Compare commits

..

1 Commits

Author SHA1 Message Date
2eacbe792a [dynamo] Revert C++-fying of symbolic shape guards
Moving symbolic shape guards to C++ causes compile time issues. This
basically boils down to a tradeoff question.

For models that have large amount of dynamic shape guards, this flag
will help reduce guard latency. But for most of the models, that have a
very few dynamic shape guards, the guard lantecy is anyways small. These
models will still see a high compile time hit because of calling gcc
during the compile.

So a good default value seems to be False. We can write a doc to give
guidance on reducing guard latency.
2025-10-28 11:13:24 -07:00
1088 changed files with 11071 additions and 27755 deletions

View File

@ -13,4 +13,3 @@ exclude:
- "**/benchmarks/**"
- "**/test_*.py"
- "**/*_test.py"
- "tools/**"

View File

@ -195,16 +195,13 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
pytorch-linux-jammy-xpu-n-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.2
NINJA_VERSION=1.9.0
TRITON=yes
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10

View File

@ -3,7 +3,7 @@
set -eux
ACL_VERSION=${ACL_VERSION:-"v52.6.0"}
ACL_VERSION=${ACL_VERSION:-"v25.02"}
ACL_INSTALL_DIR="/acl"
# Clone ACL

View File

@ -49,20 +49,12 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
export SYSROOT_DEP="sysroot_linux-64=2.17"
fi
# Install correct Python version
# Also ensure sysroot is using a modern GLIBC to match system compilers
if [ "$ANACONDA_PYTHON_VERSION" = "3.14" ]; then
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y\
python="3.14.0" \
${SYSROOT_DEP} \
-c conda-forge
else
# Install correct Python version
# Also ensure sysroot is using a modern GLIBC to match system compilers
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y\
python="$ANACONDA_PYTHON_VERSION" \
${SYSROOT_DEP}
fi
# libstdcxx from conda default channels are too old, we need GLIBCXX_3.4.30
# which is provided in libstdcxx 12 and up.
conda_install libstdcxx-ng=12.3.0 --update-deps -c conda-forge

View File

@ -10,7 +10,7 @@ else
arch_path='sbsa'
fi
NVSHMEM_VERSION=3.4.5
NVSHMEM_VERSION=3.3.24
function install_cuda {
version=$1

View File

@ -40,7 +40,11 @@ EOF
# Default url values
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# post merge of https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -97,7 +97,7 @@ case ${image} in
manylinux2_28-builder:xpu)
TARGET=xpu_final
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13"
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
*)

View File

@ -138,12 +138,10 @@ numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#test_binary_ufuncs.py
numpy==1.22.4; python_version == "3.10"
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
numpy==2.1.2; python_version >= "3.13" and python_version < "3.14"
numpy==2.3.4; python_version >= "3.14"
numpy==2.1.2; python_version >= "3.13"
pandas==2.0.3; python_version < "3.13"
pandas==2.2.3; python_version >= "3.13" and python_version < "3.14"
pandas==2.3.3; python_version >= "3.14"
pandas==2.2.3; python_version >= "3.13"
#onnxruntime
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
@ -155,8 +153,7 @@ opt-einsum==3.3
#Pinned versions: 3.3
#test that import: test_linalg.py
optree==0.13.0 ; python_version < "3.14"
optree==0.17.0 ; python_version >= "3.14"
optree==0.13.0
#Description: A library for tree manipulation
#Pinned versions: 0.13.0
#test that import: test_vmap.py, test_aotdispatch.py, test_dynamic_shapes.py,
@ -255,8 +252,7 @@ scikit-image==0.22.0
#test that import:
scipy==1.10.1 ; python_version <= "3.11"
scipy==1.14.1 ; python_version > "3.11" and python_version < "3.14"
scipy==1.16.2 ; python_version >= "3.14"
scipy==1.14.1 ; python_version >= "3.12"
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.10.1
@ -328,8 +324,7 @@ pywavelets==1.7.0 ; python_version >= "3.12"
#Pinned versions: 1.4.1
#test that import:
lxml==5.3.0 ; python_version < "3.14"
lxml==6.0.2 ; python_version >= "3.14"
lxml==5.3.0
#Description: This is a requirement of unittest-xml-reporting
PyGithub==2.3.0
@ -339,9 +334,7 @@ sympy==1.13.3
#Pinned versions:
#test that import:
onnx==1.19.1 ; python_version < "3.14"
# Unpin once Python 3.14 is supported. See onnxruntime issue 26309.
onnx==1.18.0 ; python_version == "3.14"
onnx==1.19.1
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
@ -366,7 +359,7 @@ pwlf==2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
pyyaml==6.0.3
pyyaml==6.0.2
pyzstd
setuptools==78.1.1
packaging==23.1

View File

@ -54,15 +54,12 @@ ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
ARG INDUCTOR_BENCHMARKS
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface-requirements.txt huggingface-requirements.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt
# Install XPU Dependencies
ARG XPU_VERSION

View File

@ -100,8 +100,6 @@ COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface-requirements.txt huggingface-requirements.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
# Only build aoti cpp tests when INDUCTOR_BENCHMARKS is set to True
ENV BUILD_AOT_INDUCTOR_TEST ${INDUCTOR_BENCHMARKS}
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt

View File

@ -6,7 +6,7 @@ dependencies = [
"GitPython==3.1.45",
"docker==7.1.0",
"pytest==7.3.2",
"uv==0.9.6"
"uv==0.9.5"
]
[tool.setuptools]

View File

@ -1,7 +1,7 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_ROCM ?= 7.1
DESIRED_ROCM ?= 7.0
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
PACKAGE_NAME = magma-rocm
# inherit this from underlying docker image, do not pass this env var to docker
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma-rocm/build_magma.sh
.PHONY: all
all: magma-rocm71
all: magma-rocm70
all: magma-rocm64
@ -25,11 +24,6 @@ clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-rocm71
magma-rocm71: DESIRED_ROCM := 7.1
magma-rocm71:
$(DOCKER_RUN)
.PHONY: magma-rocm70
magma-rocm70: DESIRED_ROCM := 7.0
magma-rocm70:

View File

@ -6,8 +6,8 @@ set -eou pipefail
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
# post merge of https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Folders for the build
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
# Fetch magma sources and verify checksum
pushd ${PACKAGE_DIR}
git clone https://github.com/icl-utk-edu/magma
git clone https://github.com/jeffdaily/magma
pushd magma
git checkout ${MAGMA_VERSION}
popd

View File

@ -426,7 +426,7 @@ fi
if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]]; then
# export test times so that potential sharded tests that'll branch off this build will use consistent data
# don't do this for libtorch as libtorch is C++ only and thus won't have python tests run on its build
PYTHONPATH=. python tools/stats/export_test_times.py
python tools/stats/export_test_times.py
fi
# don't do this for bazel or s390x or riscv64 as they don't use sccache
if [[ "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *riscv64* && "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then

View File

@ -460,18 +460,28 @@ test_inductor_shard() {
--verbose
}
test_inductor_aoti_cpp() {
test_inductor_aoti() {
# docker build uses bdist_wheel which does not work with test_aot_inductor
# TODO: need a faster way to build
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
# We need to hipify before building again
python3 tools/amd_build/build_amd.py
fi
if [[ "$BUILD_ENVIRONMENT" == *sm86* ]]; then
BUILD_COMMAND=(TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python -m pip install --no-build-isolation -v -e .)
# TODO: Replace me completely, as one should not use conda libstdc++, nor need special path to TORCH_LIB
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="/opt/conda/envs/py_3.10/lib:${TORCH_LIB_DIR}:${LD_LIBRARY_PATH}")
else
BUILD_COMMAND=(python -m pip install --no-build-isolation -v -e .)
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}")
fi
# aoti cmake custom command requires `torch` to be installed
# initialize the cmake build cache and install torch
/usr/bin/env "${BUILD_COMMAND[@]}"
# rebuild with the build cache with `BUILD_AOT_INDUCTOR_TEST` enabled
/usr/bin/env CMAKE_FRESH=1 BUILD_AOT_INDUCTOR_TEST=1 "${BUILD_COMMAND[@]}"
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
@ -572,8 +582,6 @@ fi
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device cpu)
elif [[ "${TEST_CONFIG}" == *xpu* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device xpu)
else
DYNAMO_BENCHMARK_FLAGS+=(--device cuda)
fi
@ -667,8 +675,6 @@ test_perf_for_dashboard() {
device=cuda_b200
elif [[ "${TEST_CONFIG}" == *rocm* ]]; then
device=rocm
elif [[ "${TEST_CONFIG}" == *xpu* ]]; then
device=xpu
fi
for mode in "${modes[@]}"; do
@ -1761,7 +1767,7 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
else
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu* && "${TEST_CONFIG}" != *xpu* ]]; then
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=/torchbench test_dynamo_benchmark torchbench "$id"
@ -1770,7 +1776,7 @@ elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
install_torchvision
PYTHONPATH=/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
if [[ "$SHARD_NUMBER" -eq "1" ]]; then
test_inductor_aoti_cpp
test_inductor_aoti
fi
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
install_torchvision

View File

@ -7,9 +7,12 @@ if "%DESIRED_PYTHON%" == "3.13t" (
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe"
set ADDITIONAL_OPTIONS="Include_freethreaded=1"
set PYTHON_EXEC="python3.13t"
) else if "%DESIRED_PYTHON%"=="3.14" (
echo Python version is set to 3.14 or 3.14t
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.14.0/python-3.14.0rc1-amd64.exe"
) else if "%DESIRED_PYTHON%"=="3.14t" (
echo Python version is set to 3.14 or 3.14t
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.14.0/python-3.14.0-amd64.exe"
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.14.0/python-3.14.0rc1-amd64.exe"
set ADDITIONAL_OPTIONS="Include_freethreaded=1"
set PYTHON_EXEC="python3.14t"
) else (

View File

@ -60,11 +60,9 @@ performance-*,
readability-container-size-empty,
readability-delete-null-pointer,
readability-duplicate-include,
readability-named-parameter,
readability-misplaced-array-index,
readability-redundant*,
readability-simplify-subscript-expr,
readability-static-definition-in-anonymous-namespace
readability-string-compare,
-readability-redundant-access-specifiers,
-readability-redundant-control-flow,

View File

@ -1,319 +0,0 @@
---
name: add-uint-support
description: Add unsigned integer (uint) type support to PyTorch operators by updating AT_DISPATCH macros. Use when adding support for uint16, uint32, uint64 types to operators, kernels, or when user mentions enabling unsigned types, barebones unsigned types, or uint support.
---
# Add Unsigned Integer (uint) Support to Operators
This skill helps add support for unsigned integer types (uint16, uint32, uint64) to PyTorch operators by updating their AT_DISPATCH macros.
## When to use this skill
Use this skill when:
- Adding uint16, uint32, or uint64 support to an operator
- User mentions "unsigned types", "uint support", "barebones unsigned types"
- Enabling support for kUInt16, kUInt32, kUInt64 in kernels
- Working with operator implementations that need expanded type coverage
## Quick reference
**Add unsigned types to existing dispatch:**
```cpp
// Before
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES));
// After (method 1: add unsigned types explicitly)
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
// After (method 2: use V2 integral types if AT_INTEGRAL_TYPES present)
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_INTEGRAL_TYPES_V2), AT_EXPAND(AT_FLOATING_TYPES));
```
## Type group reference
**Unsigned type groups:**
- `AT_BAREBONES_UNSIGNED_TYPES`: kUInt16, kUInt32, kUInt64
- `AT_INTEGRAL_TYPES_V2`: AT_INTEGRAL_TYPES + AT_BAREBONES_UNSIGNED_TYPES
**Relationship:**
```cpp
AT_INTEGRAL_TYPES // kByte, kChar, kInt, kLong, kShort
AT_BAREBONES_UNSIGNED_TYPES // kUInt16, kUInt32, kUInt64
AT_INTEGRAL_TYPES_V2 // INTEGRAL_TYPES + BAREBONES_UNSIGNED_TYPES
```
## Instructions
### Step 1: Determine if conversion to V2 is needed
Check if the file uses AT_DISPATCH_V2:
**If using old AT_DISPATCH:**
- First convert to AT_DISPATCH_V2 using the at-dispatch-v2 skill
- Then proceed with adding uint support
**If already using AT_DISPATCH_V2:**
- Proceed directly to Step 2
### Step 2: Analyze the current dispatch macro
Identify what type groups are currently in use:
```cpp
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
// body
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
^^^^^^^^^^^^^^^^^^^^^^^^^
Current type coverage
```
Common patterns:
- `AT_EXPAND(AT_ALL_TYPES)` → includes AT_INTEGRAL_TYPES + AT_FLOATING_TYPES
- `AT_EXPAND(AT_INTEGRAL_TYPES)` → signed integers only
- `AT_EXPAND(AT_FLOATING_TYPES)` → floating point types
### Step 3: Choose the uint addition method
Two approaches:
**Method 1: Add AT_BAREBONES_UNSIGNED_TYPES explicitly**
- Use when: You want to be explicit about adding uint support
- Add `AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)` to the type list
**Method 2: Substitute AT_INTEGRAL_TYPES with AT_INTEGRAL_TYPES_V2**
- Use when: The dispatch already uses `AT_EXPAND(AT_INTEGRAL_TYPES)`
- More concise: replaces one type group with its superset
- Only applicable if AT_INTEGRAL_TYPES is present
### Step 4: Apply the transformation
**Method 1 example:**
```cpp
// Before
AT_DISPATCH_V2(
dtype,
"min_values_cuda",
AT_WRAP([&]() {
kernel_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
kBFloat16, kHalf, kBool
);
// After (add unsigned types)
AT_DISPATCH_V2(
dtype,
"min_values_cuda",
AT_WRAP([&]() {
kernel_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES),
kBFloat16, kHalf, kBool
);
```
**Method 2 example:**
```cpp
// Before
AT_DISPATCH_V2(
dtype,
"integral_op",
AT_WRAP([&]() {
kernel<scalar_t>();
}),
AT_EXPAND(AT_INTEGRAL_TYPES)
);
// After (substitute with V2)
AT_DISPATCH_V2(
dtype,
"integral_op",
AT_WRAP([&]() {
kernel<scalar_t>();
}),
AT_EXPAND(AT_INTEGRAL_TYPES_V2)
);
```
### Step 5: Handle AT_ALL_TYPES vs individual type groups
If the dispatch uses `AT_EXPAND(AT_ALL_TYPES)`:
- `AT_ALL_TYPES` = `AT_INTEGRAL_TYPES` + `AT_FLOATING_TYPES`
- To add uint: add `AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)` to the list
If the dispatch separately lists INTEGRAL and FLOATING:
```cpp
// Before
AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
// After (Method 2 preferred)
AT_EXPAND(AT_INTEGRAL_TYPES_V2), AT_EXPAND(AT_FLOATING_TYPES)
```
### Step 6: Verify all dispatch sites
Check the file for ALL dispatch macros that need uint support:
- Some operators have multiple dispatch sites (CPU, CUDA, different functions)
- Apply the transformation consistently across all sites
- Ensure each gets the same type coverage updates
### Step 7: Validate the changes
Check that:
- [ ] AT_DISPATCH_V2 format is used (not old AT_DISPATCH)
- [ ] Unsigned types are added via one of the two methods
- [ ] All relevant dispatch sites in the file are updated
- [ ] Type groups use `AT_EXPAND()`
- [ ] Arguments are properly formatted and comma-separated
## Common patterns
### Pattern 1: AT_ALL_TYPES + extras
```cpp
// Before
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
```
### Pattern 2: Separate INTEGRAL + FLOATING
```cpp
// Before
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES));
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_INTEGRAL_TYPES_V2), AT_EXPAND(AT_FLOATING_TYPES));
```
### Pattern 3: Old dispatch needs conversion first
```cpp
// Before (needs v2 conversion first)
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "op", [&]() {
kernel<scalar_t>();
});
// After v2 conversion
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
// After adding uint support
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
```
## Multiple dispatch sites example
For a file with multiple functions:
```cpp
void min_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cuda", AT_WRAP([&]() {
impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// Added uint support
}
void min_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "min_cuda", AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// Added uint support here too
}
```
## Decision tree
Use this decision tree to determine the approach:
```
Is the file using AT_DISPATCH_V2?
├─ No → Use at-dispatch-v2 skill first, then continue
└─ Yes
└─ Does it use AT_EXPAND(AT_INTEGRAL_TYPES)?
├─ Yes → Replace with AT_EXPAND(AT_INTEGRAL_TYPES_V2)
└─ No → Add AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES) to type list
```
## Edge cases
### Case 1: Dispatch with only floating types
If the operator only supports floating point types, don't add uint support:
```cpp
// Leave as-is - floating point only operator
AT_DISPATCH_V2(dtype, "float_op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf);
```
### Case 2: Complex types present
Unsigned types work alongside complex types:
```cpp
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES),
AT_EXPAND(AT_COMPLEX_TYPES),
kHalf, kBFloat16);
```
### Case 3: Already has uint support
Check if uint types are already present:
- If `AT_INTEGRAL_TYPES_V2` is used → already has uint support
- If `AT_BAREBONES_UNSIGNED_TYPES` is already in list → already has uint support
- Skip the file if uint support is already present
## Workflow
When asked to add uint support:
1. Read the target file
2. Check if using AT_DISPATCH_V2:
- If not → use at-dispatch-v2 skill first
3. Identify all dispatch macro sites
4. For each dispatch:
- Analyze current type groups
- Choose method (add BAREBONES_UNSIGNED or upgrade to V2)
- Apply transformation with Edit tool
5. Show the user the changes
6. Explain what was modified
## Important notes
- Always check if v2 conversion is needed first
- Apply changes consistently across all dispatch sites in the file
- Method 2 (AT_INTEGRAL_TYPES_V2) is cleaner when applicable
- Method 1 (explicit AT_BAREBONES_UNSIGNED_TYPES) is more explicit
- Unsigned types are: kUInt16, kUInt32, kUInt64 (not kByte which is uint8)
- Some operators may not semantically support unsigned types - use judgment
## Testing
After adding uint support, the operator should accept uint16, uint32, and uint64 tensors. The user is responsible for functional testing.

