mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-27 00:54:52 +08:00
Compare commits
3 Commits
ciflow/tru
...
copilot/co
| Author | SHA1 | Date | |
|---|---|---|---|
| 241b702918 | |||
| 83df2e0610 | |||
| 77fe8234bb |
@ -20,7 +20,7 @@ ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
|
||||
|
||||
# cmake-3.18.4 from pip
|
||||
RUN yum install -y python3-pip && \
|
||||
python3 -mpip install cmake==3.18.4 && \
|
||||
python3 -m pip install cmake==3.18.4 && \
|
||||
ln -s /usr/local/bin/cmake /usr/bin/cmake3
|
||||
RUN rm -rf /usr/local/cuda-*
|
||||
|
||||
|
||||
@ -83,6 +83,10 @@ function build_cpython {
|
||||
py_suffix=${py_ver::-1}
|
||||
py_folder=$py_suffix
|
||||
fi
|
||||
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
|
||||
if [ "$py_suffix" == "3.14.0" ]; then
|
||||
py_suffix="3.14.0rc2"
|
||||
fi
|
||||
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
|
||||
do_cpython_build $py_ver Python-$py_suffix
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ function install_torchbench() {
|
||||
python install.py --continue_on_fail
|
||||
|
||||
echo "Print all dependencies after TorchBench is installed"
|
||||
python -mpip freeze
|
||||
python -m pip freeze
|
||||
popd
|
||||
|
||||
chown -R jenkins torchbench
|
||||
|
||||
@ -8,8 +8,8 @@ MKLROOT=/opt/intel
|
||||
mkdir -p ${MKLROOT}
|
||||
pushd /tmp
|
||||
|
||||
python3 -mpip install wheel
|
||||
python3 -mpip download -d . mkl-static==${MKL_VERSION}
|
||||
python3 -m pip install wheel
|
||||
python3 -m pip download -d . mkl-static==${MKL_VERSION}
|
||||
python3 -m wheel unpack mkl_static-${MKL_VERSION}-py2.py3-none-manylinux1_x86_64.whl
|
||||
python3 -m wheel unpack mkl_include-${MKL_VERSION}-py2.py3-none-manylinux1_x86_64.whl
|
||||
mv mkl_static-${MKL_VERSION}/mkl_static-${MKL_VERSION}.data/data/lib ${MKLROOT}
|
||||
|
||||
@ -19,7 +19,7 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.23.1
|
||||
pip_install onnxruntime==1.23.0
|
||||
pip_install onnxscript==0.5.4
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
|
||||
@ -11,5 +11,5 @@ ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||
python -m venv /var/lib/jenkins/ci_env
|
||||
source /var/lib/jenkins/ci_env/bin/activate
|
||||
|
||||
python -mpip install --upgrade pip
|
||||
python -mpip install -r /opt/requirements-ci.txt
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install -r /opt/requirements-ci.txt
|
||||
|
||||
@ -39,13 +39,9 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
DOCKER_GPU_BUILD_ARG=""
|
||||
;;
|
||||
rocm*)
|
||||
# we want the patch version of 7.0 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
|
||||
@ -14,7 +14,7 @@ ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/op
|
||||
|
||||
# cmake-3.18.4 from pip
|
||||
RUN yum install -y python3-pip && \
|
||||
python3 -mpip install cmake==3.18.4 && \
|
||||
python3 -m pip install cmake==3.18.4 && \
|
||||
ln -s /usr/local/bin/cmake /usr/bin/cmake3
|
||||
|
||||
FROM base as openssl
|
||||
@ -135,7 +135,7 @@ RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
|
||||
# cmake-3.18.4 from pip; force in case cmake3 already exists
|
||||
RUN yum install -y python3-pip && \
|
||||
python3 -mpip install cmake==3.18.4 && \
|
||||
python3 -m pip install cmake==3.18.4 && \
|
||||
ln -sf /usr/local/bin/cmake /usr/bin/cmake3
|
||||
|
||||
FROM cpu_final as cuda_final
|
||||
@ -157,7 +157,7 @@ ENV ROCM_PATH /opt/rocm
|
||||
# cmake-3.28.4 from pip to get enable_language(HIP)
|
||||
# and avoid 3.21.0 cmake+ninja issues with ninja inserting "-Wl,--no-as-needed" in LINK_FLAGS for static linker
|
||||
RUN python3 -m pip install --upgrade pip && \
|
||||
python3 -mpip install cmake==3.28.4
|
||||
python3 -m pip install cmake==3.28.4
|
||||
# replace the libdrm in /opt/amdgpu with custom amdgpu.ids lookup path
|
||||
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
|
||||
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
|
||||
@ -174,7 +174,7 @@ FROM cpu_final as xpu_final
|
||||
ENV XPU_DRIVER_TYPE ROLLING
|
||||
# cmake-3.28.4 from pip
|
||||
RUN python3 -m pip install --upgrade pip && \
|
||||
python3 -mpip install cmake==3.28.4
|
||||
python3 -m pip install cmake==3.28.4
|
||||
ADD ./common/install_xpu.sh install_xpu.sh
|
||||
ENV XPU_VERSION 2025.2
|
||||
RUN bash ./install_xpu.sh && rm install_xpu.sh
|
||||
|
||||
@ -113,7 +113,7 @@ RUN dnf install -y \
|
||||
RUN env GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=True pip3 install grpcio
|
||||
|
||||
# cmake-3.28.0 from pip for onnxruntime
|
||||
RUN python3 -mpip install cmake==3.28.0
|
||||
RUN python3 -m pip install cmake==3.28.0
|
||||
|
||||
ADD ./common/patch_libstdc.sh patch_libstdc.sh
|
||||
RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
|
||||
@ -75,13 +75,9 @@ case ${image} in
|
||||
DOCKERFILE_SUFFIX="_cuda_aarch64"
|
||||
;;
|
||||
manylinux2_28-builder:rocm*)
|
||||
# we want the patch version of 7.0 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
TARGET=rocm_final
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
|
||||
@ -334,12 +334,12 @@ sympy==1.13.3
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnx==1.19.1
|
||||
onnx==1.18.0
|
||||
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.5.4
|
||||
onnxscript==0.5.3
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
@ -57,8 +57,8 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
|
||||
logger.info("Successfully cloned %s", target)
|
||||
return r, commit
|
||||
|
||||
except GitCommandError:
|
||||
logger.exception("Git operation failed")
|
||||
except GitCommandError as e:
|
||||
logger.error("Git operation failed: %s", e)
|
||||
raise
|
||||
|
||||
|
||||
|
||||
@ -6,7 +6,7 @@ dependencies = [
|
||||
"GitPython==3.1.45",
|
||||
"docker==7.1.0",
|
||||
"pytest==7.3.2",
|
||||
"uv==0.9.5"
|
||||
"uv==0.8.6"
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
|
||||
@ -288,7 +288,7 @@ else
|
||||
# or building non-XLA tests.
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *xla* && "$BUILD_ENVIRONMENT" != *riscv64* ]]; then
|
||||
# Install numpy-2.0.2 for builds which are backward compatible with 1.X
|
||||
python -mpip install numpy==2.0.2
|
||||
python -m pip install numpy==2.0.2
|
||||
|
||||
WERROR=1 python setup.py clean
|
||||
|
||||
|
||||
@ -67,13 +67,13 @@ function pip_install_whl() {
|
||||
# Loop through each path and install individually
|
||||
for path in "${paths[@]}"; do
|
||||
echo "Installing $path"
|
||||
python3 -mpip install --no-index --no-deps "$path"
|
||||
python3 -m pip install --no-index --no-deps "$path"
|
||||
done
|
||||
else
|
||||
# Loop through each argument and install individually
|
||||
for path in "${args[@]}"; do
|
||||
echo "Installing $path"
|
||||
python3 -mpip install --no-index --no-deps "$path"
|
||||
python3 -m pip install --no-index --no-deps "$path"
|
||||
done
|
||||
fi
|
||||
}
|
||||
|
||||
@ -182,7 +182,7 @@ checkout_install_torchbench() {
|
||||
pip uninstall -y torchao
|
||||
|
||||
echo "Print all dependencies after TorchBench is installed"
|
||||
python -mpip freeze
|
||||
python -m pip freeze
|
||||
}
|
||||
|
||||
torchbench_setup_macos() {
|
||||
@ -211,7 +211,7 @@ torchbench_setup_macos() {
|
||||
}
|
||||
|
||||
pip_benchmark_deps() {
|
||||
python -mpip install --no-input requests cython scikit-learn six
|
||||
python -m pip install --no-input requests cython scikit-learn six
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -1434,7 +1434,7 @@ EOF
|
||||
# shellcheck source=./common-build.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
|
||||
python -m build --wheel --no-isolation -C--build-option=--bdist-dir="base_bdist_tmp" --outdir "base_dist"
|
||||
python -mpip install base_dist/*.whl
|
||||
python -m pip install base_dist/*.whl
|
||||
echo "::endgroup::"
|
||||
|
||||
pushd test/forward_backward_compatibility
|
||||
|
||||
@ -173,7 +173,7 @@ esac
|
||||
PINNED_PACKAGES=(
|
||||
"numpy${NUMPY_PINNED_VERSION}"
|
||||
)
|
||||
python -mvenv ~/${desired_python}-build
|
||||
python -m venv ~/${desired_python}-build
|
||||
source ~/${desired_python}-build/bin/activate
|
||||
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements.txt"
|
||||
retry brew install libomp
|
||||
|
||||
@ -163,13 +163,8 @@ if [[ "$(uname)" != Darwin ]]; then
|
||||
MEMORY_LIMIT_MAX_JOBS=12
|
||||
NUM_CPUS=$(( $(nproc) - 2 ))
|
||||
|
||||
if [[ "$(uname)" == Linux ]]; then
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
else
|
||||
# For other builds
|
||||
export MAX_JOBS=${NUM_CPUS}
|
||||
fi
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
|
||||
cat >>"$envfile" <<EOL
|
||||
export MAX_JOBS="${MAX_JOBS}"
|
||||
|
||||
@ -1,354 +0,0 @@
|
||||
# PyTorch Docstring Writing Guide
|
||||
|
||||
This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in `torch/_tensor_docs.py` and `torch/nn/functional.py`.
|
||||
|
||||
## General Principles
|
||||
|
||||
- Use **raw strings** (`r"""..."""`) for all docstrings to avoid issues with LaTeX/math backslashes
|
||||
- Follow **Sphinx/reStructuredText** (reST) format for documentation
|
||||
- Be **concise but complete** - include all essential information
|
||||
- Always include **examples** when possible
|
||||
- Use **cross-references** to related functions/classes
|
||||
|
||||
## Docstring Structure
|
||||
|
||||
### 1. Function Signature (First Line)
|
||||
|
||||
Start with the function signature showing all parameters:
|
||||
|
||||
```python
|
||||
r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Include the function name
|
||||
- Show positional and keyword-only arguments (use `*` separator)
|
||||
- Include default values
|
||||
- Show return type annotation
|
||||
- This line should NOT end with a period
|
||||
|
||||
### 2. Brief Description
|
||||
|
||||
Provide a one-line description of what the function does:
|
||||
|
||||
```python
|
||||
r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||||
|
||||
Applies a 2D convolution over an input image composed of several input
|
||||
planes.
|
||||
```
|
||||
|
||||
### 3. Mathematical Formulas (if applicable)
|
||||
|
||||
Use Sphinx math directives for mathematical expressions:
|
||||
|
||||
```python
|
||||
.. math::
|
||||
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
||||
```
|
||||
|
||||
Or inline math: `:math:\`x^2\``
|
||||
|
||||
### 4. Cross-References
|
||||
|
||||
Link to related classes and functions using Sphinx roles:
|
||||
|
||||
- `:class:\`~torch.nn.ModuleName\`` - Link to a class
|
||||
- `:func:\`torch.function_name\`` - Link to a function
|
||||
- `:meth:\`~Tensor.method_name\`` - Link to a method
|
||||
- `:attr:\`attribute_name\`` - Reference an attribute
|
||||
- The `~` prefix shows only the last component (e.g., `Conv2d` instead of `torch.nn.Conv2d`)
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
See :class:`~torch.nn.Conv2d` for details and output shape.
|
||||
```
|
||||
|
||||
### 5. Notes and Warnings
|
||||
|
||||
Use admonitions for important information:
|
||||
|
||||
```python
|
||||
.. note::
|
||||
This function doesn't work directly with NLLLoss,
|
||||
which expects the Log to be computed between the Softmax and itself.
|
||||
Use log_softmax instead (it's faster and has better numerical properties).
|
||||
|
||||
.. warning::
|
||||
:func:`new_tensor` always copies :attr:`data`. If you have a Tensor
|
||||
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
|
||||
or :func:`torch.Tensor.detach`.
|
||||
```
|
||||
|
||||
### 6. Args Section
|
||||
|
||||
Document all parameters with type annotations and descriptions:
|
||||
|
||||
```python
|
||||
Args:
|
||||
input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||||
weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)`
|
||||
bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
|
||||
stride (int or tuple): the stride of the convolving kernel. Can be a single number or a
|
||||
tuple `(sH, sW)`. Default: 1
|
||||
```
|
||||
|
||||
**Formatting rules:**
|
||||
- Parameter name in **lowercase**
|
||||
- Type in parentheses: `(Type)`, `(Type, optional)` for optional parameters
|
||||
- Description follows the type
|
||||
- For optional parameters, include "Default: ``value``" at the end
|
||||
- Use double backticks for inline code: ``` ``None`` ```
|
||||
- Indent continuation lines by 2 spaces
|
||||
|
||||
### 7. Keyword Args Section (if applicable)
|
||||
|
||||
Sometimes keyword arguments are documented separately:
|
||||
|
||||
```python
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
||||
Default: if None, same :class:`torch.dtype` as this tensor.
|
||||
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
||||
Default: if None, same :class:`torch.device` as this tensor.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned tensor. Default: ``False``.
|
||||
```
|
||||
|
||||
### 8. Returns Section (if needed)
|
||||
|
||||
Document the return value:
|
||||
|
||||
```python
|
||||
Returns:
|
||||
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||||
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||||
be probability distributions that sum to 1 across `dim`.
|
||||
```
|
||||
|
||||
Or simply include it in the function signature line if obvious from context.
|
||||
|
||||
### 9. Examples Section
|
||||
|
||||
Always include examples when possible:
|
||||
|
||||
```python
|
||||
Examples::
|
||||
|
||||
>>> inputs = torch.randn(33, 16, 30)
|
||||
>>> filters = torch.randn(20, 16, 5)
|
||||
>>> F.conv1d(inputs, filters)
|
||||
|
||||
>>> # With square kernels and equal stride
|
||||
>>> filters = torch.randn(8, 4, 3, 3)
|
||||
>>> inputs = torch.randn(1, 4, 5, 5)
|
||||
>>> F.conv2d(inputs, filters, padding=1)
|
||||
```
|
||||
|
||||
**Formatting rules:**
|
||||
- Use `Examples::` with double colon
|
||||
- Use `>>>` prompt for Python code
|
||||
- Include comments with `#` when helpful
|
||||
- Show actual output when it helps understanding (indent without `>>>`)
|
||||
|
||||
### 10. External References
|
||||
|
||||
Link to papers or external documentation:
|
||||
|
||||
```python
|
||||
.. _Link Name:
|
||||
https://arxiv.org/abs/1611.00712
|
||||
```
|
||||
|
||||
Reference them in text: ```See `Link Name`_```
|
||||
|
||||
## Method Types
|
||||
|
||||
### Native Python Functions
|
||||
|
||||
For regular Python functions, use a standard docstring:
|
||||
|
||||
```python
|
||||
def relu(input: Tensor, inplace: bool = False) -> Tensor:
|
||||
r"""relu(input, inplace=False) -> Tensor
|
||||
|
||||
Applies the rectified linear unit function element-wise. See
|
||||
:class:`~torch.nn.ReLU` for more details.
|
||||
"""
|
||||
# implementation
|
||||
```
|
||||
|
||||
### C-Bound Functions (using add_docstr)
|
||||
|
||||
For C-bound functions, use `_add_docstr`:
|
||||
|
||||
```python
|
||||
conv1d = _add_docstr(
|
||||
torch.conv1d,
|
||||
r"""
|
||||
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||||
|
||||
Applies a 1D convolution over an input signal composed of several input
|
||||
planes.
|
||||
|
||||
See :class:`~torch.nn.Conv1d` for details and output shape.
|
||||
|
||||
Args:
|
||||
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
||||
weight: filters of shape :math:`(\text{out\_channels} , kW)`
|
||||
...
