Compare commits

...

128 Commits

Author SHA1 Message Date
a9f2693658 [Inductor][Triton][FP8] Enforce restriction on dimensions to be 16-byte aligned (#167500)
Summary:

Enforce restriction in `tuned_scaled_mm` that requires the dimensions of matmul matrices to be 16-byte aligned, i.e. multiples of 16 for FP8.

TODO: Look into the 16-byte alignment restriction for the `M` dimension. The FP8 template *should* be able to handle non-multiples of 16 for the `M` dimension.

Test Plan:
`test_fp8.py`

last section of the log (IMA doesn't occur): P2033610568

```
ENABLE_PERSISTENT_TMA_MATMUL=1 TRITON_PRINT_AUTOTUNING=1 TORCH_LOGS=+inductor buck2 run mode/opt-split-dwarf //caffe2/torch/fb/model_transform/fx2trt/packaging:generate_merge_net_file -c fbcode.nvcc_arch=h100a -c python.package_style=inplace -c fbcode.platform010_cuda_version=12.4 -c fbcode.enable_gpu_sections=true -- --action=generate --lower-backend=aot_inductor --hardware_type=SM90_X86 --max-batch-size=1024 --aot_inductor_config="{'max_autotune': True}" --input-file=/home/jananisriram/personal/cmf_500x/models/${MODEL}/${SNAPSHOT}/gpu_lowering/input.predictor.disagg.gpu.merge --output-file=/home/jananisriram/personal/cmf_500x/models/${MODEL}/${SNAPSHOT}/gpu_lowering/output.predictor.disagg.gpu.tma.merge --node_replacement_dict="{'torch.nn.Linear':{'(10000+, 1000+)':'fp8_float_model_dynamic_quantization_pytorch_rowwise'}}" --skip-aoti-lowering-nan-check=true 2>&1 | tee ~/personal/cmf_500x/cmf_500x_logs/${MODEL}_${SNAPSHOT}_lowering.tma.log
```

Reviewed By: RandySheriff

Differential Revision: D86712396
2025-11-11 07:58:28 -08:00
ffe6cc39c7 [inductor] Optimize cold compile time when cudagraphs-partition is enabled (#167132)
Summary: When cudagraphs-parittion is enabled, we have seen an increase of cold compile time in the vllm benchmark (see https://github.com/vllm-project/vllm/issues/27080). After some profiling, we found Triton compilation time increased the most. Further investigation reveals it was caused by duplicated Triton kernels not being shared among different partitions. This PR fixes the issue by reusing the Trition kernel source code cache at the top-level PythonWrapperCodegen.

In theory we could further reduce the compilation time by completely skipping compiling duplicated partitions. That can come as a furture improvement.

Some vllm benchmarking data,

```
VLLM_USE_STANDALONE_COMPILE=0 VLLM_DISABLE_COMPILE_CACHE=1 vllm bench latency -O.cudagraph_mode=PIECEWISE -O.use_inductor_graph_partition=True --model meta-llama/Meta-Llama-3.1-8
```
Before:
```
torch.compile takes 69.18 s in total
```
After:
```
torch.compile takes 26.81 s in total
```

As a refrence, this is the compile time when turning off inductor graph partition. Looks like we still have some gap to close.
```
VLLM_USE_STANDALONE_COMPILE=0 VLLM_DISABLE_COMPILE_CACHE=1 vllm bench latency -O.cudagraph_mode=PIECEWISE -O.use_inductor_graph_partition=False --model meta-llama/Meta-Llama-3.1-8B

torch.compile takes 19.41 s in total
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167132
Approved by: https://github.com/eellison
ghstack dependencies: #167131
2025-11-11 15:54:31 +00:00
db1f3f6901 [inductor] Only generate compile-time auto-tuning block in the main graph (#167131)
Summary: When cudagraphs partition and autotune_at_compile_time are enabled, currently each subgraph will generate its own auto-tuning code block and run them once by one. This PR improves it by only generating one auto-tuning code block at the main graph level and execute it once time to auto-tune all the kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167131
Approved by: https://github.com/eellison
2025-11-11 15:54:31 +00:00
43041f0a43 Remove superflous/misplaced TestFailure specs (#165989)
The tests are in class `TestInductorDynamic` which isn't affected by the `test_failures` dict which is only used as an argument to `copy_tests` for the `CommonTemplate` defined in another file.

So those have no effect.

Idea: Enhance `copy_tests` to detect unused keys

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165989
Approved by: https://github.com/benjaminglass1, https://github.com/ezyang
2025-11-11 15:36:43 +00:00
dc00842b81 [ROCm][CI] trigger magma build with gfx950 for ROCm7.1 (#167390)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167390
Approved by: https://github.com/jeffdaily
2025-11-11 15:17:37 +00:00
f1a129a6d0 Clarify that crashes/OOB accesses and not security threats (#167519)
Added note on crashes and out of bounds access in PyTorch.

Addresses https://github.com/pytorch/pytorch/issues/166881#issuecomment-3513245388

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167519
Approved by: https://github.com/albanD
2025-11-11 15:14:51 +00:00
fad48ffa62 [ROCm][CI] Match workflow names with workflow file names (#167483)
Fixes issue with uploading artifacts, which was inadvertently disabled for some renamed workflows via https://github.com/pytorch/pytorch/pull/167225

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167483
Approved by: https://github.com/jeffdaily
2025-11-11 14:45:44 +00:00
3e7a66fae1 [BugFix][Refactor] fix several instances which use f = open(...) without a corresponding f.close() (#167423)
This pattern can lead to potential file descriptor leaks, which can cause resource exhaustion or other unpredictable issues

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167423
Approved by: https://github.com/cyyever, https://github.com/Skylion007
2025-11-11 11:27:59 +00:00
5f0a563dc8 [pallas backend] implement complex indexing (#167493)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167493
Approved by: https://github.com/jansel
ghstack dependencies: #167426
2025-11-11 10:32:37 +00:00
678915d5f1 Update Arm copyright dates in LICENSE file (#167529)
Arm has made contributions to PyTorch this year however the top-level `LICENSE` file has not been updated yet to reflect this, which this PR addresses.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167529
Approved by: https://github.com/mlazos
2025-11-11 10:25:08 +00:00
daed97afff [Inductor] fix CppTile2DKernel for fp8 datatype (#167451)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167451
Approved by: https://github.com/Xia-Weiwen, https://github.com/jansel
2025-11-11 09:25:14 +00:00
53947adb1f [Inductor] optimize the heuristics of sum reduction (#163144)
Fix https://github.com/pytorch/pytorch/issues/151400.
**Summary:**
Optimize the heuristics of sum reduction, reduce the chunk size of cascade sum to improve numerical stability.
I ran the Inductor benchmark with this PR on CPU, and no performance regression is seen.

**Example:**
Take https://github.com/pytorch/pytorch/issues/151400 as an example:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch._inductor import config

config.fallback_random = True
torch.set_grad_enabled(False)
torch.manual_seed(0)

class Model(torch.nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, x):
        vec = x.flatten()
        vec_one = torch.ones_like(vec)
        x = torch.outer(vec, vec_one)
        return torch.mean(x, dim=1)

model = Model()

x = torch.randn(3, 8, 64, 64)  # error will be amplified as the input tensor gets larger

inputs = [x]

def run_test(model, inputs, backend):
    if backend != "eager":
        model = torch.compile(model, backend=backend)
    torch.manual_seed(0)
    output = model(*inputs)
    return output

output = run_test(model, inputs, 'eager')
c_output = run_test(model, inputs, 'inductor')
fp64 = run_test(model.to(dtype=torch.float64), [inputs[0].to(dtype=torch.float64)], 'eager')

print(torch.allclose(output, c_output, rtol=1e-3, atol=1e-3))
print(torch.max(torch.abs(c_output - output)))
print(torch._dynamo.utils.same(output, c_output, fp64))

```

**logs:**
- Before
```
False
tensor(0.0052)
False
```

- After
```
True
tensor(0.0004)
True
```

-
**Generated code:**
- Before
```
cpp_fused_mean_mul_ones_like_view_0 = async_compile.cpp_pybinding(['float*', 'const float*'], '''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(float* in_out_ptr0,
                       const float* in_ptr0)
{
    auto out_ptr0 = in_out_ptr0;
    #pragma omp parallel num_threads(240)
    {
        int tid = omp_get_thread_num();
        {
            #pragma omp for
            for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(98304L); x0+=static_cast<int64_t>(16L))
            {
                {
                    float tmp_acc0 = 0;
                    at::vec::Vectorized<float> tmp_acc0_vec = at::vec::Vectorized<float>(0);
                    for(int64_t x1=static_cast<int64_t>(0L); x1<static_cast<int64_t>(98304L); x1+=static_cast<int64_t>(1L))
                    {
                        {
                            if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(98304L)))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                                auto tmp1 = static_cast<float>(1.0);
                                auto tmp2 = at::vec::Vectorized<float>(tmp1);
                                auto tmp3 = tmp0 * tmp2;
                                tmp_acc0_vec = tmp_acc0_vec + tmp3;
                            }
                        }
                    }
                    if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(98304L)))
                    {
                        tmp_acc0_vec.store(out_ptr0 + static_cast<int64_t>(x0));
                    }
                }
                {
                    if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(98304L)))
                    {
                        auto tmp0 = at::vec::Vectorized<float>::loadu(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                        auto tmp1 = static_cast<float>(98304.0);
                        auto tmp2 = at::vec::Vectorized<float>(tmp1);
                        auto tmp3 = tmp0 / tmp2;
                        tmp3.store(in_out_ptr0 + static_cast<int64_t>(x0));
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (3, 8, 64, 64), (32768, 4096, 64, 1))
        buf0 = empty_strided_cpu((98304, ), (1, ), torch.float32)
        buf1 = buf0; del buf0  # reuse
        # [Provenance debug handles] cpp_fused_mean_mul_ones_like_view_0:1
        cpp_fused_mean_mul_ones_like_view_0(buf1, arg0_1)
        del arg0_1
        return (buf1, )
```

- After
```
cpp_fused_mean_mul_ones_like_view_0 = async_compile.cpp_pybinding(['float*', 'const float*'], '''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(float* in_out_ptr0,
                       const float* in_ptr0)
{
    auto out_ptr0 = in_out_ptr0;
    #pragma omp parallel num_threads(240)
    {
        int tid = omp_get_thread_num();
        {
            #pragma omp for
            for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(98304L); x0+=static_cast<int64_t>(16L))
            {
                {
                    float tmp_acc0 = 0;
                    at::vec::Vectorized<float> tmp_acc0_vec = at::vec::Vectorized<float>(0);
                    at::vec::Vectorized<float> masked_tmp_acc0_vec = at::vec::Vectorized<float>(0);
                    CascadeSumHelper<float, 4096> scalar_cascade_helper0(static_cast<int64_t>(98304L));
                    CascadeSumHelper<at::vec::Vectorized<float>, 4096> cascade_helper0(static_cast<int64_t>(98304L));
                    CascadeSumHelper<at::vec::Vectorized<float>, 4096> masked_cascade_helper0(static_cast<int64_t>(0L));
                    for(int64_t x1=static_cast<int64_t>(0L); x1<static_cast<int64_t>(98304L); x1+=static_cast<int64_t>(1L))
                    {
                        {
                            if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(98304L)))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                                auto tmp1 = static_cast<float>(1.0);
                                auto tmp2 = at::vec::Vectorized<float>(tmp1);
                                auto tmp3 = tmp0 * tmp2;
                                tmp_acc0_vec = cascade_sum_combine(tmp3, &cascade_helper0);
                            }
                        }
                    }
                    tmp_acc0 = cascade_sum_final(&scalar_cascade_helper0);
                    tmp_acc0_vec = cascade_sum_final(&cascade_helper0);
                    masked_tmp_acc0_vec = cascade_sum_final(&masked_cascade_helper0);
                    if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(98304L)))
                    {
                        tmp_acc0_vec = tmp_acc0_vec + masked_tmp_acc0_vec;
                        tmp_acc0_vec.store(out_ptr0 + static_cast<int64_t>(x0));
                    }
                }
                {
                    if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(98304L)))
                    {
                        auto tmp0 = at::vec::Vectorized<float>::loadu(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                        auto tmp1 = static_cast<float>(98304.0);
                        auto tmp2 = at::vec::Vectorized<float>(tmp1);
                        auto tmp3 = tmp0 / tmp2;
                        tmp3.store(in_out_ptr0 + static_cast<int64_t>(x0));
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (3, 8, 64, 64), (32768, 4096, 64, 1))
        buf0 = empty_strided_cpu((98304, ), (1, ), torch.float32)
        buf1 = buf0; del buf0  # reuse
        # [Provenance debug handles] cpp_fused_mean_mul_ones_like_view_0:1
        cpp_fused_mean_mul_ones_like_view_0(buf1, arg0_1)
        del arg0_1
        return (buf1, )
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163144
Approved by: https://github.com/CaoE, https://github.com/mingfeima, https://github.com/jansel
2025-11-11 09:25:00 +00:00
c297b02f12 [DTensor] statically_known_true for slice strategy (#166990)
Avoids data-dependent errors for out-of-bounds & redundant slice checks.

The sharding logic that immediately depends on this only checks for redundant slices, and is saying: "it's safe to reuse the input placements if a) the slicing dimension isn't sharded, or b) the slice is redundant, so just pretend this op didn't happen".

This has a slight effect on output placements, when a slice is performed on a shared dim, and dynamic shapes are involved (size/start/end/step). Now if the slice isn't obviously redundant, we won't immediately consider the input placements valid (even if they could be for very particular runtime shapes), and select strategies valid for the general case - in this case I guess unsharding the slicing dim.

For backed symbols, we could choose to recompile when the redundant case is hit, by switching to `guard_or_false`, but it's not obvious how desirable this is.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166990
Approved by: https://github.com/laithsakka
2025-11-11 08:04:09 +00:00
bd24774f50 [XPU][Test] Enable XPU tests in inductor/test_analysis.py (#166840)
This PR enables XPU devices in test_analysis.py.

For performance reason, it skips some slow tests, so a full scope should be enabled by using:

```
export PYTORCH_TEST_WTH_SLOW=1
```

**PR Stack:**

- https://github.com/pytorch/pytorch/pull/166840 : This PR enables the tests, ignores the tests that failed
- https://github.com/pytorch/pytorch/pull/166839 : This fixed the bug and enable the full tests for xpu

**Some skipped test time:**

```
test_augment_trace_against_flop_counter_maxat0_xpu_float16 [49.0863s]
test_augment_trace_against_flop_counter_maxat0_xpu_float32 [18.2268s]
test_augment_trace_against_flop_counter_maxat1_xpu_float16 [85.6549s]
test_augment_trace_against_flop_counter_maxat1_xpu_float32 [329.0832s]
test_augment_trace_against_flop_counter_maxat2_xpu_float16 [24.4825s]
test_augment_trace_against_flop_counter_maxat2_xpu_float32 [19.0688s]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166840
Approved by: https://github.com/guangyey, https://github.com/jansel
2025-11-11 07:49:07 +00:00
525eb9fab9 Fix command injection vulnerability in PCH compilation (#167502)
Fixed a command injection vulnerability in PreCompiled Header (PCH) compilation where extra_cflags were passed to subprocess with shell=True, allowing arbitrary command execution through malicious compiler flags.

Changed subprocess.check_output(pch_cmd, shell=True) to use shlex.split() to safely parse the command without shell interpretation. This prevents shell metacharacters (;, |, &, etc.) in extra_cflags from being executed as shell commands.

Added test case test_pch_command_injection that verifies:
1. PCH compilation attempts with malicious payloads in extra_cflags
2. Shell commands embedded in flags are not executed
3. Exploit file is not created, proving no shell execution occurred

Note: On RHEL/Fedora and other systems with versioned GCC compilers, the test depends on https://github.com/pytorch/pytorch/pull/167501 being merged first, otherwise the test will be skipped due to GCC detection issues.

Fixes #167480

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167502
Approved by: https://github.com/malfet
2025-11-11 07:27:41 +00:00
7886070fc5 Use stable topological sort in fuse_by_partitions (#167397)
legalize_graph() performs a topo sort that shuffles the nodes is a global way, making the result unpredictable.
We should avoid this in graph pass in general.

This problem is discovered when testing regional_inductor, a single fuse region trigger the global reordering.

Before
https://www.internalfb.com/intern/diffing/?before_paste_number=2029217728&after_paste_number=2029218006&regex_remove_pattern=&enable_regex_remove=0&strip_empty_lines=0&line_wrap=0&selected_tab=plain_diff

After
https://www.internalfb.com/intern/diffing/?paste_number=2029162294&regex_remove_pattern=&enable_regex_remove=0&strip_empty_lines=0&line_wrap=0&selected_tab=plain_diff

Left is gm before regional_inductor, right is after.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167397
Approved by: https://github.com/ezyang
2025-11-11 07:14:02 +00:00
87d17e9dee [pallas backend] Implementing Strided/Scatter Access (#167426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167426
Approved by: https://github.com/yarongmu-google, https://github.com/jansel
2025-11-11 06:32:25 +00:00
53422e6bc8 [MPS] Add mechanism for reporting asserts from kernels (#166615)
Allocate ErrorMessages buffer associated with MPSStream and introduce `c10:🤘:report_error` method(and `TORCH_REPORT_ERROR` macro), that can be used to preserve up to `c10:🤘:error_message_count` messages

Add test that detects those

As results attempt to run something like
```python
import torch
x=torch.rand(10, 1, 10, device='mps')
y=x[:, [1]]
torch.mps.synchonize()
```
will raise `torch.AcceleratorError: index 1 is out of bounds for dimension 0 with size 1`

Fixes https://github.com/pytorch/pytorch/issues/111669
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166615
Approved by: https://github.com/manuelcandales, https://github.com/dcci
ghstack dependencies: #167444, #167445
2025-11-11 06:28:14 +00:00
c34b743eac [Dynamo] Support for xor (#166065)
Add missing support for xor (and maybe some other binary ops later on)

Fixes #146688

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166065
Approved by: https://github.com/ezyang
2025-11-11 05:44:08 +00:00
db250fa895 Revert "Expose THPVariable_Wrap() with a type argument (#167488)"
This reverts commit 52a6b5a4cc9f938b9cda102fb506fd0e4b32ecad.

Reverted https://github.com/pytorch/pytorch/pull/167488 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/167488#issuecomment-3515070469))
2025-11-11 05:39:40 +00:00
52231a7974 show current env before running lint (#166860)
There seems to be some discrepency between CI and local for Pyrefly so logging these to be able to check for different dependency versions
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166860
Approved by: https://github.com/janeyx99
2025-11-11 05:28:31 +00:00
cf71c53eae Fix check_compiler_is_gcc to detect versioned GCC compilers (#167501)
The function was only returning True for compilers named 'c++', but failed to detect g++, gcc, g++-13, g++-14, etc. This fixes the detection to work for any GCC variant by checking for both COLLECT_GCC and 'gcc version' in the compiler output.

The previous implementation used os.path.basename() on the resolved compiler path and only checked if it exactly matched 'c++'. This caused false negatives for versioned GCC installations and direct g++ usage.

The fix simplifies the logic: if both COLLECT_GCC is present in the output (indicating GCC toolchain) and 'gcc version' appears in the version string, it's GCC.

Fixes #167499

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167501
Approved by: https://github.com/ezyang, https://github.com/malfet
2025-11-11 05:14:05 +00:00
f9caae42ed [MPS] Move dispatch_sync_with_rethrow to MPSStream (#167445)
And wrap dispatches to copy sync with rethrow-wrapped method

Needed if execption could be raised during the sync, for example when surfacing async errors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167445
Approved by: https://github.com/Skylion007, https://github.com/manuelcandales, https://github.com/dcci
ghstack dependencies: #167444
2025-11-11 05:03:50 +00:00
52a6b5a4cc Expose THPVariable_Wrap() with a type argument (#167488)
For torchdistx, which is only *mostly* dead

Differential Revision: D86712979

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167488
Approved by: https://github.com/soulitzer
2025-11-11 04:56:50 +00:00
94f6f79e27 [3/N] Use Python 3.10 typing (#167431)
This PR applies new Union and Optional typing syntax to some files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167431
Approved by: https://github.com/ezyang
2025-11-11 04:40:05 +00:00
5676de1157 [PT2] Supply index to fake tensors on mtia device (#167457)
Summary:
When PT2 sees an operation like `torch.empty_strided(8, device="cuda")` it returns a fake tensor on a specific device index, such as `"cuda:0"`. This is implemented via a list of multi-index devices in the fake tensor constructor. If a device supports indices but is not in this list, we can hit fake tensor propagation errors as `"cuda"` is not considered to be the same device as `"cuda:0"`.

This PR adds the `"mtia"` device to this list, to resolve some fake tensor propagation errors we're seeing with the full Inductor backend. (Internal task: T243176905)

Test Plan: Tests are stacked on the internal diff D86605248.

Reviewed By: StellarrZ

Differential Revision: D86605248

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167457
Approved by: https://github.com/eellison, https://github.com/mlazos
2025-11-11 04:31:28 +00:00
2ca0b3f70a [simplefsdp] fix autobucketing pass that takes comm op as input (#167484)
Fix for issue: https://github.com/pytorch/torchtitan/issues/2004

The root cause is that we are scheduling comm ops that are used as input to bwd graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167484
Approved by: https://github.com/eellison
2025-11-11 04:09:02 +00:00
b06453c7cf Make PT2 compile backprop through custom op without autograd key a hard error (#166367)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166367
Approved by: https://github.com/bdhirsh
2025-11-11 03:16:30 +00:00
f0fa39a7e4 Revert "[inductor, 3.14] fix itertools.product pickle error in test_cpu_repro (#167382)"
This reverts commit 5320ca3725c4ccf2811c211b48af1ddebb2b471f.

Reverted https://github.com/pytorch/pytorch/pull/167382 on behalf of https://github.com/jeanschmidt due to merged stack seems to have introduced regressions on windows: test/test_dataloader.py::TestDataLoaderPersistentWorkers::test_worker_init_fn_forkserver [GH job link](https://github.com/pytorch/pytorch/actions/runs/19245763893/job/55023427916) [HUD commit link](fe0bb7cf60) ([comment](https://github.com/pytorch/pytorch/pull/167382#issuecomment-3514782788))
2025-11-11 02:57:09 +00:00
b5142f74f9 Revert "[inductor, 3.14] catch pickle.PicklingError exceptions (#167383)"
This reverts commit ad7db3617ec5cc3aa384bd4408fcfbc2acac1a98.

Reverted https://github.com/pytorch/pytorch/pull/167383 on behalf of https://github.com/jeanschmidt due to merged stack seems to have introduced regressions on windows: test/test_dataloader.py::TestDataLoaderPersistentWorkers::test_worker_init_fn_forkserver [GH job link](https://github.com/pytorch/pytorch/actions/runs/19245763893/job/55023427916) [HUD commit link](fe0bb7cf60) ([comment](https://github.com/pytorch/pytorch/pull/167382#issuecomment-3514782788))
2025-11-11 02:57:09 +00:00
a14452bfce Revert "[dynamo, 3.14] enable dynamo in 3.14 (#167384)"
This reverts commit 17e70ae459c45d85ef77afa4d19efe5f8b44f573.

Reverted https://github.com/pytorch/pytorch/pull/167384 on behalf of https://github.com/jeanschmidt due to merged stack seems to have introduced regressions on windows: test/test_dataloader.py::TestDataLoaderPersistentWorkers::test_worker_init_fn_forkserver [GH job link](https://github.com/pytorch/pytorch/actions/runs/19245763893/job/55023427916) [HUD commit link](fe0bb7cf60) ([comment](https://github.com/pytorch/pytorch/pull/167382#issuecomment-3514782788))
2025-11-11 02:57:09 +00:00
619f329a4b Revert "[3.14, dataloader] handle forkserver default mp start method in 3.14 (#167387)"
This reverts commit cf63b212e330836c2be92bef903f5a5d0dc2c7e9.

Reverted https://github.com/pytorch/pytorch/pull/167387 on behalf of https://github.com/jeanschmidt due to merged stack seems to have introduced regressions on windows: test/test_dataloader.py::TestDataLoaderPersistentWorkers::test_worker_init_fn_forkserver [GH job link](https://github.com/pytorch/pytorch/actions/runs/19245763893/job/55023427916) [HUD commit link](fe0bb7cf60) ([comment](https://github.com/pytorch/pytorch/pull/167382#issuecomment-3514782788))
2025-11-11 02:57:09 +00:00
7a48db0809 Revert "[export, 3.14] handle patching methods with functools.partial correctly in non-strict export (#167396)"
This reverts commit fe0bb7cf6001532b14bba14d686baa1ff0b98de0.

Reverted https://github.com/pytorch/pytorch/pull/167396 on behalf of https://github.com/jeanschmidt due to merged stack seems to have introduced regressions on windows: test/test_dataloader.py::TestDataLoaderPersistentWorkers::test_worker_init_fn_forkserver [GH job link](https://github.com/pytorch/pytorch/actions/runs/19245763893/job/55023427916) [HUD commit link](fe0bb7cf60) ([comment](https://github.com/pytorch/pytorch/pull/167382#issuecomment-3514782788))
2025-11-11 02:57:08 +00:00
406f2943d2 Revert "Rework PyObject preservation (#166342)"
This reverts commit 6ca8cc6edf30b5ca882d4871af617e674b6cdd47.

Reverted https://github.com/pytorch/pytorch/pull/166342 on behalf of https://github.com/jeanschmidt due to seems to have introduced test/test_reductions.py::TestReductionsCPU::test_dim_reduction_fns_fn_name_var_cpu_int8 [GH job link](https://github.com/pytorch/pytorch/actions/runs/19247187935/job/55027440149) [HUD commit link](6ca8cc6edf) ([comment](https://github.com/pytorch/pytorch/pull/166342#issuecomment-3514771276))
2025-11-11 02:54:00 +00:00
c3bc56c8b4 [xpu][fix] Format XPU c10 and aten code (#167298)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167298
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/Skylion007
2025-11-11 02:07:37 +00:00
b2be4d24c0 [DTensor] Make ExplicitRedistributeContext strict/non-strict mode (#167370)
Also support nesting, enable/disable, and make the class use a
thread-local for storage so independent threads do not confuse each
other.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167370
Approved by: https://github.com/ezyang
ghstack dependencies: #166593
2025-11-11 01:19:16 +00:00
8d5cceeb6a [torchbench][optimus] Add backend optimus (#167357)
Summary: `--optimus [all | vertical_opt | horizontal_opt]` will kick off inductor compile with different fusion strategies.

Test Plan:
TorchBench Runner:

```
$ buck2 run mode/opt //pytorch/benchmark:run -- customized_optimus_illustrative -t train -d cuda
GPU Time per batch:   56.254 milliseconds
CPU Wall Time per batch:  56.326 milliseconds
CPU Wall Time:        56.326 milliseconds
Time to first batch:          420.0777 ms
GPU 0 Peak Memory:              0.0695 GB
CPU Peak Memory:              359.6362 GB
```

PT2 Benchmark Runner (comparing with eager):

```
buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative  --performance --training --inductor

running benchmark: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:02<00:00, 14.37it/s]
4.509x
```

eager latency: ~56 ms
inductor latency: ~11 ms

Optimus backend:

```
$ buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative --performance --training --optimus all
11.02923508733511 ms, 13.884015614166856 ms, 0.794x
```

```
$ buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative --performance --training --optimus vertical_opt
12.47156853787601 ms, 10.699485195800662 ms, 1.166x
```

```
$ buck2 run mode/opt //pytorch/benchmark:pt2 -- --only customized_optimus_illustrative --performance --training --optimus horizontal_opt
11.078484123572707 ms, 10.797873372212052 ms, 1.026x
```

optimus latency ~10 ms

Differential Revision: D86524903

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167357
Approved by: https://github.com/mengluy0125
2025-11-11 00:35:30 +00:00
f6331192b4 Enable Doc builds for: Minor Releases RCs. Minor and Patch Releases final RC (#167478)
Enable Doc builds for
1. Minor Releases RCs
2. Minor and Patch Releases final RC

This is done to prevent publishing doc for patch releases when building rcs.
See:
https://github.com/pytorch/docs/pull/57

Followup after: https://github.com/pytorch/pytorch/pull/153973
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167478
Approved by: https://github.com/svekars, https://github.com/seemethere
2025-11-11 00:34:08 +00:00
f8d408d24a [CP] Correctly compile create_cp_block_mask (#167153)
Currently we re-compile create_block_mask every time, which is not very efficient and the global compilation also causes some issues. This PR lazily compile the create_block_mask and does it only once.

