mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-03 23:45:05 +08:00
Compare commits
36 Commits
ciflow/tru
...
ci_attn
| Author | SHA1 | Date | |
|---|---|---|---|
| f2c43efab9 | |||
| c1f01d51ef | |||
| 665df0bc72 | |||
| 2882e9037b | |||
| a58b89df44 | |||
| c684aa411b | |||
| 836383de99 | |||
| fcb1bf53cb | |||
| df9bd5ce7c | |||
| c3f01becc0 | |||
| 56bdd1aa05 | |||
| d2602f0884 | |||
| 82b70f9a7f | |||
| 9f2c63259f | |||
| 6b08e5e075 | |||
| 2bcd29cc48 | |||
| f7f410a1f5 | |||
| 1832d9720f | |||
| 4069d76684 | |||
| 1d3f285e3f | |||
| a1066fc671 | |||
| 11536e5a6b | |||
| 09daf4533d | |||
| 5899e0478d | |||
| 7b98ed8273 | |||
| ad118b53d8 | |||
| 00832e4a45 | |||
| 56e3f97f2a | |||
| 9d8778b8bf | |||
| 86279c6f25 | |||
| 93553121d8 | |||
| e5eb96af95 | |||
| 4407b6c9e3 | |||
| 22ea056fcd | |||
| d7466fd5c6 | |||
| de61804393 |
@ -195,16 +195,13 @@ case "$tag" in
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
|
||||
pytorch-linux-jammy-xpu-n-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.2
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
if [[ $tag =~ "benchmarks" ]]; then
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
fi
|
||||
;;
|
||||
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
|
||||
set -eux
|
||||
|
||||
ACL_VERSION=${ACL_VERSION:-"v52.6.0"}
|
||||
ACL_VERSION=${ACL_VERSION:-"v25.02"}
|
||||
ACL_INSTALL_DIR="/acl"
|
||||
|
||||
# Clone ACL
|
||||
|
||||
@ -40,7 +40,11 @@ EOF
|
||||
|
||||
# Default url values
|
||||
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
|
||||
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
|
||||
|
||||
# Add amdgpu repository
|
||||
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
|
||||
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
|
||||
|
||||
# Add rocm repository
|
||||
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
|
||||
|
||||
@ -12,8 +12,8 @@ function do_install() {
|
||||
|
||||
rocm_version_nodot=${rocm_version//./}
|
||||
|
||||
# post merge of https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
|
||||
# https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
|
||||
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
|
||||
|
||||
rocm_dir="/opt/rocm"
|
||||
|
||||
@ -97,7 +97,7 @@ case ${image} in
|
||||
manylinux2_28-builder:xpu)
|
||||
TARGET=xpu_final
|
||||
GPU_IMAGE=amd64/almalinux:8
|
||||
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13"
|
||||
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
;;
|
||||
*)
|
||||
|
||||
@ -54,15 +54,12 @@ ENV OPENSSL_DIR /opt/openssl
|
||||
RUN rm install_openssl.sh
|
||||
|
||||
ARG INDUCTOR_BENCHMARKS
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
|
||||
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ci_commit_pins/huggingface-requirements.txt huggingface-requirements.txt
|
||||
COPY ci_commit_pins/timm.txt timm.txt
|
||||
COPY ci_commit_pins/torchbench.txt torchbench.txt
|
||||
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
|
||||
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt
|
||||
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt
|
||||
|
||||
# Install XPU Dependencies
|
||||
ARG XPU_VERSION
|
||||
|
||||
@ -6,7 +6,7 @@ dependencies = [
|
||||
"GitPython==3.1.45",
|
||||
"docker==7.1.0",
|
||||
"pytest==7.3.2",
|
||||
"uv==0.9.6"
|
||||
"uv==0.9.5"
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
SHELL=/usr/bin/env bash
|
||||
|
||||
DOCKER_CMD ?= docker
|
||||
DESIRED_ROCM ?= 7.1
|
||||
DESIRED_ROCM ?= 7.0
|
||||
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
|
||||
PACKAGE_NAME = magma-rocm
|
||||
# inherit this from underlying docker image, do not pass this env var to docker
|
||||
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
magma-rocm/build_magma.sh
|
||||
|
||||
.PHONY: all
|
||||
all: magma-rocm71
|
||||
all: magma-rocm70
|
||||
all: magma-rocm64
|
||||
|
||||
@ -25,11 +24,6 @@ clean:
|
||||
$(RM) -r magma-*
|
||||
$(RM) -r output
|
||||
|
||||
.PHONY: magma-rocm71
|
||||
magma-rocm71: DESIRED_ROCM := 7.1
|
||||
magma-rocm71:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-rocm70
|
||||
magma-rocm70: DESIRED_ROCM := 7.0
|
||||
magma-rocm70:
|
||||
|
||||
@ -6,8 +6,8 @@ set -eou pipefail
|
||||
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
|
||||
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
|
||||
|
||||
# post merge of https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
|
||||
# https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
|
||||
|
||||
# Folders for the build
|
||||
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
|
||||
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
|
||||
|
||||
# Fetch magma sources and verify checksum
|
||||
pushd ${PACKAGE_DIR}
|
||||
git clone https://github.com/icl-utk-edu/magma
|
||||
git clone https://github.com/jeffdaily/magma
|
||||
pushd magma
|
||||
git checkout ${MAGMA_VERSION}
|
||||
popd
|
||||
|
||||
@ -426,7 +426,7 @@ fi
|
||||
if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]]; then
|
||||
# export test times so that potential sharded tests that'll branch off this build will use consistent data
|
||||
# don't do this for libtorch as libtorch is C++ only and thus won't have python tests run on its build
|
||||
PYTHONPATH=. python tools/stats/export_test_times.py
|
||||
python tools/stats/export_test_times.py
|
||||
fi
|
||||
# don't do this for bazel or s390x or riscv64 as they don't use sccache
|
||||
if [[ "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *riscv64* && "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
|
||||
|
||||
@ -42,7 +42,7 @@ declare -f -t trap_add
|
||||
function assert_git_not_dirty() {
|
||||
# TODO: we should add an option to `build_amd.py` that reverts the repo to
|
||||
# an unmodified state.
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]] && [[ "$BUILD_ENVIRONMENT" != *xla* ]] && [[ "$BUILD_ENVIRONMENT" != *win* ]] ; then
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]] && [[ "$BUILD_ENVIRONMENT" != *xla* ]] ; then
|
||||
git_status=$(git status --porcelain | grep -v '?? third_party' || true)
|
||||
if [[ $git_status ]]; then
|
||||
echo "Build left local git repository checkout dirty"
|
||||
|
||||
@ -572,8 +572,6 @@ fi
|
||||
|
||||
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
|
||||
DYNAMO_BENCHMARK_FLAGS+=(--device cpu)
|
||||
elif [[ "${TEST_CONFIG}" == *xpu* ]]; then
|
||||
DYNAMO_BENCHMARK_FLAGS+=(--device xpu)
|
||||
else
|
||||
DYNAMO_BENCHMARK_FLAGS+=(--device cuda)
|
||||
fi
|
||||
@ -667,8 +665,6 @@ test_perf_for_dashboard() {
|
||||
device=cuda_b200
|
||||
elif [[ "${TEST_CONFIG}" == *rocm* ]]; then
|
||||
device=rocm
|
||||
elif [[ "${TEST_CONFIG}" == *xpu* ]]; then
|
||||
device=xpu
|
||||
fi
|
||||
|
||||
for mode in "${modes[@]}"; do
|
||||
@ -1663,6 +1659,22 @@ test_operator_microbenchmark() {
|
||||
done
|
||||
}
|
||||
|
||||
test_attention_microbenchmark() {
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
TEST_DIR=$(pwd)
|
||||
|
||||
# Install attention-gym dependency
|
||||
echo "Installing attention-gym..."
|
||||
python -m pip install git+https://github.com/meta-pytorch/attention-gym.git@main
|
||||
pip show triton
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/transformer
|
||||
|
||||
$TASKSET python score_mod.py --config configs/config_basic.yaml \
|
||||
--output-json-for-dashboard "${TEST_REPORTS_DIR}/attention_microbenchmark.json"
|
||||
}
|
||||
|
||||
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
|
||||
(cd test && python -c "import torch; print(torch.__config__.show())")
|
||||
(cd test && python -c "import torch; print(torch.__config__.parallel_info())")
|
||||
@ -1720,6 +1732,8 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
|
||||
fi
|
||||
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
|
||||
test_operator_microbenchmark
|
||||
elif [[ "${TEST_CONFIG}" == *attention_microbenchmark* ]]; then
|
||||
test_attention_microbenchmark
|
||||
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
|
||||
test_inductor_distributed
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
|
||||
@ -1761,7 +1775,7 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
|
||||
else
|
||||
# Do this after checkout_install_torchbench to ensure we clobber any
|
||||
# nightlies that torchbench may pull in
|
||||
if [[ "${TEST_CONFIG}" != *cpu* && "${TEST_CONFIG}" != *xpu* ]]; then
|
||||
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
|
||||
install_torchrec_and_fbgemm
|
||||
fi
|
||||
PYTHONPATH=/torchbench test_dynamo_benchmark torchbench "$id"
|
||||
|
||||
@ -31,24 +31,23 @@ if "%USE_XPU%"=="1" (
|
||||
if errorlevel 1 exit /b 1
|
||||
)
|
||||
|
||||
:: Miniconda has been installed as part of the Windows AMI with all the dependencies.
|
||||
:: We just need to activate it here
|
||||
call %INSTALLER_DIR%\activate_miniconda3.bat
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
|
||||
:: Update CMake
|
||||
:: TODO: Investigate why this helps MKL detection, even when CMake from choco is not used
|
||||
call choco upgrade -y cmake --no-progress --installargs 'ADD_CMAKE_TO_PATH=System' --apply-install-arguments-to-dependencies --version=3.27.9
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
|
||||
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0 ninja typing-extensions
|
||||
call pip install -r .ci/docker/requirements-ci.txt
|
||||
SET CMAKE_LIBRARY_PATH=%PYTHON_PATH%\Library\lib
|
||||
SET CMAKE_INCLUDE_PATH=%PYTHON_PATH%\Library\include
|
||||
:: TODO: Move to .ci/docker/requirements-ci.txt
|
||||
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
|
||||
:: Install libuv
|
||||
curl -k https://s3.amazonaws.com/ossci-windows/libuv-1.40.0-h8ffe710_0.tar.bz2 -o libuv-1.40.0-h8ffe710_0.tar.bz2
|
||||
7z x -aoa libuv-1.40.0-h8ffe710_0.tar.bz2
|
||||
tar -xvf libuv-1.40.0-h8ffe710_0.tar -C %PYTHON_PATH%
|
||||
set libuv_ROOT=%PYTHON_PATH%\Library
|
||||
|
||||
:: Override VS env here
|
||||
pushd .
|
||||
if "%VC_VERSION%" == "" (
|
||||
|
||||
@ -0,0 +1,30 @@
|
||||
if "%BUILD_ENVIRONMENT%"=="" (
|
||||
set CONDA_PARENT_DIR=%CD%
|
||||
) else (
|
||||
set CONDA_PARENT_DIR=C:\Jenkins
|
||||
)
|
||||
set CONDA_ROOT_DIR=%CONDA_PARENT_DIR%\Miniconda3
|
||||
|
||||
:: Be conservative here when rolling out the new AMI with conda. This will try
|
||||
:: to install conda as before if it couldn't find the conda installation. This
|
||||
:: can be removed eventually after we gain enough confidence in the AMI
|
||||
if not exist %CONDA_ROOT_DIR% (
|
||||
set INSTALL_FRESH_CONDA=1
|
||||
)
|
||||
|
||||
if "%INSTALL_FRESH_CONDA%"=="1" (
|
||||
curl --retry 3 --retry-all-errors -k https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe --output %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe
|
||||
if errorlevel 1 exit /b
|
||||
if not errorlevel 0 exit /b
|
||||
|
||||
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_ROOT_DIR%
|
||||
if errorlevel 1 exit /b
|
||||
if not errorlevel 0 exit /b
|
||||
)
|
||||
|
||||
:: Activate conda so that we can use its commands, i.e. conda, python, pip
|
||||
call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%
|
||||
:: Activate conda so that we can use its commands, i.e. conda, python, pip
|
||||
call conda activate py_tmp
|
||||
|
||||
call pip install -r .ci/docker/requirements-ci.txt
|
||||
@ -3,6 +3,19 @@ set PATH=C:\Program Files\CMake\bin;C:\Program Files\7-Zip;C:\ProgramData\chocol
|
||||
:: Install Miniconda3
|
||||
set INSTALLER_DIR=%SCRIPT_HELPERS_DIR%\installation-helpers
|
||||
|
||||
:: Miniconda has been installed as part of the Windows AMI with all the dependencies.
|
||||
:: We just need to activate it here
|
||||
call %INSTALLER_DIR%\activate_miniconda3.bat
|
||||
if errorlevel 1 exit /b
|
||||
if not errorlevel 0 exit /b
|
||||
|
||||
:: PyTorch is now installed using the standard wheel on Windows into the conda environment.
|
||||
:: However, the test scripts are still frequently referring to the workspace temp directory
|
||||
:: build\torch. Rather than changing all these references, making a copy of torch folder
|
||||
:: from conda to the current workspace is easier. The workspace will be cleaned up after
|
||||
:: the job anyway
|
||||
xcopy /s %CONDA_ROOT_DIR%\envs\py_tmp\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
|
||||
|
||||
pushd .
|
||||
if "%VC_VERSION%" == "" (
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\%VC_YEAR%\%VC_PRODUCT%\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
|
||||
@ -40,11 +40,6 @@ fi
|
||||
# TODO: Move this to .ci/docker/requirements-ci.txt
|
||||
python -m pip install "psutil==5.9.1" nvidia-ml-py "pytest-shard==0.1.2"
|
||||
|
||||
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
|
||||
python -m pip install expecttest==0.3.0
|
||||
|
||||
python -m pip install -r $SCRIPT_PARENT_DIR/../docker/requirements-ci.txt
|
||||
|
||||
run_tests() {
|
||||
# Run nvidia-smi if available
|
||||
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do
|
||||
|
||||
@ -22,10 +22,8 @@ curl --retry 3 -kL "%PYTHON_INSTALLER_URL%" --output python-amd64.exe
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
start /wait "" python-amd64.exe /quiet InstallAllUsers=1 PrependPath=0 Include_test=0 %ADDITIONAL_OPTIONS% TargetDir=%CD%\Python
|
||||
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
|
||||
set "PATH=%CD%\Python\Scripts;%CD%\Python;%PATH%"
|
||||
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel build
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
4
.github/actions/diskspace-cleanup/action.yml
vendored
4
.github/actions/diskspace-cleanup/action.yml
vendored
@ -27,9 +27,7 @@ runs:
|
||||
docker system prune -af
|
||||
diskspace_new=$(df -H --output=pcent ${docker_root_dir} | sed -n 2p | sed 's/%//' | sed 's/ //')
|
||||
if [[ "$diskspace_new" -gt "$diskspace_cutoff" ]] ; then
|
||||
diskspace_cutoff_int=$((diskspace_cutoff + 0))
|
||||
difference=$((100 - diskspace_cutoff_int))
|
||||
echo "Error: Available diskspace is less than $difference percent. Not enough diskspace."
|
||||
echo "Error: Available diskspace is less than $diskspace_cutoff percent. Not enough diskspace."
|
||||
echo "$msg"
|
||||
exit 1
|
||||
else
|
||||
|
||||
14
.github/actions/filter-test-configs/action.yml
vendored
14
.github/actions/filter-test-configs/action.yml
vendored
@ -57,10 +57,16 @@ outputs:
|
||||
runs:
|
||||
using: composite
|
||||
steps:
|
||||
- name: Install Dependencies
|
||||
id: install-dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
- uses: nick-fields/retry@v3.0.0
|
||||
name: Setup dependencies
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ inputs.github-token }}
|
||||
with:
|
||||
shell: bash
|
||||
timeout_minutes: 10
|
||||
max_attempts: 5
|
||||
retry_wait_seconds: 30
|
||||
command: |
|
||||
set -eux
|
||||
# PyYAML 6.0 doesn't work with MacOS x86 anymore
|
||||
# This must run on Python-3.7 (AmazonLinux2) so can't use request=3.32.2
|
||||
|
||||
54
.github/actions/setup-win/action.yml
vendored
54
.github/actions/setup-win/action.yml
vendored
@ -37,6 +37,19 @@ runs:
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
|
||||
- name: Setup conda
|
||||
shell: bash
|
||||
run: |
|
||||
# Windows conda is baked into the AMI at this location
|
||||
CONDA="C:\Jenkins\Miniconda3\condabin\conda.bat"
|
||||
|
||||
{
|
||||
echo "CONDA=${CONDA}";
|
||||
echo "CONDA_RUN=${CONDA} run --no-capture-output";
|
||||
echo "CONDA_BUILD=${CONDA} run conda-build";
|
||||
echo "CONDA_INSTALL=${CONDA} install";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Setup Python3
|
||||
env:
|
||||
PYTHON_VERSION: ${{ inputs.python-version }}
|
||||
@ -44,12 +57,40 @@ runs:
|
||||
run: |
|
||||
set +e
|
||||
set -x
|
||||
export DESIRED_PYTHON=3.10
|
||||
echo "DESIRED_PYTHON=3.10" | tee -a "${GITHUB_ENV}"
|
||||
.ci/pytorch/windows/internal/install_python.bat
|
||||
echo "PATH=$(pwd)/Python/Scripts;$(pwd)/Python;$(pwd);/usr/bin/;${PATH}" | tee -a "${GITHUB_ENV}"
|
||||
echo "PYTHON_PATH=$(pwd)/Python" | tee -a "${GITHUB_ENV}"
|
||||
ln -s "$(pwd)/Python/python.exe" "$(pwd)/Python/python3.exe"
|
||||
|
||||
# Create new py_tmp env with python-version
|
||||
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp libuv
|
||||
|
||||
PYTHON3=$(${CONDA_RUN} -n py_tmp which python3)
|
||||
EXIT_CODE=$?
|
||||
|
||||
if [[ "${EXIT_CODE}" == "0" ]]; then
|
||||
echo "Found Python3 at ${PYTHON3}, adding it into GITHUB_PATH"
|
||||
|
||||
PYTHON_PATH=$(dirname "${PYTHON3}")
|
||||
echo "${PYTHON_PATH}" >> "${GITHUB_PATH}"
|
||||
else
|
||||
# According to https://docs.conda.io/en/latest/miniconda.html, we are using the Miniconda3
|
||||
# installation, which is Python 3 based. Its Python is default to Python 3. Further, there
|
||||
# is also the Miniconda installation that is Python 2 based, and both can be installed if
|
||||
# needed. In both cases, Python binary is just called python
|
||||
PYTHON=$(${CONDA_RUN} -n py_tmp which python)
|
||||
EXIT_CODE=$?