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
### In-Place Variants
|
||||
|
||||
For in-place operations (ending with `_`), reference the original:
|
||||
|
||||
```python
|
||||
add_docstr_all(
|
||||
"abs_",
|
||||
r"""
|
||||
abs_() -> Tensor
|
||||
|
||||
In-place version of :meth:`~Tensor.abs`
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
### Alias Functions
|
||||
|
||||
For aliases, simply reference the original:
|
||||
|
||||
```python
|
||||
add_docstr_all(
|
||||
"absolute",
|
||||
r"""
|
||||
absolute() -> Tensor
|
||||
|
||||
Alias for :func:`abs`
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Shape Documentation
|
||||
|
||||
Use LaTeX math notation for tensor shapes:
|
||||
|
||||
```python
|
||||
:math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||||
```
|
||||
|
||||
### Reusable Argument Definitions
|
||||
|
||||
For commonly used arguments, define them once and reuse:
|
||||
|
||||
```python
|
||||
common_args = parse_kwargs(
|
||||
"""
|
||||
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
||||
Default: if None, same as this tensor.
|
||||
"""
|
||||
)
|
||||
|
||||
# Then use with .format():
|
||||
r"""
|
||||
...
|
||||
|
||||
Keyword args:
|
||||
{dtype}
|
||||
{device}
|
||||
""".format(**common_args)
|
||||
```
|
||||
|
||||
### Template Insertion
|
||||
|
||||
Insert reproducibility notes or other common text:
|
||||
|
||||
```python
|
||||
r"""
|
||||
{tf32_note}
|
||||
|
||||
{cudnn_reproducibility_note}
|
||||
""".format(**reproducibility_notes, **tf32_notes)
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
Here's a complete example showing all elements:
|
||||
|
||||
```python
|
||||
def gumbel_softmax(
|
||||
logits: Tensor,
|
||||
tau: float = 1,
|
||||
hard: bool = False,
|
||||
eps: float = 1e-10,
|
||||
dim: int = -1,
|
||||
) -> Tensor:
|
||||
r"""
|
||||
Sample from the Gumbel-Softmax distribution and optionally discretize.
|
||||
|
||||
Args:
|
||||
logits (Tensor): `[..., num_features]` unnormalized log probabilities
|
||||
tau (float): non-negative scalar temperature
|
||||
hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors,
|
||||
but will be differentiated as if it is the soft sample in autograd. Default: ``False``
|
||||
dim (int): A dimension along which softmax will be computed. Default: -1
|
||||
|
||||
Returns:
|
||||
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||||
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||||
be probability distributions that sum to 1 across `dim`.
|
||||
|
||||
.. note::
|
||||
This function is here for legacy reasons, may be removed from nn.Functional in the future.
|
||||
|
||||
Examples::
|
||||
>>> logits = torch.randn(20, 32)
|
||||
>>> # Sample soft categorical using reparametrization trick:
|
||||
>>> F.gumbel_softmax(logits, tau=1, hard=False)
|
||||
>>> # Sample hard categorical using "Straight-through" trick:
|
||||
>>> F.gumbel_softmax(logits, tau=1, hard=True)
|
||||
|
||||
.. _Link 1:
|
||||
https://arxiv.org/abs/1611.00712
|
||||
"""
|
||||
# implementation
|
||||
```
|
||||
|
||||
## Quick Checklist
|
||||
|
||||
When writing a PyTorch docstring, ensure:
|
||||
|
||||
- [ ] Use raw string (`r"""`)
|
||||
- [ ] Include function signature on first line
|
||||
- [ ] Provide brief description
|
||||
- [ ] Document all parameters in Args section with types
|
||||
- [ ] Include default values for optional parameters
|
||||
- [ ] Use Sphinx cross-references (`:func:`, `:class:`, `:meth:`)
|
||||
- [ ] Add mathematical formulas if applicable
|
||||
- [ ] Include at least one example in Examples section
|
||||
- [ ] Add warnings/notes for important caveats
|
||||
- [ ] Link to related module class with `:class:`
|
||||
- [ ] Use proper math notation for tensor shapes
|
||||
- [ ] Follow consistent formatting and indentation
|
||||
|
||||
## Common Sphinx Roles Reference
|
||||
|
||||
- `:class:\`~torch.nn.Module\`` - Class reference
|
||||
- `:func:\`torch.function\`` - Function reference
|
||||
- `:meth:\`~Tensor.method\`` - Method reference
|
||||
- `:attr:\`attribute\`` - Attribute reference
|
||||
- `:math:\`equation\`` - Inline math
|
||||
- `:ref:\`label\`` - Internal reference
|
||||
- ``` ``code`` ``` - Inline code (use double backticks)
|
||||
|
||||
## Additional Notes
|
||||
|
||||
- **Indentation**: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions
|
||||
- **Line length**: Try to keep lines under 100 characters when possible
|
||||
- **Periods**: End sentences with periods, but not the signature line
|
||||
- **Backticks**: Use double backticks for code: ``` ``True`` ``None`` ``False`` ```
|
||||
- **Types**: Common types are `Tensor`, `int`, `float`, `bool`, `str`, `tuple`, `list`, etc.
|
||||
6
.flake8
6
.flake8
@ -7,12 +7,16 @@ max-line-length = 120
|
||||
# C408 ignored because we like the dict keyword argument syntax
|
||||
# E501 is not flexible enough, we're using B950 instead
|
||||
ignore =
|
||||
E203,E305,E402,E501,E704,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
|
||||
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
|
||||
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
|
||||
# to line this up with executable bit
|
||||
EXE001,
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
|
||||
# these ignores are from flake8-comprehensions; please fix!
|
||||
C407,
|
||||
# these ignores are from flake8-logging-format; please fix!
|
||||
G100,G101,G200
|
||||
# these ignores are from flake8-simplify. please fix or ignore with commented reason
|
||||
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
|
||||
# SIM104 is already covered by pyupgrade ruff
|
||||
|
||||
7
.github/actions/setup-rocm/action.yml
vendored
7
.github/actions/setup-rocm/action.yml
vendored
@ -124,10 +124,3 @@ runs:
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
||||
- name: Preserve github env variables for use in docker
|
||||
shell: bash
|
||||
run: |
|
||||
env | grep '^GITHUB' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^CI' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^RUNNER' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
69bbe7363897764f9e758d851cd0340147d27f94
|
||||
1b013f5b5a87a1882eb143c26d79d091150d6a37
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
1752fe6809b74921644866275ab80244b96e80bc
|
||||
faffd5cf673615583da6517275e361cb3dbc77e6
|
||||
|
||||
5
.github/ci_configs/vllm/Dockerfile
vendored
5
.github/ci_configs/vllm/Dockerfile
vendored
@ -283,9 +283,6 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
|
||||
fi
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --pre apache-tvm-ffi==0.1.0b15
|
||||
|
||||
# Install the vllm wheel from previous stage
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/vllm/*.whl --verbose
|
||||
@ -298,8 +295,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
# TODO(elainewy): remove this once vllm commit is updated, and install flashinfer from pip
|
||||
# see https://github.com/pytorch/pytorch/pull/165274#issuecomment-3408531784
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
|
||||
|
||||
|
||||
9
.github/label_to_label.yml
vendored
9
.github/label_to_label.yml
vendored
@ -15,11 +15,6 @@
|
||||
- "module: reinplacing"
|
||||
then:
|
||||
- "module: pt2-dispatcher"
|
||||
- any:
|
||||
- "vllm-compile"
|
||||
then:
|
||||
- "module: vllm"
|
||||
- "oncall: pt2"
|
||||
- any:
|
||||
- "module: vmap"
|
||||
then:
|
||||
@ -32,6 +27,10 @@
|
||||
- "module: pt2 optimizer"
|
||||
then:
|
||||
- "module: dynamo"
|
||||
- any:
|
||||
- "module: flex attention"
|
||||
then:
|
||||
- "module: higher order operators"
|
||||
- any:
|
||||
- "module: aotinductor"
|
||||
then:
|
||||
|
||||
29
.github/labeler.yml
vendored
29
.github/labeler.yml
vendored
@ -133,32 +133,3 @@
|
||||
|
||||
"ciflow/vllm":
|
||||
- .github/ci_commit_pins/vllm.txt
|
||||
|
||||
"ciflow/b200":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
"ciflow/h100":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
"ciflow/rocm":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
1
.github/pytorch-probot.yml
vendored
1
.github/pytorch-probot.yml
vendored
@ -33,7 +33,6 @@ ciflow_push_tags:
|
||||
- ciflow/rocm
|
||||
- ciflow/rocm-mi300
|
||||
- ciflow/rocm-mi355
|
||||
- ciflow/rocm-navi31
|
||||
- ciflow/s390
|
||||
- ciflow/slow
|
||||
- ciflow/torchbench
|
||||
|
||||
30
.github/scripts/generate_binary_build_matrix.py
vendored
30
.github/scripts/generate_binary_build_matrix.py
vendored
@ -79,21 +79,21 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
|
||||
),
|
||||
"12.9": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'"
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"13.0": (
|
||||
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
|
||||
|
||||
6
.github/scripts/prepare_vllm_wheels.sh
vendored
6
.github/scripts/prepare_vllm_wheels.sh
vendored
@ -24,7 +24,7 @@ change_wheel_version() {
|
||||
local t_version=$4
|
||||
|
||||
# Extract the wheel
|
||||
${PYTHON_EXECUTABLE} -mwheel unpack $wheel
|
||||
${PYTHON_EXECUTABLE} -m wheel unpack $wheel
|
||||
|
||||
mv "${package}-${f_version}" "${package}-${t_version}"
|
||||
# Change the version from f_version to t_version in the dist-info dir
|
||||
@ -47,7 +47,7 @@ change_wheel_version() {
|
||||
popd
|
||||
|
||||
# Repack the wheel
|
||||
${PYTHON_EXECUTABLE} -mwheel pack "${package}-${t_version}"
|
||||
${PYTHON_EXECUTABLE} -m wheel pack "${package}-${t_version}"
|
||||
|
||||
# Clean up
|
||||
rm -rf "${package}-${t_version}"
|
||||
@ -85,7 +85,7 @@ repackage_wheel() {
|
||||
}
|
||||
|
||||
# Require to re-package the wheel
|
||||
${PYTHON_EXECUTABLE} -mpip install wheel==0.45.1
|
||||
${PYTHON_EXECUTABLE} -m pip install wheel==0.45.1
|
||||
|
||||
pushd externals/vllm/wheels
|
||||
for package in xformers flashinfer-python vllm; do
|
||||
|
||||
@ -26,8 +26,9 @@ name: !{{ build_environment }}
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "!{{ py_ver.strip('t') + ('.4' if '3.14' not in py_ver else '.0') }}"
|
||||
python-version: "!{{ (py_ver.strip('t') + '.4') if '3.14' not in py_ver else '3.14.0-rc.2' }}"
|
||||
freethreaded: !{{ "true" if py_ver.endswith('t') else "false" }}
|
||||
{%- endmacro %}
|
||||
|
||||
|
||||
@ -79,9 +79,9 @@ jobs:
|
||||
runs-on: "windows-11-arm64-preview"
|
||||
{%- else %}
|
||||
{%- if branches == "nightly" %}
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
{%- else %}
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge.nonephemeral"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
timeout-minutes: !{{ common.timeout_minutes_windows_binary }}
|
||||
|
||||
4
.github/workflows/_mac-test.yml
vendored
4
.github/workflows/_mac-test.yml
vendored
@ -211,7 +211,7 @@ jobs:
|
||||
$tool --version
|
||||
done
|
||||
|
||||
python3 -mpip install --no-index --no-deps dist/*.whl
|
||||
python3 -m pip install --no-index --no-deps dist/*.whl
|
||||
|
||||
set +e
|
||||
pushd "${RUNNER_TEMP}"
|
||||
@ -222,7 +222,7 @@ jobs:
|
||||
popd
|
||||
|
||||
if [ "${RC}" -ne 0 ]; then
|
||||
python3 -mpip install --ignore-installed -r "${PIP_REQUIREMENTS_FILE}"
|
||||
python3 -m pip install --ignore-installed -r "${PIP_REQUIREMENTS_FILE}"
|
||||
fi
|
||||
set -e
|
||||
|
||||
|
||||
2
.github/workflows/_win-test.yml
vendored
2
.github/workflows/_win-test.yml
vendored
@ -204,7 +204,7 @@ jobs:
|
||||
run: |
|
||||
pushd "${PYTORCH_FINAL_PACKAGE_DIR}"
|
||||
# shellcheck disable=SC2046,SC2102
|
||||
python3 -mpip install $(echo *.whl)[opt-einsum,optree] optree==0.13.0
|
||||
python3 -m pip install $(echo *.whl)[opt-einsum,optree] optree==0.13.0
|
||||
popd
|
||||
|
||||
.ci/pytorch/win-test.sh
|
||||
|
||||
4
.github/workflows/build-vllm-wheel.yml
vendored
4
.github/workflows/build-vllm-wheel.yml
vendored
@ -126,13 +126,13 @@ jobs:
|
||||
"${MANYLINUX_IMAGE}"
|
||||
)
|
||||
|
||||
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -mpip install \
|
||||
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -m pip install \
|
||||
--pre torch torchvision torchaudio \
|
||||
--index-url "https://download.pytorch.org/whl/nightly/${BUILD_DEVICE}"
|
||||
|
||||
# I wonder if there is a command to both download and install the wheels
|
||||
# in one go
|
||||
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -mpip download \
|
||||
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -m pip download \
|
||||
--pre torch torchvision torchaudio \
|
||||
--index-url "https://download.pytorch.org/whl/nightly/${BUILD_DEVICE}"
|
||||
|
||||
|
||||
14
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
14
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -224,7 +224,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -473,7 +473,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -722,7 +722,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -971,7 +971,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1220,7 +1220,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1469,7 +1469,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1718,7 +1718,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
14
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
14
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
@ -259,7 +259,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-test: # Testing
|
||||
@ -925,7 +925,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-test: # Testing
|
||||
@ -1591,7 +1591,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-test: # Testing
|
||||
@ -2257,7 +2257,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-test: # Testing
|
||||
@ -2923,7 +2923,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-test: # Testing
|
||||
@ -3589,7 +3589,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-test: # Testing
|
||||
@ -4255,7 +4255,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-test: # Testing
|
||||
|
||||
1
.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
generated
vendored
1
.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
generated
vendored
@ -63,6 +63,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.10.4"
|
||||
freethreaded: false
|
||||
|
||||
25
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
generated
vendored
25
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
generated
vendored
@ -59,6 +59,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.10.4"
|
||||
freethreaded: false
|
||||
@ -105,7 +106,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
@ -168,6 +169,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.11.4"
|
||||
freethreaded: false
|
||||
@ -214,7 +216,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
@ -277,6 +279,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.12.4"
|
||||
freethreaded: false
|
||||
@ -323,7 +326,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
@ -386,6 +389,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.13.4"
|
||||
freethreaded: false
|
||||
@ -432,7 +436,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
@ -495,6 +499,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.13.4"
|
||||
freethreaded: true
|
||||
@ -541,7 +546,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
@ -604,8 +609,9 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.14.0"
|
||||
python-version: "3.14.0-rc.2"
|
||||
freethreaded: false
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
@ -650,7 +656,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
@ -713,8 +719,9 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.14.0"
|
||||
python-version: "3.14.0-rc.2"
|
||||
freethreaded: true
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
@ -759,7 +766,7 @@ jobs:
|
||||
SMOKE_TEST_PARAMS=""
|
||||
|
||||
# shellcheck disable=SC2086
|
||||
python -mvenv test_venv
|
||||
python -m venv test_venv
|
||||
source test_venv/bin/activate
|
||||
pip install "$PYTORCH_FINAL_PACKAGE_DIR"/*.whl numpy -v
|
||||
|
||||
|
||||
8
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
8
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
@ -44,7 +44,7 @@ jobs:
|
||||
libtorch-cpu-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -291,7 +291,7 @@ jobs:
|
||||
libtorch-cuda12_6-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -541,7 +541,7 @@ jobs:
|
||||
libtorch-cuda12_8-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -791,7 +791,7 @@ jobs:
|
||||
libtorch-cuda13_0-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
|
||||
8
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
8
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
@ -44,7 +44,7 @@ jobs:
|
||||
libtorch-cpu-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -291,7 +291,7 @@ jobs:
|
||||
libtorch-cuda12_6-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -541,7 +541,7 @@ jobs:
|
||||
libtorch-cuda12_8-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -791,7 +791,7 @@ jobs:
|
||||
libtorch-cuda13_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
|
||||
70
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
70
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
@ -44,7 +44,7 @@ jobs:
|
||||
wheel-py3_10-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -279,7 +279,7 @@ jobs:
|
||||
wheel-py3_10-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -517,7 +517,7 @@ jobs:
|
||||
wheel-py3_10-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -755,7 +755,7 @@ jobs:
|
||||
wheel-py3_10-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -993,7 +993,7 @@ jobs:
|
||||
wheel-py3_10-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -1229,7 +1229,7 @@ jobs:
|
||||
wheel-py3_11-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -1464,7 +1464,7 @@ jobs:
|
||||
wheel-py3_11-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -1702,7 +1702,7 @@ jobs:
|
||||
wheel-py3_11-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -1940,7 +1940,7 @@ jobs:
|
||||
wheel-py3_11-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -2178,7 +2178,7 @@ jobs:
|
||||
wheel-py3_11-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -2414,7 +2414,7 @@ jobs:
|
||||
wheel-py3_12-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -2649,7 +2649,7 @@ jobs:
|
||||
wheel-py3_12-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -2887,7 +2887,7 @@ jobs:
|
||||
wheel-py3_12-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -3125,7 +3125,7 @@ jobs:
|
||||
wheel-py3_12-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -3363,7 +3363,7 @@ jobs:
|
||||
wheel-py3_12-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -3599,7 +3599,7 @@ jobs:
|
||||
wheel-py3_13-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -3834,7 +3834,7 @@ jobs:
|
||||
wheel-py3_13-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -4072,7 +4072,7 @@ jobs:
|
||||
wheel-py3_13-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -4310,7 +4310,7 @@ jobs:
|
||||
wheel-py3_13-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -4548,7 +4548,7 @@ jobs:
|
||||
wheel-py3_13-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -4784,7 +4784,7 @@ jobs:
|
||||
wheel-py3_13t-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -5019,7 +5019,7 @@ jobs:
|
||||
wheel-py3_13t-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -5257,7 +5257,7 @@ jobs:
|
||||
wheel-py3_13t-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -5495,7 +5495,7 @@ jobs:
|
||||
wheel-py3_13t-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -5733,7 +5733,7 @@ jobs:
|
||||
wheel-py3_13t-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -5969,7 +5969,7 @@ jobs:
|
||||
wheel-py3_14-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -6204,7 +6204,7 @@ jobs:
|
||||
wheel-py3_14-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -6442,7 +6442,7 @@ jobs:
|
||||
wheel-py3_14-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -6680,7 +6680,7 @@ jobs:
|
||||
wheel-py3_14-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -6918,7 +6918,7 @@ jobs:
|
||||
wheel-py3_14-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -7154,7 +7154,7 @@ jobs:
|
||||
wheel-py3_14t-cpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -7389,7 +7389,7 @@ jobs:
|
||||
wheel-py3_14t-cuda12_6-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -7627,7 +7627,7 @@ jobs:
|
||||
wheel-py3_14t-cuda12_8-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -7865,7 +7865,7 @@ jobs:
|
||||
wheel-py3_14t-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -8103,7 +8103,7 @@ jobs:
|
||||
wheel-py3_14t-xpu-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
|
||||
1
.github/workflows/inductor-periodic.yml
vendored
1
.github/workflows/inductor-periodic.yml
vendored
@ -88,6 +88,7 @@ jobs:
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
|
||||
15
.github/workflows/periodic.yml
vendored
15
.github/workflows/periodic.yml
vendored
@ -147,16 +147,15 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
|
||||
cuda-arch-list: 8.9
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
3
.github/workflows/pull.yml
vendored
3
.github/workflows/pull.yml
vendored
@ -347,8 +347,7 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# This should sync with the build in xpu.yml but xpu uses a larger runner
|
||||
# sync-tag: linux-xpu-n-build
|
||||
sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
|
||||
1
.github/workflows/rocm-mi300.yml
vendored
1
.github/workflows/rocm-mi300.yml
vendored
@ -45,6 +45,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi300
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
|
||||
1
.github/workflows/rocm-mi355.yml
vendored
1
.github/workflows/rocm-mi355.yml
vendored
@ -42,6 +42,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi355
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
|
||||
75
.github/workflows/rocm-navi31.yml
vendored
75
.github/workflows/rocm-navi31.yml
vendored
@ -1,75 +0,0 @@
|
||||
name: rocm-navi31
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/rocm-navi31/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
# We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs.
|
||||
# Also run less frequently on weekends.
|
||||
- cron: 45 */2 * * 1-5
|
||||
- cron: 45 4,12 * * 0,6
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions: read-all
|
||||
|
||||
jobs:
|
||||
target-determination:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: before-test
|
||||
uses: ./.github/workflows/target_determination.yml
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3_10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: >-
|
||||
${{ github.event_name == 'schedule' && 'test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
|
||||
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
|
||||
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
|
||||
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
|
||||
inductor/test_flex_attention inductor/test_max_autotune' || '' }}
|
||||
secrets: inherit
|
||||
38
.github/workflows/rocm.yml
vendored
38
.github/workflows/rocm.yml
vendored
@ -26,23 +26,11 @@ jobs:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
@ -71,3 +59,29 @@ jobs:
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-gfx1100-test:
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3_10-gfx1100
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
]}
|
||||
tests-to-include: >
|
||||
test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
|
||||
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
|
||||
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
|
||||
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
|
||||
inductor/test_flex_attention inductor/test_max_autotune
|
||||
secrets: inherit
|
||||
|
||||
149
.github/workflows/trunk-tagging.yml
vendored
149
.github/workflows/trunk-tagging.yml
vendored
@ -58,10 +58,8 @@ jobs:
|
||||
else
|
||||
COMMIT_SHA="${{ github.sha }}"
|
||||
fi
|
||||
{
|
||||
echo "sha=${COMMIT_SHA}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
echo "sha=${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Validate commit SHA
|
||||
run: |
|
||||
@ -89,7 +87,7 @@ jobs:
|
||||
echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)"
|
||||
fi
|
||||
|
||||
- name: Create and push tag(s) with retry
|
||||
- name: Create and push tag with retry
|
||||
id: check_tag
|
||||
env:
|
||||
TAG_NAME: ${{ steps.commit.outputs.tag_name }}
|
||||
@ -114,23 +112,14 @@ jobs:
|
||||
return 1
|
||||
}
|
||||
|
||||
# Counters for summary reporting
|
||||
created_count=0
|
||||
skipped_count=0
|
||||
failed_count=0
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
echo "exists=true" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Always write outputs once on exit
|
||||
finish() {
|
||||
set +e
|
||||
if [ -n "${GITHUB_OUTPUT:-}" ]; then
|
||||
{
|
||||
echo "created_count=${created_count}"
|
||||
echo "skipped_count=${skipped_count}"
|
||||
echo "failed_count=${failed_count}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
fi
|
||||
}
|
||||
trap finish EXIT
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
# Retry configuration
|
||||
MAX_RETRIES=5
|
||||
@ -205,111 +194,31 @@ jobs:
|
||||
}
|
||||
}
|
||||
|
||||
# New behavior for push events: enumerate commits in the push and tag each one.
|
||||
# For workflow_dispatch, retain existing single-SHA behavior.
|
||||
|
||||
# Always fetch tags once up front to improve idempotency in loops
|
||||
git fetch origin --tags --quiet || true
|
||||
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
BEFORE_SHA="${{ github.event.before }}"
|
||||
AFTER_SHA="${{ github.sha }}" # same as event.after
|
||||
|
||||
# List commits introduced by this push (old..new), oldest first for stable ordering
|
||||
commits_file="$(mktemp)"
|
||||
git rev-list --reverse "${BEFORE_SHA}..${AFTER_SHA}" > "${commits_file}"
|
||||
|
||||
if [ ! -s "${commits_file}" ]; then
|
||||
echo "No new commits found between ${BEFORE_SHA}..${AFTER_SHA}; nothing to tag."