Fixes https://github.com/pytorch/pytorch/issues/167064

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167153
Approved by: https://github.com/drisspg, https://github.com/XilunWu
2025-11-11 00:03:06 +00:00
5a85b6eaf8 Migrate TypeTraits, TypeList, Metaprogramming to torch:: headeronly (#167386)
Taking over #163634; adding tests/headeronly APIs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167386
Approved by: https://github.com/albanD, https://github.com/mikaylagawarecki
2025-11-11 00:02:20 +00:00
e3d6896d08 [MTIAGraph][Pytorch][3/n] Implement mtia_graph python wrapper in pytorch (#166964)
- Add python module `mtia_graph.py`, which is a wrapper on top of the c++ logic implemented in previous PRs/diffs
- Add python level integration tests

[Doc](https://docs.google.com/document/d/1Q3xdZAIqhBvuy2HxGDfJyXVmxYXUEeYSZSwsp7bcJF8/edit?tab=t.osb46a42t6wb)

Differential Revision: [D84673488](https://our.internmc.facebook.com/intern/diff/D84673488/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166964
Approved by: https://github.com/malfet
2025-11-10 23:49:20 +00:00
9d9e7c7b1c [Pytorch] Extend OSS conversion benchmarks (#167099)
Summary: We are extending OSS conversion benchmarks, to include all combinations between types

Test Plan: CI

Differential Revision: D86315975

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167099
Approved by: https://github.com/mcfi
2025-11-10 23:36:57 +00:00
4c3721fe70 allow sym_stride, and sym_size lowering in inductor to return ints (#167345)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167345
Approved by: https://github.com/eellison
2025-11-10 23:29:23 +00:00
8ef4099313 Revert "Add min/max support for barebones uint types (#166813)"
This reverts commit 9ffc480c5a928eaccb4ac0e1755a1c596674d884.

Reverted https://github.com/pytorch/pytorch/pull/166813 on behalf of https://github.com/jeanschmidt due to It was reverted internally 6 days ago, but not reverted on OSS, this is causing conflicts ([comment](https://github.com/pytorch/pytorch/pull/166813#issuecomment-3514328895))
2025-11-10 23:25:22 +00:00
de773364be Support AC in default partitioner when functionalization is enabled (#166610)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166610
Approved by: https://github.com/SherlockNoMad
ghstack dependencies: #166536
2025-11-10 23:09:01 +00:00
47da714b8b [inductor][determinism] type errors + use odc to dump imc on exit (#167136)
Summary: fix some type errors + instead of manually creating a filelock when dumping dcache's imc to file we simply use an odc (since this is the intended behavior of odc, anyways)

Test Plan:
```
buck test fbcode//mode/opt caffe2/test/inductor:caching
```

Differential Revision: D86345594

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167136
Approved by: https://github.com/aorenste
2025-11-10 22:51:03 +00:00
69ab1f93e4 Add shim for at::get_num_threads (#167362)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167362
Approved by: https://github.com/janeyx99
ghstack dependencies: #166579, #166694, #166695
2025-11-10 22:21:14 +00:00
232baa33b3 Redo add parallel_for to torch/csrc/stable (#166695)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166695
Approved by: https://github.com/malfet
ghstack dependencies: #166579, #166694
2025-11-10 22:21:14 +00:00
6f0182495f Add stable::Tensor.device() (#166694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166694
Approved by: https://github.com/janeyx99
ghstack dependencies: #166579
2025-11-10 22:21:14 +00:00
7da82b84e2 Add torch::stable::Device (#166579)
Prior to this PR, the IValue <-> StableIValue conversion for `DeviceObjType` (aka c10::Device) was to pack it into the leading bits of the StableIValue (which is a uint64_t)

After this PR, the IValue <-> StableIValue conversion for `DeviceObjType` expects DeviceType to be packed into the upper 32 bits of StableIValue and DeviceIndex to be packed into the lower 32 bits

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166579
Approved by: https://github.com/janeyx99
2025-11-10 22:21:14 +00:00
cda7604434 [ez] Remove spammy deprecation log (#167470)
"
/packages/pytorch_latest_sixlib_conda/conda/lib/python3.12/site-packages/torch/_dynamo/variables/user_defined.py:1815: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
  return ctor(*args, **kwargs)"

is too spammy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167470
Approved by: https://github.com/tugsbayasgalan
2025-11-10 21:49:23 +00:00
6ca8cc6edf Rework PyObject preservation (#166342)
Make the PyObject preservation scheme thread-safe with free threaded (nogil) Python. The general idea is:

* Python Tensor and Storage objects always hold a strong reference to their underlying c10 object
* c10 objects hold a strong reference to their Python objects if there's at least one other reference to the c10 object

This is implemented in `intrusive_ptr`:

* The top most bit (`kHasPyObject`) from the weakref count is now used to indicate if the `intrusive_ptr_target` has an associated PyObject. So `kHasPyObject` is one bit, the weakref count is now 31 bits and the strong refcount remains 32 bits.
* When the reference count increases from one to two and `kHasPyObject` is set, we incref the associated Python object to ensure that it's kept alive.
* When the reference count decreases from two to one (i.e., there are no C++ reference to the `intrusive_ptr_target` other than from the Python object), we decre the associated Python object to break the cycle.

Other benefits:

* We can delete a lot of the copypasta from Python internal `subtype_dealloc`
* This fixes the weakref and GC bugs we had in the previous scheme. Python weakrefs on Tensors and Storages should just work as expected now.

Risks:

* Extra branch for reference count operations on `intrusive_ptr<TensorImpl>`, `intrusive_ptr<StorageImpl>`, and the generic `intrusive_ptr<intrusive_ptr_target>` even when we're not using Python.
* It's a big change
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166342
Approved by: https://github.com/albanD
2025-11-10 21:47:53 +00:00
bb37483464 Use c7i.2xlarge for B200 build (#167078)
The build system is oversized for what is necessary. Reduce the size to optimize costs. The default workflow runner is `linux.c7i.2xlarge` so we are just removing the runner definition in the workflow so that it uses the default.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167078
Approved by: https://github.com/nWEIdia, https://github.com/seemethere
2025-11-10 21:45:45 +00:00
2751b1d3c3 Support repr on user defined objects (#167372)
Fixes: https://github.com/pytorch/pytorch/issues/167369

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167372
Approved by: https://github.com/anijain2305
2025-11-10 21:06:37 +00:00
fe0bb7cf60 [export, 3.14] handle patching methods with functools.partial correctly in non-strict export (#167396)
Note: dynamo is not affected by this since patching class methods are not supported right now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167396
Approved by: https://github.com/angelayi
ghstack dependencies: #167382, #167383, #167384, #167387
2025-11-10 20:52:05 +00:00
cf63b212e3 [3.14, dataloader] handle forkserver default mp start method in 3.14 (#167387)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167387
Approved by: https://github.com/malfet
ghstack dependencies: #167382, #167383, #167384
2025-11-10 20:52:05 +00:00
17e70ae459 [dynamo, 3.14] enable dynamo in 3.14 (#167384)
dynamo tests are passing in the CI PR above - so we could probably just enable dynamo right now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167384
Approved by: https://github.com/Skylion007, https://github.com/mlazos
ghstack dependencies: #167382, #167383
2025-11-10 20:52:05 +00:00
ad7db3617e [inductor, 3.14] catch pickle.PicklingError exceptions (#167383)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167383
Approved by: https://github.com/aorenste
ghstack dependencies: #167382
2025-11-10 20:52:04 +00:00
5320ca3725 [inductor, 3.14] fix itertools.product pickle error in test_cpu_repro (#167382)
`inductor/test_cpu_cpp_wrapper` was failing since it was attempting to pickle`itertools.product`, and that is no longer picklable in 3.14. We work around by eagerly generating a list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167382
Approved by: https://github.com/atalman, https://github.com/malfet
2025-11-10 20:52:04 +00:00
3e4faca130 [torch.export] Refactor placeholder_naming_pass to reduce CCN (#166600)
Summary: Reduced CCN from 37 to 28 of placeholder_naming_pass method

Test Plan: Existing tests

Differential Revision: D85820388

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166600
Approved by: https://github.com/angelayi
2025-11-10 20:44:18 +00:00
0c2f206ded Typo fix - baddbmm_strategy (#166963)
This is called by registration with decorator, so function not called directly. For clarity, add the "b" for "batch" in function name.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166963
Approved by: https://github.com/janeyx99
2025-11-10 20:35:42 +00:00
6cf21fa331 Fix -ffunction-sections, -fdata-sections not being added on aarch64. (#166407)
Preferred solution to #166380

Changes:

- Moved summary print to bottom of CMakeLists.txt
- Fix the problem 'add_compile_options' should be called before targets defined, so opted for `append_cxx_flag_if_supported` and `append_c_flag_if_supported` ( new ).
- Added extra verbosity so it can be seen when linker script added.

( unfortunately linker script has to be added per-target rather than globally due to ninja/cmake depdendency tracking ).

Also move summary print to bottom of CMakeLists.txt and improve logging
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166407
Approved by: https://github.com/Aidyn-A, https://github.com/atalman
2025-11-10 20:32:08 +00:00
cdc8460f2c Use c7i.2xlarge for H100 build (#167466)
The build system maybe oversized for what is necessary. Reduce the size to optimize costs. The default workflow runner is linux.c7i.2xlarge so we are just removing the runner definition in the workflow so that it uses the default.

Relates to pytorch/test-infra#7175.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167466
Approved by: https://github.com/seemethere
2025-11-10 20:20:54 +00:00
86130aa2ca Fix flaky memory profiler test [2] (#167268)
Fixes #167037

Move the module definition outside of the unit test so when we run the unit test multiple times, the module is not re-compiled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167268
Approved by: https://github.com/angelayi
2025-11-10 19:51:38 +00:00
9491830c79 move subgraph_has_impure_ops from node.is_impure into const_fold to unblock production (#167443)
Summary:
https://github.com/pytorch/pytorch/pull/166609 updates `node.is_impure` to consider a submodule as impure if submodule contains impure node. This in turn changes `graph.eliminate_dead_code()` function behavior, which does not eliminate nodes with side effects, see [pytorch documentation](https://docs.pytorch.org/docs/stable/fx.html#torch.fx.Graph.eliminate_dead_code)
> Remove all dead code from the graph, based on each node’s number of users, and whether the nodes have any side effects.

While this is correct that a submodule containing side-effectful ops is side-effectful and should not be dead code eliminated, some customers rely on the dead code elimination to eliminate submodules that contain impure ops which is the behavior before #166609 fix.

Due to production environment constraints, we have to revert https://github.com/pytorch/pytorch/pull/166609 and move the side-effectful submodule check logic to `const_fold.py`, which will correctly **not** const-fold a submodule that contains impure ops.

NOTE other call sites that use `node.is_impure()` to make decisions are still incorrectly eliminating side-effectful submodules, but we can't safely change that today.

## This pr
- move `_subgraph_has_impure_op` into `fx/experimental/const_fold.py`, check and prevent const-folding an impure submodule
- added a note in `node.is_impure` to highlight the incorrect behavior and context in case people go looking in the future.

Test Plan: run test_fx_const_fold and all tests pass

Differential Revision: D86641994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167443
Approved by: https://github.com/jfix71
2025-11-10 19:29:54 +00:00
04a85b4c21 [compile-on-one-rank] Step 1: DeviceId (#166680)
Add a "--virtual-local-rank" mode to torchrun. When used instead of passing the
local rank in LOCAL_RANK it uses a LOCAL_RANK of "0" and adjusts
CUDA_VISIBLE_DEVICES to reflect the desired GPU index.

Testing:
(tweaked run_train.sh to use `--log-dir`)
```
export NGPU=8
export CONFIG_FILE="./torchtitan/models/llama3/train_configs/debug_model.toml"
with-proxy ./run_train.sh --model.name compiler_toolkit.llama3 --compile.enable --parallelism.data_parallel_shard_degree=2 --parallelism.tensor_parallel_degree=4
```

And then comparing ranks:

Without --virtual-local-rank gives a lot of differences like:
```
 [rank#]:        mul_1: "f32[8, 512, 256]" = torch.ops.aten.mul.Tensor(mul, view_9);  mul = None
-[rank#]:        _to_copy_3: "bf16[8, 512, 256]" = torch.ops.aten._to_copy.default(mul_1, dtype = torch.bfloat16, layout = torch.strided, device = device(type='cuda', index=0));  mul_1 = None
+[rank#]:        _to_copy_3: "bf16[8, 512, 256]" = torch.ops.aten._to_copy.default(mul_1, dtype = torch.bfloat16, layout = torch.strided, device = device(type='cuda', index=1));  mul_1 = None
 [rank#]:        detach: "f32[8, 512, 1]" = torch.ops.aten.detach.default(rsqrt);  rsqrt = None
```

With --virtual-local-rank makes those differences go away.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166680
Approved by: https://github.com/ezyang
2025-11-10 18:47:31 +00:00
a4437d76f0 Add some labeler rules that used to be in the autolabel bot (#167330)
See https://github.com/pytorch/test-infra/pull/7446 for the paths

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167330
Approved by: https://github.com/huydhn
2025-11-10 18:38:42 +00:00
3ea829a337 Fix torch.cond HOP device in inductor (#167354)
Fixes #166918

The output device may not be on the same device as the predicate device.

```
python test/inductor/test_control_flow.py -k test_output_on_different_device
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167354
Approved by: https://github.com/ydwu4, https://github.com/zou3519
2025-11-10 18:19:38 +00:00
3966b5ad05 [BE] Fix out-of-bounds index_put in test_mps.py (#167444)
Discovered while enabling assertions on out-of-bounds accesses. Otherwise test fails with
```
ERROR: test_sdpa_mask_fp16_L6_S17_NH23_HS121 (__main__.TestSDPA.test_sdpa_mask_fp16_L6_S17_NH23_HS121)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/Users/malfet/git/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 3334, in wrapper
    method(*args, **kwargs)
    ~~~~~~^^^^^^^^^^^^^^^^^
  File "/Users/malfet/git/pytorch/pytorch/build/../test/test_mps.py", line 9494, in test_sdpa_mask_fp16_L6_S17_NH23_HS121
    self._test_sdpa_mask(torch.float16, 7, 17, 23, 121)
    ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/malfet/git/pytorch/pytorch/build/../test/test_mps.py", line 9478, in _test_sdpa_mask
    y_ref = F.scaled_dot_product_attention(q.cpu(), k.cpu(), v.cpu(), attn_mask=mask.cpu(), dropout_p=0.0, is_causal=False)
                                           ~~~~~^^
torch.AcceleratorError: index out of range

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167444
Approved by: https://github.com/Skylion007, https://github.com/manuelcandales
2025-11-10 18:19:28 +00:00
f6a79b2a4a [inductor] Wrap pallas_call in jax.jit (#167441)
My understanding is this is needed for performance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167441
Approved by: https://github.com/oulgen
2025-11-10 17:29:56 +00:00
2fcf41dd8e Add the ruff rule and skip everything for now (#167360)
Part of https://github.com/pytorch/pytorch/issues/164878
We can start narrowing the skips and remove them as PRs keep landing.

This PR is just to setup the scaffolding, fix will be in follow up
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167360
Approved by: https://github.com/janeyx99
2025-11-10 17:10:15 +00:00
31ccd8f13e [AOTI] Fix a mixed-device bug for scatter_add (#167341)
Summary: Fix https://github.com/pytorch/pytorch/issues/166841. AOTI incorrectly generates a call to aoti_torch_cuda_scatter_reduce_two_out while the op should actually run on CPU. Fix by using the correct device when calling _generate_scatter_fallback in the wrapper codegen.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167341
Approved by: https://github.com/yushangdi
2025-11-10 16:59:44 +00:00
59307ca1bc [BE] adding documentation (#167334)
`torch.ao.quantization` and `torch.fx.experimental`

<img width="833" height="518" alt="Screenshot 2025-11-07 at 3 20 54 PM" src="https://github.com/user-attachments/assets/47b72f28-29bd-4bab-b41f-24d97419e411" />
<img width="892" height="560" alt="Screenshot 2025-11-07 at 3 20 45 PM" src="https://github.com/user-attachments/assets/129825ab-6706-41f2-964d-8774debab18c" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167334
Approved by: https://github.com/janeyx99
2025-11-10 14:46:42 +00:00
c28475db7c Update slow tests (#166844)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166844
Approved by: https://github.com/pytorchbot
2025-11-10 12:39:27 +00:00
74aec83841 [xla hash update] update the pinned xla hash (#167452)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned xla hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167452
Approved by: https://github.com/pytorchbot
2025-11-10 12:03:01 +00:00
52e744d68a [DTensor] Support convert StridedShard to shard order and vice versa (#166740)
We plan to use `StridedShard` to express `shard_order`. This PR adds the function to support the conversion between `StridedShard` and `shard_order`.

I moved some test related function into torch/testing/_internal/common_utils.py. We may only care about **_dtensor_spec.py** and **test_utils.py** in this PR for the review.

### How to convert shard order to StridedShard:
Considering the example:
- placements = $[x_0, x_1, x_2, x_3, x_4]$, all $x_?$ are shard on the same tensor dim.

Let's see how the shard order will impact the split_factor (sf). We loop from right to left in the placements to construct the split_factor by assuming different shard order. Starting from $x_4$, this should be a normal shard.

Then $x_3$. There are two possibilities, $x_3$'s order can be before $x_4$. If so, $x_3$'s sf=1, because $x_3$ is before $x_4$ in the placements. Else $x_3$'s order is after $x_4$, then the $x_3$'s sf should be the mesh dim size of $x_4$, which is $T(x_4)$:
<img width="820" height="431" alt="image" src="https://github.com/user-attachments/assets/f53b4b24-2523-42cc-ad6f-41f3c280db70" />

We can use this method to decide on the split factor for $x_2$, $x_1$ and so on.

### How to convert StridedShard to shard order:
This follows the same method above. We check all possible paths and use the real split_factor to see which path matchs the split_factor. If no such matches, the StridedShard is unable to be converted to shard order.

---

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166740
Approved by: https://github.com/ezyang
2025-11-10 09:35:10 +00:00
3cfbf98ea9 [xpu][feature] Add XPU support on torch.accelerator.get_memory_info (#162564)
# Motivation
Support XPU for `torch.accelerator.get_memory_info`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162564
Approved by: https://github.com/albanD
ghstack dependencies: #156812
2025-11-10 05:34:49 +00:00
47db55258b [MPS] sparse sparse mm (#167013)
Sparse sparse mm op implementation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167013
Approved by: https://github.com/malfet
2025-11-10 05:27:49 +00:00
50af6f3393 [MPS] erfinv for sparse mps (#166711)
Should be merged after #166708
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166711
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-11-10 05:25:31 +00:00
e545ba2d34 [DTensor] Fix Conv behavior for replicate stategy (#167402)
Pass `dim_map` to `_requires_data_exchange` and return False if both spatial and channels dimensions are replicated

Modify `test_conv1d` and `test_conv3d` to check values rather than just shape, and replicate `conv3d` across batch dimension

In general, feels like current Convolution implementation was written to work only if tensor is sharded across last dimention

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167402
Approved by: https://github.com/ezyang
2025-11-10 05:13:42 +00:00
a058bbdd6f [xpu][test] Enable profiler test for XPU (#165423)
Fixes #165130

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165423
Approved by: https://github.com/EikanWang, https://github.com/atalman, https://github.com/mlazos
2025-11-10 04:02:59 +00:00
2c78080ec0 Register functorch XPU/HPU dispatch keys (#167095)
Fixes TestOperatorsXPU.test_data_write_errors_under_transform_xpu https://github.com/intel/torch-xpu-ops/issues/2237

Tests on other devices throw runtime error "_mutating directly with `.data` inside functorch transform is not allowed._", but XPU/HPU fails earlier on `_has_compatible_shallow_copy_type`. This check is not met only when calling tensor.data inside functorch call.

```cpp
bool _has_compatible_shallow_copy_type(const Tensor& self, const Tensor& from) {
  return self.unsafeGetTensorImpl()->has_compatible_shallow_copy_type(
      from.key_set());
}
```

### t.data
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `XPU, ADInplaceOrView, AutogradXPU, AutocastXPU` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU` |

### t.data inside functorch transform
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `ADInplaceOrView, AutogradOther, FuncTorchGradWrapper` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU, FuncTorchGradWrapper` |

### t.data inside functorch transform + XPU dispatch key
| Tensor | Device | Dispatch Keys |
|--------|---------|---------------|
| `self` | `xpu` | `XPU, ADInplaceOrView, AutogradXPU, AutocastXPU, FuncTorchGradWrapper` |
| `from` | `cpu` | `CPU, ADInplaceOrView, AutogradCPU, AutocastCPU, FuncTorchGradWrapper` |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167095
Approved by: https://github.com/guangyey, https://github.com/albanD
2025-11-10 03:10:22 +00:00
fe6615e397 Swap pallas test shard to 12.8 (#167428)
Getting some weird failures building cuda13, lets stick to what we know works
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167428
Approved by: https://github.com/jansel
2025-11-10 02:42:35 +00:00
abf31db2cc Introduce a new API torch.accelerator.get_memory_info (#156812)
# Motivation
`torch.cuda.mem_get_info` and `torch.xpu.mem_get_info` are widely used in other popular repos, such as
- 076313bd09/python/sglang/srt/utils.py (L378),
- 7ecc2d7f39/src/accelerate/utils/modeling.py (L822),
- 7ba34b1241/vllm/worker/worker.py (L150).
-
This PR introduces a unified API `torch.accelerator.get_memory_info` to cover this scenario.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156812
Approved by: https://github.com/albanD
2025-11-10 01:57:39 +00:00
a4c7856112 [Inductor][Grouped Gemm] Add Blackwell CuTeDSL Kernel (#167340)
Summary: This is a reland of https://github.com/pytorch/pytorch/pull/165036, which previously contained a minor bug in the logic that determined whether the kernel should be enabled. As a result, it was incorrectly activated on non-Blackwell GPUs.

Test Plan:
Inductor test (fbcode):
`INDUCTOR_TEST_DISABLE_FRESH_CACHE=1 TORCHINDUCTOR_CACHE_DIR=~/cutetest buck2 run mode/opt //caffe2/test/inductor:cutedsl_grouped_mm -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -m "ovr_config//third-party/pypi/nvidia-cutlass-dsl/constraints:4.2.1"`

Tritonbench (fbcode):
`clear; CUDA_VISIBLE_DEVICES=7 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 buck2 run mode/opt //pytorch/tritonbench:run -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -m "ovr_config//third-party/pypi/nvidia-cutlass-dsl/constraints:4.2.1" -- --op grouped_gemm --only aten_grouped_mm,preprocessed_pt2_cute_grouped_mm --precision bf16  --num-inputs 1 --metrics tflops,accuracy`

Tritonbench(oss):
`clear; CUDA_VISIBLE_DEVICES=2 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 python run.py --op grouped_gemm --only aten_grouped_mm,preprocessed_pt2_triton_grouped_mm --precision bf16  --num-inputs 1 --metrics tflops,accuracy`

Unit Tests(oss):
`clear; python test/inductor/test_cutedsl_grouped_mm.py`

Differential Revision: D86537373

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167340
Approved by: https://github.com/jananisriram
2025-11-10 00:29:07 +00:00
afb014541b Separately handle null data_ptr storages when creating unique ID (#167405)
## Summary
Previously fake/functionalized tensors that have `null` storage_ptr could segfault when checking for `.expired()` on weak storage ref, so handle `nullptr` storages separately, without checking their weakrefs.

Diagnosis and PR created by codex
------
[Codex Task](https://chatgpt.com/codex/tasks/task_e_690ea8790054832f90eaffb37ee0d8c8)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167405
Approved by: https://github.com/Skylion007
2025-11-09 23:13:56 +00:00
b91a2ab892 [2/N] Use context managers (#167404)
This PR fixes more context manager usage in Python code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167404
Approved by: https://github.com/mlazos
2025-11-09 13:38:14 +00:00
14a845a4ec [2/N] Use Python 3.10 typing (#167167)
This PR applies new `Union` and `Optional` typing syntax to some files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167167
Approved by: https://github.com/XuehaiPan, https://github.com/mlazos
2025-11-09 12:11:45 +00:00
5135ace3a3 Enable ruff UP035 rule (#167307)
This PR enables `UP035` rule of ruff.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167307
Approved by: https://github.com/Lucaskabela
2025-11-09 06:40:03 +00:00
e7c1905837 Fix test_fsdp_logging (#167312)
- The logger name in test_fully_shard_logging.py was wrong so the logs didn't happen.
- The `device` variable in test_fully_shard_logging is expected to be a string, so quote it
- `unittest.skipIf` is used so importing `unittest` instead of `unittest.mock` is required

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167312
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-11-09 05:38:11 +00:00
9cf623a209 Update inductor-unittest.yml (#167417)
i see failures like https://github.com/pytorch/pytorch/actions/runs/19189378182/job/54865171317?pr=167389

maybe this will fix it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167417
Approved by: https://github.com/yf225
2025-11-09 05:08:00 +00:00
06aa3ef3d3 Move types from typing_extensions to typing (#167185)
This PR moves some implemented types from typing_extensions to typing due to the recent update to Python 3.10.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167185
Approved by: https://github.com/janeyx99
2025-11-09 02:50:18 +00:00
0384104e23 Update pythoncapi_compat.h to 11cb80f2652cb2fe5231bf60b9dd98c83a4e25f4 (#167413)
Second attempt for https://github.com/pytorch/pytorch/pull/167138 with fixes for name conflicts in downstream packages.

Should slightly simplify https://github.com/pytorch/pytorch/pull/166342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167413
Approved by: https://github.com/Skylion007
2025-11-09 02:14:33 +00:00
325ec98009 [13/N] Apply ruff UP035 rule (#167048)
This PR continues to apply ruff UP035 rule to test code and some remaining torch files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167048
Approved by: https://github.com/Skylion007
2025-11-09 01:47:38 +00:00
47acdea74a another version of fixing CachingHostAllocatorImpl destructor (#167408)
Another version of #167347 that won't break xpu and should correctly handle runtime changes of `pinned_use_background_threads()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167408
Approved by: https://github.com/yingufan, https://github.com/Skylion007
2025-11-09 00:20:54 +00:00
71606b289c [BugFix] Fix compute_error in coo_mean_time and csr_mean_time (#166795)
The csr timing loop is nested inside the coo loop. duplicated and inconsistent measurements.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166795
Approved by: https://github.com/cyyever, https://github.com/ezyang
2025-11-08 23:57:15 +00:00
e342a7509a [pallas backend] add cpu backend and parametrize the tests (#167388)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167388
Approved by: https://github.com/jansel
2025-11-08 23:11:35 +00:00
27ac58bd70 Optimize global save-plan validation (#166820)
## Summary
- Fixes #163548 by replacing the quadratic chunk-overlap scan in `_validate_global_plan` with a sweep-line pass that sorts chunk intervals and keeps an active set via `bisect_right`, giving O(n log n) behavior for metadata validation.
- Add focused tests in `TestValidateGlobalPlan` covering overlapping and non-overlapping shard layouts to lock in the faster path.