|
||||
|
||||
if [[ "${EXIT_CODE}" == "0" ]]; then
|
||||
echo "Found Python at ${PYTHON}, set Python3 alias and add it into GITHUB_PATH"
|
||||
|
||||
PYTHON3=$(echo "${PYTHON}" | sed "s/python/python3/")
|
||||
# It's difficult to setup alias across GitHub action steps, so I just add a softlink
|
||||
# here pointing to Python
|
||||
ln -s "${PYTHON}" "${PYTHON3}"
|
||||
|
||||
PYTHON_PATH=$(dirname "${PYTHON}")
|
||||
echo "${PYTHON_PATH}" >> "${GITHUB_PATH}"
|
||||
else
|
||||
echo "Found no Python using ${CONDA_RUN}"
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Get temporary directory used by Windows Python
|
||||
shell: bash
|
||||
@ -63,7 +104,6 @@ runs:
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-Alias -Name python3 -Value python
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TMPDIR,"C:\Jenkins\Miniconda3" -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
|
||||
25
.github/actions/teardown-win/action.yml
vendored
25
.github/actions/teardown-win/action.yml
vendored
@ -28,20 +28,25 @@ runs:
|
||||
# retry this step several time similar to how checkout-pytorch GHA does
|
||||
- name: Cleanup workspace
|
||||
if: always()
|
||||
uses: nick-fields/retry@v3.0.0
|
||||
env:
|
||||
EXTRA_DELETE_DIR: ${{ inputs.extra-delete-dir }}
|
||||
shell: bash
|
||||
run: |
|
||||
set +e
|
||||
set -x
|
||||
with:
|
||||
shell: bash
|
||||
timeout_minutes: 5
|
||||
max_attempts: 3
|
||||
retry_wait_seconds: 90
|
||||
command: |
|
||||
set +e
|
||||
set -x
|
||||
|
||||
if [ -n "${EXTRA_DELETE_DIR}" ]; then
|
||||
# It's ok to fail to clean up the extra directory on Windows as it only contains
|
||||
# the build artifacts and doesn't take up much space, i.e. /c/5053411580/build-results
|
||||
rm -rf "${EXTRA_DELETE_DIR}" || true
|
||||
fi
|
||||
if [ -n "${EXTRA_DELETE_DIR}" ]; then
|
||||
# It's ok to fail to clean up the extra directory on Windows as it only contains
|
||||
# the build artifacts and doesn't take up much space, i.e. /c/5053411580/build-results
|
||||
rm -rf "${EXTRA_DELETE_DIR}" || true
|
||||
fi
|
||||
|
||||
rm -rf ./*
|
||||
rm -rf ./*
|
||||
|
||||
- name: Print all processes locking the runner workspace
|
||||
continue-on-error: true
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
3b0e7a6f192ca2715e7e6cbe5db007aea7165fe2
|
||||
69bbe7363897764f9e758d851cd0340147d27f94
|
||||
|
||||
2
.github/pytorch-probot.yml
vendored
2
.github/pytorch-probot.yml
vendored
@ -19,7 +19,6 @@ ciflow_push_tags:
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi300
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi355
|
||||
- ciflow/inductor-perf-test-nightly-x86-zen
|
||||
- ciflow/inductor-perf-test-nightly-xpu
|
||||
- ciflow/inductor-periodic
|
||||
- ciflow/inductor-rocm
|
||||
- ciflow/linux-aarch64
|
||||
@ -27,7 +26,6 @@ ciflow_push_tags:
|
||||
- ciflow/nightly
|
||||
- ciflow/op-benchmark
|
||||
- ciflow/periodic
|
||||
- ciflow/periodic-rocm-mi200
|
||||
- ciflow/periodic-rocm-mi300
|
||||
- ciflow/pull
|
||||
- ciflow/quantization-periodic
|
||||
|
||||
89
.github/scripts/generate_binary_build_matrix.py
vendored
89
.github/scripts/generate_binary_build_matrix.py
vendored
@ -11,17 +11,11 @@ architectures:
|
||||
* Latest XPU
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
|
||||
SCRIPT_DIR = Path(__file__).absolute().parent
|
||||
REPO_ROOT = SCRIPT_DIR.parent.parent
|
||||
|
||||
|
||||
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
|
||||
CUDA_STABLE = "12.8"
|
||||
CUDA_ARCHES_FULL_VERSION = {
|
||||
@ -37,7 +31,8 @@ CUDA_ARCHES_CUDNN_VERSION = {
|
||||
"13.0": "9",
|
||||
}
|
||||
|
||||
ROCM_ARCHES = ["7.0", "7.1"]
|
||||
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
ROCM_ARCHES = ["6.4", "7.0"]
|
||||
|
||||
XPU_ARCHES = ["xpu"]
|
||||
|
||||
@ -142,48 +137,9 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
}
|
||||
|
||||
|
||||
# Used by tools/nightly.py
|
||||
PYTORCH_NIGHTLY_PIP_INDEX_URL = "https://download.pytorch.org/whl/nightly"
|
||||
NIGHTLY_SOURCE_MATRIX = {
|
||||
"cpu": dict(
|
||||
name="cpu",
|
||||
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/cpu",
|
||||
supported_platforms=["Linux", "macOS", "Windows"],
|
||||
accelerator="cpu",
|
||||
)
|
||||
}
|
||||
CUDA_NIGHTLY_SOURCE_MATRIX = {
|
||||
f"cuda-{major}.{minor}": dict(
|
||||
name=f"cuda-{major}.{minor}",
|
||||
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/cu{major}{minor}",
|
||||
supported_platforms=["Linux", "Windows"],
|
||||
accelerator="cuda",
|
||||
)
|
||||
for major, minor in (map(int, version.split(".")) for version in CUDA_ARCHES)
|
||||
}
|
||||
ROCM_NIGHTLY_SOURCE_MATRIX = {
|
||||
f"rocm-{major}.{minor}": dict(
|
||||
name=f"rocm-{major}.{minor}",
|
||||
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/rocm{major}.{minor}",
|
||||
supported_platforms=["Linux"],
|
||||
accelerator="rocm",
|
||||
)
|
||||
for major, minor in (map(int, version.split(".")) for version in ROCM_ARCHES)
|
||||
}
|
||||
XPU_NIGHTLY_SOURCE_MATRIX = {
|
||||
"xpu": dict(
|
||||
name="xpu",
|
||||
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/xpu",
|
||||
supported_platforms=["Linux"],
|
||||
accelerator="xpu",
|
||||
)
|
||||
}
|
||||
NIGHTLY_SOURCE_MATRIX.update(CUDA_NIGHTLY_SOURCE_MATRIX)
|
||||
NIGHTLY_SOURCE_MATRIX.update(ROCM_NIGHTLY_SOURCE_MATRIX)
|
||||
NIGHTLY_SOURCE_MATRIX.update(XPU_NIGHTLY_SOURCE_MATRIX)
|
||||
|
||||
|
||||
def get_nccl_wheel_version(arch_version: str) -> str:
|
||||
import re
|
||||
|
||||
requirements = map(
|
||||
str.strip, re.split("[;|]", PYTORCH_EXTRA_INSTALL_REQUIREMENTS[arch_version])
|
||||
)
|
||||
@ -191,14 +147,17 @@ def get_nccl_wheel_version(arch_version: str) -> str:
|
||||
|
||||
|
||||
def read_nccl_pin(arch_version: str) -> str:
|
||||
nccl_pin_path = (
|
||||
REPO_ROOT
|
||||
/ ".ci"
|
||||
/ "docker"
|
||||
/ "ci_commit_pins"
|
||||
/ f"nccl-cu{arch_version[:2]}.txt"
|
||||
from pathlib import Path
|
||||
|
||||
nccl_pin_path = os.path.join(
|
||||
Path(__file__).absolute().parents[2],
|
||||
".ci",
|
||||
"docker",
|
||||
"ci_commit_pins",
|
||||
f"nccl-cu{arch_version[:2]}.txt",
|
||||
)
|
||||
return nccl_pin_path.read_text().strip()
|
||||
with open(nccl_pin_path) as f:
|
||||
return f.read().strip()
|
||||
|
||||
|
||||
def validate_nccl_dep_consistency(arch_version: str) -> None:
|
||||
@ -206,8 +165,7 @@ def validate_nccl_dep_consistency(arch_version: str) -> None:
|
||||
wheel_ver = get_nccl_wheel_version(arch_version)
|
||||
if not nccl_release_tag.startswith(f"v{wheel_ver}"):
|
||||
raise RuntimeError(
|
||||
f"{arch_version} NCCL release tag version {nccl_release_tag} "
|
||||
f"does not correspond to wheel version {wheel_ver}"
|
||||
f"{arch_version} NCCL release tag version {nccl_release_tag} does not correspond to wheel version {wheel_ver}"
|
||||
)
|
||||
|
||||
|
||||
@ -454,14 +412,7 @@ def generate_wheels_matrix(
|
||||
return ret
|
||||
|
||||
|
||||
arch_version = ""
|
||||
for arch_version in CUDA_ARCHES:
|
||||
validate_nccl_dep_consistency(arch_version)
|
||||
del arch_version
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Used by tools/nightly.py
|
||||
(SCRIPT_DIR / "nightly_source_matrix.json").write_text(
|
||||
json.dumps(NIGHTLY_SOURCE_MATRIX, indent=4) + "\n"
|
||||
)
|
||||
validate_nccl_dep_consistency("13.0")
|
||||
validate_nccl_dep_consistency("12.9")
|
||||
validate_nccl_dep_consistency("12.8")
|
||||
validate_nccl_dep_consistency("12.6")
|
||||
|
||||
15
.github/workflows/_win-test.yml
vendored
15
.github/workflows/_win-test.yml
vendored
@ -103,13 +103,6 @@ jobs:
|
||||
with:
|
||||
cuda-version: ${{ inputs.cuda-version }}
|
||||
|
||||
# TODO: Move to a requirements.txt file for windows
|
||||
- name: Install pip dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
set -eu
|
||||
python3 -m pip install 'xdoctest>=1.1.0'
|
||||
|
||||
- name: Get workflow job id
|
||||
id: get-job-id
|
||||
uses: ./.github/actions/get-workflow-job-id
|
||||
@ -130,8 +123,9 @@ jobs:
|
||||
if: ${{ !inputs.disable-monitor }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
|
||||
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
|
||||
# Windows conda doesn't have python3 binary, only python, but it's python3
|
||||
${CONDA_RUN} python -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
|
||||
${CONDA_RUN} python -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
|
||||
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Download PyTorch Build Artifacts
|
||||
@ -210,8 +204,7 @@ jobs:
|
||||
run: |
|
||||
pushd "${PYTORCH_FINAL_PACKAGE_DIR}"
|
||||
# shellcheck disable=SC2046,SC2102
|
||||
python3 -mpip install -vvv $(echo *.whl)[opt-einsum,optree] optree==0.13.0
|
||||
python3 -mpip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
|
||||
python3 -mpip install $(echo *.whl)[opt-einsum,optree] optree==0.13.0
|
||||
popd
|
||||
|
||||
.ci/pytorch/win-test.sh
|
||||
|
||||
13
.github/workflows/_xpu-test.yml
vendored
13
.github/workflows/_xpu-test.yml
vendored
@ -38,10 +38,6 @@ on:
|
||||
default: ""
|
||||
description: |
|
||||
List of tests to include (empty string implies default list)
|
||||
dashboard-tag:
|
||||
required: false
|
||||
type: string
|
||||
default: ""
|
||||
disable-monitor:
|
||||
description: |
|
||||
[Experimental] Disable utilization monitoring for tests.
|
||||
@ -62,11 +58,6 @@ on:
|
||||
required: false
|
||||
type: number
|
||||
default: 1
|
||||
secrets:
|
||||
HUGGING_FACE_HUB_TOKEN:
|
||||
required: false
|
||||
description: |
|
||||
HF Auth token to avoid rate limits when downloading models or datasets from hub
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
@ -205,8 +196,6 @@ jobs:
|
||||
PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: ${{ matrix.mem_leak_check && '1' || '0' }}
|
||||
PYTORCH_TEST_RERUN_DISABLED_TESTS: ${{ matrix.rerun_disabled_tests && '1' || '0' }}
|
||||
TESTS_TO_INCLUDE: ${{ inputs.tests-to-include }}
|
||||
DASHBOARD_TAG: ${{ inputs.dashboard-tag }}
|
||||
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
|
||||
timeout-minutes: ${{ fromJson(steps.test-timeout.outputs.timeout) }}
|
||||
run: |
|
||||
# Fetch aws credential from IMDs
|
||||
@ -257,8 +246,6 @@ jobs:
|
||||
-e PYTORCH_TEST_RERUN_DISABLED_TESTS \
|
||||
-e TESTS_TO_INCLUDE \
|
||||
-e ZE_AFFINITY_MASK \
|
||||
-e HUGGING_FACE_HUB_TOKEN \
|
||||
-e DASHBOARD_TAG \
|
||||
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
|
||||
--ulimit stack=10485760:83886080 \
|
||||
--ulimit core=0 \
|
||||
|
||||
73
.github/workflows/attention_op_microbenchmark.yml
vendored
Normal file
73
.github/workflows/attention_op_microbenchmark.yml
vendored
Normal file
@ -0,0 +1,73 @@
|
||||
name: attention_op_microbenchmark
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/op-benchmark/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
# Run at 06:00 UTC everyday
|
||||
- cron: 0 7 * * *
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
# { config: "attention_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.h100" },
|
||||
jobs:
|
||||
attn-microbenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '8.0 9.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "attention_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
attn-microbenchmark-test:
|
||||
name: attn-microbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: attn-microbenchmark-build
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
|
||||
docker-image: ${{ needs.attn-microbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.attn-microbenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
# B200 runner
|
||||
# opmicrobenchmark-build-b200:
|
||||
# if: github.repository_owner == 'pytorch'
|
||||
# name: opmicrobenchmark-build-b200
|
||||
# uses: ./.github/workflows/_linux-build.yml
|
||||
# with:
|
||||
# runner: linux.12xlarge.memory
|
||||
# build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
# docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
# cuda-arch-list: '10.0'
|
||||
# test-matrix: |
|
||||
# { include: [
|
||||
# { config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
|
||||
# ]}
|
||||
# secrets: inherit
|
||||
|
||||
# opmicrobenchmark-test-b200:
|
||||
# name: opmicrobenchmark-test-b200
|
||||
# uses: ./.github/workflows/_linux-test.yml
|
||||
# needs: opmicrobenchmark-build-b200
|
||||
# with:
|
||||
# timeout-minutes: 500
|
||||
# build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
# docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
|
||||
# test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
|
||||
# aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
# secrets: inherit
|
||||
2
.github/workflows/build-almalinux-images.yml
vendored
2
.github/workflows/build-almalinux-images.yml
vendored
@ -36,7 +36,7 @@ jobs:
|
||||
runs-on: linux.9xlarge.ephemeral
|
||||
strategy:
|
||||
matrix:
|
||||
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm7.0", "rocm7.1", "cpu"]
|
||||
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.4", "rocm7.0", "cpu"]
|
||||
steps:
|
||||
- name: Build docker image
|
||||
uses: pytorch/pytorch/.github/actions/binary-docker-build@main
|
||||
|
||||
2
.github/workflows/build-libtorch-images.yml
vendored
2
.github/workflows/build-libtorch-images.yml
vendored
@ -52,8 +52,8 @@ jobs:
|
||||
{ tag: "cuda12.9" },
|
||||
{ tag: "cuda12.8" },
|
||||
{ tag: "cuda12.6" },
|
||||
{ tag: "rocm6.4" },
|
||||
{ tag: "rocm7.0" },
|
||||
{ tag: "rocm7.1" },
|
||||
{ tag: "cpu" },
|
||||
]
|
||||
steps:
|
||||
|
||||
2
.github/workflows/build-magma-rocm-linux.yml
vendored
2
.github/workflows/build-magma-rocm-linux.yml
vendored
@ -34,7 +34,7 @@ jobs:
|
||||
id-token: write
|
||||
strategy:
|
||||
matrix:
|
||||
rocm_version: ["71", "70"]
|
||||
rocm_version: ["70", "64"]
|
||||
steps:
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
2
.github/workflows/build-manywheel-images.yml
vendored
2
.github/workflows/build-manywheel-images.yml
vendored
@ -54,8 +54,8 @@ jobs:
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm7.1", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "xpu", runner: "linux.9xlarge.ephemeral" },
|
||||
|
||||
9
.github/workflows/build-triton-wheel.yml
vendored
9
.github/workflows/build-triton-wheel.yml
vendored
@ -55,7 +55,7 @@ jobs:
|
||||
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
|
||||
include:
|
||||
- device: "rocm"
|
||||
rocm_version: "7.1"
|
||||
rocm_version: "7.0"
|
||||
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
|
||||
- device: "cuda"
|
||||
rocm_version: ""
|
||||
@ -159,7 +159,12 @@ jobs:
|
||||
WITH_CLANG_LDD="--with-clang-ldd"
|
||||
fi
|
||||
|
||||
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE $WITH_CLANG_LDD"
|
||||
if [[ "${BUILD_DEVICE}" == xpu ]]; then
|
||||
docker exec -t "${container_name}" bash -c "dnf install -y gcc-toolset-13-gcc-c++"
|
||||
docker exec -t "${container_name}" bash -c "source /opt/rh/gcc-toolset-13/enable && ${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE"
|
||||
else
|
||||
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE $WITH_CLANG_LDD"
|
||||
fi
|
||||
|
||||
if [[ ("${{ matrix.device }}" == "cuda" || "${{ matrix.device }}" == "xpu") ]]; then
|
||||
docker exec -t "${container_name}" bash -c "auditwheel repair --plat ${PLATFORM} //artifacts/*.whl"
|
||||
|
||||
1
.github/workflows/docker-builds.yml
vendored
1
.github/workflows/docker-builds.yml
vendored
@ -67,7 +67,6 @@ jobs:
|
||||
pytorch-linux-jammy-py3.12-halide,
|
||||
pytorch-linux-jammy-xpu-n-1-py3,
|
||||
pytorch-linux-jammy-xpu-n-py3,
|
||||
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
|
||||
pytorch-linux-jammy-py3-clang18-asan,
|
||||
pytorch-linux-jammy-py3-clang12-onnx,
|
||||
pytorch-linux-jammy-linter,
|
||||
|
||||
236
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
236
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
@ -384,6 +384,124 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-rocm6_4-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.4
|
||||
GPU_ARCH_VERSION: "6.4"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
build_name: libtorch-rocm6_4-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-rocm6_4-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-rocm6_4-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: 240
|
||||
env:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.4
|
||||
GPU_ARCH_VERSION: "6.4"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
SKIP_ALL_TESTS: 1
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-rocm6_4-shared-with-deps-release
|
||||
path: "${{ runner.temp }}/artifacts/"
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: ROCm set GPU_FLAG
|
||||
run: |
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
with:
|
||||
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
|
||||
docker-image-name: libtorch-cxx11-builder
|
||||
custom-tag-prefix: rocm6.4
|
||||
docker-build-dir: .ci/docker
|
||||
working-directory: pytorch
|
||||
- name: Pull Docker image
|
||||
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
|
||||
with:
|
||||
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Test Pytorch binary
|
||||
uses: ./pytorch/.github/actions/test-pytorch-binary
|
||||
env:
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Teardown ROCm
|
||||
uses: ./.github/actions/teardown-rocm
|
||||
libtorch-rocm6_4-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-rocm6_4-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.4
|
||||
GPU_ARCH_VERSION: "6.4"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-rocm6_4-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-rocm7_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -501,121 +619,3 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-rocm7_1-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm7.1
|
||||
GPU_ARCH_VERSION: "7.1"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
build_name: libtorch-rocm7_1-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-rocm7_1-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-rocm7_1-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: 240
|
||||
env:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm7.1
|
||||
GPU_ARCH_VERSION: "7.1"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
SKIP_ALL_TESTS: 1
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-rocm7_1-shared-with-deps-release
|
||||
path: "${{ runner.temp }}/artifacts/"
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: ROCm set GPU_FLAG
|
||||
run: |
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
with:
|
||||
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
|
||||
docker-image-name: libtorch-cxx11-builder
|
||||
custom-tag-prefix: rocm7.1
|
||||
docker-build-dir: .ci/docker
|
||||
working-directory: pytorch
|
||||
- name: Pull Docker image
|
||||
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
|
||||
with:
|
||||
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Test Pytorch binary
|
||||
uses: ./pytorch/.github/actions/test-pytorch-binary
|
||||
env:
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Teardown ROCm
|
||||
uses: ./.github/actions/teardown-rocm
|
||||
libtorch-rocm7_1-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-rocm7_1-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm7.1
|
||||
GPU_ARCH_VERSION: "7.1"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-rocm7_1-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
1610
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
1610
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
File diff suppressed because it is too large
Load Diff
148
.github/workflows/inductor-perf-test-nightly-xpu.yml
vendored
148
.github/workflows/inductor-perf-test-nightly-xpu.yml
vendored
@ -1,148 +0,0 @@
|
||||
name: inductor-perf-nightly-xpu
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/inductor-perf-test-nightly-xpu/*
|
||||
schedule:
|
||||
- cron: 30 17 * * *
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
training:
|
||||
description: Run training (on by default)?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
inference:
|
||||
description: Run inference (on by default)?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
default:
|
||||
description: Run inductor_default?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
dynamic:
|
||||
description: Run inductor_dynamic_shapes?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
cppwrapper:
|
||||
description: Run inductor_cpp_wrapper?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
cudagraphs:
|
||||
description: Run inductor_cudagraphs?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
freezing_cudagraphs:
|
||||
description: Run inductor_cudagraphs with freezing for inference?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
aotinductor:
|
||||
description: Run aot_inductor for inference?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
maxautotune:
|
||||
description: Run inductor_max_autotune?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
benchmark_configs:
|
||||
description: The list of configs used the benchmark
|
||||
required: false
|
||||
type: string
|
||||
default: inductor_huggingface_perf,inductor_timm_perf,inductor_torchbench_perf,cachebench
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions: read-all
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
opt_out_experiments: lf
|
||||
|
||||
xpu-n-py3_10-inductor-benchmark-build:
|
||||
name: xpu-n-py3.10-inductor-benchmark
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
|
||||
runner: linux.c7i.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_xpu", shard: 1, num_shards: 5, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_huggingface_perf_xpu", shard: 2, num_shards: 5, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_huggingface_perf_xpu", shard: 3, num_shards: 5, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_huggingface_perf_xpu", shard: 4, num_shards: 5, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_huggingface_perf_xpu", shard: 5, num_shards: 5, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_timm_perf_xpu", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_timm_perf_xpu", shard: 2, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_timm_perf_xpu", shard: 3, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_timm_perf_xpu", shard: 4, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_timm_perf_xpu", shard: 5, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_timm_perf_xpu", shard: 6, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_torchbench_perf_xpu", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_torchbench_perf_xpu", shard: 2, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_torchbench_perf_xpu", shard: 3, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_torchbench_perf_xpu", shard: 4, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_torchbench_perf_xpu", shard: 5, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
{ config: "inductor_torchbench_perf_xpu", shard: 6, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
xpu-n-py3_10-inductor-benchmark-test-nightly:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
if: github.event_name != 'workflow_dispatch'
|
||||
name: xpu-n-py3.10-inductor-benchmark
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: xpu-n-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
|
||||
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
timeout-minutes: 720
|
||||
# Disable monitor in perf tests for more investigation
|
||||
disable-monitor: true
|
||||
monitor-log-interval: 10
|
||||
monitor-data-collect-interval: 2
|
||||
secrets: inherit
|
||||
|
||||
xpu-n-py3_10-inductor-benchmark-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
if: github.event_name == 'workflow_dispatch'
|
||||
name: xpu-n-py3.10-inductor-test
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: xpu-n-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
|
||||
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
timeout-minutes: 720
|
||||
disable-monitor: false
|
||||
monitor-log-interval: 15
|
||||
monitor-data-collect-interval: 4
|
||||
secrets: inherit
|
||||
84
.github/workflows/periodic-rocm-mi200.yml
vendored
84
.github/workflows/periodic-rocm-mi200.yml
vendored
@ -1,84 +0,0 @@
|
||||
name: periodic-rocm-mi200
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs.