View File

@ -1,305 +0,0 @@
---
name: at-dispatch-v2
description: Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations.
---
# AT_DISPATCH to AT_DISPATCH_V2 Converter
This skill helps convert PyTorch's legacy AT_DISPATCH macros to the new AT_DISPATCH_V2 format, as defined in `aten/src/ATen/Dispatch_v2.h`.
## When to use this skill
Use this skill when:
- Converting AT_DISPATCH_* macros to AT_DISPATCH_V2
- Porting ATen kernels to use the new dispatch API
- Working with files in `aten/src/ATen/native/` that use dispatch macros
- User mentions "AT_DISPATCH", "dispatch v2", "Dispatch_v2.h", or macro conversion
## Quick reference
**Old format:**
```cpp
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, dtype, "kernel_name", [&]() {
// lambda body
});
```
**New format:**
```cpp
AT_DISPATCH_V2(dtype, "kernel_name", AT_WRAP([&]() {
// lambda body
}), AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool);
```
## Key transformations
1. **Reorder arguments**: `scalar_type` and `name` come first, then lambda, then types
2. **Wrap the lambda**: Use `AT_WRAP(lambda)` to handle internal commas
3. **Expand type groups**: Use `AT_EXPAND(AT_ALL_TYPES)` instead of implicit expansion
4. **List individual types**: Add extra types (kHalf, kBFloat16, etc.) after expanded groups
5. **Add include**: `#include <ATen/Dispatch_v2.h>` near other Dispatch includes
## Instructions
### Step 1: Add the Dispatch_v2.h include
Add the v2 header near the existing `#include <ATen/Dispatch.h>`:
```cpp
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
```
Keep the old Dispatch.h include for now (other code may still need it).
### Step 2: Identify the old dispatch pattern
Common patterns to convert:
- `AT_DISPATCH_ALL_TYPES_AND{2,3,4}(type1, type2, ..., scalar_type, name, lambda)`
- `AT_DISPATCH_FLOATING_TYPES_AND{2,3}(type1, type2, ..., scalar_type, name, lambda)`
- `AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND{2,3}(type1, ..., scalar_type, name, lambda)`
- `AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND{2,3}(type1, ..., scalar_type, name, lambda)`
### Step 3: Map the old macro to type groups
Identify which type group macro corresponds to the base types:
| Old macro base | AT_DISPATCH_V2 type group |
|----------------|---------------------------|
| `ALL_TYPES` | `AT_EXPAND(AT_ALL_TYPES)` |
| `FLOATING_TYPES` | `AT_EXPAND(AT_FLOATING_TYPES)` |
| `INTEGRAL_TYPES` | `AT_EXPAND(AT_INTEGRAL_TYPES)` |
| `COMPLEX_TYPES` | `AT_EXPAND(AT_COMPLEX_TYPES)` |
| `ALL_TYPES_AND_COMPLEX` | `AT_EXPAND(AT_ALL_TYPES_AND_COMPLEX)` |
For combined patterns, use multiple `AT_EXPAND()` entries:
```cpp
// Old: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(...)
// New: AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES), type1, type2
```
### Step 4: Extract the individual types
From `AT_DISPATCH_*_AND2(type1, type2, ...)` or `AT_DISPATCH_*_AND3(type1, type2, type3, ...)`, extract the individual types (type1, type2, etc.).
These become the trailing arguments after the type group:
```cpp
AT_DISPATCH_V2(..., AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool)
^^^^^^^^^^^^^^^^^^^^^^^^
Individual types from AND3
```
### Step 5: Transform to AT_DISPATCH_V2
Apply the transformation:
**Pattern:**
```cpp
AT_DISPATCH_V2(
scalar_type, // 1st: The dtype expression
"name", // 2nd: The debug string
AT_WRAP(lambda), // 3rd: The lambda wrapped in AT_WRAP
type_groups, // 4th+: Type groups with AT_EXPAND()
individual_types // Last: Individual types
)
```
**Example transformation:**
```cpp
// BEFORE
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool,
iter.dtype(),
"min_values_cuda",
[&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}
);
// AFTER
AT_DISPATCH_V2(
iter.dtype(),
"min_values_cuda",
AT_WRAP([&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
kBFloat16, kHalf, kBool
);
```
### Step 6: Handle multi-line lambdas
For lambdas with internal commas or complex expressions, AT_WRAP is essential:
```cpp
AT_DISPATCH_V2(
dtype,
"complex_kernel",
AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(upper_bound(), 0) // Commas inside!
);
}),
AT_EXPAND(AT_ALL_TYPES)
);
```
### Step 7: Verify the conversion
Check that:
- [ ] `AT_WRAP()` wraps the entire lambda
- [ ] Type groups use `AT_EXPAND()`
- [ ] Individual types don't have `AT_EXPAND()` (just `kBFloat16`, not `AT_EXPAND(kBFloat16)`)
- [ ] Argument order is: scalar_type, name, lambda, types
- [ ] Include added: `#include <ATen/Dispatch_v2.h>`
## Type group reference
Available type group macros (use with `AT_EXPAND()`):
```cpp
AT_INTEGRAL_TYPES // kByte, kChar, kInt, kLong, kShort
AT_FLOATING_TYPES // kDouble, kFloat
AT_COMPLEX_TYPES // kComplexDouble, kComplexFloat
AT_QINT_TYPES // kQInt8, kQUInt8, kQInt32
AT_ALL_TYPES // INTEGRAL_TYPES + FLOATING_TYPES
AT_ALL_TYPES_AND_COMPLEX // ALL_TYPES + COMPLEX_TYPES
AT_INTEGRAL_TYPES_V2 // INTEGRAL_TYPES + unsigned types
AT_BAREBONES_UNSIGNED_TYPES // kUInt16, kUInt32, kUInt64
AT_FLOAT8_TYPES // Float8 variants
```
## Common patterns
### Pattern: AT_DISPATCH_ALL_TYPES_AND2
```cpp
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "op", [&]() {
kernel<scalar_t>(data);
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>(data);
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
```
### Pattern: AT_DISPATCH_FLOATING_TYPES_AND3
```cpp
// Before
AT_DISPATCH_FLOATING_TYPES_AND3(kHalf, kBFloat16, kFloat8_e4m3fn,
tensor.scalar_type(), "float_op", [&] {
process<scalar_t>(tensor);
});
// After
AT_DISPATCH_V2(tensor.scalar_type(), "float_op", AT_WRAP([&] {
process<scalar_t>(tensor);
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn);
```
### Pattern: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2
```cpp
// Before
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
kComplexHalf, kHalf,
self.scalar_type(),
"complex_op",
[&] {
result = compute<scalar_t>(self);
}
);
// After
AT_DISPATCH_V2(
self.scalar_type(),
"complex_op",
AT_WRAP([&] {
result = compute<scalar_t>(self);
}),
AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_COMPLEX_TYPES),
kComplexHalf,
kHalf
);
```
## Edge cases
### Case 1: No extra types (rare)
```cpp
// Before
AT_DISPATCH_ALL_TYPES(dtype, "op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES));
```
### Case 2: Many individual types (AND4, AND5, etc.)
```cpp
// Before
AT_DISPATCH_FLOATING_TYPES_AND4(kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2,
dtype, "float8_op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "float8_op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2);
```
### Case 3: Lambda with no captures
```cpp
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, dtype, "op", []() {
static_kernel<scalar_t>();
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([]() {
static_kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBool);
```
## Benefits of AT_DISPATCH_V2
1. **No arity in macro name**: Don't need different macros for AND2, AND3, AND4
2. **Composable type sets**: Mix and match type groups with `AT_EXPAND()`
3. **Extensible**: Easy to add more types without hitting macro limits
4. **Clearer**: Type groups are explicit, not implicit in macro name
## Important notes
- Keep `#include <ATen/Dispatch.h>` - other code may need it
- The `AT_WRAP()` is mandatory - prevents comma parsing issues in the lambda
- Type groups need `AT_EXPAND()`, individual types don't
- The v2 API is in `aten/src/ATen/Dispatch_v2.h` - refer to it for full docs
- See the header file for the Python script to regenerate the macro implementation
## Workflow
When asked to convert AT_DISPATCH macros:
1. Read the file to identify all AT_DISPATCH uses
2. Add `#include <ATen/Dispatch_v2.h>` if not present
3. For each dispatch macro:
- Identify the pattern and extract components
- Map the base type group
- Extract individual types
- Construct the AT_DISPATCH_V2 call
- Apply with Edit tool
4. Show the user the complete converted file
5. Explain what was changed
Do NOT compile or test the code - focus on accurate conversion only.