## Testing
- python test/distributed/checkpoint/test_planner.py -k ValidateGlobalPlan

## Benchmarks
| chunks | old runtime | new runtime |
|--------|-------------|-------------|
| 1 024  | 0.121 s     | 0.0014 s    |
| 2 048  | 0.486 s     | 0.0027 s    |
| 4 096  | 2.474 s     | 0.0058 s    |
| 8 192  | 8.014 s     | 0.0126 s    |
| 16 384 | 32.740 s    | 0.026 s     |

@ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166820
Approved by: https://github.com/LucasLLC, https://github.com/Skylion007
2025-11-08 20:59:44 +00:00
406719c3da [MPS] SparseMps mv op (#166708)
Should be merged after #166561
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166708
Approved by: https://github.com/Skylion007
2025-11-08 20:03:49 +00:00
957570e4a3 [dynamo][guards] 1/N Guard selectively for DTensor (#165824)
A few internal jobs are observing very high guard overhead for DTensor.
Since we own DTensor, we can make those guards way faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165824
Approved by: https://github.com/Lucaskabela, https://github.com/bdhirsh
2025-11-08 19:28:28 +00:00
eeb6c96a89 [vision hash update] update the pinned vision hash (#167391)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vision hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167391
Approved by: https://github.com/pytorchbot
2025-11-08 05:58:11 +00:00
0b12e49795 [Inductor] Decouple flags for optimization and debug symbols (#167385)
Summary:
What: Decouple flags for optimization and debug symbols

Why: The current flag for debug symbols only compiles the .so binary in unoptimized mode

Differential Revision: D86363355

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167385
Approved by: https://github.com/hl475, https://github.com/jansel
2025-11-08 05:13:38 +00:00
87646e5db4 [dynamo][ac] Return all intermediates as outputs for AC Hop (#167192)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167192
Approved by: https://github.com/zou3519
2025-11-08 03:56:39 +00:00
29d6bb79e1 Use context managers (SIM115) (#166928)
This PR changes code to use context managers if possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166928
Approved by: https://github.com/Lucaskabela
2025-11-08 03:09:16 +00:00
c2924bbafa [dynamo] replace raise Unsupported(...) with unimplemented(...) (#167255)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167255
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos, https://github.com/zou3519
ghstack dependencies: #167150
2025-11-08 02:01:12 +00:00
a2f109dcc3 [dynamo] rename unimplemented_v2 -> unimplemented (#167150)
Also force the new `unimplemented`/old `unimplemented_v2` to explicitly specify the `gb_type`, `context`, `explanation`, and `hints` args.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167150
Approved by: https://github.com/mlazos, https://github.com/zou3519
2025-11-08 01:49:53 +00:00
ba5ffa2dca [5/N] Use key in dict for existence checks (#167311)
This PR uses `key in dict` expressions for existence checks of dict elements in Python code. This operation is more efficient than `key in dict.keys()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167311
Approved by: https://github.com/janeyx99, https://github.com/Lucaskabela
2025-11-08 01:43:12 +00:00
c131e4b390 Revert "[CP] Correctly compile create_cp_block_mask (#167153)"
This reverts commit 5a9ae7cefe679ff925a0aa7b9f5782fc93d4ef29.

Reverted https://github.com/pytorch/pytorch/pull/167153 on behalf of https://github.com/donigian due to breaking internal tests D86529123 ([comment](https://github.com/pytorch/pytorch/pull/167153#issuecomment-3505563239))
2025-11-08 01:33:13 +00:00
7fd15aa2bd Additional fix on top of D85172267 (#167267) (#167279)
Summary:

It seems
D80948073
has caused some issue on a lowering pkg built on trunk: https://fburl.com/mlhub/o6p60pno
error log: P2001933683
which we were able to lower successfully in older ien pkg: https://fburl.com/mlhub/1ro094zo

D85172267 fixed this issue for the if conditional, but issue still exists for the else conditional. Logic is moved right before if-else to cover both cases

Test Plan:
checkout D85605372

buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.platform=platform010 -c fbcode.nvcc_arch=a100,h100 -c fbcode.split-dwarf=true -c fbcode.dwp=true -c fbcode.enable_distributed_thinlto=true -c fbcode.use_link_groups=true fbcode//inference_enablement/model_processing/infra/components/lowering/re:re_cinder -- -r "$(cat ./fbcode/minimal_viable_ai/umia_v1/ig/ss_omni_exp/re_lower_aoti.json)"

with the diff, no issue was encountered.

Reviewed By: tissue3

Differential Revision: D86474796

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167279
Approved by: https://github.com/pianpwk
2025-11-08 01:28:49 +00:00
c45c966031 subproc_pool: Fix quiesce waitcounter (#167350)
Summary:
I was inspecting running jobs, and the quiesce waitcounter wasn't showing up.
Turns out this was a bad copy paste.

Test Plan: Primarily inspection

Reviewed By: masnesral

Differential Revision: D86457409

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167350
Approved by: https://github.com/aorenste, https://github.com/masnesral
2025-11-08 01:12:18 +00:00
d18c742779 [HOP][print]Add make_fx for the proxy with graph module print (#166920)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166920
Approved by: https://github.com/angelayi
ghstack dependencies: #166660
2025-11-08 00:34:24 +00:00
4957ae5838 Add API to annotate disjoint backward and handle in AC (#166536)
This adds zero-bubble / DualPipeV support for (S)AC

Before:
- AC will always retrigger recompute upon every distinct backward.

After:
- Any checkpointed regions encountered by backward under the same instance of this context manager will only trigger recompute at most once, even if there are multiple calls to backward.
- Backward calls under the same instance of this context manager must execute over non-overlapping regions of the backward graph even if retain_graph=True.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166536
Approved by: https://github.com/albanD
2025-11-08 00:21:25 +00:00
31d6d3ef5c [easy] Add new torch/csrc/stable/c/shim.h to existing nitpick (#167367)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167367
Approved by: https://github.com/janeyx99, https://github.com/malfet
2025-11-08 00:13:03 +00:00
2325c511e7 [dynamo] Make sym node vt creation via SymNodeVariable create (#167189)
This will help in the next PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167189
Approved by: https://github.com/williamwen42, https://github.com/zou3519
ghstack dependencies: #167160
2025-11-07 23:58:13 +00:00
d865156967 [dynamo][hops] Overwrite proxy of the original VT to the subgraph outputs (#167160)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167160
Approved by: https://github.com/zou3519
2025-11-07 23:58:13 +00:00
fbc0bd2e90 [DTensor][be] getting rid of unneccesary Partial check for norm functions (#167247)
**Summary:** While the implementation is correct, these checks are just a subset of the Partial placement checks that are done in https://github.com/pytorch/pytorch/pull/165962. This means for ops aten.linalg_vector_norm.default and aten._foreach_norm.Scalar, we're unnecessarily checking for Partial placements twice.

**Test Cases**
1. pytest test/distributed/tensor/test_math_ops.py -k test_vector_norm_partial
2. pytest test/distributed/tensor/test_math_ops.py -k test_foreach_norm_partial
3. pytest test/distributed/tensor/test_math_ops.py -k test_partial_reduction_ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167247
Approved by: https://github.com/XilunWu
2025-11-07 23:49:29 +00:00
70f5f55abf [Inductor-FX] Allocate tensors on device type instead of indexed device (#167358)
# Problem
The FX backend currently allocates tensors on an exact device index, such as `"cuda:0"`. In contrast, the Python backend allocates on a device type, such as `"cuda"`. This avoids edge cases where fake tensor propagation can fail due to mismatched devices.

# Fix
Allocate tensors on `device.type` instead of the device.

# Test plan
Added a CI test passing in sample inputs on an indexed device, and checking that the output device in the generated FX graph is not indexed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167358
Approved by: https://github.com/mlazos, https://github.com/nandesuka, https://github.com/eellison
2025-11-07 23:48:54 +00:00
69ecb562e7 [PT2 Compiler] Add annotation for dynamo disabled callables (#166341)
Summary: To make torch.export compatible with PT2 compile (which is done on top of exported model) we need to store torch._dynamo.disable attributes in exported model and later restore this after unflattening of exported model. This diff will add annotations to all nodes with torch._dynamo.disable, which will be preserved during exporting.

Test Plan:
```
buck test mode/opt caffe2/test:test_export -- 'test_dynamo_disable_annotations'
```
https://www.internalfb.com/intern/testinfra/testrun/6473924770741560

Differential Revision: D85302730

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166341
Approved by: https://github.com/williamwen42, https://github.com/angelayi
2025-11-07 23:28:00 +00:00
5062abe4e7 [CI][serialization] Fix exception regexes with Python-3.14 (#167333)
Not sure why, but running some tests (for example `test_weights_only_safe_globals_build`) with `pytest` in 3.14 makes global name `test_serialization.ClassThatUsesBuildInstruction` instead of expected `__main__.ClassThatUsesBuildInstruction`
Also, change expected exception type from `AttributeError` to `PicklingError`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167333
Approved by: https://github.com/atalman
2025-11-07 23:22:36 +00:00
c7007e7584 Update Kineto Submodule (#167343)
Summary: Title

Test Plan: CI

Differential Revision: D86538778

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167343
Approved by: https://github.com/Skylion007, https://github.com/aaronenyeshi
2025-11-07 23:06:58 +00:00
09705ca9b2 [dynamo][guards] Fix mem leak in tensor subclass metadata guard (#167352)
Use cls instead of the object. Earlier the metadata guard was holding on
to the Dtensor causing mem leak.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167352
Approved by: https://github.com/Skylion007
2025-11-07 23:01:15 +00:00
ea6b0b5d0f add missing cpp standard lib in HeaderOnlyArrayRef.h (#167337)
Fixes #167315
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167337
Approved by: https://github.com/janeyx99
2025-11-07 23:00:08 +00:00
bbf852d87f Revert "Remove python workaround for ContextDecorator (#167049)"
This reverts commit 13d2cc7bd26e32cafff0377dda1c5ddc8d04c4ce.

Reverted https://github.com/pytorch/pytorch/pull/167049 on behalf of https://github.com/donigian due to breaking internal tests D86342845 ([comment](https://github.com/pytorch/pytorch/pull/167049#issuecomment-3505251296))
2025-11-07 22:32:45 +00:00
6392b986e7 Revert "[13/N] Apply ruff UP035 rule (#167048)"
This reverts commit ea44f12bce3eb05eaa9fa34943a3ffae04647fa5.

Reverted https://github.com/pytorch/pytorch/pull/167048 on behalf of https://github.com/donigian due to breaking internal tests D86342860 ([comment](https://github.com/pytorch/pytorch/pull/167048#issuecomment-3505232522))
2025-11-07 22:25:01 +00:00
32d30d96cf [ROCm][CI] unconditionally add gfx950, gfx115x to PYTORCH_ROCM_ARCH (#167299)
Included gfx950, gfx1150, and gfx1151 unconditionally in PYTORCH_ROCM_ARCH. Removed the ROCm 7.0 version check and refactored the architecture list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167299
Approved by: https://github.com/jeffdaily
2025-11-07 21:47:59 +00:00
46516efa85 [BE] use undeprecated from/to in libtorch_agnostic tests (#167126)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167126
Approved by: https://github.com/Skylion007
ghstack dependencies: #164991, #165152, #165153, #165953
2025-11-07 21:31:30 +00:00
84b2147b85 Introducing the StableIValue representation of list :D (#165953)
Some important notes:
a) Just like IValues steal the ownership of ArrayRefs and any std::vectors in order to convert the inner elements into IValues, we do the same thing with StableIValue. This O(N) traverse is ineluctable.
b) As a result, since StableIValues are owning and our contract is that to<T>(StableIValue) transfers ownership, you cannot ever convert from StableIValue to a nonowning HeaderOnlyArrayRef<V>.

We handle memory similar to AtenTensorHandle, but we have a StableListHandle!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165953
Approved by: https://github.com/malfet
ghstack dependencies: #164991, #165152, #165153
2025-11-07 21:31:30 +00:00
1727a71cb6 Create pallas test shard (#167143)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/167143
Approved by: https://github.com/malfet
ghstack dependencies: #167243
2025-11-07 21:05:54 +00:00
460 changed files with 11479 additions and 4829 deletions

View File

@ -36,11 +36,7 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)

View File

@ -260,6 +260,12 @@ case "$tag" in
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-py3.12-pallas)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
PALLAS=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
@ -381,6 +387,7 @@ docker build \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "PALLAS=${PALLAS}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \

View File

@ -0,0 +1 @@
0.8.0

View File

@ -0,0 +1,40 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
# Get the pinned JAX version (same for all CUDA versions)
JAX_VERSION=$(get_pinned_commit /ci_commit_pins/jax)
function install_jax_12() {
echo "Installing JAX ${JAX_VERSION} with CUDA 12 support"
pip_install "jax[cuda12]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 12"
}
function install_jax_13() {
echo "Installing JAX ${JAX_VERSION} with CUDA 13 support"
pip_install "jax[cuda13]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 13"
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4|12.6|12.6.*|12.8|12.8.*|12.9|12.9.*) install_jax_12;
;;
13.0|13.0.*) install_jax_13;
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -49,11 +49,7 @@ case ${DOCKER_TAG_PREFIX} in
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -87,11 +87,7 @@ case ${image} in
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -143,6 +143,15 @@ COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG PALLAS
ARG CUDA_VERSION
# Install JAX with CUDA support (for Pallas)
COPY ./common/install_jax.sh install_jax.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/jax.txt /ci_commit_pins/jax.txt
RUN if [ -n "${PALLAS}" ]; then bash ./install_jax.sh ${CUDA_VERSION}; fi
RUN rm -f install_jax.sh common_utils.sh /ci_commit_pins/jax.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./

View File

@ -8,9 +8,11 @@ from abc import ABC, abstractmethod
try:
from typing import Any, Callable, Required, TypedDict # Python 3.11+
from collections.abc import Callable # Python 3.11+
from typing import Any, Required, TypedDict
except ImportError:
from typing import Any, Callable, TypedDict
from collections.abc import Callable
from typing import Any, TypedDict
from typing_extensions import Required # Fallback for Python <3.11

View File

@ -30,7 +30,6 @@ into a tarball, with the following structure:
More specifically, `build_magma.sh` copies over the relevant files from the `package_files` directory depending on the ROCm version.
Outputted binaries should be in the `output` folder.
## Pushing
Packages can be uploaded to an S3 bucket using:

View File

@ -168,14 +168,16 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/umf/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Enable XCCL build
export USE_XCCL=1
export USE_MPI=0
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
export USE_KINETO=0
export TORCH_XPU_ARCH_LIST=pvc
fi

View File

@ -208,6 +208,8 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
fi
@ -337,7 +339,7 @@ test_python() {
test_python_smoke() {
# Smoke tests for H100/B200
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune inductor/test_cutedsl_grouped_mm $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
@ -824,6 +826,11 @@ test_inductor_halide() {
assert_git_not_dirty
}
test_inductor_pallas() {
python test/run_test.py --include inductor/test_pallas.py --verbose
assert_git_not_dirty
}
test_inductor_triton_cpu() {
python test/run_test.py --include inductor/test_triton_cpu_backend.py inductor/test_torchinductor_strided_blocks.py --verbose
assert_git_not_dirty
@ -1724,6 +1731,8 @@ elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
test_inductor_halide
elif [[ "${TEST_CONFIG}" == *inductor-pallas* ]]; then
test_inductor_pallas
elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then

View File

@ -1 +1 @@
ca2212438fdd8ce29b66999ed70ed54b0f9372d1
ccb801b88af136454798b945175c4c87e636ac33

View File

@ -1 +1 @@
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a

13
.github/labeler.yml vendored
View File

@ -165,3 +165,16 @@
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/mps":
- aten/src/ATen/mps/**
- aten/src/ATen/native/mps/**
- torch/_inductor/codegen/mps.py
- test/test_mps.py
- test/inductor/test_mps_basic.py
"ciflow/h100-symm-mem":
- torch/csrc/distributed/c10d/symm_mem/**
- torch/distributed/_symmetric_memory/**
- test/distributed/**/*mem*
- test/distributed/**/*mem*/**

View File

@ -10,3 +10,4 @@
pathFilter:
- 'torch/csrc/inductor/aoti_torch/c/*'
- 'torch/csrc/inductor/aoti_torch/generated/*'
- 'torch/csrc/stable/c/*'

View File

@ -1,10 +1,11 @@
# Delete old branches
import os
import re
from collections.abc import Callable
from datetime import datetime
from functools import lru_cache
from pathlib import Path
from typing import Any, Callable
from typing import Any
from github_utils import gh_fetch_json_dict, gh_graphql
from gitutils import GitRepo

View File

@ -8,10 +8,11 @@ import re
import subprocess
import sys
import warnings
from collections.abc import Callable
from enum import Enum
from functools import cache
from logging import info
from typing import Any, Callable, Optional
from typing import Any, Optional
from urllib.request import Request, urlopen
import yaml

View File

@ -11,7 +11,8 @@ import sys
import time
import urllib
import urllib.parse
from typing import Any, Callable, Optional
from collections.abc import Callable
from typing import Any, Optional
from urllib.request import Request, urlopen

View File

@ -3,8 +3,9 @@
import json
import os
import warnings
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Callable, cast, Optional, Union
from typing import Any, cast, Optional, Union
from urllib.error import HTTPError
from urllib.parse import quote
from urllib.request import Request, urlopen

View File

@ -4,10 +4,10 @@ import os
import re
import tempfile
from collections import defaultdict
from collections.abc import Iterator
from collections.abc import Callable, Iterator
from datetime import datetime
from functools import wraps
from typing import Any, Callable, cast, Optional, TypeVar, Union
from typing import Any, cast, Optional, TypeVar, Union
T = TypeVar("T")

View File

@ -34,6 +34,9 @@ python3 torch/utils/data/datapipes/gen_pyi.py
# Also check generated pyi files
find torch -name '*.pyi' -exec git add --force -- "{}" +
# Print current environment
python3 -m pip freeze
RC=0
# Run lintrunner on all files
if ! lintrunner --force-color --tee-json=lint.json ${ADDITIONAL_LINTRUNNER_ARGS} 2> /dev/null; then

View File

@ -17,12 +17,12 @@ import re
import time
import urllib.parse
from collections import defaultdict
from collections.abc import Iterable
from collections.abc import Callable, Iterable
from dataclasses import dataclass
from functools import cache
from pathlib import Path
from re import Pattern
from typing import Any, Callable, cast, NamedTuple, Optional
from typing import Any, cast, NamedTuple, Optional
from warnings import warn
import yaml

View File

@ -37,7 +37,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'

View File

@ -37,7 +37,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'

View File

@ -67,6 +67,7 @@ jobs:
pytorch-linux-jammy-py3.10-gcc11,
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-cuda12.8-py3.12-pallas,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-noble-xpu-n-py3,
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,

View File

@ -37,7 +37,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.c7i.12xlarge"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'

View File

@ -1,4 +1,4 @@
name: inductor-rocm
name: inductor-rocm-mi200
on:
schedule:

View File

@ -81,6 +81,32 @@ jobs:
test-matrix: ${{ needs.inductor-halide-build.outputs.test-matrix }}
secrets: inherit
inductor-pallas-build:
name: inductor-pallas-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-py3.12-pallas
cuda-arch-list: '8.9'
runner: linux.8xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
test-matrix: |
{ include: [
{ config: "inductor-pallas", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.12xlarge.nvidia.gpu" },
]}
secrets: inherit
inductor-pallas-test:
name: inductor-pallas-test
uses: ./.github/workflows/_linux-test.yml
needs: inductor-pallas-build
with:
build-environment: linux-jammy-py3.12-gcc11
docker-image: ${{ needs.inductor-pallas-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-pallas-build.outputs.test-matrix }}
secrets: inherit
inductor-triton-cpu-build:
name: inductor-triton-cpu-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -5,9 +5,11 @@ on:
- cron: 0 0 * * *
push:
tags:
# NOTE: Doc build pipelines should only get triggered on release candidate builds
# Release candidate tags look like: v1.11.0-rc1
- v[0-9]+.[0-9]+.[0-9]+-rc[0-9]+
# NOTE: Doc build pipelines should only get triggered on:
# Major or minor release candidates builds
- v[0-9]+.[0-9]+.0+-rc[0-9]+
# Final RC for major, minor and patch releases
- v[0-9]+.[0-9]+.[0-9]+
- ciflow/nightly/*
workflow_dispatch:

View File

@ -1,4 +1,4 @@
name: rocm
name: rocm-mi200
on:
push:

View File

@ -52,7 +52,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
@ -73,4 +72,4 @@ jobs:
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit
secrets: inherit

View File

@ -41,7 +41,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'

1
.gitignore vendored
View File

@ -127,6 +127,7 @@ torch/test/
torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h
torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h
torch/version.py
torch/_inductor/kernel/vendored_templates/*
minifier_launcher.py
aten/src/ATen/native/transformers/hip/flash_attn/ck/fmha_fwd_d*
aten/src/ATen/native/transformers/hip/flash_attn/ck/fmha_bwd_d*

View File

@ -186,6 +186,8 @@ include_patterns = [
'aten/src/ATen/native/nested/cuda/*.h',
'aten/src/ATen/native/nested/*.cpp',
'aten/src/ATen/native/nested/*.h',
'aten/src/ATen/xpu/**/*.h',
'aten/src/ATen/xpu/**/*.cpp',
'c10/**/*.cpp',
'c10/**/*.h',
'torch/*.h',

View File

@ -736,6 +736,44 @@ if(NOT DEFINED USE_BLAS)
set(USE_BLAS ON)
endif()
# Prioritized Text Linker Optimization
if(USE_PRIORITIZED_TEXT_FOR_LD)
set(LINKER_SCRIPT_FILE_IN "${CMAKE_SOURCE_DIR}/cmake/prioritized_text.txt")
set(LINKER_SCRIPT_FILE_OUT "${CMAKE_SOURCE_DIR}/cmake/linker_script.ld")
execute_process(
COMMAND ${Python_EXECUTABLE}
${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py
--filein "${LINKER_SCRIPT_FILE_IN}"
--fout "${LINKER_SCRIPT_FILE_OUT}"
RESULT_VARIABLE _gen_result
OUTPUT_VARIABLE _gen_output
ERROR_VARIABLE _gen_error
)
if(NOT _gen_result EQUAL 0)
message(FATAL_ERROR
"Failed to generate linker script:\n${_gen_output}\n${_gen_error}")
endif()
append_cxx_flag_if_supported("-ffunction-sections" CMAKE_CXX_FLAGS)
append_cxx_flag_if_supported("-fdata-sections" CMAKE_CXX_FLAGS)
append_c_flag_if_supported("-ffunction-sections" CMAKE_C_FLAGS)
append_c_flag_if_supported("-fdata-sections" CMAKE_C_FLAGS)
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -T${LINKER_SCRIPT_FILE_OUT}")
set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} -T${LINKER_SCRIPT_FILE_OUT}")
else()
if(LINUX AND CPU_AARCH64)
message(WARNING [[
It is strongly recommend to enable linker script optimization for all AArch64 Linux builds.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()
# Build libtorch mobile library, which contains ATen/TH ops and native support
# for TorchScript model, but doesn't contain not-yet-unified caffe2 ops;
if(INTERN_BUILD_MOBILE)
@ -1402,9 +1440,6 @@ if(BUILD_JNI)
add_subdirectory(android/pytorch_android)
endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()
# Parse custom debug info
if(DEFINED USE_CUSTOM_DEBINFO)
string(REPLACE ";" " " SOURCE_FILES "${USE_CUSTOM_DEBINFO}")
@ -1444,56 +1479,5 @@ if(BUILD_BUNDLE_PTXAS AND USE_CUDA)
DESTINATION "${CMAKE_INSTALL_BINDIR}")
endif()
if(USE_PRIORITIZED_TEXT_FOR_LD)
add_compile_options(
$<$<COMPILE_LANGUAGE:C,CXX>:-ffunction-sections>
$<$<COMPILE_LANGUAGE:C,CXX>:-fdata-sections>
)
set(LINKER_SCRIPT_FILE_OUT "${CMAKE_SOURCE_DIR}/cmake/linker_script.ld")
set(LINKER_SCRIPT_FILE_IN "${CMAKE_SOURCE_DIR}/cmake/prioritized_text.txt")
add_custom_command(
OUTPUT "${LINKER_SCRIPT_FILE_OUT}"
COMMAND ${Python_EXECUTABLE} ${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py --filein "${LINKER_SCRIPT_FILE_IN}" --fout "${LINKER_SCRIPT_FILE_OUT}"
DEPENDS ${CMAKE_SOURCE_DIR}/tools/setup_helpers/generate_linker_script.py "${LINKER_SCRIPT_FILE_IN}"
COMMENT "Generating prioritized text linker files"
VERBATIM
)
add_custom_target(generate_linker_script DEPENDS "${LINKER_SCRIPT_FILE_OUT}")
if(BUILD_PYTHON)
set(LINKER_OPT_TARGETS torch_python)
endif()
if(NOT BUILD_LIBTORCHLESS)
list(APPEND LINKER_OPT_TARGETS torch_cpu c10)
if(USE_CUDA)
list(APPEND LINKER_OPT_TARGETS torch_cuda c10_cuda)
endif()
if(USE_XPU)
list(APPEND LINKER_OPT_TARGETS torch_xpu c10_xpu)
endif()
if(USE_ROCM)
list(APPEND LINKER_OPT_TARGETS torch_hip c10_hip)
endif()
endif()
foreach(tgt IN LISTS LINKER_OPT_TARGETS)
if(TARGET ${tgt})
add_dependencies("${tgt}" generate_linker_script)
target_link_options_if_supported(${tgt} "-T,${LINKER_SCRIPT_FILE_OUT}")
set_property(TARGET ${tgt} APPEND PROPERTY LINK_DEPENDS "${LINKER_SCRIPT_FILE_OUT}")
else()
message(WARNING "Requested target '${tgt}' for linker script optimization was not found.")
endif()
endforeach()
else()
if(LINUX AND CPU_AARCH64)
message(WARNING [[
It is strongly recommend to enable linker script optimization for all AArch64 Linux builds.
To do so please export USE_PRIORITIZED_TEXT_FOR_LD=1
]])
endif()
endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()

View File

@ -37,7 +37,7 @@ Copyright (c) 2024 Tri Dao.
All rights reserved.
All contributions by Arm:
Copyright (c) 2021, 2023-2024 Arm Limited and/or its affiliates
Copyright (c) 2021, 2023-2025 Arm Limited and/or its affiliates
All contributions from Caffe:
Copyright(c) 2013, 2014, 2015, the respective contributors

View File

@ -18,6 +18,8 @@ Please report security issues using https://github.com/pytorch/pytorch/security/
All reports submitted through the security advisories mechanism would **either be made public or dismissed by the team within 90 days of the submission**. If advisory has been closed on the grounds that it is not a security issue, please do not hesitate to create an [new issue](https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml) as it is still likely a valid issue within the framework.
**Note on crashes and out of bounds access**: PyTorch is a computational framework that performs operations on behalf of the caller. Like many low-level libraries, PyTorch generally does not validate all inputs to every function—the responsibility for providing valid arguments lies with the calling code. While crashes and out of bounds memory access should be reported as bugs, they are generally not considered security vulnerabilities in PyTorch's threat model.
Please refer to the following page for our responsible disclosure policy, reward guidelines, and those things that should not be reported:
https://www.facebook.com/whitehat