|
||||
rm -f "${commits_file}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
commit_count="$(wc -l < "${commits_file}" | tr -d ' ')"
|
||||
echo "Found ${commit_count} commit(s) to tag for push:"
|
||||
while IFS= read -r sha; do
|
||||
printf ' %s\n' "${sha}"
|
||||
done < "${commits_file}"
|
||||
|
||||
while IFS= read -r sha; do
|
||||
TAG_NAME="trunk/${sha}"
|
||||
COMMIT_SHA="${sha}"
|
||||
|
||||
# If tag already exists locally or remotely, skip (idempotent)
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag ${TAG_NAME} already exists - skipping"
|
||||
skipped_count=$((skipped_count + 1))
|
||||
continue
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=$((created_count + 1))
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts for ${TAG_NAME}"
|
||||
failed_count=$((failed_count + 1))
|
||||
fi
|
||||
done < "${commits_file}"
|
||||
|
||||
rm -f "${commits_file}"
|
||||
|
||||
if [ "${failed_count}" -gt 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
# Execute with retry
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
echo "exists=false" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
else
|
||||
# workflow_dispatch path (single SHA tagging preserved)
|
||||
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
skipped_count=1
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=1
|
||||
exit 0
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
failed_count=1
|
||||
exit 1
|
||||
fi
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Tag creation summary
|
||||
if: always()
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
echo "Trigger: push on main"
|
||||
echo "Created: ${{ steps.check_tag.outputs.created_count }}"
|
||||
echo "Skipped (already existed): ${{ steps.check_tag.outputs.skipped_count }}"
|
||||
echo "Failed: ${{ steps.check_tag.outputs.failed_count }}"
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
echo "✅ Completed tagging for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
else
|
||||
echo "❌ Some tags failed to create for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
fi
|
||||
if [ "${{ steps.check_tag.outputs.exists }}" = "true" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
elif [ "${{ job.status }}" = "success" ]; then
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
else
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
if [ "${{ steps.check_tag.outputs.created_count }}" = "0" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
else
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
else
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
|
||||
34
.github/workflows/trunk.yml
vendored
34
.github/workflows/trunk.yml
vendored
@ -190,40 +190,6 @@ jobs:
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
name: inductor-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -374,7 +374,6 @@ third_party/ruy/
|
||||
third_party/glog/
|
||||
|
||||
# Virtualenv
|
||||
.venv/
|
||||
venv/
|
||||
|
||||
# Log files
|
||||
|
||||
@ -833,7 +833,8 @@ exclude_patterns = [
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/grep_linter.py',
|
||||
'--pattern=(cudaSetDevice|cudaGetDevice)\\(',
|
||||
'--pattern=cudaSetDevice(',
|
||||
'--pattern=cudaGetDevice(',
|
||||
'--linter-name=RAWCUDADEVICE',
|
||||
'--error-name=raw CUDA API usage',
|
||||
"""--error-description=\
|
||||
@ -1137,8 +1138,11 @@ command = [
|
||||
[[linter]]
|
||||
code = 'WORKFLOWSYNC'
|
||||
include_patterns = [
|
||||
'.github/workflows/*.yml',
|
||||
'.github/workflows/*.yaml',
|
||||
'.github/workflows/pull.yml',
|
||||
'.github/workflows/trunk.yml',
|
||||
'.github/workflows/periodic.yml',
|
||||
'.github/workflows/mac-mps.yml',
|
||||
'.github/workflows/slow.yml',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
|
||||
14
CODEOWNERS
14
CODEOWNERS
@ -201,17 +201,3 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
/torch/csrc/stable/ @janeyx99 @mikaylagawarecki
|
||||
/torch/headeronly/ @janeyx99
|
||||
/torch/header_only_apis.txt @janeyx99
|
||||
|
||||
# FlexAttention
|
||||
/torch/nn/attention/flex_attention.py @drisspg
|
||||
/torch/_higher_order_ops/flex_attention.py @drisspg
|
||||
/torch/_inductor/kernel/flex/ @drisspg
|
||||
/torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg
|
||||
/test/inductor/test_flex_attention.py @drisspg
|
||||
/test/inductor/test_flex_decoding.py @drisspg
|
||||
|
||||
# Low Precision GEMMs
|
||||
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
|
||||
/test/test_scaled_matmul_cuda.py @drisspg @slayton58
|
||||
|
||||
@ -39,7 +39,7 @@ RUN chmod +x ~/miniconda.sh && \
|
||||
bash ~/miniconda.sh -b -p /opt/conda && \
|
||||
rm ~/miniconda.sh && \
|
||||
/opt/conda/bin/conda install -y python=${PYTHON_VERSION} cmake conda-build pyyaml numpy ipython && \
|
||||
/opt/conda/bin/python -mpip install -r requirements.txt && \
|
||||
/opt/conda/bin/python -m pip install -r requirements.txt && \
|
||||
/opt/conda/bin/conda clean -ya
|
||||
|
||||
FROM dev-base as submodule-update
|
||||
|
||||
@ -289,15 +289,14 @@ IF(USE_FBGEMM_GENAI)
|
||||
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
set(fbgemm_genai_cuh
|
||||
set(fbgemm_genai_mx8mx8bf16_grouped
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
|
||||
"${FBGEMM_GENAI_SRCS}/"
|
||||
)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${fbgemm_genai_cuh}
|
||||
${fbgemm_genai_mx8mx8bf16_grouped}
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
@ -314,14 +313,13 @@ IF(USE_FBGEMM_GENAI)
|
||||
|
||||
# Add additional HIPCC compiler flags for performance
|
||||
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
|
||||
-mllvm
|
||||
-amdgpu-coerce-illegal-types=1
|
||||
-mllvm
|
||||
-enable-post-misched=0
|
||||
-mllvm
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
if(DEFINED ROCM_VERSION_DEV AND ROCM_VERSION_DEV VERSION_LESS "7.2.0")
|
||||
list(PREPEND FBGEMM_GENAI_EXTRA_HIPCC_FLAGS -mllvm -amdgpu-coerce-illegal-types=1)
|
||||
endif()
|
||||
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
|
||||
@ -19,7 +19,6 @@
|
||||
#include <ATen/detail/MPSHooksInterface.h>
|
||||
#include <ATen/detail/MTIAHooksInterface.h>
|
||||
#include <ATen/detail/PrivateUse1HooksInterface.h>
|
||||
#include <ATen/detail/XLAHooksInterface.h>
|
||||
#include <ATen/detail/XPUHooksInterface.h>
|
||||
#include <c10/core/QEngine.h>
|
||||
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
||||
@ -89,8 +88,6 @@ class TORCH_API Context {
|
||||
return at::detail::getHIPHooks();
|
||||
} else if (opt_device_type == at::kHPU) {
|
||||
return at::detail::getHPUHooks();
|
||||
} else if (opt_device_type == at::kXLA) {
|
||||
return at::detail::getXLAHooks();
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
@ -199,7 +196,7 @@ class TORCH_API Context {
|
||||
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
|
||||
}
|
||||
static bool hasXLA() {
|
||||
return detail::getXLAHooks().hasXLA();
|
||||
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
|
||||
}
|
||||
static bool hasXPU() {
|
||||
return detail::getXPUHooks().hasXPU();
|
||||
|
||||
@ -39,7 +39,7 @@ struct HostBlock {
|
||||
};
|
||||
|
||||
template <typename B>
|
||||
struct alignas(hardware_destructive_interference_size) FreeBlockList {
|
||||
struct alignas(64) FreeBlockList {
|
||||
std::mutex mutex_;
|
||||
std::deque<B*> list_;
|
||||
};
|
||||
@ -122,7 +122,7 @@ struct TORCH_API HostStats {
|
||||
// Struct containing memory allocator summary statistics for host, as they
|
||||
// are staged for reporting. This is a temporary struct that is used to
|
||||
// avoid locking the allocator while collecting stats.
|
||||
struct alignas(hardware_destructive_interference_size) HostStatsStaged {
|
||||
struct alignas(64) HostStatsStaged {
|
||||
std::mutex timing_mutex_;
|
||||
// COUNT: total allocations (active + free)
|
||||
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
|
||||
@ -669,7 +669,7 @@ struct CachingHostAllocatorImpl {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for query_event");
|
||||
}
|
||||
|
||||
alignas(hardware_destructive_interference_size) std::mutex blocks_mutex_;
|
||||
alignas(64) std::mutex blocks_mutex_;
|
||||
ska::flat_hash_set<B*> blocks_; // block list
|
||||
ska::flat_hash_map<void*, B*> ptr_to_block_;
|
||||
|
||||
@ -677,17 +677,17 @@ struct CachingHostAllocatorImpl {
|
||||
// size. This allows us to quickly find a free block of the right size.
|
||||
// We use deque to store per size free list and guard the list with its own
|
||||
// mutex.
|
||||
alignas(hardware_destructive_interference_size) std::vector<FreeBlockList<B>> free_list_ =
|
||||
alignas(64) std::vector<FreeBlockList<B>> free_list_ =
|
||||
std::vector<FreeBlockList<B>>(MAX_SIZE_INDEX);
|
||||
|
||||
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
|
||||
alignas(64) std::mutex events_mutex_;
|
||||
std::deque<std::pair<E, B*>> events_; // event queue paired with block
|
||||
|
||||
// Indicates whether the object is active.
|
||||
// Set to false in the destructor to signal background threads to stop.
|
||||
std::atomic<bool> active_{true};
|
||||
protected:
|
||||
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
|
||||
alignas(64) HostStatsStaged stats_;
|
||||
};
|
||||
|
||||
struct TORCH_API HostAllocator : public at::Allocator {
|
||||
|
||||
@ -59,7 +59,9 @@ struct TORCH_API Generator {
|
||||
|
||||
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
|
||||
: impl_(std::move(gen_impl)) {
|
||||
TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported");
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const Generator& rhs) const {
|
||||
|
||||
@ -111,7 +111,9 @@ class TORCH_API TensorBase {
|
||||
explicit TensorBase(
|
||||
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
|
||||
: impl_(std::move(tensor_impl)) {
|
||||
TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported");
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("TensorImpl with nullptr is not supported");
|
||||
}
|
||||
}
|
||||
TensorBase(const TensorBase&) = default;
|
||||
TensorBase(TensorBase&&) noexcept = default;
|
||||
|
||||
@ -109,10 +109,6 @@ TORCH_LIBRARY_IMPL(_, AutogradHPU, m) {
|
||||
m.fallback(AUTOGRAD_FALLBACK);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL(_, AutogradPrivateUse1, m) {
|
||||
m.fallback(AUTOGRAD_FALLBACK);
|
||||
}
|
||||
|
||||
#undef AUTOGRAD_FALLBACK
|
||||
|
||||
} // namespace
|
||||
|
||||
@ -442,17 +442,11 @@ RegistrationHandleRAII Dispatcher::registerFallback(DispatchKey dispatchKey, Ker
|
||||
|
||||
auto idx = getDispatchTableIndexForDispatchKey(dispatchKey);
|
||||
TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx);
|
||||
// NB: Perserve BC for registering fallback for AutogradPrivateUse1 multiple time,
|
||||
// refer to https://github.com/pytorch/pytorch/issues/163979 for more informations.
|
||||
TORCH_CHECK(
|
||||
dispatchKey == DispatchKey::AutogradPrivateUse1 ||
|
||||
!backendFallbackKernels_[idx].kernel.isValid(),
|
||||
"Tried to register multiple backend fallbacks for the same dispatch key ",
|
||||
dispatchKey,
|
||||
"; previous registration ",
|
||||
backendFallbackKernels_[idx].debug,
|
||||
", new registration ",
|
||||
debug);
|
||||
!backendFallbackKernels_[idx].kernel.isValid(),
|
||||
"Tried to register multiple backend fallbacks for the same dispatch key ", dispatchKey, "; previous registration ",
|
||||
backendFallbackKernels_[idx].debug, ", new registration ", debug
|
||||
);
|
||||
// NB: inferred function schema is always nullptr for fallbacks, as fallbacks
|
||||
// cannot be unboxed
|
||||
backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug));
|
||||
|
||||
@ -68,7 +68,11 @@ Symbol InternedStrings::_symbol(const std::string& s) {
|
||||
return it->second;
|
||||
|
||||
auto pos = s.find("::");
|
||||
TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s);
|
||||
if (pos == std::string::npos) {
|
||||
std::stringstream ss;
|
||||
ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
Symbol ns = _symbol("namespaces::" + s.substr(0, pos));
|
||||
|
||||
Symbol sym(sym_to_info_.size());
|
||||
@ -117,7 +121,12 @@ std::string Symbol::domainString() const {
|
||||
}
|
||||
|
||||
Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) {
|
||||
TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'");
|
||||
if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) {
|
||||
std::ostringstream ss;
|
||||
ss << "Symbol: domain string is expected to be prefixed with '"
|
||||
<< domain_prefix() << "', e.g. 'org.pytorch.aten'";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
std::string qualString = d.substr(domain_prefix().size()) + "::" + s;
|
||||
return fromQualString(qualString);
|
||||
}
|
||||
|
||||
@ -7,7 +7,6 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <ATen/core/stack.h>
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
#include <c10/util/hash.h>
|
||||
#include <c10/util/irange.h>
|
||||
@ -413,7 +412,7 @@ size_t IValue::hash(const IValue& v) {
|
||||
case Tag::Enum:
|
||||
case Tag::Stream:
|
||||
case Tag::Uninitialized:
|
||||
TORCH_CHECK(false,
|
||||
throw std::runtime_error(
|
||||
"unhashable type: '" + v.type()->repr_str() + "'");
|
||||
}
|
||||
// the above switch should be exhaustive
|
||||
|
||||
@ -8,7 +8,6 @@
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <ATen/core/qualified_name.h>
|
||||
#include <c10/util/TypeList.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <c10/core/SymFloat.h>
|
||||
#include <c10/core/SymBool.h>
|
||||
@ -117,8 +116,10 @@ struct SingleElementType : public SharedType {
|
||||
|
||||
protected:
|
||||
SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) {
|
||||
TORCH_CHECK(this->elem, c10::str(
|
||||
if (!this->elem) {
|
||||
throw std::runtime_error(c10::str(
|
||||
"Can not create ", typeKindToString(Kind), " with None type"));
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
@ -415,12 +416,16 @@ struct TORCH_API SymbolicShape {
|
||||
}
|
||||
|
||||
ShapeSymbol operator[](size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
ShapeSymbol at(size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -515,7 +520,9 @@ struct VaryingShape {
|
||||
}
|
||||
|
||||
const std::optional<T> &operator[](size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -950,7 +957,9 @@ struct TORCH_API DictType : public SharedType {
|
||||
|
||||
TypePtr createWithContained(
|
||||
std::vector<TypePtr> contained_types) const override {
|
||||
TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types");
|
||||
if (contained_types.size() != 2) {
|
||||
throw std::runtime_error("Expected 2 contained types");
|
||||
}
|
||||
return create(std::move(contained_types.at(0)), std::move(contained_types.at(1)));
|
||||
}
|
||||
|
||||
|
||||
@ -185,11 +185,11 @@ struct TORCH_API Type {
|
||||
: repr_(nullptr) {}
|
||||
|
||||
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p)
|
||||
: repr_(makeSingletonSharedPtr(p.get())) {}
|
||||
: repr_(p) {}
|
||||
|
||||
template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p)
|
||||
: repr_(makeSingletonSharedPtr(static_cast<T*>(p.get()))) {}
|
||||
: repr_(SingletonTypePtr<T>(p.get())) {}
|
||||
|
||||
|
||||
// We need to support construction from T* for pybind. The problem
|
||||
@ -202,8 +202,8 @@ struct TORCH_API Type {
|
||||
// Case 2: if T is exactly Type, we need to do a dynamic_cast to
|
||||
// check if it's a SharedType and do the right thing.
|
||||
//
|
||||
// Case 3: Otherwise, T is not a SharedType. Use a singleton
|
||||
// pointer.
|
||||
// Case 3: Otherwise, T is not a SharedType. (debug-check this
|
||||
// assumption!) Use a singleton pointer.
