View File

@ -299,7 +299,7 @@ class TestDTensorReshardMeshChange(DTensorTestBase):
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_dtensor_checkpoint_with_uneven_shards(self) -> None:
"""
Saving a dtensor with uneven shards.
@ -436,6 +436,7 @@ class TestCheckpointableReshard(DTensorTestBase):
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(4)
def test_uneven_reshard_with_checkpointable_api(self) -> None:
"""
Saves a 1d distributed tensor that has shards with uneven sizes using Checkpointable API.
@ -498,6 +499,7 @@ class TestCheckpointableReshard(DTensorTestBase):
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(4)
def test_uneven_reshard_with_dtensor_shards_wrapper_api(self) -> None:
"""
Saves a 1d distributed tensor that has shards with uneven sizes using Checkpointable API.

View File

@ -60,7 +60,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_loaded.keys())
)
for key in state_dict_to_save.keys():
for key in state_dict_to_save:
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_loaded[key])
)
@ -89,7 +89,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_to_load.keys())
)
for key in state_dict_to_save.keys():
for key in state_dict_to_save:
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_to_load[key])
)
@ -116,7 +116,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_loaded.keys())
)
for key in state_dict_to_save.keys():
for key in state_dict_to_save:
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_loaded[key])
)
@ -156,7 +156,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_to_load.keys())
)
for key in state_dict_to_save.keys():
for key in state_dict_to_save:
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_to_load[key])
)

View File

@ -18,6 +18,7 @@ from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans
from torch.distributed.checkpoint.api import CheckpointException
from torch.distributed.checkpoint.default_planner import (
_create_default_local_metadata,
_validate_global_plan,
create_default_global_save_plan,
create_default_local_load_plan,
create_default_local_save_plan,
@ -28,6 +29,7 @@ from torch.distributed.checkpoint.filesystem import CURRENT_DCP_VERSION
from torch.distributed.checkpoint.metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
Metadata,
MetadataIndex,
TensorProperties,
TensorStorageMetadata,
@ -560,6 +562,32 @@ class TestPlannerHelpers(TestCase):
self.assertTrue(_compare_save_plans(plan2, plan2))
class TestValidateGlobalPlan(TestCase):
def _make_metadata(self, chunks, size):
storage = TensorStorageMetadata(
properties=TensorProperties(dtype=torch.float32),
size=torch.Size(size),
chunks=chunks,
)
return Metadata(state_dict_metadata={"param": storage})
def test_non_overlapping_chunks(self):
chunks = [
ChunkStorageMetadata(offsets=torch.Size([i]), sizes=torch.Size([1]))
for i in range(4)
]
metadata = self._make_metadata(chunks, [4])
self.assertTrue(_validate_global_plan([SavePlan([])], metadata))
def test_detect_overlapping_chunks(self):
chunks = [
ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([2])),
ChunkStorageMetadata(offsets=torch.Size([1]), sizes=torch.Size([2])),
]
metadata = self._make_metadata(chunks, [4])
self.assertFalse(_validate_global_plan([SavePlan([])], metadata))
class TestLoadPlanner(TestCase):
@with_temp_dir
def test_strict(self):

View File

@ -769,7 +769,7 @@ class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
model_state_dict3 = copy.deepcopy(model_state_dict3)
self.assertEqual(len(model_state_dict2), 2)
self.assertEqual(len(model_state_dict3), 2)
for key in model_state_dict3.keys():
for key in model_state_dict3:
full_fqn = f"l.{key}"
value1 = model_state_dict1[full_fqn]
value2 = model_state_dict2[full_fqn]
@ -886,7 +886,7 @@ class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
self.assertEqual(cpu_model_value, meta_model_value)
@with_comms
@skip_if_lt_x_gpu(2)
@skip_if_lt_x_gpu(4)
def test_setting_meta_device_model_broadcasting_and_memory(self) -> None:
# This test verifies that we can set model state dict by a meta device model
# With the correlated changes in state_dict, meta device model should be accepted

View File

@ -587,9 +587,7 @@ class TestFSDPStateDict(FSDPTest):
model, cpu_offload.offload_params, fp16
)
ignore_keys = [
k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k
]
ignore_keys = [k for k in fsdp_state_dict if NON_ROOT_FSDP_PREFIX in k]
self._validate_state_dict_contents(
model,
@ -910,7 +908,7 @@ class TestFSDPStateDict(FSDPTest):
with sd_mgr:
fsdp_state_dict = model.state_dict()
ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]
ignore_keys = [k for k in fsdp_state_dict if NON_ROOT_FSDP_PREFIX in k]
self._validate_state_dict_contents(
model,
fsdp_state_dict,
@ -959,9 +957,7 @@ class TestFSDPStateDict(FSDPTest):
# Full name of linear_skip param tensors in SkipModel, as would be
# stored in checkpoint.
linear_skip_tensor_names = [
k
for k in dict(module.named_parameters()).keys()
if LINEAR_SKIP in k
k for k in dict(module.named_parameters()) if LINEAR_SKIP in k
]
# skip SkipModule
linear_skip = getattr(module, LINEAR_SKIP)

View File

@ -137,7 +137,7 @@ class ElasticLaunchTest(unittest.TestCase):
self.test_dir = tempfile.mkdtemp()
# remove any lingering environment variables.
for env in os.environ.keys():
for env in os.environ.keys(): # noqa: SIM118
if env.startswith("PET_"):
del os.environ[env]

View File

@ -69,7 +69,7 @@ class ElasticLaunchTest(TestCase):
self.test_dir = tempfile.mkdtemp()
# remove any lingering environment variables
for env in os.environ.keys():
for env in os.environ.keys(): # noqa: SIM118
if env.startswith("PET_"):
del os.environ[env]

View File

@ -39,6 +39,7 @@ from torch.nn.modules.loss import MSELoss
from torch.testing._internal.common_distributed import (
MultiProcContinuousTest,
requires_accelerator_dist_backend,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
check_leaked_tensors,
@ -231,6 +232,7 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [_ScheduleForwardOnly])
@skip_if_lt_x_gpu(4)
def test_forward_only(self, ScheduleClass):
mod, mod_ref, x, _, _ = setup_models_and_data(self.config)
x_clone = x.clone()
@ -274,6 +276,7 @@ class ScheduleTest(MultiProcContinuousTest):
ScheduleInterleavedZeroBubble,
],
)
@skip_if_lt_x_gpu(4)
def test_eval_inference_mode(self, ScheduleClass):
num_microbatches = 4
if ScheduleClass in [
@ -351,6 +354,7 @@ class ScheduleTest(MultiProcContinuousTest):
ScheduleInterleavedZeroBubble,
],
)
@skip_if_lt_x_gpu(4)
def test_return_output(self, ScheduleClass):
num_microbatches = 4
if ScheduleClass in [
@ -406,6 +410,7 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@skip_if_lt_x_gpu(4)
def test_multi_iter(self, ScheduleClass):
mod, _, x, target, loss_fn = setup_models_and_data(self.config)
chunks = 4
@ -429,6 +434,7 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@skip_if_lt_x_gpu(4)
def test_kwargs_with_tracer(self, ScheduleClass):
mod = ModelWithKwargs(d_hid, splits=self.world_size)
mod.to(self.device)
@ -481,6 +487,7 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@skip_if_lt_x_gpu(4)
def test_grad_with_tracer(self, ScheduleClass):
mod, ref_mod, x, target, loss_fn = setup_models_and_data(self.config)
@ -523,6 +530,7 @@ class ScheduleTest(MultiProcContinuousTest):
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@parametrize("shape_inference", [True, False])
@skip_if_lt_x_gpu(4)
def test_grad_with_manual(self, ScheduleClass, shape_inference):
mod, ref_mod, x, target, loss_fn = setup_models_and_data(self.config)
@ -586,6 +594,7 @@ class ScheduleTest(MultiProcContinuousTest):
ScheduleInterleavedZeroBubble,
],
)
@skip_if_lt_x_gpu(4)
def test_grad_with_manual_interleaved(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
@ -650,6 +659,7 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleInterleavedZeroBubble])
@skip_if_lt_x_gpu(4)
def test_schedule_with_weight_update_mlp_e2e(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
@ -736,6 +746,7 @@ class ScheduleTest(MultiProcContinuousTest):
"schedule_class",
[ScheduleZBVZeroBubble, ScheduleDualPipeV],
)
@skip_if_lt_x_gpu(4)
def test_v_shape_schedules(self, schedule_class):
n_stages = 8
rank_stages = {0: [0, 7], 1: [1, 6], 2: [2, 5], 3: [3, 4]}
@ -780,6 +791,7 @@ class ScheduleTest(MultiProcContinuousTest):
@skip_but_pass_in_sandcastle_if(
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@skip_if_lt_x_gpu(4)
def test_custom_function_callback(self):
"""Test the custom function callback functionality with _PipelineScheduleRuntime."""
n_stages = 8
@ -979,6 +991,7 @@ class ScheduleTest(MultiProcContinuousTest):
"ScheduleClass",
[ScheduleInterleavedZeroBubble, ScheduleInterleaved1F1B],
)
@skip_if_lt_x_gpu(4)
def test_zero_bubble_with_model_kwargs(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
@ -1072,6 +1085,7 @@ class CustomSchedulesTest(MultiProcContinuousTest):
"schedule_class",
[ScheduleVShaped, ScheduleUnbalanced],
)
@skip_if_lt_x_gpu(4)
def test_non_symmetric_stage_ids(self, schedule_class):
n_stages = schedule_class.n_stages
rank_stages = schedule_class.rank_stages
@ -1121,6 +1135,7 @@ class CustomSchedulesTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleWithReorderedB])
@skip_if_lt_x_gpu(4)
def test_pipeline_schedule_runtime_custom_sched(self, ScheduleClass):
n_stages = 2
stages_per_rank = 1
@ -1181,6 +1196,7 @@ class CustomSchedulesTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleWithW])
@skip_if_lt_x_gpu(4)
def test_schedule_with_native_zero_bubble(self, ScheduleClass):
n_stages = ScheduleClass.n_stages
num_microbatches = ScheduleClass.num_microbatches