View File

@ -94,6 +94,11 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
}
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
c10::DeviceIndex device_index) {
const auto device_type = getAccelerator(true).value();
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
}
} // namespace at::accelerator
namespace at {

View File

@ -226,8 +226,8 @@ template <
typename B = HostBlock<S>>
struct CachingHostAllocatorImpl {
virtual ~CachingHostAllocatorImpl() {
active_ = false;
if (pinned_use_background_threads()) {
if (active_) {
active_ = false;
getBackgroundThreadPool()->waitWorkComplete();
}
}
@ -260,6 +260,7 @@ struct CachingHostAllocatorImpl {
if (pinned_use_background_threads()) {
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
active_ = true;
getBackgroundThreadPool()->run([&]() {
while (active_) {
process_events();
@ -683,9 +684,9 @@ struct CachingHostAllocatorImpl {
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
// Indicates whether the object is active.
// Indicates whether the event-processing thread pool is active.
// Set to false in the destructor to signal background threads to stop.
std::atomic<bool> active_{true};
std::atomic<bool> active_{false};
protected:
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
};

View File

@ -55,14 +55,6 @@ struct numeric_limits<int8_t> {
static inline __host__ __device__ int8_t upper_bound() { return INT8_MAX; }
};
template <>
struct numeric_limits<uint16_t> {
static inline __host__ __device__ uint16_t lowest() { return 0; }
static inline __host__ __device__ uint16_t max() { return UINT16_MAX; }
static inline __host__ __device__ uint16_t lower_bound() { return 0; }
static inline __host__ __device__ uint16_t upper_bound() { return UINT16_MAX; }
};
template <>
struct numeric_limits<int16_t> {
static inline __host__ __device__ int16_t lowest() { return INT16_MIN; }
@ -71,14 +63,6 @@ struct numeric_limits<int16_t> {
static inline __host__ __device__ int16_t upper_bound() { return INT16_MAX; }
};
template <>
struct numeric_limits<uint32_t> {
static inline __host__ __device__ uint32_t lowest() { return 0; }
static inline __host__ __device__ uint32_t max() { return UINT32_MAX; }
static inline __host__ __device__ uint32_t lower_bound() { return 0; }
static inline __host__ __device__ uint32_t upper_bound() { return UINT32_MAX; }
};
template <>
struct numeric_limits<int32_t> {
static inline __host__ __device__ int32_t lowest() { return INT32_MIN; }
@ -87,21 +71,6 @@ struct numeric_limits<int32_t> {
static inline __host__ __device__ int32_t upper_bound() { return INT32_MAX; }
};
template <>
struct numeric_limits<uint64_t> {
#ifdef _MSC_VER
static inline __host__ __device__ uint64_t lowest() { return 0; }
static inline __host__ __device__ uint64_t max() { return _UI64_MAX; }
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
static inline __host__ __device__ uint64_t upper_bound() { return _UI64_MAX; }
#else
static inline __host__ __device__ uint64_t lowest() { return 0; }
static inline __host__ __device__ uint64_t max() { return UINT64_MAX; }
static inline __host__ __device__ uint64_t lower_bound() { return 0; }
static inline __host__ __device__ uint64_t upper_bound() { return UINT64_MAX; }
#endif
};
template <>
struct numeric_limits<int64_t> {
#ifdef _MSC_VER

View File

@ -157,6 +157,8 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::Negative,
DispatchKey::Conjugate,
DispatchKey::XLA,
DispatchKey::XPU,
DispatchKey::HPU,
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,

View File

@ -440,7 +440,7 @@ bool MPSHeapAllocatorImpl::release_cached_buffers() {
// we need to release the lock temporarily as synchronizing may cause deadlock with completion handlers.
m_mutex.unlock();
auto stream = getDefaultMPSStream();
dispatch_sync(stream->queue(), ^() {
dispatch_sync_with_rethrow(stream->queue(), ^() {
stream->synchronize(SyncType::COMMIT_AND_WAIT);
});
m_mutex.lock();

View File

@ -110,6 +110,9 @@ class TORCH_API MPSStream {
return _stream;
}
MTLBuffer_t getErrorBuffer();
void checkLastError();
private:
Stream _stream;
MTLCommandQueue_t _commandQueue = nil;
@ -121,6 +124,8 @@ class TORCH_API MPSStream {
dispatch_queue_t _serialQueue = nullptr;
// CommitAndContinue is enabled by default
bool _enableCommitAndContinue = true;
// Buffer that contains last raised error
MTLBuffer_t _errorBuffer = nil;
// use synchronize() to access any of these commit functions outside MPSStream
void commit();
@ -155,4 +160,7 @@ class TORCH_API MPSStreamImpl {
MPSStreamImpl();
};
#ifdef __OBJC__
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)());
#endif
} // namespace at::mps

View File

@ -3,13 +3,13 @@
#include <ATen/mps/MPSAllocatorInterface.h>
#include <ATen/mps/MPSProfiler.h>
#include <ATen/mps/MPSStream.h>
#include <c10/metal/error.h>
@interface MPSGraphExecutionDescriptor ()
@property(readwrite, atomic) BOOL enableCommitAndContinue;
@end
namespace at::mps {
//-----------------------------------------------------------------
// MPSStream
//-----------------------------------------------------------------
@ -30,6 +30,10 @@ MPSStream::MPSStream(Stream stream) : _stream(stream) {
// Choose level which optimizes for GPU
_compilationDescriptor.optimizationLevel = MPSGraphOptimizationLevel0;
_executionDescriptor.compilationDescriptor = _compilationDescriptor;
_errorBuffer = [MPSDevice::getInstance()->device() newBufferWithLength:sizeof(c10::metal::ErrorMessages)
options:MTLResourceStorageModeShared];
std::memset([_errorBuffer contents], 0, 1024);
}
MPSStream::~MPSStream() {
@ -38,6 +42,8 @@ MPSStream::~MPSStream() {
[_executionDescriptor release];
[_compilationDescriptor release];
_executionDescriptor = nil;
[_errorBuffer release];
_errorBuffer = nil;
_compilationDescriptor = nil;
assert(_commandBuffer == nil);
@ -104,6 +110,7 @@ void MPSStream::commitAndWait() {
[_prevCommandBuffer waitUntilCompleted];
[_prevCommandBuffer release];
_prevCommandBuffer = nil;
checkLastError();
}
if (_commandBuffer) {
@ -111,6 +118,7 @@ void MPSStream::commitAndWait() {
[_commandBuffer waitUntilCompleted];
[_commandBuffer release];
_commandBuffer = nil;
checkLastError();
}
}
@ -153,7 +161,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
if (length == 0) {
return;
}
dispatch_sync(_serialQueue, ^() {
dispatch_sync_with_rethrow(_serialQueue, ^() {
@autoreleasepool {
endKernelCoalescing();
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
@ -183,7 +191,7 @@ void MPSStream::copy(id<MTLBuffer> srcBuffer,
size_t dstOffset,
uint64_t profileId,
SyncType syncType) {
dispatch_sync(_serialQueue, ^() {
dispatch_sync_with_rethrow(_serialQueue, ^() {
@autoreleasepool {
endKernelCoalescing();
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
@ -236,7 +244,7 @@ void MPSStream::executeMPSGraph(MPSGraph* mpsGraph, NSDictionary* feeds, NSDicti
auto& profiler = getMPSProfiler();
const bool isGraphProfilingEnabled = profiler.isOperationProfilingEnabled();
dispatch_sync(_serialQueue, ^() {
dispatch_sync_with_rethrow(_serialQueue, ^() {
endKernelCoalescing();
if (isGraphProfilingEnabled) {
// this function call is only relevant for interval-based Signposts
@ -266,6 +274,24 @@ void MPSStream::executeMPSGraph(MPSGraph* mpsGraph, NSDictionary* feeds, NSDicti
});
}
id<MTLBuffer> MPSStream::getErrorBuffer() {
return _errorBuffer;
}
void MPSStream::checkLastError() {
auto msgs = reinterpret_cast<c10::metal::ErrorMessages*>([_errorBuffer contents]);
const auto& msg = msgs->msg[0];
if (!msgs) {
return;
}
unsigned int count = 0;
std::swap(count, msgs->count);
if (!count) {
return;
}
throw c10::AcceleratorError({msg.func, msg.file, msg.line}, 1, msg.message);
}
//-----------------------------------------------------------------
// MPSStreamImpl
//-----------------------------------------------------------------
@ -289,4 +315,19 @@ MPSStream* getDefaultMPSStream() {
return MPSStreamImpl::getInstance();
}
// Helper methods
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)()) {
__block std::optional<std::exception_ptr> block_exception;
dispatch_sync(queue, ^() {
try {
block();
} catch (...) {
block_exception = std::current_exception();
}
});
if (block_exception) {
std::rethrow_exception(*block_exception);
}
}
} // namespace at::mps

View File

@ -23,6 +23,7 @@
#include <ATen/ops/_aminmax_native.h>
#include <ATen/ops/_assert_async_native.h>
#include <ATen/ops/_assert_scalar_native.h>
#include <ATen/ops/_async_error_native.h>
#include <ATen/ops/_functional_assert_async_native.h>
#include <ATen/ops/_functional_assert_scalar_native.h>
#include <ATen/ops/_make_per_tensor_quantized_tensor.h>
@ -479,6 +480,14 @@ Tensor isfinite(const Tensor& self) {
});
}
void _async_error(std::string_view msg) {
TORCH_CHECK(0, msg);
}
void _async_error_meta(std::string_view msg) {
// Do NOT error, it's an async error!
}
void _assert_async_cpu(const Tensor& self) {
TORCH_CHECK(
native::is_nonzero(self),

View File

@ -5,7 +5,6 @@
#include <ATen/native/ReduceOpsUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <ATen/OpMathType.h>
@ -79,12 +78,12 @@ void min_all_kernel_impl(Tensor& result, const Tensor& input) {
reduce_all_impl<int64_t>(result, input, upper_bound<int64_t>(),
[=](int64_t a, int64_t b) -> int64_t { return min_impl(a, b); });
} else {
AT_DISPATCH_V2(input.scalar_type(), "min_all", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "min_all", [&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
reduce_all_impl_vec<scalar_t>(result, input, upper_bound<scalar_t>(),
[=] (scalar_t a , scalar_t b) -> scalar_t { return min_impl(a, b); },
[=](Vec a, Vec b) -> Vec { return minimum(a, b); });
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
});
}
}
@ -104,12 +103,12 @@ void max_all_kernel_impl(Tensor& result, const Tensor& input) {
reduce_all_impl<int64_t>(result, input, lower_bound<int64_t>(),
[=](int64_t a, int64_t b) -> int64_t { return max_impl(a, b); });
} else {
AT_DISPATCH_V2(input.scalar_type(), "max_all", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "max_all", [&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
reduce_all_impl_vec<scalar_t>(result, input, lower_bound<scalar_t>(),
[=] (scalar_t a , scalar_t b) -> scalar_t { return max_impl(a, b); },
[=](Vec a, Vec b) -> Vec { return maximum(a, b); });
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
});
}
}
@ -200,7 +199,7 @@ void aminmax_allreduce_kernel(
}
);
} else {
AT_DISPATCH_V2(input.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, input.scalar_type(), "aminmax_cpu", [&] {
using Vec = Vectorized<opmath_type<scalar_t>>;
using scalar_t_pair = std::pair<scalar_t, scalar_t>;
reduce_all_impl_vec_two_outputs<scalar_t>(
@ -215,7 +214,7 @@ void aminmax_allreduce_kernel(
[=](Vec a, Vec b) -> Vec { return minimum(a, b); },
[=](Vec a, Vec b) -> Vec { return maximum(a, b); }
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
});
}
}

View File

@ -3,7 +3,6 @@
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/OpMathType.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
@ -348,35 +347,34 @@ struct MinValuesOps: public at::native::MinOps<scalar_t> {
};
void min_values_kernel_impl(TensorIterator& iter) {
// This case is special because of Vectorized<int64_t> does not
// handle upper_bound<int64_t>().
// See: https://github.com/pytorch/pytorch/issues/43254
if (iter.dtype() == kLong || iter.dtype() == kUInt64) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
binary_kernel_reduce(
iter,
MinValuesOps<scalar_t>{},
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
}), kLong, kUInt64);
if (iter.dtype() == kLong) {
// This case is special because of Vectorized<int64_t> does not
// handle upper_bound<int64_t>().
// See: https://github.com/pytorch/pytorch/issues/43254
using scalar_t = int64_t;
binary_kernel_reduce(
iter,
MinValuesOps<scalar_t>{},
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
return;
}
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cpu", [&iter] {
binary_kernel_reduce_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t { return min_impl(a, b); },
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return minimum(a, b); },
static_cast<double>(upper_bound<scalar_t>()));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void max_values_kernel_impl(TensorIterator& iter) {
AT_DISPATCH_V2(iter.dtype(), "max_values_cpu", AT_WRAP([&iter] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cpu", [&iter] {
binary_kernel_reduce_vec(
iter,
[](scalar_t a, scalar_t b) -> scalar_t { return max_impl(a, b); },
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return maximum(a, b); },
lower_bound<scalar_t>());
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void argmax_kernel_impl(TensorIterator &iter) {

View File

@ -11,7 +11,6 @@
#include <vector>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/Parallel.h>
#include <ATen/NumericUtils.h>
#include <ATen/TensorIterator.h>
@ -107,7 +106,7 @@ void min_kernel_impl(
bool keepdim) {
int64_t self_dim_size = ensure_nonempty_size(self, dim);
AT_DISPATCH_V2(self.scalar_type(), "min_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "min_cpu", [&] {
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
scalar_t* result_data, int64_t* indice_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -129,7 +128,7 @@ void min_kernel_impl(
*indice_data = index;
}
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
});
}
void max_kernel_impl(
@ -140,7 +139,7 @@ void max_kernel_impl(
bool keepdim) {
int64_t self_dim_size = ensure_nonempty_size(self, dim);
AT_DISPATCH_V2(self.scalar_type(), "max_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool, self.scalar_type(), "max_cpu", [&] {
compare_base_kernel<scalar_t>(result, indice, self, dim, keepdim, [&] (
scalar_t* result_data, int64_t* indice_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -162,7 +161,7 @@ void max_kernel_impl(
*indice_data = index;
}
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Half, ScalarType::BFloat16, ScalarType::Bool);
});
}
void aminmax_kernel(
@ -187,7 +186,7 @@ void aminmax_kernel(
return;
}
AT_DISPATCH_V2(self.scalar_type(), "aminmax_cpu", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half, self.scalar_type(), "aminmax_cpu", [&] {
compare_base_kernel<scalar_t, scalar_t>(min_result, max_result, self, wrap_dim, keepdim, [&] (
scalar_t* min_result_data, scalar_t* max_result_data,
const scalar_t* self_data, auto self_dim_stride) {
@ -210,7 +209,7 @@ void aminmax_kernel(
*max_result_data = max_number;
}
);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), ScalarType::Bool, ScalarType::BFloat16, ScalarType::Half);
});
}
void where_kernel_impl(TensorIterator &iter) {

View File

@ -1,6 +1,5 @@
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/ReduceAllOps.h>
@ -29,22 +28,22 @@ void _min_max_values_kernel_cuda_impl(TensorIterator& iter) {
}
void aminmax_allreduce_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.input_dtype(), "aminmax_all_cuda", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "aminmax_all_cuda", [&] {
_min_max_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void aminmax_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.input_dtype(), "aminmax_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "aminmax_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinMaxOps<scalar_t, scalar_t, int32_t>{},
thrust::pair<scalar_t, scalar_t>(
at::numeric_limits<scalar_t>::upper_bound(),
at::numeric_limits<scalar_t>::lower_bound()));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
} // namespace at::native

View File

@ -1,6 +1,5 @@
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/ReduceAllOps.h>
@ -34,27 +33,27 @@ void max_values_kernel_cuda_impl(TensorIterator& iter) {
}
void max_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.dtype(), "max_values_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.dtype(), "max_values_cuda", [&]() {
max_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void max_launch_kernel(TensorIterator& iter) {
AT_DISPATCH_V2(
iter.input_dtype(), "max_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool, iter.input_dtype(), "max_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MaxOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(
at::numeric_limits<scalar_t>::lower_bound(), 0));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void max_all_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "max_all_cuda", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "max_all_cuda", [&] {
max_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
REGISTER_DISPATCH(max_values_stub, &max_values_kernel_cuda)

View File

@ -12,7 +12,6 @@
#include <ATen/NumericUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
#include <ATen/NumericUtils.h>
#include <ATen/cuda/NumericLimits.cuh>
@ -34,24 +33,24 @@ void min_values_kernel_cuda_impl(TensorIterator& iter) {
}
void min_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.dtype(), "min_values_cuda", [&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void min_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "min_cuda", AT_WRAP([&]() {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "min_cuda", [&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::upper_bound(), 0));
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
void min_all_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "min_all_cuda", AT_WRAP([&] {
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, iter.input_dtype(), "min_all_cuda", [&] {
min_values_kernel_cuda_impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
});
}
REGISTER_DISPATCH(min_values_stub, &min_values_kernel_cuda)

View File

@ -40,8 +40,6 @@ using namespace at::mps;
namespace at::native::mps {
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)());
struct MPSScalar {
id<MTLBuffer> getMTLBuffer() const {
return __builtin_bit_cast(id<MTLBuffer>, buffer.get());

View File

@ -53,21 +53,6 @@
@end
namespace at::native::mps {
void dispatch_sync_with_rethrow(dispatch_queue_t queue, void (^block)()) {
__block std::optional<std::exception_ptr> block_exception;
dispatch_sync(queue, ^() {
try {
block();
} catch (...) {
block_exception = std::current_exception();
}
});
if (block_exception) {
std::rethrow_exception(*block_exception);
}
}
/**
* Computes distance from lowest to highest element offset in given tensor.
*/

View File

@ -1,4 +1,5 @@
#include <c10/metal/atomic.h>
#include <c10/metal/error.h>
#include <c10/metal/indexing.h>
#include <metal_stdlib>
@ -31,10 +32,24 @@ OffsetT index_apply_indices(
constant IndexAB* indices,
constant int64_t* sizes,
constant int64_t* strides,
uint num_indices) {
uint num_indices,
thread bool& error,
device ErrorMessages* error_buf) {
OffsetT rc = offs.x;
for (uint i = 0; i < num_indices; i++) {
auto idx = indices[i].indexArray[offs.y];
if (idx < -sizes[i] || idx >= sizes[i]) {
TORCH_REPORT_ERROR(
error_buf,
"index ",
idx,
" is out of bounds for dimension ",
i,
" with size ",
sizes[i]);
error = true;
break;
}
if (idx < 0) {
idx += sizes[i];
}
@ -55,6 +70,7 @@ kernel void index_select(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
const auto ndim = ndim_nindices_numel.x;
const auto num_indices = ndim_nindices_numel.y;
@ -65,8 +81,19 @@ kernel void index_select(
indices_strides,
ndim,
thread_index);
bool error = false;
auto input_offs = index_apply_indices<OffsetT>(
offs.yz, indices, index_sizes, index_strides, num_indices);
offs.yz,
indices,
index_sizes,
index_strides,
num_indices,
error,
error_buffer);
if (error) {
output[offs.x / sizeof(T)] = 0;
return;
}
output[offs.x / sizeof(T)] = input[input_offs / sizeof(T)];
}
@ -82,7 +109,9 @@ inline void index_put_impl(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index) {
bool error = false;
const auto ndim = ndim_nindices_numel.x;
const auto num_indices = ndim_nindices_numel.y;
const auto offs = index_get_offsets(
@ -93,7 +122,16 @@ inline void index_put_impl(
ndim,
thread_index);
auto output_offs = index_apply_indices<OffsetT>(
offs.xz, indices, index_sizes, index_strides, num_indices);
offs.xz,
indices,
index_sizes,
index_strides,
num_indices,
error,
error_buffer);
if (error) {
return;
}
output[output_offs / sizeof(T)] = input[offs.y / sizeof(T)];
}
@ -109,6 +147,7 @@ kernel void index_put(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
index_put_impl(
output,
@ -121,6 +160,7 @@ kernel void index_put(
index_sizes,
index_strides,
ndim_nindices_numel,
error_buffer,
thread_index);
}
@ -136,6 +176,7 @@ kernel void index_put_serial(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
(void)thread_index; // Suppress unused vairable varning
for (uint idx = 0; idx < ndim_nindices_numel.z; ++idx) {
@ -150,6 +191,7 @@ kernel void index_put_serial(
index_sizes,
index_strides,
ndim_nindices_numel,
error_buffer,
idx);
}
}
@ -166,6 +208,7 @@ kernel void index_put_accumulate(
constant int64_t* index_sizes,
constant int64_t* index_strides,
constant uint4& ndim_nindices_numel,
device ErrorMessages* error_buffer,
uint thread_index [[thread_position_in_grid]]) {
const auto ndim = ndim_nindices_numel.x;
const auto num_indices = ndim_nindices_numel.y;
@ -176,8 +219,18 @@ kernel void index_put_accumulate(
indices_strides,
ndim,
thread_index);
bool error = false;
auto output_offs = index_apply_indices<OffsetT>(
offs.xz, indices, index_sizes, index_strides, num_indices);
offs.xz,
indices,
index_sizes,
index_strides,
num_indices,
error,
error_buffer);
if (error) {
return;
}
AtomicType<T>::atomic_add(
reinterpret_cast<device AtomicType_t<T>*>(output),
output_offs / sizeof(T),
@ -197,6 +250,7 @@ kernel void index_put_accumulate(
constant int64_t* index_sizes, \
constant int64_t* index_strides, \
constant uint4& ndim_nindices_numel, \
device ErrorMessages* error_buffer, \
uint thread_index [[thread_position_in_grid]])
#define REGISTER_INDEX_OP_ALL_DTYPES(OP_NAME) \

View File

@ -220,7 +220,7 @@ Tensor _embedding_bag_dense_backward_mps(const Tensor& output_grad,
auto num_threads = (params.mode == EmbeddingBagMode::MAX) ? output_grad.numel() : num_indices * params.feature_size;
MPSStream* stream = getCurrentMPSStream();
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("embedding_bag_backward_{}_{}",
@ -273,7 +273,7 @@ Tensor _embedding_bag_per_sample_weights_backward_mps(const Tensor& output_grad,
auto num_threads = num_indices * feature_size;
MPSStream* stream = getCurrentMPSStream();
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("embedding_bag_per_sample_weights_backward_{}_{}",

View File

@ -179,7 +179,8 @@ static void dispatch_index_kernel(TensorIteratorBase& iter,
iter.strides(2),
index_size,
index_stride,
ndim_nindiees);
ndim_nindiees,
mpsStream->getErrorBuffer());
mtl_dispatch1DJob(computeEncoder, indexSelectPSO, serial ? 1 : iter.numel());
});
}
@ -299,7 +300,7 @@ static Tensor& nonzero_out_native_mps(const Tensor& self, Tensor& out_) {
MPSStream* stream = getCurrentMPSStream();
using CachedGraph = MPSUnaryCachedGraph;
dispatch_sync(stream->queue(), ^() {
dispatch_sync_with_rethrow(stream->queue(), ^() {
stream->synchronize(SyncType::COMMIT_AND_WAIT);
});
int64_t total_nonzero = at::count_nonzero(self).item<int64_t>();
@ -384,7 +385,7 @@ Tensor& nonzero_out_mps(const Tensor& self, Tensor& out_) {
MPSStream* stream = getCurrentMPSStream();
using CachedGraph = MPSUnaryCachedGraph;
dispatch_sync(stream->queue(), ^() {
dispatch_sync_with_rethrow(stream->queue(), ^() {
stream->synchronize(SyncType::COMMIT_AND_WAIT);
});
int64_t total_nonzero = at::count_nonzero(self).item<int64_t>();

View File

@ -923,7 +923,7 @@ std::tuple<Tensor, Tensor, Tensor> layer_norm_mps(const Tensor& input,
MPSStream* stream = getCurrentMPSStream();
TORCH_CHECK_NOT_IMPLEMENTED(input.scalar_type() != kLong, "Not implemented for long on MPS");
@autoreleasepool {
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
dispatch_sync_with_rethrow(stream->queue(), ^() {
// which kernel variant to use based on the normalized axis N size
const int N_READS = 4;
auto metalType = mps::scalarToMetalTypeString(input);

View File

@ -192,6 +192,11 @@
CompositeExplicitAutograd: _assert_tensor_metadata
Meta: _assert_tensor_metadata_meta_symint
- func: _async_error(str msg) -> ()
dispatch:
CompositeExplicitAutograd: _async_error
Meta: _async_error_meta
- func: _print(str s) -> ()
dispatch:
CompositeExplicitAutograd: _print
@ -4292,6 +4297,7 @@
dispatch:
SparseCPU: sparse_sparse_matmul_cpu
SparseCUDA: sparse_sparse_matmul_cuda
SparseMPS: sparse_sparse_matmul_mps
autogen: _sparse_sparse_matmul.out
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
@ -4383,7 +4389,7 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: mv
SparseCPU, SparseCUDA: mv_sparse
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
@ -9832,7 +9838,7 @@
structured_delegate: erfinv.out
variants: method, function
dispatch:
SparseCPU, SparseCUDA: erfinv_sparse
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr
tags: pointwise
@ -9841,7 +9847,7 @@
structured_delegate: erfinv.out
variants: method
dispatch:
SparseCPU, SparseCUDA: erfinv_sparse_
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_
tags: pointwise
@ -9851,7 +9857,7 @@
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: erfinv_out
SparseCPU, SparseCUDA: erfinv_sparse_out
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_out
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out
tags: pointwise