|
||||
# Also run less frequently on weekends.
|
||||
- cron: 45 0,8,16 * * 1-5
|
||||
- cron: 45 4 * * 0,6
|
||||
- cron: 45 4,12,20 * * 1-5
|
||||
- cron: 45 12 * * 0,6
|
||||
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
|
||||
push:
|
||||
tags:
|
||||
- ciflow/periodic/*
|
||||
- ciflow/periodic-rocm-mi200/*
|
||||
branches:
|
||||
- release/*
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
llm-td:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: before-test
|
||||
uses: ./.github/workflows/llm_td_retrieval.yml
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
target-determination:
|
||||
name: before-test
|
||||
uses: ./.github/workflows/target_determination.yml
|
||||
needs: llm-td
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch'
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
31
.github/workflows/periodic.yml
vendored
31
.github/workflows/periodic.yml
vendored
@ -204,6 +204,37 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda13_0-py3_10-gcc11-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3-gcc11-slow-gradcheck-build:
|
||||
name: linux-jammy-cuda12.8-py3-gcc11-slow-gradcheck
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
||||
1
.github/workflows/upload-test-stats.yml
vendored
1
.github/workflows/upload-test-stats.yml
vendored
@ -6,7 +6,6 @@ on:
|
||||
- pull
|
||||
- trunk
|
||||
- periodic
|
||||
- periodic-rocm-mi200
|
||||
- periodic-rocm-mi300
|
||||
- inductor
|
||||
- unstable
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -143,7 +143,6 @@ scripts/release_notes/*.json
|
||||
sccache-stats*.json
|
||||
lint.json
|
||||
merge_record.json
|
||||
.github/scripts/nightly_source_matrix.json
|
||||
|
||||
# These files get copied over on invoking setup.py
|
||||
torchgen/packaged/*
|
||||
|
||||
@ -374,7 +374,7 @@ cmake_dependent_option(
|
||||
"Build the lazy Torchscript backend, not compatible with mobile builds" ON
|
||||
"NOT INTERN_BUILD_MOBILE" OFF)
|
||||
cmake_dependent_option(BUILD_FUNCTORCH "Build Functorch" ON "BUILD_PYTHON" OFF)
|
||||
cmake_dependent_option(BUILD_BUNDLE_PTXAS "Bundle PTX into torch/bin folder"
|
||||
cmake_dependent_option(BUILD_BUNDLE_PTXAS "Bundle PTX into torch/bin fodler"
|
||||
OFF "USE_CUDA" OFF)
|
||||
cmake_dependent_option(USE_KLEIDIAI "Use KleidiAI for the ARM CPU & AARCH64 architecture." ON
|
||||
"CPU_AARCH64" OFF)
|
||||
|
||||
@ -19,13 +19,6 @@ inline namespace CPU_CAPABILITY {
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
|
||||
// GCC does not properly optimize bf16 operators
|
||||
#if defined(__ARM_FEATURE_BF16) && (__clang_major__ >= 19)
|
||||
#define BF16_ARITHMETIC_SUPPORTED() 1
|
||||
#else
|
||||
#define BF16_ARITHMETIC_SUPPORTED() 0
|
||||
#endif
|
||||
|
||||
// Unlike the float16_t family of types, bfloat16_t is not available
|
||||
// when we're not targeting bfloat16 hardware support on some
|
||||
// platforms (but not Mac, so we have to be careful not to shadow the
|
||||
@ -359,72 +352,18 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
other, &Vectorized<float>::name); \
|
||||
}
|
||||
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
|
||||
Vectorized frac() const;
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
// Flip sign bit
|
||||
Vectorized<c10::BFloat16> neg() const {
|
||||
return vreinterpretq_bf16_s16(vreinterpretq_s16_bf16(values) ^ (-32768));
|
||||
}
|
||||
// Fast reciprocal is fine because we are truncating results
|
||||
Vectorized<c10::BFloat16> reciprocal() const {
|
||||
auto x = vcvtq_low_f32_bf16(values);
|
||||
auto y = vcvtq_high_f32_bf16(values);
|
||||
x = vrecpeq_f32(x);
|
||||
y = vrecpeq_f32(y);
|
||||
return vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(x), y);
|
||||
}
|
||||
// Clearing the sign bit
|
||||
Vectorized<c10::BFloat16> abs() const {
|
||||
return vreinterpretq_bf16_u16(vreinterpretq_u16_bf16(values) & 0x7FFF);
|
||||
}
|
||||
#else
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
|
||||
#endif
|
||||
|
||||
// These functions are optimized on clang-21+
|
||||
#if BF16_ARITHMETIC_SUPPORTED() && (__clang_major__ >= 21)
|
||||
Vectorized<c10::BFloat16> operator==(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values == other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator!=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values != other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values < other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values <= other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values > other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values >= other.values;
|
||||
}
|
||||
#else
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=)
|
||||
#endif
|
||||
|
||||
#undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
#undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
@ -473,52 +412,28 @@ template <>
|
||||
Vectorized<c10::BFloat16> inline operator+(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x + y;
|
||||
#else
|
||||
return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator-(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x - y;
|
||||
#else
|
||||
return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator*(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x * y;
|
||||
#else
|
||||
return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator/(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x / y;
|
||||
#else
|
||||
return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
@ -629,19 +544,12 @@ Vectorized<c10::BFloat16> inline fmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y + z;
|
||||
#else
|
||||
// NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16! Also,
|
||||
// vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered
|
||||
// elements, not the bottom and top half, so they don't seem
|
||||
// particularly useful here. Ideally we would include dot product in
|
||||
// the Vectorized interface...
|
||||
return a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -649,15 +557,8 @@ Vectorized<c10::BFloat16> inline fnmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y + z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -665,15 +566,8 @@ Vectorized<c10::BFloat16> inline fmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -681,15 +575,8 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#if BF16_ARITHMETIC_SUPPORTED()
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
@ -6,9 +6,9 @@ namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
|
||||
// Enable auto-vectorization for clang-17+
|
||||
// Enable auto-vectorization for GCC-13+ and clang-17+
|
||||
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
|
||||
#if defined(__clang__) && (__clang_major__ >= 17)
|
||||
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
|
||||
|
||||
template <typename from_type, typename to_type>
|
||||
inline void convertImpl(
|
||||
|
||||
@ -309,7 +309,7 @@ class Vectorized<float> {
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
|
||||
// Implementation copied from Arm Optimized Routine
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
|
||||
inline Vectorized<float> vexpq_f32_u20() const {
|
||||
Vectorized<float> exp_u20() const {
|
||||
// bail out to sleef if it's a special case:
|
||||
// i.e. there's an input s.t. |input| > 87.3....
|
||||
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
|
||||
@ -348,9 +348,6 @@ class Vectorized<float> {
|
||||
|
||||
return vfmaq_f32(scale, poly, scale);
|
||||
}
|
||||
Vectorized<float> exp_u20() const {
|
||||
return vexpq_f32_u20();
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp_u20();
|
||||
}
|
||||
@ -637,7 +634,7 @@ inline Vectorized<float> Vectorized<float>::erf() const {
|
||||
// - exp(- x * x)
|
||||
auto pow_2 = (*this) * (*this);
|
||||
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
|
||||
auto tmp4 = neg_pow_2.vexpq_f32_u20();
|
||||
auto tmp4 = neg_pow_2.exp();
|
||||
auto tmp5 = tmp4 ^ neg_zero_vec;
|
||||
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
||||
auto tmp6 = t * tmp5;
|
||||
|
||||
@ -1,90 +1,78 @@
|
||||
#include <ATen/cuda/CUDAGreenContext.h>
|
||||
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#define HAS_CUDA_GREEN_CONTEXT() 1
|
||||
#else
|
||||
#define HAS_CUDA_GREEN_CONTEXT() 0
|
||||
// Suppress unsued private field warnings as this class is not supposed to be called
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-private-field")
|
||||
#endif
|
||||
|
||||
namespace at::cuda {
|
||||
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int driver_version;
|
||||
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
|
||||
TORCH_CHECK(
|
||||
driver_version >= 12080, "cuda driver too old to use green context!");
|
||||
CUcontext pctx = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
|
||||
if (C10_UNLIKELY(!pctx)) {
|
||||
TORCH_WARN(
|
||||
"Attempted to create a green context but"
|
||||
" there was no primary context! Creating a primary context...");
|
||||
|
||||
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
int driver_version;
|
||||
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
|
||||
TORCH_CHECK(
|
||||
driver_version >= 12080, "cuda driver too old to use green context!");
|
||||
CUcontext pctx = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
|
||||
if (C10_UNLIKELY(!pctx)) {
|
||||
TORCH_WARN(
|
||||
"Attempted to create a green context but"
|
||||
" there was no primary context! Creating a primary context...");
|
||||
cudaFree(0);
|
||||
}
|
||||
|
||||
cudaFree(0);
|
||||
}
|
||||
CUdevice device;
|
||||
device_id_ = device_id;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
|
||||
|
||||
CUdevice device;
|
||||
device_id_ = device_id;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
|
||||
// Get device resources
|
||||
CUdevResource device_resource;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
|
||||
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
|
||||
|
||||
// Get device resources
|
||||
CUdevResource device_resource;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
|
||||
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
|
||||
// Split resources
|
||||
std::vector<CUdevResource> result(1);
|
||||
auto result_data = result.data();
|
||||
unsigned int nb_groups = 1;
|
||||
CUdevResource remaining;
|
||||
|
||||
// Split resources
|
||||
std::vector<CUdevResource> result(1);
|
||||
auto result_data = result.data();
|
||||
unsigned int nb_groups = 1;
|
||||
CUdevResource remaining;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
|
||||
result_data,
|
||||
&nb_groups,
|
||||
&device_resource,
|
||||
&remaining,
|
||||
0, // default flags
|
||||
num_sms));
|
||||
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
|
||||
result_data,
|
||||
&nb_groups,
|
||||
&device_resource,
|
||||
&remaining,
|
||||
0, // default flags
|
||||
num_sms));
|
||||
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
|
||||
|
||||
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
|
||||
// Generate resource descriptor
|
||||
CUdevResourceDesc desc;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
|
||||
&desc, result_data, 1));
|
||||
|
||||
// Generate resource descriptor
|
||||
CUdevResourceDesc desc;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
|
||||
&desc, result_data, 1));
|
||||
// Create green context
|
||||
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
|
||||
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
|
||||
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
|
||||
|
||||
// Create green context
|
||||
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
|
||||
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
|
||||
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
|
||||
|
||||
// Convert to regular context
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
|
||||
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
|
||||
// Convert to regular context
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
|
||||
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
std::unique_ptr<GreenContext> GreenContext::create(
|
||||
uint32_t num_sms,
|
||||
std::optional<uint32_t> device_id) {
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (!device_id.has_value()) {
|
||||
device_id = at::cuda::current_device();
|
||||
}
|
||||
return std::unique_ptr<GreenContext>(new GreenContext(device_id.value(), num_sms));
|
||||
return std::make_unique<GreenContext>(device_id.value(), num_sms);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
@ -92,7 +80,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
|
||||
// Implement move operations
|
||||
GreenContext::GreenContext(GreenContext&& other) noexcept{
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
@ -103,7 +91,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
}
|
||||
|
||||
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (this != &other) {
|
||||
// Clean up current resources
|
||||
if (green_ctx_) {
|
||||
@ -132,7 +120,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
}
|
||||
|
||||
GreenContext::~GreenContext() noexcept{
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
#else
|
||||
@ -140,9 +128,25 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext GreenContext::getContext() const {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
return context_;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx GreenContext::getGreenContext() const {
|
||||
return green_ctx_;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void GreenContext::setContext() {
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
auto current_stream = c10::cuda::getCurrentCUDAStream();
|
||||
parent_stream_ = current_stream.stream();
|
||||
|
||||
@ -171,7 +175,7 @@ GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
}
|
||||
|
||||
void GreenContext::popContext() {
|
||||
#if HAS_CUDA_GREEN_CONTEXT()
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
// see above note about stream being hardcoded to the default stream
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(c10::cuda::getCurrentCUDAStream());
|
||||
|
||||
@ -1,38 +1,53 @@
|
||||
#pragma once
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
#include <cuda.h>
|
||||
|
||||
// Forward declare green context as opaque ptr
|
||||
typedef struct CUgreenCtx_st* CUgreenCtx;
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <cuda.h>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#define CUDA_HAS_GREEN_CONTEXT 1
|
||||
#else
|
||||
#define CUDA_HAS_GREEN_CONTEXT 0
|
||||
#endif
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
class TORCH_CUDA_CPP_API GreenContext {
|
||||
public:
|
||||
// Green context creation
|
||||
static std::unique_ptr<GreenContext> create(
|
||||
uint32_t num_sms,
|
||||
std::optional<uint32_t> device_id);
|
||||
~GreenContext() noexcept;
|
||||
GreenContext(uint32_t device_id, uint32_t num_sms);
|
||||
|
||||
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
|
||||
|
||||
// Delete copy constructor and assignment
|
||||
GreenContext(const GreenContext&) = delete;
|
||||
GreenContext& operator=(const GreenContext&) = delete;
|
||||
|
||||
// Implement move operations
|
||||
GreenContext(GreenContext&& other) noexcept;
|
||||
GreenContext& operator=(GreenContext&& other) noexcept;
|
||||
~GreenContext() noexcept;
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext getContext() const;
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx getGreenContext() const;
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void setContext();
|
||||
|
||||
void popContext();
|
||||
|
||||
private:
|
||||
GreenContext(uint32_t device_id, uint32_t num_sms);
|
||||
// Implement move operations
|
||||
GreenContext(GreenContext&& other) noexcept;
|
||||
GreenContext& operator=(GreenContext&& other) noexcept;
|
||||
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int32_t device_id_ = -1;
|
||||
CUgreenCtx green_ctx_ = nullptr;
|
||||
CUcontext context_ = nullptr;
|
||||
cudaStream_t parent_stream_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
} // namespace at::cuda
|
||||
|
||||
@ -7,6 +7,17 @@
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
// hipSparse const API added in v2.4.0
|
||||
#if HIPSPARSE_VERSION >= 200400
|
||||
#define AT_USE_HIPSPARSE_GENERIC_API() 1
|
||||
#else
|
||||
#define AT_USE_HIPSPARSE_GENERIC_API() 1
|
||||
#endif
|
||||
#else // USE_ROCM
|
||||
#define AT_USE_HIPSPARSE_GENERIC_API() 0
|
||||
#endif // USE_ROCM
|
||||
|
||||
// cuSparse Generic API spsv function was added in CUDA 11.3.0
|
||||
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && (CUSPARSE_VERSION >= 11500)
|
||||
#define AT_USE_CUSPARSE_GENERIC_SPSV() 1
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/CachingDeviceAllocator.h>
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/util/Exception.h>
|
||||
|
||||
@ -152,36 +151,6 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
|
||||
}
|
||||
|
||||
virtual bool isAvailable() const override;
|
||||
|
||||
/* MTIAGraph related APIs */
|
||||
virtual int64_t mtiagraphCreate(bool keep_graph = false) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
return -1;
|
||||
}
|
||||
|
||||
virtual void mtiagraphCaptureBegin(int64_t handle, MempoolId_t pool) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual void mtiagraphCaptureEnd(int64_t handle) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual void mtiagraphInstantiate(int64_t handle) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual void mtiagraphReplay(int64_t handle) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual void mtiagraphReset(int64_t handle) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
|
||||
virtual MempoolId_t mtiagraphPool(int64_t handle) const {
|
||||
FAIL_MTIAHOOKS_FUNC(__func__);
|
||||
}
|
||||
};
|
||||
|
||||
struct TORCH_API MTIAHooksArgs {};
|
||||
|
||||
@ -534,20 +534,20 @@ Tensor trace_decomp(const Tensor& tensor) {
|
||||
std::tuple<Tensor, std::optional<int64_t>> tril_batch_rule(
|
||||
const Tensor& self,
|
||||
std::optional<int64_t> self_bdim,
|
||||
c10::SymInt diagonal = 0) {
|
||||
int64_t diagonal = 0) {
|
||||
TORCH_CHECK(self.dim() >= 2, "tril: The input tensor must have at least 2 dimensions.");
|
||||
auto self_ = moveBatchDimToFront(self, self_bdim);
|
||||
auto result = at::tril_symint(self_, std::move(diagonal));
|
||||
auto result = at::tril(self_, diagonal);
|
||||
return std::make_tuple(std::move(result), 0);
|
||||
}
|
||||
|
||||
std::tuple<Tensor, std::optional<int64_t>> triu_batch_rule(
|
||||
const Tensor& self,
|
||||
std::optional<int64_t> self_bdim,
|
||||
c10::SymInt diagonal = 0) {
|
||||
int64_t diagonal = 0) {
|
||||
TORCH_CHECK(self.dim() >= 2, "triu: The input tensor must have at least 2 dimensions.");
|
||||
auto self_ = moveBatchDimToFront(self, self_bdim);
|
||||
auto result = at::triu_symint(self_, std::move(diagonal));
|
||||
auto result = at::triu(self_, diagonal);
|
||||
return std::make_tuple(std::move(result), 0);
|
||||
}
|
||||
|
||||
|
||||
@ -25,19 +25,18 @@ TORCH_PRECOMPUTE_META_FUNC(avg_pool2d)
|
||||
// #20866, #22032: Guarantee this for the official C++ API?
|
||||
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
|
||||
"avg_pool2d: kernel_size must either be a single int, or a tuple of two ints");
|
||||
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
|
||||
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
|
||||
const int64_t kH = kernel_size[0];
|
||||
const int64_t kW = kernel_size.size() == 1 ? kH : kernel_size[1];
|
||||
|
||||
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
|
||||
"avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints");
|
||||
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
|
||||
const int dW = stride.empty() ? kW :
|
||||
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
|
||||
const int64_t dH = stride.empty() ? kH : stride[0];
|
||||
const int64_t dW = stride.empty() ? kW : stride.size() == 1 ? dH : stride[1];
|
||||
|
||||
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
|
||||
"avg_pool2d: padding must either be a single int, or a tuple of two ints");
|
||||
const int padH = safe_downcast<int, int64_t>(padding[0]);
|
||||
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
|
||||
const int64_t padH = padding[0];
|
||||
const int64_t padW = padding.size() == 1 ? padH : padding[1];
|
||||
|
||||
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0,
|
||||
"divisor must be not zero");
|
||||
|
||||
@ -410,8 +410,8 @@ struct ConvParams {
|
||||
return false;
|
||||
}
|
||||
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
|
||||
// broken on cuDNN 9.8 - 9.14
|
||||
if (cudnn_version >= 90800 && cudnn_version < 91500) {
|
||||
// broken on cuDNN 9.8
|
||||
if (cudnn_version >= 90800) {
|
||||
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
|
||||
(input.scalar_type() == at::kBFloat16 || input.scalar_type() == at::kHalf) &&
|
||||
weight.dim() == 5) {
|
||||
|
||||
@ -139,7 +139,7 @@ void smooth_l1_backward_cpu_kernel(TensorIterator& iter, const Scalar& norm, dou
|
||||
}
|
||||
);
|
||||
} else {
|
||||
AT_DISPATCH_ALL_TYPES_AND(kHalf, dtype, "smooth_l1_backward_cpu_out", [&] {
|
||||
AT_DISPATCH_ALL_TYPES(dtype, "smooth_l1_backward_cpu_out", [&] {
|
||||
auto norm_val = norm.to<scalar_t>();
|
||||
scalar_t beta_val(beta);
|
||||
auto norm_val_vec = Vectorized<scalar_t>(norm_val);
|
||||
|
||||
@ -170,14 +170,10 @@ static bool isInputCompliesAddmmCudaLt(Tensor& result, const Tensor& self, const
|
||||
#if defined(CUDA_VERSION) || defined(USE_ROCM)
|
||||
const auto scalar_type = mat1.scalar_type();
|
||||
return (beta.toComplexDouble() == 1.0
|
||||
// self.dim() == 1 && result.dim() == 2 && self.sizes()[0] == mat2_sizes[1]
|
||||
// is to use lt interface only when self is bias.