View File

@ -27,9 +27,7 @@ runs:
docker system prune -af
diskspace_new=$(df -H --output=pcent ${docker_root_dir} | sed -n 2p | sed 's/%//' | sed 's/ //')
if [[ "$diskspace_new" -gt "$diskspace_cutoff" ]] ; then
diskspace_cutoff_int=$((diskspace_cutoff + 0))
difference=$((100 - diskspace_cutoff_int))
echo "Error: Available diskspace is less than $difference percent. Not enough diskspace."
echo "Error: Available diskspace is less than $diskspace_cutoff percent. Not enough diskspace."
echo "$msg"
exit 1
else

View File

@ -1 +1 @@
3b0e7a6f192ca2715e7e6cbe5db007aea7165fe2
69bbe7363897764f9e758d851cd0340147d27f94

View File

@ -1 +1 @@
cfbc5c2f1c798991715a6b06bb3ce46478c4487c
1752fe6809b74921644866275ab80244b96e80bc

View File

@ -1 +1 @@
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9
df6798dfb931ce7c7fe5bed2447cd1092a5981af

View File

@ -540,26 +540,6 @@
- Lint
- pull
- name: PrivateUse1
patterns:
- torch/accelerator/**
- torch/utils/backend_registration.py
- torch/csrc/acc/**
- torch/csrc/DeviceAccelerator.*
- torch/csrc/profiler/standalone/privateuse1_observer.*
- aten/src/ATen/DeviceAccelerator.*
- aten/src/ATen/core/GeneratorForPrivateuseone.*
- aten/src/ATen/detail/PrivateUse1HooksInterface.*
- docs/source/accelerator/**
- test/cpp_extensions/open_registration_extension/torch_openreg/**
approved_by:
- albanD
- fffrog
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: superuser
patterns:
- '*'

View File

@ -19,7 +19,6 @@ ciflow_push_tags:
- ciflow/inductor-perf-test-nightly-rocm-mi300
- ciflow/inductor-perf-test-nightly-rocm-mi355
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-perf-test-nightly-xpu
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/linux-aarch64
@ -27,7 +26,6 @@ ciflow_push_tags:
- ciflow/nightly
- ciflow/op-benchmark
- ciflow/periodic
- ciflow/periodic-rocm-mi200
- ciflow/periodic-rocm-mi300
- ciflow/pull
- ciflow/quantization-periodic

View File

@ -11,17 +11,11 @@ architectures:
* Latest XPU
"""
import json
import os
import re
from pathlib import Path
from typing import Optional
SCRIPT_DIR = Path(__file__).absolute().parent
REPO_ROOT = SCRIPT_DIR.parent.parent
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
CUDA_STABLE = "12.8"
CUDA_ARCHES_FULL_VERSION = {
@ -37,7 +31,8 @@ CUDA_ARCHES_CUDNN_VERSION = {
"13.0": "9",
}
ROCM_ARCHES = ["7.0", "7.1"]
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
ROCM_ARCHES = ["6.4", "7.0"]
XPU_ARCHES = ["xpu"]
@ -61,7 +56,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'"
@ -78,7 +73,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
@ -95,7 +90,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'"
@ -112,7 +107,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | "
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
"nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx==13.0.85; platform_system == 'Linux' | "
"nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | "
"nvidia-cufile==1.15.1.6; platform_system == 'Linux'"
@ -142,48 +137,9 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
}
# Used by tools/nightly.py
PYTORCH_NIGHTLY_PIP_INDEX_URL = "https://download.pytorch.org/whl/nightly"
NIGHTLY_SOURCE_MATRIX = {
"cpu": dict(
name="cpu",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/cpu",
supported_platforms=["Linux", "macOS", "Windows"],
accelerator="cpu",
)
}
CUDA_NIGHTLY_SOURCE_MATRIX = {
f"cuda-{major}.{minor}": dict(
name=f"cuda-{major}.{minor}",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/cu{major}{minor}",
supported_platforms=["Linux", "Windows"],
accelerator="cuda",
)
for major, minor in (map(int, version.split(".")) for version in CUDA_ARCHES)
}
ROCM_NIGHTLY_SOURCE_MATRIX = {
f"rocm-{major}.{minor}": dict(
name=f"rocm-{major}.{minor}",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/rocm{major}.{minor}",
supported_platforms=["Linux"],
accelerator="rocm",
)
for major, minor in (map(int, version.split(".")) for version in ROCM_ARCHES)
}
XPU_NIGHTLY_SOURCE_MATRIX = {
"xpu": dict(
name="xpu",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/xpu",
supported_platforms=["Linux"],
accelerator="xpu",
)
}
NIGHTLY_SOURCE_MATRIX.update(CUDA_NIGHTLY_SOURCE_MATRIX)
NIGHTLY_SOURCE_MATRIX.update(ROCM_NIGHTLY_SOURCE_MATRIX)
NIGHTLY_SOURCE_MATRIX.update(XPU_NIGHTLY_SOURCE_MATRIX)
def get_nccl_wheel_version(arch_version: str) -> str:
import re
requirements = map(
str.strip, re.split("[;|]", PYTORCH_EXTRA_INSTALL_REQUIREMENTS[arch_version])
)
@ -191,14 +147,17 @@ def get_nccl_wheel_version(arch_version: str) -> str:
def read_nccl_pin(arch_version: str) -> str:
nccl_pin_path = (
REPO_ROOT
/ ".ci"
/ "docker"
/ "ci_commit_pins"
/ f"nccl-cu{arch_version[:2]}.txt"
from pathlib import Path
nccl_pin_path = os.path.join(
Path(__file__).absolute().parents[2],
".ci",
"docker",
"ci_commit_pins",
f"nccl-cu{arch_version[:2]}.txt",
)
return nccl_pin_path.read_text().strip()
with open(nccl_pin_path) as f:
return f.read().strip()
def validate_nccl_dep_consistency(arch_version: str) -> None:
@ -206,8 +165,7 @@ def validate_nccl_dep_consistency(arch_version: str) -> None:
wheel_ver = get_nccl_wheel_version(arch_version)
if not nccl_release_tag.startswith(f"v{wheel_ver}"):
raise RuntimeError(
f"{arch_version} NCCL release tag version {nccl_release_tag} "
f"does not correspond to wheel version {wheel_ver}"
f"{arch_version} NCCL release tag version {nccl_release_tag} does not correspond to wheel version {wheel_ver}"
)
@ -454,14 +412,7 @@ def generate_wheels_matrix(
return ret
arch_version = ""
for arch_version in CUDA_ARCHES:
validate_nccl_dep_consistency(arch_version)
del arch_version
if __name__ == "__main__":
# Used by tools/nightly.py
(SCRIPT_DIR / "nightly_source_matrix.json").write_text(
json.dumps(NIGHTLY_SOURCE_MATRIX, indent=4) + "\n"
)
validate_nccl_dep_consistency("13.0")
validate_nccl_dep_consistency("12.9")
validate_nccl_dep_consistency("12.8")
validate_nccl_dep_consistency("12.6")

View File

@ -38,10 +38,6 @@ on:
default: ""
description: |
List of tests to include (empty string implies default list)
dashboard-tag:
required: false
type: string
default: ""
disable-monitor:
description: |
[Experimental] Disable utilization monitoring for tests.
@ -62,11 +58,6 @@ on:
required: false
type: number
default: 1
secrets:
HUGGING_FACE_HUB_TOKEN:
required: false
description: |
HF Auth token to avoid rate limits when downloading models or datasets from hub
permissions:
id-token: write
contents: read
@ -205,8 +196,6 @@ jobs:
PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: ${{ matrix.mem_leak_check && '1' || '0' }}
PYTORCH_TEST_RERUN_DISABLED_TESTS: ${{ matrix.rerun_disabled_tests && '1' || '0' }}
TESTS_TO_INCLUDE: ${{ inputs.tests-to-include }}
DASHBOARD_TAG: ${{ inputs.dashboard-tag }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
timeout-minutes: ${{ fromJson(steps.test-timeout.outputs.timeout) }}
run: |
# Fetch aws credential from IMDs
@ -257,8 +246,6 @@ jobs:
-e PYTORCH_TEST_RERUN_DISABLED_TESTS \
-e TESTS_TO_INCLUDE \
-e ZE_AFFINITY_MASK \
-e HUGGING_FACE_HUB_TOKEN \
-e DASHBOARD_TAG \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--ulimit stack=10485760:83886080 \
--ulimit core=0 \

View File

@ -36,7 +36,7 @@ jobs:
runs-on: linux.9xlarge.ephemeral
strategy:
matrix:
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm7.0", "rocm7.1", "cpu"]
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.4", "rocm7.0", "cpu"]
steps:
- name: Build docker image
uses: pytorch/pytorch/.github/actions/binary-docker-build@main

View File

@ -52,8 +52,8 @@ jobs:
{ tag: "cuda12.9" },
{ tag: "cuda12.8" },
{ tag: "cuda12.6" },
{ tag: "rocm6.4" },
{ tag: "rocm7.0" },
{ tag: "rocm7.1" },
{ tag: "cpu" },
]
steps:

View File

@ -34,7 +34,7 @@ jobs:
id-token: write
strategy:
matrix:
rocm_version: ["71", "70"]
rocm_version: ["70", "64"]
steps:
- name: Checkout PyTorch
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -54,8 +54,8 @@ jobs:
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.1", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "xpu", runner: "linux.9xlarge.ephemeral" },

View File

@ -55,7 +55,7 @@ jobs:
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
include:
- device: "rocm"
rocm_version: "7.1"
rocm_version: "7.0"
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
- device: "cuda"
rocm_version: ""
@ -159,7 +159,12 @@ jobs:
WITH_CLANG_LDD="--with-clang-ldd"
fi
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE $WITH_CLANG_LDD"
if [[ "${BUILD_DEVICE}" == xpu ]]; then
docker exec -t "${container_name}" bash -c "dnf install -y gcc-toolset-13-gcc-c++"
docker exec -t "${container_name}" bash -c "source /opt/rh/gcc-toolset-13/enable && ${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE"
else
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE $WITH_CLANG_LDD"
fi
if [[ ("${{ matrix.device }}" == "cuda" || "${{ matrix.device }}" == "xpu") ]]; then
docker exec -t "${container_name}" bash -c "auditwheel repair --plat ${PLATFORM} //artifacts/*.whl"

View File

@ -57,7 +57,6 @@ jobs:
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.10-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-py3.14-clang12,
pytorch-linux-jammy-rocm-n-py3,
pytorch-linux-noble-rocm-n-py3,
pytorch-linux-jammy-rocm-n-py3-benchmarks,
@ -67,7 +66,6 @@ jobs:
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-jammy-xpu-n-py3,
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,

View File

@ -132,7 +132,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -178,7 +178,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -224,7 +224,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -270,7 +270,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -381,7 +381,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -427,7 +427,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -473,7 +473,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -519,7 +519,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -630,7 +630,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -676,7 +676,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -722,7 +722,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -768,7 +768,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -879,7 +879,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -925,7 +925,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -971,7 +971,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1017,7 +1017,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1128,7 +1128,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1174,7 +1174,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1220,7 +1220,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1266,7 +1266,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1377,7 +1377,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1423,7 +1423,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1469,7 +1469,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1515,7 +1515,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1626,7 +1626,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1672,7 +1672,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1718,7 +1718,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.4.5; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1764,7 +1764,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.4.5; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.88; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.96; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.85; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.1.0.3; platform_system == 'Linux' | nvidia-cufft==12.0.0.61; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.4.66; platform_system == 'Linux' | nvidia-cusparse==12.6.3.3; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.85; platform_system == 'Linux' | nvidia-nvjitlink==13.0.88; platform_system == 'Linux' | nvidia-cufile==1.15.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -384,6 +384,124 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_4-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm6_4-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm6_4-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm6_4-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm6_4-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm6.4
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm6_4-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm6_4-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm6_4-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -501,121 +619,3 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_1-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.1
GPU_ARCH_VERSION: "7.1"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm7_1-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm7_1-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm7_1-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.1
GPU_ARCH_VERSION: "7.1"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm7_1-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm7.1
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm7_1-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm7_1-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.1
GPU_ARCH_VERSION: "7.1"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm7_1-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

File diff suppressed because it is too large Load Diff

View File

@ -1,148 +0,0 @@
name: inductor-perf-nightly-xpu
on:
push:
tags:
- ciflow/inductor-perf-test-nightly-xpu/*
schedule:
- cron: 30 17 * * *
workflow_dispatch:
inputs:
training:
description: Run training (on by default)?
required: false
type: boolean
default: true
inference:
description: Run inference (on by default)?
required: false
type: boolean
default: true
default:
description: Run inductor_default?
required: false
type: boolean
default: false
dynamic:
description: Run inductor_dynamic_shapes?
required: false
type: boolean
default: false
cppwrapper:
description: Run inductor_cpp_wrapper?
required: false
type: boolean
default: false
cudagraphs:
description: Run inductor_cudagraphs?
required: false
type: boolean
default: false
freezing_cudagraphs:
description: Run inductor_cudagraphs with freezing for inference?
required: false
type: boolean
default: false
aotinductor:
description: Run aot_inductor for inference?
required: false
type: boolean
default: false
maxautotune:
description: Run inductor_max_autotune?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf,inductor_timm_perf,inductor_torchbench_perf,cachebench
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
jobs:
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
xpu-n-py3_10-inductor-benchmark-build:
name: xpu-n-py3.10-inductor-benchmark
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_xpu", shard: 1, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 2, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 3, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 4, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 5, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 2, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 3, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 4, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 5, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 6, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 2, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 3, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 4, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 5, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 6, num_shards: 6, runner: "linux.idc.xpu" },
]}
secrets: inherit
xpu-n-py3_10-inductor-benchmark-test-nightly:
permissions:
id-token: write
contents: read
if: github.event_name != 'workflow_dispatch'
name: xpu-n-py3.10-inductor-benchmark
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
# Disable monitor in perf tests for more investigation
disable-monitor: true
monitor-log-interval: 10
monitor-data-collect-interval: 2
secrets: inherit
xpu-n-py3_10-inductor-benchmark-test:
permissions:
id-token: write
contents: read
if: github.event_name == 'workflow_dispatch'
name: xpu-n-py3.10-inductor-test
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
disable-monitor: false
monitor-log-interval: 15
monitor-data-collect-interval: 4
secrets: inherit

View File

@ -76,12 +76,11 @@ jobs:
# NOTE: mypy needs its own job because it depends on --all-files, without assessing all files it sometimes
# fails to find types when it should
# NOTE: We should be able to disable this and consolidate with Pyrefly
lintrunner-pyrefly:
lintrunner-mypy:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
name: lintrunner-pyrefly-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
name: lintrunner-mypy-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
needs: [get-label-type, get-changed-files]
# Only run if there are changed files relevant to pyrefly
# Only run if there are changed files relevant to mypy
if: |
github.repository_owner == 'pytorch' && (
needs.get-changed-files.outputs.changed-files == '*' ||
@ -99,8 +98,8 @@ jobs:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running pyrefly"
ADDITIONAL_LINTRUNNER_ARGS="--take PYREFLY --all-files" .github/scripts/lintrunner.sh
echo "Running mypy"
ADDITIONAL_LINTRUNNER_ARGS="--take MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
lintrunner-noclang:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
@ -119,9 +118,9 @@ jobs:
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running all other linters"
if [ "$CHANGED_FILES" = '*' ]; then
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,PYREFLY --all-files" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
else
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
fi
quick-checks:

View File

@ -1,84 +0,0 @@
name: periodic-rocm-mi200
on:
schedule:
# We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs.
# Also run less frequently on weekends.
- cron: 45 0,8,16 * * 1-5
- cron: 45 4 * * 0,6
- cron: 45 4,12,20 * * 1-5
- cron: 45 12 * * 0,6
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi200/*
branches:
- release/*
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
llm-td:
if: github.repository_owner == 'pytorch'
name: before-test
uses: ./.github/workflows/llm_td_retrieval.yml
permissions:
id-token: write
contents: read
target-determination:
name: before-test
uses: ./.github/workflows/target_determination.yml
needs: llm-td
permissions:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch'
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit

View File

@ -204,6 +204,37 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda13_0-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-cuda12_8-py3-gcc11-slow-gradcheck-build:
name: linux-jammy-cuda12.8-py3-gcc11-slow-gradcheck
uses: ./.github/workflows/_linux-build.yml

View File

@ -6,7 +6,6 @@ on:
- pull
- trunk
- periodic
- periodic-rocm-mi200
- periodic-rocm-mi300
- inductor
- unstable

View File

@ -59,18 +59,14 @@ jobs:
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 2, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 3, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 4, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 5, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 6, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 7, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 8, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 9, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 10, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 11, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 12, num_shards: 12, runner: "linux.idc.xpu" },
{ config: "default", shard: 1, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 2, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 3, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 4, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 5, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 6, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 7, num_shards: 8, runner: "linux.idc.xpu" },
{ config: "default", shard: 8, num_shards: 8, runner: "linux.idc.xpu" },
]}
secrets: inherit

2
.gitignore vendored
View File

@ -143,7 +143,6 @@ scripts/release_notes/*.json
sccache-stats*.json
lint.json
merge_record.json
.github/scripts/nightly_source_matrix.json
# These files get copied over on invoking setup.py
torchgen/packaged/*
@ -398,4 +397,3 @@ CLAUDE.local.md
/test_*.py
/debug_*.py
CLAUDE_CONTEXT/
/.claude/settings.local.json

View File

@ -121,6 +121,94 @@ command = [
]
is_formatter = true
[[linter]]
code = 'MYPY'
include_patterns = [
'setup.py',
'functorch/dim/**/*.py',
'torch/**/*.py',
'torch/**/*.pyi',
'caffe2/**/*.py',
'caffe2/**/*.pyi',
'test/test_bundled_images.py',
'test/test_bundled_inputs.py',
'test/test_complex.py',
'test/test_datapipe.py',
'test/test_futures.py',
'test/test_numpy_interop.py',
'test/test_torch.py',
'test/test_type_hints.py',
'test/test_type_info.py',
'test/test_utils.py',
]
exclude_patterns = [
'**/fb/**',
]
command = [
'python3',
'tools/linter/adapters/mypy_linter.py',
'--config=mypy.ini',
'--',
'@{{PATHSFILE}}'
]
init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'mypy==1.16.0',
'sympy==1.13.3',
'types-requests==2.27.25',
'types-pyyaml==6.0.2',
'types-tabulate==0.8.8',
'types-protobuf==5.29.1.20250403',
'types-setuptools==79.0.0.20250422',
'types-jinja2==2.11.9',
'types-colorama==0.4.6',
'filelock==3.18.0',
'junitparser==2.1.1',
'rich==14.1.0',
'pyyaml==6.0.2',
'optree==0.13.0',
'dataclasses-json==0.6.7',
'pandas==2.2.3',
]
[[linter]]
code = 'MYPYSTRICT'
include_patterns = [
'.github/**/*.py',
'benchmarks/instruction_counts/**/*.py',
'tools/**/*.py',
'torchgen/**/*.py',
'torch/utils/_pytree.py',
'torch/utils/_cxx_pytree.py',
'torch/utils/benchmark/utils/common.py',
'torch/utils/benchmark/utils/timer.py',
'torch/utils/benchmark/utils/valgrind_wrapper/**/*.py',
]
exclude_patterns = [
# (linbinyu) copied from internal repo
'**/fb/**',
'tools/code_analyzer/gen_operators_yaml.py',
'tools/dynamo/verify_dynamo.py',
'tools/gen_vulkan_spv.py',
'tools/test/gen_operators_yaml_test.py',
'tools/test/gen_oplist_test.py',
'tools/test/test_selective_build.py',
'tools/experimental/torchfuzz/**',
]
command = [
'python3',
'tools/linter/adapters/mypy_linter.py',
'--config=mypy-strict.ini',
'--code=MYPYSTRICT',
'--',
'@{{PATHSFILE}}'
]
[[linter]]
code = 'PYREFLY'
@ -142,7 +230,6 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'pyrefly==0.36.2',

View File

@ -374,7 +374,7 @@ cmake_dependent_option(
"Build the lazy Torchscript backend, not compatible with mobile builds" ON
"NOT INTERN_BUILD_MOBILE" OFF)
cmake_dependent_option(BUILD_FUNCTORCH "Build Functorch" ON "BUILD_PYTHON" OFF)
cmake_dependent_option(BUILD_BUNDLE_PTXAS "Bundle PTX into torch/bin folder"
cmake_dependent_option(BUILD_BUNDLE_PTXAS "Bundle PTX into torch/bin fodler"
OFF "USE_CUDA" OFF)
cmake_dependent_option(USE_KLEIDIAI "Use KleidiAI for the ARM CPU & AARCH64 architecture." ON
"CPU_AARCH64" OFF)

View File

@ -11,6 +11,7 @@ aspects of contributing to PyTorch.
<!-- toc -->
- [Developing PyTorch](#developing-pytorch)
- [Setup the development environment](#setup-the-development-environment)
- [Tips and Debugging](#tips-and-debugging)
- [Nightly Checkout & Pull](#nightly-checkout--pull)
- [Codebase structure](#codebase-structure)
@ -66,6 +67,23 @@ aspects of contributing to PyTorch.
Follow the instructions for [installing PyTorch from source](https://github.com/pytorch/pytorch#from-source). If you get stuck when developing PyTorch on your machine, check out the [tips and debugging](#tips-and-debugging) section below for common solutions.
### Setup the development environment
First, you need to [fork the PyTorch project on GitHub](https://github.com/pytorch/pytorch/fork) and follow the instructions at [Connecting to GitHub with SSH](https://docs.github.com/en/authentication/connecting-to-github-with-ssh) to setup your SSH authentication credentials.
Then clone the PyTorch project and setup the development environment:
```bash
git clone git@github.com:<USERNAME>/pytorch.git
cd pytorch
git remote add upstream git@github.com:pytorch/pytorch.git
make setup-env
# Or run `make setup-env-cuda` for pre-built CUDA binaries
# Or run `make setup-env-rocm` for pre-built ROCm binaries
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
```
### Tips and Debugging
* If you want to have no-op incremental rebuilds (which are fast), see [Make no-op build fast](#make-no-op-build-fast) below.

View File

@ -1,4 +1,4 @@
![PyTorch Logo](https://github.com/pytorch/pytorch/raw/main/docs/source/_static/img/pytorch-logo-dark.png)
![PyTorch Logo](https://github.com/pytorch/pytorch/blob/9708fcf92db88b80b9010c68662d634434da3106/docs/source/_static/img/pytorch-logo-dark.png)
--------------------------------------------------------------------------------
@ -72,7 +72,7 @@ Elaborating Further:
If you use NumPy, then you have used Tensors (a.k.a. ndarray).
![Tensor illustration](https://github.com/pytorch/pytorch/raw/main/docs/source/_static/img/tensor_illustration.png)
![Tensor illustration](https://github.com/pytorch/pytorch/blob/9708fcf92db88b80b9010c68662d634434da3106/docs/source/_static/img/tensor_illustration.png)
PyTorch provides Tensors that can live either on the CPU or the GPU and accelerates the
computation by a huge amount.
@ -99,7 +99,7 @@ from several research papers on this topic, as well as current and past work suc
While this technique is not unique to PyTorch, it's one of the fastest implementations of it to date.
You get the best of speed and flexibility for your crazy research.
![Dynamic graph](https://github.com/pytorch/pytorch/raw/main/docs/source/_static/img/dynamic_graph.gif)
![Dynamic graph](https://github.com/pytorch/pytorch/blob/9708fcf92db88b80b9010c68662d634434da3106/docs/source/_static/img/dynamic_graph.gif)
### Python First

View File

@ -260,7 +260,7 @@ IF(USE_FBGEMM_GENAI)
if(USE_CUDA)
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
set(FBGEMM_CUTLASS_KERNELS_REGEX ".*(mx8mx8bf16_grouped|f4f4bf16_grouped).*")
set(FBGEMM_CUTLASS_KERNELS_REGEX ".*mx8mx8bf16_grouped.*")
file(GLOB_RECURSE fbgemm_genai_native_cuda_cu
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/*.cu"
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/**/*.cu")
@ -291,7 +291,6 @@ IF(USE_FBGEMM_GENAI)
set(fbgemm_genai_cuh
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/f4f4bf16_grouped/"
"${FBGEMM_GENAI_SRCS}/"
)

View File

@ -181,7 +181,7 @@ c10::intrusive_ptr<c10::TensorImpl> CPUGeneratorImpl::get_state() const {
static const size_t size = sizeof(CPUGeneratorImplState);
static_assert(std::is_standard_layout_v<CPUGeneratorImplState>, "CPUGeneratorImplState is not a PODType");
auto state_tensor = at::detail::empty_cpu({static_cast<int64_t>(size)}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto state_tensor = at::detail::empty_cpu({(int64_t)size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto rng_state = state_tensor.data_ptr();
// accumulate generator data to be copied into byte tensor

View File

@ -223,7 +223,7 @@ void Context::setSDPPriorityOrder(const std::vector<int64_t>& order) {
"setSDPPriority order expected ", sdp_priority_order.size() - 1, " but got ",
at::num_sdp_backends, " unique backends specified in priority order.");
for (uint32_t i = 0; i < order.size(); i++) {
sdp_priority_order[i] = static_cast<at::SDPBackend>(order[i]);
sdp_priority_order[i] = (at::SDPBackend) order[i];
}
}
@ -825,14 +825,6 @@ void Context::setDisplayVmapFallbackWarnings(bool enabled) {
display_vmap_fallback_warnings_ = enabled;
}
bool Context::warnOnAccumulateGradStreamMismatch() const {
return warn_on_accumulate_grad_stream_mismatch_;
}
void Context::setWarnOnAccumulateGradStreamMismatch(bool enabled) {
warn_on_accumulate_grad_stream_mismatch_ = enabled;
}
bool Context::isDefaultMobileCPUAllocatorSet() {
return prev_allocator_ptr_ != nullptr;
}

View File

@ -404,9 +404,6 @@ class TORCH_API Context {
void setDisplayVmapFallbackWarnings(bool enabled);
bool areVmapFallbackWarningsEnabled() const;
void setWarnOnAccumulateGradStreamMismatch(bool enabled);
bool warnOnAccumulateGradStreamMismatch() const;
bool isDefaultMobileCPUAllocatorSet();
void setDefaultMobileCPUAllocator();
void unsetDefaultMobileCPUAllocator();
@ -497,7 +494,6 @@ class TORCH_API Context {
bool release_original_weights = false;
#endif
bool display_vmap_fallback_warnings_ = false;
bool warn_on_accumulate_grad_stream_mismatch_ = true;
std::atomic<at::QEngine> quantized_engine = at::QEngine::NoQEngine;
bool enable_sparse_tensor_invariant_checks = false;
bool allow_fp16_reduction_cpu = false;

View File

@ -197,7 +197,6 @@ inline at::ScalarType scalar_type(at::ScalarType s) {
/* don't use TYPE again in case it is an expensive or side-effect op */ \
at::ScalarType _st = ::detail::scalar_type(the_type); \
RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
switch (_st) { \
__VA_ARGS__ \
default: \
@ -209,7 +208,6 @@ inline at::ScalarType scalar_type(at::ScalarType s) {
toString(_st), \
"'"); \
} \
C10_DIAGNOSTIC_POP() \
}()
#define AT_DISPATCH_CASE_FLOATING_TYPES(...) \

View File

@ -252,13 +252,13 @@ MapAllocator::MapAllocator(WithFd /*unused*/, std::string_view filename, int fd,
if (!(flags_ & ALLOCATOR_MAPPED_FROMFD)) {
if (flags_ & ALLOCATOR_MAPPED_SHARED) {
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
if ((fd = open(filename_.c_str(), flags, static_cast<mode_t>(0600))) == -1) {
if ((fd = open(filename_.c_str(), flags, (mode_t)0600)) == -1) {
TORCH_CHECK(false, "unable to open file <", filename_, "> in read-write mode: ", c10::utils::str_error(errno), " (", errno, ")");
}
} else if (flags_ & ALLOCATOR_MAPPED_SHAREDMEM) {
#ifdef HAVE_SHM_OPEN
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
if((fd = shm_open(filename_.c_str(), flags, static_cast<mode_t>(0600))) == -1) {
if((fd = shm_open(filename_.c_str(), flags, (mode_t)0600)) == -1) {
TORCH_CHECK(false, "unable to open shared memory object <", filename_, "> in read-write mode: ", c10::utils::str_error(errno), " (", errno, ")");
}
#else
@ -503,7 +503,7 @@ RefcountedMapAllocator::RefcountedMapAllocator(WithFd /*unused*/, const char *fi
void RefcountedMapAllocator::initializeAlloc() {
TORCH_CHECK(base_ptr_, "base_ptr_ is null");
MapInfo *map_info = static_cast<MapInfo*>(base_ptr_);
MapInfo *map_info = (MapInfo*)base_ptr_;
#ifdef _WIN32
ReleaseContext* r_ctx = new ReleaseContext;
@ -539,7 +539,7 @@ void RefcountedMapAllocator::close() {
}
#else /* _WIN32 */
MapInfo *info = static_cast<MapInfo*>(data);
MapInfo *info = (MapInfo*)(data);
if (--info->refcount == 0) {
#ifdef HAVE_SHM_UNLINK
if (shm_unlink(filename_.c_str()) == -1) {

View File

@ -862,7 +862,7 @@ void TensorIteratorBase::narrow(int dim, int64_t start, int64_t size) {
shape_[dim] = size;
view_offsets_[dim] += start;
for (auto& op : operands_) {
op.data = (static_cast<char*>(op.data)) + op.stride_bytes[dim] * start;
op.data = ((char*)op.data) + op.stride_bytes[dim] * start;
}
if (size == 1 && !is_reduction_) {
coalesce_dimensions();
@ -873,7 +873,7 @@ void TensorIteratorBase::select_all_keeping_dim(int start_dim, IntArrayRef indic
TORCH_INTERNAL_ASSERT(start_dim <= ndim());
for (const auto i : c10::irange(start_dim, ndim())) {
for (auto& op : operands_) {
op.data = (static_cast<char*>(op.data)) + op.stride_bytes[i] * indices[i - start_dim];
op.data = ((char*)op.data) + op.stride_bytes[i] * indices[i - start_dim];
}
shape_[i] = 1;
}

