mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-19 01:54:54 +08:00
Compare commits
37 Commits
ciflow/s39
...
dev/joona/
| Author | SHA1 | Date | |
|---|---|---|---|
| 51ba31dceb | |||
| b7208877c8 | |||
| f69815d77f | |||
| 1c04a43959 | |||
| 661fb53449 | |||
| 4e1b772103 | |||
| bdd3c3a29c | |||
| 9d8ceaa36f | |||
| 927899dc05 | |||
| a892f76d06 | |||
| 2ddcf53e1a | |||
| 689d731ece | |||
| b288d0020b | |||
| 4414e1bff0 | |||
| 694f9b943c | |||
| 01deee228a | |||
| 1233be0923 | |||
| 02b55c3f4a | |||
| ae3ce54f27 | |||
| 2f3bb7482c | |||
| 567dcdba75 | |||
| 77acc66df9 | |||
| 95d1df7d4e | |||
| 094e529c64 | |||
| a4c7bf7e8d | |||
| 22ccd44d73 | |||
| 39ebab1dd9 | |||
| 4c152a71ad | |||
| 1b43d6cd4e | |||
| 2b69673bbf | |||
| 2f74916e36 | |||
| 2b5eabc74b | |||
| 9ff95f6835 | |||
| 6fdb974f4a | |||
| 661d1653aa | |||
| 53809f9640 | |||
| 93ddd38ecd |
@ -75,9 +75,11 @@ if [[ "$ARCH" == "aarch64" ]]; then
|
||||
# ARM system libraries
|
||||
DEPS_LIST+=(
|
||||
"/usr/lib64/libgfortran.so.5"
|
||||
"/opt/OpenBLAS/lib/libopenblas.so.0"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libgfortran.so.5"
|
||||
"libopenblas.so.0"
|
||||
)
|
||||
fi
|
||||
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a
|
||||
94631807d22c09723dd006f7be5beb649d5f88d0
|
||||
|
||||
@ -144,7 +144,7 @@ inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
|
||||
}
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
|
||||
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ')';
|
||||
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ namespace indexing {
|
||||
const EllipsisIndexType Ellipsis = EllipsisIndexType();
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const Slice& slice) {
|
||||
stream << slice.start() << ':' << slice.stop() << ':' << slice.step();
|
||||
stream << slice.start() << ":" << slice.stop() << ":" << slice.step();
|
||||
return stream;
|
||||
}
|
||||
|
||||
@ -31,12 +31,12 @@ std::ostream& operator<<(std::ostream& stream, const TensorIndex& tensor_index)
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const std::vector<TensorIndex>& tensor_indices) {
|
||||
stream << '(';
|
||||
stream << "(";
|
||||
for (const auto i : c10::irange(tensor_indices.size())) {
|
||||
stream << tensor_indices[i];
|
||||
if (i < tensor_indices.size() - 1) stream << ", ";
|
||||
}
|
||||
stream << ')';
|
||||
stream << ")";
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -113,7 +113,7 @@ void TensorNames::checkUnique(const char* op_name) const {
|
||||
std::ostream& operator<<(std::ostream& out, const TensorName& tensorname) {
|
||||
out << tensorname.name_ << " (index ";
|
||||
out << tensorname.origin_idx_ << " of ";
|
||||
out << tensorname.origin_ << ')';
|
||||
out << tensorname.origin_ << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -13,9 +13,9 @@ std::ostream& operator<<(std::ostream & out, const TensorGeometryArg& t) {
|
||||
if (t.pos == 0) {
|
||||
// 0 is distinguished; it usually indicates 'self' or the return
|
||||
// tensor
|
||||
out << '\'' << t.name << '\'';
|
||||
out << "'" << t.name << "'";
|
||||
} else {
|
||||
out << "argument #" << t.pos << " '" << t.name << '\'';
|
||||
out << "argument #" << t.pos << " '" << t.name << "'";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
@ -154,7 +154,7 @@ void checkSameGPU(CheckedFrom c, const TensorArg& t1, const TensorArg& t2) {
|
||||
oss << "Tensor for " << t2 << " is on CPU, ";
|
||||
}
|
||||
oss << "but expected " << ((!t1->is_cpu() && !t2->is_cpu()) ? "them" : "it")