View File

@ -10,6 +10,10 @@
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_coalesce_native.h>
#include <ATen/ops/repeat_interleave_native.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/_sparse_sparse_matmul_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/add_native.h>
@ -888,5 +892,114 @@ static void sparse_mask_intersection_out_mps_kernel(
/*coalesce_mask=*/false);
}
Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
TORCH_CHECK(mat1_.is_sparse() && mat2_.is_sparse(),
"sparse_sparse_matmul_mps: both inputs must be sparse COO tensors");
TORCH_CHECK(mat1_.is_mps() && mat2_.is_mps(),
"sparse_sparse_matmul_mps: both inputs must be on MPS device");
TORCH_CHECK(mat1_.dim() == 2 && mat2_.dim() == 2,
"sparse_sparse_matmul_mps: both inputs must be 2D matrices");
TORCH_CHECK(mat1_.dense_dim() == 0 && mat2_.dense_dim() == 0,
"sparse_sparse_matmul_mps: only scalar values supported (dense_dim == 0)");
TORCH_CHECK(mat1_.size(1) == mat2_.size(0),
"mat1 and mat2 shapes cannot be multiplied (", mat1_.size(0), "x", mat1_.size(1), " and ", mat2_.size(0), "x", mat2_.size(1), ")");
TORCH_CHECK(mat1_.scalar_type() == mat2_.scalar_type(),
"sparse_sparse_matmul_mps: mat1 dtype ", mat1_.scalar_type(),
" does not match mat2 dtype ", mat2_.scalar_type());
const auto device = mat1_.device();
auto A = mat1_.coalesce();
auto B = mat2_.coalesce();
const auto I = A.size(0);
const auto K = A.size(1);
const auto N = B.size(1);
const auto nnzA = A._nnz();
const auto nnzB = B._nnz();
// Early empty result, return an empty, coalesced tensor
if (I == 0 || N == 0 || K == 0 || nnzA == 0 || nnzB == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
const auto computeDtype = at::result_type(mat1_, mat2_);
auto A_idx = A._indices().contiguous();
auto A_val = A._values().to(computeDtype).contiguous();
auto A_i = A_idx.select(0, 0).contiguous();
auto A_k = A_idx.select(0, 1).contiguous();
auto B_idx = B._indices().contiguous();
auto B_val = B._values().to(computeDtype).contiguous();
auto B_k = B_idx.select(0, 0).contiguous();
auto B_j = B_idx.select(0, 1).contiguous();
// csr-style row pointers for B by k (the shared dimension)
Tensor row_ptr_B;
{
auto batch_ptr = at::tensor({0LL, nnzB}, at::device(device).dtype(at::kLong));
row_ptr_B = at::empty({K + 1}, at::device(device).dtype(at::kLong));
build_row_ptr_per_batch_mps(B_k, batch_ptr, /*B=*/1, /*I=*/K, row_ptr_B);
}
auto row_ptr_B_lo = row_ptr_B.narrow(0, 0, K);
auto row_ptr_B_hi = row_ptr_B.narrow(0, 1, K);
auto deg_B = row_ptr_B_hi.sub(row_ptr_B_lo);
auto counts = deg_B.index_select(0, A_k);
const int64_t P = counts.sum().item<int64_t>();
if (P == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
auto group_ids = repeat_interleave_mps(counts);
// exclusive cumsum of counts
auto offsets = cumsum(counts, /*dim=*/0).sub(counts);
auto offsets_gather = offsets.index_select(0, group_ids);
auto within = at::arange(P, at::device(device).dtype(at::kLong)).sub(offsets_gather);
// Map each output element to its source B row and position
auto k_per_out = A_k.index_select(0, group_ids);
auto start_in_B = row_ptr_B.index_select(0, k_per_out);
auto seg_index = start_in_B.add(within);
// Assemble candidate coo pairs and values
auto i_out = A_i.index_select(0, group_ids).contiguous();
auto j_out = B_j.index_select(0, seg_index).contiguous();
auto vA_out = A_val.index_select(0, group_ids).contiguous();
auto vB_out = B_val.index_select(0, seg_index).contiguous();
auto v_out = vA_out.mul(vB_out);
// build (2, P) indices
auto out_indices = at::empty({2, P}, at::device(device).dtype(at::kLong)).contiguous();
out_indices.select(0, 0).copy_(i_out);
out_indices.select(0, 1).copy_(j_out);
auto result = _sparse_coo_tensor_unsafe(
out_indices, v_out, {I, N}, mat1_.options().dtype(computeDtype));
result = result.coalesce();
if (result.scalar_type() != mat1_.scalar_type()) {
auto cast_vals = result._values().to(mat1_.scalar_type());
auto out = _sparse_coo_tensor_unsafe(result._indices(), cast_vals, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
return result;
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -952,7 +952,7 @@ def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
first_fields.append(kwargs["tag"])
headers = first_headers + ["speedup", "abs_latency"]
row = first_fields + [float(speedup), median[1] * 1000]
msg = f"{speedup:.3f}x"
msg = f"{median[0] * 1000} ms, {median[1] * 1000} ms, {speedup:.3f}x"
if args.baseline:
headers.extend(
[
@ -1010,7 +1010,7 @@ def latency_experiment_summary(suite_name, args, model, timings, **kwargs):
# Hypothetically you can use this from other places, but it's currently
# inaccessible, and when this assert fails you need to update the
# event_name here to account for the other cases you are using this
assert args.quantization is not None
assert any([args.quantization, args.optimus])
output_signpost(
dict(zip(headers, row)),
args,
@ -2587,6 +2587,9 @@ class BenchmarkRunner:
**experiment_kwargs,
)
# reset dynamo
torch._dynamo.reset()
if self.args.export_aot_inductor:
optimized_model_iter_fn = optimize_ctx
else:
@ -2950,7 +2953,7 @@ class BenchmarkRunner:
status = self.check_tolerance(name, model, example_inputs, optimize_ctx)
print(status)
elif self.args.performance:
if self.args.backend == "torchao":
if self.args.backend in ["torchao", "optimus"]:
status = self.run_performance_test_non_alternate(
name, model, example_inputs, optimize_ctx, experiment, tag
)
@ -3526,6 +3529,12 @@ def parse_args(args=None):
action="store_true",
help="Measure speedup with TorchInductor",
)
group.add_argument(
"--optimus",
choices=["vertical_opt", "horizontal_opt", "all"],
default=None,
help="Measure speedup of Optimus with TorchInductor baseline",
)
group.add_argument(
"--quantization",
choices=[
@ -3783,6 +3792,9 @@ def run(runner, args, original_dir=None):
if args.inductor:
assert args.backend is None
args.backend = "inductor"
if args.optimus:
assert args.backend is None
args.backend = "optimus"
if args.quantization:
assert args.backend is None
args.backend = "torchao"
@ -4067,10 +4079,22 @@ def run(runner, args, original_dir=None):
runner.model_iter_fn = model_iter_fn_and_mark_step
optimize_ctx = torchao_optimize_ctx(args.quantization)
elif args.backend == "optimus":
from .optimus import get_baseline_ctx, get_optimus_optimize_ctx
baseline_ctx = get_baseline_ctx(
nopython=args.nopython, inductor_compile_mode=args.inductor_compile_mode
)
runner.model_iter_fn = baseline_ctx(runner.model_iter_fn)
optimize_ctx = get_optimus_optimize_ctx(
args.optimus, args.nopython, args.inductor_compile_mode
)
else:
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
experiment = (
speedup_experiment if args.backend != "torchao" else latency_experiment
speedup_experiment
if args.backend not in ["torchao", "optimus"]
else latency_experiment
)
if args.accuracy:
output_filename = f"accuracy_{args.backend}.csv"
@ -4091,7 +4115,12 @@ def run(runner, args, original_dir=None):
if args.only in runner.disable_cudagraph_models:
args.disable_cudagraphs = True
if args.inductor or args.backend == "inductor" or args.export_aot_inductor:
if (
args.inductor
or args.backend == "inductor"
or args.export_aot_inductor
or args.backend == "optimus"
):
inductor_config.triton.cudagraphs = not args.disable_cudagraphs
inductor_config.triton.persistent_reductions = (
not args.disable_persistent_reductions

View File

@ -0,0 +1,62 @@
import functools
import torch
def get_baseline_ctx(nopython, inductor_compile_mode):
return functools.partial(
torch.compile,
backend="inductor",
fullgraph=nopython,
mode=inductor_compile_mode,
)
def get_optimus_optimize_ctx(config, nopython, inductor_compile_mode):
if config == "vertical_opt":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"merge_splits_pass": {},
"split_cat_pass": {},
"unbind_stack_pass": {},
"unbind_cat_to_view_pass": {},
}
}
elif config == "horizontal_opt":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"batch_linear": {},
"batch_layernorm": {},
},
}
elif config == "all":
optimus_inductor_config = {
"pre_grad_fusion_options": {
"normalization_pass": {},
"batch_linear": {},
"batch_layernorm": {},
"merge_splits_pass": {},
"split_cat_pass": {},
"unbind_stack_pass": {},
"unbind_cat_to_view_pass": {},
},
}
else:
raise RuntimeError(f"Unknown optimus config: {config}")
def _inner(fn):
if "pre_grad_fusion_options" in optimus_inductor_config:
torch._inductor.config.pre_grad_fusion_options = optimus_inductor_config[
"pre_grad_fusion_options"
]
if "post_grad_fusion_options" in optimus_inductor_config:
torch._inductor.config.post_grad_fusion_options = optimus_inductor_config[
"post_grad_fusion_options"
]
return torch.compile(
fn, backend="inductor", fullgraph=nopython, mode=inductor_compile_mode
)
return _inner

View File

@ -2,6 +2,7 @@ import csv
import os
import re
import sys
from pathlib import Path
# This script takes the logs produced by the benchmark scripts (e.g.,
@ -15,8 +16,7 @@ import sys
# This script is not very well written, feel free to rewrite it as necessary
assert len(sys.argv) == 2
full_log = open(sys.argv[1]).read()
full_log = Path(sys.argv[1]).read_text()
# If the log contains a gist URL, extract it so we can include it in the CSV
gist_url = ""

View File

@ -484,24 +484,106 @@ PyTorch,sum,sum_R256_V512_dim0_contiguousTrue_cpu,short,False,50.954394,0.000000
PyTorch,sum,sum_R256_V512_dim0_contiguousFalse_cpu,short,False,57.957757,0.000000
PyTorch,sum,sum_R256_V512_dim1_contiguousTrue_cpu,short,False,53.592068,0.000000
PyTorch,sum,sum_R256_V512_dim1_contiguousFalse_cpu,short,False,51.339726,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N16_cpu,short,False,7.040985,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N64_cpu,short,False,7.168604,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N128_cpu,short,False,7.434442,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N16_cpu,short,False,7.078318,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N64_cpu,short,False,7.426670,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N128_cpu,short,False,7.679027,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N16_cpu,short,False,7.281365,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N64_cpu,short,False,7.682783,0.000000
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N128_cpu,short,False,8.381938,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N16_cpu,short,False,7.039854,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N64_cpu,short,False,7.399855,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N128_cpu,short,False,7.715193,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N16_cpu,short,False,7.255140,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N64_cpu,short,False,7.753522,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N128_cpu,short,False,8.364281,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N16_cpu,short,False,7.476377,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N64_cpu,short,False,8.458564,0.000000
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N128_cpu,short,False,9.391939,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool,short,False,0.927,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8,short,False,6.261,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8,short,False,6.351,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16,short,False,6.177,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32,short,False,6.333,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64,short,False,6.588,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16,short,False,8.117,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16,short,False,9.358,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32,short,False,7.844,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64,short,False,8.097,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool,short,False,6.159,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,0.926,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8,short,False,6.192,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16,short,False,6.276,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,6.461,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64,short,False,6.524,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16,short,False,8.136,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16,short,False,6.854,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32,short,False,6.446,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64,short,False,6.829,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool,short,False,6.088,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8,short,False,6.059,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8,short,False,0.922,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16,short,False,6.263,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32,short,False,6.330,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64,short,False,6.688,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16,short,False,8.176,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16,short,False,6.959,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32,short,False,6.430,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64,short,False,6.818,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool,short,False,6.350,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8,short,False,6.221,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8,short,False,6.193,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16,short,False,0.922,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32,short,False,6.263,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64,short,False,6.525,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16,short,False,7.960,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16,short,False,6.801,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32,short,False,6.594,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64,short,False,7.089,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool,short,False,6.498,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,6.358,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8,short,False,6.390,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16,short,False,6.415,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,0.925,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64,short,False,6.657,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16,short,False,7.954,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16,short,False,6.930,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32,short,False,6.737,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64,short,False,6.948,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool,short,False,6.757,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8,short,False,6.402,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8,short,False,6.550,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16,short,False,6.518,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32,short,False,6.766,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64,short,False,0.929,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16,short,False,8.557,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16,short,False,9.045,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32,short,False,7.672,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64,short,False,7.276,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool,short,False,6.414,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8,short,False,7.736,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8,short,False,7.889,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16,short,False,8.170,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32,short,False,7.783,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64,short,False,7.743,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16,short,False,0.927,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16,short,False,7.018,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32,short,False,8.428,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64,short,False,6.767,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool,short,False,6.479,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8,short,False,7.827,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8,short,False,6.450,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16,short,False,6.320,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32,short,False,6.385,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64,short,False,8.119,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16,short,False,8.063,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16,short,False,0.925,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32,short,False,8.629,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64,short,False,6.638,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool,short,False,6.425,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8,short,False,7.803,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8,short,False,6.502,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16,short,False,6.429,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32,short,False,6.549,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64,short,False,7.749,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16,short,False,7.301,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16,short,False,7.682,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32,short,False,0.930,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64,short,False,6.738,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool,short,False,6.798,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8,short,False,6.506,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8,short,False,6.494,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16,short,False,6.668,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32,short,False,6.696,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64,short,False,7.115,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16,short,False,7.910,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16,short,False,7.410,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32,short,False,6.868,0.000000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64,short,False,0.924,0.000000
PyTorch,addcmul,addcmul_M1_N2_cpu_dtypetorch.float32,short,False,4.461410,0.000000
PyTorch,addcmul,addcmul_M1_N2_cpu_dtypetorch.bfloat16,short,False,4.560082,0.000000
PyTorch,addcmul,addcmul_M32_N64_cpu_dtypetorch.float32,short,False,5.141248,0.000000

1 Benchmarking Framework Benchmarking Module Name Case Name tag run_backward Execution Time Peak Memory (KB)
484 PyTorch sum sum_R256_V512_dim0_contiguousFalse_cpu short False 57.957757 0.000000
485 PyTorch sum sum_R256_V512_dim1_contiguousTrue_cpu short False 53.592068 0.000000
486 PyTorch sum sum_R256_V512_dim1_contiguousFalse_cpu short False 51.339726 0.000000
487 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M8_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool short False 7.040985 0.927 0.000000
488 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M8_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8 short False 7.168604 6.261 0.000000
489 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M8_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8 short False 7.434442 6.351 0.000000
490 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M16_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16 short False 7.078318 6.177 0.000000
491 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M16_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32 short False 7.426670 6.333 0.000000
492 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M16_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64 short False 7.679027 6.588 0.000000
493 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M32_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16 short False 7.281365 8.117 0.000000
494 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M32_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16 short False 7.682783 9.358 0.000000
495 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M32_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32 short False 8.381938 7.844 0.000000
496 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M8_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64 short False 7.039854 8.097 0.000000
497 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M8_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool short False 7.399855 6.159 0.000000
498 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M8_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8 short False 7.715193 0.926 0.000000
499 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M16_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8 short False 7.255140 6.192 0.000000
500 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M16_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16 short False 7.753522 6.276 0.000000
501 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M16_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32 short False 8.364281 6.461 0.000000
502 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M32_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64 short False 7.476377 6.524 0.000000
503 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M32_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16 short False 8.458564 8.136 0.000000
504 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M32_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16 short False 9.391939 6.854 0.000000
505 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32 short False 6.446 0.000000
506 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64 short False 6.829 0.000000
507 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool short False 6.088 0.000000
508 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8 short False 6.059 0.000000
509 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8 short False 0.922 0.000000
510 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16 short False 6.263 0.000000
511 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32 short False 6.330 0.000000
512 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64 short False 6.688 0.000000
513 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16 short False 8.176 0.000000
514 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16 short False 6.959 0.000000
515 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32 short False 6.430 0.000000
516 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64 short False 6.818 0.000000
517 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool short False 6.350 0.000000
518 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8 short False 6.221 0.000000
519 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8 short False 6.193 0.000000
520 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16 short False 0.922 0.000000
521 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32 short False 6.263 0.000000
522 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64 short False 6.525 0.000000
523 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16 short False 7.960 0.000000
524 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16 short False 6.801 0.000000
525 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32 short False 6.594 0.000000
526 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64 short False 7.089 0.000000
527 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool short False 6.498 0.000000
528 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8 short False 6.358 0.000000
529 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8 short False 6.390 0.000000
530 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16 short False 6.415 0.000000
531 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32 short False 0.925 0.000000
532 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64 short False 6.657 0.000000
533 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16 short False 7.954 0.000000
534 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16 short False 6.930 0.000000
535 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32 short False 6.737 0.000000
536 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64 short False 6.948 0.000000
537 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool short False 6.757 0.000000
538 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8 short False 6.402 0.000000
539 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8 short False 6.550 0.000000
540 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16 short False 6.518 0.000000
541 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32 short False 6.766 0.000000
542 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64 short False 0.929 0.000000
543 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16 short False 8.557 0.000000
544 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16 short False 9.045 0.000000
545 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32 short False 7.672 0.000000
546 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64 short False 7.276 0.000000
547 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool short False 6.414 0.000000
548 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8 short False 7.736 0.000000
549 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8 short False 7.889 0.000000
550 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16 short False 8.170 0.000000
551 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32 short False 7.783 0.000000
552 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64 short False 7.743 0.000000
553 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16 short False 0.927 0.000000
554 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16 short False 7.018 0.000000
555 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32 short False 8.428 0.000000
556 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64 short False 6.767 0.000000
557 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool short False 6.479 0.000000
558 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8 short False 7.827 0.000000
559 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8 short False 6.450 0.000000
560 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16 short False 6.320 0.000000
561 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32 short False 6.385 0.000000
562 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64 short False 8.119 0.000000
563 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16 short False 8.063 0.000000
564 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16 short False 0.925 0.000000
565 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32 short False 8.629 0.000000
566 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64 short False 6.638 0.000000
567 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool short False 6.425 0.000000
568 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8 short False 7.803 0.000000
569 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8 short False 6.502 0.000000
570 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16 short False 6.429 0.000000
571 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32 short False 6.549 0.000000
572 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64 short False 7.749 0.000000
573 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16 short False 7.301 0.000000
574 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16 short False 7.682 0.000000
575 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32 short False 0.930 0.000000
576 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64 short False 6.738 0.000000
577 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool short False 6.798 0.000000
578 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8 short False 6.506 0.000000
579 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8 short False 6.494 0.000000
580 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16 short False 6.668 0.000000
581 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32 short False 6.696 0.000000
582 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64 short False 7.115 0.000000
583 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16 short False 7.910 0.000000
584 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16 short False 7.410 0.000000
585 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32 short False 6.868 0.000000
586 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64 short False 0.924 0.000000
587 PyTorch addcmul addcmul_M1_N2_cpu_dtypetorch.float32 short False 4.461410 0.000000
588 PyTorch addcmul addcmul_M1_N2_cpu_dtypetorch.bfloat16 short False 4.560082 0.000000
589 PyTorch addcmul addcmul_M32_N64_cpu_dtypetorch.float32 short False 5.141248 0.000000

View File

@ -4,74 +4,84 @@ import torch
tensor_conversion_short_configs = op_bench.cross_product_configs(
M=(
8,
16,
32,
),
N=(
16,
64,
128,
),
M=[32],
N=[128],
device=["cpu", "cuda"],
dtype_one=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
dtype_two=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
tags=["short"],
)
tensor_conversion_long_configs = op_bench.cross_product_configs(
M=(
64,
128,
256,
512,
),
N=(
256,
512,
1024,
2048,
),
M=[1024],
N=[1024],
device=["cpu", "cuda"],
dtype_one=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
dtype_two=[
torch.bool,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.half,
torch.bfloat16,
torch.float,
torch.double,
],
tags=["long"],
)
class FloatToHalfTensorConversionBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device):
class TensorConversionBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, dtype_one, dtype_two, device):
self.inputs = {
"input": torch.rand(
M, N, device=device, requires_grad=False, dtype=torch.float
)
).to(dtype=dtype_one)
}
self.dtype_one = dtype_one
self.dtype_two = dtype_two
def forward(self, input):
return input.to(torch.half)
return input.to(dtype=self.dtype_two)
class HalfToFloatTensorConversionBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device):
self.inputs = {
"input": torch.rand(
M, N, device=device, requires_grad=False, dtype=torch.half
)
}
def forward(self, input):
return input.to(torch.float)
op_bench.generate_pt_test(
tensor_conversion_short_configs, FloatToHalfTensorConversionBenchmark
)
op_bench.generate_pt_test(
tensor_conversion_long_configs, FloatToHalfTensorConversionBenchmark
)
op_bench.generate_pt_test(
tensor_conversion_short_configs, HalfToFloatTensorConversionBenchmark
)
op_bench.generate_pt_test(
tensor_conversion_long_configs, HalfToFloatTensorConversionBenchmark
)
op_bench.generate_pt_test(tensor_conversion_short_configs, TensorConversionBenchmark)
op_bench.generate_pt_test(tensor_conversion_long_configs, TensorConversionBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()

View File

@ -349,24 +349,106 @@ PyTorch,sum,sum_R256_V512_dim0_contiguousTrue_cpu,short,FALSE,12.5841
PyTorch,sum,sum_R256_V512_dim0_contiguousFALSE_cpu,short,FALSE,20.8765
PyTorch,sum,sum_R256_V512_dim1_contiguousTrue_cpu,short,FALSE,15.4414
PyTorch,sum,sum_R256_V512_dim1_contiguousFALSE_cpu,short,FALSE,15.3287
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N16_cpu,short,FALSE,5.0499
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N64_cpu,short,FALSE,5.3229
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M8_N128_cpu,short,FALSE,5.4418
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N16_cpu,short,FALSE,5.0868
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N64_cpu,short,FALSE,5.4495
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M16_N128_cpu,short,FALSE,5.5578
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N16_cpu,short,FALSE,5.2631
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N64_cpu,short,FALSE,5.5646
PyTorch,FloatToHalfTensorConversionBenchmark,FloatToHalfTensorConversionBenchmark_M32_N128_cpu,short,FALSE,5.7898
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N16_cpu,short,FALSE,5.0228
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N64_cpu,short,FALSE,5.3692
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M8_N128_cpu,short,FALSE,5.4006
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N16_cpu,short,FALSE,5.1107
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N64_cpu,short,FALSE,5.4119
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M16_N128_cpu,short,FALSE,5.5583
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N16_cpu,short,FALSE,5.3818
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N64_cpu,short,FALSE,5.5742
PyTorch,HalfToFloatTensorConversionBenchmark,HalfToFloatTensorConversionBenchmark_M32_N128_cpu,short,FALSE,6.8414
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool,short,False,0.797
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8,short,False,6.071
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8,short,False,6.031
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16,short,False,6.243
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32,short,False,7.231
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64,short,False,7.791
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16,short,False,12.661
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16,short,False,11.225
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32,short,False,9.772
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64,short,False,9.872
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool,short,False,6.033
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8,short,False,0.781
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8,short,False,6.060
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16,short,False,6.180
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32,short,False,7.258
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64,short,False,7.758
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16,short,False,10.504
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16,short,False,6.749
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32,short,False,7.679
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64,short,False,7.797
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool,short,False,6.019
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8,short,False,6.079
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8,short,False,0.785
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16,short,False,6.188
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32,short,False,7.288
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64,short,False,7.770
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16,short,False,10.466
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16,short,False,6.676
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32,short,False,7.736
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64,short,False,7.780
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool,short,False,6.130
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8,short,False,6.221
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8,short,False,6.101
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16,short,False,0.791
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32,short,False,6.254
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64,short,False,7.733
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16,short,False,10.562
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16,short,False,6.704
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32,short,False,7.819
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64,short,False,8.276
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool,short,False,6.361
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8,short,False,6.364
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8,short,False,6.309
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16,short,False,6.362
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32,short,False,0.791
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64,short,False,7.746
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16,short,False,9.462
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16,short,False,6.678
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32,short,False,7.827
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64,short,False,8.200
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool,short,False,6.925
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8,short,False,6.947
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8,short,False,6.962
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16,short,False,6.906
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32,short,False,7.664
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64,short,False,0.782
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16,short,False,10.528
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16,short,False,10.123
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32,short,False,9.234
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64,short,False,8.694
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool,short,False,12.653
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8,short,False,9.348
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8,short,False,8.774
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16,short,False,9.063
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32,short,False,10.012
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64,short,False,13.641
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16,short,False,0.788
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16,short,False,13.757
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32,short,False,7.170
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64,short,False,12.511
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool,short,False,6.516
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8,short,False,8.539
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8,short,False,6.483
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16,short,False,6.468
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32,short,False,7.752
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64,short,False,9.868
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16,short,False,10.556
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16,short,False,0.792
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32,short,False,7.577
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64,short,False,8.267
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool,short,False,6.819
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8,short,False,7.715
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8,short,False,6.754
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16,short,False,6.825
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32,short,False,7.790
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64,short,False,9.219
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16,short,False,5.977
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16,short,False,7.069
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32,short,False,0.794
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64,short,False,8.301
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool,short,False,7.401
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8,short,False,7.843
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8,short,False,7.117
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16,short,False,7.170
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32,short,False,8.000
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64,short,False,9.284
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16,short,False,7.179
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16,short,False,7.645
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32,short,False,7.988
PyTorch,TensorConversionBenchmark,TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64,short,False,0.792
PyTorch,relu,"relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.quint8",short,FALSE,9.4657
PyTorch,relu,"relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint8",short,FALSE,9.4625
PyTorch,relu,"relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint32",short,FALSE,9.4165

1 Benchmarking Framework Benchmarking Module Name Case Name tag run_backward Execution Time
349 PyTorch sum sum_R256_V512_dim0_contiguousFALSE_cpu short FALSE 20.8765
350 PyTorch sum sum_R256_V512_dim1_contiguousTrue_cpu short FALSE 15.4414
351 PyTorch sum sum_R256_V512_dim1_contiguousFALSE_cpu short FALSE 15.3287
352 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M8_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bool short FALSE False 5.0499 0.797
353 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M8_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.uint8 short FALSE False 5.3229 6.071
354 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M8_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int8 short FALSE False 5.4418 6.031
355 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M16_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int16 short FALSE False 5.0868 6.243
356 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M16_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int32 short FALSE False 5.4495 7.231
357 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M16_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.int64 short FALSE False 5.5578 7.791
358 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M32_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float16 short FALSE False 5.2631 12.661
359 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M32_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.bfloat16 short FALSE False 5.5646 11.225
360 PyTorch FloatToHalfTensorConversionBenchmark TensorConversionBenchmark FloatToHalfTensorConversionBenchmark_M32_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float32 short FALSE False 5.7898 9.772
361 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M8_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bool_dtype_twotorch.float64 short FALSE False 5.0228 9.872
362 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M8_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bool short FALSE False 5.3692 6.033
363 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M8_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.uint8 short FALSE False 5.4006 0.781
364 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M16_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int8 short FALSE False 5.1107 6.060
365 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M16_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int16 short FALSE False 5.4119 6.180
366 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M16_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int32 short FALSE False 5.5583 7.258
367 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M32_N16_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.int64 short FALSE False 5.3818 7.758
368 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M32_N64_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float16 short FALSE False 5.5742 10.504
369 PyTorch HalfToFloatTensorConversionBenchmark TensorConversionBenchmark HalfToFloatTensorConversionBenchmark_M32_N128_cpu TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.bfloat16 short FALSE False 6.8414 6.749
370 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float32 short False 7.679
371 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.uint8_dtype_twotorch.float64 short False 7.797
372 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bool short False 6.019
373 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.uint8 short False 6.079
374 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int8 short False 0.785
375 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int16 short False 6.188
376 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int32 short False 7.288
377 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.int64 short False 7.770
378 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float16 short False 10.466
379 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.bfloat16 short False 6.676
380 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float32 short False 7.736
381 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int8_dtype_twotorch.float64 short False 7.780
382 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bool short False 6.130
383 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.uint8 short False 6.221
384 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int8 short False 6.101
385 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int16 short False 0.791
386 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int32 short False 6.254
387 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.int64 short False 7.733
388 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float16 short False 10.562
389 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.bfloat16 short False 6.704
390 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float32 short False 7.819
391 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int16_dtype_twotorch.float64 short False 8.276
392 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bool short False 6.361
393 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.uint8 short False 6.364
394 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int8 short False 6.309
395 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int16 short False 6.362
396 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int32 short False 0.791
397 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.int64 short False 7.746
398 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float16 short False 9.462
399 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.bfloat16 short False 6.678
400 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float32 short False 7.827
401 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int32_dtype_twotorch.float64 short False 8.200
402 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bool short False 6.925
403 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.uint8 short False 6.947
404 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int8 short False 6.962
405 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int16 short False 6.906
406 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int32 short False 7.664
407 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.int64 short False 0.782
408 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float16 short False 10.528
409 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.bfloat16 short False 10.123
410 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float32 short False 9.234
411 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.int64_dtype_twotorch.float64 short False 8.694
412 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bool short False 12.653
413 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.uint8 short False 9.348
414 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int8 short False 8.774
415 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int16 short False 9.063
416 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int32 short False 10.012
417 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.int64 short False 13.641
418 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float16 short False 0.788
419 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.bfloat16 short False 13.757
420 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float32 short False 7.170
421 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float16_dtype_twotorch.float64 short False 12.511
422 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bool short False 6.516
423 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.uint8 short False 8.539
424 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int8 short False 6.483
425 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int16 short False 6.468
426 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int32 short False 7.752
427 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.int64 short False 9.868
428 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float16 short False 10.556
429 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.bfloat16 short False 0.792
430 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float32 short False 7.577
431 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.bfloat16_dtype_twotorch.float64 short False 8.267
432 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bool short False 6.819
433 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.uint8 short False 7.715
434 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int8 short False 6.754
435 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int16 short False 6.825
436 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int32 short False 7.790
437 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.int64 short False 9.219
438 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float16 short False 5.977
439 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.bfloat16 short False 7.069
440 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float32 short False 0.794
441 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float32_dtype_twotorch.float64 short False 8.301
442 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bool short False 7.401
443 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.uint8 short False 7.843
444 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int8 short False 7.117
445 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int16 short False 7.170
446 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int32 short False 8.000
447 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.int64 short False 9.284
448 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float16 short False 7.179
449 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.bfloat16 short False 7.645
450 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float32 short False 7.988
451 PyTorch TensorConversionBenchmark TensorConversionBenchmark_M32_N128_cpu_dtype_onetorch.float64_dtype_twotorch.float64 short False 0.792
452 PyTorch relu relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.quint8 short FALSE 9.4657
453 PyTorch relu relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint8 short FALSE 9.4625
454 PyTorch relu relu_dims(3,4,5)_contigFALSE_inplaceFALSE_dtypetorch.qint32 short FALSE 9.4165