View File

@ -204,14 +204,16 @@ class DistConvolutionOpsTest(DTensorTestBase):
self.assertTrue(b_dt.grad is not None)
self.assertTrue(x_dt.grad is None)
def _run_single_arg_fwd(self, model, arg) -> tuple[torch.Tensor, torch.Tensor]:
def _run_single_arg_fwd(
self, model, arg, placements=None
) -> tuple[torch.Tensor, torch.Tensor]:
"""Given model and arg, runs fwd model local and distbuted given device_mesh"""
device_mesh = self.build_device_mesh()
model_copy = copy.deepcopy(model).to(device=self.device_type)
dist_model = distribute_module(model, device_mesh, _conv_fn)
arg_dt = DTensor.from_local(arg, device_mesh, [Replicate()])
arg_dt = DTensor.from_local(arg, device_mesh, placements)
out_dt = dist_model(arg_dt.to(device=self.device_type))
out = model_copy(arg)
out = model_copy(arg_dt.full_tensor())
return (out_dt.full_tensor(), out)
@with_comms
@ -219,22 +221,20 @@ class DistConvolutionOpsTest(DTensorTestBase):
model = nn.Conv1d(64, 64, 3, padding=1)
x = torch.randn(1, 64, 8, device=self.device_type)
out_dt, out = self._run_single_arg_fwd(model, x)
self.assertEqual(out_dt.shape, out.shape)
self.assertEqual(out_dt, out)
@with_comms
def test_conv3d(self):
model = nn.Conv3d(64, 64, 3, padding=1)
x = torch.randn(1, 64, 8, 8, 8, device=self.device_type)
out_dt, out = self._run_single_arg_fwd(model, x)
self.assertEqual(out_dt.shape, out.shape)
out_dt, out = self._run_single_arg_fwd(model, x, [Shard(0)])
self.assertEqual(out_dt, out)
DistConvolutionOpsTestWithLocalTensor = create_local_tensor_test_class(
DistConvolutionOpsTest,
# Send / recv ops are not supported
skipped_tests=[
"test_conv1d",
"test_conv3d",
"test_conv_backward_none_grad_inp",
"test_depthwise_convolution",
"test_downsampling_convolution",

View File

@ -464,6 +464,25 @@ def forward(self, b_parametrizations_buffer_original0, x):
run(g, 64, 8)
self.assertEqual(cnt.frame_count, 2)
def test_dtensor_requires_grad_recompile(self):
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
y = x * x
return y.to_local()
full_x = torch.randn(8, 8, requires_grad=False)
x = distribute_tensor(full_x, mesh, [Shard(0)])
f(x)
full_x = torch.randn(8, 8, requires_grad=True)
x = distribute_tensor(full_x, mesh, [Shard(0)])
f(x)
self.assertEqual(cnt.frame_count, 2)
def test_dtensor_attribute_access_on_intermediate(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))

View File

@ -535,6 +535,19 @@ class DTensorExportTest(TestCase):
self.assertEqual(fn(z), gm(z)[0])
def test_dtensor_data_dependent_index(self):
device_mesh = init_device_mesh(self.device_type, mesh_shape=(self.world_size,))
class Foo(torch.nn.Module):
def forward(self, x, y):
return x[y]
x = torch.randn(10)
y = torch.randint(1, (10,)).bool()
x_dt = distribute_tensor(x, device_mesh, placements=[Replicate()])
y_dt = distribute_tensor(y, device_mesh, placements=[Replicate()])
_dynamo_graph_capture_for_export(Foo())(x_dt, y_dt)
instantiate_parametrized_tests(DTensorExportTest)

View File

@ -26,6 +26,7 @@ from torch.distributed.tensor.parallel import (
RowwiseParallel,
SequenceParallel,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
create_local_tensor_test_class,
@ -764,6 +765,7 @@ class DistMathOpsTest(DTensorTestBase):
self.assertEqual(grad1_norm.device_mesh, mesh_y)
@with_comms
@skip_if_lt_x_gpu(4)
def test_foreach_add_different_mesh(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(

View File

@ -577,7 +577,7 @@ class DistTensorReplicateStrategyRegistrationTest(DTensorTestBase):
self.assertEqual(
comm_mode.get_comm_counts(),
{
torch.ops.c10d_functional.all_gather_into_tensor: 4,
torch.ops.c10d_functional.all_gather_into_tensor: self.world_size,
},
)
expected_cost = [