|
||||
<< " to be on GPU (while checking arguments for " << c << ')';
|
||||
<< " to be on GPU (while checking arguments for " << c << ")";
|
||||
TORCH_CHECK(false, oss.str());
|
||||
}
|
||||
TORCH_CHECK(
|
||||
@ -199,7 +199,7 @@ void checkScalarTypes(CheckedFrom c, const TensorArg& t,
|
||||
i++;
|
||||
}
|
||||
oss << "; but got " << t->toString()
|
||||
<< " instead (while checking arguments for " << c << ')';
|
||||
<< " instead (while checking arguments for " << c << ")";
|
||||
TORCH_CHECK(false, oss.str());
|
||||
}
|
||||
}
|
||||
|
||||
@ -43,8 +43,8 @@ std::string get_mkldnn_version() {
|
||||
// https://github.com/intel/ideep/issues/29
|
||||
{
|
||||
const dnnl_version_t* ver = dnnl_version();
|
||||
ss << "Intel(R) MKL-DNN v" << ver->major << '.' << ver->minor << '.' << ver->patch
|
||||
<< " (Git Hash " << ver->hash << ')';
|
||||
ss << "Intel(R) MKL-DNN v" << ver->major << "." << ver->minor << "." << ver->patch
|
||||
<< " (Git Hash " << ver->hash << ")";
|
||||
}
|
||||
#else
|
||||
ss << "MKLDNN not found";
|
||||
@ -81,7 +81,7 @@ std::string get_openmp_version() {
|
||||
break;
|
||||
}
|
||||
if (ver_str) {
|
||||
ss << " (a.k.a. OpenMP " << ver_str << ')';
|
||||
ss << " (a.k.a. OpenMP " << ver_str << ")";
|
||||
}
|
||||
}
|
||||
#else
|
||||
@ -135,38 +135,38 @@ std::string show_config() {
|
||||
|
||||
#if defined(__GNUC__)
|
||||
{
|
||||
ss << " - GCC " << __GNUC__ << '.' << __GNUC_MINOR__ << '\n';
|
||||
ss << " - GCC " << __GNUC__ << "." << __GNUC_MINOR__ << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
{
|
||||
ss << " - C++ Version: " << __cplusplus << '\n';
|
||||
ss << " - C++ Version: " << __cplusplus << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__clang_major__)
|
||||
{
|
||||
ss << " - clang " << __clang_major__ << '.' << __clang_minor__ << '.' << __clang_patchlevel__ << '\n';
|
||||
ss << " - clang " << __clang_major__ << "." << __clang_minor__ << "." << __clang_patchlevel__ << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
{
|
||||
ss << " - MSVC " << _MSC_FULL_VER << '\n';
|
||||
ss << " - MSVC " << _MSC_FULL_VER << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
#if AT_MKL_ENABLED()
|
||||
ss << " - " << get_mkl_version() << '\n';
|
||||
ss << " - " << get_mkl_version() << "\n";
|
||||
#endif
|
||||
|
||||
#if AT_MKLDNN_ENABLED()
|
||||
ss << " - " << get_mkldnn_version() << '\n';
|
||||
ss << " - " << get_mkldnn_version() << "\n";
|
||||
#endif
|
||||
|
||||
#ifdef _OPENMP
|
||||
ss << " - " << get_openmp_version() << '\n';
|
||||
ss << " - " << get_openmp_version() << "\n";
|
||||
#endif
|
||||
|
||||
#if AT_BUILD_WITH_LAPACK()
|
||||
@ -183,7 +183,7 @@ std::string show_config() {
|
||||
ss << " - Cross compiling on MacOSX\n";
|
||||
#endif
|
||||
|
||||
ss << " - "<< used_cpu_capability() << '\n';
|
||||
ss << " - "<< used_cpu_capability() << "\n";
|
||||
|
||||
if (hasCUDA()) {
|
||||
ss << detail::getCUDAHooks().showConfig();
|
||||
@ -200,10 +200,10 @@ std::string show_config() {
|
||||
ss << " - Build settings: ";
|
||||
for (const auto& pair : caffe2::GetBuildOptions()) {
|
||||
if (!pair.second.empty()) {
|
||||
ss << pair.first << '=' << pair.second << ", ";
|
||||
ss << pair.first << "=" << pair.second << ", ";
|
||||
}
|
||||
}
|
||||
ss << '\n';
|
||||
ss << "\n";
|
||||
|
||||
// TODO: do HIP
|
||||
// TODO: do XLA
|
||||
|
||||
@ -209,7 +209,7 @@ struct CodeTemplate {
|
||||
// to indent correctly in the context.