View File

@ -52,19 +52,18 @@ def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time
@ -84,10 +83,13 @@ if __name__ == "__main__":
if args.outfile == "stdout":
outfile = sys.stdout
need_close = False
elif args.outfile == "stderr":
outfile = sys.stderr
need_close = False
else:
outfile = open(args.outfile, "a")
need_close = True
test_count = args.test_count
m = args.m
@ -148,3 +150,5 @@ if __name__ == "__main__":
time,
file=outfile,
)
if need_close:
outfile.close()

View File

@ -82,10 +82,13 @@ if __name__ == "__main__":
if args.outfile == "stdout":
outfile = sys.stdout
need_close = False
elif args.outfile == "stderr":
outfile = sys.stderr
need_close = False
else:
outfile = open(args.outfile, "a")
need_close = True
test_count = args.test_count
m = args.m
@ -132,3 +135,5 @@ if __name__ == "__main__":
time_csr,
file=outfile,
)
if need_close:
outfile.close()

View File

@ -179,10 +179,13 @@ if __name__ == "__main__":
if args.outfile == "stdout":
outfile = sys.stdout
need_close = False
elif args.outfile == "stderr":
outfile = sys.stderr
need_close = False
else:
outfile = open(args.outfile, "a")
need_close = True
ops = args.ops.split(",")
@ -434,3 +437,5 @@ if __name__ == "__main__":
if op not in {"bsr_scatter_mm6", "bsr_dense_mm_with_meta"}:
# Break on operations that do not consume parameters
break
if need_close:
outfile.close()

View File

@ -1,6 +1,8 @@
#pragma once
#include <c10/core/SafePyObject.h>
#include <c10/macros/Export.h>
#include <optional>
namespace c10 {
@ -15,7 +17,8 @@ struct C10_API AutogradState {
bool inference_mode,
bool fw_grad_mode,
bool multithreading_enabled)
: grad_mode_(grad_mode),
: graph_exec_group_(std::nullopt),
grad_mode_(grad_mode),
inference_mode_(inference_mode),
fw_grad_mode_(fw_grad_mode),
multithreading_enabled_(multithreading_enabled),
@ -41,6 +44,10 @@ struct C10_API AutogradState {
view_replay_enabled_ = view_replay_enabled;
}
void set_graph_exec_group(std::optional<SafePyObject> group) {
graph_exec_group_ = std::move(group);
}
bool get_grad_mode() const {
return grad_mode_;
}
@ -61,7 +68,12 @@ struct C10_API AutogradState {
return view_replay_enabled_;
}
const std::optional<SafePyObject>& get_graph_exec_group() const {
return graph_exec_group_;
}
private:
std::optional<SafePyObject> graph_exec_group_;
bool grad_mode_ : 1;
bool inference_mode_ : 1;
bool fw_grad_mode_ : 1;

View File

@ -96,6 +96,10 @@ struct C10_API DeviceAllocator : public c10::Allocator {
// Resets peak memory usage statistics for the specified device
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
// Return the free memory size and total memory size in bytes for the
// specified device.
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) = 0;
};
// This function is used to get the DeviceAllocator for a specific device type

View File

@ -345,6 +345,13 @@ class CUDAAllocator : public DeviceAllocator {
c10::DeviceIndex device,
std::shared_ptr<AllocatorState> pps) = 0;
virtual std::string name() = 0;
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
c10::DeviceGuard device_guard({at::kCUDA, device});
size_t free = 0;
size_t total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
return {free, total};
}
};
// Allocator object, statically initialized

111
c10/metal/error.h Normal file
View File

@ -0,0 +1,111 @@
#pragma once
#include <c10/metal/common.h>
namespace c10 {
namespace metal {
C10_METAL_CONSTEXPR unsigned error_message_count = 30;
struct ErrorMessage {
char file[128];
char func[128];
char message[250];
unsigned int line;
};
struct ErrorMessages {
#ifdef __METAL__
::metal::atomic<unsigned int> count;
#else
unsigned int count;
#endif
ErrorMessage msg[error_message_count];
};
#ifdef __METAL__
namespace detail {
static uint strncpy(device char* dst, constant const char* src, unsigned len) {
uint i = 0;
while (src[i] != 0 && i < len - 1) {
dst[i] = src[i];
i++;
}
dst[i] = 0;
return i;
}
inline uint print_arg(
device char* ptr,
unsigned len,
constant const char* arg) {
return strncpy(ptr, arg, len);
}
// Returns number length as string in base10
static inline uint base10_length(long num) {
uint rc = 1;
if (num < 0) {
num = -num;
rc += 1;
}
while (num > 9) {
num /= 10;
rc++;
}
return rc;
}
// Converts signed integer to string
inline uint print_arg(device char* ptr, unsigned len, long arg) {
const auto arg_len = base10_length(arg);
if (arg_len >= len)
return 0;
if (arg < 0) {
ptr[0] = '-';
arg = -arg;
}
uint idx = 1;
do {
ptr[arg_len - idx] = '0' + (arg % 10);
arg /= 10;
idx++;
} while (arg > 0);
ptr[arg_len] = 0;
return arg_len;
}
template <typename T>
inline void print_args(device char* ptr, unsigned len, T arg) {
print_arg(ptr, len, arg);
}
template <typename T, typename... Args>
inline void print_args(device char* ptr, unsigned len, T arg, Args... args) {
const auto rc = print_arg(ptr, len, arg);
print_args(ptr + rc, len - rc, args...);
}
} // namespace detail
template <typename... Args>
static void report_error(
device ErrorMessages* msgs,
constant const char* file,
int line,
constant const char* func,
Args... args) {
const auto idx =
atomic_fetch_add_explicit(&msgs->count, 1, ::metal::memory_order_relaxed);
if (idx >= error_message_count) {
return;
}
device auto* msg = &msgs->msg[idx];
detail::strncpy(msg->file, file, 128);
detail::strncpy(msg->func, func, 128);
detail::print_args(msg->message, 250, args...);
msg->line = line;
}
#define TORCH_REPORT_ERROR(buf, ...) \
::c10::metal::report_error(buf, __FILE__, __LINE__, __func__, __VA_ARGS__)
#endif
} // namespace metal
} // namespace c10

View File

@ -1 +0,0 @@
#include <c10/util/Metaprogramming.h>

View File

@ -1,224 +1 @@
#pragma once
#include <c10/util/TypeList.h>
#include <type_traits>
namespace c10::guts {
/**
* Access information about result type or arguments from a function type.
* Example:
* using A = function_traits<int (float, double)>::return_type // A == int
* using A = function_traits<int (float, double)>::parameter_types::tuple_type
* // A == tuple<float, double>
*/
template <class Func>
struct function_traits {
static_assert(
!std::is_same_v<Func, Func>,
"In function_traits<Func>, Func must be a plain function type.");
};
template <class Result, class... Args>
struct function_traits<Result(Args...)> {
using func_type = Result(Args...);
using return_type = Result;
using parameter_types = typelist::typelist<Args...>;
static constexpr auto number_of_parameters = sizeof...(Args);
};
/**
* infer_function_traits: creates a `function_traits` type for a simple
* function (pointer) or functor (lambda/struct). Currently does not support
* class methods.
*/
template <typename Functor>
struct infer_function_traits {
using type = function_traits<
c10::guts::detail::strip_class_t<decltype(&Functor::operator())>>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result (*)(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename T>
using infer_function_traits_t = typename infer_function_traits<T>::type;
/**
* make_function_traits: creates a `function_traits` type given a Return type
* and a typelist of Argument types
*
* Example:
* bool f(int, int);
*
* infer_function_traits_t<f> == make_function_traits_t<bool,
* typelist::typelist<int, int>>
*/
template <typename Result, typename ArgList>
struct make_function_traits {
static_assert(
false_t<ArgList>::value,
"In guts::make_function_traits<Result, TypeList>, the ArgList argument must be typelist<...>.");
};
template <typename Result, typename... Args>
struct make_function_traits<Result, typelist::typelist<Args...>> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename ArgList>
using make_function_traits_t =
typename make_function_traits<Result, ArgList>::type;
/**
* make_offset_index_sequence<Start, N>
* Like make_index_sequence<N>, but starting from Start instead of 0.
*
* Example:
* make_offset_index_sequence<10, 3> == std::index_sequence<10, 11, 12>
*/
template <size_t Start, size_t N, size_t... Is>
struct make_offset_index_sequence_impl
: make_offset_index_sequence_impl<Start, N - 1, Start + N - 1, Is...> {
static_assert(
static_cast<int>(Start) >= 0,
"make_offset_index_sequence: Start < 0");
static_assert(static_cast<int>(N) >= 0, "make_offset_index_sequence: N < 0");
};
template <size_t Start, size_t... Is>
struct make_offset_index_sequence_impl<Start, 0, Is...> {
typedef std::index_sequence<Is...> type;
};
template <size_t Start, size_t N>
using make_offset_index_sequence =
typename make_offset_index_sequence_impl<Start, N>::type;
/**
* Use tuple_elements to extract a position-indexed subset of elements
* from the argument tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, double> result = tuple_elements(t, std::index_sequence<0,
* 2>());
*/
template <class Tuple, size_t... Is>
constexpr auto tuple_elements(Tuple t, std::index_sequence<Is...> /*unused*/) {
return std::tuple<std::tuple_element_t<Is, Tuple>...>(std::get<Is>(t)...);
}
/**
* Use tuple_take to extract the first or last n elements from the argument
* tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, const char*> first_two = tuple_take<decltype(t), 2>(t);
* std::tuple<const char*, double> last_two = tuple_take<decltype(t), -2>(t);
*/
template <class Tuple, int N, class Enable = void>
struct TupleTake {};
template <class Tuple, int N>
struct TupleTake<Tuple, N, std::enable_if_t<N >= 0, void>> {
static auto call(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(N <= size, "tuple_take: N > size");
return tuple_elements(t, std::make_index_sequence<N>{});
}
};
template <class Tuple, int N>
struct TupleTake < Tuple,
N, std::enable_if_t<N<0, void>> {
static auto call(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(-N <= size, "tuple_take: -N > size");
return tuple_elements(t, make_offset_index_sequence<size + N, -N>{});
}
};
template <class Tuple, int N>
auto tuple_take(Tuple t) {
return TupleTake<Tuple, N>::call(t);
}
/**
* Use tuple_slice to extract a contiguous subtuple from the argument.
*
* Example:
* std::tuple<int, const char*, double, bool> t = std::make_tuple(0,
* "HEY", 2.0, false); std::tuple<int, const char*> middle_two =
* tuple_slice<decltype(t), 1, 2>(t);
*/
template <class Tuple, size_t Start, size_t N>
constexpr auto tuple_slice(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(Start + N <= size, "tuple_slice: Start + N > size");
return tuple_elements(t, make_offset_index_sequence<Start, N>{});
}
/**
* Use tuple_map to run a mapping function over a tuple to get a new tuple.
*
* Example 1:
* auto result = tuple_map(std::tuple<int32_t, int32_t, int32_t>(3, 4, 5), []
* (int32_t a) -> int16_t {return a+1;});
* // result == std::tuple<int16_t, int16_t, int16_t>(4, 5, 6)
*
* Example 2:
* struct Mapper {
* std::string operator()(int32_t a) const {
* return std::to_string(a);
* }
* int64_t operator()(const std::string& a) const {
* return atoi(a.c_str());
* }
* };
* auto result = tuple_map(std::tuple<int32_t, std::string>(3, "4"),
* Mapper());
* // result == std::tuple<std::string, int64_t>("3", 4)
*
* Example 3:
* struct A final {
* int32_t func() {
* return 5;
* }
* };
* struct B final {
* std::string func() {
* return "5";
* }
* };
* auto result = tuple_map(std::make_tuple(A(), B()), [] (auto a) { return
* a.func(); });
* // result == std::tuple<int32_t, std::string>(5, "5");
*/
namespace detail {
template <class Mapper, class... Args, size_t... Indices>
auto tuple_map(
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
std::tuple<Args...>&& tuple,
const Mapper& mapper,
std::index_sequence<Indices...> /*unused*/) {
return std::tuple<decltype(mapper(std::forward<Args>(std::get<Indices>(
tuple))))...>(mapper(std::forward<Args>(std::get<Indices>(tuple)))...);
}
} // namespace detail
template <class Mapper, class... Args>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper) {
return detail::tuple_map(
std::move(tuple), mapper, std::index_sequence_for<Args...>());
}
} // namespace c10::guts
#include <torch/headeronly/util/Metaprogramming.h>

View File

@ -1,515 +1 @@
#pragma once
#include <c10/util/TypeTraits.h>
#include <algorithm>
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
namespace c10::guts {
template <class... T>
struct false_t : std::false_type {};
template <template <class> class... T>
struct false_higher_t : std::false_type {};
namespace typelist {
/**
* Type holding a list of types for compile time type computations
*/
template <class... Items>
struct typelist final {
public:
typelist() = delete; // not for instantiation
};
/**
* Returns the number of types in a typelist
* Example:
* 3 == size<typelist<int, int, double>>::value
*/
template <class TypeList>
struct size final {
static_assert(
false_t<TypeList>::value,
"In typelist::size<T>, T must be typelist<...>.");
};
template <class... Types>
struct size<typelist<Types...>> final {
static constexpr size_t value = sizeof...(Types);
};
/**
* Transforms a list of types into a tuple holding these types.
* Example:
* std::tuple<int, string> == to_tuple_t<typelist<int, string>>
*/
template <class TypeList>
struct to_tuple final {
static_assert(
false_t<TypeList>::value,
"In typelist::to_tuple<T>, T must be typelist<...>.");
};
template <class... Types>
struct to_tuple<typelist<Types...>> final {
using type = std::tuple<Types...>;
};
template <class TypeList>
using to_tuple_t = typename to_tuple<TypeList>::type;
/**
* Creates a typelist containing the types of a given tuple.
* Example:
* typelist<int, string> == from_tuple_t<std::tuple<int, string>>
*/
template <class Tuple>
struct from_tuple final {
static_assert(
false_t<Tuple>::value,
"In typelist::from_tuple<T>, T must be std::tuple<...>.");
};
template <class... Types>
struct from_tuple<std::tuple<Types...>> final {
using type = typelist<Types...>;
};
template <class Tuple>
using from_tuple_t = typename from_tuple<Tuple>::type;
/**
* Concatenates multiple type lists.
* Example:
* typelist<int, string, int> == concat_t<typelist<int, string>,
* typelist<int>>
*/
template <class... TypeLists>
struct concat final {
static_assert(
false_t<TypeLists...>::value,
"In typelist::concat<T1, ...>, the T arguments each must be typelist<...>.");
};
template <class... Head1Types, class... Head2Types, class... TailLists>
struct concat<typelist<Head1Types...>, typelist<Head2Types...>, TailLists...>
final {
using type =
typename concat<typelist<Head1Types..., Head2Types...>, TailLists...>::
type;
};
template <class... HeadTypes>
struct concat<typelist<HeadTypes...>> final {
using type = typelist<HeadTypes...>;
};
template <>
struct concat<> final {
using type = typelist<>;
};
template <class... TypeLists>
using concat_t = typename concat<TypeLists...>::type;
/**
* Filters the types in a type list by a type trait.
* Examples:
* typelist<int&, const string&&> == filter_t<std::is_reference,
* typelist<void, string, int&, bool, const string&&, int>>
*/
template <template <class> class Condition, class TypeList>
struct filter final {
static_assert(
false_t<TypeList>::value,
"In typelist::filter<Condition, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition, class Head, class... Tail>
struct filter<Condition, typelist<Head, Tail...>> final {
static_assert(
is_type_condition<Condition>::value,
"In typelist::filter<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
using type = std::conditional_t<
Condition<Head>::value,
concat_t<
typelist<Head>,
typename filter<Condition, typelist<Tail...>>::type>,
typename filter<Condition, typelist<Tail...>>::type>;
};
template <template <class> class Condition>
struct filter<Condition, typelist<>> final {
static_assert(
is_type_condition<Condition>::value,
"In typelist::filter<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
using type = typelist<>;
};
template <template <class> class Condition, class TypeList>
using filter_t = typename filter<Condition, TypeList>::type;
/**
* Counts how many types in the list fulfill a type trait
* Examples:
* 2 == count_if<std::is_reference, typelist<void, string, int&, bool, const
* string&&, int>>
*/
template <template <class> class Condition, class TypeList>
struct count_if final {
static_assert(
is_type_condition<Condition>::value,
"In typelist::count_if<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::count_if<Condition, TypeList>, the TypeList argument must be typelist<...>.");
// TODO Direct implementation might be faster
static constexpr size_t value = size<filter_t<Condition, TypeList>>::value;
};
/**
* Checks if a typelist contains a certain type.
* Examples:
* contains<typelist<int, string>, string> == true_type
* contains<typelist<int, string>, double> == false_type
*/
namespace detail {
template <class TypeList, class Type, class Enable = void>
struct contains {};
template <class Type>
struct contains<typelist<>, Type, void> : std::false_type {};
template <class Type, class Head, class... Tail>
struct contains<
typelist<Head, Tail...>,
Type,
std::enable_if_t<std::is_same_v<Head, Type>>> : std::true_type {};
template <class Type, class Head, class... Tail>
struct contains<
typelist<Head, Tail...>,
Type,
std::enable_if_t<!std::is_same_v<Head, Type>>>
: contains<typelist<Tail...>, Type> {};
} // namespace detail
template <class TypeList, class Type>
using contains = typename detail::contains<TypeList, Type>::type;
/**
* Returns true iff the type trait is true for all types in the type list
* Examples:
* true == all<std::is_reference, typelist<int&, const float&&, const
* MyClass&>>::value false == all<std::is_reference, typelist<int&, const
* float&&, MyClass>>::value
*/
template <template <class> class Condition, class TypeList>
struct all {
static_assert(
false_t<TypeList>::value,
"In typelist::all<Condition, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition, class... Types>
struct all<Condition, typelist<Types...>>
: std::conjunction<Condition<Types>...> {
static_assert(
is_type_condition<Condition>::value,
"In typelist::all<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
};
/**
* Returns true iff the type trait is true for any type in the type list
* Examples:
* true == true_for_any_type<std::is_reference, typelist<int, const
* float&&, const MyClass>>::value false ==
* true_for_any_type<std::is_reference, typelist<int, const float,
* MyClass>>::value
*/
template <template <class> class Condition, class TypeList>
struct true_for_any_type final {
static_assert(
false_t<TypeList>::value,
"In typelist::true_for_any_type<Condition, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition, class... Types>
struct true_for_any_type<Condition, typelist<Types...>> final
: std::disjunction<Condition<Types>...> {
static_assert(
is_type_condition<Condition>::value,
"In typelist::true_for_any_type<Condition, TypeList>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
};
/**
* Maps types of a type list using a type trait
* Example:
* typelist<int&, double&, string&> == map_t<std::add_lvalue_reference_t,
* typelist<int, double, string>>
*/
template <template <class> class Mapper, class TypeList>
struct map final {
static_assert(
false_t<TypeList>::value,
"In typelist::map<Mapper, TypeList>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Mapper, class... Types>
struct map<Mapper, typelist<Types...>> final {
using type = typelist<Mapper<Types>...>;
};
template <template <class> class Mapper, class TypeList>
using map_t = typename map<Mapper, TypeList>::type;
/**
* Returns the first element of a type list.
* Example:
* int == head_t<typelist<int, string>>
*/
template <class TypeList>
struct head final {
static_assert(
false_t<TypeList>::value,
"In typelist::head<T>, the T argument must be typelist<...>.");
};
template <class Head, class... Tail>
struct head<typelist<Head, Tail...>> final {
using type = Head;
};
template <class TypeList>
using head_t = typename head<TypeList>::type;
/**
* Returns the first element of a type list, or the specified default if the
* type list is empty. Example: int == head_t<bool, typelist<int, string>>
* bool == head_t<bool, typelist<>>
*/
template <class Default, class TypeList>
struct head_with_default final {
using type = Default;
};
template <class Default, class Head, class... Tail>
struct head_with_default<Default, typelist<Head, Tail...>> final {
using type = Head;
};
template <class Default, class TypeList>
using head_with_default_t = typename head_with_default<Default, TypeList>::type;
/**
* Returns the N-th element of a type list.
* Example:
* int == element_t<1, typelist<float, int, char>>
*/
/// Base template.
template <size_t Index, class TypeList>
struct element final {
static_assert(
false_t<TypeList>::value,
"In typelist::element<T>, the T argument must be typelist<...>.");
};
/// Successful case, we have reached the zero index and can "return" the head
/// type.
template <class Head, class... Tail>
struct element<0, typelist<Head, Tail...>> {
using type = Head;
};
/// Error case, we have an index but ran out of types! It will only be selected
/// if `Ts...` is actually empty!
template <size_t Index, class... Ts>
struct element<Index, typelist<Ts...>> {
static_assert(
Index < sizeof...(Ts),
"Index is out of bounds in typelist::element");
};
/// Shave off types until we hit the <0, Head, Tail...> or <Index> case.
template <size_t Index, class Head, class... Tail>
struct element<Index, typelist<Head, Tail...>>
: element<Index - 1, typelist<Tail...>> {};
/// Convenience alias.
template <size_t Index, class TypeList>
using element_t = typename element<Index, TypeList>::type;
/**
* Returns the last element of a type list.
* Example:
* int == last_t<typelist<int, string>>
*/
template <class TypeList>
struct last final {
static_assert(
false_t<TypeList>::value,
"In typelist::last<T>, the T argument must be typelist<...>.");
};
template <class Head, class... Tail>
struct last<typelist<Head, Tail...>> final {
using type = typename last<typelist<Tail...>>::type;
};
template <class Head>
struct last<typelist<Head>> final {
using type = Head;
};
template <class TypeList>
using last_t = typename last<TypeList>::type;
static_assert(std::is_same_v<int, last_t<typelist<double, float, int>>>);
/**
* Take/drop a number of arguments from a typelist.
* Example:
* typelist<int, string> == take_t<typelist<int, string, bool>, 2>
* typelist<bool> == drop_t<typelist<int, string, bool>, 2>
*/
namespace detail {
template <class TypeList, size_t offset, class IndexSequence>
struct take_elements final {};
template <class TypeList, size_t offset, size_t... Indices>
struct take_elements<TypeList, offset, std::index_sequence<Indices...>> final {
using type = typelist<typename element<offset + Indices, TypeList>::type...>;
};
} // namespace detail
template <class TypeList, size_t num>
struct take final {
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::take<T, num>, the T argument must be typelist<...>.");
static_assert(
num <= size<TypeList>::value,
"Tried to typelist::take more elements than there are in the list");
using type = typename detail::
take_elements<TypeList, 0, std::make_index_sequence<num>>::type;
};
template <class TypeList, size_t num>
using take_t = typename take<TypeList, num>::type;
template <class TypeList, size_t num>
struct drop final {
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::drop<T, num>, the T argument must be typelist<...>.");
static_assert(
num <= size<TypeList>::value,
"Tried to typelist::drop more elements than there are in the list");
using type = typename detail::take_elements<
TypeList,
num,
std::make_index_sequence<size<TypeList>::value - num>>::type;
};
template <class TypeList, size_t num>
using drop_t = typename drop<TypeList, num>::type;
/**
* Like drop, but returns an empty list rather than an assertion error if `num`
* is larger than the size of the TypeList.
* Example:
* typelist<> == drop_if_nonempty_t<typelist<string, bool>, 2>
* typelist<> == drop_if_nonempty_t<typelist<int, string, bool>, 3>
*/
template <class TypeList, size_t num>
struct drop_if_nonempty final {
static_assert(
is_instantiation_of<typelist, TypeList>::value,
"In typelist::drop<T, num>, the T argument must be typelist<...>.");
using type = typename detail::take_elements<
TypeList,
std::min(num, size<TypeList>::value),
std::make_index_sequence<
size<TypeList>::value - std::min(num, size<TypeList>::value)>>::type;
};
template <class TypeList, size_t num>
using drop_if_nonempty_t = typename drop_if_nonempty<TypeList, num>::type;
/**
* Reverses a typelist.
* Example:
* typelist<int, string> == reverse_t<typelist<string, int>>
*/
template <class TypeList>
struct reverse final {
static_assert(
false_t<TypeList>::value,
"In typelist::reverse<T>, the T argument must be typelist<...>.");
};
template <class Head, class... Tail>
struct reverse<typelist<Head, Tail...>> final {
using type =
concat_t<typename reverse<typelist<Tail...>>::type, typelist<Head>>;
};
template <>
struct reverse<typelist<>> final {
using type = typelist<>;
};
template <class TypeList>
using reverse_t = typename reverse<TypeList>::type;
/**
* Find the index of the first type in a typelist fulfilling a type trait
* condition. Example:
*
* 2 == find_if<typelist<char, int, char&, int&>, std::is_reference>::value
*/
template <class TypeList, template <class> class Condition, class Enable = void>
struct find_if final {
static_assert(
false_t<TypeList>::value,
"In typelist::find_if<TypeList, Condition>, the TypeList argument must be typelist<...>.");
};
template <template <class> class Condition>
struct find_if<typelist<>, Condition, void> final {
static_assert(
false_higher_t<Condition>::value,
"In typelist::find_if<Type/List, Condition>, didn't find any type fulfilling the Condition.");
};
template <class Head, class... Tail, template <class> class Condition>
struct find_if<
typelist<Head, Tail...>,
Condition,
std::enable_if_t<Condition<Head>::value>>
final {
static constexpr size_t value = 0;
};
template <class Head, class... Tail, template <class> class Condition>
struct find_if<
typelist<Head, Tail...>,
Condition,
std::enable_if_t<!Condition<Head>::value>>
final {
static constexpr size_t value =
1 + find_if<typelist<Tail...>, Condition>::value;
};
/**
* Maps a list of types into a list of values.
* Examples:
* // Example 1
* auto sizes =
* map_types_to_values<typelist<int64_t, bool, uint32_t>>(
* [] (auto t) { return sizeof(decltype(t)::type); }
* );
* // sizes == std::tuple<size_t, size_t, size_t>{8, 1, 4}
*
* // Example 2
* auto shared_ptrs =
* map_types_to_values<typelist<int, double>>(
* [] (auto t) { return make_shared<typename decltype(t)::type>(); }
* );
* // shared_ptrs == std::tuple<shared_ptr<int>, shared_ptr<double>>()
*/
namespace detail {
template <class T>
struct type_ final {
using type = T;
};
template <class TypeList>
struct map_types_to_values final {
static_assert(
false_t<TypeList>::value,
"In typelist::map_types_to_values<T>, the T argument must be typelist<...>.");
};
template <class... Types>
struct map_types_to_values<typelist<Types...>> final {
template <class Func>
static auto call(Func&& func) {
return std::tuple{std::forward<Func>(func)(type_<Types>())...};
}
};
} // namespace detail
template <class TypeList, class Func>
auto map_types_to_values(Func&& func) {
return detail::map_types_to_values<TypeList>::call(std::forward<Func>(func));
}
} // namespace typelist
} // namespace c10::guts
#include <torch/headeronly/util/TypeList.h>