View File

@ -2,7 +2,6 @@
# Owner(s): ["oncall: distributed"]
import contextlib
import copy
import itertools
import unittest
@ -22,9 +21,8 @@ from torch.distributed.tensor import (
)
from torch.distributed.tensor._collective_utils import shard_dim_alltoall
from torch.distributed.tensor._dtensor_spec import ShardOrderEntry
from torch.distributed.tensor._redistribute import redistribute_local_tensor
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.placement_types import _StridedShard
from torch.distributed.tensor.placement_types import _StridedShard, MaskPartial
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
@ -35,7 +33,11 @@ from torch.testing._internal.common_utils import (
from torch.testing._internal.distributed._tensor.common_dtensor import (
create_local_tensor_test_class,
DTensorTestBase,
generate_shard_orders,
make_full_tensor,
map_local_tensor_for_rank,
patched_distribute_tensor as _distribute_tensor,
redistribute,
with_comms,
)
from torch.utils._debug_mode import DebugMode
@ -785,88 +787,6 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
else:
return ""
# TODO(zpcore): remove once the native redistribute supports shard_order arg
def redistribute(
self,
dtensor_input,
device_mesh,
placements,
shard_order,
use_graph_based_transform=True,
):
"""
wrapper function to support shard_order for redistribution
This is a simpler version of Redistribute, only considers the forward.
"""
if placements is None:
placements = self._shard_order_to_placement(shard_order, device_mesh)
placements = tuple(placements)
old_spec = dtensor_input._spec
new_spec = copy.deepcopy(old_spec)
new_spec.placements = placements
if shard_order is not None:
new_spec.shard_order = shard_order
else:
new_spec.shard_order = ()
if old_spec == new_spec:
return dtensor_input
dtensor_input = DTensor.from_local(
redistribute_local_tensor(
dtensor_input.to_local(),
old_spec,
new_spec,
use_graph_based_transform=use_graph_based_transform,
),
device_mesh,
)
dtensor_input._spec = copy.deepcopy(new_spec)
return dtensor_input # returns DTensor
# TODO(zpcore): remove once the native distribute_tensor supports
# shard_order arg
def distribute_tensor(
self,
input_tensor,
device_mesh,
placements,
shard_order,
use_graph_based_transform=True,
):
"""wrapper function to support shard_order for tensor distribution"""
if placements is None:
placements = self._shard_order_to_placement(shard_order, device_mesh)
placements = tuple(placements)
tensor_dt = distribute_tensor(input_tensor, device_mesh, placements)
# fix the shard order
return self.redistribute(
tensor_dt, device_mesh, placements, shard_order, use_graph_based_transform
)
# TODO(zpcore): remove once the native redistribute supports shard_order arg
def full_tensor(self, dtensor_input):
"""wrapper function to support DTensor.full_tensor"""
return self.redistribute(
dtensor_input, dtensor_input.device_mesh, placements=None, shard_order=()
).to_local()
def _shard_order_to_placement(self, shard_order, mesh):
"""convert shard_order to placement with only Replicate() and Shard()"""
placements = [Replicate() for _ in range(mesh.ndim)]
if shard_order is not None:
for entry in shard_order:
tensor_dim = entry.tensor_dim
mesh_dims = entry.mesh_dims
for mesh_dim in mesh_dims:
placements[mesh_dim] = Shard(tensor_dim)
return tuple(placements)
def _convert_shard_order_dict_to_ShardOrder(self, shard_order):
"""Convert shard_order dict to ShardOrder"""
return tuple(
ShardOrderEntry(tensor_dim=tensor_dim, mesh_dims=tuple(mesh_dims))
for tensor_dim, mesh_dims in shard_order.items()
)
@with_comms
def test_ordered_redistribute(self):
"""Test ordered redistribution with various sharding syntaxes"""
@ -927,13 +847,11 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
for idx, ((src_placement, src_order), (dst_placement, dst_order)) in enumerate(
sharding_src_dst_pairs_with_expected_trace
):
sharded_dt = self.distribute_tensor(
sharded_dt = _distribute_tensor(
input_data.clone(), mesh, src_placement, shard_order=src_order
)
with DebugMode(record_torchfunction=False) as debug_mode:
sharded_dt = self.redistribute(
sharded_dt, mesh, dst_placement, dst_order
)
sharded_dt = redistribute(sharded_dt, mesh, dst_placement, dst_order)
trace_str = self._extract_redistribute_trace_from_debug_mode(
debug_mode.debug_string()
)
@ -957,49 +875,11 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
trace_str,
"""S(0)[0]S(0)[1]R->S(0)S(1)R->RS(1)R->RS(1)S(0)""",
)
expected_dt = self.distribute_tensor(
expected_dt = _distribute_tensor(
input_data.clone(), mesh, dst_placement, shard_order=dst_order
)
self.assertEqual(sharded_dt.to_local(), expected_dt.to_local())
def generate_shard_orders(self, mesh, tensor_rank):
# Generate all possible sharding placement of tensor with rank
# `tensor_rank` over mesh.
def _split_list(lst: list, N: int):
def compositions(n, k):
if k == 1:
yield [n]
else:
for i in range(1, n - k + 2):
for tail in compositions(n - i, k - 1):
yield [i] + tail
length = len(lst)
for comp in compositions(length, N):
result = []
start = 0
for size in comp:
result.append(lst[start : start + size])
start += size
yield result
all_mesh = list(range(mesh.ndim))
all_device_order = list(itertools.permutations(all_mesh))
for device_order in all_device_order:
# split on device orders, and assign each device order segment to a tensor dim
for num_split in range(1, mesh.ndim + 1):
for splitted_list in _split_list(list(range(mesh.ndim)), num_split):
for tensor_dims in itertools.combinations(
range(tensor_rank), len(splitted_list)
):
shard_order = {}
assert len(tensor_dims) == len(splitted_list)
for tensor_dim, mesh_dims in zip(tensor_dims, splitted_list):
shard_order[tensor_dim] = device_order[
mesh_dims[0] : mesh_dims[-1] + 1
]
yield self._convert_shard_order_dict_to_ShardOrder(shard_order)
@with_comms
def test_generate_shard_orders(self):
"""Check if `generate_shard_orders` generates unique sharding combinations"""
@ -1012,7 +892,7 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
]
for test_input in test_inputs:
all_combinations = []
for shard_order in self.generate_shard_orders(
for shard_order in generate_shard_orders(
test_input["mesh"], test_input["tensor_rank"]
):
all_combinations.append(shard_order) # noqa: PERF402
@ -1062,12 +942,12 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
input_data = torch.randn(tensor_shape, device=self.device_type)
tensor_rank = input_data.ndim
with maybe_disable_local_tensor_mode():
shard_orders = self.generate_shard_orders(mesh, tensor_rank)
shard_orders = generate_shard_orders(mesh, tensor_rank)
for shard_order in shard_orders:
sharded_dt = self.distribute_tensor(
sharded_dt = _distribute_tensor(
input_data.clone(), mesh, placements=None, shard_order=shard_order
)
self.assertEqual(self.full_tensor(sharded_dt), input_data)
self.assertEqual(make_full_tensor(sharded_dt), input_data)
# 2. Verify the correctness of redistribution from DTensor to DTensor.
# This test repeatedly redistributes a DTensor to various ordered
@ -1078,20 +958,20 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
tensor_rank = input_data.ndim
prev_sharded_dt = None
with maybe_disable_local_tensor_mode():
shard_orders = self.generate_shard_orders(mesh, tensor_rank)
shard_orders = generate_shard_orders(mesh, tensor_rank)
for shard_order in shard_orders:
if prev_sharded_dt is None:
prev_sharded_dt = self.distribute_tensor(
prev_sharded_dt = _distribute_tensor(
input_data.clone(),
mesh,
placements=None,
shard_order=shard_order,
)
else:
sharded_dt = self.redistribute(
sharded_dt = redistribute(
prev_sharded_dt, mesh, placements=None, shard_order=shard_order
)
self.assertEqual(self.full_tensor(sharded_dt), input_data)
self.assertEqual(make_full_tensor(sharded_dt), input_data)
prev_sharded_dt = sharded_dt
@with_comms
@ -1136,13 +1016,13 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
local_tensor = torch.randn(shape, device=self.device_type)
full_tensor = DTensor.from_local(local_tensor, mesh, placements)
with maybe_disable_local_tensor_mode():
shard_orders = self.generate_shard_orders(mesh, len(shape))
shard_orders = generate_shard_orders(mesh, len(shape))
for shard_order in shard_orders:
sharded_dt = self.redistribute(
sharded_dt = redistribute(
full_tensor, mesh, placements=None, shard_order=shard_order
)
self.assertEqual(
self.full_tensor(sharded_dt), self.full_tensor(full_tensor)
make_full_tensor(sharded_dt), make_full_tensor(full_tensor)
)
@unittest.skip(
@ -1152,24 +1032,20 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
@with_comms
def test_ordered_redistribute_for_special_placement(self):
"""Test ordered redistribution with special placement"""
from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
torch.manual_seed(21)
mesh = init_device_mesh(self.device_type, (8,))
input_data = torch.randn((8, 8), device=self.device_type)
src_placement = [Shard(1)]
tgt_placement = [
(_MaskPartial(offset_shape=torch.Size([10, 20]), offset_dim=0),)
(MaskPartial(offset_shape=torch.Size([10, 20]), offset_dim=0),)
]
sharded_dt = self.distribute_tensor(
sharded_dt = _distribute_tensor(
input_data.clone(),
mesh,
src_placement,
shard_order=(ShardOrderEntry(tensor_dim=1, mesh_dims=(0,)),),
)
sharded_dt = self.redistribute(
sharded_dt, mesh, tgt_placement, shard_order=None
)
sharded_dt = redistribute(sharded_dt, mesh, tgt_placement, shard_order=None)
@with_comms
def test_shard_order_same_data_as_strided_shard(self):
@ -1179,7 +1055,7 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
strided_placement = [_StridedShard(-2, split_factor=2), Shard(-2)]
x_strided_dt = distribute_tensor(x, device_mesh, strided_placement)
# specify right-to-left order use ordered shard
x_ordered_dt = self.distribute_tensor(
x_ordered_dt = _distribute_tensor(
x,
device_mesh,
placements=[Shard(0), Shard(0)],

View File

@ -34,6 +34,10 @@ from torch.distributed.tensor.placement_types import (
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
generate_shard_orders,
LocalDTensorTestBase,
patched_distribute_tensor as _distribute_tensor,
shard_order_to_placement,
with_comms,
)
@ -774,6 +778,63 @@ class TestStridedSharding(DTensorTestBase):
self.assertEqual(dtensor.full_tensor(), tensor)
class Test_StridedShard_with_shard_order(LocalDTensorTestBase):
@property
def world_size(self) -> int:
return 32
@with_comms
def test_StridedShard_to_shard_order(self):
with LocalTensorMode(ranks=self.world_size):
mesh = DeviceMesh("cpu", torch.arange(self.world_size).view(2, 2, 2, 2, 2))
shard_iter = generate_shard_orders(mesh, 3)
# It takes ~4.8h to complete total 2520 shard order combinations here
# using LocalTensor. So we only randomly pick 25 shard orders to test.
all_shard_order = list(shard_iter)
import random
random.seed(42)
shard_order_choices = random.sample(
all_shard_order, min(25, len(all_shard_order))
)
x = torch.randn(32, 32, 32)
for shard_order in shard_order_choices:
a = _distribute_tensor(x, mesh, None, shard_order)
placement_without_stridedshard = shard_order_to_placement(
shard_order, mesh
)
placements_with_stridedshard = (
DTensorSpec._convert_shard_order_to_StridedShard(
shard_order, placement_without_stridedshard, mesh
)
)
b = distribute_tensor(x, mesh, placements_with_stridedshard)
shard_order_from_stridedshard = (
DTensorSpec._maybe_convert_StridedShard_to_shard_order(
placements_with_stridedshard, mesh
)
)
self.assertEqual(shard_order, shard_order_from_stridedshard)
self.assertEqual(a.to_local(), b.to_local())
@with_comms
def test_StridedShard_not_convertible_to_shard_order(self):
with LocalTensorMode(ranks=self.world_size):
mesh = DeviceMesh("cpu", torch.arange(self.world_size).view(4, 8))
unconvertible_placements_list = [
[_StridedShard(0, split_factor=2), _StridedShard(1, split_factor=2)],
[_StridedShard(0, split_factor=2), Shard(1)],
[_StridedShard(1, split_factor=16), Shard(1)],
]
for placements in unconvertible_placements_list:
shard_order = DTensorSpec._maybe_convert_StridedShard_to_shard_order(
tuple(placements), mesh
)
self.assertIsNone(shard_order)
class Test2DStridedLocalShard(DTensorTestBase):
@property
def world_size(self):