|
||||
&& self.dim() == 1 && self.sizes()[0] == mat2_sizes[1] && self.is_contiguous()
|
||||
&& result.dim() == 2 && result.is_contiguous()
|
||||
// Conditions for bias to be fusable
|
||||
&& (
|
||||
self.is_contiguous() &&
|
||||
// NOTE: fine to have 1-len dims to the left from the right-most one
|
||||
(self.dim() == 1 || self.squeeze().dim() == 1) &&
|
||||
self.sizes().back() == mat2_sizes[1]
|
||||
)
|
||||
&& ( // some dtype restrictions
|
||||
#ifndef USE_ROCM
|
||||
scalar_type == at::ScalarType::Double ||
|
||||
|
||||
@ -213,9 +213,9 @@ _f4_f4_bf16_grouped_mm_fbgemm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const std::optional<Tensor>& global_scale_a,
|
||||
const Tensor& global_scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<Tensor>& global_scale_b,
|
||||
const Tensor& global_scale_b,
|
||||
const std::optional<Tensor>& offs,
|
||||
const std::optional<Tensor>& bias,
|
||||
Tensor& out) {
|
||||
@ -225,28 +225,14 @@ _f4_f4_bf16_grouped_mm_fbgemm(
|
||||
"mat_a must be Float4_e2n1fn_2, got: ", mat_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(mat_b.scalar_type() == at::kFloat4_e2m1fn_x2,
|
||||
"mat_b must be Float4_e2n1fn_2, got: ", mat_b.scalar_type());
|
||||
|
||||
std::optional<Tensor> combined_global_scale = std::nullopt;
|
||||
if (global_scale_a.has_value() || global_scale_b.has_value()) {
|
||||
// NVFP4
|
||||
TORCH_CHECK_VALUE(global_scale_a.has_value() && global_scale_b.has_value(),
|
||||
"For NVFP4 grouped gemm both of global_scale_{a,b} must have values")
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e4m3fn,
|
||||
"scale_a must be Float8_e4m3fn, got: ", scale_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(scale_b.scalar_type() == at::kFloat8_e4m3fn,
|
||||
"scale_b must be Float8_e4m3fn, got: ", scale_b.scalar_type());
|
||||
TORCH_CHECK_VALUE(global_scale_a.value().scalar_type() == at::kFloat,
|
||||
"global_scale_a must be Float, got: ", global_scale_a.value().scalar_type());
|
||||
TORCH_CHECK_VALUE(global_scale_b.value().scalar_type() == at::kFloat,
|
||||
"global_scale_b must be Float, got: ", global_scale_b.value().scalar_type());
|
||||
combined_global_scale = global_scale_a.value().mul(global_scale_b.value());
|
||||
} else {
|
||||
// MXFP4
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e8m0fnu,
|
||||
"scale_a must be Float8_e8m0fnu, got: ", scale_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(scale_b.scalar_type() == at::kFloat8_e8m0fnu,
|
||||
"scale_b must be Float8_e8m0fnu, got: ", scale_b.scalar_type());
|
||||
}
|
||||
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e4m3fn,
|
||||
"scale_a must be Float8_e4m3fn, got: ", scale_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(scale_b.scalar_type() == at::kFloat8_e4m3fn,
|
||||
"scale_b must be Float8_e4m3fn, got: ", scale_b.scalar_type());
|
||||
TORCH_CHECK_VALUE(global_scale_a.scalar_type() == at::kFloat,
|
||||
"global_scale_a must be Float, got: ", global_scale_a.scalar_type());
|
||||
TORCH_CHECK_VALUE(global_scale_b.scalar_type() == at::kFloat,
|
||||
"global_scale_b must be Float, got: ", global_scale_b.scalar_type());
|
||||
|
||||
auto o = fbgemm_gpu::f4f4bf16_grouped_mm(
|
||||
mat_a,
|
||||
@ -255,7 +241,7 @@ _f4_f4_bf16_grouped_mm_fbgemm(
|
||||
scale_b,
|
||||
offs.value(),
|
||||
out,
|
||||
combined_global_scale
|
||||
global_scale_a.mul(global_scale_b)
|
||||
);
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "nvfp4 grouped gemm is not supported without USE_FBGEMM_GENAI, and only for CUDA")
|
||||
@ -485,10 +471,9 @@ namespace {
|
||||
|
||||
using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>;
|
||||
|
||||
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 4> scale_grouped_kernel_dispatch = {{
|
||||
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 3> scale_grouped_kernel_dispatch = {{
|
||||
{ "rowwise_rowwise", scaled_blas::check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE},
|
||||
{ "mxfp8_mxfp8", scaled_blas::check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8},
|
||||
{ "mxfp4_mxfp4", scaled_blas::check_mxfp4_recipe, ScaledGemmImplementation::MXFP4_MXFP4},
|
||||
{ "nvfp4_nvfp4", scaled_blas::check_nvfp4_recipe, ScaledGemmImplementation::NVFP4_NVFP4}}};
|
||||
|
||||
} // anonymous namespace
|
||||
@ -614,21 +599,6 @@ _scaled_grouped_mm_cuda_v2(
|
||||
offs.value(),
|
||||
out);
|
||||
}
|
||||
case ScaledGemmImplementation::MXFP4_MXFP4: {
|
||||
// scale shape checks
|
||||
_check_scales_blocked(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
|
||||
_check_scales_blocked(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */);
|
||||
return _f4_f4_bf16_grouped_mm_fbgemm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a[0], /* block-scale A */
|
||||
std::nullopt, /* global-scale A */
|
||||
scale_b[0], /* block-scale B */
|
||||
std::nullopt, /* global-scale B */
|
||||
offs.value(),
|
||||
std::nullopt, /* bias */
|
||||
out);
|
||||
}
|
||||
case ScaledGemmImplementation::NVFP4_NVFP4: {
|
||||
// scale shape checks
|
||||
_check_scales_blocked(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
|
||||
|
||||
@ -13,7 +13,7 @@ __global__ void vectorized_gather_kernel(char * out, char * inp, index_t * idx,
|
||||
if (allow_neg_indices) {
|
||||
ind = (ind < 0) ? ind + ind_dim_size : ind;
|
||||
}
|
||||
CUDA_KERNEL_ASSERT_VERBOSE(ind >=0 && ind < ind_dim_size && "vectorized gather kernel index out of bounds", "Expected 0 <= index < ind_dim_size(%ld), but got index = %ld", ind_dim_size, ind);
|
||||
CUDA_KERNEL_ASSERT(ind >=0 && ind < ind_dim_size && "vectorized gather kernel index out of bounds");
|
||||
int32_t off = (blockDim.x * blockIdx.y + threadIdx.x) * Alignment; // off is guaranteed to be within int32 limits
|
||||
if (off >= slice_size) return;
|
||||
auto vec = at::native::memory::ld_vec<Alignment>(inp + ind * inp_stride + off);
|
||||
|
||||
@ -794,24 +794,6 @@ void _check_deepseek_scale_stride(const Tensor& scale, const Tensor& t, const Sc
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
_check_deepseek_support() {
|
||||
#ifndef USE_ROCM
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
if (dprops->major != 9) {
|
||||
// Only on Hopper GPUs
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
dprops->major == 9,
|
||||
"DeepSeek style (1x128, 128x128) scaling only supported in CUDA for SM90")
|
||||
}
|
||||
// Only in cublasLt >= 12.9
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
CUBLAS_VERSION < 120900 || cublasLtGetVersion() < 120900,
|
||||
"DeepSeek style (1x128, 128x128) scaling requires cublasLt >= 12.9"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
Tensor&
|
||||
_scaled_block1x128_block1x128(
|
||||
const Tensor& mat_a, const Tensor& mat_b,
|
||||
@ -820,12 +802,8 @@ _scaled_block1x128_block1x128(
|
||||
const c10::ScalarType out_dtype,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
#ifndef USE_ROCM
|
||||
// Restrictions:
|
||||
// A, B are FP8, scales are fp32, shape K//128
|
||||
// CUDA: Only Hopper GPUs
|
||||
_check_deepseek_support();
|
||||
|
||||
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
|
||||
mat_a.scalar_type(), mat_b.scalar_type());
|
||||
TORCH_CHECK_VALUE(scale_a.sizes()[0] == mat_a.sizes()[0] && scale_a.sizes()[1] == mat_a.sizes()[1] / 128 && scale_a.scalar_type() == kFloat,
|
||||
@ -843,12 +821,6 @@ _scaled_block1x128_block1x128(
|
||||
_scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out);
|
||||
|
||||
return out;
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"1x128 and 128x128 scaling not available with ROCm"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
Tensor&
|
||||
@ -859,12 +831,10 @@ _scaled_block128x128_block1x128(
|
||||
const c10::ScalarType out_dtype,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
#ifndef USE_ROCM
|
||||
// Restrictions:
|
||||
// A, B are FP8, scales are fp32, shape K//128
|
||||
// CUDA: Only Hopper GPUs
|
||||
_check_deepseek_support();
|
||||
|
||||
std::cout << "mat_b: " << mat_b.dim() << ", " << mat_b.sizes() << ", " << mat_b.strides() << std::endl;
|
||||
std::cout << "scale_b: " << scale_b.dim() << ", " << scale_b.sizes() << ", " << scale_b.strides() << std::endl;
|
||||
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
|
||||
mat_a.scalar_type(), mat_b.scalar_type());
|
||||
TORCH_CHECK_VALUE(scale_a.sizes()[0] == ceil_div<int64_t>(mat_a.sizes()[0], 128) && scale_a.sizes()[1] == ceil_div<int64_t>(mat_a.sizes()[1], 128) && scale_a.scalar_type() == kFloat,
|
||||
@ -882,12 +852,6 @@ _scaled_block128x128_block1x128(
|
||||
_scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out);
|
||||
|
||||
return out;
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"1x128 and 128x128 scaling not available with ROCm"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
Tensor&
|
||||
@ -898,12 +862,8 @@ _scaled_block1x128_block128x128(
|
||||
const c10::ScalarType out_dtype,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
#ifndef USE_ROCM
|
||||
// Restrictions:
|
||||
// A, B are FP8, scales are fp32, A: shape K//128, B: K//128, N//128
|
||||
// CUDA: Only Hopper GPUs
|
||||
_check_deepseek_support();
|
||||
|
||||
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
|
||||
mat_a.scalar_type(), mat_b.scalar_type());
|
||||
TORCH_CHECK_VALUE(scale_a.sizes()[0] == mat_a.sizes()[0] && scale_a.sizes()[1] == mat_a.sizes()[1] / 128 && scale_a.scalar_type() == kFloat,
|
||||
@ -921,12 +881,6 @@ _scaled_block1x128_block128x128(
|
||||
_scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out);
|
||||
|
||||
return out;
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"1x128 and 128x128 scaling not available with ROCm"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
Tensor&
|
||||
|
||||
@ -160,8 +160,8 @@ struct _cuda_scatter_gather_internal_kernel {
|
||||
auto offsets = offset_calc.get(i);
|
||||
|
||||
int64_t idx_dim = *(index_t*)(index_ptr + offsets[2]);
|
||||
CUDA_KERNEL_ASSERT_VERBOSE(idx_dim >= 0 && idx_dim < index_size
|
||||
&& "scatter gather kernel index out of bounds", "Expected 0 <= idx_dim < index_size (%ld), but got idx_dim = %ld", index_size, idx_dim);
|
||||
CUDA_KERNEL_ASSERT(idx_dim >= 0 && idx_dim < index_size
|
||||
&& "scatter gather kernel index out of bounds");
|
||||
|
||||
f(
|
||||
(scalar_t*)(self_ptr + offsets[0]),
|
||||
@ -406,8 +406,9 @@ struct _cuda_scatter_fill_internal_kernel {
|
||||
auto offsets = offset_calc.get(i);
|
||||
|
||||
int64_t idx_dim = *(index_t*)(index_ptr + offsets[1]);
|
||||
CUDA_KERNEL_ASSERT_VERBOSE(idx_dim >= 0 && idx_dim < index_size
|
||||
&& "index out of bounds", "Expected 0 <= idx_dim < index_size (%ld), but got idx_dim = %ld", index_size, idx_dim);
|
||||
CUDA_KERNEL_ASSERT(idx_dim >= 0 && idx_dim < index_size
|
||||
&& "index out of bounds"
|
||||
);
|
||||
|
||||
f(
|
||||
(scalar_t*)(self_ptr + offsets[0]),
|
||||
|
||||
@ -141,8 +141,7 @@ WelfordDataLN cuWelfordOnlineSum(
|
||||
if constexpr (!rms_norm){
|
||||
U delta = val - curr_sum.mean;
|
||||
U new_count = curr_sum.count + 1.f;
|
||||
//Due to low CU count, we run into accuracy issues on gfx90a with `__builtin_amdgcn_rcpf`
|
||||
#if defined(USE_ROCM) && !defined(__gfx90a__) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
|
||||
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
|
||||
U new_mean = curr_sum.mean + delta * __builtin_amdgcn_rcpf(new_count);
|
||||
#else
|
||||
U new_mean = curr_sum.mean + delta * (1.f/new_count); //proper division is slow, this is less accurate but noticeably faster
|
||||
@ -164,8 +163,7 @@ WelfordDataLN cuWelfordCombine(
|
||||
U count = dataA.count + dataB.count;
|
||||
U mean, sigma2;
|
||||
if (count > decltype(dataB.count){0}) {
|
||||
//Due to low CU count, we run into accuracy issues on gfx90a with `__builtin_amdgcn_rcpf`
|
||||
#if defined(USE_ROCM) && !defined(__gfx90a__) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
|
||||
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
|
||||
auto coef = __builtin_amdgcn_rcpf(count);
|
||||
#else
|
||||
auto coef = 1.f/count; //NB we don't use --use_fast_math, but this is emulation, 1./count goes to intrinsic, `* coef` is multiplication, instead of slow fp division
|
||||
|
||||
@ -86,28 +86,6 @@ struct zeta_functor {
|
||||
}
|
||||
};
|
||||
|
||||
struct logaddexp_functor {
|
||||
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
|
||||
inline T operator()(const T a, const T b) {
|
||||
return c10::metal::logaddexp(a, b);
|
||||
}
|
||||
template <typename T, enable_if_t<is_integral_v<T>, bool> = true>
|
||||
inline float operator()(const T a, const T b) {
|
||||
return c10::metal::logaddexp(float(a), float(b));
|
||||
}
|
||||
};
|
||||
|
||||
struct logaddexp2_functor {
|
||||
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
|
||||
inline T operator()(const T a, const T b) {
|
||||
return c10::metal::logaddexp2(a, b);
|
||||
}
|
||||
template <typename T, enable_if_t<is_integral_v<T>, bool> = true>
|
||||
inline float operator()(const T a, const T b) {
|
||||
return c10::metal::logaddexp2(float(a), float(b));
|
||||
}
|
||||
};
|
||||
|
||||
struct xlog1py_functor {
|
||||
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
|
||||
inline T operator()(const T a, const T b) {
|
||||
@ -399,10 +377,6 @@ REGISTER_FLOAT_BINARY_OP(fmin);
|
||||
REGISTER_FLOAT_BINARY_OP(nextafter);
|
||||
REGISTER_FLOAT_BINARY_OP(zeta);
|
||||
REGISTER_INT2FLOAT_BINARY_OP(zeta);
|
||||
REGISTER_FLOAT_BINARY_OP(logaddexp);
|
||||
REGISTER_INT2FLOAT_BINARY_OP(logaddexp);
|
||||
REGISTER_FLOAT_BINARY_OP(logaddexp2);
|
||||
REGISTER_INT2FLOAT_BINARY_OP(logaddexp2);
|
||||
REGISTER_FLOAT_BINARY_OP(xlog1py);
|
||||
REGISTER_INT2FLOAT_BINARY_OP(xlog1py);
|
||||
REGISTER_FLOAT_BINARY_OP(chebyshev_polynomial_t);
|
||||
@ -489,8 +463,6 @@ REGISTER_BINARY_OP(add, float2, float2);
|
||||
REGISTER_BINARY_OP(add, half2, half2);
|
||||
REGISTER_BINARY_OP(sub, float2, float2);
|
||||
REGISTER_BINARY_OP(sub, half2, half2);
|
||||
REGISTER_BINARY_OP(logaddexp, float2, float2);
|
||||
REGISTER_BINARY_OP(logaddexp, half2, half2);
|
||||
REGISTER_BINARY_ALPHA_OP(add_alpha, float2, float2, float2);
|
||||
REGISTER_BINARY_ALPHA_OP(add_alpha, half2, half2, half2);
|
||||
REGISTER_BINARY_ALPHA_OP(sub_alpha, float2, float2, float2);
|
||||
|
||||
@ -89,14 +89,6 @@ static void zeta_mps_kernel(TensorIteratorBase& iter) {
|
||||
lib.exec_binary_kernel(iter, "zeta");
|
||||
}
|
||||
|
||||
static void logaddexp_mps_kernel(TensorIteratorBase& iter) {
|
||||
lib.exec_binary_kernel(iter, "logaddexp");
|
||||
}
|
||||
|
||||
static void logaddexp2_mps_kernel(TensorIteratorBase& iter) {
|
||||
lib.exec_binary_kernel(iter, "logaddexp2");
|
||||
}
|
||||
|
||||
static void xlog1py_mps_kernel(TensorIteratorBase& iter) {
|
||||
TORCH_CHECK_TYPE(isFloatingType(iter.common_dtype()), "xlog1py_mps not implemented for non-floating types");
|
||||
lib.exec_binary_kernel(iter, "xlog1py");
|
||||
@ -219,8 +211,6 @@ REGISTER_DISPATCH(fmin_stub, &fmin_mps_kernel)
|
||||
REGISTER_DISPATCH(copysign_stub, ©sign_mps_kernel)
|
||||
REGISTER_DISPATCH(nextafter_stub, &nextafter_mps_kernel)
|
||||
REGISTER_DISPATCH(zeta_stub, &zeta_mps_kernel)
|
||||
REGISTER_DISPATCH(logaddexp_stub, &logaddexp_mps_kernel);
|
||||
REGISTER_DISPATCH(logaddexp2_stub, &logaddexp2_mps_kernel);
|
||||
REGISTER_DISPATCH(xlog1py_stub, &xlog1py_mps_kernel)
|
||||
REGISTER_DISPATCH(chebyshev_polynomial_t_stub, &chebyshev_polynomial_t_mps_kernel)
|
||||
REGISTER_DISPATCH(chebyshev_polynomial_u_stub, &chebyshev_polynomial_u_mps_kernel)
|
||||
|
||||
@ -17,6 +17,8 @@
|
||||
#include <ATen/ops/ge_native.h>
|
||||
#include <ATen/ops/gt_native.h>
|
||||
#include <ATen/ops/le_native.h>
|
||||
#include <ATen/ops/logaddexp2_native.h>
|
||||
#include <ATen/ops/logaddexp_native.h>
|
||||
#include <ATen/ops/logical_and_native.h>
|
||||
#include <ATen/ops/logical_or_native.h>
|
||||
#include <ATen/ops/logical_xor_native.h>
|
||||
@ -275,6 +277,30 @@ TORCH_IMPL_FUNC(pow_Scalar_out_mps)(const Scalar& base, const Tensor& exp, const
|
||||
}
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(logaddexp_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
mps::BinaryOpBlock logaddexp_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
|
||||
MPSGraph* mpsGraph = cachedGraph->graph();
|
||||
MPSGraphTensor* sumTensor =
|
||||
[mpsGraph additionWithPrimaryTensor:[mpsGraph exponentWithTensor:primaryCastTensor name:nil]
|
||||
secondaryTensor:[mpsGraph exponentWithTensor:secondaryCastTensor name:nil]
|
||||
name:nil];
|
||||
return [mpsGraph logarithmWithTensor:sumTensor name:nil];
|
||||
};
|
||||
mps::binaryOpTensor(self, other, output, "logaddexp_out_mps", logaddexp_op_block);
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(logaddexp2_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
mps::BinaryOpBlock logaddexp2_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
|
||||
MPSGraph* mpsGraph = cachedGraph->graph();
|
||||
MPSGraphTensor* sumTensor =
|
||||
[mpsGraph additionWithPrimaryTensor:[mpsGraph exponentBase2WithTensor:primaryCastTensor name:nil]
|
||||
secondaryTensor:[mpsGraph exponentBase2WithTensor:secondaryCastTensor name:nil]
|
||||
name:nil];
|
||||
return [mpsGraph logarithmBase2WithTensor:sumTensor name:nil];
|
||||
};
|
||||
mps::binaryOpTensor(self, other, output, "logaddexp2_out_mps", logaddexp2_op_block);
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(xlogy_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
mps::BinaryOpBlock xlogy_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
|
||||
MPSGraph* mpsGraph = cachedGraph->graph();
|
||||
|
||||
@ -370,7 +370,7 @@ static void nllnd_loss_backward_impl(Tensor& grad_input_arg,
|
||||
onValue:-1.0f
|
||||
offValue:0.0f
|
||||
name:nil];
|
||||
oneHotTensor = castMPSTensor(mpsGraph, oneHotTensor, [inputTensor dataType]);
|
||||
oneHotTensor = castMPSTensor(mpsGraph, oneHotTensor, inputTensor.dataType);
|
||||
if (isWeightsArrayValid) {
|
||||
oneHotTensor = [mpsGraph multiplicationWithPrimaryTensor:oneHotTensor
|
||||
secondaryTensor:weightTensor
|
||||
@ -705,7 +705,6 @@ static void smooth_l1_loss_template(const Tensor& input,
|
||||
TORCH_CHECK(beta >= 0, "smooth_l1_loss does not support negative values for beta.");
|
||||
TORCH_CHECK(input.is_mps());
|
||||
TORCH_CHECK(target.is_mps());
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(input.scalar_type() != kLong, "MPS doesn't know how to do square_i64");
|
||||
if ((input.numel() == 0) || (target.numel() == 0)) {
|
||||
reduction == Reduction::Mean ? output.fill_(std::numeric_limits<float>::quiet_NaN()) : output.zero_();
|
||||
return;
|
||||
@ -772,7 +771,7 @@ static void smooth_l1_loss_backward_impl(const Tensor& grad_output,
|
||||
MPSGraphTensor* targetTensor = mpsGraphRankedPlaceHolder(mpsGraph, target);
|
||||
MPSGraphTensor* gradOutputTensor = mpsGraphRankedPlaceHolder(mpsGraph, grad_output);
|
||||
|
||||
MPSGraphTensor* betaTensor = [mpsGraph constantWithScalar:beta dataType:[inputTensor dataType]];
|
||||
MPSGraphTensor* betaTensor = [mpsGraph constantWithScalar:beta dataType:MPSDataTypeFloat32];
|
||||
// xn - yn
|
||||
MPSGraphTensor* diffTensor = [mpsGraph subtractionWithPrimaryTensor:inputTensor
|
||||
secondaryTensor:targetTensor
|
||||
@ -798,8 +797,7 @@ static void smooth_l1_loss_backward_impl(const Tensor& grad_output,
|
||||
name:@"lossTensor"];
|
||||
MPSGraphTensor* outputTensor = lossTensor;
|
||||
if (reduction == Reduction::Mean) {
|
||||
MPSGraphTensor* numelTensor = [mpsGraph constantWithScalar:(double)input.numel()
|
||||
dataType:[lossTensor dataType]];
|
||||
MPSGraphTensor* numelTensor = [mpsGraph constantWithScalar:(double)input.numel() dataType:MPSDataTypeFloat32];
|
||||
outputTensor = [mpsGraph divisionWithPrimaryTensor:lossTensor secondaryTensor:numelTensor name:nil];
|
||||
}
|
||||
MPSGraphTensor* gradInputTensor = [mpsGraph multiplicationWithPrimaryTensor:outputTensor
|
||||
|
||||
@ -84,9 +84,6 @@ std::tuple<Tensor&, Tensor&, Tensor&> batch_norm_mps_out(const Tensor& self,
|
||||
Tensor& output,
|
||||
Tensor& save_mean,
|
||||
Tensor& save_var) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(self.scalar_type() != kLong, "Long batch norm is not supported with MPS");
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(!c10::isComplexType(self.scalar_type()),
|
||||
"Batch norm for complex is not supported for MPS");
|
||||
using namespace at::native::mps;
|
||||
struct CachedGraph : public MPSCachedGraph {
|
||||
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
|
||||
@ -921,7 +918,6 @@ std::tuple<Tensor, Tensor, Tensor> layer_norm_mps(const Tensor& input,
|
||||
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
|
||||
const int axis = input_ndim - normalized_ndim;
|
||||
MPSStream* stream = getCurrentMPSStream();
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(input.scalar_type() != kLong, "Not implemented for long on MPS");
|
||||
@autoreleasepool {
|
||||
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
// which kernel variant to use based on the normalized axis N size
|
||||
|
||||
@ -1028,18 +1028,15 @@ TORCH_IMPL_FUNC(prod_out_mps)
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(amax_out_mps)(const Tensor& input_t, IntArrayRef dim, bool keepdim, const Tensor& output_t) {
|
||||
TORCH_CHECK(!c10::isComplexType(input_t.scalar_type()), "amax is not defined for complex types");
|
||||
reduction_out_mps(input_t, dim, keepdim, std::nullopt, output_t, MPSReductionType::AMAX, "amax_out_mps");
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(amin_out_mps)(const Tensor& input_t, IntArrayRef dim, bool keepdim, const Tensor& output_t) {
|
||||
TORCH_CHECK(!c10::isComplexType(input_t.scalar_type()), "amin is not defined for complex types");
|
||||
reduction_out_mps(input_t, dim, keepdim, std::nullopt, output_t, MPSReductionType::AMIN, "amin_out_mps");
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(aminmax_out_mps)
|
||||
(const Tensor& input_t, std::optional<int64_t> dim_opt, bool keepdim, const Tensor& min_t, const Tensor& max_t) {
|
||||
TORCH_CHECK(!c10::isComplexType(input_t.scalar_type()), "aminmax is not defined for complex types");
|
||||
reduction_out_mps(input_t,
|
||||
dim_opt.has_value() ? OptionalIntArrayRef({*dim_opt}) : std::nullopt,
|
||||
keepdim,
|
||||
|
||||
@ -31,7 +31,6 @@ void kthvalue_out_mps_impl(const Tensor& self, int64_t k, int64_t dim, Tensor& v
|
||||
indices.copy_(values.toType(at::ScalarType::Long));
|
||||
return;
|
||||
}
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(!c10::isComplexType(self.scalar_type()), "kthvalue is not implemented for complex types");
|
||||
// issue #154890, raising error to prevent crash within MPSGraph until
|
||||
// workaround is implemented.