|
||||
|
||||
template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {}
|
||||
@ -211,15 +211,15 @@ struct TORCH_API Type {
|
||||
template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p) {
|
||||
if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) {
|
||||
repr_ = shared_p->shared_from_this();
|
||||
repr_ = Repr(shared_p->shared_from_this());
|
||||
} else {
|
||||
repr_ = makeSingletonSharedPtr(p);
|
||||
repr_ = Repr(p);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p)
|
||||
: repr_(makeSingletonSharedPtr(p)) {
|
||||
: repr_(p) {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr);
|
||||
}
|
||||
|
||||
@ -230,19 +230,19 @@ struct TORCH_API Type {
|
||||
~SingletonOrSharedTypePtr() = default;
|
||||
|
||||
T* get() const {
|
||||
return repr_.get();
|
||||
return repr_.isSharedAndNonNull() ? repr_.shared_.repr_.get() : static_cast<T*>(repr_.rawRepr().first);
|
||||
}
|
||||
|
||||
operator bool() const {
|
||||
return repr_ != nullptr;
|
||||
return repr_.isNonNull();
|
||||
}
|
||||
|
||||
bool operator==(std::nullptr_t) const {
|
||||
return repr_ == nullptr;
|
||||
return !repr_.isNonNull();
|
||||
}
|
||||
|
||||
bool operator!=(std::nullptr_t) const {
|
||||
return repr_ != nullptr;
|
||||
return repr_.isNonNull();
|
||||
}
|
||||
|
||||
template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true>
|
||||
@ -255,14 +255,138 @@ struct TORCH_API Type {
|
||||
}
|
||||
|
||||
private:
|
||||
// Use shared_ptr's aliasing constructor to create a non-owning pointer
|
||||
// to a singleton. The lifetime is tied to the null shared_ptr, so there's
|
||||
// no reference counting overhead for the singleton itself.
|
||||
static std::shared_ptr<T> makeSingletonSharedPtr(T* ptr) {
|
||||
return std::shared_ptr<T>(std::shared_ptr<T>(), ptr);
|
||||
}
|
||||
// NOTE: SharedPtrWrapper exists to work around a baffling bug in
|
||||
// nvcc; see comment in destroy() below.
|
||||
struct SharedPtrWrapper {
|
||||
SharedPtrWrapper(std::shared_ptr<T> &&x)
|
||||
: repr_(std::move(x)) {}
|
||||
std::shared_ptr<T> repr_;
|
||||
};
|
||||
union Repr {
|
||||
Repr() : Repr(nullptr) {}
|
||||
|
||||
std::shared_ptr<T> repr_;
|
||||
explicit Repr(std::shared_ptr<T> x)
|
||||
: shared_(std::move(x)) {}
|
||||
|
||||
explicit Repr(std::nullptr_t)
|
||||
: singletonRepr_(nullptr) {}
|
||||
|
||||
explicit Repr(SingletonTypePtr<T> p)
|
||||
: singletonRepr_(p.get()) {}
|
||||
|
||||
~Repr() {
|
||||
destroy();
|
||||
}
|
||||
|
||||
// NOTE: the only non-UB way to access our null state is through
|
||||
// rawRepr(), because our copy operation doesn't preserve which
|
||||
// union member is active for null pointers.
|
||||
Repr(const Repr& rhs) {
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
new (&shared_) SharedPtrWrapper(rhs.shared_);
|
||||
} else {
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
Repr(Repr&& rhs) noexcept {
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
|
||||
} else {
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
Repr& operator=(const Repr& rhs) {
|
||||
if (&rhs == this) {
|
||||
return *this;
|
||||
}
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
if (isSharedAndNonNull()) {
|
||||
shared_ = rhs.shared_;
|
||||
} else {
|
||||
new (&shared_) SharedPtrWrapper(rhs.shared_);
|
||||
}
|
||||
} else {
|
||||
if (isSharedAndNonNull()) {
|
||||
destroy();
|
||||
}
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
Repr& operator=(Repr&& rhs) noexcept {
|
||||
if (&rhs == this) {
|
||||
return *this;
|
||||
}
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
if (isSharedAndNonNull()) {
|
||||
shared_ = std::move(rhs.shared_);
|
||||
} else {
|
||||
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
|
||||
}
|
||||
} else {
|
||||
if (isSharedAndNonNull()) {
|
||||
destroy();
|
||||
}
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
SharedPtrWrapper shared_;
|
||||
|
||||
struct SingletonRepr {
|
||||
explicit SingletonRepr(T* s) : singleton_(s) {}
|
||||
T* singleton_;
|
||||
void* unused_ = nullptr;
|
||||
} singletonRepr_;
|
||||
struct RawRepr {
|
||||
void* first;
|
||||
void* nullIfSingleton_;
|
||||
};
|
||||
|
||||
// It is UB to read the singleton part of Repr if it was
|
||||
// constructed as a shared_ptr and vice versa, but memcpying out
|
||||
// the representation is always OK, so here's an accessor to obey
|
||||
// the letter of the law.
|
||||
RawRepr rawRepr() const {
|
||||
RawRepr repr{};
|
||||
memcpy(&repr, reinterpret_cast<const char *>(this), sizeof(RawRepr));
|
||||
return repr;
|
||||
}
|
||||
|
||||
bool isNonNull() const {
|
||||
auto repr = rawRepr();
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(repr.nullIfSingleton_ == nullptr || repr.first != nullptr);
|
||||
return repr.first != nullptr;
|
||||
}
|
||||
|
||||
bool isSharedAndNonNull() const {
|
||||
return rawRepr().nullIfSingleton_ != nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
void destroy() {
|
||||
if (isSharedAndNonNull()) {
|
||||
// Without SharedPtrWrapper, this line would read
|
||||
// `shared_.~shared_ptr()` and nvcc would complain with
|
||||
// "error: expected primary-expression before '>' token"
|
||||
// referring to the "t" in "shared_ptr". SharedPtrWrapper
|
||||
// exists to work around this compiler bug.
|
||||
shared_.~SharedPtrWrapper();
|
||||
}
|
||||
}
|
||||
} repr_;
|
||||
};
|
||||
|
||||
using TypePtr = SingletonOrSharedTypePtr<Type>;
|
||||
|
||||
@ -8,7 +8,6 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <array>
|
||||
@ -827,7 +826,9 @@ TupleType::TupleType(
|
||||
: NamedType(TypeKind::TupleType, std::move(name)),
|
||||
elements_(std::move(elements)),
|
||||
has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) {
|
||||
TORCH_CHECK(v, "Can not create tuple with None type");
|
||||
if (!v) {
|
||||
throw std::runtime_error("Can not create tuple with None type");
|
||||
}
|
||||
return v->hasFreeVariables();
|
||||
})), schema_(std::move(schema)) {
|
||||
|
||||
|
||||
@ -104,6 +104,71 @@ class Vectorized<float> {
|
||||
}
|
||||
return b;
|
||||
}
|
||||
// Implementation is picked from
|
||||
// https://github.com/ARM-software/ComputeLibrary/blob/v25.01/src/core/NEON/SVEMath.inl#L105
|
||||
inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) const {
|
||||
const auto c1 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3f7ffff6)); // x^1: 0x1.ffffecp-1f
|
||||
const auto c2 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3efffedb)); // x^2: 0x1.fffdb6p-2f
|
||||
const auto c3 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3e2aaf33)); // x^3: 0x1.555e66p-3f
|
||||
const auto c4 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3d2b9f17)); // x^4: 0x1.573e2ep-5f
|
||||
const auto c5 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3c072010)); // x^5: 0x1.0e4020p-7f
|
||||
const auto shift = svreinterpret_f32_u32(
|
||||
svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
|
||||
const auto inv_ln2 = svreinterpret_f32_u32(
|
||||
svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
|
||||
const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(
|
||||
0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
|
||||
const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(
|
||||
0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
|
||||
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
|
||||
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
|
||||
const auto zero = svdup_n_f32(0.f);
|
||||
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
|
||||
// Range reduction:
|
||||
// e^x = 2^n * e^r
|
||||
// where:
|
||||
// n = floor(x / ln(2))
|
||||
// r = x - n * ln(2)
|
||||
//
|
||||
// By adding x / ln(2) with 2^23 + 127 (shift):
|
||||
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127
|
||||
// forces decimal part
|
||||
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e.
|
||||
// n) + 127 will occupy the whole fraction part of z in FP32 format.
|
||||
// Subtracting 2^23 + 127 (shift) from z will result in the integer part
|
||||
// of x / ln(2) (i.e. n) because the decimal part has been pushed out
|
||||
// and lost.
|
||||
// * The addition of 127 makes the FP32 fraction part of z ready to be
|
||||
// used as the exponent
|
||||
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
|
||||
const auto z = svmla_f32_z(pg, shift, x, inv_ln2);
|
||||
const auto n = svsub_f32_z(pg, z, shift);
|
||||
const auto scale = svreinterpret_f32_u32(
|
||||
svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n
|
||||
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy
|
||||
// beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in
|
||||
// term of accuracy and performance.
|
||||
const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi);
|
||||
const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo);
|
||||
// Compute the truncated Taylor series of e^r.
|
||||
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
|
||||
const auto r2 = svmul_f32_z(pg, r, r);
|
||||
const auto p1 = svmul_f32_z(pg, c1, r);
|
||||
const auto p23 = svmla_f32_z(pg, c2, c3, r);
|
||||
const auto p45 = svmla_f32_z(pg, c4, c5, r);
|
||||
const auto p2345 = svmla_f32_z(pg, p23, p45, r2);
|
||||
const auto p12345 = svmla_f32_z(pg, p1, p2345, r2);
|
||||
auto poly = svmla_f32_z(pg, scale, p12345, scale);
|
||||
// Handle underflow and overflow.
|
||||
poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly);
|
||||
poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly);
|
||||
return poly;
|
||||
}
|
||||
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
||||
if (count == size())
|
||||
return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr));
|
||||
@ -248,41 +313,11 @@ class Vectorized<float> {
|
||||
return USE_SLEEF(
|
||||
Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1));
|
||||
}
|
||||
// Implementation copied from Arm Optimized Routines:
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/sve/expf.c
|
||||
Vectorized<float> exp_u20() const {
|
||||
// special case to handle special inputs that are too large or too small
|
||||
// i.e. where there's at least one element x, s.t. |x| >= 87.3...
|
||||
svbool_t is_special_case = svacgt(svptrue_b32(), values, 0x1.5d5e2ap+6f);
|
||||
if (svptest_any(svptrue_b32(), is_special_case)) {
|
||||
return exp();
|
||||
}
|
||||
const svfloat32_t ln2_hi = svdup_n_f32(0x1.62e4p-1f);
|
||||
const svfloat32_t ln2_lo = svdup_n_f32(0x1.7f7d1cp-20f);
|
||||
const svfloat32_t c1 = svdup_n_f32(0.5f);
|
||||
const svfloat32_t inv_ln2 = svdup_n_f32(0x1.715476p+0f);
|
||||
|
||||
const float shift = 0x1.803f8p17f;
|
||||
|
||||
/* n = round(x/(ln2/N)). */
|
||||
svfloat32_t z = svmad_x(svptrue_b32(), inv_ln2, values, shift);
|
||||
svfloat32_t n = svsub_x(svptrue_b32(), z, shift);
|
||||
|
||||
/* r = x - n*ln2/N. */
|
||||
svfloat32_t r = values;
|
||||
r = svmls_x(svptrue_b32(), r, n, ln2_hi);
|
||||
r = svmls_x(svptrue_b32(), r, n, ln2_lo);
|
||||
|
||||
/* scale = 2^(n/N). */
|
||||
svfloat32_t scale = svexpa(svreinterpret_u32(z));
|
||||
|
||||
/* poly(r) = exp(r) - 1 ~= r + 0.5 r^2. */
|
||||
svfloat32_t r2 = svmul_x(svptrue_b32(), r, r);
|
||||
svfloat32_t poly = svmla_x(svptrue_b32(), r, r2, c1);
|
||||
return svmla_x(svptrue_b32(), scale, scale, poly);
|
||||
return exp();
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp_u20();
|
||||
return exp();
|
||||
}
|
||||
Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF(
|
||||
{ return Vectorized<float>(Sleef_fmodfx_sve(values, q)); },
|
||||
@ -418,11 +453,9 @@ class Vectorized<float> {
|
||||
ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH);
|
||||
|
||||
// Step 2: Calculate exp(2 * x), where x is the clamped value.
|
||||
// svmul_f32_z computes 2 * x, and exp_u20() computes the exponential of
|
||||
// the result (via Vectorized<float>, then auto-converts back to
|
||||
// svfloat32_t).
|
||||
svfloat32_t exp2x =
|
||||
Vectorized<float>(svmul_f32_z(ptrue, CONST_2, x)).exp_u20();
|
||||
// svmul_f32_z computes 2 * x, and svexp_f32_z computes the exponential of
|
||||
// the result.
|
||||
svfloat32_t exp2x = svexp_f32_z(ptrue, svmul_f32_z(ptrue, CONST_2, x));
|
||||
|
||||
// Step 3: Calculate the numerator of the tanh function, which is exp(2x)
|
||||
// - 1.
|
||||
|
||||
@ -6,11 +6,9 @@
|
||||
#ifdef __aarch64__
|
||||
#if !defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_double_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_uint_aarch64.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
@ -354,47 +354,9 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
|
||||
Vectorized frac() const;
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
Vectorized<c10::BFloat16> neg() const {
|
||||
return -values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> reciprocal() const {
|
||||
return 1.0f / values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> operator==(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values == other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator!=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values != other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values < other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values <= other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values > other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values >= other.values;
|
||||
}
|
||||
#else
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
|
||||
@ -402,7 +364,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=)
|
||||
#endif
|
||||
|
||||
#undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
#undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
@ -451,52 +412,28 @@ template <>
|
||||
Vectorized<c10::BFloat16> inline operator+(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x + y;
|
||||
#else
|
||||
return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator-(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x - y;
|
||||
#else
|
||||
return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator*(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x * y;
|
||||
#else
|
||||
return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator/(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x / y;
|
||||
#else
|
||||
return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
@ -607,19 +544,12 @@ Vectorized<c10::BFloat16> inline fmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y + z;
|
||||
#else
|
||||
// NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16! Also,
|
||||
// vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered
|
||||
// elements, not the bottom and top half, so they don't seem
|
||||
// particularly useful here. Ideally we would include dot product in
|
||||
// the Vectorized interface...