View File

@ -54,6 +54,7 @@ def apply_reordering_and_get_graph(graph, out_li) -> None:
"max_compute_pre_fetch",
"custom_runtime_estimation",
"insert_overlap_deps",
"collective_estimator",
)
for key in config_keys:
if (val := getattr(dist_opts, key)) is not None:
@ -943,6 +944,50 @@ class TestComputeCommReorderingBucketing(TestComputeCommReorderingMultiProc):
correct = func(inputs_a, inputs_b, ranks=ranks)
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
def test_collective_benchmarking_with_real_pg(self):
"""Test collective benchmarking with real process group (falls back on fake)."""
def func(a):
# Test all three collective types with 8x8 (power of 2 size = 256 elements = 1024 bytes for fp32)
ar = _functional_collectives.all_reduce(a, "sum", "0")
ag = _functional_collectives.all_gather_tensor(
a, 0, list(range(self.world_size))
)
rs = _functional_collectives.reduce_scatter_tensor(a, "sum", 0, "0")
b = torch.matmul(a, a)
c = torch.matmul(ar, b)
return c.sum() + ag.sum() + rs.sum()
patches = {
**get_patches(),
"aten_distributed_optimizations.collective_estimator": "benchmark",
"aten_distributed_optimizations.custom_runtime_estimation": None, # Remove custom estimation so benchmarking happens
}
with _dynamo_dist_per_rank_init(
self.rank,
self.world_size,
self.backend(device_type),
fake_pg=not at_least_x_gpu(2),
):
inputs = torch.ones(8, 8, dtype=torch.float, device=device_type) + self.rank
with torch._inductor.config.patch(patches):
compiled = torch.compile(func)
out, aten_graph_str = run_and_get_aten_graph(compiled, inputs)
# Verify all three collective types are present
FileCheck().check("all_reduce").check("all_gather").check(
"reduce_scatter"
).run(aten_graph_str)
# Test passes if compilation succeeded with benchmarking enabled
# Cache verification is tricky due to multiprocess test setup
correct = func(inputs)
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch(get_bucket_patches())
def test_multidtype_bucketing(self):

View File

@ -485,7 +485,7 @@ elif TEST_XPU:
def exit_if_lt_x_accelerators(x):
if torch.accelerator.is_available():
if torch.accelerator.device_count() < x:
sys.exit(TEST_SKIPS[f"multi-accelerator-{x}"].exit_code)
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
def with_comms(func=None):

View File

@ -1,4 +1,6 @@
# Owner(s): ["module: dynamo"]
# flake8: noqa: B950
# flake8: noqa: E731
import contextlib
import copy
import functools
@ -15,7 +17,11 @@ import torch.nn as nn
import torch.utils.checkpoint
from functorch.compile import min_cut_rematerialization_partition
from torch._dynamo.backends.common import aot_autograd
from torch._dynamo.testing import CompileCounterWithBackend
from torch._dynamo.testing import (
AotEagerAndRecordGraphs,
CompileCounterWithBackend,
normalize_gm,
)
from torch._higher_order_ops.wrap import tag_activation_checkpoint
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfHpu
@ -1649,6 +1655,43 @@ Non-primal fwd outputs from model w/o backward hook: {mod_no_hook_fwd_outputs_no
self.assertEqual(opt_fn(x), fn(x))
def test_return_same_element_twice(self):
def gn(x):
y = torch.sin(x)
return y, y
def fn(x):
return torch.utils.checkpoint.checkpoint(gn, x, use_reentrant=True)
x = torch.randn(4, 4, requires_grad=True)
ref = fn(x)
backend = AotEagerAndRecordGraphs()
opt_fn = torch.compile(fn, backend=backend, fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref[0], res[0])
self.assertEqual(ref[1], res[1])
self.assertExpectedInline(
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[4, 4]"):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
tag_activation_checkpoint = torch.ops.higher_order.tag_activation_checkpoint(wrap_body_0, l_x_, use_reentrant = True); wrap_body_0 = l_x_ = None
getitem: "f32[4, 4]" = tag_activation_checkpoint[0]
getitem_1: "f32[4, 4]" = tag_activation_checkpoint[1]; tag_activation_checkpoint = None
return (getitem, getitem_1)
class wrap_body_0(torch.nn.Module):
def forward(self, l_x_: "f32[4, 4]"):
y: "f32[4, 4]" = torch.sin(l_x_); l_x_ = None
return (y, y)
""",
)
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
def test_nonlocal_mutation(self):
counter = 0
@ -1672,6 +1715,114 @@ Non-primal fwd outputs from model w/o backward hook: {mod_no_hook_fwd_outputs_no
# The mutation is not reapplied in the backward because the flag was on.
self.assertEqual(counter, 1)
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
def test_nonlocal_list_mutation(self):
def gn(x, z):
out = x.sin()
z.append(out)
return torch.cos(torch.sin(torch.matmul(x, x) @ x)), out
def fn(x):
z = []
out1, out2 = torch.utils.checkpoint.checkpoint(
gn,
x,
z,
use_reentrant=False,
)
return out1, z[0]
x = torch.randn(4, 4, requires_grad=True)
ref = fn(x)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref[0], res[0])
self.assertEqual(ref[1], res[1])
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
def test_nonlocal_list_mutation_hidden(self):
def gn(x, z):
o = torch.matmul(x, x) @ x
out = x.sin()
z.append(out)
return torch.cos(torch.sin(o)), torch.sin(x)
def fn(x):
z = []
outs = torch.utils.checkpoint.checkpoint(
gn,
x,
z,
use_reentrant=False,
)
out1 = outs[0]
# Check that the extra output pytree handling is done properly
out2 = outs[-1]
return out1 + out2, z[0]
x = torch.randn(4, 4, requires_grad=True)
ref = fn(x)
backend = AotEagerAndRecordGraphs()
opt_fn = torch.compile(fn, backend=backend, fullgraph=True)
res = opt_fn(x)
self.assertEqual(ref[0], res[0])
self.assertEqual(ref[1], res[1])
self.assertExpectedInline(
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[4, 4]"):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
tag_activation_checkpoint = torch.ops.higher_order.tag_activation_checkpoint(wrap_body_0, l_x_, use_reentrant = False); wrap_body_0 = l_x_ = None
out1: "f32[4, 4]" = tag_activation_checkpoint[0]
out2: "f32[4, 4]" = tag_activation_checkpoint[1]
getitem_4: "f32[4, 4]" = tag_activation_checkpoint[4]; tag_activation_checkpoint = None
add: "f32[4, 4]" = out1 + out2; out1 = out2 = None
return (add, getitem_4)
class wrap_body_0(torch.nn.Module):
def forward(self, l_x_: "f32[4, 4]"):
matmul: "f32[4, 4]" = torch.matmul(l_x_, l_x_)
o: "f32[4, 4]" = matmul @ l_x_
out: "f32[4, 4]" = l_x_.sin()
sin_1: "f32[4, 4]" = torch.sin(o)
child: "f32[4, 4]" = torch.cos(sin_1)
child_1: "f32[4, 4]" = torch.sin(l_x_); l_x_ = None
return (child, child_1, matmul, o, out, sin_1)
""",
)
self.assertExpectedInline(
normalize_gm(backend.fw_graphs[0].print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, primals_1: "f32[4, 4]"):
mm: "f32[4, 4]" = torch.ops.aten.mm.default(primals_1, primals_1)
mm_1: "f32[4, 4]" = torch.ops.aten.mm.default(mm, primals_1); mm = None
sin: "f32[4, 4]" = torch.ops.aten.sin.default(primals_1)
sin_1: "f32[4, 4]" = torch.ops.aten.sin.default(mm_1); mm_1 = None
cos: "f32[4, 4]" = torch.ops.aten.cos.default(sin_1); sin_1 = None
sin_2: "f32[4, 4]" = torch.ops.aten.sin.default(primals_1)
add: "f32[4, 4]" = torch.ops.aten.add.Tensor(cos, sin_2); cos = sin_2 = None
return (add, sin, primals_1)
""",
)
devices = ["cuda", "hpu"]
instantiate_device_type_tests(

View File

@ -950,7 +950,7 @@ SeqNr|OrigAten|SrcFn|FwdSrcFn
2|aten.threshold_backward.default||relu
1|aten.native_batch_norm_backward.default||batch_norm
0|aten.convolution_backward.default||conv2d
11|aten.add.Tensor||l1_loss
11|aten.add.Tensor||
"""
),
)