|
||||
TORCH_CHECK(self.dim() - dim <= 4, "On-going issue on MPSGraph topk when ndims() - axis > 4, see issue #154890");
|
||||
|
||||
@ -3622,7 +3622,8 @@
|
||||
structured: True
|
||||
structured_inherits: TensorIteratorBase
|
||||
dispatch:
|
||||
CPU, CUDA, MPS: logaddexp_out
|
||||
CPU, CUDA: logaddexp_out
|
||||
MPS: logaddexp_out_mps
|
||||
tags: pointwise
|
||||
|
||||
- func: logaddexp(Tensor self, Tensor other) -> Tensor
|
||||
@ -3634,7 +3635,8 @@
|
||||
structured: True
|
||||
structured_inherits: TensorIteratorBase
|
||||
dispatch:
|
||||
CPU, CUDA, MPS: logaddexp2_out
|
||||
CPU, CUDA: logaddexp2_out
|
||||
MPS: logaddexp2_out_mps
|
||||
tags: pointwise
|
||||
|
||||
- func: logaddexp2(Tensor self, Tensor other) -> Tensor
|
||||
@ -8865,11 +8867,11 @@
|
||||
autogen: bitwise_right_shift.Scalar_Tensor_out
|
||||
tags: pointwise
|
||||
|
||||
- func: tril_(Tensor(a!) self, SymInt diagonal=0) -> Tensor(a!)
|
||||
- func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
||||
structured_delegate: tril.out
|
||||
variants: method
|
||||
|
||||
- func: triu_(Tensor(a!) self, SymInt diagonal=0) -> Tensor(a!)
|
||||
- func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
||||
structured_delegate: triu.out
|
||||
variants: method
|
||||
|
||||
@ -8993,25 +8995,25 @@
|
||||
- func: cross(Tensor self, Tensor other, int? dim=None) -> Tensor
|
||||
variants: method, function
|
||||
|
||||
- func: triu.out(Tensor self, SymInt diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
||||
- func: triu.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
||||
structured: True
|
||||
dispatch:
|
||||
CPU: triu_cpu
|
||||
CUDA: triu_cuda
|
||||
MPS: triu_mps_out
|
||||
|
||||
- func: triu(Tensor self, SymInt diagonal=0) -> Tensor
|
||||
- func: triu(Tensor self, int diagonal=0) -> Tensor
|
||||
structured_delegate: triu.out
|
||||
variants: method, function
|
||||
|
||||
- func: tril.out(Tensor self, SymInt diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
||||
- func: tril.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
|
||||
structured: True
|
||||
dispatch:
|
||||
CPU: tril_cpu
|
||||
CUDA: tril_cuda
|
||||
MPS: tril_mps_out
|
||||
|
||||
- func: tril(Tensor self, SymInt diagonal=0) -> Tensor
|
||||
- func: tril(Tensor self, int diagonal=0) -> Tensor
|
||||
structured_delegate: tril.out
|
||||
variants: method, function
|
||||
|
||||
|
||||
@ -467,28 +467,6 @@ Tensor sparse_coo_tensor(const Tensor& indices, const Tensor& values, IntArrayRe
|
||||
!options.has_layout() || options.layout() == kSparse,
|
||||
"expected sparse layout, but got layout ",
|
||||
options.layout());
|
||||
|
||||
if (indices.numel() > 0) {
|
||||
Tensor min_indices =
|
||||
std::get</* values */ 0>(indices.min(/* dim */ 1, /* keepdim */ false));
|
||||
Tensor cpu_min_indices;
|
||||
if (!indices.is_cpu()) {
|
||||
cpu_min_indices = min_indices.to(at::DeviceType::CPU);
|
||||
} else {
|
||||
cpu_min_indices = min_indices;
|
||||
}
|
||||
auto cpu_min_indices_accessor = cpu_min_indices.accessor<int64_t, 1>();
|
||||
for (const auto d : c10::irange(indices.size(0))) {
|
||||
int64_t min_index_in_dim = cpu_min_indices_accessor[d];
|
||||
TORCH_CHECK(
|
||||
min_index_in_dim >= 0,
|
||||
"found negative index ",
|
||||
min_index_in_dim,
|
||||
" for dim ",
|
||||
d);
|
||||
}
|
||||
}
|
||||
|
||||
return at::native::_sparse_coo_tensor_unsafe(
|
||||
indices,
|
||||
values,
|
||||
|
||||
@ -1837,10 +1837,6 @@ class BenchmarkRunner:
|
||||
def skip_models_for_cuda(self):
|
||||
return set()
|
||||
|
||||
@property
|
||||
def skip_models_for_xpu(self):
|
||||
return set()
|
||||
|
||||
@property
|
||||
def skip_models_for_cpu(self):
|
||||
return set()
|
||||
@ -3931,8 +3927,6 @@ def run(runner, args, original_dir=None):
|
||||
runner.skip_models.update(runner.skip_models_for_cpu_aarch64)
|
||||
elif args.devices == ["cuda"]:
|
||||
runner.skip_models.update(runner.skip_models_for_cuda)
|
||||
elif args.devices == ["xpu"]:
|
||||
runner.skip_models.update(runner.skip_models_for_xpu)
|
||||
|
||||
if not args.multiprocess:
|
||||
runner.skip_models.update(runner.skip_multiprocess_models)
|
||||
|
||||
@ -124,10 +124,6 @@ class TorchBenchmarkRunner(BenchmarkRunner):
|
||||
def skip_models_for_cuda(self):
|
||||
return self._skip["device"]["cuda"]
|
||||
|
||||
@property
|
||||
def skip_models_for_xpu(self):
|
||||
return self._skip["device"]["xpu"]
|
||||
|
||||
@property
|
||||
def skip_models_for_freezing_cuda(self):
|
||||
return self._skip["freezing"]["cuda"]
|
||||
|
||||
@ -217,9 +217,6 @@ skip:
|
||||
|
||||
cuda: []
|
||||
|
||||
xpu:
|
||||
- *DETECTRON2_MODELS
|
||||
|
||||
test:
|
||||
training:
|
||||
- *DETECTRON2_MODELS
|
||||
|
||||
@ -125,6 +125,17 @@ AttentionType = Literal[
|
||||
]
|
||||
DtypeString = Literal["bfloat16", "float16", "float32"]
|
||||
SpeedupType = Literal["fwd", "bwd"]
|
||||
# Operator Name mapping
|
||||
backend_to_operator_name = {
|
||||
"math": "math attention kernel",
|
||||
"efficient": "efficient attention kernel",
|
||||
"cudnn": "cudnn attention kernel",
|
||||
"fav2": "flash attention 2 kernel",
|
||||
"fav3": "flash attention 3 kernel",
|
||||
"fakv": "flash attention kv cache kernel",
|
||||
"og-eager": "eager attention kernel",
|
||||
"flex": "flex attention kernel",
|
||||
}
|
||||
|
||||
|
||||
def benchmark_torch_function_in_microseconds(func: Callable, *args, **kwargs) -> float:
|
||||
@ -1265,12 +1276,14 @@ def _output_json_for_dashboard(
|
||||
model: ModelInfo
|
||||
metric: MetricInfo
|
||||
|
||||
operator_name = backend_to_operator_name.get(backend, backend)
|
||||
|
||||
# Benchmark extra info
|
||||
benchmark_extra_info = {
|
||||
"input_config": input_config,
|
||||
"device": device,
|
||||
"arch": device_arch,
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
"attn_type": config.attn_type,
|
||||
"shape": str(config.shape),
|
||||
"max_autotune": config.max_autotune,
|
||||
@ -1288,7 +1301,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
"attn_type": config.attn_type,
|
||||
},
|
||||
),
|
||||
@ -1315,7 +1328,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
@ -1341,7 +1354,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
@ -1371,7 +1384,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
// Implementation of special math functions for Metal
|
||||
// Implementation of specal math functions for Metal
|
||||
#pragma once
|
||||
#include <c10/metal/expm1f.h>
|
||||
#include <c10/metal/igamma.h>
|
||||
@ -624,64 +624,6 @@ inline T spherical_bessel_j0(T x) {
|
||||
return static_cast<T>(::metal::sin(x) / x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline ::metal::enable_if_t<is_scalar_floating_point_v<T>, T> logaddexp(
|
||||
T a,
|
||||
T b) {
|
||||
float a0 = static_cast<float>(a);
|
||||
float b0 = static_cast<float>(b);
|
||||
if (::metal::isinf(a0) && a0 == b0) {
|
||||
return static_cast<T>(a0);
|
||||
} else {
|
||||
float m0 = ::metal::max(a0, b0);
|
||||
return static_cast<T>(
|
||||
m0 + ::c10::metal::log1p(::metal::exp(-::metal::abs(a0 - b0))));
|
||||
}
|
||||
}
|
||||
|
||||
// The function is ported from mlx
|
||||
template <typename T>
|
||||
inline ::metal::enable_if_t<is_complex_v<T>, T> logaddexp(T a, T b) {
|
||||
if (::metal::isnan(a.x) || ::metal::isnan(a.y) || ::metal::isnan(b.x) ||
|
||||
::metal::isnan(b.y)) {
|
||||
return T(NAN, NAN);
|
||||
}
|
||||
|
||||
T maxval = a.x > b.x ? a : b;
|
||||
T minval = a.x < b.x ? a : b;
|
||||
constexpr auto inf = ::metal::numeric_limits<T>::infinity().x;
|
||||
|
||||
if (minval.x == -inf || maxval.x == inf) {
|
||||
return maxval;
|
||||
}
|
||||
|
||||
float2 maxval_ = static_cast<float2>(maxval);
|
||||
float2 minval_ = static_cast<float2>(minval);
|
||||
float m = ::metal::exp(minval_.x - maxval_.x);
|
||||
float2 dexp{
|
||||
m * ::metal::cos(minval_.y - maxval_.y),
|
||||
m * ::metal::sin(minval_.y - maxval_.y),
|
||||
};
|
||||
return static_cast<T>(maxval_ + ::c10::metal::log1p(dexp));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T logaddexp2(T a, T b) {
|
||||
constexpr auto log_2 = float(0.693147180559945309417232121458176);
|
||||
constexpr auto inv_log_2 = float(1) / log_2;
|
||||
float a0 = static_cast<float>(a);
|
||||
float b0 = static_cast<float>(b);
|
||||
if (::metal::isinf(a0) && a0 == b0) {
|
||||
return static_cast<T>(a0);
|
||||
} else {
|
||||
float m0 = ::metal::max(a0, b0);
|
||||
return static_cast<T>(
|
||||
m0 +
|
||||
::c10::metal::log1p(::metal::pow(float(2), -::metal::abs(a0 - b0))) *
|
||||
inv_log_2);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline float xlog1py(T x, T y) {
|
||||
if (::metal::isnan(y)) {
|
||||
|
||||
@ -322,24 +322,6 @@ inline float log1p(float x) {
|
||||
return rc;
|
||||
}
|
||||
|
||||
// The function is ported from mlx
|
||||
inline float2 log1p(float2 in) {
|
||||
float x = in.x;
|
||||
float y = in.y;
|
||||
float zabs = ::metal::precise::sqrt(x * x + y * y);
|
||||
float theta = ::metal::atan2(y, x + 1);
|
||||
if (zabs < 0.5f) {
|
||||
float r = x * (2 + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return {x, theta};
|
||||
}
|
||||
return {0.5f * log1p(r), theta};
|
||||
} else {
|
||||
auto z0 = ::metal::sqrt((x + 1) * (x + 1) + y * y);
|
||||
return {::metal::log(z0), theta};
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T1, typename T2 = T1>
|
||||
struct pair {
|
||||
T1 first;
|
||||
|
||||
@ -34,7 +34,7 @@ struct MemEvent {
|
||||
bool overlaps(const MemBlock& a, const MemBlock& b) {
|
||||
// two blocks dont overlap if
|
||||
// |---a--------|--------------b--------|
|
||||
// start_a end_a <= start_b end_b
|
||||
// strat_a end_a <= start_b end_b
|
||||
return !(
|
||||
(a.end_offset <= b.start_offset) || (b.end_offset <= a.start_offset));
|
||||
}
|
||||
|
||||
@ -33,7 +33,7 @@ struct bitset final {
|
||||
constexpr bitset() noexcept = default;
|
||||
constexpr bitset(const bitset&) noexcept = default;
|
||||
constexpr bitset(bitset&&) noexcept = default;
|
||||
// there is an issue for gcc 5.3.0 when define default function as constexpr
|
||||
// there is an issure for gcc 5.3.0 when define default function as constexpr
|
||||
// see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68754.
|
||||
bitset& operator=(const bitset&) noexcept = default;
|
||||
bitset& operator=(bitset&&) noexcept = default;
|
||||
|
||||
@ -554,17 +554,6 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
double getMemoryFraction() {
|
||||
if (!set_fraction) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
return static_cast<double>(allowed_memory_maximum) /
|
||||
static_cast<double>(device_prop.global_mem_size);
|
||||
}
|
||||
|
||||
void setMemoryFraction(double fraction) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
@ -735,11 +724,6 @@ class XPUAllocator : public DeviceAllocator {
|
||||
device_allocators[device]->resetAccumulatedStats();
|
||||
}
|
||||
|
||||
double getMemoryFraction(DeviceIndex device) {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryFraction();
|
||||
}
|
||||
|
||||
void setMemoryFraction(double fraction, DeviceIndex device) {
|
||||
assertValidDevice(device);
|
||||
TORCH_CHECK_VALUE(
|
||||
@ -793,10 +777,6 @@ void recordStream(const DataPtr& dataPtr, XPUStream stream) {
|
||||
return allocator.recordStream(dataPtr, stream);
|
||||
}
|
||||
|
||||
double getMemoryFraction(DeviceIndex device) {
|
||||
return allocator.getMemoryFraction(device);
|
||||
}
|
||||
|
||||
void setMemoryFraction(double fraction, DeviceIndex device) {
|
||||
return allocator.setMemoryFraction(fraction, device);
|
||||
}
|
||||
|
||||
@ -25,8 +25,6 @@ C10_XPU_API void raw_delete(void* ptr);
|
||||
|
||||
C10_XPU_API void recordStream(const DataPtr& dataPtr, XPUStream stream);
|
||||
|
||||
C10_XPU_API double getMemoryFraction(DeviceIndex device);
|
||||
|
||||
C10_XPU_API void setMemoryFraction(double fraction, DeviceIndex device);
|
||||
|
||||
} // namespace c10::xpu::XPUCachingAllocator
|
||||
|
||||
@ -38,7 +38,7 @@ uint32_t crc32_combine (uint32_t crcA, uint32_t crcB, size_t lengthB);
|
||||
|
||||
/// compute CRC32 (bitwise algorithm)
|
||||
uint32_t crc32_bitwise (const void* data, size_t length, uint32_t previousCrc32 = 0);
|
||||
/// compute CRC32 (half-byte algorithm)
|
||||
/// compute CRC32 (half-byte algoritm)
|
||||
uint32_t crc32_halfbyte(const void* data, size_t length, uint32_t previousCrc32 = 0);
|
||||
|
||||
#ifdef CRC32_USE_LOOKUP_TABLE_BYTE
|
||||
@ -96,7 +96,7 @@ uint32_t crc32_16bytes_prefetch(const void* data, size_t length, uint32_t previo
|
||||
#define __BIG_ENDIAN 4321
|
||||
#endif
|
||||
|
||||
// define endianness and some integer data types
|
||||
// define endianess and some integer data types
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
// Windows always little endian
|
||||
#define __BYTE_ORDER __LITTLE_ENDIAN
|
||||
@ -168,7 +168,7 @@ namespace
|
||||
/// zlib's CRC32 polynomial
|
||||
const uint32_t Polynomial = 0xEDB88320;
|
||||
|
||||
/// swap endianness
|
||||
/// swap endianess
|
||||
static inline uint32_t swap(uint32_t x)
|
||||
{
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
@ -229,7 +229,7 @@ uint32_t crc32_bitwise(const void* data, size_t length, uint32_t previousCrc32)
|
||||
}
|
||||
|
||||
|
||||
/// compute CRC32 (half-byte algorithm)
|
||||
/// compute CRC32 (half-byte algoritm)
|
||||
uint32_t crc32_halfbyte(const void* data, size_t length, uint32_t previousCrc32)
|
||||
{
|
||||
uint32_t crc = ~previousCrc32; // same as previousCrc32 ^ 0xFFFFFFFF
|
||||
@ -662,7 +662,7 @@ uint32_t crc32_combine(uint32_t crcA, uint32_t crcB, size_t lengthB)
|
||||
// - if you append length(B) zeros to A and call it A' (think of it as AAAA000)
|
||||
// and prepend length(A) zeros to B and call it B' (think of it as 0000BBB)
|
||||
// then exists a C' = A' ^ B'
|
||||
// - remember: if you XOR something with zero, it remains unchanged: X ^ 0 = X
|
||||
// - remember: if you XOR someting with zero, it remains unchanged: X ^ 0 = X
|
||||
// - that means C' = A concat B so that crc(A concat B) = crc(C') = crc(A') ^ crc(B')
|
||||
// - the trick is to compute crc(A') based on crc(A)
|
||||
// and crc(B') based on crc(B)
|
||||
|
||||
@ -76,7 +76,7 @@ typedef struct mz_zip_archive mz_zip_archive;
|
||||
// 2) Writing with 1-pass sequential access
|
||||
// -> We must take care not to require updating values that have already
|
||||
// been written. We place the variable-length index at the end and do
|
||||
// not put any index into the header to fulfill this constraint.