|
||||
void emitIndent(std::ostream& out, size_t indent) const {
|
||||
for ([[maybe_unused]] const auto i : c10::irange(indent)) {
|
||||
out << ' ';
|
||||
out << " ";
|
||||
}
|
||||
}
|
||||
void emitStringWithIndents(
|
||||
|
||||
@ -10,7 +10,7 @@ std::ostream& operator<<(std::ostream& out, const Dimname& dimname) {
|
||||
if (dimname.type() == NameType::WILDCARD) {
|
||||
out << "None";
|
||||
} else {
|
||||
out << '\'' << dimname.symbol().toUnqualString() << '\'';
|
||||
out << "'" << dimname.symbol().toUnqualString() << "'";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
namespace at {
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const Range& range) {
|
||||
out << "Range[" << range.begin << ", " << range.end << ']';
|
||||
out << "Range[" << range.begin << ", " << range.end << "]";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -71,7 +71,7 @@ void TensorBase::enforce_invariants() {
|
||||
|
||||
void TensorBase::print() const {
|
||||
if (defined()) {
|
||||
std::cerr << '[' << toString() << ' ' << sizes() << ']' << '\n';
|
||||
std::cerr << "[" << toString() << " " << sizes() << "]" << '\n';
|
||||
} else {
|
||||
std::cerr << "[UndefinedTensor]" << '\n';
|
||||
}
|
||||
|
||||
@ -245,6 +245,9 @@ class TORCH_API TensorBase {
|
||||
size_t weak_use_count() const noexcept {
|
||||
return impl_.weak_use_count();
|
||||
}
|
||||
bool is_uniquely_owned() const noexcept {
|
||||
return impl_.is_uniquely_owned();
|
||||
}
|
||||
|
||||
std::string toString() const;
|
||||
|
||||
|
||||
@ -9,8 +9,8 @@ APIVitals VitalsAPI;
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, TorchVital const& tv) {
|
||||
for (const auto& m : tv.attrs) {
|
||||
os << "[TORCH_VITAL] " << tv.name << '.' << m.first << "\t\t "
|
||||
<< m.second.value << '\n';
|
||||
os << "[TORCH_VITAL] " << tv.name << "." << m.first << "\t\t "
|
||||
<< m.second.value << "\n";
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -100,18 +100,18 @@ inline bool operator==(const AliasInfo& lhs, const AliasInfo& rhs) {
|
||||
|
||||
// this does match the way things are represented in the schema
|
||||
inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
|
||||
out << '(';
|
||||
out << "(";
|
||||
bool first = true;
|
||||
for (const auto& set : aliasInfo.beforeSets()) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
out << '|';
|
||||
out << "|";
|
||||
}
|
||||
out << set.toUnqualString();
|
||||
}
|
||||
if (aliasInfo.isWrite()) {
|
||||
out << '!';
|
||||
out << "!";
|
||||
}
|
||||
if (aliasInfo.beforeSets() != aliasInfo.afterSets()) {
|
||||
out << " -> ";
|
||||
@ -120,12 +120,12 @@ inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
out << '|';
|
||||
out << "|";
|
||||
}
|
||||
out << set.toUnqualString();
|
||||
}
|
||||
}
|
||||
out << ')';
|
||||
out << ")";
|
||||
return out;
|
||||
}
|
||||
} // namespace c10
|
||||
|
||||
@ -198,7 +198,7 @@ inline void swap(Blob& lhs, Blob& rhs) noexcept {