View File

@ -2109,6 +2109,89 @@ Detected recompile when torch.compile stance is 'fail_on_recompile'. filename: '
with self.assertRaises(Unsupported):
outer_f2(inp)
def test_disable_recursive_flags(self):
class SimpleLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layer0 = torch.nn.Linear(4, 4)
def forward(self, inp):
return self.layer0(torch.sigmoid(inp))
class SimpleModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layer0 = SimpleLinear()
self.layer1 = torch.nn.Linear(4, 4)
def forward(self, inp):
z = self.layer0(torch.sin(inp))
return self.layer1(z)
for recursive_flag in [True, False]:
model = SimpleModel()
other_model = SimpleModel()
model.forward = torch._dynamo.disable(
model.forward,
recursive=recursive_flag,
)
self.assertEqual(
torch._dynamo.is_dynamo_disable_recursive(model.forward),
recursive_flag,
)
other_model = torch._dynamo.disable(other_model, recursive=recursive_flag)
self.assertEqual(
torch._dynamo.is_dynamo_disable_recursive(
other_model.forward
if isinstance(other_model, torch.nn.Module)
else other_model
),
recursive_flag,
)
# check the model is compilable
torch.compile(model)
torch.compile(other_model)
def test_dynamo_disable_annotations(self):
class SimpleModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.register_buffer("buffer", torch.rand(2, 2))
@torch._dynamo.disable()
def f1(self, x) -> torch.Tensor:
return x + self.buffer + 1
@torch._dynamo.disable()
def f2(self, x) -> torch.Tensor:
return x + self.buffer + 2
def forward(self, x) -> torch.Tensor:
return self.f1(x) + self.f2(x)
model = SimpleModel()
inp = torch.rand(2, 2)
with torch.fx.traceback.preserve_node_meta():
exported_model = torch.export.export(model, (inp,))
graph = exported_model.graph_module.graph
found_f1 = False
found_f2 = False
for node in graph.nodes:
if "custom" in node.meta:
if "_torchdynamo_disable_method" in node.meta["custom"]:
if node.meta["custom"]["_torchdynamo_disable_method"] == "f1":
found_f1 = True
elif node.meta["custom"]["_torchdynamo_disable_method"] == "f2":
found_f2 = True
self.assertTrue(found_f1)
self.assertTrue(found_f2)
model.forward = torch._dynamo.disable(model.forward, recursive=False)
with self.assertRaises(RuntimeError):
exported_model = torch.export.export(model, (inp,))
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests

View File

@ -422,34 +422,41 @@ from user code:
import optree
@torch.compile(backend="eager")
def fn(x):
d = {"a": 1}
optree.tree_flatten_with_path(d)
return torch.sin(x)
def post_munge(s):
s = re.sub(
r"optree\.\S*\.flatten_with_path",
"optree.<path>.flatten_with_path",
s,
)
return re.sub(
r"qualname: \S*flatten_with_path",
"qualname: <path>.flatten_with_path",
s,
def fn1(x):
tree = {"a": x, "b": (x - 1, 2 * x)}
sin, cos = optree.tree_transpose_map(
lambda t: (torch.sin(t), torch.cos(t)),
tree,
)
return sin, cos
fn(torch.randn(4))
self.assertEqual(len(counters["graph_break"]), 1)
fn1(torch.randn(4))
self.assertEqual(len(counters["graph_break"]), 0)
@torch.compile(backend="eager")
def fn2(x):
spec = optree.treespec_deque([])
return spec, x
fn2(torch.randn(4))
self.assertGreaterEqual(len(counters["graph_break"]), 1)
first_graph_break = next(iter(counters["graph_break"].keys()))
def post_munge(string):
return re.sub(
r"(optree\.|qualname: )\S*(\.make_from_collection)",
r"\1<path>\2",
string,
)
self.assertExpectedInline(
post_munge(first_graph_break),
"""\
Attempted to call function marked as skipped
Explanation: Dynamo cannot trace optree C/C++ function optree.<path>.flatten_with_path.
Explanation: Dynamo cannot trace optree C/C++ function optree.<path>.make_from_collection.
Hint: Consider using torch.utils._pytree - https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py
Developer debug context: module: optree._C, qualname: <path>.flatten_with_path, skip reason: <missing reason>
Developer debug context: module: optree._C, qualname: <path>.make_from_collection, skip reason: <missing reason>
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0007.html""",
)
@ -1043,7 +1050,7 @@ Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especiall
msg = re.sub(r"line (\d+)", "line N", msg)
msg = re.sub(
r"""(?s)Traceback \(most recent call last\):.*
File "exc.py", line N, in unimplemented_v2
File "exc.py", line N, in unimplemented
raise Unsupported\(msg\)""",
"<Internal traceback>\n",
msg,

View File

@ -861,7 +861,7 @@ TRACE FX call mul from test_logging.py:N in fn (LoggingTests.test_trace_call_pre
def test_logs_out(self):
import tempfile
with tempfile.NamedTemporaryFile(delete=False) as tmp:
with tempfile.NamedTemporaryFile(delete=True) as tmp:
file_path = _as_posix_path(tmp.name)
"""
NamedTemporaryFile will include a file open operation.
@ -888,10 +888,6 @@ fn(torch.randn(5))
file_path, encoding="utf-8"
) as fd: # encoding file to UTF-8 for Windows.
lines = fd.read()
fd.close()
os.remove(
file_path
) # Delete temp file manually, due to setup NamedTemporaryFile as delete=False.
orig_maxDiff = unittest.TestCase.maxDiff
unittest.TestCase.maxDiff = None
try:
@ -988,6 +984,7 @@ exclusions = {
"hierarchical_compile",
"compute_dependencies",
"annotation",
"node_runtime_estimation",
}
for name in torch._logging._internal.log_registry.artifact_names:
if name not in exclusions:

View File

@ -742,11 +742,14 @@ class TestExport(TestCase):
self.assertExpectedInline(
str(custom_metadata),
"""\
('call_function', 'cat', {'moo': 0})
('call_function', 'item', {'moo': 0})
('call_function', 'ge_1', {'moo': 0})
('call_function', '_assert_scalar_default', {'moo': 0})
('call_function', 'mul', {'moo': 0})""",
('placeholder', 'x', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace'})
('placeholder', 'y', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace'})
('call_function', 'cat', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace', 'moo': 0})
('call_function', 'item', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace', 'moo': 0})
('call_function', 'ge_1', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace', 'moo': 0})
('call_function', '_assert_scalar_default', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace', 'moo': 0})
('call_function', 'mul', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace', 'moo': 0})
('output', 'output', {'_torchdynamo_disable': True, '_torchdynamo_disable_recursive': True, '_torchdynamo_disable_method': 'dispatch_trace'})""",
)
@requires_gpu
@ -1221,8 +1224,14 @@ graph():
%p_block_linear2_bias : [num_users=1] = placeholder[target=p_block_linear2_bias]
%x : [num_users=1] = placeholder[target=x]
%wrap_body0 : [num_users=1] = get_attr[target=wrap_body0]
%tag_activation_checkpoint : [num_users=1] = call_function[target=torch.ops.higher_order.tag_activation_checkpoint](args = (%wrap_body0, %x, %p_block_linear1_weight, %p_block_linear1_bias, %p_block_linear2_weight, %p_block_linear2_bias), kwargs = {})
%tag_activation_checkpoint : [num_users=7] = call_function[target=torch.ops.higher_order.tag_activation_checkpoint](args = (%wrap_body0, %x, %p_block_linear1_weight, %p_block_linear1_bias, %p_block_linear2_weight, %p_block_linear2_bias), kwargs = {})
%getitem : [num_users=1] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 0), kwargs = {})
%getitem_1 : [num_users=0] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 1), kwargs = {})
%getitem_2 : [num_users=0] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 2), kwargs = {})
%getitem_3 : [num_users=0] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 3), kwargs = {})
%getitem_4 : [num_users=0] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 4), kwargs = {})
%getitem_5 : [num_users=0] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 5), kwargs = {})
%getitem_6 : [num_users=0] = call_function[target=operator.getitem](args = (%tag_activation_checkpoint, 6), kwargs = {})
return (getitem,)""",
)
@ -1231,14 +1240,14 @@ graph():
"""\
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%arg1_1 : [num_users=1] = placeholder[target=arg1_1]
%arg2_1 : [num_users=1] = placeholder[target=arg2_1]
%arg3_1 : [num_users=1] = placeholder[target=arg3_1]
%arg4_1 : [num_users=1] = placeholder[target=arg4_1]
%linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%arg0_1, %arg1_1, %arg2_1), kwargs = {})
%relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%linear,), kwargs = {})
%arg1_1 : [num_users=2] = placeholder[target=arg1_1]
%arg2_1 : [num_users=2] = placeholder[target=arg2_1]
%arg3_1 : [num_users=2] = placeholder[target=arg3_1]
%arg4_1 : [num_users=2] = placeholder[target=arg4_1]
%linear : [num_users=2] = call_function[target=torch.ops.aten.linear.default](args = (%arg0_1, %arg1_1, %arg2_1), kwargs = {})
%relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%linear,), kwargs = {})
%linear_1 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%relu, %arg3_1, %arg4_1), kwargs = {})
return (linear_1,)""",
return (linear_1, arg1_1, arg2_1, linear, relu, arg3_1, arg4_1)""",
)
stack = contextlib.ExitStack()