|
||||
// not put any indicies into the header to fulfill this constraint.
|
||||
|
||||
// The model.json, which contains all the metadata information,
|
||||
// should be written as the last file. One reason is that the size of tensor
|
||||
|
||||
@ -519,7 +519,7 @@ TEST(PyTorchStreamWriterAndReader, SaveAndLoadWithAllocator) {
|
||||
std::tie(data_ptr, size) = reader.getRecord("key1", &overrideAllocator);
|
||||
EXPECT_EQ(overrideAllocator.getAllocatedBytes(), kBytes1);
|
||||
EXPECT_EQ(baseAllocator.getAllocatedBytes(), allocBytes);
|
||||
// allocate with base allocator
|
||||
// allcoate with base allocator
|
||||
std::tie(data_ptr, size) = reader.getRecord("key1");
|
||||
EXPECT_EQ(overrideAllocator.getAllocatedBytes(), kBytes1);
|
||||
EXPECT_EQ(baseAllocator.getAllocatedBytes(), allocBytes + kBytes1);
|
||||
|
||||
@ -2,9 +2,9 @@
|
||||
|
||||
## Overview
|
||||
|
||||
The LibTorch Stable ABI (Application Binary Interface) provides a limited interface for extending PyTorch functionality without being tightly coupled to specific PyTorch versions. This enables the development of custom operators and extensions that remain compatible across PyTorch releases. This limited set of APIs is not intended to replace existing LibTorch, but rather to provide a stable foundation for a majority of custom extension use cases. If there is any API you would like to see added to the stable ABI, please file a request through a [new issue on the PyTorch repo](https://github.com/pytorch/pytorch/issues).
|
||||
The LibTorch Stable ABI (Application Binary Interface) provides an interface for extending PyTorch functionality without being tightly coupled to specific PyTorch versions. This enables the development of custom operators and extensions that remain compatible across PyTorch releases.
|
||||
|
||||
The limited stable ABI consists of three main components:
|
||||
The stable ABI consists of three main components:
|
||||
|
||||
1. **Stable C headers** - Low-level C API implemented by libtorch (primarily `torch/csrc/inductor/aoti_torch/c/shim.h`)
|
||||
2. **Header-only C++ library** - Standalone utilities implemented in only headers such that there is no dependence on libtorch (`torch/headeronly/*`)
|
||||
@ -14,8 +14,8 @@ We discuss each of these in detail
|
||||
|
||||
### `torch/headeronly`
|
||||
|
||||
The inlined C++ headers living in [`torch/headeronly`](https://github.com/pytorch/pytorch/tree/main/torch/headeronly) are completely decoupled from LibTorch. The headers consist of certain utilities that might be familiar to custom extension writers. For example, the
|
||||
`c10::ScalarType` enum lives here as `torch::headeronly::ScalarType`, as well as a libtorch-independent version of `TORCH_CHECK` that is `STD_TORCH_CHECK`. You can trust all APIs in the `torch::headeronly` namespace to not depend on `libtorch.so`. These APIs are also globally listed in [torch/header_only_apis.txt](https://github.com/pytorch/pytorch/blob/main/torch/header_only_apis.txt).
|
||||
This is a set of inlined C++ headers are completely decoupled from libtorch. The headers consist of certain utilities that might be familiar to custom extension writers. For example, the
|
||||
`c10::ScalarType` enum lives here as `torch::headeronly::ScalarType`.
|
||||
|
||||
### `torch/csrc/stable`
|
||||
|
||||
@ -34,14 +34,8 @@ We are continuing to improve coverage in our `torch/csrc/stable` APIs. Please fi
|
||||
|
||||
### Stable C headers
|
||||
|
||||
The stable C headers started by AOTInductor form the foundation of the stable ABI. Presently, the available C headers include:
|
||||
|
||||
- [torch/csrc/inductor/aoti_torch/c/shim.h](https://github.com/pytorch/pytorch/blob/main/torch/csrc/inductor/aoti_torch/c/shim.h): Includes C-style shim APIs for commonly used regarding Tensors, dtypes, CUDA, and the like.
|
||||
- [torch/csrc/inductor/aoti_torch/generated/c_shim_aten.h](https://github.com/pytorch/pytorch/blob/main/torch/csrc/inductor/aoti_torch/generated/c_shim_aten.h): Includes C-style shim APIs for ATen ops from `native_functions.yaml` (e.g. `aoti_torch_aten_new_empty`).
|
||||
- [torch/csrc/inductor/aoti_torch/generated/c_shim_*.h](https://github.com/pytorch/pytorch/blob/main/torch/csrc/inductor/aoti_torch/generated): Includes C-style shim APIs for specific backend kernels dispatched from `native_functions.yaml` (e.g. `aoti_torch_cuda_pad`). These APIs should only be used for the specific backend they are named after (e.g. `aoti_torch_cuda_pad` should only be used within CUDA kernels), as they opt out of the dispatcher.
|
||||
- [torch/csrc/stable/c/shim.h](https://github.com/pytorch/pytorch/blob/main/torch/csrc/stable/c/shim.h): We are building out more ABIs to logically live in `torch/csrc/stable/c` instead of continuing the AOTI naming that no longer makes sense for our general use case.
|
||||
|
||||
These headers are promised to be ABI stable across releases and adhere to a stronger backwards compatibility policy than LibTorch. Specifically, we promise not to modify them for at least 2 years after they are released. However, this is **use at your own risk**. For example, users must handle the memory lifecycle of objects returned by certain APIs. Further, the stack-based APIs discussed below which allow the user to call into the PyTorch dispatcher do not provide strong guarantees on forward and backward compatibility of the underlying op that is called.
|
||||
The stable C headers used by AOTInductor form the foundation of the stable ABI. However, this is **use at your own risk**. For example, users must handle the memory lifecycle of objects returned by certain APIs.
|
||||
Further, the stack-based APIs discussed below which allow the user to call the PyTorch dispatcher don't provide strong guarantees on forward and backward compatibility.
|
||||
|
||||
Unless absolutely necessary, we recommend the high-level C++ API in `torch/csrc/stable`
|
||||
which will handle all the rough edges of the C API for the user.
|
||||
|
||||
@ -76,7 +76,6 @@
|
||||
:nosignatures:
|
||||
|
||||
empty_cache
|
||||
get_per_process_memory_fraction
|
||||
max_memory_allocated
|
||||
max_memory_reserved
|
||||
mem_get_info
|
||||
|
||||
2
setup.py
2
setup.py
@ -1106,7 +1106,7 @@ class build_ext(setuptools.command.build_ext.build_ext):
|
||||
continue
|
||||
self.copy_file(source_lib, target_lib)
|
||||
# Delete old rpath and add @loader_lib to the rpath
|
||||
# This should prevent deallocate from attempting to package another instance
|
||||
# This should prevent delocate from attempting to package another instance
|
||||
# of OpenMP library in torch wheel as well as loading two libomp.dylib into
|
||||
# the address space, as libraries are cached by their unresolved names
|
||||
install_name_tool_args = [
|
||||
|
||||
@ -266,7 +266,7 @@ class TestFullyShardPostAccGradHookMultiThread(FSDPTestMultiThread):
|
||||
model(inp).sum().backward()
|
||||
param_names = {param_name for param_name, _ in model.named_parameters()}
|
||||
self.assertEqual(param_names, set(param_name_to_hook_count.keys()))
|
||||
for count in param_name_to_hook_count.values():
|
||||
for param_name, count in param_name_to_hook_count.items():
|
||||
self.assertEqual(count, 1)
|
||||
|
||||
|
||||
|
||||
@ -827,7 +827,7 @@ class TestFullyShardShardPlacementFnMultiProcess(FSDPTest):
|
||||
|
||||
torch.manual_seed(42 + self.rank)
|
||||
inp = torch.randint(0, model_args.vocab_size, (2, 16), device=device_type.type)
|
||||
for _ in range(5):
|
||||
for iter_idx in range(5):
|
||||
ref_loss = ref_model(inp).sum()
|
||||
loss = model(inp).sum()
|
||||
self.assertEqual(ref_loss, loss)
|
||||
|
||||
@ -800,7 +800,6 @@ if not (TEST_WITH_DEV_DBG_ASAN or IS_WINDOWS or IS_MACOS or IS_CI):
|
||||
stderr_redirects={0: stderr_redir},
|
||||
ret_vals={0: queue},
|
||||
queue_finished_reading_event=worker_finished_event_mock,
|
||||
numa_options=None,
|
||||
)
|
||||
self.assertEqual("hello_0", queue.get())
|
||||
if stdout_redir:
|
||||
|
||||
@ -31,17 +31,17 @@ if TEST_WITH_DEV_DBG_ASAN:
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
_DISTRIBUTED_STATE_DICT_IMPLS = {
|
||||
_DISTRIBUTED_STATE_DICT_IMPLS = (
|
||||
StateDictType.LOCAL_STATE_DICT,
|
||||
StateDictType.SHARDED_STATE_DICT,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
class TestDistributedCheckpoint(FSDPTest):
|
||||
@property
|
||||
def world_size(self):
|
||||
if torch.accelerator.is_available():
|
||||
gpu_cnt = torch.accelerator.device_count()
|
||||
if torch.cuda.is_available():
|
||||
gpu_cnt = torch.cuda.device_count()
|
||||
if gpu_cnt < 2:
|
||||
return gpu_cnt
|
||||
return 2
|
||||
@ -93,9 +93,7 @@ class TestDistributedCheckpoint(FSDPTest):
|
||||
# TODO: add resharding test case.
|
||||
|
||||
|
||||
devices = ("cuda", "hpu", "xpu")
|
||||
instantiate_device_type_tests(
|
||||
TestDistributedCheckpoint, globals(), only_for=devices, allow_xpu=True
|
||||
)
|
||||
devices = ("cuda", "hpu")
|
||||
instantiate_device_type_tests(TestDistributedCheckpoint, globals(), only_for=devices)
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
||||
@ -36,8 +36,8 @@ device_type = torch.device(get_devtype())
|
||||
class TestApply(FSDPTest):
|
||||
@property
|
||||
def world_size(self):
|
||||
if torch.accelerator.is_available():
|
||||
gpu_cnt = torch.accelerator.device_count()
|
||||
if torch.cuda.is_available():
|
||||
gpu_cnt = torch.cuda.device_count()
|
||||
if gpu_cnt < 2:
|
||||
return gpu_cnt
|
||||
return 2
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
# Owner(s): ["oncall: distributed"]
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
@ -44,19 +45,53 @@ class TestInstantiator(TestCase):
|
||||
self.assertEqual(return_type_str, "Tuple[Tensor, int, str]")
|
||||
|
||||
def test_instantiate_scripted_remote_module_template(self):
|
||||
dir_path = Path(instantiator.INSTANTIATED_TEMPLATE_DIR_PATH)
|
||||
|
||||
# Cleanup.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
for file_path in file_paths:
|
||||
file_path.unlink()
|
||||
|
||||
# Check before run.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
num_files_before = len(list(file_paths))
|
||||
self.assertEqual(num_files_before, 0)
|
||||
|
||||
generated_module = instantiator.instantiate_scriptable_remote_module_template(
|
||||
MyModuleInterface
|
||||
)
|
||||
self.assertTrue(hasattr(generated_module, "_remote_forward"))
|
||||
self.assertTrue(hasattr(generated_module, "_generated_methods"))
|
||||
|
||||
# Check after run.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
num_files_after = len(list(file_paths))
|
||||
self.assertEqual(num_files_after, 1)
|
||||
|
||||
def test_instantiate_non_scripted_remote_module_template(self):
|
||||
dir_path = Path(instantiator.INSTANTIATED_TEMPLATE_DIR_PATH)
|
||||
|
||||
# Cleanup.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
for file_path in file_paths:
|
||||
file_path.unlink()
|
||||
|
||||
# Check before run.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
num_files_before = len(list(file_paths))
|
||||
self.assertEqual(num_files_before, 0)
|
||||
|
||||
generated_module = (
|
||||
instantiator.instantiate_non_scriptable_remote_module_template()
|
||||
)
|
||||
self.assertTrue(hasattr(generated_module, "_remote_forward"))
|
||||
self.assertTrue(hasattr(generated_module, "_generated_methods"))
|
||||
|
||||
# Check after run.
|
||||
file_paths = dir_path.glob(f"{instantiator._FILE_PREFIX}*.py")
|
||||
num_files_after = len(list(file_paths))
|
||||
self.assertEqual(num_files_after, 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
||||
@ -64,10 +64,6 @@ class TestDTensorDebugMode(TestCase):
|
||||
self.assertTrue(isinstance(debug_mode.operators[2], _RedistributeCall))
|
||||
self.assertEqual(next(iter(debug_mode.operators[1])), torch.ops.aten.mm.default)
|
||||
|
||||
# check stringification
|
||||
self.assertTrue(hasattr(debug_mode.operators[0], "args_str"))
|
||||
self.assertFalse(hasattr(debug_mode.operators[0], "args"))
|
||||
|
||||
def test_debug_string_inside_context(self):
|
||||
mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
|
||||
|
||||
@ -271,7 +267,6 @@ class TestDTensorDebugMode(TestCase):
|
||||
record_torchfunction=True,
|
||||
record_faketensor=True,
|
||||
record_tensor_attributes=["a1", "a2"],
|
||||
store_original_args=True,
|
||||
) as debug_mode:
|
||||
torch.matmul(y, x)
|
||||
|
||||
@ -284,9 +279,6 @@ class TestDTensorDebugMode(TestCase):
|
||||
aten::_unsafe_view(t: f32[64, 8], [8, 8, 8])""",
|
||||
)
|
||||
|
||||
self.assertTrue(hasattr(debug_mode.operators[0], "args"))
|
||||
self.assertEqual(id(debug_mode.operators[0].args[0]), id(y))
|
||||
|
||||
@parametrize("has_inner_mode", [True, False])
|
||||
@parametrize("has_outer_mode", [True, False])
|
||||
def test_nested_debug_mode(self, has_inner_mode, has_outer_mode):
|
||||
|
||||
@ -20,18 +20,18 @@ from torch.distributed.tensor.experimental._attention import (
|
||||
_cp_options,
|
||||
_disable_context_parallel_dispatcher,
|
||||
_enable_context_parallel_dispatcher,
|
||||
_HeadTailLoadBalancer,
|
||||
_is_causal_behavior,
|
||||
_LoadBalancer,
|
||||
_PerDocumentHeadTailLoadBalancer,
|
||||
_PTRRLoadBalancer,
|
||||
_RotateMethod,
|
||||
context_parallel,
|
||||
context_parallel_unshard,
|
||||
set_rotate_method,
|
||||
)
|
||||
from torch.distributed.tensor.experimental._context_parallel._cp_custom_ops import (
|
||||
flex_cp_allgather,
|
||||
from torch.distributed.tensor.experimental._cp_custom_ops import flex_cp_allgather
|
||||
from torch.distributed.tensor.experimental._load_balancer import (
|
||||
_HeadTailLoadBalancer,
|
||||
_LoadBalancer,
|
||||
_PerDocumentHeadTailLoadBalancer,
|
||||
_PTRRLoadBalancer,
|
||||
)
|
||||
from torch.distributed.tensor.parallel import parallelize_module
|
||||
from torch.nn.attention import sdpa_kernel, SDPBackend
|
||||
@ -52,9 +52,7 @@ from torch.testing._internal.common_cuda import (
|
||||
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
|
||||
from torch.testing._internal.common_utils import run_tests, skipIfRocm
|
||||
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
||||
create_local_tensor_test_class,
|
||||
DTensorTestBase,
|
||||
map_local_tensor_for_rank,
|
||||
with_comms,
|
||||
)
|
||||
|
||||
@ -802,47 +800,11 @@ class TestSharding(DTensorTestBase):
|
||||
chunks = freqs_cis.chunk(self.world_size * 2)
|
||||
self.assertEqual(
|
||||
freqs_cis_shard,
|
||||
map_local_tensor_for_rank(
|
||||
chunks,
|
||||
self.rank,
|
||||
lambda chunks, rank: torch.cat(
|
||||
[chunks[rank], chunks[self.world_size * 2 - rank - 1]],
|
||||
dim=0,
|
||||
),
|
||||
torch.cat(
|
||||
[chunks[self.rank], chunks[self.world_size * 2 - self.rank - 1]], dim=0
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
RingAttentionTestWithLocalTensor = create_local_tensor_test_class(
|
||||
RingAttentionTest,
|
||||
skipped_tests=[
|
||||
# Need to make attention implementation local tensor friendly, e.g.
|
||||
# rewrite "rank local" logic
|
||||
"test_ring_attention_sdpa",
|
||||
],
|
||||
)
|
||||
|
||||
CPFlexAttentionTestWithLocalTensor = create_local_tensor_test_class(
|
||||
CPFlexAttentionTest,
|
||||
skipped_tests=[
|
||||
# Missing support for batched tensors
|
||||
"test_cp_flex_attention_causal_mask",
|
||||
"test_cp_flex_attention_document_mask",
|
||||
],
|
||||
)
|
||||
|
||||
TestCPCustomOpsWithLocalTensor = create_local_tensor_test_class(
|
||||
TestCPCustomOps,
|
||||
skipped_tests=[
|
||||
# Missing support for fake tensors
|
||||
"test_flex_cp_custom_op",
|
||||
],
|
||||
)
|
||||
|
||||
TestShardingWithLocalTensor = create_local_tensor_test_class(
|
||||
TestSharding,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
||||
@ -16,7 +16,6 @@ from torch.distributed.tensor import (
|
||||
from torch.nn import functional as F
|
||||
from torch.testing._internal.common_utils import run_tests
|
||||
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
||||
create_local_tensor_test_class,
|
||||
DTensorTestBase,
|
||||
skip_if_lt_x_gpu,
|
||||
with_comms,
|
||||
@ -204,42 +203,34 @@ class DistConvolutionOpsTest(DTensorTestBase):
|
||||
self.assertTrue(b_dt.grad is not None)
|
||||
self.assertTrue(x_dt.grad is None)
|
||||
|
||||
def _run_single_arg_fwd(self, model, arg) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Given model and arg, runs fwd model local and distbuted given device_mesh"""
|
||||
device_mesh = self.build_device_mesh()
|
||||
model_copy = copy.deepcopy(model).to(device=self.device_type)
|
||||
dist_model = distribute_module(model, device_mesh, _conv_fn)
|
||||
arg_dt = DTensor.from_local(arg, device_mesh, [Replicate()])
|
||||
out_dt = dist_model(arg_dt.to(device=self.device_type))
|
||||
out = model_copy(arg)
|
||||
return (out_dt.full_tensor(), out)
|
||||
|
||||
@with_comms
|
||||
def test_conv1d(self):
|
||||
device_mesh = self.build_device_mesh()
|
||||
model = nn.Conv1d(64, 64, 3, padding=1)
|
||||
x = torch.randn(1, 64, 8, device=self.device_type)
|
||||
out_dt, out = self._run_single_arg_fwd(model, x)
|
||||
model_gt = copy.deepcopy(model)
|
||||
x = torch.randn(1, 64, 8)
|
||||
x_dt = DTensor.from_local(x, device_mesh, [Replicate()])
|
||||
model_dt = distribute_module(
|
||||
model, device_mesh, _conv_fn, input_fn=None, output_fn=None
|
||||
)
|
||||
out_dt = model_dt(x_dt)
|
||||
out = model_gt(x)
|
||||
self.assertEqual(out_dt.shape, out.shape)
|
||||
|
||||
@with_comms
|
||||
def test_conv3d(self):
|
||||
device_mesh = self.build_device_mesh()
|
||||
model = nn.Conv3d(64, 64, 3, padding=1)
|
||||
model_gt = copy.deepcopy(model).to(device=self.device_type)
|
||||
x = torch.randn(1, 64, 8, 8, 8, device=self.device_type)
|
||||
out_dt, out = self._run_single_arg_fwd(model, x)
|
||||
x_dt = DTensor.from_local(x, device_mesh, [Replicate()])
|
||||
model_dt = distribute_module(
|
||||
model, device_mesh, _conv_fn, input_fn=None, output_fn=None
|
||||
)
|
||||
out_dt = model_dt(x_dt)
|
||||
out = model_gt(x)
|
||||
self.assertEqual(out_dt.shape, out.shape)
|
||||
|
||||
|
||||
DistConvolutionOpsTestWithLocalTensor = create_local_tensor_test_class(
|
||||
DistConvolutionOpsTest,
|
||||
# Send / recv ops are not supported
|
||||
skipped_tests=[
|
||||
"test_conv1d",
|
||||
"test_conv3d",
|
||||
"test_conv_backward_none_grad_inp",
|
||||
"test_depthwise_convolution",
|
||||
"test_downsampling_convolution",
|
||||
],
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
||||
@ -520,21 +520,6 @@ class DTensorExportTest(TestCase):
|
||||
2,
|
||||
)
|
||||
|
||||
def test_union_typed_annotation(self):
|
||||
def fn(leaf: torch.Tensor | DTensor):
|
||||
def nest_fn(leaf: torch.Tensor | DTensor):
|
||||
# def nest_fn(leaf: Union[torch.Tensor, DTensor]): # this works
|
||||
if isinstance(leaf, DTensor):
|
||||
leaf = leaf.to_local()
|
||||
return leaf
|
||||
|
||||
return nest_fn(leaf) + 1
|
||||
|
||||
z = torch.randn(16, 16)
|
||||
gm = graph_capture_and_aot_export_joint_with_descriptors(fn, (z,))
|
||||
|
||||
self.assertEqual(fn(z), gm(z)[0])
|
||||
|
||||
|
||||
instantiate_parametrized_tests(DTensorExportTest)
|
||||
|
||||
|
||||
@ -943,79 +943,6 @@ class TestComputeCommReorderingBucketing(TestComputeCommReorderingMultiProc):
|
||||
correct = func(inputs_a, inputs_b, ranks=ranks)
|
||||
self.assertTrue(same(out, correct))
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
@torch._inductor.config.patch(get_bucket_patches())
|
||||
def test_multidtype_bucketing(self):
|
||||
"""Test that all_gathers with different dtypes get bucketed together."""