|
||||
return a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -627,15 +557,8 @@ Vectorized<c10::BFloat16> inline fnmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y + z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -643,15 +566,8 @@ Vectorized<c10::BFloat16> inline fmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -659,15 +575,8 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
@ -5,114 +5,6 @@
|
||||
namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
|
||||
// Enable auto-vectorization for GCC-13+ and clang-17+
|
||||
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
|
||||
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
|
||||
|
||||
template <typename from_type, typename to_type>
|
||||
inline void convertImpl(
|
||||
const from_type* __restrict src,
|
||||
to_type* __restrict dst,
|
||||
int64_t n) {
|
||||
uint64_t len = static_cast<uint64_t>(n);
|
||||
for (uint64_t i = 0; i < len; i++) {
|
||||
dst[i] = static_cast<to_type>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#define CONVERT_TEMPLATE(from_type, to_type) \
|
||||
template <> \
|
||||
inline void convert(const from_type* src, to_type* dst, int64_t n) { \
|
||||
return convertImpl<from_type, to_type>(src, dst, n); \
|
||||
}
|
||||
|
||||
CONVERT_TEMPLATE(uint8_t, uint8_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int8_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int16_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int32_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int64_t)
|
||||
CONVERT_TEMPLATE(uint8_t, float)
|
||||
CONVERT_TEMPLATE(uint8_t, double)
|
||||
CONVERT_TEMPLATE(int8_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int8_t, int8_t)
|
||||
CONVERT_TEMPLATE(int8_t, int16_t)
|
||||
CONVERT_TEMPLATE(int8_t, int32_t)
|
||||
CONVERT_TEMPLATE(int8_t, int64_t)
|
||||
CONVERT_TEMPLATE(int8_t, float)
|
||||
CONVERT_TEMPLATE(int8_t, double)
|
||||
CONVERT_TEMPLATE(int16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int16_t, int8_t)
|
||||
CONVERT_TEMPLATE(int16_t, int16_t)
|
||||
CONVERT_TEMPLATE(int16_t, int32_t)
|
||||
CONVERT_TEMPLATE(int16_t, int64_t)
|
||||
CONVERT_TEMPLATE(int16_t, float)
|
||||
CONVERT_TEMPLATE(int16_t, double)
|
||||
CONVERT_TEMPLATE(int32_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int32_t, int8_t)
|
||||
CONVERT_TEMPLATE(int32_t, int16_t)
|
||||
CONVERT_TEMPLATE(int32_t, int32_t)
|
||||
CONVERT_TEMPLATE(int32_t, int64_t)
|
||||
CONVERT_TEMPLATE(int32_t, float)
|
||||
CONVERT_TEMPLATE(int32_t, double)
|
||||
CONVERT_TEMPLATE(int64_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int64_t, int8_t)
|
||||
CONVERT_TEMPLATE(int64_t, int16_t)
|
||||
CONVERT_TEMPLATE(int64_t, int32_t)
|
||||
CONVERT_TEMPLATE(int64_t, int64_t)
|
||||
CONVERT_TEMPLATE(int64_t, float)
|
||||
CONVERT_TEMPLATE(int64_t, double)
|
||||
CONVERT_TEMPLATE(float, uint8_t)
|
||||
CONVERT_TEMPLATE(float, int8_t)
|
||||
CONVERT_TEMPLATE(float, int16_t)
|
||||
CONVERT_TEMPLATE(float, int32_t)
|
||||
CONVERT_TEMPLATE(float, int64_t)
|
||||
CONVERT_TEMPLATE(float, float)
|
||||
CONVERT_TEMPLATE(float, double)
|
||||
CONVERT_TEMPLATE(double, uint8_t)
|
||||
CONVERT_TEMPLATE(double, int8_t)
|
||||
CONVERT_TEMPLATE(double, int16_t)
|
||||
CONVERT_TEMPLATE(double, int32_t)
|
||||
CONVERT_TEMPLATE(double, int64_t)
|
||||
CONVERT_TEMPLATE(double, float)
|
||||
CONVERT_TEMPLATE(double, double)
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
CONVERT_TEMPLATE(float16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(float16_t, int8_t)
|
||||
CONVERT_TEMPLATE(float16_t, int16_t)
|
||||
CONVERT_TEMPLATE(float16_t, int32_t)
|
||||
CONVERT_TEMPLATE(float16_t, int64_t)
|
||||
CONVERT_TEMPLATE(float16_t, float16_t)
|
||||
CONVERT_TEMPLATE(float16_t, float)
|
||||
CONVERT_TEMPLATE(float16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, float16_t)
|
||||
CONVERT_TEMPLATE(int8_t, float16_t)
|
||||
CONVERT_TEMPLATE(int16_t, float16_t)
|
||||
CONVERT_TEMPLATE(int32_t, float16_t)
|
||||
CONVERT_TEMPLATE(int64_t, float16_t)
|
||||
CONVERT_TEMPLATE(float, float16_t)
|
||||
CONVERT_TEMPLATE(double, float16_t)
|
||||
#endif
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
CONVERT_TEMPLATE(bfloat16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int32_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int64_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, float)
|
||||
CONVERT_TEMPLATE(bfloat16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int32_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int64_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(float, bfloat16_t)
|
||||
CONVERT_TEMPLATE(double, bfloat16_t)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
|
||||
@ -1,586 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <cmath>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
template <>
|
||||
struct is_vec_specialized_for<double> : std::bool_constant<true> {};
|
||||
|
||||
template <>
|
||||
class Vectorized<double> {
|
||||
private:
|
||||
float64x2_t values;
|
||||
|
||||
public:
|
||||
using value_type = double;
|
||||
using size_type = int;
|
||||
static constexpr size_type size() {
|
||||
return 2;
|
||||
}
|
||||
Vectorized() {
|
||||
values = vdupq_n_f64(0.0);
|
||||
}
|
||||
Vectorized(float64x2_t v) : values(v) {}
|
||||
Vectorized(double val) {
|
||||
values = vdupq_n_f64(val);
|
||||
}
|
||||
template <
|
||||
typename... Args,
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>>
|
||||
Vectorized(Args... vals) {
|
||||
__at_align__ double buffer[size()] = {vals...};
|
||||
values = vld1q_f64(buffer);
|
||||
}
|
||||
operator float64x2_t() const {
|
||||
return values;
|
||||
}
|
||||
template <int64_t mask>
|
||||
static Vectorized<double> blend(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint64x2_t maskArray = {
|
||||
(mask & 1ULL) ? 0xFFFFFFFFFFFFFFFF : 0,
|
||||
(mask & 2ULL) ? 0xFFFFFFFFFFFFFFFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_f64(maskArray, b.values, a.values);
|
||||
}
|
||||
static Vectorized<double> blendv(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& mask_) {
|
||||
return vbslq_f64(vreinterpretq_u64_f64(mask_.values), b.values, a.values);
|
||||
}
|
||||
template <typename step_t>
|
||||
static Vectorized<double> arange(
|
||||
double base = 0.,
|
||||
step_t step = static_cast<step_t>(1)) {
|
||||
return {base, base + static_cast<double>(step)};
|
||||
}
|
||||
static inline Vectorized<double> set(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
int64_t count = size()) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 2) {
|
||||
return b;
|
||||
} else {
|
||||
float64x2_t c = {b.values[0], a.values[1]};
|
||||
return c;
|
||||
}
|
||||
}
|
||||
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
||||
if (count == size()) {
|
||||
return vld1q_f64(reinterpret_cast<const double*>(ptr));
|
||||
} else if (count == 1) {
|
||||
float64x1_t x = vld1_f64(reinterpret_cast<const double*>(ptr));
|
||||
float64x1_t z = {0.0};
|
||||
return vcombine_f64(x, z);
|
||||
} else {
|
||||
return vdupq_n_f64(0.0);
|
||||
}
|
||||
}
|
||||
void store(void* ptr, int64_t count = size()) const {
|
||||
if (count == size()) {
|
||||
vst1q_f64(reinterpret_cast<double*>(ptr), values);
|
||||
} else if (count == 1) {
|
||||
vst1_f64(reinterpret_cast<double*>(ptr), vget_low_f64(values));
|
||||
}
|
||||
}
|
||||
const double& operator[](int idx) const = delete;
|
||||
double& operator[](int idx) = delete;
|
||||
int64_t zero_mask() const {
|
||||
// returns an integer mask where all zero elements are translated to 1-bit
|
||||
// and others are translated to 0-bit
|
||||
uint64x2_t cmpReg = vceqzq_f64(values);
|
||||
uint64x2_t mask = {1, 2};
|
||||
uint64x2_t res = vandq_u64(cmpReg, mask);
|
||||
return res[0] | res[1];
|
||||
}
|
||||
Vectorized<double> isnan() const {
|
||||
// NaN check
|
||||
return vreinterpretq_f64_u32(
|
||||
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, values))));
|
||||
}
|
||||
bool has_inf_nan() const {
|
||||
Vectorized<double> x = vsubq_f64(values, values);
|
||||
float64x2_t r = x.isnan();
|
||||
uint64x2_t u = vreinterpretq_u64_f64(r);
|
||||
return u[0] | u[1];
|
||||
}
|
||||
Vectorized<double> map(double (*f)(double)) const {
|
||||
float64x2_t result;
|
||||
result[0] = f(values[0]);
|
||||
result[1] = f(values[1]);
|
||||
return result;
|
||||
}
|
||||
Vectorized<double> map2(
|
||||
const Vectorized<double>& second,
|
||||
double (*const f)(double, double)) const {
|
||||
float64x2_t result;
|
||||
result[0] = f(values[0], second.values[0]);
|
||||
result[1] = f(values[1], second.values[1]);
|
||||
return result;
|
||||
}
|
||||
Vectorized<double> abs() const {
|
||||
return vabsq_f64(values);
|
||||
}
|
||||
Vectorized<double> angle() const {
|
||||
auto zero = Vectorized<double>(0.0);
|
||||
auto pi = Vectorized<double>(c10::pi<double>);
|
||||
auto tmp = blendv(zero, pi, vreinterpretq_f64_u64(vcltzq_f64(values)));
|
||||
return blendv(tmp, *this, isnan());
|
||||
}
|
||||
Vectorized<double> real() const {
|
||||
return *this;
|
||||
}
|
||||
Vectorized<double> imag() const {
|
||||
return Vectorized<double>(0.0);
|
||||
}
|
||||
Vectorized<double> conj() const {
|
||||
return *this;
|
||||
}
|
||||
Vectorized<double> acos() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_acosd2_u10(values)), map(std::acos));
|
||||
}
|
||||
Vectorized<double> acosh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_acoshd2_u10(values)), map(std::acosh));
|
||||
}
|
||||
Vectorized<double> asin() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_asind2_u10(values)), map(std::asin));
|
||||
}
|
||||
Vectorized<double> asinh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_asinhd2_u10(values)), map(std::asinh));
|
||||
}
|
||||
Vectorized<double> atan() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_atand2_u10(values)), map(std::atan));
|
||||
}
|
||||
Vectorized<double> atanh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_atanhd2_u10(values)), map(std::atanh));
|
||||
}
|
||||
Vectorized<double> atan2(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_atan2d2_u10(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::atan2(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> copysign(const Vectorized<double>& sign) const {
|
||||
USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_copysignd2(values, sign)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_sign[size()];
|
||||
store(tmp);
|
||||
sign.store(tmp_sign);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> erf() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_erfd2_u10(values)), map(std::erf));
|
||||
}
|
||||
Vectorized<double> erfc() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_erfcd2_u15(values)), map(std::erfc));
|
||||
}
|
||||
Vectorized<double> exp() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_expd2_u10(values)), map(std::exp));
|
||||
}
|
||||
Vectorized<double> exp2() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_exp2d2_u10(values)), map(std::exp2));
|
||||
}
|
||||
Vectorized<double> expm1() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_expm1d2_u10(values)), map(std::expm1));
|
||||
}
|
||||
Vectorized<double> fmod(const Vectorized<double>& q) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_fmodd2(values, q)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_q[size()];
|
||||
store(tmp);
|
||||
q.store(tmp_q);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> hypot(const Vectorized<double>& b) const {
|
||||
USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_hypotd2_u05(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> i0() const {
|
||||
return map(calc_i0);
|
||||
}
|
||||
Vectorized<double> nextafter(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_nextafterd2(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); ++i) {
|
||||
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> log() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_logd2_u10(values)), map(std::log));
|
||||
}
|
||||
Vectorized<double> log2() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log2d2_u10(values)), map(std::log2));
|
||||
}
|
||||
Vectorized<double> log10() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log10d2_u10(values)), map(std::log10));
|
||||
}
|
||||
Vectorized<double> log1p() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log1pd2_u10(values)), map(std::log1p));
|
||||
}
|
||||
Vectorized<double> frac() const;
|
||||
Vectorized<double> sin() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_sind2_u10(values)), map(std::sin));
|
||||
}
|
||||
Vectorized<double> sinh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_sinhd2_u10(values)), map(std::sinh));
|
||||
}
|
||||
Vectorized<double> cos() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_cosd2_u10(values)), map(std::cos));
|
||||
}
|
||||
Vectorized<double> cosh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_coshd2_u10(values)), map(std::cosh));
|
||||
}
|
||||
Vectorized<double> pow(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_powd2_u10(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::pow(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} // Comparison using the _CMP_**_OQ predicate.
|
||||
// `O`: get false if an operand is NaN
|
||||
// `Q`: do not raise if an operand is NaN
|
||||
Vectorized<double> tan() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_tand2_u10(values)), map(std::tan));
|
||||
}
|
||||
Vectorized<double> tanh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_tanhd2_u10(values)), map(std::tanh));
|
||||
}
|
||||
Vectorized<double> lgamma() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_lgammad2_u10(values)), map(std::lgamma));
|
||||
}
|
||||
Vectorized<double> erfinv() const {
|
||||
return map(calc_erfinv);
|
||||
}
|
||||
Vectorized<double> exp_u20() const {
|
||||
return exp();
|
||||
}
|
||||
Vectorized<double> fexp_u20() const {
|
||||
return exp();
|
||||
}
|
||||
Vectorized<double> i0e() const {
|
||||
return map(calc_i0e);
|
||||
}
|
||||
Vectorized<double> digamma() const {
|
||||
return map(calc_digamma);
|
||||
}
|
||||
Vectorized<double> igamma(const Vectorized<double>& x) const {
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_x[size()];
|
||||
store(tmp);
|
||||
x.store(tmp_x);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
}
|
||||
Vectorized<double> igammac(const Vectorized<double>& x) const {
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_x[size()];
|
||||
store(tmp);
|
||||
x.store(tmp_x);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
}
|
||||
Vectorized<double> ceil() const {
|
||||
return vrndpq_f64(values);
|
||||
}
|
||||
Vectorized<double> floor() const {
|
||||
return vrndmq_f64(values);
|
||||
}
|
||||
Vectorized<double> neg() const {
|
||||
return vnegq_f64(values);
|
||||
}
|
||||
Vectorized<double> round() const {
|
||||
return vrndiq_f64(values);
|
||||
}
|
||||
Vectorized<double> trunc() const {
|
||||
return vrndq_f64(values);
|
||||
}
|
||||
Vectorized<double> sqrt() const {
|
||||
return vsqrtq_f64(values);
|
||||
}
|
||||
Vectorized<double> reciprocal() const {
|
||||
return vdivq_f64(vdupq_n_f64(1.0), values);
|
||||
}
|
||||
Vectorized<double> rsqrt() const {
|
||||
return vdivq_f64(vdupq_n_f64(1.0), vsqrtq_f64(values));
|
||||
}
|
||||
double reduce_add() const {
|
||||
return vaddvq_f64(values);
|
||||
}
|
||||
double reduce_max() const {
|
||||
return vmaxvq_f64(values);
|
||||
}
|
||||
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vceqq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
||||
float64x2_t r0 = vreinterpretq_f64_u32(
|
||||
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, other.values))));
|
||||
return Vectorized<double>(r0);
|
||||
}
|
||||
|
||||
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcltq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcleq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcgtq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcgeq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> eq(const Vectorized<double>& other) const;
|
||||
Vectorized<double> ne(const Vectorized<double>& other) const;
|
||||
Vectorized<double> gt(const Vectorized<double>& other) const;
|
||||
Vectorized<double> ge(const Vectorized<double>& other) const;
|
||||
Vectorized<double> lt(const Vectorized<double>& other) const;
|
||||
Vectorized<double> le(const Vectorized<double>& other) const;
|
||||
};
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator+(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vaddq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator-(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vsubq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator*(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vmulq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator/(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vdivq_f64(a, b);
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
Vectorized<double> inline Vectorized<double>::frac() const {
|
||||
return *this - this->trunc();
|
||||
}
|
||||
|
||||
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
||||
// either input is a NaN.
|
||||
template <>
|
||||
Vectorized<double> inline maximum(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vmaxq_f64(a, b);
|
||||
}
|
||||
|
||||
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
||||
// either input is a NaN.
|
||||
template <>
|
||||
Vectorized<double> inline minimum(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vminq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& min,
|
||||
const Vectorized<double>& max) {
|
||||
return vminq_f64(max, vmaxq_f64(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp_max(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& max) {
|
||||
return vminq_f64(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp_min(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& min) {
|
||||
return vmaxq_f64(min, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator&(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
vandq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator|(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
vorrq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator^(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
veorq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::eq(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this == other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::ne(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this != other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::gt(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this > other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::ge(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this >= other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::lt(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this < other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::le(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this <= other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fmadd(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmaq_f64(c, a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fnmadd(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmsq_f64(c, a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fmsub(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmaq_f64(vnegq_f64(c), a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fnmsub(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmsq_f64(vnegq_f64(c), a, b);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
@ -307,49 +307,11 @@ class Vectorized<float> {
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp)
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2)
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
|
||||
// Implementation copied from Arm Optimized Routine
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
|
||||
Vectorized<float> exp_u20() const {
|
||||
// bail out to sleef if it's a special case:
|
||||
// i.e. there's an input s.t. |input| > 87.3....
|
||||
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
|
||||
uint32x4_t cmp = vcagtq_f32(values, special_bound);
|
||||
if (vpaddd_u64(vreinterpretq_u64_u32(cmp)) != 0) {
|
||||
return exp();
|
||||
}
|
||||
|
||||
const float32x4_t inv_ln2 = vdupq_n_f32(0x1.715476p+0f);
|
||||
const float ln2_hi = 0x1.62e4p-1f;
|
||||
const float ln2_lo = 0x1.7f7d1cp-20f;
|
||||
const float c0 = 0x1.0e4020p-7f;
|
||||
const float c2 = 0x1.555e66p-3f;
|
||||
const float32x4_t ln2_c02 = {ln2_hi, ln2_lo, c0, c2};
|
||||
|
||||
const uint32x4_t exponent_bias = vdupq_n_u32(0x3f800000);
|
||||
const float32x4_t c1 = vdupq_n_f32(0x1.573e2ep-5f);
|
||||
const float32x4_t c3 = vdupq_n_f32(0x1.fffdb6p-2f);
|
||||
const float32x4_t c4 = vdupq_n_f32(0x1.ffffecp-1f);
|
||||
|
||||
/* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)]
|
||||
x = ln2*n + r, with r in [-ln2/2, ln2/2]. */
|
||||
|
||||
float32x4_t n = vrndaq_f32(vmulq_f32(values, inv_ln2));
|
||||
float32x4_t r = vfmsq_laneq_f32(values, n, ln2_c02, 0);
|
||||
r = vfmsq_laneq_f32(r, n, ln2_c02, 1);
|
||||
uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_s32(vcvtq_s32_f32(n)), 23);
|
||||
float32x4_t scale = vreinterpretq_f32_u32(vaddq_u32(e, exponent_bias));
|
||||
|
||||
float32x4_t r2 = vmulq_f32(r, r);
|
||||
float32x4_t p = vfmaq_laneq_f32(c1, r, ln2_c02, 2);
|
||||
float32x4_t q = vfmaq_laneq_f32(c3, r, ln2_c02, 3);
|
||||
q = vfmaq_f32(q, p, r2);
|
||||
p = vmulq_f32(c4, r);
|
||||
float32x4_t poly = vfmaq_f32(p, q, r2);
|
||||
|
||||
return vfmaq_f32(scale, poly, scale);
|
||||
return exp();
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp_u20();
|
||||
return exp();
|
||||
}
|
||||
DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME(
|
||||
fmod,
|
||||
@ -578,6 +540,42 @@ inline Vectorized<float> Vectorized<float>::le(
|
||||
return (*this <= other) & Vectorized<float>(1.0f);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const float* src, int32_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<float>::size());
|
||||
i += Vectorized<float>::size()) {
|
||||
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<int32_t>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<float>::size());
|
||||
i += Vectorized<float>::size()) {
|
||||
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<float>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<float> inline fmadd(
|
||||
const Vectorized<float>& a,
|
||||
|
||||
@ -569,6 +569,46 @@ inline Vectorized<c10::Half> Vectorized<c10::Half>::le(
|
||||
return (*this <= other) & Vectorized<c10::Half>(1);
|
||||
}
|
||||
|
||||
// These are global functions, so the defaults in vec_base.h should
|
||||
// work fine if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC is not available.