|
||||
}
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, const Blob& v) {
|
||||
return out << "Blob[" << v.TypeName() << ']';
|
||||
return out << "Blob[" << v.TypeName() << "]";
|
||||
}
|
||||
|
||||
} // namespace caffe2
|
||||
|
||||
@ -456,8 +456,8 @@ bool ClassType::isSubtypeOfExt(const Type& rhs, std::ostream* why_not) const {
|
||||
*why_not << "Method on class '" << repr_str()
|
||||
<< "' (1) is not compatible with interface '"
|
||||
<< rhs.repr_str() << "' (2)\n"
|
||||
<< " (1) " << self_method->getSchema() << '\n'
|
||||
<< " (2) " << schema << '\n';
|
||||
<< " (1) " << self_method->getSchema() << "\n"
|
||||
<< " (2) " << schema << "\n";
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -100,7 +100,7 @@ struct TORCH_API ClassType : public NamedType {
|
||||
std::string repr_str() const override {
|
||||
std::stringstream ss;
|
||||
ss << str()
|
||||
<< " (of Python compilation unit at: " << compilation_unit().get() << ')';
|
||||
<< " (of Python compilation unit at: " << compilation_unit().get() << ")";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -58,12 +58,12 @@ std::string DispatchKeyExtractor::dumpState() const {
|
||||
std::ostringstream oss;
|
||||
for (const auto i : c10::irange(c10::utils::bitset::NUM_BITS())) {
|
||||
if (dispatch_arg_indices_reverse_.get(i)) {
|
||||
oss << '1';
|
||||
oss << "1";
|
||||
} else {
|
||||
oss << '0';
|
||||
oss << "0";
|
||||
}
|
||||
}
|
||||
oss << ' ' << nonFallthroughKeys_ << '\n';
|
||||
oss << " " << nonFallthroughKeys_ << "\n";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -69,8 +69,8 @@ private:
|
||||
|
||||
void _print_dispatch_trace(const std::string& label, const std::string& op_name, const DispatchKeySet& dispatchKeySet) {
|
||||
auto nesting_value = dispatch_trace_nesting_value();
|
||||
for (int64_t i = 0; i < nesting_value; ++i) std::cerr << ' ';
|
||||
std::cerr << label << " op=[" << op_name << "], key=[" << toString(dispatchKeySet.highestPriorityTypeId()) << ']' << std::endl;
|
||||
for (int64_t i = 0; i < nesting_value; ++i) std::cerr << " ";
|
||||
std::cerr << label << " op=[" << op_name << "], key=[" << toString(dispatchKeySet.highestPriorityTypeId()) << "]" << std::endl;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
|
||||
@ -570,7 +570,7 @@ void OperatorEntry::checkInvariants() const {
|
||||
|
||||
std::string OperatorEntry::listAllDispatchKeys() const {
|
||||
std::ostringstream str;
|
||||
str << '[';
|
||||
str << "[";
|
||||
|
||||
bool has_kernels = false;
|
||||
for (auto k : allDispatchKeysInFullSet()) {
|
||||
@ -584,7 +584,7 @@ std::string OperatorEntry::listAllDispatchKeys() const {
|
||||
str << k;
|
||||
has_kernels = true;
|
||||
}
|
||||
str << ']';
|
||||
str << "]";
|
||||
return str.str();
|
||||
}
|
||||
|
||||
@ -683,12 +683,12 @@ void OperatorEntry::setReportErrorCallback_(std::unique_ptr<c10::SafePyObject> c
|
||||
// This WON'T report backend fallbacks.