View File

@ -41,7 +41,7 @@ inline void serial_for_each(
IntArrayRef strides,
char** base_ptrs,
size_t ntensors,
TensorIteratorBase::loop2d_t loop,
typename TensorIteratorBase::loop2d_t loop,
Range range) {
const auto ndim = shape.size();
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(

View File

@ -677,8 +677,8 @@ struct CachingHostAllocatorImpl {
// size. This allows us to quickly find a free block of the right size.
// We use deque to store per size free list and guard the list with its own
// mutex.
alignas(hardware_destructive_interference_size) std::vector<FreeBlockList<B>>
free_list_{MAX_SIZE_INDEX};
alignas(hardware_destructive_interference_size) std::vector<FreeBlockList<B>> free_list_ =
std::vector<FreeBlockList<B>>(MAX_SIZE_INDEX);
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block

View File

@ -190,14 +190,12 @@ class IListRef;
* it to a function (e.g. `ImplT::<dispatch-function>(this_)`).
*/
#define TORCH_ILISTREF_UNWRAP(TAG, BODY) \
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
switch (TAG) { \
TORCH_ILISTREF_FORALL_TAGS(TORCH_ILISTREF_UNWRAP_CASE, BODY) \
break; \
default: \
TORCH_INTERNAL_ASSERT(false, "invalid IListRef tag."); \
} \
C10_DIAGNOSTIC_POP()
}
enum class IListRefTag {
#define DEFINE_TAG(tag, ...) tag,

View File

@ -56,7 +56,7 @@ C10_HOST_DEVICE inline T uniform_int_full_range(V val) {
* in this overloaded version
*/
template <typename T, typename V>
C10_HOST_DEVICE inline std::enable_if_t<!std::is_floating_point_v<T>, T>uniform_int(V val) {
C10_HOST_DEVICE inline std::enable_if_t<!(std::is_floating_point_v<T>), T>uniform_int(V val) {
if constexpr (std::is_same_v<T, bool>) {
return static_cast<bool>(val & 1);
} else if constexpr (std::is_same_v<T, int64_t>) {

View File

@ -114,25 +114,25 @@ inline typename remove_symint<T>::type unpackSymInt(T x) {
}
template <>
inline remove_symint<c10::SymInt>::type unpackSymInt(c10::SymInt x) {
inline typename remove_symint<c10::SymInt>::type unpackSymInt(c10::SymInt x) {
return x.guard_int(__FILE__, __LINE__);
}
template <>
inline remove_symint<c10::SymIntArrayRef>::type unpackSymInt(
inline typename remove_symint<c10::SymIntArrayRef>::type unpackSymInt(
c10::SymIntArrayRef x) {
return C10_AS_INTARRAYREF_SLOW(x);
}
template <>
inline remove_symint<std::optional<c10::SymInt>>::type unpackSymInt(
inline typename remove_symint<std::optional<c10::SymInt>>::type unpackSymInt(
std::optional<c10::SymInt> x) {
return x.has_value() ? std::make_optional(x->guard_int(__FILE__, __LINE__))
: std::nullopt;
}
template <>
inline remove_symint<at::OptionalSymIntArrayRef>::type unpackSymInt(
inline typename remove_symint<at::OptionalSymIntArrayRef>::type unpackSymInt(
at::OptionalSymIntArrayRef x) {
return x.has_value() ? std::make_optional(C10_AS_INTARRAYREF_SLOW(*x))
: std::nullopt;

View File

@ -631,8 +631,8 @@ call_functor_with_args_from_stack_(
Stack* stack,
std::index_sequence<ivalue_arg_indices...> /*unused*/,
guts::typelist::typelist<ArgTypes...>* /*unused*/) {
(void)stack; // when sizeof...(ivalue_arg_indices) == 0, this argument would
// be unused and we have to silence the compiler warning.
(void)(stack); // when sizeof...(ivalue_arg_indices) == 0, this argument would
// be unused and we have to silence the compiler warning.
// We're explicitly filtering out DispatchKeySet from the argument list.
// Some kernels take a DispatchKeySet as their first argument in order to

View File

@ -18,7 +18,6 @@ struct TORCH_API EnumType : public NamedType {
TypePtr value,
std::vector<EnumNameValue> enum_names_values,
std::weak_ptr<::torch::jit::CompilationUnit> cu) {
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum")
switch (value->kind()) {
case TypeKind::IntType:
case TypeKind::FloatType:
@ -35,7 +34,6 @@ struct TORCH_API EnumType : public NamedType {
value->str(),
"', only int, float and string are supported");
}
C10_DIAGNOSTIC_POP()
}
std::string str() const override {

View File

@ -601,8 +601,8 @@ std::ostream& IValue::repr(
double d = v.toDouble();
int c = std::fpclassify(d);
if ((c == FP_NORMAL || c == FP_ZERO ) && std::abs(d) < 1e10) {
int64_t i = static_cast<int64_t>(d);
if (static_cast<double>(i) == d) {
int64_t i = int64_t(d);
if (double(i) == d) {
// -0.0 (signed zero) needs to be parsed as -0.
if (i == 0 && std::signbit(d)) {
return out << "-" << i << ".";
@ -799,8 +799,8 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
double d = v.toDouble();
int c = std::fpclassify(d);
if (c == FP_NORMAL || c == FP_ZERO) {
int64_t i = static_cast<int64_t>(d);
if (static_cast<double>(i) == d) {
int64_t i = int64_t(d);
if (double(i) == d) {
return out << i << ".";
}
}

View File

@ -41,7 +41,7 @@ void standardizeVectorForUnion(std::vector<TypePtr>* to_flatten);
inline bool is_contiguous_strides(
const IntArrayRef sizes,
const IntArrayRef strides) {
size_t n_dim = sizes.size();
int n_dim = static_cast<int>(sizes.size());
if (n_dim == 0) {
return true;
}
@ -50,7 +50,7 @@ inline bool is_contiguous_strides(
return false;
}
for (int i = static_cast<int>(n_dim) - 2; i >= 0; i--) {
for (int i = n_dim - 2; i >= 0; i--) {
if (strides[i] != strides[i + 1] * sizes[i + 1]) {
return false;
}
@ -922,7 +922,6 @@ struct TORCH_API DictType : public SharedType {
if (auto dyn = key->castRaw<DynamicType>()) {
kind = dyn->dynamicKind();
}
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum")
switch (kind) {
case TypeKind::AnyType:
case TypeKind::IntType:
@ -939,7 +938,6 @@ struct TORCH_API DictType : public SharedType {
key->str(),
"', only int, float, complex, Tensor, device and string keys are supported");
}
C10_DIAGNOSTIC_POP()
}
// aligned with the format in FunctionSchema
@ -2373,7 +2371,7 @@ private:
};
template<>
inline detail::CastReturnType<NamedType>::type Type::cast<NamedType>() {
inline typename detail::CastReturnType<NamedType>::type Type::cast<NamedType>() {
if (kind() == TypeKind::TupleType || kind() == TypeKind::FunctionType ||
kind() == TypeKind::ClassType || kind() == TypeKind::InterfaceType) {
return std::static_pointer_cast<NamedType>(static_cast<NamedType *>(this)->shared_from_this());
@ -2382,7 +2380,7 @@ inline detail::CastReturnType<NamedType>::type Type::cast<NamedType>() {
}
template<>
inline detail::CastConstReturnType<NamedType>::type Type::cast<NamedType>() const {
inline typename detail::CastConstReturnType<NamedType>::type Type::cast<NamedType>() const {
if (kind() == TypeKind::TupleType || kind() == TypeKind::FunctionType ||
kind() == TypeKind::ClassType || kind() == TypeKind::InterfaceType) {
return std::static_pointer_cast<const NamedType>(static_cast<const NamedType *>(this)->shared_from_this());

View File

@ -19,13 +19,6 @@ inline namespace CPU_CAPABILITY {
#error "Big endian is not supported."
#endif
// GCC does not properly optimize bf16 operators
#if defined(__ARM_FEATURE_BF16) && (__clang_major__ >= 19)
#define BF16_ARITHMETIC_SUPPORTED() 1
#else
#define BF16_ARITHMETIC_SUPPORTED() 0
#endif
// Unlike the float16_t family of types, bfloat16_t is not available
// when we're not targeting bfloat16 hardware support on some
// platforms (but not Mac, so we have to be careful not to shadow the
@ -359,35 +352,18 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
other, &Vectorized<float>::name); \
}
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
Vectorized frac() const;
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
#ifdef __ARM_FEATURE_BF16
// Flip sign bit
Vectorized<c10::BFloat16> neg() const {
return vreinterpretq_bf16_s16(vreinterpretq_s16_bf16(values) ^ (-32768));
return -values;
}
// Fast reciprocal is fine because we are truncating results
Vectorized<c10::BFloat16> reciprocal() const {
auto x = vcvtq_low_f32_bf16(values);
auto y = vcvtq_high_f32_bf16(values);
x = vrecpeq_f32(x);
y = vrecpeq_f32(y);
return vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(x), y);
return 1.0f / values;
}
// Clearing the sign bit
Vectorized<c10::BFloat16> abs() const {
return vreinterpretq_bf16_u16(vreinterpretq_u16_bf16(values) & 0x7FFF);
}
#else
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
#endif
// These functions are optimized on clang-21+
#if BF16_ARITHMETIC_SUPPORTED() && (__clang_major__ >= 21)
Vectorized<c10::BFloat16> operator==(
const Vectorized<c10::BFloat16>& other) const {
return values == other.values;
@ -418,6 +394,8 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
return values >= other.values;
}
#else
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<)
@ -473,7 +451,7 @@ template <>
Vectorized<c10::BFloat16> inline operator+(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x + y;
@ -486,7 +464,7 @@ template <>
Vectorized<c10::BFloat16> inline operator-(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x - y;
@ -499,7 +477,7 @@ template <>
Vectorized<c10::BFloat16> inline operator*(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x * y;
@ -512,7 +490,7 @@ template <>
Vectorized<c10::BFloat16> inline operator/(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x / y;
@ -629,7 +607,7 @@ Vectorized<c10::BFloat16> inline fmadd(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
@ -649,7 +627,7 @@ Vectorized<c10::BFloat16> inline fnmadd(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
@ -665,7 +643,7 @@ Vectorized<c10::BFloat16> inline fmsub(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
@ -681,7 +659,7 @@ Vectorized<c10::BFloat16> inline fnmsub(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#if BF16_ARITHMETIC_SUPPORTED()
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;