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
template <>
|
||||
inline void convert(const float16_t* src, int16_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
|
||||
i += Vectorized<c10::Half>::size()) {
|
||||
vst1q_s16(dst + i, vcvtq_s16_f16(vld1q_f16(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<int16_t>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const int16_t* src, float16_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
|
||||
i += Vectorized<c10::Half>::size()) {
|
||||
vst1q_f16(dst + i, vcvtq_f16_s16(vld1q_s16(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<float16_t>(src[i]);
|
||||
}
|
||||
}
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
template <>
|
||||
Vectorized<c10::Half> inline fmadd(
|
||||
const Vectorized<c10::Half>& a,
|
||||
|
||||
@ -1,378 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
#define VEC_UINT_NEON_TEMPLATE(vl, bit) \
|
||||
template <> \
|
||||
struct is_vec_specialized_for<uint##bit##_t> : std::bool_constant<true> {}; \
|
||||
\
|
||||
template <> \
|
||||
class Vectorized<uint##bit##_t> { \
|
||||
using neon_type = uint##bit##x##vl##_t; \
|
||||
\
|
||||
private: \
|
||||
neon_type values; \
|
||||
\
|
||||
public: \
|
||||
using value_type = uint##bit##_t; \
|
||||
using size_type = int; \
|
||||
static constexpr size_type size() { \
|
||||
return vl; \
|
||||
} \
|
||||
Vectorized() { \
|
||||
values = vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized(neon_type v) : values(v) {} \
|
||||
Vectorized(uint##bit##_t val); \
|
||||
template < \
|
||||
typename... Args, \
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
|
||||
Vectorized(Args... vals) { \
|
||||
__at_align__ uint##bit##_t buffer[size()] = {vals...}; \
|
||||
values = vld1q_u##bit(buffer); \
|
||||
} \
|
||||
operator neon_type() const { \
|
||||
return values; \
|
||||
} \
|
||||
static Vectorized<uint##bit##_t> loadu( \
|
||||
const void* ptr, \
|
||||
uint64_t count = size()); \
|
||||
void store(void* ptr, uint64_t count = size()) const; \
|
||||
template <uint64_t mask> \
|
||||
static Vectorized<uint##bit##_t> blend( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b); \
|
||||
static Vectorized<uint##bit##_t> blendv( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
const Vectorized<uint##bit##_t>& mask_) { \
|
||||
return vbslq_u##bit(mask_.values, b, a); \
|
||||
} \
|
||||
template <typename step_t> \
|
||||
static Vectorized<uint##bit##_t> arange( \
|
||||
value_type base = 0, \
|
||||
step_t step = static_cast<step_t>(1)); \
|
||||
static Vectorized<uint##bit##_t> set( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
uint64_t count = size()); \
|
||||
const uint##bit##_t& operator[](uint idx) const = delete; \
|
||||
uint##bit##_t& operator[](uint idx) = delete; \
|
||||
Vectorized<uint##bit##_t> abs() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> real() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> imag() const { \
|
||||
return vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> conj() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> neg() const { \
|
||||
return vreinterpretq_u##bit##_s##bit( \
|
||||
vnegq_s##bit(vreinterpretq_s##bit##_u##bit(values))); \
|
||||
} \
|
||||
uint##bit##_t reduce_add() const { \
|
||||
return vaddvq_u##bit(values); \
|
||||
} \
|
||||
uint##bit##_t reduce_max() const; \
|
||||
Vectorized<uint##bit##_t> operator==( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vceqq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator!=( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> operator<( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcltq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator<=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcleq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgtq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgeq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> le( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
}; \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator+( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vaddq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator-( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vsubq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator&( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vandq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator|( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vorrq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator^( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return veorq_u##bit(a, b); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this == other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this != other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this > other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this >= other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this < other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::le( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this <= other) & Vectorized<uint##bit##_t>(1); \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_TEMPLATE(16, 8)
|
||||
|
||||
inline uint8_t Vectorized<uint8_t>::reduce_max() const {
|
||||
return vmaxvq_u8(values);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator*(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmulq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) {
|
||||
return vmvnq_u8(a);
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::operator!=(
|
||||
const Vectorized<uint8_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline minimum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vminq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline maximum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmaxq_u8(a, b);
|
||||
}
|
||||
|
||||
template <uint64_t mask>
|
||||
Vectorized<uint8_t> Vectorized<uint8_t>::blend(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
(mask & 1LL) ? 0xFF : 0,
|
||||
(mask & 2LL) ? 0xFF : 0,
|
||||
(mask & 4LL) ? 0xFF : 0,
|
||||
(mask & 8LL) ? 0xFF : 0,
|
||||
(mask & 16LL) ? 0xFF : 0,
|
||||
(mask & 32LL) ? 0xFF : 0,
|
||||
(mask & 64LL) ? 0xFF : 0,
|
||||
(mask & 128LL) ? 0xFF : 0,
|
||||
(mask & 256LL) ? 0xFF : 0,
|
||||
(mask & 512LL) ? 0xFF : 0,
|
||||
(mask & 1024LL) ? 0xFF : 0,
|
||||
(mask & 2048LL) ? 0xFF : 0,
|
||||
(mask & 4096LL) ? 0xFF : 0,
|
||||
(mask & 8192LL) ? 0xFF : 0,
|
||||
(mask & 16384LL) ? 0xFF : 0,
|
||||
(mask & 32768LL) ? 0xFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
#define VEC_UINT_NEON_OPS(vl, bit) \
|
||||
inline Vectorized<uint##bit##_t>::Vectorized(uint##bit##_t val) { \
|
||||
values = vdupq_n_u##bit(val); \
|
||||
} \
|
||||
inline Vectorized<uint##bit##_t> Vectorized<uint##bit##_t>::loadu( \
|
||||
const void* ptr, uint64_t count) { \
|
||||
if (count == size()) { \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(ptr)); \
|
||||
} else { \
|
||||
__at_align__ uint##bit##_t tmp_values[size()]; \
|
||||
for (const auto i : c10::irange(size())) { \
|
||||
tmp_values[i] = 0; \
|
||||
} \
|
||||
std::memcpy( \
|
||||
tmp_values, \
|
||||
reinterpret_cast<const uint##bit##_t*>(ptr), \
|
||||
count * sizeof(uint##bit##_t)); \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(tmp_values)); \
|
||||
} \
|
||||
} \
|
||||
inline void Vectorized<uint##bit##_t>::store(void* ptr, uint64_t count) \
|
||||
const { \
|
||||
if (count == size()) { \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(ptr), values); \
|
||||
} else { \
|
||||
uint##bit##_t tmp_values[size()]; \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(tmp_values), values); \
|
||||
std::memcpy(ptr, tmp_values, count * sizeof(uint##bit##_t)); \
|
||||
} \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_OPS(16, 8)
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::arange(
|
||||
uint8_t base,
|
||||
step_t step) {
|
||||
const Vectorized<uint8_t> base_vec(base);
|
||||
const Vectorized<uint8_t> step_vec(step);
|
||||
const uint8x16_t step_sizes = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
return vmlaq_u8(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator>>(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return x >> z;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator<<(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return vshlq_u8(a, vreinterpretq_s8_u8(z));
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::set(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b,
|
||||
uint64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 16) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
|
||||
0};
|
||||
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator/(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t y = b;
|
||||
return x / y;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_max(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_min(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
@ -1390,7 +1390,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8));
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
@ -1412,7 +1412,7 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
|
||||
|
||||
@ -1,192 +0,0 @@
|
||||
#include <ATen/cuda/CUDAGreenContext.h>
|
||||
|
||||
namespace at::cuda {
|
||||
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int driver_version;
|
||||
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
|
||||
TORCH_CHECK(
|
||||
driver_version >= 12080, "cuda driver too old to use green context!");
|
||||
CUcontext pctx = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
|
||||
if (C10_UNLIKELY(!pctx)) {
|
||||
TORCH_WARN(
|
||||
"Attempted to create a green context but"
|
||||
" there was no primary context! Creating a primary context...");
|
||||
|
||||
cudaFree(0);
|
||||
}
|
||||
|
||||
CUdevice device;
|
||||
device_id_ = device_id;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
|
||||
|
||||
// Get device resources
|
||||
CUdevResource device_resource;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
|
||||
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
|
||||
|
||||
// Split resources
|
||||
std::vector<CUdevResource> result(1);
|
||||
auto result_data = result.data();
|
||||
unsigned int nb_groups = 1;
|
||||
CUdevResource remaining;
|
||||
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
|
||||
result_data,
|
||||
&nb_groups,
|
||||
&device_resource,
|
||||
&remaining,
|
||||
0, // default flags
|
||||
num_sms));
|
||||
|
||||
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
|
||||
|
||||
// Generate resource descriptor
|
||||
CUdevResourceDesc desc;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
|
||||
&desc, result_data, 1));
|
||||
|
||||
// Create green context
|
||||
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
|
||||
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
|
||||
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
|
||||
|
||||
// Convert to regular context
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
|
||||
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
std::unique_ptr<GreenContext> GreenContext::create(
|
||||
uint32_t num_sms,
|
||||
std::optional<uint32_t> device_id) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (!device_id.has_value()) {
|
||||
device_id = at::cuda::current_device();
|
||||
}
|
||||
return std::make_unique<GreenContext>(device_id.value(), num_sms);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Implement move operations
|
||||
GreenContext::GreenContext(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (this != &other) {
|
||||
// Clean up current resources
|
||||
if (green_ctx_) {
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (current == context_) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"attempting to overwrite current green ctx "
|
||||
"when it is active!");
|
||||
}
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
}
|
||||
|
||||
// Take ownership of other's resources
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
}
|
||||
return *this;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext::~GreenContext() noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext GreenContext::getContext() const {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
return context_;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx GreenContext::getGreenContext() const {
|
||||
return green_ctx_;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void GreenContext::setContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
auto current_stream = c10::cuda::getCurrentCUDAStream();
|
||||
parent_stream_ = current_stream.stream();
|
||||
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(current_stream);
|
||||
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (!current) {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_));
|
||||
} else {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_));
|
||||
}
|
||||
// currently hardcodes the new green context to use the default stream
|
||||
// TODO(eqy): consider creating a new stream if e.g., it allows interop
|
||||
// with CUDA Graph captures etc.
|
||||
auto default_stream = c10::cuda::getDefaultCUDAStream();
|
||||
ev.block(default_stream);
|
||||
c10::cuda::setCurrentCUDAStream(default_stream);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
void GreenContext::popContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
// see above note about stream being hardcoded to the default stream
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(c10::cuda::getCurrentCUDAStream());
|
||||
CUcontext popped;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped));
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
popped == context_, "expected popped context to be the current ctx");
|
||||
ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
} // namespace at::cuda
|
||||
@ -1,53 +0,0 @@
|
||||
#pragma once
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <cuda.h>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#define CUDA_HAS_GREEN_CONTEXT 1
|
||||
#else
|
||||
#define CUDA_HAS_GREEN_CONTEXT 0
|
||||
#endif
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
class TORCH_CUDA_CPP_API GreenContext {
|
||||
public:
|
||||
GreenContext(uint32_t device_id, uint32_t num_sms);
|
||||
|
||||
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
|
||||
|
||||
// Delete copy constructor and assignment
|
||||
GreenContext(const GreenContext&) = delete;
|
||||
GreenContext& operator=(const GreenContext&) = delete;
|
||||
|
||||
// Implement move operations
|
||||
GreenContext(GreenContext&& other) noexcept;
|
||||
GreenContext& operator=(GreenContext&& other) noexcept;
|
||||
~GreenContext() noexcept;
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext getContext() const;
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx getGreenContext() const;
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void setContext();
|
||||
|
||||
void popContext();
|
||||
|
||||
private:
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int32_t device_id_ = -1;
|
||||
CUgreenCtx green_ctx_ = nullptr;
|
||||
CUcontext context_ = nullptr;
|
||||
cudaStream_t parent_stream_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
} // namespace at::cuda
|
||||
@ -1,270 +0,0 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace at::cuda::scaled {
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8,
|
||||
* Each needs a single scale, {Tensorwise (float)}
|
||||
*/
|
||||
bool check_tensorwise_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scale each, {Tensorwise, float}
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::TensorWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::TensorWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8,
|
||||
* Each needs scales, {Rowwise (float)}
|
||||
*/
|
||||
bool check_rowwise_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scale each, {Tensorwise, float}
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {RowWise, dp32} for A & B
|
||||
if (recipe_a[0] != ScalingType::RowWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::RowWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Two-level scaling, canonical NVFP4
|
||||
* Both inputs must be fp4
|
||||
* A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)}
|
||||
*/
|
||||
bool check_nvfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2 scales, 2 recipes for each input
|
||||
if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Single-level scaling, what PyT currently understands
|
||||
* Both inputs must be fp4
|
||||
* A, B need 1 scale, {Blockwise_1x16 (e4m3)}
|
||||
*/
|
||||
bool check_nvfp4_recipe_single_scale
|
||||
(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2 scales, 2 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x16) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x16) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8
|
||||
* A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float)
|
||||
*/
|
||||
bool check_deepseek_recipe(ScalingType expected_recipe_a,
|
||||
ScalingType expected_recipe_b,
|
||||
c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B
|
||||
if (recipe_a[0] != expected_recipe_a) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != expected_recipe_b) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp8_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp4
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace at::native::cuda::blas::scaled
|
||||
@ -1,174 +0,0 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace at::cuda::scaled {
|
||||
|
||||
static bool _scaled_mm_allowed_device(bool sm90_only=false, bool sm100_only=false) {
|
||||
#ifdef USE_ROCM
|
||||
static const std::vector<std::string> archs = {
|
||||
"gfx942",
|
||||
#if ROCM_VERSION >= 60300
|
||||
"gfx1200", "gfx1201",
|
||||
#endif
|
||||
#if ROCM_VERSION >= 60500
|
||||
"gfx950"
|
||||
#endif
|
||||
};
|
||||
return at::detail::getCUDAHooks().isGPUArch(archs);
|
||||
#else
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
|
||||
if (sm90_only || sm100_only) {
|
||||
return (sm90_only && dprops->major == 9) || (sm100_only && dprops->major == 10);
|
||||
} else {
|
||||
return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
static bool _scaled_mm_is_fnuz() {
|
||||
return at::detail::getCUDAHooks().isGPUArch({"gfx942"});
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Track concrete implementations available
|
||||
*/
|
||||
enum class ScaledGemmImplementation {
|
||||
NONE = 0,
|
||||
TENSORWISE_TENSORWISE = 1,
|
||||
ROWWISE_ROWWISE = 2,
|
||||
BLOCK_128x128_1x128 = 3,
|
||||
BLOCK_1x128_128x128 = 4,
|
||||
BLOCK_1x128_1x128 = 5,
|
||||
MXFP8_MXFP8 = 6,
|
||||
NVFP4_NVFP4 = 7,
|
||||
NVFP4_NVFP4_SINGLE_SCALE = 8,
|
||||
MXFP4_MXFP4 = 9,
|
||||
};
|
||||
|
||||
/**
|
||||
* Convert passed int (enum) from python back into a
|
||||
* strictly-typed enum
|
||||
*/
|
||||
template <class EnumType, class ArrayType>
|
||||
std::vector<EnumType> convert_int_to_enum(ArrayType& v) {
|
||||
std::vector<EnumType> converted;
|
||||
converted.reserve(v.size());
|
||||
|
||||
for (auto vi : v) {
|
||||
converted.push_back(static_cast<EnumType>(vi));
|
||||
}
|
||||
return converted;
|
||||
}
|
||||
|
||||
bool check_tensorwise_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
|
||||
bool check_rowwise_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_nvfp4_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_nvfp4_recipe_single_scale
|
||||
(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_deepseek_recipe(ScalingType,
|
||||
ScalingType,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_mxfp8_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_mxfp4_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
} // namespace at::native::cuda::blas::scaled
|
||||
@ -183,6 +183,11 @@ struct CUDACachingHostAllocatorImpl
|
||||
return true;
|
||||
}
|
||||
|
||||
bool pinned_use_background_threads() override {
|
||||
return c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
|
||||
pinned_use_background_threads();
|
||||
}
|
||||
|
||||
EventPool::Event create_event_internal(DeviceIndex idx) {
|
||||
// Leak the event pool to avoid shutdown issue.
|
||||
static auto* event_pool = new EventPool();
|
||||
|
||||
@ -70,7 +70,11 @@
|
||||
#define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max()
|
||||
#endif
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM)
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
namespace at_cuda_detail {
|
||||
#endif
|
||||
|
||||
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
|
||||
|
||||
@ -92,6 +96,10 @@ template <>
|
||||
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
|
||||
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
} // namespace at_cuda_detail
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
@ -113,7 +121,7 @@ struct cuda_type<c10::Half> {
|
||||
using type = __half;
|
||||
};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
|
||||
|
||||
template<>
|
||||
struct cuda_type<c10::BFloat16> {
|
||||
@ -169,6 +177,7 @@ inline void segmented_sort_pairs(
|
||||
}
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
|
||||
inline void unique_by_key(
|
||||
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
|
||||
@ -184,6 +193,7 @@ inline void unique_by_key(
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
|
||||
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace impl {
|
||||
|
||||
@ -195,6 +205,36 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera
|
||||
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
template<typename ValueT, typename InputIteratorT>
|
||||
struct chained_iterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using value_type = ValueT;
|
||||
using pointer = ValueT*;
|
||||
using reference = ValueT&;
|
||||
|
||||
InputIteratorT iter;
|
||||
ValueT *first;
|
||||
difference_type offset = 0;
|
||||
|
||||
__device__ ValueT operator[](difference_type i) {
|
||||
i += offset;
|
||||
if (i == 0) {
|
||||
return *first;
|
||||
} else {
|
||||
return ValueT(iter[i - 1]);
|
||||
}
|
||||
}
|
||||
__device__ chained_iterator operator+(difference_type i) {
|
||||
return chained_iterator{iter, first, i};
|
||||
}
|
||||
__device__ ValueT operator*() {
|
||||
return (*this)[0];
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
||||
// so split at int_max/2
|
||||
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
|
||||
@ -239,6 +279,25 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
|
||||
using tuple = typename ArgIndexInputIterator::value_type;
|
||||
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
|
||||
if (x.key == 0) {
|
||||
return *first_elem_ptr;
|
||||
} else {
|
||||
return x.value;
|
||||
}
|
||||
};
|
||||
auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)(
|
||||
ArgIndexInputIterator(input + i), input_iter_transform);
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i + 1,
|
||||
output + i,
|
||||
@ -246,6 +305,7 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -497,6 +557,16 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
|
||||
input + i, first_elem_ptr};
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i,
|
||||
output + i,
|
||||
@ -504,10 +574,12 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
|
||||
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
|
||||
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
|
||||
@ -535,6 +607,7 @@ inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
|
||||
void unique(InputIteratorT input, OutputIteratorT output,
|
||||
|
||||
@ -10,6 +10,14 @@
|
||||
#define CUB_VERSION 200001
|
||||
#endif
|
||||
|
||||
// cub sort support for __nv_bfloat16 is added to cub 1.13 in:
|
||||
// https://github.com/NVIDIA/cub/pull/306
|
||||
#if CUB_VERSION >= 101300
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() false
|
||||
#endif
|
||||
|
||||
// cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in:
|
||||
// https://github.com/NVIDIA/cub/pull/326
|
||||
// CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake
|
||||
@ -20,6 +28,30 @@
|
||||
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
|
||||
#endif
|
||||
|
||||
// cub support for UniqueByKey is added to cub 1.16 in:
|
||||
// https://github.com/NVIDIA/cub/pull/405
|
||||
#if CUB_VERSION >= 101600
|
||||
#define CUB_SUPPORTS_UNIQUE_BY_KEY() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_UNIQUE_BY_KEY() false
|
||||
#endif
|
||||
|
||||
// cub support for scan by key is added to cub 1.15
|
||||
// in https://github.com/NVIDIA/cub/pull/376
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_SCAN_BY_KEY() 1
|
||||
#else
|
||||
#define CUB_SUPPORTS_SCAN_BY_KEY() 0
|
||||
#endif
|
||||
|
||||
// cub support for cub::FutureValue is added to cub 1.15 in:
|
||||
// https://github.com/NVIDIA/cub/pull/305
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() false
|
||||
#endif
|
||||
|
||||
// There were many bc-breaking changes in major version release of CCCL v3.0.0
|
||||
// Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html
|
||||
#if CUB_VERSION >= 200800
|
||||
|
||||
@ -1,23 +0,0 @@
|
||||
#include <ATen/detail/XLAHooksInterface.h>
|
||||
|
||||
namespace at {
|
||||
namespace detail {
|
||||
|
||||
const XLAHooksInterface& getXLAHooks() {
|
||||
auto create_impl = [] {
|
||||
// Create XLA hooks using the registry
|
||||
auto hooks = XLAHooksRegistry()->Create("torch_xla::detail::XLAHooks", XLAHooksArgs{});
|
||||
if (hooks) {
|
||||
return hooks;
|
||||
}
|
||||
// If hooks creation fails, fall back to default implementation
|
||||
return std::make_unique<XLAHooksInterface>();
|
||||
};
|
||||
static auto hooks = create_impl();
|
||||
return *hooks;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
C10_DEFINE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs)
|
||||
|
||||
} // namespace at
|
||||
@ -1,79 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/Registry.h>
|
||||
|
||||
#include <ATen/detail/AcceleratorHooksInterface.h>
|
||||
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-parameter")
|
||||
|
||||
namespace at {
|
||||
|
||||
constexpr const char* XLA_HELP =
|
||||
"This error has occurred because you are trying "
|
||||
"to use some XLA functionality, but the XLA library has not been "
|
||||
"loaded by the dynamic linker. You must load xla libraries by `import torch_xla`";
|
||||
|
||||
struct TORCH_API XLAHooksInterface : AcceleratorHooksInterface {
|
||||
~XLAHooksInterface() override = default;
|
||||
|
||||
void init() const override {
|
||||
TORCH_CHECK(false, "Cannot initialize XLA without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
virtual bool hasXLA() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual std::string showConfig() const {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"Cannot query detailed XLA version without torch_xla library. ",
|
||||
XLA_HELP);
|
||||
}
|
||||
|
||||
const Generator& getDefaultGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
TORCH_CHECK(
|
||||
false, "Cannot get default XLA generator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Generator getNewGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
TORCH_CHECK(false, "Cannot get XLA generator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
virtual DeviceIndex getCurrentDevice() const override {
|
||||
TORCH_CHECK(false, "Cannot get current XLA device without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Device getDeviceFromPtr(void* /*data*/) const override {
|
||||
TORCH_CHECK(false, "Cannot get device of pointer on XLA without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Allocator* getPinnedMemoryAllocator() const override {
|
||||
TORCH_CHECK(false, "Cannot get XLA pinned memory allocator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
bool isPinnedPtr(const void* data) const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool hasPrimaryContext(DeviceIndex device_index) const override {
|
||||
TORCH_CHECK(false, "Cannot query primary context without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct TORCH_API XLAHooksArgs {};
|
||||
|
||||
TORCH_DECLARE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs);
|
||||
#define REGISTER_XLA_HOOKS(clsname) \
|
||||
C10_REGISTER_CLASS(XLAHooksRegistry, clsname, clsname)
|
||||
|
||||
namespace detail {
|
||||
TORCH_API const XLAHooksInterface& getXLAHooks();
|
||||
} // namespace detail
|
||||
} // namespace at
|
||||
C10_DIAGNOSTIC_POP()
|
||||
@ -160,10 +160,6 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
|
||||
DispatchKey::CUDA,
|
||||
DispatchKey::CPU,
|
||||
DispatchKey::PrivateUse1,
|
||||
DispatchKey::SparseCPU,
|
||||
DispatchKey::SparseCUDA,
|
||||
DispatchKey::SparseCsrCPU,
|
||||
DispatchKey::SparseCsrCUDA,
|
||||
});
|
||||
|
||||
inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {
|
||||
|
||||
@ -658,7 +658,6 @@ static void check_shape_forward(const at::Tensor& input,
|
||||
TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported");
|
||||
TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported");
|
||||
TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero");
|
||||
TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups);
|
||||
|
||||
TORCH_CHECK(weight_dim == k,
|
||||
"Expected ", weight_dim, "-dimensional input for ", weight_dim,
|
||||
|
||||
@ -3620,7 +3620,7 @@ Tensor& _int_mm_out_cpu(const Tensor& self, const Tensor& mat2, Tensor& result)
|
||||
try {
|
||||
mkldnn_matmul_i8i8i32(self, mat2, result);
|
||||
dispatched = true;
|
||||
} catch ([[maybe_unused]] const std::exception& e) {
|
||||
} catch (const std::exception& e) {
|
||||
TORCH_WARN(func_name, " failed, switching to BLAS gemm: ", e.what());
|
||||
}
|
||||
}
|
||||
|
||||
@ -11,8 +11,6 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto
|
||||
"pixel_shuffle expects a positive upscale_factor, but got ",
|
||||
upscale_factor);
|
||||
int64_t c = self.size(-3);
|
||||
TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor,
|
||||
"upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor);
|
||||
int64_t upscale_factor_squared = upscale_factor * upscale_factor;
|
||||
TORCH_CHECK(c % upscale_factor_squared == 0,
|
||||
"pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of "
|
||||
|
||||
@ -259,20 +259,11 @@ inline void winograd_f2k3_input_transform_inplace__rvv(
|
||||
const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4);
|
||||
const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4);
|
||||
const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround:
|
||||
* Avoid single-statement read-modify-write on MEM_REF like:
|
||||
* *input_tile_val =
|
||||
* __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
* This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin)
|
||||
* with -march=rv64gcv. Use a temporary then write back.