|
||||
std::string OperatorEntry::dumpState() const {
|
||||
std::ostringstream oss;
|
||||
oss << "name: " << name_ << '\n';
|
||||
oss << "name: " << name_ << "\n";
|
||||
if (schema_) {
|
||||
oss << "schema: " << schema_->schema << '\n';
|
||||
oss << "debug: " << schema_->debug << '\n';
|
||||
oss << "schema: " << schema_->schema << "\n";
|
||||
oss << "debug: " << schema_->debug << "\n";
|
||||
oss << "alias analysis kind: " << toString(schema_->schema.aliasAnalysis())
|
||||
<< (schema_->schema.isDefaultAliasAnalysisKind() ? " (default)" : "") << '\n';
|
||||
<< (schema_->schema.isDefaultAliasAnalysisKind() ? " (default)" : "") << "\n";
|
||||
} else {
|
||||
oss << "schema: (none)\n";
|
||||
}
|
||||
|
||||
@ -7,7 +7,7 @@
|
||||
namespace c10 {
|
||||
|
||||
void FunctionSchema::dump() const {
|
||||
std::cout << *this << '\n';
|
||||
std::cout << *this << "\n";
|
||||
}
|
||||
|
||||
const std::vector<Argument>& FunctionSchema::getCorrectList(SchemaArgType type) const {
|
||||
@ -210,9 +210,9 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
|
||||
out << schema.name();
|
||||
if (!schema.overload_name().empty()) {
|
||||
out << '.' << schema.overload_name();
|
||||
out << "." << schema.overload_name();
|
||||
}
|
||||
out << '(';
|
||||
out << "(";
|
||||
|
||||
bool seen_kwarg_only = false;
|
||||
for (const auto i : c10::irange(schema.arguments().size())) {
|
||||
@ -273,7 +273,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
}
|
||||
|
||||
if (need_paren) {
|
||||
out << '(';
|
||||
out << "(";
|
||||
}
|
||||
for (const auto i : c10::irange(returns.size())) {
|
||||
if (i > 0) {
|
||||
@ -288,7 +288,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
out << "...";
|
||||
}
|
||||
if (need_paren) {
|
||||
out << ')';
|
||||
out << ")";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
@ -471,7 +471,7 @@ bool FunctionSchema::isForwardCompatibleWith(
|
||||
if (!arguments().at(i).isForwardCompatibleWith(old.arguments().at(i))) {
|
||||
if (why_not) {
|
||||
why_not
|
||||
<< '\'' << arguments().at(i).name() << '\''
|
||||
<< "'" << arguments().at(i).name() << "'"
|
||||
<< " is not forward compatible with the older version of the schema";
|
||||
}
|
||||
return false;
|
||||
@ -511,7 +511,7 @@ bool FunctionSchema::isForwardCompatibleWith(
|
||||
.isForwardCompatibleWith(old.arguments().at(i))) {
|
||||
if (why_not) {
|
||||
why_not << "Out argument '"
|
||||
<< '\'' << arguments().at(i).name()
|
||||
<< "'" << arguments().at(i).name()
|
||||
<< " is not FC with the older version of the schema";
|
||||
}
|
||||
return false;
|
||||
|
||||
@ -571,7 +571,7 @@ inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
|
||||
if (arg.N()) {
|
||||
N = std::to_string(*arg.N());
|
||||
}
|
||||
out << '[' << N << ']';
|
||||
out << "[" << N << "]";
|
||||
} else {
|
||||
out << unopt_type->str();
|
||||
}
|