View File

@ -1,151 +1 @@
#pragma once
#include <functional>
#include <type_traits>
namespace c10::guts {
/**
* is_equality_comparable<T> is true_type iff the equality operator is defined
* for T.
*/
template <class T, class Enable = void>
struct is_equality_comparable : std::false_type {};
template <class T>
struct is_equality_comparable<
T,
std::void_t<decltype(std::declval<T&>() == std::declval<T&>())>>
: std::true_type {};
template <class T>
using is_equality_comparable_t = typename is_equality_comparable<T>::type;
/**
* is_hashable<T> is true_type iff std::hash is defined for T
*/
template <class T, class Enable = void>
struct is_hashable : std::false_type {};
template <class T>
struct is_hashable<T, std::void_t<decltype(std::hash<T>()(std::declval<T&>()))>>
: std::true_type {};
template <class T>
using is_hashable_t = typename is_hashable<T>::type;
/**
* is_function_type<T> is true_type iff T is a plain function type (i.e.
* "Result(Args...)")
*/
template <class T>
struct is_function_type : std::false_type {};
template <class Result, class... Args>
struct is_function_type<Result(Args...)> : std::true_type {};
template <class T>
using is_function_type_t = typename is_function_type<T>::type;
/**
* is_instantiation_of<T, I> is true_type iff I is a template instantiation of T
* (e.g. vector<int> is an instantiation of vector) Example:
* is_instantiation_of_t<vector, vector<int>> // true
* is_instantiation_of_t<pair, pair<int, string>> // true
* is_instantiation_of_t<vector, pair<int, string>> // false
*/
template <template <class...> class Template, class T>
struct is_instantiation_of : std::false_type {};
template <template <class...> class Template, class... Args>
struct is_instantiation_of<Template, Template<Args...>> : std::true_type {};
template <template <class...> class Template, class T>
using is_instantiation_of_t = typename is_instantiation_of<Template, T>::type;
namespace detail {
/**
* strip_class: helper to remove the class type from pointers to `operator()`.
*/
template <typename T>
struct strip_class {};
template <typename Class, typename Result, typename... Args>
struct strip_class<Result (Class::*)(Args...)> {
using type = Result(Args...);
};
template <typename Class, typename Result, typename... Args>
struct strip_class<Result (Class::*)(Args...) const> {
using type = Result(Args...);
};
template <typename T>
using strip_class_t = typename strip_class<T>::type;
} // namespace detail
/**
* Evaluates to true_type, iff the given class is a Functor
* (i.e. has a call operator with some set of arguments)
*/
template <class Functor, class Enable = void>
struct is_functor : std::false_type {};
template <class Functor>
struct is_functor<
Functor,
std::enable_if_t<is_function_type<
detail::strip_class_t<decltype(&Functor::operator())>>::value>>
: std::true_type {};
/**
* lambda_is_stateless<T> is true iff the lambda type T is stateless
* (i.e. does not have a closure).
* Example:
* auto stateless_lambda = [] (int a) {return a;};
* lambda_is_stateless<decltype(stateless_lambda)> // true
* auto stateful_lambda = [&] (int a) {return a;};
* lambda_is_stateless<decltype(stateful_lambda)> // false
*/
namespace detail {
template <class LambdaType, class FuncType>
struct is_stateless_lambda__ final {
static_assert(
!std::is_same_v<LambdaType, LambdaType>,
"Base case shouldn't be hit");
};
// implementation idea: According to the C++ standard, stateless lambdas are
// convertible to function pointers
template <class LambdaType, class C, class Result, class... Args>
struct is_stateless_lambda__<LambdaType, Result (C::*)(Args...) const>
: std::is_convertible<LambdaType, Result (*)(Args...)> {};
template <class LambdaType, class C, class Result, class... Args>
struct is_stateless_lambda__<LambdaType, Result (C::*)(Args...)>
: std::is_convertible<LambdaType, Result (*)(Args...)> {};
// case where LambdaType is not even a functor
template <class LambdaType, class Enable = void>
struct is_stateless_lambda_ final : std::false_type {};
// case where LambdaType is a functor
template <class LambdaType>
struct is_stateless_lambda_<
LambdaType,
std::enable_if_t<is_functor<LambdaType>::value>>
: is_stateless_lambda__<LambdaType, decltype(&LambdaType::operator())> {};
} // namespace detail
template <class T>
using is_stateless_lambda = detail::is_stateless_lambda_<std::decay_t<T>>;
/**
* is_type_condition<C> is true_type iff C<...> is a type trait representing a
* condition (i.e. has a constexpr static bool ::value member) Example:
* is_type_condition<std::is_reference> // true
*/
template <template <class> class C, class Enable = void>
struct is_type_condition : std::false_type {};
template <template <class> class C>
struct is_type_condition<
C,
std::enable_if_t<
std::is_same_v<bool, std::remove_cv_t<decltype(C<int>::value)>>>>
: std::true_type {};
/**
* is_fundamental<T> is true_type iff the lambda type T is a fundamental type
* (that is, arithmetic type, void, or nullptr_t). Example: is_fundamental<int>
* // true We define it here to resolve a MSVC bug. See
* https://github.com/pytorch/pytorch/issues/30932 for details.
*/
template <class T>
struct is_fundamental : std::is_fundamental<T> {};
} // namespace c10::guts
#include <torch/headeronly/util/TypeTraits.h>

View File

@ -926,15 +926,14 @@ class DeviceCachingAllocator {
(release_cached_blocks() && alloc_block(params, true));
}
if (!block_found) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device);
auto device_total = device_prop.global_mem_size;
const auto& raw_device = c10::xpu::get_raw_device(device);
const auto device_total =
raw_device.get_info<sycl::info::device::global_mem_size>();
// Estimate the available device memory when the SYCL runtime does not
// support the corresponding aspect (ext_intel_free_memory).
size_t device_free = device_prop.global_mem_size -
size_t device_free = device_total -
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
.current;
auto& raw_device = c10::xpu::get_raw_device(device);
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
// affected devices.
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
@ -1052,21 +1051,37 @@ class DeviceCachingAllocator {
}
}
std::pair<size_t, size_t> getMemoryInfo() {
const auto& device = c10::xpu::get_raw_device(device_index);
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
TORCH_CHECK(
device.has(sycl::aspect::ext_intel_free_memory),
"The device (",
device.get_info<sycl::info::device::name>(),
") doesn't support querying the available free memory. ",
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
"to help us prioritize its implementation.");
const size_t free =
device.get_info<sycl::ext::intel::info::device::free_memory>();
return {free, total};
}
double getMemoryFraction() {
if (!set_fraction) {
return 1.0;
}
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
return static_cast<double>(allowed_memory_maximum) /
static_cast<double>(device_prop.global_mem_size);
static_cast<double>(device_total);
}
void setMemoryFraction(double fraction) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
auto device_total = device_prop.global_mem_size;
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
set_fraction = true;
}
@ -1240,6 +1255,11 @@ class XPUAllocator : public DeviceAllocator {
c10::xpu::get_raw_device(dev_to_access));
}
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
assertValidDevice(device);
return device_allocators[device]->getMemoryInfo();
}
double getMemoryFraction(DeviceIndex device) {
assertValidDevice(device);
return device_allocators[device]->getMemoryFraction();

View File

@ -478,6 +478,7 @@ function(torch_update_find_cuda_flags)
endfunction()
include(CheckCXXCompilerFlag)
include(CheckCCompilerFlag)
include(CheckLinkerFlag)
##############################################################################
@ -501,6 +502,24 @@ function(append_cxx_flag_if_supported flag outputvar)
endif()
endfunction()
function(append_c_flag_if_supported flag outputvar)
string(TOUPPER "HAS${flag}" _FLAG_NAME)
string(REGEX REPLACE "[=-]" "_" _FLAG_NAME "${_FLAG_NAME}")
# GCC silences unknown -Wno-XXX flags, so test the corresponding -WXXX.
if(CMAKE_C_COMPILER_ID STREQUAL "GNU")
string(REGEX REPLACE "^Wno-" "W" new_flag "${flag}")
else()
set(new_flag "${flag}")
endif()
check_c_compiler_flag("${new_flag}" ${_FLAG_NAME})
if(${_FLAG_NAME})
string(APPEND ${outputvar} " ${flag}")
set(${outputvar} "${${outputvar}}" PARENT_SCOPE)
endif()
endfunction()
function(target_compile_options_if_supported target flag)
set(_compile_options "")
append_cxx_flag_if_supported("${flag}" _compile_options)

View File

@ -40,6 +40,7 @@
:nosignatures:
empty_cache
get_memory_info
max_memory_allocated
max_memory_reserved
memory_allocated

View File

@ -382,20 +382,6 @@ coverage_ignore_functions = [
# torch.ao.quantization.backend_config.tensorrt
"get_tensorrt_backend_config",
"get_tensorrt_backend_config_dict",
# torch.ao.quantization.backend_config.utils
"entry_to_pretty_str",
"get_fused_module_classes",
"get_fuser_method_mapping",
"get_fusion_pattern_to_extra_inputs_getter",
"get_fusion_pattern_to_root_node_getter",
"get_module_to_qat_module",
"get_pattern_to_dtype_configs",
"get_pattern_to_input_type_to_index",
"get_qat_module_classes",
"get_root_module_to_quantized_reference_module",
"pattern_to_human_readable",
"remove_boolean_dispatch_from_name",
# torch.ao.quantization.backend_config.x86
"get_x86_backend_config",
# torch.ao.quantization.fuse_modules
"fuse_known_modules",
@ -426,25 +412,6 @@ coverage_ignore_functions = [
"insert_observers_for_model",
"prepare",
"propagate_dtypes_for_known_nodes",
# torch.ao.quantization.fx.utils
"all_node_args_except_first",
"all_node_args_have_no_tensors",
"assert_and_get_unique_device",
"collect_producer_nodes",
"create_getattr_from_value",
"create_node_from_old_node_preserve_meta",
"get_custom_module_class_keys",
"get_linear_prepack_op_for_dtype",
"get_new_attr_name_with_prefix",
"get_non_observable_arg_indexes_and_types",
"get_qconv_prepack_op",
"get_skipped_module_name_and_classes",
"graph_module_from_producer_nodes",
"maybe_get_next_module",
"node_arg_is_bias",
"node_arg_is_weight",
"return_arg_list",
# torch.ao.quantization.pt2e.graph_utils
"bfs_trace_with_node_process",
"find_sequential_partitions",
"get_equivalent_types",
@ -860,80 +827,10 @@ coverage_ignore_functions = [
"get_latency_of_one_partition",
"get_latency_of_partitioned_graph",
"get_partition_to_latency_mapping",
# torch.fx.experimental.proxy_tensor
"decompose",
"disable_autocast_cache",
"disable_proxy_modes_tracing",
"dispatch_trace",
"extract_val",
"fake_signature",
"fetch_sym_proxy",
"fetch_object_proxy",
"get_innermost_proxy_mode",
"get_isolated_graphmodule",
"get_proxy_slot",
"get_torch_dispatch_modes",
"has_proxy_slot",
"is_sym_node",
"maybe_handle_decomp",
"proxy_call",
"set_meta",
"set_original_aten_op",
"set_proxy_slot",
"snapshot_fake",
"thunkify",
"track_tensor",
"track_tensor_tree",
"wrap_key",
"wrapper_and_args_for_make_fx",
# torch.fx.experimental.recording
"record_shapeenv_event",
"replay_shape_env_events",
"shape_env_check_state_equal",
# torch.fx.experimental.sym_node
"ceil_impl",
"floor_ceil_helper",
"floor_impl",
"method_to_operator",
"sympy_is_channels_last_contiguous_2d",
"sympy_is_channels_last_contiguous_3d",
"sympy_is_channels_last_strides_2d",
"sympy_is_channels_last_strides_3d",
"sympy_is_channels_last_strides_generic",
"sympy_is_contiguous",
"sympy_is_contiguous_generic",
"to_node",
"wrap_node",
"sym_sqrt",
# torch.fx.experimental.symbolic_shapes
"bind_symbols",
"cast_symbool_to_symint_guardless",
"create_contiguous",
"error",
"eval_guards",
"eval_is_non_overlapping_and_dense",
"expect_true",
"find_symbol_binding_fx_nodes",
"free_symbols",
"free_unbacked_symbols",
"fx_placeholder_targets",
"fx_placeholder_vals",
"guard_bool",
"guard_float",
"guard_int",
"guard_scalar",
"has_hint",
"has_symbolic_sizes_strides",
"is_channels_last_contiguous_2d",
"is_channels_last_contiguous_3d",
"is_channels_last_strides_2d",
"is_channels_last_strides_3d",
"is_contiguous",
"is_non_overlapping_and_dense_indicator",
"is_nested_int",
"is_symbol_binding_fx_node",
"is_symbolic",
# torch.fx.experimental.unification.core
"reify",
# torch.fx.experimental.unification.match
"edge",
@ -971,24 +868,6 @@ coverage_ignore_functions = [
"reverse_dict",
# torch.fx.experimental.unification.multipledispatch.variadic
"isvariadic",
# torch.fx.experimental.unification.unification_tools
"assoc",
"assoc_in",
"dissoc",
"first",
"get_in",
"getter",
"groupby",
"itemfilter",
"itemmap",
"keyfilter",
"keymap",
"merge",
"merge_with",
"update_in",
"valfilter",
"valmap",
# torch.fx.experimental.unification.utils
"freeze",
"hashable",
"raises",

View File

@ -12,6 +12,37 @@ These APIs are experimental and subject to change without notice.
.. autoclass:: torch.fx.experimental.sym_node.DynamicInt
```
## torch.fx.experimental.sym_node
```{eval-rst}
.. currentmodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. automodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
is_channels_last_contiguous_2d
is_channels_last_contiguous_3d
is_channels_last_strides_2d
is_channels_last_strides_3d
is_contiguous
is_non_overlapping_and_dense_indicator
method_to_operator
sympy_is_channels_last_contiguous_2d
sympy_is_channels_last_contiguous_3d
sympy_is_channels_last_strides_2d
sympy_is_channels_last_strides_3d
sympy_is_channels_last_strides_generic
sympy_is_contiguous
sympy_is_contiguous_generic
```
## torch.fx.experimental.symbolic_shapes
```{eval-rst}
@ -69,6 +100,25 @@ These APIs are experimental and subject to change without notice.
rebind_unbacked
resolve_unbacked_bindings
is_accessor_node
cast_symbool_to_symint_guardless
create_contiguous
error
eval_guards
eval_is_non_overlapping_and_dense
find_symbol_binding_fx_nodes
free_symbols
free_unbacked_symbols
fx_placeholder_targets
fx_placeholder_vals
guard_bool
guard_float
guard_int
guard_scalar
has_hint
has_symbolic_sizes_strides
is_nested_int
is_symbol_binding_fx_node
is_symbolic
```
## torch.fx.experimental.proxy_tensor
@ -91,4 +141,46 @@ These APIs are experimental and subject to change without notice.
get_proxy_mode
maybe_enable_thunkify
maybe_disable_thunkify
decompose
disable_autocast_cache
disable_proxy_modes_tracing
extract_val
fake_signature
fetch_object_proxy
fetch_sym_proxy
has_proxy_slot
is_sym_node
maybe_handle_decomp
proxy_call
set_meta
set_original_aten_op
set_proxy_slot
snapshot_fake
```
## torch.fx.experimental.unification.unification_tools
```{eval-rst}
.. currentmodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. automodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
assoc
assoc_in
dissoc
first
keyfilter
keymap
merge
merge_with
update_in
valfilter
valmap

View File

@ -1134,7 +1134,6 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.refinement_types
.. py:module:: torch.fx.experimental.rewriter
.. py:module:: torch.fx.experimental.schema_type_annotation
.. py:module:: torch.fx.experimental.sym_node
.. py:module:: torch.fx.experimental.unification.core
.. py:module:: torch.fx.experimental.unification.dispatch
.. py:module:: torch.fx.experimental.unification.match
@ -1144,7 +1143,6 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.unification.multipledispatch.dispatcher
.. py:module:: torch.fx.experimental.unification.multipledispatch.utils
.. py:module:: torch.fx.experimental.unification.multipledispatch.variadic
.. py:module:: torch.fx.experimental.unification.unification_tools
.. py:module:: torch.fx.experimental.unification.utils
.. py:module:: torch.fx.experimental.unification.variable
.. py:module:: torch.fx.experimental.unify_refinements

View File

@ -0,0 +1,21 @@
# torch.mtia.mtia_graph
The MTIA backend is implemented out of the tree, only interfaces are defined here.
```{eval-rst}
.. automodule:: torch.mtia.mtia_graph
```
```{eval-rst}
.. currentmodule:: torch.mtia.mtia_graph
```
```{eval-rst}
.. autoclass:: MTIAGraph
:members:
```
```{eval-rst}
.. autoclass:: graph
:members:
```

View File

@ -29,6 +29,7 @@ mps
xpu
mtia
mtia.memory
mtia.mtia_graph
meta
torch.backends <backends>
torch.export <export>

View File

@ -134,6 +134,23 @@ Quantization to work with this as well.
ObservationType
```
## torch.ao.quantization.backend_config.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.backend_config.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
entry_to_pretty_str
pattern_to_human_readable
remove_boolean_dispatch_from_name
```
## torch.ao.quantization.fx.custom_config
This module contains a few CustomConfig classes that's used in both eager mode and FX graph mode quantization
@ -154,6 +171,30 @@ This module contains a few CustomConfig classes that's used in both eager mode a
StandaloneModuleConfigEntry
```
## torch.ao.quantization.fx.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.fx.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
all_node_args_except_first
all_node_args_have_no_tensors
collect_producer_nodes
create_getattr_from_value
create_node_from_old_node_preserve_meta
graph_module_from_producer_nodes
maybe_get_next_module
node_arg_is_bias
node_arg_is_weight
return_arg_list
```
## torch.ao.quantization.quantizer
```{eval-rst}

View File

@ -172,9 +172,9 @@ ignore = [
"SIM102", "SIM103", "SIM112", # flake8-simplify code styles
"SIM105", # these ignores are from flake8-simplify. please fix or ignore with commented reason
"SIM108", # SIM108 ignored because we prefer if-else-block instead of ternary expression
"SIM110",
"SIM110", # Checks for for loops that can be replaced with a builtin function, like any or all.
"SIM114", # Combine `if` branches using logical `or` operator
"SIM115",
"SIM115", # Checks for cases where files are opened without using a context manager.
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
@ -184,7 +184,6 @@ ignore = [
"TC006",
# TODO: Remove Python-3.10 specific suppressions
"B905",
"UP035",
]
select = [
"B",
@ -261,6 +260,7 @@ select = [
"TRY401", # verbose-log-message
"UP",
"YTT",
"S101",
]
[tool.ruff.lint.pyupgrade]
@ -340,6 +340,39 @@ keep-runtime-typing = true
"tools/linter/**" = [
"LOG015" # please fix
]
"benchmarks/**" = [
"S101"
]
"test/**" = [
"S101"
]
"torchgen/**" = [
"S101"
]
"torch/**" = [
"S101"
]
"tools/**" = [
"S101"
]
"setup.py" = [
"S101"
]
"functorch/**" = [
"S101"
]
"docs/**" = [
"S101"
]
"android/**" = [
"S101"
]
".github/**" = [
"S101"
]
".ci/**" = [
"S101"
]
[tool.codespell]
ignore-words = "tools/linter/dictionary.txt"

View File

@ -630,6 +630,37 @@ def mirror_files_into_torchgen() -> None:
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
def mirror_inductor_external_kernels() -> None:
"""
Copy external kernels into Inductor so they are importable.
"""
paths = [
(
CWD / "torch/_inductor/kernel/vendored_templates/cutedsl_grouped_gemm.py",
CWD
/ "third_party/cutlass/examples/python/CuTeDSL/blackwell/grouped_gemm.py",
),
]
for new_path, orig_path in paths:
# Create the dirs involved in new_path if they don't exist
if not new_path.exists():
new_path.parent.mkdir(parents=True, exist_ok=True)
# Copy the files from the orig location to the new location
if orig_path.is_file():
shutil.copyfile(orig_path, new_path)
continue
if orig_path.is_dir():
if new_path.exists():
# copytree fails if the tree exists already, so remove it.
shutil.rmtree(new_path)
shutil.copytree(orig_path, new_path)
continue
raise RuntimeError(
"Check the file paths in `mirror_inductor_external_kernels()`"
)
# ATTENTION: THIS IS AI SLOP
def extract_variant_from_version(version: str) -> str:
"""Extract variant from version string, defaulting to 'cpu'."""
@ -1615,6 +1646,7 @@ def main() -> None:
mirror_files_into_torchgen()
if RUN_BUILD_DEPS:
build_deps()
mirror_inductor_external_kernels()
(
ext_modules,
@ -1649,6 +1681,7 @@ def main() -> None:
"_inductor/codegen/aoti_runtime/*.cpp",
"_inductor/script.ld",
"_inductor/kernel/flex/templates/*.jinja",
"_inductor/kernel/templates/*.jinja",
"_export/serde/*.yaml",
"_export/serde/*.thrift",
"share/cmake/ATen/*.cmake",

View File

@ -208,7 +208,7 @@ class _BaseDataSparsiferTestCase(TestCase):
assert len(sparsifier1.data_groups) == len(sparsifier2.data_groups)
state1 = state_dict1["state"]
for name in state1.keys():
for name in state1:
# compare mask
assert name in sparsifier2.state
assert "mask" in sparsifier2.state[name]

View File

@ -119,7 +119,7 @@ class TestBaseSparsifier(TestCase):
for idx in range(len(sparsifier0.groups)):
mg0 = sparsifier0.groups[idx]
mg1 = sparsifier1.groups[idx]
for key in mg0.keys():
for key in mg0:
assert key in mg1
if key == "module":
# We cannot compare modules as they are different

View File

@ -17,8 +17,11 @@ set(AOTI_ABI_CHECK_TEST_SRCS
${AOTI_ABI_CHECK_TEST_ROOT}/test_headeronlyarrayref.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_macros.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_math.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_metaprogramming.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_rand.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_scalartype.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_typelist.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_typetraits.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_vec.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_vec_half.cpp
)

View File

@ -1,9 +1,8 @@
#include <c10/test/util/Macros.h>
#include <c10/util/Metaprogramming.h>
#include <gtest/gtest.h>
#include <torch/headeronly/util/Metaprogramming.h>
#include <cstdlib>
using namespace c10::guts;
using namespace torch::headeronly::guts;
// NOLINTBEGIN(modernize*, cppcoreguidelines-special-member-functions)
namespace {
@ -65,6 +64,15 @@ static_assert(
typename make_function_traits_t<void, typelist::typelist<int, float>>::
func_type>::value,
"");
struct Functor final {
std::string operator()(int64_t a, float b) const;
};
static_assert(
std::is_same<
std::string(int64_t, float),
typename infer_function_traits_t<Functor>::func_type>::value,
"");
} // namespace test_function_traits
struct MovableOnly {

View File

@ -1,8 +1,8 @@
#include <c10/util/TypeList.h>
#include <gtest/gtest.h>
#include <torch/headeronly/util/TypeList.h>
#include <memory>
using namespace c10::guts::typelist;
using namespace torch::headeronly::guts::typelist;
// NOLINTBEGIN(modernize-unary-static-assert)
namespace test_size {
class MyClass {};

View File

@ -1,7 +1,7 @@
#include <c10/util/TypeTraits.h>
#include <gtest/gtest.h>
#include <torch/headeronly/util/TypeTraits.h>
using namespace c10::guts;
using namespace torch::headeronly::guts;
// NOLINTBEGIN(modernize-unary-static-assert)
namespace {