|
||||
|
||||
def func(a, b, c, *, ranks):
|
||||
# Three all_gathers with different dtypes
|
||||
ag1 = _functional_collectives.all_gather_tensor(a, 0, ranks) # float32
|
||||
ag2 = _functional_collectives.all_gather_tensor(b, 0, ranks) # float16
|
||||
ag3 = _functional_collectives.all_gather_tensor(c, 0, ranks) # float16
|
||||
|
||||
# Use all results
|
||||
return ag1.sum() + ag2.sum() + ag3.sum()
|
||||
|
||||
with _dynamo_dist_per_rank_init(
|
||||
self.rank,
|
||||
self.world_size,
|
||||
self.backend(device_type),
|
||||
fake_pg=not at_least_x_gpu(2),
|
||||
):
|
||||
a = torch.ones(4, 4, dtype=torch.float32, device=device_type)
|
||||
b = torch.ones(4, 4, dtype=torch.float16, device=device_type) * 2
|
||||
c = torch.ones(4, 4, dtype=torch.float16, device=device_type) * 3
|
||||
ranks = list(range(self.world_size))
|
||||
|
||||
func_c = functools.partial(func, ranks=ranks)
|
||||
compiled = torch.compile(func_c)
|
||||
out, aten_graph_str = run_and_get_aten_graph(compiled, a, b, c)
|
||||
|
||||
# Should have 1 bucketed all_gather despite different dtypes
|
||||
FileCheck().check_count(
|
||||
"torch.ops._c10d_functional.wait_tensor.default", 1, exactly=True
|
||||
).run(aten_graph_str)
|
||||
|
||||
# Verify correctness
|
||||
correct = func(a, b, c, ranks=ranks)
|
||||
self.assertTrue(same(out, correct))
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
@torch._inductor.config.patch(get_bucket_patches())
|
||||
def test_basic_all_reduce_bucketing(self):
|
||||
"""Test that independent all_reduce operations get bucketed together."""
|
||||
|
||||
def func(a, b, c):
|
||||
# Three independent all_reduces that should be bucketed
|
||||
ar1 = _functional_collectives.all_reduce(a, "sum", "0")
|
||||
ar2 = _functional_collectives.all_reduce(b, "sum", "0")
|
||||
ar3 = _functional_collectives.all_reduce(c, "sum", "0")
|
||||
|
||||
return ar1.sum() + ar2.sum() + ar3.sum()
|
||||
|
||||
with _dynamo_dist_per_rank_init(
|
||||
self.rank,
|
||||
self.world_size,
|
||||
self.backend(device_type),
|
||||
fake_pg=not at_least_x_gpu(2),
|
||||
):
|
||||
a = torch.ones(4, 4, dtype=torch.float, device=device_type) + self.rank
|
||||
b = torch.ones(4, 4, dtype=torch.float, device=device_type) * 2
|
||||
c = torch.ones(4, 4, dtype=torch.float, device=device_type) * 3
|
||||
|
||||
compiled = torch.compile(func)
|
||||
out, aten_graph_str = run_and_get_aten_graph(compiled, a, b, c)
|
||||
|
||||
# Should see a single bucketed all_reduce
|
||||
FileCheck().check_count(
|
||||
"torch.ops._c10d_functional.wait_tensor.default", 1, exactly=True
|
||||
).run(aten_graph_str)
|
||||
|
||||
# Verify correctness
|
||||
correct = func(a, b, c)
|
||||
self.assertTrue(same(out, correct))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from torch._dynamo.test_case import run_tests
|
||||
|
||||
@ -195,7 +195,7 @@ if not TEST_WITH_DEV_DBG_ASAN:
|
||||
for i, t in enumerate(tensors):
|
||||
self.assertEqual(t, torch.ones(5, 5, device=device) + i)
|
||||
elif self.rank == 0:
|
||||
for t in tensors:
|
||||
for i, t in enumerate(tensors):
|
||||
zeros = torch.zeros(5, 5, device=device)
|
||||
self.assertEqual(t, zeros)
|
||||
y = torch.sum(torch.stack(tensors), axis=0)
|
||||
|
||||
@ -1,572 +0,0 @@
|
||||
# Owner(s): ["module: inductor"]
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
import torch._dynamo
|
||||
import torch._dynamo.logging
|
||||
import torch._dynamo.test_case
|
||||
import torch.distributed as dist
|
||||
import torch.fx as fx
|
||||
|
||||
# for some reason importing functional collectives after dynamo breaks collectives handling!
|
||||
from torch._C import FileCheck
|
||||
from torch._inductor.test_case import TestCase as InductorTestCase
|
||||
from torch._subclasses.fake_tensor import FakeTensorMode
|
||||
from torch.fx.experimental.proxy_tensor import make_fx
|
||||
from torch.testing._internal.common_distributed import requires_accelerator_dist_backend
|
||||
from torch.testing._internal.common_utils import (
|
||||
instantiate_parametrized_tests,
|
||||
parametrize,
|
||||
run_tests,
|
||||
)
|
||||
from torch.testing._internal.inductor_utils import HAS_GPU
|
||||
from torch.utils._ordered_set import OrderedSet
|
||||
|
||||
|
||||
# flake8: noqa: B950
|
||||
# Owner(s): ["module: inductor"]
|
||||
|
||||
|
||||
aten = torch.ops.aten
|
||||
|
||||
from torch.testing._internal.common_fsdp import get_devtype
|
||||
|
||||
|
||||
device_type = str(get_devtype())
|
||||
|
||||
|
||||
import torch
|
||||
import torch._dynamo
|
||||
import torch._dynamo.logging
|
||||
import torch._dynamo.test_case
|
||||
|
||||
|
||||
# for some reason importing functional collectives after dynamo breaks collectives handling!
|
||||
|
||||
|
||||
@requires_accelerator_dist_backend(["nccl", "xccl"])
|
||||
def build_collective_info(graph, hiding_annotations):
|
||||
"""
|
||||
Build CollectiveInfo dict from manual hiding annotations.
|
||||
|
||||
hiding_annotations: dict mapping collective_start -> hiding_compute_node
|
||||
"""
|
||||
from torch._inductor.fx_passes.overlap_scheduling import CollectiveInfo
|
||||
|
||||
collective_info = {}
|
||||
|
||||
# Find all collective starts and their corresponding waits
|
||||
start_to_wait = {}
|
||||
for node in graph.nodes:
|
||||
if node.op == "call_function" and "wait_tensor" in str(node.target):
|
||||
wait_input = node.args[0]
|
||||
if isinstance(wait_input, fx.Node):
|
||||
start_to_wait[wait_input] = node
|
||||
|
||||
# Build CollectiveInfo for each collective
|
||||
for start_node, wait_node in start_to_wait.items():
|
||||
hiding_node = hiding_annotations.get(start_node)
|
||||
|
||||
# Estimate size and time
|
||||
size_bytes = 16 * 4 # 4x4 tensor of floats
|
||||
estimated_time_ms = 1.0 # Dummy time
|
||||
exposed_time_ms = 0.0 if hiding_node else 1.0 # Hidden if has hiding_node
|
||||
|
||||
collective_info[start_node] = CollectiveInfo(
|
||||
start_node=start_node,
|
||||
wait_node=wait_node,
|
||||
size_bytes=size_bytes,
|
||||
estimated_time_ms=estimated_time_ms,
|
||||
exposed_time_ms=exposed_time_ms,
|
||||
hiding_node=hiding_node,
|
||||
)
|
||||
|
||||
return collective_info
|
||||
|
||||
|
||||
def compute_ancestors(graph):
|
||||
"""Compute ancestor sets for all nodes in the graph."""
|
||||
node_ancestors = {}
|
||||
|
||||
for node in graph.nodes:
|
||||
ancestors = OrderedSet()
|
||||
stack = list(node.all_input_nodes)
|
||||
visited = set()
|
||||
|
||||
while stack:
|
||||
current = stack.pop()
|
||||
if current in visited:
|
||||
continue
|
||||
visited.add(current)
|
||||
ancestors.add(current)
|
||||
stack.extend(current.all_input_nodes)
|
||||
|
||||
node_ancestors[node] = ancestors
|
||||
|
||||
return node_ancestors
|
||||
|
||||
|
||||
@requires_accelerator_dist_backend()
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
@instantiate_parametrized_tests
|
||||
class TestOverlapPreservingBucketing(InductorTestCase):
|
||||
"""
|
||||
Unit tests for overlap-preserving bucketing pass.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
super().setUpClass()
|
||||
from torch.testing._internal.distributed.fake_pg import FakeStore
|
||||
|
||||
store = FakeStore()
|
||||
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
|
||||
cls.device = "cuda"
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
super().tearDownClass()
|
||||
dist.destroy_process_group()
|
||||
|
||||
def test_can_bucket_independent_collectives(self):
|
||||
"""
|
||||
Test that independent collectives with separate hiding nodes CAN bucket.
|
||||
|
||||
Graph structure:
|
||||
ag1_start -> ag2_start -> mm1 (hides ag1) -> mm2 (hides ag2) -> ag1_wait -> ag2_wait
|
||||
"""
|
||||
|
||||
def func(a, b):
|
||||
group_name = "0"
|
||||
group_size = 1
|
||||
|
||||
# Start both collectives
|
||||
ag1 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
a, group_size, group_name
|
||||
)
|
||||
ag2 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
b, group_size, group_name
|
||||
)
|
||||
|
||||
# Independent compute that can hide both
|
||||
mm1 = torch.mm(a, a)
|
||||
mm2 = torch.mm(b, b)
|
||||
|
||||
# Wait for both
|
||||
ag1_out = torch.ops._c10d_functional.wait_tensor(ag1)
|
||||
ag2_out = torch.ops._c10d_functional.wait_tensor(ag2)
|
||||
|
||||
return ag1_out.sum() + ag2_out.sum() + mm1.sum() + mm2.sum()
|
||||
|
||||
# Use fake mode to trace without executing
|
||||
with FakeTensorMode():
|
||||
a = torch.ones(4, 4, device=self.device)
|
||||
b = torch.ones(4, 4, device=self.device) * 2
|
||||
|
||||
# Trace with make_fx
|
||||
traced = make_fx(func)(a, b)
|
||||
|
||||
# Find nodes using find_nodes
|
||||
ag1, ag2 = traced.graph.find_nodes(
|
||||
op="call_function",
|
||||
target=torch.ops._c10d_functional.all_gather_into_tensor.default,
|
||||
)
|
||||
mm1, mm2 = traced.graph.find_nodes(
|
||||
op="call_function", target=torch.ops.aten.mm.default
|
||||
)
|
||||
|
||||
# Manually annotate hiding relationships
|
||||
hiding_annotations = {
|
||||
ag1: mm1, # mm1 hides ag1
|
||||
ag2: mm2, # mm2 hides ag2
|
||||
}
|
||||
|
||||
# Build collective info and ancestors
|
||||
collective_info = build_collective_info(traced.graph, hiding_annotations)
|
||||
node_ancestors = compute_ancestors(traced.graph)
|
||||
scheduled = OrderedSet(traced.graph.nodes)
|
||||
|
||||
# Run bucketing
|
||||
from torch._inductor.fx_passes.overlap_preserving_bucketer import (
|
||||
OverlapPreservingBucketer,
|
||||
)
|
||||
|
||||
bucketer = OverlapPreservingBucketer(
|
||||
traced.graph,
|
||||
collective_info,
|
||||
node_ancestors,
|
||||
scheduled,
|
||||
)
|
||||
bucketer.bucket_collectives()
|
||||
|
||||
# Verify: should have 1 bucketed collective (all_gather_into_tensor_out)
|
||||
graph_str = str(traced.graph)
|
||||
FileCheck().check_count("all_gather_into_tensor_out", 1, exactly=False).run(
|
||||
graph_str
|
||||
)
|
||||
|
||||
def test_cant_bucket_nested_hiding_intervals(self):
|
||||
"""
|
||||
Test that nested hiding intervals prevent bucketing.
|
||||
|
||||
Graph structure:
|
||||
ag1_start -> ag2_start -> mm2 (hides ag2) -> ag2_wait -> mm1 (hides ag1) -> ag1_wait
|
||||
|
||||
ag2's hiding interval is nested inside ag1's hiding interval.
|
||||
"""
|
||||
|
||||
def func(a, b):
|
||||
group_name = "0"
|
||||
group_size = 1
|
||||
|
||||
# ag1 starts first
|
||||
ag1 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
a, group_size, group_name
|
||||
)
|
||||
|
||||
# ag2 starts (inside ag1's interval)
|
||||
ag2 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
b, group_size, group_name
|
||||
)
|
||||
|
||||
# mm2 hides ag2
|
||||
mm2 = torch.mm(b[:2, :2], b[:2, :2])
|
||||
|
||||
# ag2 waits (still inside ag1's interval)
|
||||
ag2_out = torch.ops._c10d_functional.wait_tensor(ag2)
|
||||
|
||||
# mm1 uses ag2's result and hides ag1
|
||||
mm1 = torch.mm(a + ag2_out[:4, :4], a)
|
||||
|
||||
# ag1 waits last
|
||||
ag1_out = torch.ops._c10d_functional.wait_tensor(ag1)
|
||||
|
||||
return ag1_out.sum() + ag2_out.sum() + mm1.sum() + mm2.sum()
|
||||
|
||||
# Use fake mode to trace without executing
|
||||
with FakeTensorMode():
|
||||
a = torch.ones(4, 4, device=self.device)
|
||||
b = torch.ones(4, 4, device=self.device) * 2
|
||||
|
||||
# Trace with make_fx
|
||||
traced = make_fx(func)(a, b)
|
||||
|
||||
# Find nodes using find_nodes
|
||||
ag1, ag2 = traced.graph.find_nodes(
|
||||
op="call_function",
|
||||
target=torch.ops._c10d_functional.all_gather_into_tensor.default,
|
||||
)
|
||||
mm_nodes = traced.graph.find_nodes(
|
||||
op="call_function", target=torch.ops.aten.mm.default
|
||||
)
|
||||
# mm2 is the first mm, mm1 is the second (based on graph order)
|
||||
mm2 = mm_nodes[0]
|
||||
mm1 = mm_nodes[1]
|
||||
|
||||
# Manually annotate hiding relationships
|
||||
hiding_annotations = {
|
||||
ag1: mm1, # mm1 hides ag1
|
||||
ag2: mm2, # mm2 hides ag2
|
||||
}
|
||||
|
||||
# Build collective info and ancestors
|
||||
collective_info = build_collective_info(traced.graph, hiding_annotations)
|
||||
node_ancestors = compute_ancestors(traced.graph)
|
||||
scheduled = OrderedSet(traced.graph.nodes)
|
||||
|
||||
# Run bucketing
|
||||
from torch._inductor.fx_passes.overlap_preserving_bucketer import (
|
||||
OverlapPreservingBucketer,
|
||||
)
|
||||
|
||||
bucketer = OverlapPreservingBucketer(
|
||||
traced.graph,
|
||||
collective_info,
|
||||
node_ancestors,
|
||||
scheduled,
|
||||
)
|
||||
bucketer.bucket_collectives()
|
||||
|
||||
# Verify: nested hiding intervals should prevent bucketing
|
||||
# Should have 2 separate all_gathers, not 1 bucketed one
|
||||
graph_str = str(traced.graph)
|
||||
FileCheck().check_count("all_gather_into_tensor", 2, exactly=False).run(
|
||||
graph_str
|
||||
)
|
||||
|
||||
@parametrize("final_mm_hidden", (True, False))
|
||||
def test_cant_bucket_ag_with_rs_hiding_interval_between(self, final_mm_hidden):
|
||||
"""
|
||||
Test that all_gathers can't bucket when a reduce_scatter's hiding interval is between them.