View File

@ -6,9 +6,9 @@ namespace at::vec {
inline namespace CPU_CAPABILITY {
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
// Enable auto-vectorization for clang-17+
// Enable auto-vectorization for GCC-13+ and clang-17+
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
#if defined(__clang__) && (__clang_major__ >= 17)
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
template <typename from_type, typename to_type>
inline void convertImpl(
@ -21,46 +21,12 @@ inline void convertImpl(
}
}
template <typename to_type>
inline void convertFromBool(
const bool* __restrict src,
to_type* __restrict dst,
int64_t n) {
const uint8_t* srcPtr = reinterpret_cast<const uint8_t*>(src);
uint64_t len = static_cast<uint64_t>(n);
for (uint64_t i = 0; i < len; i++) {
dst[i] = srcPtr[i] != 0 ? static_cast<to_type>(1) : static_cast<to_type>(0);
}
}
template <typename from_type>
inline void convertToBool(
const from_type* __restrict src,
bool* __restrict dst,
int64_t n) {
uint8_t* dstPtr = reinterpret_cast<uint8_t*>(dst);
uint64_t len = static_cast<uint64_t>(n);
for (uint64_t i = 0; i < len; i++) {
dstPtr[i] = src[i] != static_cast<from_type>(0) ? 1 : 0;
}
}
#define CONVERT_TEMPLATE(from_type, to_type) \
template <> \
inline void convert(const from_type* src, to_type* dst, int64_t n) { \
return convertImpl<from_type, to_type>(src, dst, n); \
}
#define CONVERT_FROM_BOOL_TEMPLATE(to_type) \
inline void convert(const bool* src, to_type* dst, int64_t n) { \
return convertFromBool<to_type>(src, dst, n); \
}
#define CONVERT_TO_BOOL_TEMPLATE(from_type) \
inline void convert(const from_type* src, bool* dst, int64_t n) { \
return convertToBool<from_type>(src, dst, n); \
}
CONVERT_TEMPLATE(uint8_t, uint8_t)
CONVERT_TEMPLATE(uint8_t, int8_t)
CONVERT_TEMPLATE(uint8_t, int16_t)
@ -68,7 +34,6 @@ CONVERT_TEMPLATE(uint8_t, int32_t)
CONVERT_TEMPLATE(uint8_t, int64_t)
CONVERT_TEMPLATE(uint8_t, float)
CONVERT_TEMPLATE(uint8_t, double)
CONVERT_TO_BOOL_TEMPLATE(uint8_t)
CONVERT_TEMPLATE(int8_t, uint8_t)
CONVERT_TEMPLATE(int8_t, int8_t)
CONVERT_TEMPLATE(int8_t, int16_t)
@ -76,7 +41,6 @@ CONVERT_TEMPLATE(int8_t, int32_t)
CONVERT_TEMPLATE(int8_t, int64_t)
CONVERT_TEMPLATE(int8_t, float)
CONVERT_TEMPLATE(int8_t, double)
CONVERT_TO_BOOL_TEMPLATE(int8_t)
CONVERT_TEMPLATE(int16_t, uint8_t)
CONVERT_TEMPLATE(int16_t, int8_t)
CONVERT_TEMPLATE(int16_t, int16_t)
@ -84,7 +48,6 @@ CONVERT_TEMPLATE(int16_t, int32_t)
CONVERT_TEMPLATE(int16_t, int64_t)
CONVERT_TEMPLATE(int16_t, float)
CONVERT_TEMPLATE(int16_t, double)
CONVERT_TO_BOOL_TEMPLATE(int16_t)
CONVERT_TEMPLATE(int32_t, uint8_t)
CONVERT_TEMPLATE(int32_t, int8_t)
CONVERT_TEMPLATE(int32_t, int16_t)
@ -92,7 +55,6 @@ CONVERT_TEMPLATE(int32_t, int32_t)
CONVERT_TEMPLATE(int32_t, int64_t)
CONVERT_TEMPLATE(int32_t, float)
CONVERT_TEMPLATE(int32_t, double)
CONVERT_TO_BOOL_TEMPLATE(int32_t)
CONVERT_TEMPLATE(int64_t, uint8_t)
CONVERT_TEMPLATE(int64_t, int8_t)
CONVERT_TEMPLATE(int64_t, int16_t)
@ -100,7 +62,6 @@ CONVERT_TEMPLATE(int64_t, int32_t)
CONVERT_TEMPLATE(int64_t, int64_t)
CONVERT_TEMPLATE(int64_t, float)
CONVERT_TEMPLATE(int64_t, double)
CONVERT_TO_BOOL_TEMPLATE(int64_t)
CONVERT_TEMPLATE(float, uint8_t)
CONVERT_TEMPLATE(float, int8_t)
CONVERT_TEMPLATE(float, int16_t)
@ -108,7 +69,6 @@ CONVERT_TEMPLATE(float, int32_t)
CONVERT_TEMPLATE(float, int64_t)
CONVERT_TEMPLATE(float, float)
CONVERT_TEMPLATE(float, double)
CONVERT_TO_BOOL_TEMPLATE(float)
CONVERT_TEMPLATE(double, uint8_t)
CONVERT_TEMPLATE(double, int8_t)
CONVERT_TEMPLATE(double, int16_t)
@ -116,14 +76,6 @@ CONVERT_TEMPLATE(double, int32_t)
CONVERT_TEMPLATE(double, int64_t)
CONVERT_TEMPLATE(double, float)
CONVERT_TEMPLATE(double, double)
CONVERT_TO_BOOL_TEMPLATE(double)
CONVERT_FROM_BOOL_TEMPLATE(uint8_t)
CONVERT_FROM_BOOL_TEMPLATE(int8_t)
CONVERT_FROM_BOOL_TEMPLATE(int16_t)
CONVERT_FROM_BOOL_TEMPLATE(int32_t)
CONVERT_FROM_BOOL_TEMPLATE(int64_t)
CONVERT_FROM_BOOL_TEMPLATE(float)
CONVERT_FROM_BOOL_TEMPLATE(double)
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#define CONVERT_FROM_FP16_TEMPLATE(to_type) \
@ -155,41 +107,6 @@ CONVERT_TO_FP16_TEMPLATE(int32_t)
CONVERT_TO_FP16_TEMPLATE(int64_t)
CONVERT_TO_FP16_TEMPLATE(float)
CONVERT_TO_FP16_TEMPLATE(double)
inline void convertBoolToFp16Impl(
const bool* __restrict src,
at::Half* __restrict dst,
int64_t n) {
const uint8_t* srcPtr = reinterpret_cast<const uint8_t*>(src);
float16_t* dstPtr = reinterpret_cast<float16_t*>(dst);
uint64_t len = static_cast<uint64_t>(n);
for (uint64_t i = 0; i < len; i++) {
dstPtr[i] = srcPtr[i] != 0 ? 1.0 : 0;
}
}
template <>
inline void convert(const bool* src, at::Half* dst, int64_t n) {
return convertBoolToFp16Impl(src, dst, n);
}
inline void convertFp16ToBoolImpl(
const at::Half* __restrict src,
bool* __restrict dst,
int64_t n) {
const float16_t* srcPtr = reinterpret_cast<const float16_t*>(src);
uint8_t* dstPtr = reinterpret_cast<uint8_t*>(dst);
uint64_t len = static_cast<uint64_t>(n);
for (uint64_t i = 0; i < len; i++) {
dstPtr[i] = srcPtr[i] != 0.0 ? 1 : 0;
}
}
template <>
inline void convert(const at::Half* src, bool* dst, int64_t n) {
return convertFp16ToBoolImpl(src, dst, n);
}
#endif
#ifdef __ARM_FEATURE_BF16
CONVERT_TEMPLATE(bfloat16_t, uint8_t)
@ -207,44 +124,6 @@ CONVERT_TEMPLATE(int32_t, bfloat16_t)
CONVERT_TEMPLATE(int64_t, bfloat16_t)
CONVERT_TEMPLATE(float, bfloat16_t)
CONVERT_TEMPLATE(double, bfloat16_t)
inline void convertBoolToBfloat16Impl(
const bool* __restrict src,
c10::BFloat16* __restrict dst,
int64_t n) {
const uint8_t* srcPtr = reinterpret_cast<const uint8_t*>(src);
uint16_t* dstPtr = reinterpret_cast<uint16_t*>(dst);
uint64_t len = static_cast<uint64_t>(n);
constexpr uint16_t kBf16One = 0x3f80; // 1.0 in bfloat16
for (uint64_t i = 0; i < len; i++) {
dstPtr[i] = srcPtr[i] != 0 ? kBf16One : 0;
}
}
template <>
inline void convert(const bool* src, c10::BFloat16* dst, int64_t n) {
return convertBoolToBfloat16Impl(src, dst, n);
}
inline void convertBfloat16ToBoolImpl(
const c10::BFloat16* __restrict src,
bool* __restrict dst,
int64_t n) {
uint8_t* dstPtr = reinterpret_cast<uint8_t*>(dst);
const uint16_t* srcPtr = reinterpret_cast<const uint16_t*>(src);
uint64_t len = static_cast<uint64_t>(n);
for (uint64_t i = 0; i < len; i++) {
// Check if all non-sign bits are 0
bool isBf16Zero = (srcPtr[i] & 0x7fff) == 0;
dstPtr[i] = isBf16Zero ? 0 : 1;
}
}
template <>
inline void convert(const c10::BFloat16* src, bool* dst, int64_t n) {
return convertBfloat16ToBoolImpl(src, dst, n);
}
#endif
#endif

View File

@ -309,7 +309,7 @@ class Vectorized<float> {
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
// Implementation copied from Arm Optimized Routine
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
inline Vectorized<float> vexpq_f32_u20() const {
Vectorized<float> exp_u20() const {
// bail out to sleef if it's a special case:
// i.e. there's an input s.t. |input| > 87.3....
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
@ -348,9 +348,6 @@ class Vectorized<float> {
return vfmaq_f32(scale, poly, scale);
}
Vectorized<float> exp_u20() const {
return vexpq_f32_u20();
}
Vectorized<float> fexp_u20() const {
return exp_u20();
}
@ -637,7 +634,7 @@ inline Vectorized<float> Vectorized<float>::erf() const {
// - exp(- x * x)
auto pow_2 = (*this) * (*this);
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
auto tmp4 = neg_pow_2.vexpq_f32_u20();
auto tmp4 = neg_pow_2.exp();
auto tmp5 = tmp4 ^ neg_zero_vec;
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
auto tmp6 = t * tmp5;

View File

@ -514,7 +514,7 @@ struct Vectorized<c10::qint8> : public Vectorizedqi {
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, kIntNumVecs>;
using value_type = c10::qint8::underlying;
using value_type = typename c10::qint8::underlying;
public:
using Vectorizedqi::Vectorizedqi;
@ -727,7 +727,7 @@ struct Vectorized<c10::quint8> : public Vectorizedqi {
using float_vec_return_type = std::array<Vectorized<float>, kFloatNumVecs>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, kIntNumVecs>;
using value_type = c10::quint8::underlying;
using value_type = typename c10::quint8::underlying;
public:
using Vectorizedqi::Vectorizedqi;

View File

@ -567,7 +567,7 @@ struct Vectorized<c10::qint8> : public Vectorizedqi {
using float_vec_return_type = std::array<Vectorized<float>, 4>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
using value_type = c10::qint8::underlying;
using value_type = typename c10::qint8::underlying;
public:
using Vectorizedqi::Vectorizedqi;
@ -804,7 +804,7 @@ struct Vectorized<c10::quint8> : public Vectorizedqi {
using float_vec_return_type = std::array<Vectorized<float>, 4>;
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
using value_type = c10::quint8::underlying;
using value_type = typename c10::quint8::underlying;
public:
using Vectorizedqi::Vectorizedqi;

View File

@ -672,7 +672,7 @@ struct Vectorized {
return map(std::sqrt);
}
Vectorized<T> reciprocal() const {
return map([](T x) { return (T)1 / x; });
return map([](T x) { return (T)(1) / x; });
}
Vectorized<T> rsqrt() const {
return map([](T x) { return (T)1 / std::sqrt(x); });

View File

@ -46,7 +46,7 @@ inline void vrsqrt(scalar_t* out, scalar_t* in, int64_t size) {
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) {
map(
[](const Vectorized<scalar_t>& x) {
return Vectorized<scalar_t>((scalar_t)1) / x.sqrt();
return Vectorized<scalar_t>((scalar_t)(1)) / x.sqrt();
},
out + begin,
in + begin,

View File

@ -194,8 +194,8 @@ void CUDAGeneratorState::unregister_graph(cuda::CUDAGraph* graph) {
void CUDAGeneratorState::capture_prologue() {
capturing_ = true;
offset_intragraph_ = 0;
seed_extragraph_.fill_(static_cast<int64_t>(seed_));
offset_extragraph_.fill_(0);
seed_extragraph_.fill_(int64_t(seed_));
offset_extragraph_.fill_(int64_t(0));
}
/**
@ -216,8 +216,8 @@ void CUDAGeneratorState::replay_prologue(uint64_t wholegraph_increment) {
at::cuda::assertNotCapturing(
"Cannot prepare for replay during capturing stage.");
if (wholegraph_increment) {
seed_extragraph_.fill_(static_cast<int64_t>(seed_));
offset_extragraph_.fill_(static_cast<int64_t>(philox_offset_per_thread_));
seed_extragraph_.fill_(int64_t(seed_));
offset_extragraph_.fill_(int64_t(philox_offset_per_thread_));
// Applies the total increment achieved during previous captures to update the
// offset.
increase(wholegraph_increment);
@ -329,7 +329,7 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
auto state_tensor = at::detail::empty_cpu({static_cast<int64_t>(total_size)}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto rng_state = state_tensor.data_ptr<uint8_t>();
auto current_seed = this->current_seed();
auto offset = static_cast<int64_t>(this->philox_offset_per_thread()); // Note that old THCGeneratorState had offset as std::atomic<int64_t>

View File

@ -1,90 +1,78 @@
#include <ATen/cuda/CUDAGreenContext.h>
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/driver_api.h>
#include <stdexcept>
#include <vector>
#define HAS_CUDA_GREEN_CONTEXT() 1
#else
#define HAS_CUDA_GREEN_CONTEXT() 0
// Suppress unsued private field warnings as this class is not supposed to be called
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-private-field")
#endif
namespace at::cuda {
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
#if CUDA_HAS_GREEN_CONTEXT
int driver_version;
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
TORCH_CHECK(
driver_version >= 12080, "cuda driver too old to use green context!");
CUcontext pctx = nullptr;
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
if (C10_UNLIKELY(!pctx)) {
TORCH_WARN(
"Attempted to create a green context but"
" there was no primary context! Creating a primary context...");
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
#if HAS_CUDA_GREEN_CONTEXT()
int driver_version;
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
TORCH_CHECK(
driver_version >= 12080, "cuda driver too old to use green context!");
CUcontext pctx = nullptr;
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
if (C10_UNLIKELY(!pctx)) {
TORCH_WARN(
"Attempted to create a green context but"
" there was no primary context! Creating a primary context...");
cudaFree(0);
}
cudaFree(0);
}
CUdevice device;
device_id_ = device_id;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
CUdevice device;
device_id_ = device_id;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
// Get device resources
CUdevResource device_resource;
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
// Get device resources
CUdevResource device_resource;
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
// Split resources
std::vector<CUdevResource> result(1);
auto result_data = result.data();
unsigned int nb_groups = 1;
CUdevResource remaining;
// Split resources
std::vector<CUdevResource> result(1);
auto result_data = result.data();
unsigned int nb_groups = 1;
CUdevResource remaining;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
result_data,
&nb_groups,
&device_resource,
&remaining,
0, // default flags
num_sms));
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
result_data,
&nb_groups,
&device_resource,
&remaining,
0, // default flags
num_sms));
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
// Generate resource descriptor
CUdevResourceDesc desc;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
&desc, result_data, 1));
// Generate resource descriptor
CUdevResourceDesc desc;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
&desc, result_data, 1));
// Create green context
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
// Create green context
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
// Convert to regular context
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
// Convert to regular context
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
std::unique_ptr<GreenContext> GreenContext::create(
uint32_t num_sms,
std::optional<uint32_t> device_id) {
#if HAS_CUDA_GREEN_CONTEXT()
#if CUDA_HAS_GREEN_CONTEXT
if (!device_id.has_value()) {
device_id = at::cuda::current_device();
}
return std::unique_ptr<GreenContext>(new GreenContext(device_id.value(), num_sms));
return std::make_unique<GreenContext>(device_id.value(), num_sms);
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
@ -92,7 +80,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
// Implement move operations
GreenContext::GreenContext(GreenContext&& other) noexcept{
#if HAS_CUDA_GREEN_CONTEXT()
#if CUDA_HAS_GREEN_CONTEXT
device_id_ = std::exchange(other.device_id_, -1);
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
context_ = std::exchange(other.context_, nullptr);
@ -103,7 +91,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
}
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
#if HAS_CUDA_GREEN_CONTEXT()
#if CUDA_HAS_GREEN_CONTEXT
if (this != &other) {
// Clean up current resources
if (green_ctx_) {
@ -132,7 +120,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
}
GreenContext::~GreenContext() noexcept{
#if HAS_CUDA_GREEN_CONTEXT()
#if CUDA_HAS_GREEN_CONTEXT
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
#else
@ -140,9 +128,25 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
#endif
}
// Get the underlying CUDA context
CUcontext GreenContext::getContext() const {
#if CUDA_HAS_GREEN_CONTEXT
return context_;
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
// Get the underlying green context
#if CUDA_HAS_GREEN_CONTEXT
CUgreenCtx GreenContext::getGreenContext() const {
return green_ctx_;
}
#endif
// Make this context current
void GreenContext::setContext() {
#if HAS_CUDA_GREEN_CONTEXT()
#if CUDA_HAS_GREEN_CONTEXT
auto current_stream = c10::cuda::getCurrentCUDAStream();
parent_stream_ = current_stream.stream();
@ -171,7 +175,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
}
void GreenContext::popContext() {
#if HAS_CUDA_GREEN_CONTEXT()
#if CUDA_HAS_GREEN_CONTEXT
// see above note about stream being hardcoded to the default stream
at::cuda::CUDAEvent ev;
ev.record(c10::cuda::getCurrentCUDAStream());