View File

@ -1,5 +1,6 @@
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
#include <torch/csrc/stable/accelerator.h>
#include <torch/csrc/stable/device.h>
#include <torch/csrc/stable/library.h>
#include <torch/csrc/stable/tensor.h>
#include <torch/csrc/stable/ops.h>
@ -67,13 +68,13 @@ Tensor sgd_out_of_place(
void boxed_sgd_out_of_place(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = sgd_out_of_place(
to<Tensor>(stack[0]),
to<Tensor>(stack[1]),
float(to<double>(stack[2])),
to<double>(stack[3]),
to<bool>(stack[4]));
torch::stable::detail::to<Tensor>(stack[0]),
torch::stable::detail::to<Tensor>(stack[1]),
float(torch::stable::detail::to<double>(stack[2])),
torch::stable::detail::to<double>(stack[3]),
torch::stable::detail::to<bool>(stack[4]));
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY(libtorch_agnostic, m) {
@ -89,8 +90,8 @@ Tensor identity(Tensor t) {
}
void boxed_identity(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = identity(to<Tensor>(stack[0]));
stack[0] = from(res);
Tensor res = identity(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -108,14 +109,14 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CPU, m) {
Tensor my_abs(Tensor t) {
const auto num_args = 1;
StableIValue stack[num_args];
stack[0] = from(t);
stack[0] = torch::stable::detail::from(t);
aoti_torch_call_dispatcher("aten::abs", "", stack);
return to<Tensor>(stack[0]);
return torch::stable::detail::to<Tensor>(stack[0]);
}
void boxed_my_abs(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_abs(to<Tensor>(stack[0]));
stack[0] = from(tensor_res);
Tensor tensor_res = my_abs(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(tensor_res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -132,21 +133,21 @@ Tensor my_ones_like(Tensor t, StableIValue device) {
auto mf = aoti_torch_memory_format_contiguous_format();
stack[0] = from(t);
stack[1] = from(std::optional(t.scalar_type())); // dtype
stack[2] = from(std::nullopt); // layout
stack[3] = from(std::optional(device)); // device
stack[4] = from(std::optional(false)); // pin_memory
stack[5] = from(std::optional(mf)); // memory_format
stack[0] = torch::stable::detail::from(t);
stack[1] = torch::stable::detail::from(std::optional(t.scalar_type())); // dtype
stack[2] = torch::stable::detail::from(std::nullopt); // layout
stack[3] = torch::stable::detail::from(std::optional(device)); // device
stack[4] = torch::stable::detail::from(std::optional(false)); // pin_memory
stack[5] = torch::stable::detail::from(std::optional(mf)); // memory_format
aoti_torch_call_dispatcher("aten::ones_like", "", stack);
return to<Tensor>(stack[0]);
return torch::stable::detail::to<Tensor>(stack[0]);
}
void boxed_my_ones_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = my_ones_like(to<Tensor>(stack[0]), stack[1]);
stack[0] = from(res);
Tensor res = my_ones_like(torch::stable::detail::to<Tensor>(stack[0]), stack[1]);
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -159,28 +160,28 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
std::tuple<Tensor, Tensor, bool> exp_neg_is_leaf(Tensor t1, Tensor t2, Tensor t3) {
StableIValue stack_exp[1];
stack_exp[0] = from(t1);
stack_exp[0] = torch::stable::detail::from(t1);
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
StableIValue stack_neg[1];
stack_neg[0] = from(t2);
stack_neg[0] = torch::stable::detail::from(t2);
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
StableIValue stack_is_leaf[1];
stack_is_leaf[0] = from(t3);
stack_is_leaf[0] = torch::stable::detail::from(t3);
aoti_torch_call_dispatcher("aten::is_leaf", "", stack_is_leaf);
return std::make_tuple(
to<Tensor>(stack_exp[0]),
to<Tensor>(stack_neg[0]),
to<bool>(stack_is_leaf[0]));
torch::stable::detail::to<Tensor>(stack_exp[0]),
torch::stable::detail::to<Tensor>(stack_neg[0]),
torch::stable::detail::to<bool>(stack_is_leaf[0]));
}
void boxed_exp_neg_is_leaf(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto tuple = exp_neg_is_leaf(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<Tensor>(stack[2]));
stack[0] = from(std::get<0>(tuple));
stack[1] = from(std::get<1>(tuple));
stack[2] = from(std::get<2>(tuple));
auto tuple = exp_neg_is_leaf(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<Tensor>(stack[2]));
stack[0] = torch::stable::detail::from(std::get<0>(tuple));
stack[1] = torch::stable::detail::from(std::get<1>(tuple));
stack[2] = torch::stable::detail::from(std::get<2>(tuple));
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -193,15 +194,15 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
Tensor neg_exp(Tensor t) {
StableIValue stack[1];
stack[0] = from(t);
stack[0] = torch::stable::detail::from(t);
aoti_torch_call_dispatcher("aten::exp", "", stack);
aoti_torch_call_dispatcher("aten::neg", "", stack);
return to<Tensor>(stack[0]);
return torch::stable::detail::to<Tensor>(stack[0]);
}
void boxed_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = neg_exp(to<Tensor>(stack[0]));
stack[0] = from(res);
Tensor res = neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -214,10 +215,10 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
Tensor divide_neg_exp(Tensor t) {
StableIValue stack_neg[1];
stack_neg[0] = from(t);
stack_neg[0] = torch::stable::detail::from(t);
StableIValue stack_exp[1];
stack_exp[0] = from(t);
stack_exp[0] = torch::stable::detail::from(t);
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
@ -225,12 +226,12 @@ Tensor divide_neg_exp(Tensor t) {
stack_div[0] = stack_neg[0];
stack_div[1] = stack_exp[0];
aoti_torch_call_dispatcher("aten::divide", "Tensor", stack_div);
return to<Tensor>(stack_div[0]);
return torch::stable::detail::to<Tensor>(stack_div[0]);
}
void boxed_divide_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = divide_neg_exp(to<Tensor>(stack[0]));
stack[0] = from(res);
Tensor res = divide_neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -246,8 +247,8 @@ bool is_contiguous(Tensor t) {
}
void boxed_is_contiguous(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
bool res = is_contiguous(to<Tensor>(stack[0]));
stack[0] = from(res);
bool res = is_contiguous(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -263,9 +264,9 @@ Tensor my_transpose(Tensor t, int64_t dim0, int64_t dim1) {
}
void boxed_my_transpose(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_transpose(to<Tensor>(stack[0]), to<int64_t>(stack[1]), to<int64_t>(stack[2]));
auto res = my_transpose(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<int64_t>(stack[1]), torch::stable::detail::to<int64_t>(stack[2]));
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
Tensor my_empty_like(Tensor t) {
@ -273,8 +274,8 @@ Tensor my_empty_like(Tensor t) {
}
void boxed_empty_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_empty_like(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_empty_like(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
bool my_is_cpu(Tensor t) {
@ -283,8 +284,8 @@ bool my_is_cpu(Tensor t) {
void boxed_my_is_cpu(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_is_cpu(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_is_cpu(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor fill_infinity(Tensor t) {
@ -296,8 +297,8 @@ void boxed_fill_infinity(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
auto res = fill_infinity(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = fill_infinity(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_pad(Tensor t) {
@ -310,8 +311,8 @@ void boxed_my_pad(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
auto res = my_pad(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_pad(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_narrow(Tensor t, int64_t dim, int64_t start, int64_t length) {
@ -323,11 +324,11 @@ void boxed_my_narrow(
uint64_t num_args,
uint64_t num_outputs) {
auto res = my_narrow(
to<Tensor>(stack[0]),
to<int64_t>(stack[1]),
to<int64_t>(stack[2]),
to<int64_t>(stack[3]));
stack[0] = from(res);
torch::stable::detail::to<Tensor>(stack[0]),
torch::stable::detail::to<int64_t>(stack[1]),
torch::stable::detail::to<int64_t>(stack[2]),
torch::stable::detail::to<int64_t>(stack[3]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_new_empty_dtype_variant(Tensor t) {
@ -342,8 +343,8 @@ Tensor my_new_empty_dtype_variant(Tensor t) {
}
void boxed_my_new_empty_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_empty_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_new_empty_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_new_zeros_dtype_variant(Tensor t) {
@ -352,8 +353,8 @@ Tensor my_new_zeros_dtype_variant(Tensor t) {
}
void boxed_my_new_zeros_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_zeros_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_new_zeros_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
@ -361,8 +362,8 @@ Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
}
void boxed_my_copy_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_copy_(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<bool>(stack[2]));
stack[0] = from(tensor_res);
Tensor tensor_res = my_copy_(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<bool>(stack[2]));
stack[0] = torch::stable::detail::from(tensor_res);
}
Tensor my_clone(Tensor t) {
@ -370,8 +371,8 @@ Tensor my_clone(Tensor t) {
}
void boxed_my_clone(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_clone(to<Tensor>(stack[0]));
stack[0] = from(tensor_res);
Tensor tensor_res = my_clone(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(tensor_res);
}
@ -408,8 +409,8 @@ Tensor my_zero_(Tensor t) {
}
void boxed_my_zero_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_zero_(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_zero_(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_amax(Tensor t) {
@ -417,8 +418,8 @@ Tensor my_amax(Tensor t) {
}
void boxed_my_amax(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_amax(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_amax(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
Tensor my_amax_vec(Tensor t) {
@ -426,8 +427,8 @@ Tensor my_amax_vec(Tensor t) {
}
void boxed_my_amax_vec(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_amax_vec(to<Tensor>(stack[0]));
stack[0] = from(res);
auto res = my_amax_vec(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -464,8 +465,8 @@ void boxed_test_default_constructor(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
bool res = test_default_constructor(to<bool>(stack[0]));
stack[0] = from(res);
bool res = test_default_constructor(torch::stable::detail::to<bool>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -478,6 +479,199 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my_amax_vec", &boxed_my_amax_vec);
}
std::vector<Tensor> my__foreach_mul(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
aoti_torch_call_dispatcher("aten::_foreach_mul", "List", stack.data());
return torch::stable::detail::to<std::vector<Tensor>>(stack[0]);
}
void boxed_my__foreach_mul(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
// Why is the following NOT torch::stable::detail::to<HeaderOnlyArrayRef<Tensor>>(stack[0])? Because calling `to`
// on a StableIValue means that the result is owning its underlying data now! HeaderOnlyArrayRef
// is not owning, so it cannot safely steward the result of the torch::stable::detail::to<>.
auto res = my__foreach_mul(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
void my__foreach_mul_(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
aoti_torch_call_dispatcher("aten::_foreach_mul_", "List", stack.data());
}
void boxed_my__foreach_mul_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
my__foreach_mul_(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
}
std::vector<Tensor> make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) {
// This function tests that my__foreach_mul can take in std::initializer_lists
// in addition to std::vectors.
Tensor t1_1 = my_clone(t1);
Tensor t1_2 = my_clone(t1);
Tensor t2_1 = my_clone(t2);
Tensor t2_2 = my_clone(t2);
return my__foreach_mul({t1_1, t2_1}, {t1_2, t2_2});
}
void boxed_make_tensor_clones_and_call_foreach(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = make_tensor_clones_and_call_foreach(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
m.def("my__foreach_mul(Tensor[] self, Tensor[] other) -> Tensor[]");
m.def("my__foreach_mul_(Tensor(a!)[] self, Tensor[] other) -> ()");
m.def("make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) -> Tensor[]");
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my__foreach_mul", &boxed_my__foreach_mul);
m.impl("my__foreach_mul_", &boxed_my__foreach_mul_);
m.impl("make_tensor_clones_and_call_foreach", &boxed_make_tensor_clones_and_call_foreach);
}
// Test functions for torch::stable::Tensor device method
torch::stable::Device test_tensor_device(torch::stable::Tensor tensor) {
return tensor.device();
}
void boxed_test_tensor_device(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
torch::stable::Device res = test_tensor_device(
torch::stable::detail::to<torch::stable::Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
// Test functions for torch::stable::Device
torch::stable::Device test_device_constructor(
bool is_cuda,
torch::stable::DeviceIndex index,
bool use_str) {
using torch::stable::Device;
using torch::stable::DeviceType;
if (use_str) {
std::string device_str;
if (is_cuda) {
device_str = "cuda:" + std::to_string(index);
} else {
device_str = "cpu";
}
return Device(device_str);
} else {
if (is_cuda) {
return Device(DeviceType::CUDA, index);
} else {
return Device(DeviceType::CPU);
}
}
}
void boxed_test_device_constructor(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
torch::stable::Device res = test_device_constructor(
torch::stable::detail::to<bool>(stack[0]),
torch::stable::detail::to<torch::stable::DeviceIndex>(stack[1]),
torch::stable::detail::to<bool>(stack[2]));
stack[0] = torch::stable::detail::from(res);
}
bool test_device_equality(torch::stable::Device d1, torch::stable::Device d2) {
return d1 == d2;
}
void boxed_test_device_equality(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
bool res = test_device_equality(
torch::stable::detail::to<torch::stable::Device>(stack[0]),
torch::stable::detail::to<torch::stable::Device>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
torch::stable::Device test_device_set_index(
torch::stable::Device device,
torch::stable::DeviceIndex index) {
device.set_index(index);
return device;
}
void boxed_test_device_set_index(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
torch::stable::Device res = test_device_set_index(
torch::stable::detail::to<torch::stable::Device>(stack[0]),
torch::stable::detail::to<torch::stable::DeviceIndex>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
torch::stable::DeviceIndex test_device_index(torch::stable::Device device) {
return device.index();
}
void boxed_test_device_index(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
torch::stable::DeviceIndex res = test_device_index(
torch::stable::detail::to<torch::stable::Device>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
bool test_device_is_cuda(torch::stable::Device device) {
return device.is_cuda();
}
void boxed_test_device_is_cuda(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
bool res = test_device_is_cuda(
torch::stable::detail::to<torch::stable::Device>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
bool test_device_is_cpu(torch::stable::Device device) {
return device.is_cpu();
}
void boxed_test_device_is_cpu(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
bool res = test_device_is_cpu(
torch::stable::detail::to<torch::stable::Device>(stack[0]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
m.def("test_tensor_device(Tensor t) -> Device");
m.def(
"test_device_constructor(bool is_cuda, DeviceIndex index, bool use_str) -> Device");
m.def("test_device_equality(Device d1, Device d2) -> bool");
m.def("test_device_set_index(Device device, DeviceIndex index) -> Device");
m.def("test_device_index(Device device) -> DeviceIndex");
m.def("test_device_is_cuda(Device device) -> bool");
m.def("test_device_is_cpu(Device device) -> bool");
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("test_tensor_device", &boxed_test_tensor_device);
m.impl("test_device_constructor", &boxed_test_device_constructor);
m.impl("test_device_equality", &boxed_test_device_equality);
m.impl("test_device_set_index", &boxed_test_device_set_index);
m.impl("test_device_index", &boxed_test_device_index);
m.impl("test_device_is_cuda", &boxed_test_device_is_cuda);
m.impl("test_device_is_cpu", &boxed_test_device_is_cpu);
}
// Test functions for torch::stable::accelerator APIs
#ifdef LAE_USE_CUDA
@ -500,8 +694,8 @@ void boxed_test_device_guard(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
int res = test_device_guard(static_cast<int64_t>(to<int64_t>(stack[0])));
stack[0] = from(res);
int res = test_device_guard(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
stack[0] = torch::stable::detail::from(res);
}
int64_t test_device_guard_set_index() {
@ -520,7 +714,7 @@ void boxed_test_device_guard_set_index(
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_device_guard_set_index();
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
int64_t test_stream(int32_t device_index) {
@ -536,8 +730,8 @@ void boxed_test_stream(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_stream(static_cast<int64_t>(to<int64_t>(stack[0])));
stack[0] = from(res);
int64_t res = test_stream(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
stack[0] = torch::stable::detail::from(res);
}
int64_t test_get_current_device_index() {
@ -549,7 +743,7 @@ void boxed_test_get_current_device_index(
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_get_current_device_index();
stack[0] = from(res);
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -565,4 +759,68 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("test_stream", &boxed_test_stream);
m.impl("test_get_current_device_index", &boxed_test_get_current_device_index);
}
#endif // LAE_USE_CUDA
Tensor test_parallel_for(int64_t size, int64_t grain_size) {
AtenTensorHandle tensor_handle;
int64_t stride = 1;
aoti_torch_empty_strided(
1,
&size,
&stride,
aoti_torch_dtype_int64(),
aoti_torch_device_type_cpu(),
0,
&tensor_handle);
Tensor tensor(tensor_handle);
int64_t* data_ptr = reinterpret_cast<int64_t*>(tensor.data_ptr());
torch::stable::zero_(tensor);
// Use parallel_for to fill each element with its index
// If using a parallel path, the thread id is encoded in the upper 32 bits
torch::stable::parallel_for(
0, size, grain_size, [data_ptr](int64_t begin, int64_t end) {
for (auto i = begin; i < end; i++) {
STD_TORCH_CHECK(i <= UINT32_MAX);
uint32_t thread_id;
torch_get_thread_idx(&thread_id);
data_ptr[i] = i | (static_cast<int64_t>(thread_id) << 32);
}
});
return tensor;
}
void boxed_test_parallel_for(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
Tensor res = test_parallel_for(to<int64_t>(stack[0]), to<int64_t>(stack[1]));
stack[0] = from(res);
}
uint32_t test_get_num_threads() {
return torch::stable::get_num_threads();
}
void boxed_test_get_num_threads(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
uint32_t res = test_get_num_threads();
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
m.def("test_parallel_for(int size, int grain_size) -> Tensor");
m.def("test_get_num_threads() -> int");
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("test_parallel_for", &boxed_test_parallel_for);
m.impl("test_get_num_threads", &boxed_test_get_num_threads);
}

View File

@ -215,6 +215,18 @@ def test_default_constructor(defined) -> bool:
return torch.ops.libtorch_agnostic.test_default_constructor.default(defined)
def test_tensor_device(t):
"""
Tests Tensor device() method.
Args:
t: Tensor - tensor to get device from
Returns: Device - device of the tensor
"""
return torch.ops.libtorch_agnostic.test_tensor_device.default(t)
def my_pad(t) -> Tensor:
"""
Pads the input tensor with hardcoded padding parameters.
@ -333,3 +345,145 @@ def my_new_zeros_dtype_variant(t) -> Tensor:
Returns: New zeros tensor
"""
return torch.ops.libtorch_agnostic.my_new_zeros_dtype_variant.default(t)
def my__foreach_mul_(tensors, others) -> ():
"""
Updates tensors to be the result of pointwise multiplying with others.
Args:
tensors: list of tensors
others: list of tensors (with the same corresponding shapes as tensors)
Returns: nothing, tensors is updated in place.
"""
torch.ops.libtorch_agnostic.my__foreach_mul_.default(tensors, others)
def my__foreach_mul(tensors, others) -> list[Tensor]:
"""
Returns a list of tensors that are the results of pointwise multiplying
tensors and others.
Args:
tensors: list of tensors
others: list of tensors (with the same corresponding shapes as tensors)
Returns: list of multiplied tensors
"""
return torch.ops.libtorch_agnostic.my__foreach_mul.default(tensors, others)
def make_tensor_clones_and_call_foreach(t1, t2) -> list[Tensor]:
"""
Returns a list of 2 tensors corresponding to the square of the inputs.
Args:
t1: Tensor
t2: Tensor
Returns: list of [t1^2, t2^2]
"""
return torch.ops.libtorch_agnostic.make_tensor_clones_and_call_foreach.default(
t1, t2
)
def test_device_constructor(is_cuda, index, use_str):
"""
Tests creating a Device from DeviceType and index, or from a string.
Args:
is_cuda: bool - if True, creates CUDA device; if False, creates CPU device
index: int - device index
use_str: bool - if True, constructs from string; if False, constructs from DeviceType
Returns: Device - A device with the specified type and index
"""
return torch.ops.libtorch_agnostic.test_device_constructor.default(
is_cuda, index, use_str
)
def test_device_equality(d1, d2) -> bool:
"""
Tests Device equality operator.
Args:
d1: Device - first device
d2: Device - second device
Returns: bool - True if devices are equal
"""
return torch.ops.libtorch_agnostic.test_device_equality.default(d1, d2)
def test_device_set_index(device, index):
"""
Tests Device set_index() method.
Args:
device: Device - device to modify
index: int - new device index
Returns: Device - device with updated index
"""
return torch.ops.libtorch_agnostic.test_device_set_index.default(device, index)
def test_device_index(device) -> int:
"""
Tests Device index() method.
Args:
device: Device - device to query
Returns: int - device index
"""
return torch.ops.libtorch_agnostic.test_device_index.default(device)
def test_device_is_cuda(device) -> bool:
"""
Tests Device is_cuda() method.
Args:
device: Device - device to check
Returns: bool - True if device is CUDA
"""
return torch.ops.libtorch_agnostic.test_device_is_cuda.default(device)
def test_device_is_cpu(device) -> bool:
"""
Tests Device is_cpu() method.
Args:
device: Device - device to check
Returns: bool - True if device is CPU
"""
return torch.ops.libtorch_agnostic.test_device_is_cpu.default(device)
def test_parallel_for(size, grain_size) -> Tensor:
"""
Tests the parallel_for functionality by using it to fill a tensor with indices.
Args:
size: int - size of the tensor to create
grain_size: int - grain size for parallel_for
Returns: Tensor - a 1D int64 tensor where each element contains its index
(if multiple threads are used the threadid will be encoded in the upper 32 bits)
"""
return torch.ops.libtorch_agnostic.test_parallel_for.default(size, grain_size)
def test_get_num_threads() -> int:
"""
Tests the get_num_threads functionality by returning the number of threads
for the parallel backend.
Returns: int - the number of threads for the parallel backend
"""
return torch.ops.libtorch_agnostic.test_get_num_threads.default()

View File

@ -367,6 +367,164 @@ if not IS_WINDOWS:
self.assertNotEqual(result.data_ptr(), expected.data_ptr())
self.assertEqual(result.stride(), expected.stride())
def test_my__foreach_mul_(self, device):
import libtorch_agnostic
N = 5
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
tensors_c = [t.clone() for t in tensors]
others = [torch.rand(32, 16, device=device) for _ in range(N)]
libtorch_agnostic.ops.my__foreach_mul_(tensors, others)
expected_values = torch._foreach_mul(tensors_c, others)
for tensor_t, expected_t in zip(tensors, expected_values):
self.assertEqual(tensor_t, expected_t)
def test_my__foreach_mul(self, device):
import libtorch_agnostic
N = 5
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
others = [torch.rand(32, 16, device=device) for _ in range(N)]
result = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
expected = torch._foreach_mul(tensors, others)
for result_t, expected_t in zip(result, expected):
self.assertEqual(result_t, expected_t)
def _make_cuda_tensors(prior_mem):
cuda_res = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
self.assertGreater(torch.cuda.memory_allocated(device), prior_mem)
expected = torch._foreach_mul(tensors, others)
for result_t, expected_t in zip(cuda_res, expected):
self.assertEqual(result_t, expected_t)
if tensors[0].is_cuda:
init_mem = torch.cuda.memory_allocated(device)
for _ in range(3):
_make_cuda_tensors(init_mem)
curr_mem = torch.cuda.memory_allocated(device)
self.assertEqual(curr_mem, init_mem)
def test_make_tensor_clones_and_call_foreach(self, device):
import libtorch_agnostic
t1 = torch.rand(2, 5, device=device)
t2 = torch.rand(3, 4, device=device)
result = libtorch_agnostic.ops.make_tensor_clones_and_call_foreach(t1, t2)
self.assertEqual(result[0], t1 * t1)
self.assertEqual(result[1], t2 * t2)
@onlyCUDA
def test_device(self, device):
import libtorch_agnostic
cuda_device = libtorch_agnostic.ops.test_device_constructor(
is_cuda=True, index=1, use_str=False
)
self.assertEqual(cuda_device, torch.device("cuda:1"))
cuda_device = libtorch_agnostic.ops.test_device_constructor(
is_cuda=True, index=1, use_str=True
)
self.assertEqual(cuda_device, torch.device("cuda:1"))
self.assertEqual(libtorch_agnostic.ops.test_device_index(cuda_device), 1)
self.assertTrue(
libtorch_agnostic.ops.test_device_equality(
cuda_device, torch.device("cuda:1")
)
)
self.assertFalse(
libtorch_agnostic.ops.test_device_equality(
cuda_device, torch.device("cuda:0")
)
)
self.assertFalse(libtorch_agnostic.ops.test_device_is_cpu(cuda_device))
self.assertTrue(libtorch_agnostic.ops.test_device_is_cuda(cuda_device))
cuda_0_device = libtorch_agnostic.ops.test_device_set_index(cuda_device, 0)
self.assertEqual(cuda_0_device, torch.device("cuda:0"))
cpu_device = libtorch_agnostic.ops.test_device_constructor(False, 0, False)
self.assertEqual(cpu_device, torch.device("cpu"))
self.assertTrue(
libtorch_agnostic.ops.test_device_equality(
cpu_device, torch.device("cpu")
)
)
self.assertTrue(libtorch_agnostic.ops.test_device_is_cpu(cpu_device))
self.assertFalse(libtorch_agnostic.ops.test_device_is_cuda(cpu_device))
self.assertFalse(
libtorch_agnostic.ops.test_device_equality(cpu_device, cuda_device)
)
with self.assertRaisesRegex(
RuntimeError, "Device index 129 is out of range for int8_t"
):
libtorch_agnostic.ops.test_device_constructor(
is_cuda=True, index=129, use_str=False
)
with self.assertRaisesRegex(
RuntimeError, "Device index 129 is out of range for int8_t"
):
libtorch_agnostic.ops.test_device_set_index(cuda_device, 129)
@onlyCUDA
@deviceCountAtLeast(2)
def test_tensor_device(self, device):
import libtorch_agnostic
t = torch.randn(2, 3)
self.assertEqual(libtorch_agnostic.ops.test_tensor_device(t), t.device)
t_cuda = torch.randn(2, 3, device="cuda")
self.assertEqual(
libtorch_agnostic.ops.test_tensor_device(t_cuda), t_cuda.device
)
t_cuda_1 = torch.randn(2, 3, device="cuda:1")
self.assertEqual(
libtorch_agnostic.ops.test_tensor_device(t_cuda_1), t_cuda_1.device
)
@onlyCPU
# TODO: Debug this:
# Dynamo failed to run FX node with fake tensors:
# call_function libtorch_agnostic.test_parallel_for.default(*(100, 10), **{}):
# got RuntimeError('libtorch_agnostic::test_parallel_for() expected at most
# 2 argument(s) but received 3 argument(s).
# Declaration: libtorch_agnostic::test_parallel_for(int size, int grain_size) -> Tensor')
@xfailIfTorchDynamo
def test_parallel_for(self, device):
import libtorch_agnostic
num_threads = torch.get_num_threads()
size = 100
grain_size = 10
expected_num_threads_used = min(
(size + grain_size - 1) // grain_size, num_threads
)
result = libtorch_agnostic.ops.test_parallel_for(size, grain_size)
result_thread_ids = torch.unique(torch.bitwise_right_shift(result, 32))
result_values = torch.bitwise_and(result, 0xFFFFFFFF)
expected = torch.arange(size, dtype=torch.int64)
self.assertEqual(result_values, expected)
self.assertEqual(result_thread_ids, torch.arange(expected_num_threads_used))
@onlyCPU
def test_get_num_threads(self, device):
import libtorch_agnostic
num_threads = libtorch_agnostic.ops.test_get_num_threads()
expected_num_threads = torch.get_num_threads()
self.assertEqual(num_threads, expected_num_threads)
instantiate_device_type_tests(TestLibtorchAgnostic, globals(), except_for=None)
if __name__ == "__main__":

View File

@ -1,6 +1,5 @@
# Owner(s): ["module: unknown"]
import os
import tempfile
from backend import get_custom_backend_library_path, Model, to_custom_backend
@ -41,14 +40,11 @@ class TestCustomBackend(TestCase):
self.test_execute()
# Save and load.
f = tempfile.NamedTemporaryFile(delete=False)
try:
with tempfile.NamedTemporaryFile() as f:
f.close()
torch.jit.save(self.model, f.name)
loaded = torch.jit.load(f.name)
finally:
os.unlink(f.name)
self.model = loaded
self.model = loaded
# Test execution again.
self.test_execute()

View File

@ -1,6 +1,5 @@
# Owner(s): ["module: unknown"]
import os.path
import sys
import tempfile
import unittest
@ -144,16 +143,13 @@ def forward(self, arg0_1):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually.
file = tempfile.NamedTemporaryFile(delete=False)
try:
with tempfile.NamedTemporaryFile() as file:
file.close()
model.save(file.name)
loaded = torch.jit.load(file.name)
finally:
os.unlink(file.name)
output = loaded.forward(torch.ones(5))
self.assertTrue(output.allclose(torch.ones(5) + 1))
output = loaded.forward(torch.ones(5))
self.assertTrue(output.allclose(torch.ones(5) + 1))
if __name__ == "__main__":

View File

@ -1,7 +1,7 @@
# Owner(s): ["module: fsdp"]
import functools
import os
import unittest.mock
import unittest
import torch.distributed as dist
from torch._dynamo.test_case import run_tests
@ -37,9 +37,9 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import fully_shard
logger = logging.getLogger("torch.distributed._composable.fsdp")
logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
logger.setLevel(logging.DEBUG)
device = {device_type.type}
device = '{device_type.type}'
torch.manual_seed(0)
model = nn.Sequential(*[nn.Linear(4, 4, device=device, bias=False) for _ in range(2)])
for layer in model:

View File

@ -80,7 +80,7 @@ class TestSACILP(TestCase):
# postprocessing due to the fact that for ModTracker, the post backward hook
# is not being called for modules whose inputs don't require gradients
# TODO: fix this in ModTracker and ensure it does not lead to any perf regression
if _ModState.POST_BW not in mod_stats.snapshots.keys():
if _ModState.POST_BW not in mod_stats.snapshots:
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
copy.deepcopy(last_snapshot)
)

Some files were not shown because too many files have changed in this diff Show More