||||
@ -582,15 +582,15 @@ inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
|
||||
}
|
||||
|
||||
if (is_opt) {
|
||||
out << '?';
|
||||
out << "?";
|
||||
}
|
||||
|
||||
if (!arg.name().empty()) {
|
||||
out << ' ' << arg.name();
|
||||
out << " " << arg.name();
|
||||
}
|
||||
|
||||
if (arg.default_value()) {
|
||||
out << '=';
|
||||
out << "=";
|
||||
if ((type->kind() == c10::TypeKind::StringType ||
|
||||
unopt_type->kind() == c10::TypeKind::StringType) &&
|
||||
arg.default_value().value().isString()) {
|
||||
|
||||
@ -66,7 +66,7 @@ bool operator==(const ivalue::Tuple& lhs, const ivalue::Tuple& rhs) {
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const ivalue::EnumHolder& v) {
|
||||
out << v.qualifiedClassName() << '.' << v.name();
|
||||
out << v.qualifiedClassName() << "." << v.name();
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -526,7 +526,7 @@ std::ostream& printMaybeAnnotatedList(
|
||||
!elementTypeCanBeInferredFromMembers(list_elem_type)) {
|
||||
out << "annotate(" << the_list.type<c10::Type>()->annotation_str() << ", ";
|
||||
printList(out, the_list.toListRef(), "[", "]", formatter);
|
||||
out << ')';
|
||||
out << ")";
|
||||
return out;
|
||||
} else {
|
||||
return printList(out, the_list.toListRef(), "[", "]", formatter);
|
||||
@ -538,7 +538,7 @@ std::ostream& printDict(
|
||||
std::ostream& out,
|
||||
const Dict& v,
|
||||
const IValueFormatter& formatter) {
|
||||
out << '{';
|
||||
out << "{";
|
||||
|
||||
bool first = true;
|
||||
for (const auto& pair : v) {
|
||||
@ -552,7 +552,7 @@ std::ostream& printDict(
|
||||
first = false;
|
||||
}
|
||||
|
||||
out << '}';
|
||||
out << "}";
|
||||
return out;
|
||||
}
|
||||
}
|
||||
@ -565,8 +565,8 @@ static std::ostream& printMaybeAnnotatedDict(
|
||||
auto value_type = the_dict.type()->castRaw<DictType>()->getValueType();
|
||||
if (the_dict.toGenericDict().empty() ||
|
||||
!elementTypeCanBeInferredFromMembers(value_type)) {
|
||||
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ',';
|
||||
printDict(out, the_dict.toGenericDict(), formatter) << ')';
|
||||
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ",";
|
||||
printDict(out, the_dict.toGenericDict(), formatter) << ")";
|
||||
} else {
|
||||
return printDict(out, the_dict.toGenericDict(), formatter);
|
||||
}
|
||||
@ -577,7 +577,7 @@ static std::ostream& printComplex(std::ostream & out, const IValue & v) {
|
||||
c10::complex<double> d = v.toComplexDouble();
|
||||
IValue real(d.real()), imag(std::abs(d.imag()));
|
||||
auto sign = d.imag() >= 0 ? '+' : '-';
|
||||
return out << real << sign << imag << 'j';
|
||||
return out << real << sign << imag << "j";
|
||||
}
|
||||
|
||||
std::ostream& IValue::repr(
|
||||
@ -605,9 +605,9 @@ std::ostream& IValue::repr(
|
||||
if (static_cast<double>(i) == d) {
|
||||
// -0.0 (signed zero) needs to be parsed as -0.