View File

@ -2,7 +2,6 @@
import copy
import pathlib
import tempfile
import unittest
@ -97,55 +96,55 @@ def run_with_nativert(ep):
MODEL_NAME = "forward"
# TODO Does named tempfile have collision?
with tempfile.NamedTemporaryFile(suffix=".pt2", delete=False) as f:
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
torch.export.pt2_archive._package.package_pt2(
f, exported_programs={MODEL_NAME: ep_infer}
)
filename = f.name
try:
ep_args, ep_kwargs = ep_infer.example_inputs
ep_args_copied, ep_kwargs_copied = (
copy.deepcopy(ep_args),
copy.deepcopy(ep_kwargs),
)
torch.manual_seed(0)
try:
flat_expected = pytree.tree_leaves(
ep_infer.module()(*ep_args_copied, **ep_kwargs_copied)
ep_args, ep_kwargs = ep_infer.example_inputs
ep_args_copied, ep_kwargs_copied = (
copy.deepcopy(ep_args),
copy.deepcopy(ep_kwargs),
)
except Exception as e:
raise unittest.case.SkipTest(str(e)) from e
torch.manual_seed(0)
try:
flat_expected = pytree.tree_leaves(
ep_infer.module()(*ep_args_copied, **ep_kwargs_copied)
)
except Exception as e:
raise unittest.case.SkipTest(str(e)) from e
model_runner = PyModelRunner(filename, MODEL_NAME)
torch.manual_seed(0)
if _is_supported_types((ep_args, ep_kwargs)):
results = model_runner.run(*ep_args, **ep_kwargs)
else:
results = model_runner.run_with_flat_inputs_and_outputs(
*pytree.tree_leaves((ep_args, ep_kwargs))
)
flat_results = pytree.tree_leaves(results)
assert len(flat_results) == len(flat_expected)
for result, expected in zip(flat_results, flat_expected):
assert type(result) is type(expected)
if isinstance(result, torch.Tensor) and isinstance(expected, torch.Tensor):
assert result.shape == expected.shape
assert result.dtype == expected.dtype
assert result.device == expected.device
torch.testing.assert_close(result, expected, equal_nan=True)
model_runner = PyModelRunner(filename, MODEL_NAME)
torch.manual_seed(0)
if _is_supported_types((ep_args, ep_kwargs)):
results = model_runner.run(*ep_args, **ep_kwargs)
else:
assert result == expected
except RuntimeError as e:
# User need to register pytree type on the cpp side, which
# cannot be tested in python unittest.
if "Unknown pytree node type" in str(e):
pass
else:
raise e
finally:
pathlib.Path(filename).unlink(missing_ok=True)
return ep
results = model_runner.run_with_flat_inputs_and_outputs(
*pytree.tree_leaves((ep_args, ep_kwargs))
)
flat_results = pytree.tree_leaves(results)
assert len(flat_results) == len(flat_expected)
for result, expected in zip(flat_results, flat_expected):
assert type(result) is type(expected)
if isinstance(result, torch.Tensor) and isinstance(
expected, torch.Tensor
):
assert result.shape == expected.shape
assert result.dtype == expected.dtype
assert result.device == expected.device
torch.testing.assert_close(result, expected, equal_nan=True)
else:
assert result == expected
except RuntimeError as e:
# User need to register pytree type on the cpp side, which
# cannot be tested in python unittest.
if "Unknown pytree node type" in str(e):
pass
else:
raise e
return ep
def mocked_nativert_export_strict(*args, **kwargs):
@ -287,7 +286,7 @@ class TestNativeRT(TestCase):
)
# package everything needed for the NativeRT to execute the AOTI delegate
with tempfile.NamedTemporaryFile(suffix=".pt2", delete=False) as f:
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
package_nativert_with_aoti_delegate(
f,
MODEL_NAME,
@ -298,50 +297,48 @@ class TestNativeRT(TestCase):
)
filename = f.name
try:
ep_args, ep_kwargs = aoti_delegate_ep.example_inputs
ep_args_copied, ep_kwargs_copied = (
copy.deepcopy(ep_args),
copy.deepcopy(ep_kwargs),
)
torch.manual_seed(0)
try:
flat_expected = pytree.tree_leaves(
aoti_delegate_ep.module()(*ep_args_copied, **ep_kwargs_copied)
ep_args, ep_kwargs = aoti_delegate_ep.example_inputs
ep_args_copied, ep_kwargs_copied = (
copy.deepcopy(ep_args),
copy.deepcopy(ep_kwargs),
)
except Exception as e:
raise unittest.case.SkipTest(str(e)) from e
torch.manual_seed(0)
try:
flat_expected = pytree.tree_leaves(
aoti_delegate_ep.module()(*ep_args_copied, **ep_kwargs_copied)
)
except Exception as e:
raise unittest.case.SkipTest(str(e)) from e
model_runner = PyModelRunner(filename, f"{MODEL_NAME}-{BACKEND_ID}")
torch.manual_seed(0)
if _is_supported_types((ep_args, ep_kwargs)):
results = model_runner.run(*ep_args, **ep_kwargs)
else:
results = model_runner.run_with_flat_inputs_and_outputs(
*pytree.tree_leaves((ep_args, ep_kwargs))
)
flat_results = pytree.tree_leaves(results)
assert len(flat_results) == len(flat_expected)
for result, expected in zip(flat_results, flat_expected):
assert type(result) is type(expected)
if isinstance(result, torch.Tensor) and isinstance(
expected, torch.Tensor
):
assert result.shape == expected.shape
assert result.dtype == expected.dtype
assert result.device == expected.device
torch.testing.assert_close(result, expected, equal_nan=True)
model_runner = PyModelRunner(filename, f"{MODEL_NAME}-{BACKEND_ID}")
torch.manual_seed(0)
if _is_supported_types((ep_args, ep_kwargs)):
results = model_runner.run(*ep_args, **ep_kwargs)
else:
assert result == expected
except RuntimeError as e:
# User need to register pytree type on the cpp side, which
# cannot be tested in python unittest.
if "Unknown pytree node type" in str(e):
pass
else:
raise e
finally:
pathlib.Path(filename).unlink(missing_ok=True)
results = model_runner.run_with_flat_inputs_and_outputs(
*pytree.tree_leaves((ep_args, ep_kwargs))
)
flat_results = pytree.tree_leaves(results)
assert len(flat_results) == len(flat_expected)
for result, expected in zip(flat_results, flat_expected):
assert type(result) is type(expected)
if isinstance(result, torch.Tensor) and isinstance(
expected, torch.Tensor
):
assert result.shape == expected.shape
assert result.dtype == expected.dtype
assert result.device == expected.device
torch.testing.assert_close(result, expected, equal_nan=True)
else:
assert result == expected
except RuntimeError as e:
# User need to register pytree type on the cpp side, which
# cannot be tested in python unittest.
if "Unknown pytree node type" in str(e):
pass
else:
raise e
if is_fbcode():

View File

@ -1092,6 +1092,57 @@ class inner_f(torch.nn.Module):
)
self.assertEqual(joint._aot_state.fw_metadata.static_input_indices, [0, 1])
def test_no_annotation_on_gradient_acc_nodes(self):
"""Test basic linear module with aot_export_joint_with_descriptors"""
class SimpleLinear(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 2)
self.linear2 = nn.Linear(3, 2)
def forward(self, x):
with fx_traceback.annotate({"test": 1}):
return self.linear(x) - self.linear2(x)
model = SimpleLinear()
inputs = (torch.randn(4, 3, requires_grad=True),)
graph_module = graph_capture(model, inputs, True)
add_nodes = graph_module.graph.find_nodes(
op="call_function", target=torch.ops.aten.add.Tensor
)
self.assertEqual(len(add_nodes), 1)
gradient_acc_node = add_nodes[0]
self.assertTrue(gradient_acc_node.meta["is_gradient_acc"])
self.assertEqual(gradient_acc_node.meta.get("custom", {}), {})
custom_metadata = fx_traceback._get_custom_metadata(graph_module)
self.assertExpectedInline(
str(custom_metadata),
"""\
('call_function', 't', {'test': 1})
('call_function', 'addmm', {'test': 1})
('call_function', 't_1', {'test': 1})
('call_function', 'addmm_1', {'test': 1})
('call_function', 'sub', {'test': 1})
('call_function', 'neg', {'test': 1})
('call_function', 't_2', {'test': 1})
('call_function', 'mm', {'test': 1})
('call_function', 't_3', {'test': 1})
('call_function', 'mm_1', {'test': 1})
('call_function', 't_4', {'test': 1})
('call_function', 'sum_1', {'test': 1})
('call_function', 'view', {'test': 1})
('call_function', 't_5', {'test': 1})
('call_function', 't_6', {'test': 1})
('call_function', 'mm_2', {'test': 1})
('call_function', 't_7', {'test': 1})
('call_function', 'mm_3', {'test': 1})
('call_function', 't_8', {'test': 1})
('call_function', 'sum_2', {'test': 1})
('call_function', 'view_1', {'test': 1})
('call_function', 't_9', {'test': 1})""",
)
if __name__ == "__main__":
run_tests()

View File

@ -4,6 +4,7 @@ from unittest.mock import patch
import torch
from torch._dynamo.utils import counters
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_utils import run_tests, TestCase
@ -39,6 +40,56 @@ class TestHopPrint(TestCase):
self.assertEqual(printed_output, "moo 1 2")
fx_f = make_fx(f)(x)
new_inp = torch.randn(3, 3)
with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
fx_f(new_inp)
ori_printed_output = mock_stdout.getvalue().strip()
with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
f(new_inp)
fx_printed_output = mock_stdout.getvalue().strip()
self.assertEqual(ori_printed_output, fx_printed_output)
def test_print_with_proxy_graph(self):
class M(torch.nn.Module):
def forward(self, x):
torch._higher_order_ops.print("moo {x} {y}", x=1, y=2)
torch._higher_order_ops.print("moo {x}", x=x)
res = x + x
torch._higher_order_ops.print("moo {x} {y}", x=1, y=2)
torch._higher_order_ops.print("yeehop {x}", x=x.shape[0])
return (res,)
inputs = (torch.randn(3),)
# Without functionalization, print should just appear in the graph directly
gm = make_fx(M(), tracing_mode="symbolic")(*inputs)
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, arg0_1):
print_1 = torch.ops.higher_order.print('moo {x} {y}', x = 1, y = 2); print_1 = None
print_2 = torch.ops.higher_order.print('moo {x}', x = arg0_1); print_2 = None
add = torch.ops.aten.add.Tensor(arg0_1, arg0_1)
print_3 = torch.ops.higher_order.print('moo {x} {y}', x = 1, y = 2); print_3 = None
sym_size_int = torch.ops.aten.sym_size.int(arg0_1, 0); arg0_1 = None
print_4 = torch.ops.higher_order.print('yeehop {x}', x = sym_size_int); sym_size_int = print_4 = None
return (add,)""",
)
new_inp = torch.randn(4)
with patch("sys.stdout", new_callable=io.StringIO) as mock_stdout:
gm(
new_inp,
)
printed_output = mock_stdout.getvalue().strip()
self.assertEqual(printed_output, f"moo 1 2\nmoo {new_inp}\nmoo 1 2\nyeehop 4")
if __name__ == "__main__":
run_tests()