|
||||
* Do NOT refactor into the single-statement form. Clang is unaffected.
|
||||
*/
|
||||
vfloat32m1x4_t tmp_input_tile_val = *input_tile_val;
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3);
|
||||
*input_tile_val = tmp_input_tile_val;
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3);
|
||||
}
|
||||
|
||||
inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
@ -286,15 +277,9 @@ inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4);
|
||||
const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4);
|
||||
const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_output_tile_val = *input_tile_val;
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0);
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1);
|
||||
*input_tile_val = tmp_output_tile_val;
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1);
|
||||
}
|
||||
|
||||
inline vfloat32m1_t
|
||||
@ -315,17 +300,11 @@ inline void winograd_f2k3_kernel_transform__rvv(
|
||||
const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4);
|
||||
const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4);
|
||||
vfloat32m1_t half_g0_plus_g2 = __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_transform = *transform;
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0);
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2);
|
||||
*transform = tmp_transform;
|
||||
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0);
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2);
|
||||
}
|
||||
|
||||
inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) {
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -15,7 +15,9 @@
|
||||
#include <ATen/native/cuda/block_reduce.cuh>
|
||||
#include <ATen/native/cuda/thread_constants.h>
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
#include <thrust/iterator/reverse_iterator.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -238,6 +240,10 @@ __global__ void renorm_kernel(
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
|
||||
#endif
|
||||
|
||||
Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices_,
|
||||
int64_t num_weights, int64_t padding_idx,
|
||||
@ -300,6 +306,7 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
|
||||
|
||||
if (scale_grad_by_freq) {
|
||||
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
@ -326,6 +333,11 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
|
||||
num_indices
|
||||
);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
|
||||
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
|
||||
return embedding_backward_cuda_kernel(grad, orig_indices,
|
||||
|
||||
@ -10,7 +10,9 @@
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
#include <thrust/iterator/counting_iterator.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -194,9 +196,18 @@ __global__ void compute_num_of_partial_segments(const index_t *partials_per_segm
|
||||
partials_per_segment_offset[num_of_segments-1];
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
__global__ void write_num_of_segments_for_legacy_thrust_path(int64_t *num_of_segments_ptr, int64_t num_of_segments) {
|
||||
*num_of_segments_ptr = num_of_segments;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // anon namespace
|
||||
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
template<typename index_t>
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
#endif
|
||||
|
||||
Tensor embedding_backward_cuda_kernel(
|
||||
const Tensor &grad,
|
||||
@ -223,12 +234,20 @@ Tensor embedding_backward_cuda_kernel(
|
||||
auto segment_offsets = at::empty({numel}, orig_indices.options());
|
||||
auto num_of_segments_tensor = at::empty({}, grad.options().dtype(kLong));
|
||||
int64_t *num_of_segments_ptr = num_of_segments_tensor.mutable_data_ptr<int64_t>();
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
|
||||
int64_t num_of_segments = embedding_backward_cuda_kernel_unique_by_key<index_t>(sorted_indices, segment_offsets);
|
||||
write_num_of_segments_for_legacy_thrust_path<<<1, 1, 0, c10::cuda::getCurrentCUDAStream()>>>(num_of_segments_ptr, num_of_segments);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
|
||||
cuda::cub::unique_by_key(
|
||||
sorted_indices.const_data_ptr<index_t>(), thrust::make_counting_iterator(0),
|
||||
segment_offsets.mutable_data_ptr<index_t>(),
|
||||
num_of_segments_ptr, sorted_indices.numel());
|
||||
});
|
||||
#endif
|
||||
|
||||
int64_t max_segments = std::min<int64_t>(numel, num_weights);
|
||||
|
||||
|
||||
@ -31,10 +31,16 @@
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
#include <thrust/iterator/reverse_iterator.h>
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
|
||||
@ -193,6 +199,7 @@ Tensor embedding_bag_backward_cuda_sum_avg(
|
||||
|
||||
if (scale_grad_by_freq) {
|
||||
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
@ -219,6 +226,11 @@ Tensor embedding_bag_backward_cuda_sum_avg(
|
||||
num_indices
|
||||
);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
|
||||
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
return embedding_backward_cuda_kernel(grad, orig_indices, sorted_indices,
|
||||
count, num_weights, padding_idx, mode == EmbeddingBagMode::MEAN, offset2bag,
|
||||
|
||||
@ -1,574 +0,0 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/CUDAScaledBlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace scaled_blas = at::cuda::scaled;
|
||||
using scaled_blas::ScaledGemmImplementation;
|
||||
using scaled_blas::convert_int_to_enum;
|
||||
using scaled_blas::_scaled_mm_allowed_device;
|
||||
|
||||
namespace at::native {
|
||||
|
||||
namespace {
|
||||
|
||||
// 2d-2d and 2d-3d
|
||||
// scaling=MXFP8
|
||||
// CUDA-only
|
||||
Tensor&
|
||||
_mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const SwizzleType& swizzle_a,
|
||||
const Tensor& scale_b,
|
||||
const SwizzleType& swizzle_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
Tensor& out) {
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
const bool b_is_2d = mat_b.dim() == 2;
|
||||
bool b_is_3d = mat_b.dim() == 3;
|
||||
bool is_2d_2d = a_is_2d && b_is_2d;
|
||||
bool is_2d_3d = a_is_2d && b_is_3d;
|
||||
TORCH_CHECK_VALUE(is_2d_2d || is_2d_3d, "MXFP8 grouped GEMM currently only supports 2d-2d and 2d-3d cases");
|
||||
TORCH_CHECK_VALUE(offs.has_value(), "MXFP8 2d-2d and 2d-3d grouped GEMMs requires offsets");
|
||||
TORCH_CHECK_VALUE(out.scalar_type() == at::kBFloat16, "Only bf16 out_dtype is supported for MXFP8 grouped gemm");
|
||||
// MXFP8 expects float8_e8m0fnu scales.
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu,
|
||||
"For MXFP8 grouped gemm, both scales must be float8_e8m0fnu tensors.");
|
||||
#ifdef USE_ROCM
|
||||
TORCH_CHECK_VALUE(swizzle_a == SwizzleType::NO_SWIZZLE && swizzle_b == SwizzleType::NO_SWIZZLE,
|
||||
"For ROCM MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_NONE");
|
||||
#else
|
||||
TORCH_CHECK_VALUE(swizzle_a == SwizzleType::SWIZZLE_32_4_4 && swizzle_b == SwizzleType::SWIZZLE_32_4_4,
|
||||
"For CUDA MXFP8 grouped gemm, both scale swizzle types must be SWIZZLE_32_4_4");
|
||||
#endif
|
||||
|
||||
#if defined(USE_FBGEMM_GENAI) and !defined(USE_ROCM)
|
||||
fbgemm_gpu::mx8mx8bf16_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs.value(),
|
||||
out);
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "mxfp8_mxfp8 grouped gemm requires compile with USE_FBGEMM_GENAI");
|
||||
#endif
|
||||
return out;
|
||||
}
|
||||
|
||||
// 2d-2d and 2d-3d cases
|
||||
// scaling=rowwise
|
||||
// CUDA-only
|
||||
Tensor&
|
||||
_f8_f8_bf16_rowwise_grouped_mm_cuda(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fn, "Expected mat_a to be Float8_e4m3 matrix got ", mat_b.scalar_type());
|
||||
|
||||
at::cuda::detail::f8f8bf16_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
return out;
|
||||
}
|
||||
|
||||
// 2d-2d and 2d-3d cases
|
||||
// scaling=rowwise
|
||||
// only being called for rocm
|
||||
Tensor&
|
||||
_f8_f8_bf16_rowwise_grouped_mm_rocm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
Tensor& out) {
|
||||
TORCH_CHECK_VALUE(mat_a.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(mat_b.dtype() == at::kFloat8_e4m3fnuz, "Expected mat_a to be Float8_e4m3fnuz matrix got ", mat_b.scalar_type());
|
||||
|
||||
#if defined(USE_FBGEMM_GENAI) && defined(USE_ROCM)
|
||||
fbgemm_gpu::f8f8bf16_rowwise_grouped_mm(
|
||||
mat_a,
|
||||
// FBGEMM expects B matrix shape to be (.., N, K)
|
||||
mat_b.transpose(-2, -1),
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
out);
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "grouped gemm is not supported without USE_FBGEMM_GENAI on ROCM")
|
||||
#endif
|
||||
return out;
|
||||
|
||||
}
|
||||
|
||||
// Dispatch f8 x f8 -> bf16 row-wise scaled to rocm/cuda
|
||||
Tensor&
|
||||
_f8_f8_bf16_rowwise_grouped_mm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
// FP8 per-tensor and per-row scaling expect fp32 scales.
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat,
|
||||
"For grouped FP8 rowwise, both scales must be float32 tensors");
|
||||
#ifndef USE_ROCM
|
||||
return _f8_f8_bf16_rowwise_grouped_mm_cuda(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
#else
|
||||
// NOTE: ignore use_fast_accum
|
||||
TORCH_CHECK_VALUE(!bias.has_value(), "ROCM grouped gemm does not support bias")
|
||||
return _f8_f8_bf16_rowwise_grouped_mm_rocm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
out);
|
||||
#endif
|
||||
}
|
||||
|
||||
void _check_scales_fp8_rowwise(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
|
||||
// Checks scales for 2d or 3d target tensors (`mat`).
|
||||
if (mat.dim() == 2) {
|
||||
TORCH_CHECK(
|
||||
scale.dim() == 1,
|
||||
"scale must be a 1D tensor, but got ",
|
||||
scale.dim(),
|
||||
"D, arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.is_contiguous(), "scale must be contiguous for arg ", arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.size(0) == mat.size(dim) * scale_multiplier,
|
||||
"scale must have the same length as mat for arg ",
|
||||
arg_idx);
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
scale.dim() == 2,
|
||||
"scale must be a 2D tensor, but got ",
|
||||
scale.dim(),
|
||||
"D for arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.stride(1) == 1,
|
||||
"scale must be contiguous in the last dimension for arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.size(0) == mat.size(0),
|
||||
"scale must have the same batch dimension as mat for arg ",
|
||||
arg_idx);
|
||||
TORCH_CHECK(
|
||||
scale.size(1) == mat.size(1 + dim),
|
||||
"scale must have the same first dimension as mat for arg ",
|
||||
arg_idx);
|
||||
}
|
||||
}
|
||||
|
||||
void _check_scales_mxfp8(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx) {
|
||||
// Checks scales for 2d or 3d target tensors (`mat`).
|
||||
if (mat.dim() == 2) {
|
||||
// For MXFP8, 2d tensors have variable size groups represented as subtensors,
|
||||
// that are converted to blocked padded format individually,
|
||||
// so we can't check the scale sizes without doing a d2h sync to get the group sizes here.
|
||||
TORCH_CHECK(
|
||||
scale.dim() == mat.dim(),
|
||||
"for mxfp8, scale must have same number of dimensions as parent tensor, but got mat.dim() = ", mat.dim(), " and scale.dim() = ", scale.dim(), " for arg ", arg_idx);
|
||||
|
||||
// LHS mat shape (M, total_K) -> scale shape (rounded_up(M, 128), rounded_up_per_group(K/32, 4))
|
||||
// RHS mat shape (total_K, N) -> scale shape (rounded_up(N, 128), rounded_up_per_group(K/32, 4))
|
||||
// * weight is transposed prior to the call, scale stays non-transposed.
|
||||
bool LHS = arg_idx == 0;
|
||||
int scale_dim_to_check = 0;
|
||||
int mat_dim_to_check = LHS ? 0 : 1;
|
||||
TORCH_CHECK(
|
||||
scale.size(scale_dim_to_check) >= mat.size(mat_dim_to_check),
|
||||
"for mxfp8, arg ", arg_idx, " tensor shape (", mat.size(0), ", ", mat.size(1), ") ",
|
||||
"must have scale.shape[", scale_dim_to_check, "] >= ", mat.size(mat_dim_to_check), " but got scale.shape=(", scale.size(0), ", ", scale.size(1), ")");
|
||||
} else {
|
||||
// For MXFP8, 3d tensors have static group sizes (stack of 2d tensors),
|
||||
// so we can check the exact expected scale sizes here without a d2h sync.
|
||||
auto round_up = [](auto x, auto y) {
|
||||
return ((x + y - 1) / y) * y;
|
||||
};
|
||||
|
||||
// TODO: this is for 3d tensor in 2d-3d case specifically.
|
||||
// We'll need to support 3d-3d and 3d-2d cases once mxfp8 grouped gemm supports them.
|
||||
int64_t G = mat.size(0);
|
||||
int64_t K = mat.size(1);
|
||||
int64_t N = mat.size(2);
|
||||
int64_t blocked_scale_K = round_up(K/32, 4);
|
||||
int64_t blocked_scale_N = round_up(N, 128);
|
||||
|
||||
// fbgemm expects stack of flattened blocked scales for 3d tensor, shape (G, blocked_scale_K * blocked_scale_N).
|
||||
TORCH_CHECK(
|
||||
scale.dim() == mat.dim() - 1,
|
||||
"for mxfp8 2d-3d grouped GEMM, the 3d tensor of shape (G,K,N) must have a 2d scale of shape (G, blocked_scale_K * blocked_scale_N), but scale is ", scale.dim(), "D for arg ", arg_idx
|
||||
);
|
||||
TORCH_CHECK(
|
||||
scale.size(0) == G && scale.size(1) == blocked_scale_K * blocked_scale_N,
|
||||
"for mxfp8, the tensor shape (", G, ", ", K, ", ", N, ") must have scale shape (", G, ",", blocked_scale_K, ",", blocked_scale_N, ") for arg ", arg_idx
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
void check_scale(const Tensor& mat, const Tensor& scale, const int dim, const int arg_idx, const int scale_multiplier=1) {
|
||||
bool using_fp8_rowwise = scale.scalar_type() == kFloat;
|
||||
bool using_mxfp8 = scale.scalar_type() == at::kFloat8_e8m0fnu;
|
||||
if (using_fp8_rowwise) {
|
||||
_check_scales_fp8_rowwise(mat, scale, dim, arg_idx, scale_multiplier);
|
||||
} else if (using_mxfp8) {
|
||||
_check_scales_mxfp8(mat, scale, dim, arg_idx);
|
||||
} else {
|
||||
TORCH_CHECK(false, "scale must be float32 or float8_e8m0fnu, but got ", scale.dtype());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
Tensor
|
||||
_scaled_grouped_mm_cuda(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
std::optional<c10::ScalarType> out_dtype,
|
||||
bool use_fast_accum) {
|
||||
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true);
|
||||
TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+");
|
||||
|
||||
TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed");
|
||||
TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed");
|
||||
TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d");
|
||||
TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d");
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
const bool b_is_2d = mat_b.dim() == 2;
|
||||
|
||||
// NOTE(slayton): For sub-1B formats want contraction_dim argument?
|
||||
if (!a_is_2d || !b_is_2d) {
|
||||
TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match");
|
||||
}
|
||||
TORCH_CHECK_VALUE(
|
||||
mat_a.size(-1) % 16 == 0,
|
||||
"Expected trailing dimension of mat_a to be divisible by 16 ",
|
||||
"but got mat1 shape: (",
|
||||
mat_a.sizes(),
|
||||
").");
|
||||
TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0,
|
||||
"Expected mat_b shape to be divisible by 16 ",
|
||||
"but got mat_b shape: (",
|
||||
mat_b.sizes(),
|
||||
").");
|
||||
|
||||
|
||||
TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet");
|
||||
TORCH_CHECK_VALUE(!scale_result.has_value(), "Scale result not supported yet");
|
||||
TORCH_CHECK_VALUE(offs.has_value() == (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix");
|
||||
|
||||
// NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present.
|
||||
// for rowwise, no offsets implies 3d-3d and is handled by lower-level
|
||||
// routines
|
||||
if (offs.has_value()) {
|
||||
TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D");
|
||||
TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32");
|
||||
}
|
||||
// FP8 per-tensor and per-row scaling expect fp32 scales.
|
||||
// MXFP8 expects float8_e8m0fnu scales.