|
||||
|
||||
Graph structure:
|
||||
ag1_start -> mm1 (hides ag1) -> ag1_wait ->
|
||||
rs_start -> mm2 (hides rs) -> rs_wait ->
|
||||
|
||||
if final_mm_hidden:
|
||||
ag2_start -> mm3 (hides ag2) -> ag2_wait
|
||||
|
||||
if final_mm_hidden:
|
||||
Bucketing ag1 and ag2 would require moving one of them, which would break hiding relationships:
|
||||
- Moving ag2 earlier would break ag2's hiding by mm3
|
||||
- Moving ag1 later would break ag1's hiding by mm1
|
||||
- The rs hiding interval creates an obstacle between them
|
||||
|
||||
otherwise, we can bucket
|
||||
"""
|
||||
|
||||
def func(a, b, c):
|
||||
group_name = dist.distributed_c10d._get_default_group().group_name
|
||||
group_size = 1
|
||||
|
||||
# First all_gather
|
||||
ag1 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
a, group_size, group_name
|
||||
)
|
||||
mm1 = torch.mm(a, a) # hides ag1
|
||||
ag1_out = torch.ops._c10d_functional.wait_tensor(ag1)
|
||||
|
||||
# Reduce scatter in between
|
||||
rs = torch.ops._c10d_functional.reduce_scatter_tensor(
|
||||
b, "sum", group_size, group_name
|
||||
)
|
||||
mm2 = torch.mm(b[:4, :4], b[:4, :4]) # hides rs
|
||||
rs_out = torch.ops._c10d_functional.wait_tensor(rs)
|
||||
|
||||
# Second all_gather
|
||||
ag2 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
c, group_size, group_name
|
||||
)
|
||||
mm3 = torch.mm(c, c) # hides ag2
|
||||
ag2_out = torch.ops._c10d_functional.wait_tensor(ag2)
|
||||
|
||||
return ag1_out.sum() + rs_out.sum() + ag2_out.sum(), mm1, mm2, mm3
|
||||
|
||||
# Use fake mode to trace without executing
|
||||
with FakeTensorMode():
|
||||
a = torch.ones(4, 4, device=self.device)
|
||||
b = torch.ones(8, 4, device=self.device)
|
||||
c = torch.ones(4, 4, device=self.device)
|
||||
|
||||
# Trace with make_fx
|
||||
traced = make_fx(func)(a, b, c)
|
||||
|
||||
ag1, ag2 = traced.graph.find_nodes(
|
||||
op="call_function",
|
||||
target=torch.ops._c10d_functional.all_gather_into_tensor.default,
|
||||
)
|
||||
(rs,) = traced.graph.find_nodes(
|
||||
op="call_function",
|
||||
target=torch.ops._c10d_functional.reduce_scatter_tensor.default,
|
||||
)
|
||||
mm1, mm2, mm3 = traced.graph.find_nodes(
|
||||
op="call_function", target=torch.ops.aten.mm.default
|
||||
)
|
||||
|
||||
# Manually annotate hiding relationships
|
||||
hiding_annotations = {
|
||||
ag1: mm1, # mm1 hides ag1
|
||||
# rs: mm2, # mm2 hides rs
|
||||
ag2: mm3,
|
||||
}
|
||||
if final_mm_hidden:
|
||||
hiding_annotations[rs] = mm2
|
||||
|
||||
# Build collective info and ancestors
|
||||
collective_info = build_collective_info(traced.graph, hiding_annotations)
|
||||
node_ancestors = compute_ancestors(traced.graph)
|
||||
scheduled = OrderedSet(traced.graph.nodes)
|
||||
|
||||
# Run bucketing logic to find buckets (without applying them, which would require process groups)
|
||||
from torch._inductor.fx_passes.overlap_preserving_bucketer import (
|
||||
OverlapPreservingBucketer,
|
||||
)
|
||||
|
||||
bucketer = OverlapPreservingBucketer(
|
||||
traced.graph,
|
||||
collective_info,
|
||||
node_ancestors,
|
||||
scheduled,
|
||||
)
|
||||
|
||||
bucketer.bucket_collectives()
|
||||
|
||||
graph_str = str(traced.graph)
|
||||
|
||||
# check order of mms preserved
|
||||
FileCheck().check("%mm").check("%mm_1").check("%mm_2").run(graph_str)
|
||||
|
||||
if final_mm_hidden:
|
||||
# Should NOT bucket - 2 separate all_gathers
|
||||
# Count all_gather node names (works even when wrapped in control_deps)
|
||||
FileCheck().check_count("%all_gather_into_tensor", 2, exactly=False).run(
|
||||
graph_str
|
||||
)
|
||||
else:
|
||||
# Should bucket - 1 bucketed all_gather (all_gather_into_tensor_out)
|
||||
FileCheck().check_count(
|
||||
"%all_gather_into_tensor_out", 1, exactly=False
|
||||
).run(graph_str)
|
||||
|
||||
def test_can_bucket_all_reduce(self):
|
||||
"""
|
||||
Test that all_reduce operations CAN bucket together.
|
||||
|
||||
Graph structure:
|
||||
ar1_start -> ar2_start -> mm1 (hides ar1) -> mm2 (hides ar2) -> ar1_wait -> ar2_wait
|
||||
"""
|
||||
|
||||
def func(a, b):
|
||||
group_name = "0"
|
||||
|
||||
# Start both all_reduce operations
|
||||
ar1 = torch.ops._c10d_functional.all_reduce(a, "sum", group_name)
|
||||
ar2 = torch.ops._c10d_functional.all_reduce(b, "sum", group_name)
|
||||
|
||||
# Independent compute that can hide both
|
||||
mm1 = torch.mm(a, a)
|
||||
mm2 = torch.mm(b, b)
|
||||
|
||||
# Wait for both
|
||||
ar1_out = torch.ops._c10d_functional.wait_tensor(ar1)
|
||||
ar2_out = torch.ops._c10d_functional.wait_tensor(ar2)
|
||||
|
||||
return ar1_out.sum() + ar2_out.sum() + mm1.sum() + mm2.sum()
|
||||
|
||||
# Use fake mode to trace without executing
|
||||
with FakeTensorMode():
|
||||
a = torch.ones(4, 4, device=self.device)
|
||||
b = torch.ones(4, 4, device=self.device) * 2
|
||||
|
||||
# Trace with make_fx
|
||||
traced = make_fx(func)(a, b)
|
||||
|
||||
# Find nodes
|
||||
ar1, ar2 = traced.graph.find_nodes(
|
||||
op="call_function",
|
||||
target=torch.ops._c10d_functional.all_reduce.default,
|
||||
)
|
||||
mm1, mm2 = traced.graph.find_nodes(
|
||||
op="call_function", target=torch.ops.aten.mm.default
|
||||
)
|
||||
|
||||
# For all_reduce, start_node == wait_node (no separate wait)
|
||||
hiding_annotations = {
|
||||
ar1: mm1,
|
||||
ar2: mm2,
|
||||
}
|
||||
|
||||
# Build collective info
|
||||
collective_info = build_collective_info(traced.graph, hiding_annotations)
|
||||
node_ancestors = compute_ancestors(traced.graph)
|
||||
scheduled = OrderedSet(traced.graph.nodes)
|
||||
|
||||
# Run bucketing
|
||||
from torch._inductor.fx_passes.overlap_preserving_bucketer import (
|
||||
OverlapPreservingBucketer,
|
||||
)
|
||||
|
||||
bucketer = OverlapPreservingBucketer(
|
||||
traced.graph,
|
||||
collective_info,
|
||||
node_ancestors,
|
||||
scheduled,
|
||||
)
|
||||
bucketer.bucket_collectives()
|
||||
|
||||
# Verify: should have 1 bucketed all_reduce
|
||||
# After bucketing, there should be only one all_reduce node (the bucketed one)
|
||||
graph_str = str(traced.graph)
|
||||
FileCheck().check_count("%all_reduce", 1, exactly=True).check_count(
|
||||
"%mm", 2
|
||||
).run(graph_str)
|
||||
|
||||
def test_can_bucket_multidtype_collectives(self):
|
||||
"""
|
||||
Test that all_gathers with different dtypes CAN bucket together.
|
||||
|
||||
Graph structure:
|
||||
ag1_float32 -> mm1 (hides ag1) -> ag1_wait
|
||||
ag2_bfloat16 -> mm2 (hides ag2) -> ag2_wait
|
||||
"""
|
||||
|
||||
def func(a, b):
|
||||
group_name = "0"
|
||||
group_size = 1
|
||||
|
||||
# Start both collectives with different dtypes
|
||||
ag1 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
a,
|
||||
group_size,
|
||||
group_name, # float32
|
||||
)
|
||||
ag2 = torch.ops._c10d_functional.all_gather_into_tensor(
|
||||
b,
|
||||
group_size,
|
||||
group_name, # bfloat16
|
||||
)
|
||||
|
||||
# Independent compute that can hide both
|
||||
mm1 = torch.mm(a, a)
|
||||
mm2 = torch.mm(b.float(), b.float())
|
||||
|
||||
# Wait for both
|
||||
ag1_out = torch.ops._c10d_functional.wait_tensor(ag1)
|
||||
ag2_out = torch.ops._c10d_functional.wait_tensor(ag2)
|
||||
|
||||
return ag1_out.sum() + ag2_out.sum() + mm1.sum() + mm2.sum()
|
||||
|
||||
# Use fake mode to trace without executing
|
||||
with FakeTensorMode():
|
||||
a = torch.ones(4, 4, device=self.device, dtype=torch.float32)
|
||||
b = torch.ones(4, 4, device=self.device, dtype=torch.bfloat16)
|
||||
|
||||
# Trace with make_fx
|
||||
traced = make_fx(func)(a, b)
|
||||
|
||||
# Find nodes using find_nodes
|
||||
ag1, ag2 = traced.graph.find_nodes(
|
||||
op="call_function",
|
||||
target=torch.ops._c10d_functional.all_gather_into_tensor.default,
|
||||
)
|
||||
mm_nodes = traced.graph.find_nodes(
|
||||
op="call_function", target=torch.ops.aten.mm.default
|
||||
)
|
||||
mm1 = mm_nodes[0]
|
||||
mm2 = mm_nodes[1]
|
||||
|
||||
# Manually annotate hiding relationships
|
||||
hiding_annotations = {
|
||||
ag1: mm1, # mm1 hides ag1
|
||||
ag2: mm2, # mm2 hides ag2
|
||||
}
|
||||
|
||||
# Build collective info and ancestors
|
||||
collective_info = build_collective_info(traced.graph, hiding_annotations)
|
||||
node_ancestors = compute_ancestors(traced.graph)
|
||||
scheduled = OrderedSet(traced.graph.nodes)
|
||||
|
||||
# Run bucketing with multidtype mode
|
||||
from torch._inductor.fx_passes.overlap_preserving_bucketer import (
|
||||
OverlapPreservingBucketer,
|
||||
)
|
||||
|
||||
bucketer = OverlapPreservingBucketer(
|
||||
traced.graph,
|
||||
collective_info,
|
||||
node_ancestors,
|
||||
scheduled,
|
||||
bucket_mode="custom_ops_multidtype",
|
||||
)
|
||||
bucketer.bucket_collectives()
|
||||
|
||||
# Verify: should have 1 bucketed collective (all_gather_into_tensor_out)
|
||||
# even though dtypes are different
|
||||
graph_str = str(traced.graph)
|
||||
FileCheck().check_count("all_gather_into_tensor_out", 1, exactly=False).run(
|
||||
graph_str
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
@ -41,20 +41,6 @@ from torch.testing._internal.triton_utils import requires_cuda_and_triton
|
||||
from torch.testing._internal.two_tensor import TwoTensor
|
||||
|
||||
|
||||
def aot_eager_regional_inductor():
|
||||
"""
|
||||
Regional inductor backend for AOT autograd.
|
||||
Uses regional_inductor as both forward and backward compiler.
|
||||
"""
|
||||
from torch._dynamo.backends.common import aot_autograd
|
||||
from torch.fx.passes.regional_inductor import regional_inductor
|
||||
|
||||
return aot_autograd(
|
||||
fw_compiler=regional_inductor,
|
||||
bw_compiler=regional_inductor,
|
||||
)
|
||||
|
||||
|
||||
def saved_tensors_hooks_to_gm(
|
||||
pack_fn,
|
||||
unpack_fn,
|
||||
@ -1912,171 +1898,6 @@ class AOTAutogradCacheTests(InductorTestCase):
|
||||
# no recompiles
|
||||
self.assertFalse(counters)
|
||||
|
||||
@inductor_config.patch("fx_graph_remote_cache", False)
|
||||
@inductor_config.patch("fx_graph_cache", True)
|
||||
@functorch_config.patch({"enable_autograd_cache": True})
|
||||
@functorch_config.patch({"bundled_autograd_cache": True})
|
||||
def test_regional_inductor_basic(self):
|
||||
"""
|
||||
Basic test for regional inductor with bundled autograd cache.
|
||||
Tests that regional inductor compilation results can be cached and hit.
|
||||
"""
|
||||
import torch.fx.traceback as fx_traceback
|
||||
|
||||
def fn(x, y):
|
||||
sin = torch.sin(x)
|
||||
# Mark this region to be compiled with inductor
|
||||
with fx_traceback.annotate({"compile_with_inductor": 0}):
|
||||
mul = sin * y
|
||||
add = mul + 1
|
||||
return torch.sin(add)
|
||||
|
||||
x = torch.randn(10, device="cpu")
|
||||
y = torch.randn(10, device="cpu")
|
||||
|
||||
# Compile with regional inductor backend
|
||||
compiled_fn = torch.compile(
|
||||
fn, backend=aot_eager_regional_inductor(), fullgraph=True
|
||||
)
|
||||
|
||||
# First call should miss in cache
|
||||
result1 = compiled_fn(x, y)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
||||
|
||||
# Second call should hit (after clearing dynamo)
|
||||
self._clear_dynamo_and_codecache()
|
||||
result2 = compiled_fn(x, y)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
|
||||
|
||||
# Results should be the same
|
||||
self.assertEqual(result1, result2)
|
||||
|
||||
@inductor_config.patch("fx_graph_remote_cache", False)
|
||||
@inductor_config.patch("fx_graph_cache", True)
|
||||
@functorch_config.patch({"enable_autograd_cache": True})
|
||||
@functorch_config.patch({"bundled_autograd_cache": True})
|
||||
def test_regional_inductor_with_backward(self):
|
||||
"""
|
||||
Test regional inductor with backward pass and bundled autograd cache.
|
||||
Note: Regional inductor triggers multiple AOT autograd compilations:
|
||||
- One for the outer graph (with regional inductor backend)
|
||||
- One for each marked region (via standalone_compile)
|
||||
"""
|
||||
import torch.fx.traceback as fx_traceback
|
||||
|
||||
def fn(x, y):
|
||||
sin = torch.sin(x)
|
||||
# Mark this region to be compiled with inductor
|
||||
with fx_traceback.annotate({"compile_with_inductor": 0}):
|
||||
mul = sin * y
|
||||
add = mul + 1
|
||||
return torch.sin(add)
|
||||
|
||||
x = torch.randn(10, requires_grad=True)
|
||||
y = torch.randn(10, requires_grad=True)
|
||||
x2 = x.detach().clone().requires_grad_(True)
|
||||
y2 = y.detach().clone().requires_grad_(True)
|
||||
|
||||
# Compile with regional inductor backend
|
||||
compiled_fn = torch.compile(
|
||||
fn, backend=aot_eager_regional_inductor(), fullgraph=True
|
||||
)
|
||||
|
||||
# First call: AOT autograd compiles the outer graph (1 miss)
|
||||
# Regional inductor then compiles the marked region (1 more miss)
|
||||
result1 = compiled_fn(x, y)
|
||||
result1.sum().backward()
|
||||
|
||||
# We expect 2 cache misses: outer graph + marked region
|
||||
initial_misses = counters["aot_autograd"]["autograd_cache_miss"]
|
||||
initial_saves = counters["aot_autograd"]["autograd_cache_saved"]
|
||||
self.assertGreater(initial_misses, 0)
|
||||
self.assertGreater(initial_saves, 0)
|
||||
|
||||
# Second call should hit (after clearing dynamo)
|
||||
self._clear_dynamo_and_codecache()
|
||||
result2 = compiled_fn(x2, y2)
|
||||
result2.sum().backward()
|
||||
|
||||
# Should have cache hits now
|
||||
final_hits = counters["aot_autograd"]["autograd_cache_hit"]
|
||||
self.assertGreater(final_hits, 0)
|
||||
|
||||
# Cache misses and saves should not increase
|
||||
self.assertEqual(
|
||||
counters["aot_autograd"]["autograd_cache_miss"], initial_misses
|
||||
)
|
||||
self.assertEqual(
|
||||
counters["aot_autograd"]["autograd_cache_saved"], initial_saves
|
||||
)
|
||||
|
||||
# Results and gradients should be the same
|
||||
self.assertEqual(result1, result2)
|
||||
self.assertEqual(x.grad, x2.grad)
|
||||
self.assertEqual(y.grad, y2.grad)
|
||||
|
||||
@inductor_config.patch("fx_graph_remote_cache", False)
|
||||
@inductor_config.patch("fx_graph_cache", True)
|
||||
@functorch_config.patch({"enable_autograd_cache": True})
|
||||
@functorch_config.patch({"bundled_autograd_cache": True})
|
||||
def test_regional_inductor_cache_miss_on_change(self):
|
||||
"""
|
||||
Test that changing the function causes a cache miss with regional inductor.
|
||||
Regional inductor creates multiple AOT compilations, so we track
|
||||
the change in cache misses rather than absolute counts.
|
||||
"""
|
||||
import torch.fx.traceback as fx_traceback
|
||||
|
||||
def fn1(x, y):
|
||||
sin = torch.sin(x)
|
||||
with fx_traceback.annotate({"compile_with_inductor": 0}):
|
||||
mul = sin * y
|
||||
add = mul + 1
|
||||
return torch.sin(add)
|
||||
|
||||
def fn2(x, y):
|
||||
sin = torch.sin(x)
|
||||
with fx_traceback.annotate({"compile_with_inductor": 0}):
|
||||
mul = sin * y
|
||||
add = mul + 2 # Changed from +1 to +2
|
||||
return torch.sin(add)
|
||||
|
||||
x = torch.randn(10)
|
||||
y = torch.randn(10)
|
||||
|
||||
# Compile first function
|
||||
compiled_fn1 = torch.compile(
|
||||
fn1, backend=aot_eager_regional_inductor(), fullgraph=True
|
||||
)
|
||||
result1 = compiled_fn1(x, y)
|
||||
first_misses = counters["aot_autograd"]["autograd_cache_miss"]
|
||||
first_saves = counters["aot_autograd"]["autograd_cache_saved"]
|
||||
self.assertGreater(first_misses, 0)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
|
||||
self.assertGreater(first_saves, 0)
|
||||
|
||||
# Compile second function (different graph)
|
||||
self._clear_dynamo_and_codecache()
|
||||
compiled_fn2 = torch.compile(
|
||||
fn2, backend=aot_eager_regional_inductor(), fullgraph=True
|
||||
)
|
||||
result2 = compiled_fn2(x, y)
|
||||
# Should miss because graph is different (more misses than before)
|
||||
self.assertGreater(
|
||||
counters["aot_autograd"]["autograd_cache_miss"], first_misses
|
||||
)
|
||||
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
|
||||
self.assertGreater(
|
||||
counters["aot_autograd"]["autograd_cache_saved"], first_saves
|
||||
)
|
||||
|
||||
# Results should be different
|
||||
self.assertNotEqual(result1, result2)
|
||||
|
||||
|
||||
@functorch_config.patch({"bundled_autograd_cache": True})
|
||||
class AOTAutogradCacheBundledTests(AOTAutogradCacheTests):
|
||||
|
||||
@ -4,10 +4,10 @@ import os
|
||||
from unittest.mock import patch
|
||||
|
||||
import torch
|
||||
from functorch import make_fx
|
||||
from torch._dynamo import debug_utils
|
||||
from torch._dynamo.debug_utils import aot_graph_input_parser, generate_env_vars_string
|
||||
from torch._dynamo.test_case import TestCase
|
||||
from torch.fx.experimental.proxy_tensor import make_fx
|
||||
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
||||
|
||||
|
||||
|
||||
@ -2064,23 +2064,6 @@ Detected recompile when torch.compile stance is 'fail_on_recompile'. filename: '
|
||||
|
||||
self.assertEqual(f(), 1)
|
||||
|
||||
def test_error_on_graph_break_nonempty_checkpoint(self):
|
||||
cnts = torch._dynamo.testing.CompileCounter()
|
||||
|
||||
@torch.compile(backend=cnts)
|
||||
def fn(x):
|
||||
x = x + 1
|
||||
x = x + 1
|
||||
x = x + 1
|
||||
with torch._dynamo.error_on_graph_break(True):
|
||||
torch._dynamo.graph_break()
|
||||
return x + 1
|
||||
|
||||
with self.assertRaises(Unsupported):
|
||||
fn(torch.ones(3))
|
||||
|
||||
self.assertEqual(cnts.frame_count, 0)
|
||||
|
||||
def test_nested_compile_fullgraph(self):
|
||||
# Test that fullgraph=True cannot be toggled back by fullgraph=False
|
||||
inp = torch.ones(3)
|
||||
|
||||
@ -341,7 +341,7 @@ class DictTests(torch._dynamo.test_case.TestCase):
|
||||
|
||||
def fn(x, d):
|
||||
y = 0
|
||||
for idx, value in enumerate(d.values()):
|
||||
for idx, (key, value) in enumerate(d.items()):
|
||||
if idx == 0:
|
||||
y += torch.sin(x * value)
|
||||
else:
|
||||
@ -366,7 +366,7 @@ class DictTests(torch._dynamo.test_case.TestCase):
|
||||
|
||||
def fn(x, d):
|
||||
y = 0
|
||||
for idx, value in enumerate(d.values()):
|
||||
for idx, (key, value) in enumerate(d.items()):
|
||||
if idx == 0:
|
||||
y += torch.sin(x * value)
|
||||
else:
|
||||
@ -847,7 +847,7 @@ class DictTests(torch._dynamo.test_case.TestCase):
|
||||
d = {"a": 2, "b": 3, "c": 5 * x}
|
||||
mp = types.MappingProxyType(d)
|
||||
y = torch.sin(x * mp["a"])
|
||||
for v in mp.values():
|
||||
for k, v in mp.items(): # noqa: PERF102
|
||||
y += torch.cos(x * v)
|
||||
return mp
|
||||
|
||||
@ -864,7 +864,7 @@ class DictTests(torch._dynamo.test_case.TestCase):
|
||||
def fn(x):
|
||||
mp = types.MappingProxyType(d)
|
||||
y = torch.sin(x * mp["a"])
|
||||
for v in mp.values():
|
||||
for k, v in mp.items(): # noqa: PERF102
|
||||
y += torch.cos(x * v)
|
||||
d["d"] = 4
|
||||
return mp
|
||||
@ -885,7 +885,7 @@ class DictTests(torch._dynamo.test_case.TestCase):
|
||||
|
||||
def fn(x, mp):
|
||||
y = torch.sin(x * mp["a"])
|
||||
for v in mp.values():
|
||||
for k, v in mp.items(): # noqa: PERF102
|
||||
y += torch.cos(x * v)
|
||||
if isinstance(mp, types.MappingProxyType):
|
||||
y *= 2
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user