View File

@ -7522,6 +7522,38 @@ class AOTInductorTestsTemplate:
eager_outputs = model(*example_inputs)
torch.testing.assert_close(eager_outputs, compiled_outputs)
@requires_gpu
def test_mixed_device_1(self):
if self.device != GPU_TYPE:
raise unittest.SkipTest("Mixed-device test requires GPU")
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
# Buffers are on CPU
self.register_buffer(
"index", torch.tensor([1, 4, 1, 7], device="cpu", dtype=torch.int64)
)
self.register_buffer(
"src", torch.ones(4, device="cpu", dtype=torch.int64)
)
def forward(self, matrix, vector):
# Inputs are on CUDA
# 1. Operation on CPU tensors
z = torch.zeros((vector.shape[0],), device="cpu", dtype=torch.int64)
scatter_result = z.scatter_add(0, self.index, self.src)
# 2. Move result to CUDA and continue on CUDA
v = vector + scatter_result.to(vector.dtype).to(GPU_TYPE)
return torch.matmul(matrix, v)
example_inputs = (
torch.randn(10, 10, device=self.device),
torch.randn(10, device=self.device),
)
self.check_model(Model(), example_inputs, move_model_to_device=False)
class AOTInductorLoggingTest(LoggingTestCase):
@make_logging_test(dynamic=logging.DEBUG)

View File

@ -218,6 +218,7 @@ def check_model(
dynamic_shapes=None,
atol=None,
rtol=None,
move_model_to_device=True,
):
with (
torch.no_grad(),
@ -229,7 +230,7 @@ def check_model(
),
):
torch.manual_seed(0)
if not isinstance(model, types.FunctionType):
if not isinstance(model, types.FunctionType) and move_model_to_device:
model = model.to(self.device)
# For non mixed device inputs with default "cpu",set the device manually.

View File

@ -206,6 +206,10 @@ class TestPyCodeCache(TestCase):
.decode()
.strip()
)
# XPU have extra lines, so get the last line, refer https://github.com/intel/torch-xpu-ops/issues/2261
if torch.xpu.is_available():
wrapper_path = wrapper_path.splitlines()[-1]
hit = hit.splitlines()[-1]
self.assertEqual(hit, "1")
with open(wrapper_path) as f:

View File

@ -73,6 +73,23 @@ class TestCompileWorker(TestCase):
finally:
pool.shutdown()
@skipIfWindows(msg="pass_fds not supported on Windows.")
def test_quiesce_repeatedly(self):
pool = SubprocPool(2)
try:
a = pool.submit(operator.add, 100, 1)
pool.quiesce()
pool.wakeup()
b = pool.submit(operator.sub, 100, 1)
pool.quiesce()
pool.quiesce()
pool.wakeup()
b = pool.submit(operator.sub, 100, 1)
self.assertEqual(a.result(), 101)
self.assertEqual(b.result(), 99)
finally:
pool.shutdown()
@skipIfWindows(msg="pass_fds not supported on Windows.")
def test_logging(self):
os.environ["MAST_HPC_JOB_NAME"] = "test_job"

View File

@ -5222,6 +5222,7 @@ xfail_by_backend = {
"test_reentrant_with_callbacks_both_depths", # queue_callback
"test_reentrant_with_callbacks_depth_0", # queue_callback
"test_reentrant_with_callbacks_depth_1", # queue_callback
"test_checkpoint_graph_execution_group", # Attempted to call function marked as skipped
"test_current_graph_task_execution_order", # nodes are already freed by the time dynamo traces the lifted hook
"test_autograd_inplace_views_cross_dtype", # view_fn not supported by compiled autograd
"test_post_accumulate_grad_hook_ordering", # accuracy error

View File

@ -3278,6 +3278,15 @@ class CPUReproTests(TestCase):
metrics.reset()
self.common(fn, (x,))
def test_softmax_with_zero_dim(self):
def fn(x):
x = torch.softmax(x, 0)
return x
x = torch.rand([], dtype=torch.bfloat16)
metrics.reset()
self.common(fn, (x,))
@config.patch({"fx_graph_cache": False, "fx_graph_remote_cache": False})
def test_local_buffer_in_outer_loop_fusion(self):
def fn(x):

View File

@ -148,6 +148,24 @@ class FxirTestCase(InductorTestCase):
args = [torch.randn(8, device=self.device) for _ in range(2)]
self._compile_and_check(torch.add, args)
def test_device_type(self):
"""
Test that we allocate on a device type instead of a specific index.
"""
# Pass in a tensor on an indexed device.
device_runtime = getattr(torch, self.device)
indexed_device = torch.device(self.device, device_runtime.current_device())
args = [torch.randn(8, device=indexed_device) for _ in range(2)]
(gm,) = self._compile_and_check(torch.add, args)
(empty_strided,) = gm.graph.find_nodes(
op="call_function", target=torch.empty_strided
)
# Check that the device of the output allocation is not indexed.
output_device = torch.device(empty_strided.kwargs["device"])
self.assertIs(output_device.index, None)
self.assertEqual(output_device.type, indexed_device.type)
def test_multiple_kernels(self):
def foo(x, y):
return x.sum() + y.sum()

View File

@ -3,7 +3,8 @@
import functools
import weakref
from collections import Counter
from typing import Callable, Optional
from collections.abc import Callable
from typing import Optional
import torch
from torch._inductor.fx_passes.memory_estimator import (
@ -28,7 +29,7 @@ def device_filter(device):
class FakeTensorMemoryProfilerMode(TorchDispatchMode):
def __init__(self, device_filter: Optional[Callable[torch.device, bool]] = None):
def __init__(self, device_filter: Optional[Callable[[torch.device], bool]] = None):
# counter of storage ids to live references
self.storage_count: dict[int, int] = Counter()
# live fake tensors