|
||||
TORCH_CHECK_VALUE(
|
||||
(scale_a.scalar_type() == kFloat && scale_b.scalar_type() == kFloat) ||
|
||||
(scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu),
|
||||
"For FP8 tensorwise and rowwise, both scales must both be float32 tensors. For MXFP8, scales must both be float8_e8m0fnu tensors.");
|
||||
|
||||
const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1;
|
||||
check_scale(mat_a, scale_a, 0 ,0, scale_multiplier);
|
||||
check_scale(mat_b, scale_b, 1, 1, scale_multiplier);
|
||||
|
||||
const auto out_dtype_ = out_dtype.value_or(kBFloat16);
|
||||
TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm");
|
||||
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
|
||||
#if defined(USE_FBGEMM_GENAI) && defined(USE_CUDA) && !defined(USE_ROCM)
|
||||
// MXFP8 grouped GEMM dispatching
|
||||
bool is_mx8mx8bf16 = (
|
||||
mat_a.scalar_type() == at::kFloat8_e4m3fn && mat_b.scalar_type() == at::kFloat8_e4m3fn &&
|
||||
scale_a.scalar_type() == at::kFloat8_e8m0fnu && scale_b.scalar_type() == at::kFloat8_e8m0fnu
|
||||
);
|
||||
#else
|
||||
bool is_mx8mx8bf16 = false;
|
||||
#endif
|
||||
|
||||
if (is_mx8mx8bf16) {
|
||||
// Note: Passing implied SwizzleType here, correctness of scale previously checked
|
||||
// in `check_scale` call
|
||||
return _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
SwizzleType::SWIZZLE_32_4_4,
|
||||
scale_b,
|
||||
SwizzleType::SWIZZLE_32_4_4,
|
||||
offs.value(),
|
||||
out);
|
||||
}
|
||||
|
||||
// If we're not MXFP8, then we're row-wise scaling.
|
||||
return _f8_f8_bf16_rowwise_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>;
|
||||
|
||||
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 2> scale_grouped_kernel_dispatch = {{
|
||||
{ "rowwise_rowwise", scaled_blas::check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE},
|
||||
{ "mxfp8_mxfp8", scaled_blas::check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}}};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
Tensor
|
||||
_scaled_grouped_mm_cuda_v2(
|
||||
const Tensor& mat_a, const Tensor& mat_b,
|
||||
ArrayRef<Tensor> scale_a,
|
||||
IntArrayRef scale_recipe_a,
|
||||
IntArrayRef swizzle_a,
|
||||
ArrayRef<Tensor> scale_b,
|
||||
IntArrayRef scale_recipe_b,
|
||||
IntArrayRef swizzle_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
const std::optional<c10::ScalarType> out_dtype,
|
||||
IntArrayRef contraction_dim,
|
||||
bool use_fast_accum) {
|
||||
bool allowed_device = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true);
|
||||
TORCH_CHECK_VALUE(allowed_device, "torch._scaled_grouped_mm is only supported on CUDA devices with compute capability = [9.0, 10.0], or ROCm MI300+");
|
||||
|
||||
TORCH_CHECK_VALUE(!check_valid_strides_and_return_transposed(mat_a), "Expected mat1 to not be transposed");
|
||||
TORCH_CHECK_VALUE(check_valid_strides_and_return_transposed(mat_b), "Expected mat2 to be transposed");
|
||||
TORCH_CHECK_VALUE(mat_a.dim() == 2 || mat_a.dim() == 3, "mat_a has to be 2 or 3d");
|
||||
TORCH_CHECK_VALUE(mat_b.dim() == 2 || mat_b.dim() == 3, "mat_b has to be 2 or 3d");
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
const bool b_is_2d = mat_b.dim() == 2;
|
||||
|
||||
// NOTE(slayton): For sub-1B formats want contraction_dim argument?
|
||||
if (!a_is_2d || !b_is_2d) {
|
||||
if (contraction_dim.size() > 0) {
|
||||
const int dim_a = contraction_dim[0], dim_b = mat_b.size(contraction_dim[1]);
|
||||
TORCH_CHECK_VALUE(mat_a.size(dim_a) == mat_b.size(dim_b),
|
||||
"Contraction dimensions (", dim_a, ",", dim_b, ") of mat_a and mat_b must match, got: ", mat_a.size(dim_a), " and ",
|
||||
mat_b.size(dim_b));
|
||||
// Note: only (-1, -2) is currently supported
|
||||
TORCH_CHECK_VALUE(dim_a == -1 && dim_b == -2, "Curently contraction dims must be (-1, -2) only");
|
||||
} else {
|
||||
TORCH_CHECK_VALUE(mat_a.size(-1) == mat_b.size(-2), "contraction dimension of mat_a and mat_b must match");
|
||||
}
|
||||
}
|
||||
TORCH_CHECK_VALUE(
|
||||
mat_a.size(-1) % 16 == 0,
|
||||
"Expected trailing dimension of mat_a to be divisible by 16 ",
|
||||
"but got mat1 shape: (",
|
||||
mat_a.sizes(),
|
||||
").");
|
||||
TORCH_CHECK_VALUE(mat_b.size(-2) % 16 == 0 && mat_b.size(-1) % 16 == 0,
|
||||
"Expected mat_b shape to be divisible by 16 ",
|
||||
"but got mat_b shape: (",
|
||||
mat_b.sizes(),
|
||||
").");
|
||||
|
||||
TORCH_CHECK_VALUE(!bias.has_value(), "Bias not supported yet");
|
||||
TORCH_CHECK_VALUE(offs.has_value() == (a_is_2d || b_is_2d), "Have to provide offsets if there is a 2d matrix");
|
||||
|
||||
// NOTE: mxfp8 x mxfp8 requires (and asserts later) that offsets is present.
|
||||
// for rowwise, no offsets implies 3d-3d and is handled by lower-level
|
||||
// routines
|
||||
if (offs.has_value()) {
|
||||
TORCH_CHECK_VALUE(offs->dim() == 1, "offs has to be 1D");
|
||||
TORCH_CHECK_VALUE(offs->dtype() == at::kInt, "Offsets have to be int32");
|
||||
}
|
||||
|
||||
const auto out_dtype_ = out_dtype.value_or(kBFloat16);
|
||||
TORCH_CHECK_VALUE(out_dtype_ == kBFloat16, "Only bf16 high precision output types are supported for grouped gemm");
|
||||
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
|
||||
// Conversion of implicitly-defined enums to explicit
|
||||
auto scale_recipe_a_enum = convert_int_to_enum<ScalingType>(scale_recipe_a);
|
||||
auto swizzle_a_enum = convert_int_to_enum<SwizzleType>(swizzle_a);
|
||||
auto scale_recipe_b_enum = convert_int_to_enum<ScalingType>(scale_recipe_b);
|
||||
auto swizzle_b_enum = convert_int_to_enum<SwizzleType>(swizzle_b);
|
||||
|
||||
// at this point we can start working out what we want to be doing
|
||||
// Try to do as few steps as possible.
|
||||
// NOTE: support is deliberately sparse, can explicitly enumerate all combinations allowed.
|
||||
// Do this via a list of defined (name, acceptance, concrete_impl) tuples.
|
||||
ScaledGemmImplementation gemm_impl = ScaledGemmImplementation::NONE;
|
||||
for (const auto& fn_entry : scale_grouped_kernel_dispatch) {
|
||||
const auto [name, accept_fn, scaled_gemm_impl] = fn_entry;
|
||||
bool ok = accept_fn(mat_a.scalar_type(),
|
||||
scale_recipe_a_enum,
|
||||
scale_a,
|
||||
mat_b.scalar_type(),
|
||||
scale_recipe_b_enum,
|
||||
scale_b);
|
||||
if (ok) {
|
||||
gemm_impl = scaled_gemm_impl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
TORCH_CHECK_VALUE(gemm_impl != ScaledGemmImplementation::NONE,
|
||||
"No gemm implementation was found");
|
||||
|
||||
switch (gemm_impl) {
|
||||
case ScaledGemmImplementation::ROWWISE_ROWWISE: {
|
||||
const int scale_multiplier = (mat_a.dim() == 2 && mat_b.dim() == 2) ? offs->size(0) : 1;
|
||||
_check_scales_fp8_rowwise(mat_a, scale_a[0], 0 /* dim */ , 0 /* arg_idx */, scale_multiplier);
|
||||
_check_scales_fp8_rowwise(mat_b, scale_b[0], 1 /* dim */ , 1 /* arg_idx */, scale_multiplier);
|
||||
return _f8_f8_bf16_rowwise_grouped_mm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a[0],
|
||||
scale_b[0],
|
||||
offs,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
case ScaledGemmImplementation::MXFP8_MXFP8: {
|
||||
_check_scales_mxfp8(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
|
||||
_check_scales_mxfp8(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */);
|
||||
return _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a[0],
|
||||
swizzle_a_enum[0],
|
||||
scale_b[0],
|
||||
swizzle_b_enum[0],
|
||||
offs.value(),
|
||||
out);
|
||||
}
|
||||
default:
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false,
|
||||
"_scaled_grouped_mm_cuda_v2 is in an inconsistent state - should never reach here");
|
||||
}
|
||||
}
|
||||
|
||||
Tensor _grouped_mm_cuda(const Tensor& mat_a, const Tensor& mat_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
std::optional<c10::ScalarType> out_dtype) {
|
||||
_grouped_mm_validate_inputs(mat_a, mat_b, offs, bias, out_dtype);
|
||||
bool a_b_and_out_are_bf16 = (
|
||||
mat_a.dtype() == at::kBFloat16 &&
|
||||
mat_b.dtype() == at::kBFloat16 &&
|
||||
out_dtype.value_or(at::kBFloat16) == at::kBFloat16
|
||||
);
|
||||
#ifndef USE_ROCM
|
||||
bool use_fast_path = _scaled_mm_allowed_device(/*sm90_only*/true, /*sm100_only*/true) && a_b_and_out_are_bf16;
|
||||
#else
|
||||
// _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used.
|
||||
// the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm
|
||||
bool use_fast_path = false;
|
||||
#endif
|
||||
const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype);
|
||||
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
|
||||
if (use_fast_path) {
|
||||
// fast path, no d2h sync needed
|
||||
at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out);
|
||||
} else {
|
||||
_grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
90
aten/src/ATen/native/cuda/LegacyThrustHelpers.cu
Normal file
90
aten/src/ATen/native/cuda/LegacyThrustHelpers.cu
Normal file
@ -0,0 +1,90 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/native/cuda/SortingCommon.cuh>
|
||||
#include <ATen/cuda/cub_definitions.cuh>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#else
|
||||
#include <ATen/ops/empty_like.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cuda/ThrustAllocator.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
#include <thrust/sort.h>
|
||||
#include <thrust/unique.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count) {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
at::cuda::ThrustAllocator allocator;
|
||||
auto policy = thrust::cuda::par(allocator).on(stream);
|
||||
|
||||
auto num_indices = count.numel();
|
||||
|
||||
// Compute an increasing sequence per unique item in sortedIndices:
|
||||
// sorted: 2 5 5 5 7 7 8 9 9
|
||||
// count: 1 1 2 3 1 2 1 1 2
|
||||
auto sorted_data = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
|
||||
auto count_data = thrust::device_ptr<index_t>(count.mutable_data_ptr<index_t>());
|
||||
thrust::inclusive_scan_by_key(
|
||||
policy,
|
||||
sorted_data,
|
||||
sorted_data + num_indices,
|
||||
thrust::make_constant_iterator(1),
|
||||
count_data
|
||||
);
|
||||
|
||||
// Take the maximum of each count per unique key in reverse:
|
||||
// sorted: 2 5 5 5 7 7 8 9 9
|
||||
// count: 1 3 3 3 2 2 1 2 2
|
||||
thrust::inclusive_scan_by_key(
|
||||
policy,
|
||||
thrust::make_reverse_iterator(sorted_data + num_indices),
|
||||
thrust::make_reverse_iterator(sorted_data),
|
||||
thrust::make_reverse_iterator(count_data + num_indices),
|
||||
thrust::make_reverse_iterator(count_data + num_indices),
|
||||
thrust::equal_to<index_t>(),
|
||||
thrust::maximum<index_t>()
|
||||
);
|
||||
}
|
||||
|
||||
template
|
||||
void embedding_dense_backward_cuda_scan<int>(Tensor &sorted_indices, Tensor &count);
|
||||
template
|
||||
void embedding_dense_backward_cuda_scan<int64_t>(Tensor &sorted_indices, Tensor &count);
|
||||
|
||||
#endif
|
||||
|
||||
template<typename index_t>
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
at::cuda::ThrustAllocator allocator;
|
||||
auto policy = thrust::cuda::par(allocator).on(stream);
|
||||
const ptrdiff_t numel = sorted_indices.numel();
|
||||
auto sorted_indices_dev = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
|
||||
auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
auto dummy_dev = thrust::device_ptr<index_t>(dummy.mutable_data_ptr<index_t>());
|
||||
auto ends = thrust::unique_by_key_copy(
|
||||
policy,
|
||||
sorted_indices_dev,
|
||||
sorted_indices_dev + numel,
|
||||
thrust::make_counting_iterator(0),
|
||||
dummy_dev,
|
||||
thrust::device_ptr<index_t>(segment_offsets.mutable_data_ptr<index_t>()));
|
||||
return thrust::get<0>(ends) - dummy_dev;
|
||||
}
|
||||
|
||||
template
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key<int>(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
template
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key<int64_t>(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
|
||||
} // namespace at::native
|
||||
@ -1,17 +1,18 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/detail/FunctionTraits.h>
|
||||
#include <ATen/native/TensorIterator.h>
|
||||
#include <ATen/native/TensorIteratorDynamicCasting.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/native/cuda/thread_constants.h>
|
||||
|
||||
#include <thrust/tuple.h>
|
||||
|
||||
#include <ATen/native/cuda/MemoryAccess.cuh>
|
||||
|
||||
#include <tuple>
|
||||
|
||||
|
||||
|
||||
namespace at::native {
|
||||
|
||||
template<int N>
|
||||
@ -61,11 +62,7 @@ __device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < elems_per_thread; i++) {
|
||||
if (policy.check_inbounds(i)) {
|
||||
#if defined(__HIP__)
|
||||
results[i] = c10::guts::apply(f, args[i]);
|
||||
#else
|
||||
results[i] = std::apply(f, args[i]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -146,7 +146,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
|
||||
int64_t batch_size = target.size(0);
|
||||
int64_t H = target.size(1);
|
||||
int64_t W = target.size(2);
|
||||
int64_t n_classes = grad_input.size(1);
|
||||
|
||||
CUDA_KERNEL_LOOP(index, n_threads) {
|
||||
const int64_t b = index % batch_size;
|
||||
@ -157,7 +156,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
|
||||
if (cur_target == ignore_index) {
|
||||
continue;
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
|
||||
scalar_t value = -(weight != nullptr ? weight[cur_target] : static_cast<scalar_t>(1));
|
||||
grad_input[b][cur_target][h][w] = value * grad_output[b][h][w];
|
||||
}
|
||||
|
||||
@ -23,7 +23,7 @@ namespace at::native {
|
||||
|
||||
// The maximum number of threads in a block
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int MAX_BLOCK_SIZE = 1024;
|
||||
constexpr int MAX_BLOCK_SIZE = 256;
|
||||
#else
|
||||
constexpr int MAX_BLOCK_SIZE = 512;
|
||||
#endif
|
||||
@ -33,7 +33,7 @@ constexpr unsigned MAX_GRID_SIZE = 65535u;
|
||||
// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
|
||||
static int getNumThreads(int nElem) {
|
||||
#if defined(USE_ROCM)
|
||||
int threadSizes[5] = { 64, 128, 256, 512, MAX_BLOCK_SIZE };
|
||||
int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
|
||||
#else
|
||||
int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
|
||||
#endif
|
||||
@ -115,23 +115,9 @@ __device__ scalar_t reduce(Op op, PTA tensor, int plane) {
|
||||
// first the reductions each thread does separately
|
||||
scalar_t sum = static_cast<scalar_t>(0);
|
||||
for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) {
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int UNRL = 4; // load deserilize factor
|
||||
scalar_t tmp[UNRL];
|
||||
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x*UNRL) {
|
||||
#pragma unroll
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
tmp[u] = op(batch, plane, std::min((int)tensor.size(2)-1, (int)(x+u*blockDim.x)));
|
||||
#pragma unroll
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
if (x+u*blockDim.x < tensor.size(2))
|
||||
sum += tmp[u];
|
||||
}
|
||||
#else
|
||||
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) {
|
||||
sum += op(batch, plane, x);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
__shared__ scalar_t shared[C10_WARP_SIZE];
|
||||
SumReduceOp<scalar_t> reduce_op;
|
||||
@ -306,22 +292,6 @@ __global__ void batch_norm_collect_statistics_kernel(
|
||||
stat_accscalar_t var_n = 0;
|
||||
int n = 0;
|
||||
for (int batch = threadIdx.y; batch < input.size(0); batch += blockDim.y) {
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int UNRL = 4;
|
||||
stat_accscalar_t v_[UNRL];
|
||||
for (int x = threadIdx.x; x < input.size(2); x += blockDim.x*UNRL) {
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
v_[u] = input[batch][plane][min(x+u*blockDim.x, input.size(2)-1)];
|
||||
for (int u = 0; u < UNRL; u++) {
|
||||
if (x+u*blockDim.x < input.size(2)) {
|
||||
stat_accscalar_t d1 = v_[u] - avg;
|
||||
n++;
|
||||
avg += d1 / n;
|
||||
var_n += d1 * (v_[u] - avg);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int x = threadIdx.x; x < input.size(2); x += blockDim.x) {
|
||||
stat_accscalar_t v = input[batch][plane][x];
|
||||
stat_accscalar_t d1 = v - avg;
|
||||
@ -329,7 +299,6 @@ __global__ void batch_norm_collect_statistics_kernel(
|
||||
avg += d1 / n;
|
||||
var_n += d1 * (v - avg);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// first warpSum to get one value per thread to
|
||||
|
||||
@ -413,12 +413,14 @@ struct ReduceOp {
|
||||
value = thread_reduce<output_vec_size>(input_slice);
|
||||
}
|
||||
|
||||
if (config.should_block_x_reduce()) {
|
||||
value = block_x_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
if (config.should_block_y_reduce()) {
|
||||
value = block_y_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
__syncthreads();
|
||||
if (config.should_block_x_reduce()) {
|
||||
value = block_x_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
|
||||
using out_ptr_vec_t = std::array<out_scalar_t*, output_vec_size>;
|
||||
using offset_vec_t = std::array<index_t, output_vec_size>;
|
||||
offset_vec_t base_offsets;
|
||||
@ -655,8 +657,8 @@ struct ReduceOp {
|
||||
__syncthreads();
|
||||
// Intra-warp reduction, fix CUDA to have offset decreasing for better numerics
|
||||
// matching Triton, etc.
|
||||
// TODO(PaulZhang12): AMD and internal
|
||||
#if defined(USE_ROCM) || defined(FBCODE_CAFFE2)
|
||||
// todo for AMD
|
||||
#ifdef USE_ROCM
|
||||
for (int offset = 1; offset < dim_x; offset <<= 1) {
|
||||
#else
|
||||
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user