View File

@ -1,38 +1,53 @@
#pragma once
#include <ATen/cuda/CUDAEvent.h>
#include <cuda.h>
// Forward declare green context as opaque ptr
typedef struct CUgreenCtx_st* CUgreenCtx;
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/driver_api.h>
#include <cuda.h>
#include <memory>
#include <stdexcept>
#include <vector>
#define CUDA_HAS_GREEN_CONTEXT 1
#else
#define CUDA_HAS_GREEN_CONTEXT 0
#endif
namespace at::cuda {
class TORCH_CUDA_CPP_API GreenContext {
public:
// Green context creation
static std::unique_ptr<GreenContext> create(
uint32_t num_sms,
std::optional<uint32_t> device_id);
~GreenContext() noexcept;
GreenContext(uint32_t device_id, uint32_t num_sms);
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
// Delete copy constructor and assignment
GreenContext(const GreenContext&) = delete;
GreenContext& operator=(const GreenContext&) = delete;
// Implement move operations
GreenContext(GreenContext&& other) noexcept;
GreenContext& operator=(GreenContext&& other) noexcept;
~GreenContext() noexcept;
// Get the underlying CUDA context
CUcontext getContext() const;
// Get the underlying green context
#if CUDA_HAS_GREEN_CONTEXT
CUgreenCtx getGreenContext() const;
#endif
// Make this context current
void setContext();
void popContext();
private:
GreenContext(uint32_t device_id, uint32_t num_sms);
// Implement move operations
GreenContext(GreenContext&& other) noexcept;
GreenContext& operator=(GreenContext&& other) noexcept;
#if CUDA_HAS_GREEN_CONTEXT
int32_t device_id_ = -1;
CUgreenCtx green_ctx_ = nullptr;
CUcontext context_ = nullptr;
cudaStream_t parent_stream_ = nullptr;
#endif
};
} // namespace at::cuda

View File

@ -7,6 +7,17 @@
#endif
#if defined(USE_ROCM)
// hipSparse const API added in v2.4.0
#if HIPSPARSE_VERSION >= 200400
#define AT_USE_HIPSPARSE_GENERIC_API() 1
#else
#define AT_USE_HIPSPARSE_GENERIC_API() 1
#endif
#else // USE_ROCM
#define AT_USE_HIPSPARSE_GENERIC_API() 0
#endif // USE_ROCM
// cuSparse Generic API spsv function was added in CUDA 11.3.0
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && (CUSPARSE_VERSION >= 11500)
#define AT_USE_CUSPARSE_GENERIC_SPSV() 1

View File

@ -155,8 +155,8 @@ size_t parseChosenWorkspaceSize() {
while (next != end) {
std::smatch match = *next;
TORCH_CHECK(match.size() == 3, "Expected CUBLAS_WORKSPACE_SPACE_CONFIG match of size 3 (Format :SIZE:COUNT)");
size_t curr_size = std::stoull(match.str(1));
size_t count = std::stoull(match.str(2));
size_t curr_size = (size_t) std::stoi(match.str(1));
size_t count = (size_t) std::stoi(match.str(2));
total_size += curr_size * 1024 * count;
next++;
}

View File

@ -1,7 +1,6 @@
#include <ATen/cuda/CUDAContextLight.h>
#include <ATen/cuda/Sleep.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAStream.h>
@ -25,22 +24,8 @@ __global__ void spin_kernel(int64_t cycles) {
#endif
}
}
thread_local int *flag = nullptr;
__global__ void busy_wait_for_flag_kernel(int *flag) {
atomicExch(flag, 1);
while (atomicAdd(flag, 0) == 1) {
// do nothing
}
}
__global__ void clear_flag_kernel(int *flag) {
atomicExch(flag, 0);
}
} // anonymous namespace
void sleep(int64_t cycles) {
dim3 grid(1);
dim3 block(1);
@ -48,26 +33,6 @@ void sleep(int64_t cycles) {
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void busy_wait_for_flag() {
if (!flag) {
flag = (int*)c10::cuda::CUDACachingAllocator::raw_alloc(sizeof(int));
}
dim3 grid(1);
dim3 block(1);
busy_wait_for_flag_kernel<<<grid, block, 0, c10::cuda::getCurrentCUDAStream()>>>(flag);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void clear_flag() {
if (!flag) {
flag = (int*)c10::cuda::CUDACachingAllocator::raw_alloc(sizeof(int));
}
dim3 grid(1);
dim3 block(1);
clear_flag_kernel<<<grid, block, 0, c10::cuda::getCurrentCUDAStream()>>>(flag);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
#ifdef USE_ROCM
__global__ void flush_icache_kernel()
{

View File

@ -7,11 +7,6 @@ namespace at::cuda {
// enqueues a kernel that spins for the specified number of cycles
TORCH_CUDA_CU_API void sleep(int64_t cycles);
// enqueues a kernel that spins until a flag is cleared by a
// corresponding call to clear_flag()
TORCH_CUDA_CU_API void busy_wait_for_flag();
TORCH_CUDA_CU_API void clear_flag();
// flushes instruction cache for ROCm; no-op for CUDA
TORCH_CUDA_CU_API void flush_icache();

View File

@ -2,6 +2,8 @@
#include <ATen/Tensor.h>
#include <ATen/cuda/Exceptions.h>
#include <mutex>
namespace at {
namespace cuda {
namespace detail {
@ -10,36 +12,39 @@ __device__ __constant__ float cublas_one_device;
__device__ __constant__ float cublas_zero_device;
float *get_cublas_device_one() {
static float *ptr = nullptr;
static auto init_flag = [&]() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float one = 1.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float)));
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return true;
}();
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return ptr;
}
float *get_cublas_device_zero() {
static float *ptr = nullptr;
static auto init_flag = [&]() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float zero = 0.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float)));
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return true;
}();
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return ptr;
}
float *get_user_alpha_ptr() {
static float *alpha_ptr;
static bool init_flag [[maybe_unused]] = []() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float)));
return true;
}();
});
return alpha_ptr;
}

View File

@ -580,7 +580,7 @@ std::ofstream& TuningContext::GetUntunedFile(){
filename.append(device);
}
untuned_file_ = std::ofstream(filename, std::ios::out | std::ios::app);
untuned_file_ = std::ofstream(filename, std::ios::out | std::ios::trunc);
}
return untuned_file_;
}

View File

@ -3,7 +3,6 @@
#include <ATen/ATen.h>
#include <c10/util/irange.h>
#include <array>
#include <iostream>
#include <sstream>
@ -137,9 +136,9 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
"Weight strides: ", t.strides(), "\n",
"cuDNN suggested memory_format: ", memory_format);
std::array<int, CUDNN_DIM_MAX> size;
int size[CUDNN_DIM_MAX];
for (const auto i : c10::irange(dim)) {
size[i] = static_cast<int>(t.size(i));
size[i] = (int) t.size(i);
}
for (const auto i : c10::irange(dim, pad)) {
size[i] = 1;
@ -157,7 +156,7 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
default:
TORCH_INTERNAL_ASSERT(false, "unsupported memory_format for cuDNN filters");
}
set(getDataType(t), static_cast<int>(dim), size.data(), filter_format);
set(getDataType(t), static_cast<int>(dim), size, filter_format);
}
std::string cudnnMemoryFormatToString(cudnnTensorFormat_t tformat) {

View File

@ -1,6 +1,5 @@
#pragma once
#include <c10/core/CachingDeviceAllocator.h>
#include <c10/core/Device.h>
#include <c10/util/Exception.h>
@ -152,36 +151,6 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
}
virtual bool isAvailable() const override;
/* MTIAGraph related APIs */
virtual int64_t mtiagraphCreate(bool keep_graph = false) const {
FAIL_MTIAHOOKS_FUNC(__func__);
return -1;
}
virtual void mtiagraphCaptureBegin(int64_t handle, MempoolId_t pool) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphCaptureEnd(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphInstantiate(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphReplay(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphReset(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual MempoolId_t mtiagraphPool(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
};
struct TORCH_API MTIAHooksArgs {};

View File

@ -198,7 +198,7 @@ static void autogradBasedTransformSendToNext(
}
// Step 6
stack->erase(stack->end() - static_cast<std::ptrdiff_t>(args_size + ret_size), stack->end() - static_cast<std::ptrdiff_t>(ret_size));
stack->erase(stack->end() - std::ptrdiff_t(args_size + ret_size), stack->end() - std::ptrdiff_t(ret_size));
}
void GradInterpreterPtr::processImpl(

View File

@ -443,14 +443,14 @@ static bool has_same_shape(
if (!tensor.defined()) {
return true;
}
if (rankWithoutBatchDim(tensor, tensor_bdim) != static_cast<int64_t>(normalized_shape.size())) {
if (rankWithoutBatchDim(tensor, tensor_bdim) != (int64_t) normalized_shape.size()) {
return false;
}
const auto tensor_shape = tensor.sizes();
for (const auto i : c10::irange(normalized_shape.size())) {
auto j = i;
// (0, 1, 2), 1 -> (0, 2, 3)
if (tensor_bdim.has_value() && static_cast<int64_t>(i) >= tensor_bdim.value()) {
if (tensor_bdim.has_value() && (int64_t)i >= tensor_bdim.value()) {
j = j + 1;
}
if (normalized_shape[i] != tensor_shape[j]) {

View File

@ -135,7 +135,7 @@ static void boxed_reduction_batch_rule(const c10::OperatorHandle& op, torch::jit
reduction_case = ReductionCase::DimArray;
dims = arguments[dim_arg_pos].toIntList().vec();
if (dims.empty()) {
auto all_dims = range(0, std::max(static_cast<int64_t>(1), logical_dim));
auto all_dims = range(0, std::max((int64_t)1, logical_dim));
dims = std::vector<int64_t>(all_dims.begin(), all_dims.end());
}
} else if (arguments[dim_arg_pos].isInt()) {

View File

@ -432,7 +432,7 @@ namespace {
// Eg. Given `indexed_shape.size()` is 5 and
// shape of `values` is (N, 2, 3), then following block
// will reshape `values` to (N, 1, 1, 2, 3).
if ( static_cast<int64_t>(indexed_shape.size()) > values_.dim()) {
if ( (int64_t) indexed_shape.size() > values_.dim()) {
auto values_sizes = values_.sym_sizes();
// number of unit dims (for broadcasting value to indexed_shape)

View File

@ -109,7 +109,7 @@ std::tuple<Tensor, std::optional<int64_t>> repeat_batch_rule(
SymDimVector sizes_with_bdim = { sizes.begin(), sizes.end() };
sizes_with_bdim.insert(sizes_with_bdim.begin(), 1);
auto self_ = moveBatchDimToFront(self, self_bdim);
while (self_.dim() < static_cast<int64_t>(sizes_with_bdim.size())) {
while (self_.dim() < (int64_t)sizes_with_bdim.size()) {
self_ = self_.unsqueeze(1);
}
return std::make_tuple(self_.repeat_symint(sizes_with_bdim), 0);
@ -534,20 +534,20 @@ Tensor trace_decomp(const Tensor& tensor) {
std::tuple<Tensor, std::optional<int64_t>> tril_batch_rule(
const Tensor& self,
std::optional<int64_t> self_bdim,
c10::SymInt diagonal = 0) {
int64_t diagonal = 0) {
TORCH_CHECK(self.dim() >= 2, "tril: The input tensor must have at least 2 dimensions.");
auto self_ = moveBatchDimToFront(self, self_bdim);
auto result = at::tril_symint(self_, std::move(diagonal));
auto result = at::tril(self_, diagonal);
return std::make_tuple(std::move(result), 0);
}
std::tuple<Tensor, std::optional<int64_t>> triu_batch_rule(
const Tensor& self,
std::optional<int64_t> self_bdim,
c10::SymInt diagonal = 0) {
int64_t diagonal = 0) {
TORCH_CHECK(self.dim() >= 2, "triu: The input tensor must have at least 2 dimensions.");
auto self_ = moveBatchDimToFront(self, self_bdim);
auto result = at::triu_symint(self_, std::move(diagonal));
auto result = at::triu(self_, diagonal);
return std::make_tuple(std::move(result), 0);
}

View File

@ -191,7 +191,7 @@ static void batchedTensorInplaceForLoopFallback(const c10::OperatorHandle& op, t
// simplicity. When that is not the case, this code should be updated.
const auto& argument = (*stack)[arguments_begin + arg_idx];
if (batched_tensor_inputs_pos_iter == batched_tensor_inputs_position.end()
|| static_cast<int64_t>(arg_idx) != *batched_tensor_inputs_pos_iter) {
|| (int64_t)arg_idx != *batched_tensor_inputs_pos_iter) {
// argument isn't a BatchedTensor
torch::jit::push(stack, argument);
continue;
@ -345,7 +345,7 @@ void batchedTensorForLoopFallback(const c10::OperatorHandle& op, torch::jit::Sta
// simplicity. When that is not the case, this code should be updated.
const auto& argument = (*stack)[arguments_begin + arg_idx];
if (batched_tensor_inputs_pos_iter == batched_tensor_inputs_position.end()
|| static_cast<int64_t>(arg_idx) != *batched_tensor_inputs_pos_iter) {
|| (int64_t)arg_idx != *batched_tensor_inputs_pos_iter) {
// argument isn't a BatchedTensor
torch::jit::push(stack, argument);
continue;
@ -473,7 +473,7 @@ void batchedNestedTensorForLoopFallback(const c10::OperatorHandle& op, torch::ji
// simplicity. When that is not the case, this code should be updated.
const auto& argument = (*stack)[arguments_begin + arg_idx];
if (batched_tensor_inputs_pos_iter == batched_tensor_inputs_position.end()
|| static_cast<int64_t>(arg_idx) != *batched_tensor_inputs_pos_iter) {
|| (int64_t)arg_idx != *batched_tensor_inputs_pos_iter) {
// argument isn't a BatchedTensor
torch::jit::push(stack, argument);
continue;