View File

@ -1,5 +1,6 @@
# Owner(s): ["oncall: pt2"]
import functools
import re
import sys
import unittest
@ -52,9 +53,12 @@ def make_pallas(cls):
return test_class
@unittest.skipUnless(HAS_PALLAS, "requires jax and pallas")
class PallasTests(TestCase):
"""Basic tests for Pallas backend functionality."""
class PallasTestsMixin:
"""Basic tests for Pallas backend functionality (parameterized by DEVICE). Mixin only, not collected."""
def _compile(self, fn):
key = "cuda_backend" if self.DEVICE == "cuda" else "cpu_backend"
return torch.compile(fn, backend="inductor", options={key: "pallas"})
def test_simple_add(self):
"""Test basic element-wise addition."""
@ -62,12 +66,10 @@ class PallasTests(TestCase):
def fn(a, b):
return a + b
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
a = torch.randn(1024, device="cuda")
b = torch.randn(1024, device="cuda")
a = torch.randn(1024, device=self.DEVICE)
b = torch.randn(1024, device=self.DEVICE)
result = compiled(a, b)
expected = fn(a, b)
self.assertEqual(result, expected)
@ -78,12 +80,10 @@ class PallasTests(TestCase):
def fn(a, b):
return a * b
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
a = torch.randn(1024, device="cuda")
b = torch.randn(1024, device="cuda")
a = torch.randn(1024, device=self.DEVICE)
b = torch.randn(1024, device=self.DEVICE)
result = compiled(a, b)
expected = fn(a, b)
self.assertEqual(result, expected)
@ -94,11 +94,9 @@ class PallasTests(TestCase):
def fn(x):
return torch.sin(x)
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(1024, device="cuda")
x = torch.randn(1024, device=self.DEVICE)
result = compiled(x)
expected = fn(x)
self.assertEqual(result, expected)
@ -109,12 +107,10 @@ class PallasTests(TestCase):
def fn(x, y):
return x.sin() + y
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(1024, device="cuda")
y = torch.randn(1024, device="cuda")
x = torch.randn(1024, device=self.DEVICE)
y = torch.randn(1024, device=self.DEVICE)
result = compiled(x, y)
expected = fn(x, y)
self.assertEqual(result, expected)
@ -125,11 +121,9 @@ class PallasTests(TestCase):
def fn(x):
return torch.log(torch.exp(x))
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(1024, device="cuda")
x = torch.randn(1024, device=self.DEVICE)
result = compiled(x)
expected = fn(x)
self.assertEqual(result, expected)
@ -140,11 +134,9 @@ class PallasTests(TestCase):
def fn(x):
return torch.sqrt(x)
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(1024, device="cuda").abs() # Ensure positive for sqrt
x = torch.randn(1024, device=self.DEVICE).abs() # Ensure positive for sqrt
result = compiled(x)
expected = fn(x)
self.assertEqual(result, expected)
@ -155,11 +147,9 @@ class PallasTests(TestCase):
def fn(x):
return torch.tanh(x)
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(1024, device="cuda")
x = torch.randn(1024, device=self.DEVICE)
result = compiled(x)
expected = fn(x)
self.assertEqual(result, expected)
@ -170,11 +160,9 @@ class PallasTests(TestCase):
def fn(x):
return torch.abs(-x)
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(1024, device="cuda")
x = torch.randn(1024, device=self.DEVICE)
result = compiled(x)
expected = fn(x)
self.assertEqual(result, expected)
@ -185,12 +173,10 @@ class PallasTests(TestCase):
def fn(a, b):
return torch.maximum(a, b) + torch.minimum(a, b)
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
a = torch.randn(1024, device="cuda")
b = torch.randn(1024, device="cuda")
a = torch.randn(1024, device=self.DEVICE)
b = torch.randn(1024, device=self.DEVICE)
result = compiled(a, b)
expected = fn(a, b)
self.assertEqual(result, expected)
@ -228,33 +214,60 @@ class PallasTests(TestCase):
@torch.compile(
backend="inductor",
options={"cuda_backend": "pallas"},
options={
("cuda_backend" if self.DEVICE == "cuda" else "cpu_backend"): "pallas"
},
)
def pallas_fn(a, b):
return a.sin() + b.cos()
_, (code,) = run_and_get_code(
pallas_fn,
torch.randn(64, device="cuda"),
torch.randn(64, device="cuda"),
torch.randn(64, device=self.DEVICE),
torch.randn(64, device=self.DEVICE),
)
# Verify Pallas-specific code generation
self.assertIn("import jax", code)
self.assertIn("import jax.numpy as jnp", code)
self.assertIn("from jax.experimental import pallas as pl", code)
def test_jax_jit_wrapper_is_emitted(self):
"""Ensure generated Pallas code wraps pl.pallas_call in jax.jit."""
key = "cuda_backend" if self.DEVICE == "cuda" else "cpu_backend"
@torch.compile(backend="inductor", options={key: "pallas"})
def pallas_fn(a, b):
return a + b
_, (code,) = run_and_get_code(
pallas_fn,
torch.randn(32, device=self.DEVICE),
torch.randn(32, device=self.DEVICE),
)
kernel_match = re.search(r"def (pallas_[A-Za-z0-9_]+)_kernel", code)
self.assertIsNotNone(kernel_match)
kernel_name = kernel_match.group(1)
wrapper_name = f"{kernel_name}_jit_wrapper"
self.assertIn(wrapper_name, code)
start = code.index(f"def {wrapper_name}")
end = code.index(f"def {kernel_name}_main", start)
wrapper_block = code[start:end]
self.assertIn("jax.jit", code)
self.assertNotIn("torch.", wrapper_block)
def test_2d_tensor(self):
"""Test with 2D tensors (though current implementation flattens)."""
def fn(x, y):
return x + y
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
x = torch.randn(32, 32, device="cuda")
y = torch.randn(32, 32, device="cuda")
x = torch.randn(32, 32, device=self.DEVICE)
y = torch.randn(32, 32, device=self.DEVICE)
result = compiled(x, y)
expected = fn(x, y)
self.assertEqual(result, expected)
@ -265,12 +278,10 @@ class PallasTests(TestCase):
def fn(x):
return x * 2.0
compiled = torch.compile(
fn, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(fn)
for shape in [(64,), (128,), (256,), (1024,)]:
x = torch.randn(shape, device="cuda")
x = torch.randn(shape, device=self.DEVICE)
result = compiled(x)
expected = fn(x)
self.assertEqual(result, expected)
@ -282,12 +293,10 @@ class PallasTests(TestCase):
def contiguous_add(a, b):
return a + b
compiled = torch.compile(
contiguous_add, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(contiguous_add)
a = torch.randn(1024, device="cuda")
b = torch.randn(1024, device="cuda")
a = torch.randn(1024, device=self.DEVICE)
b = torch.randn(1024, device=self.DEVICE)
result = compiled(a, b)
expected = contiguous_add(a, b)
self.assertEqual(result, expected)
@ -296,11 +305,9 @@ class PallasTests(TestCase):
def contiguous_mul(x):
return x * 2.0
compiled = torch.compile(
contiguous_mul, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(contiguous_mul)
x = torch.randn(128, 8, device="cuda")
x = torch.randn(128, 8, device=self.DEVICE)
result = compiled(x)
expected = contiguous_mul(x)
self.assertEqual(result, expected)
@ -310,12 +317,10 @@ class PallasTests(TestCase):
def operate_on_tensor(x):
return x.sin()
compiled = torch.compile(
operate_on_tensor, backend="inductor", options={"cuda_backend": "pallas"}
)
compiled = self._compile(operate_on_tensor)
# Create a transposed (non-contiguous) view
x = torch.randn(64, 32, device="cuda")
x = torch.randn(64, 32, device=self.DEVICE)
x_t = x.t() # Non-contiguous view
self.assertFalse(x_t.is_contiguous())
@ -332,13 +337,24 @@ class PallasTests(TestCase):
self.assertEqual(result, expected)
@unittest.skipUnless(HAS_PALLAS, "requires jax and pallas")
class PallasTestsCUDA(PallasTestsMixin, TestCase):
DEVICE = "cuda"
@unittest.skipUnless(HAS_PALLAS, "requires jax and pallas")
class PallasTestsCPU(PallasTestsMixin, TestCase):
DEVICE = "cpu"
# Create test variants using the main test suite
# Note: Only enable GPU tests since Pallas primarily targets GPU
if test_torchinductor.HAS_GPU and HAS_PALLAS:
# Uncomment these to run full test suite with Pallas backend
# make_pallas(test_torchinductor.SweepInputsGPUTest)
# make_pallas(test_torchinductor.GPUTests)
pass
if hasattr(sys.modules.get(__name__), "test_torchinductor") and HAS_PALLAS:
if getattr(test_torchinductor, "HAS_GPU", False):
# Uncomment these to run full test suite with Pallas backend
# make_pallas(test_torchinductor.SweepInputsGPUTest)
# make_pallas(test_torchinductor.GPUTests)
pass
if __name__ == "__main__":
if HAS_PALLAS:

View File

@ -1217,6 +1217,43 @@ class TestPatternMatcher(TestCase):
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
def test_addmm_alpha_beta_with_pointwise(self):
# Test that addmm with alpha/beta != 1 is unfused correctly with pointwise ops
# See https://github.com/pytorch/pytorch/issues/167313
x = torch.rand(2, device=GPU_TYPE)
a = torch.rand(2, 3, device=GPU_TYPE)
b = torch.rand(3, 2, device=GPU_TYPE)
def f(x, a, b):
return torch.nn.functional.relu(torch.addmm(x, a, b, alpha=0.8, beta=0.2))
fc = torch.compile(f)
expected = f(x, a, b)
actual = fc(x, a, b)
# The compiled version should produce the same result as eager
torch.testing.assert_close(actual, expected)
# Verify that addmm is unfused (should not use extern_kernels.addmm)
# The pattern should be replaced with beta * x + alpha * (a @ b)
_, (code) = run_and_get_code(fc, x, a, b)
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
# Test with alpha=1, beta=1 (default) - should also unfuse
def f_default(x, a, b):
return torch.nn.functional.relu(torch.addmm(x, a, b))
fc_default = torch.compile(f_default)
expected_default = f_default(x, a, b)
actual_default = fc_default(x, a, b)
torch.testing.assert_close(actual_default, expected_default)
# Should unfuse and not use extern_kernels.addmm
_, (code) = run_and_get_code(fc_default, x, a, b)
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
def test_serialized_patterns_up_to_date(self):
import torch.utils._pytree as pytree
from torch._inductor.fx_passes import joint_graph

View File

@ -7,7 +7,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
class TestUpgraderModelGeneration(TestCase):
def test_all_modules(self):
for a_module in ALL_MODULES.keys():
for a_module in ALL_MODULES:
module_name = type(a_module).__name__
self.assertTrue(
isinstance(a_module, torch.nn.Module),

View File

@ -2979,7 +2979,7 @@ class TestScriptList(JitTestCase):
self.col2 = "b"
def forward(self):
if self.col1 in self.segments_groupby_col.keys():
if self.col1 in self.segments_groupby_col:
return 1
else:
return 2

View File

@ -78,7 +78,7 @@ class TestModuleContainers(JitTestCase):
x = mod(x)
values.append(x)
for key in self.moduledict.keys():
for key in self.moduledict:
names.append(key)
return x, names
@ -306,7 +306,7 @@ class TestModuleContainers(JitTestCase):
assert "submod" in self.moduledict, "__contains__ fails for ModuleDict"
for key in self.moduledict.keys():
for key in self.moduledict:
assert key == "submod", "keys() fails for ModuleDict"
for item in self.moduledict.items():

Some files were not shown because too many files have changed in this diff Show More