View File

@ -157,7 +157,7 @@ Tensor& squeeze__batching_rule(Tensor& self) {
const auto physical_shape = batched->value().sizes();
auto how_many_dims_of_size_1_before_bdim = 0;
for (const auto i : c10::irange(0, physical_shape.size())) {
if (static_cast<int64_t>(i) == bdim) {
if ((int64_t)i == bdim) {
break;
}
if (physical_shape[i] == 1) {
@ -573,7 +573,7 @@ Tensor cat_batching_rule(const ITensorListRef& tensors, int64_t dim) {
}
auto new_dim = bdim_size.has_value() ? dim + 1 : dim;
std::optional<int64_t> new_bdim = bdim_size.has_value() ? std::make_optional(static_cast<int64_t>(0)) : std::nullopt;
std::optional<int64_t> new_bdim = bdim_size.has_value() ? std::make_optional((int64_t)0) : std::nullopt;
auto result = at::cat(tensors_to_cat, new_dim);
return makeBatched(result, new_bdim, get_current_level());
}

View File

@ -1,5 +1,7 @@
// Copyright © 2022 Apple Inc.
#include <c10/util/CallOnce.h>
#include <ATen/mps/IndexKernels.h>
#include <ATen/mps/MPSAllocatorInterface.h>
#include <ATen/mps/MPSDevice.h>
@ -8,6 +10,9 @@
namespace at::mps {
static std::unique_ptr<MPSDevice> mps_device;
static c10::once_flag mpsdev_init;
static inline MTLLanguageVersion getMetalLanguageVersion(const id<MTLDevice>& device) {
// MPS Advanced Indexing needs at least Metal 2.0 (support for Argument Buffers and function constants)
// host_name attribute needs at least Metal 2.2 and ulong needs Metal 2.3 (supported on MacOS 11+
@ -16,8 +21,8 @@ static inline MTLLanguageVersion getMetalLanguageVersion(const id<MTLDevice>& de
}
MPSDevice* MPSDevice::getInstance() {
static MPSDevice mps_device;
return &mps_device;
c10::call_once(mpsdev_init, [] { mps_device = std::unique_ptr<MPSDevice>(new MPSDevice()); });
return mps_device.get();
}
MPSDevice::~MPSDevice() {

View File

@ -25,19 +25,18 @@ TORCH_PRECOMPUTE_META_FUNC(avg_pool2d)
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
"avg_pool2d: kernel_size must either be a single int, or a tuple of two ints");
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
const int64_t kH = kernel_size[0];
const int64_t kW = kernel_size.size() == 1 ? kH : kernel_size[1];
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
"avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints");
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
const int64_t dH = stride.empty() ? kH : stride[0];
const int64_t dW = stride.empty() ? kW : stride.size() == 1 ? dH : stride[1];
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
"avg_pool2d: padding must either be a single int, or a tuple of two ints");
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
const int64_t padH = padding[0];
const int64_t padW = padding.size() == 1 ? padH : padding[1];
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0,
"divisor must be not zero");

View File

@ -198,9 +198,9 @@ void avg_pool3d_out_frame(
int64_t hend = std::min(hstart + kH, iheight + padH);
int64_t wend = std::min(wstart + kW, iwidth + padW);
int64_t pool_size = (tend - tstart) * (hend - hstart) * (wend - wstart);
tstart = std::max(tstart, static_cast<int64_t>(0));
hstart = std::max(hstart, static_cast<int64_t>(0));
wstart = std::max(wstart, static_cast<int64_t>(0));
tstart = std::max(tstart, (int64_t) 0);
hstart = std::max(hstart, (int64_t) 0);
wstart = std::max(wstart, (int64_t) 0);
tend = std::min(tend, itime);
hend = std::min(hend, iheight);
wend = std::min(wend, iwidth);
@ -377,9 +377,9 @@ void avg_pool3d_backward_out_frame(
int64_t hend = std::min(hstart + kH, iheight + padH);
int64_t wend = std::min(wstart + kW, iwidth + padW);
int64_t pool_size = (tend -tstart) * (hend - hstart) * (wend - wstart);
tstart = std::max(tstart, static_cast<int64_t>(0));
hstart = std::max(hstart, static_cast<int64_t>(0));
wstart = std::max(wstart, static_cast<int64_t>(0));
tstart = std::max(tstart, (int64_t) 0);
hstart = std::max(hstart, (int64_t) 0);
wstart = std::max(wstart, (int64_t) 0);
tend = std::min(tend, itime);
hend = std::min(hend, iheight);
wend = std::min(wend, iwidth);

View File

@ -946,10 +946,10 @@ void apply_lu_factor(const Tensor& input, const Tensor& pivots, const Tensor& in
}
};
// avoid overflow
auto matrix_rank = std::min(m, n);
float matrix_rank = float(std::min(m, n));
// A heuristic tested on a 32 core/socket ICX system
// https://github.com/pytorch/pytorch/pull/93037#discussion_r1090112948
int64_t chunk_size_per_thread = static_cast<int64_t>(
int64_t chunk_size_per_thread = int64_t(
std::min(1.0, 3200.0 / (matrix_rank * matrix_rank * matrix_rank)));
int64_t grain_size = chunk_size_per_thread * at::get_num_threads();
at::parallel_for(0, batch_size, grain_size, loop);

View File

@ -267,7 +267,7 @@ _scaled_mm_out_cpu_emulated(const Tensor& mat1, const Tensor& mat2,
float input_scale = scale_a.item<float>();
float weight_scale = scale_b.item<float>();
float output_scale = 1.0f;
float output_scale = float(1.0);
if (scale_result.has_value() &&
(*out_dtype == ScalarType::Float8_e4m3fn ||
*out_dtype == ScalarType::Float8_e5m2)) {

View File

@ -331,7 +331,7 @@ bool gemv_use_fast_path<double>(
[[maybe_unused]] double beta,
int64_t incy) {
return gemv_use_fast_path<float>(
trans, m, n, static_cast<float>(alpha), lda, incx, static_cast<float>(beta), incy);
trans, m, n, (float)alpha, lda, incx, (float)beta, incy);
}
template <>
@ -523,8 +523,8 @@ static inline void scal(int64_t n, scalar_t a, scalar_t *x, int64_t incx)
if (n == 1) incx = 1;
#if AT_BUILD_WITH_BLAS()
if (blas_impl::scal_use_fast_path<scalar_t>(n, incx)) {
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_n = (int)n;
int i_incx = (int)incx;
blas_impl::scal_fast_path<scalar_t>(&i_n, &a, x, &i_incx);
return;
}
@ -545,11 +545,11 @@ void gemv(char trans, int64_t m, int64_t n, scalar_t alpha, const scalar_t *a, i
#if AT_BUILD_WITH_BLAS()
if (blas_impl::gemv_use_fast_path<scalar_t>(trans, m, n, alpha, lda, incx, beta, incy)) {
TORCH_CHECK(lda >= std::max<int64_t>(1L, m), "lda should be at least max(1,", m, "), but have ", lda);
int i_m = static_cast<int>(m);
int i_n = static_cast<int>(n);
int i_lda = static_cast<int>(lda);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_m = (int)m;
int i_n = (int)n;
int i_lda = (int)lda;
int i_incx = (int)incx;
int i_incy = (int)incy;
blas_impl::gemv_fast_path<scalar_t>(&trans, &i_m, &i_n, &alpha, a, &i_lda, x, &i_incx, &beta, y, &i_incy);
return;
}

View File

@ -680,9 +680,9 @@ void axpy(int64_t n, double a, const double *x, int64_t incx, double *y, int64_t
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
{
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_daxpy(i_n, a, x, i_incx, y, i_incy);
#else
@ -705,9 +705,9 @@ void axpy(int64_t n, float a, const float *x, int64_t incx, float *y, int64_t in
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
{
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_saxpy(i_n, a, x, i_incx, y, i_incy);
#else
@ -730,9 +730,9 @@ void axpy(int64_t n, c10::complex<double> a, const c10::complex<double> *x, int6
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
{
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_zaxpy(i_n, &a, x, i_incx, y, i_incy);
#else
@ -755,9 +755,9 @@ void axpy(int64_t n, c10::complex<float> a, const c10::complex<float> *x, int64_
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) )
{
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_caxpy(i_n, &a, x, i_incx, y, i_incy);
#else
@ -781,9 +781,9 @@ void copy(int64_t n, const double *x, int64_t incx, double *y, int64_t incy) {
}
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_dcopy(i_n, x, i_incx, y, i_incy);
#else
@ -805,9 +805,9 @@ void copy(int64_t n, const float *x, int64_t incx, float *y, int64_t incy) {
}
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_scopy(i_n, x, i_incx, y, i_incy);
#else
@ -829,9 +829,9 @@ void copy(int64_t n, const c10::complex<double> *x, int64_t incx, c10::complex<d
}
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_zcopy(i_n, x, i_incx, y, i_incy);
#else
@ -853,9 +853,9 @@ void copy(int64_t n, const c10::complex<float> *x, int64_t incx, c10::complex<fl
}
#if AT_BUILD_WITH_BLAS()
if( (n <= INT_MAX) && (incx <= INT_MAX) && (incy <= INT_MAX) ) {
int i_n = static_cast<int>(n);
int i_incx = static_cast<int>(incx);
int i_incy = static_cast<int>(incy);
int i_n = (int)n;
int i_incx = (int)incx;
int i_incy = (int)incy;
#if C10_IOS
cblas_ccopy(i_n, &x, i_incx, y, i_incy);
#else
@ -1082,7 +1082,7 @@ struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
M,
N,
K,
1,
int64_t(1),
ld_a,
ld_b,
ld_c,
@ -1096,7 +1096,7 @@ struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
M,
N,
K,
1,
int64_t(1),
ld_a,
ld_b,
ld_c,

View File

@ -410,8 +410,8 @@ struct ConvParams {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
// broken on cuDNN 9.8 - 9.14
if (cudnn_version >= 90800 && cudnn_version < 91500) {
// broken on cuDNN 9.8
if (cudnn_version >= 90800) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
(input.scalar_type() == at::kBFloat16 || input.scalar_type() == at::kHalf) &&
weight.dim() == 5) {
@ -689,10 +689,6 @@ static void check_shape_forward(const at::Tensor& input,
", but got bias of size ", at::symint::sizes<T>(bias), " instead");
for (const auto i : c10::irange(2, k)) {
// T could be int64_t or SymInt, Specialized numeric_limts<SymInt> in c10/core/SymInt.h
TORCH_CHECK(padding[i-2] <= (std::numeric_limits<T>::max() - padding[i-2]),
"Given padding=", padding[i-2], " at dimension ", i-2, " , expected padding to be at most ",
(std::numeric_limits<T>::max() / 2));
input_shape.push_back(at::symint::size<T>(input, i) + 2 * padding[i-2]);
// log new kernel size considering dilation
kernel_shape.push_back(dilation[i-2] * (weight_sizes[i]-1) + 1);
@ -719,11 +715,6 @@ static void check_shape_forward(const at::Tensor& input,
"Kernel size: (", kernel_ss.str(), "). Kernel size can't be greater than actual input size");
}
} else { // transposed
for (const auto i : c10::irange(2, k)) {
TORCH_CHECK(padding[i-2] <= (std::numeric_limits<T>::max() - padding[i-2]),
"Given padding=", padding[i-2], " at dimension ", i-2, " , expected padding to be at most ",
(std::numeric_limits<T>::max() / 2));
}
TORCH_CHECK(at::symint::size<T>(input, 1) == weight_sizes[0],
"Given transposed=", transposed, ", weight of size ", weight_sizes,
", expected input", at::symint::sizes<T>(input), " to have ", weight_sizes[0],

View File

@ -52,7 +52,8 @@ Tensor conv_tbc(const Tensor& self, const Tensor& weight, const Tensor& bias, in
for (const auto k : c10::irange(kw)) {
int iShift = std::max(0, static_cast<int>(k - real_pad));
int oShift = std::max(0, static_cast<int>(real_pad - k));
long t = std::min(ilen + real_pad - k, olen) - oShift;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int t = std::min(ilen + real_pad - k, olen) - oShift;
// Note: gemm assumes column-major matrices
// input is l*m (row-major)
// weight is m*r (row-major)

View File

@ -487,17 +487,17 @@ static Tensor _grid_sampler_2d_cpu_quantized(
int64_t out_sC = output.stride(1);
int64_t out_sH = output.stride(2);
int64_t out_sW = output.stride(3);
const uint8_t* inp_ptr = input.const_data_ptr<uint8_t>();
uint8_t* out_ptr = output.data_ptr<uint8_t>();
const float* grid_ptr = grid.const_data_ptr<float>();
uint8_t* inp_ptr = (uint8_t*)input.data_ptr<quint8>();
uint8_t* out_ptr = (uint8_t*)output.data_ptr<quint8>();
float* grid_ptr = grid.data_ptr<float>();
at::parallel_for(0, N, 0, [&](int64_t start, int64_t end) {
for (const auto n : c10::irange(start, end)) {
const float* grid_ptr_N = grid_ptr + n * grid_sN;
const uint8_t* inp_ptr_N = inp_ptr + n * inp_sN;
float* grid_ptr_N = grid_ptr + n * grid_sN;
uint8_t* inp_ptr_N = inp_ptr + n * inp_sN;
for (const auto h : c10::irange(out_H)) {
for (const auto w : c10::irange(out_W)) {
// get the corresponding input x, y, z coordinates from grid
const float* grid_ptr_NHW = grid_ptr_N + h * grid_sH + w * grid_sW;
float* grid_ptr_NHW = grid_ptr_N + h * grid_sH + w * grid_sW;
float x = *grid_ptr_NHW;
float y = grid_ptr_NHW[grid_sCoor];
@ -527,7 +527,7 @@ static Tensor _grid_sampler_2d_cpu_quantized(
float se = (ix - ix_nw) * (iy - iy_nw);
// calculate bilinear weighted pixel value and set output pixel
const uint8_t* inp_ptr_NC = inp_ptr_N;
uint8_t* inp_ptr_NC = inp_ptr_N;
uint8_t* out_ptr_NCHW =
out_ptr + n * out_sN + h * out_sH + w * out_sW;
for (int64_t c = 0; c < C;

View File

@ -318,7 +318,7 @@ static std::vector<Tensor>& histogramdd_bin_edges_out(const Tensor& self, IntArr
const int64_t N = self.size(-1);
const int64_t M = std::accumulate(self.sizes().begin(), self.sizes().end() - 1,
static_cast<int64_t>(1), std::multiplies<int64_t>());
(int64_t)1, std::multiplies<int64_t>());
Tensor reshaped_self = self.reshape({ M, N });
auto outer_bin_edges = select_outer_bin_edges(reshaped_self, range);

Some files were not shown because too many files have changed in this diff Show More