|
||||
if (i == 0 && std::signbit(d)) {
|
||||
return out << '-' << i << '.';
|
||||
return out << "-" << i << ".";
|
||||
}
|
||||
return out << i << '.';
|
||||
return out << i << ".";
|
||||
}
|
||||
}
|
||||
auto orig_prec = out.precision();
|
||||
@ -643,20 +643,20 @@ std::ostream& IValue::repr(
|
||||
device_stream << v.toDevice();
|
||||
out << "torch.device(";
|
||||
c10::printQuotedString(out, device_stream.str());
|
||||
return out << ')';
|
||||
return out << ")";
|
||||
}
|
||||
case IValue::Tag::Generator: {
|
||||
auto generator = v.toGenerator();
|
||||
out << "torch.Generator(device=";
|
||||
c10::printQuotedString(out, generator.device().str());
|
||||
out << ", seed=" << generator.current_seed() << ')';
|
||||
out << ", seed=" << generator.current_seed() << ")";
|
||||
return out;
|
||||
}
|
||||
case IValue::Tag::GenericDict:
|
||||
return printMaybeAnnotatedDict(out, v, formatter);
|
||||
case IValue::Tag::Enum: {
|
||||
auto enum_holder = v.toEnumHolder();
|
||||
return out << enum_holder->qualifiedClassName() << '.' <<
|
||||
return out << enum_holder->qualifiedClassName() << "." <<
|
||||
enum_holder->name();
|
||||
}
|
||||
case IValue::Tag::Object: {
|
||||
@ -801,7 +801,7 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
if (c == FP_NORMAL || c == FP_ZERO) {
|
||||
int64_t i = static_cast<int64_t>(d);
|
||||
if (static_cast<double>(i) == d) {
|
||||
return out << i << '.';
|
||||
return out << i << ".";
|
||||
}
|
||||
}
|
||||
auto orig_prec = out.precision();
|
||||
@ -852,7 +852,7 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
return printDict(out, v.toGenericDict(), formatter);
|
||||
case IValue::Tag::PyObject: {
|
||||
auto py_obj = v.toPyObject();
|
||||
return out << "<PyObject at" << py_obj << '>';
|
||||
return out << "<PyObject at" << py_obj << ">";
|
||||
}
|
||||
case IValue::Tag::Generator:
|
||||
return out << "Generator";
|
||||
@ -862,22 +862,22 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
// TODO we should attempt to call __str__ if the object defines it.
|
||||
auto obj = v.toObject();
|
||||
// print this out the way python would do it
|
||||
return out << '<' << obj->name() << " object at " << obj.get() << '>';
|
||||
return out << "<" << obj->name() << " object at " << obj.get() << ">";
|
||||
}
|
||||
case IValue::Tag::Enum: {
|
||||
auto enum_holder = v.toEnumHolder();
|
||||
return out << "Enum<" << enum_holder->unqualifiedClassName() << '.' <<
|
||||
enum_holder->name() << '>';
|
||||
return out << "Enum<" << enum_holder->unqualifiedClassName() << "." <<
|
||||
enum_holder->name() << ">";
|
||||
}
|
||||
|
||||
}
|
||||
return out << "<Invalid IValue tag=" << std::to_string(static_cast<uint32_t>(v.tag)) << '>';
|
||||
return out << "<Invalid IValue tag=" << std::to_string(static_cast<uint32_t>(v.tag)) << ">";
|
||||
}
|
||||
|
||||
#undef TORCH_FORALL_TAGS
|
||||
|
||||
void IValue::dump() const {
|
||||
std::cout << *this << '\n';
|
||||
std::cout << *this << "\n";
|
||||
}
|
||||
|
||||
std::shared_ptr<ClassType> ivalue::Object::type() const {
|
||||
@ -1050,7 +1050,7 @@ c10::intrusive_ptr<ivalue::Object> ivalue::Object::deepcopy(
|
||||
std::stringstream err;
|
||||
err << "Cannot serialize custom bound C++ class";
|
||||
if (auto qualname = type()->name()) {
|
||||
err << ' ' << qualname->qualifiedName();
|
||||
err << " " << qualname->qualifiedName();
|
||||
}
|
||||
err << ". Please define serialization methods via def_pickle() for "
|
||||
"this class.";
|
||||
|
||||
@ -211,7 +211,7 @@ struct TORCH_API OptionalType : public UnionType {
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << getElementType()->str() << '?';
|
||||
ss << getElementType()->str() << "?";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -240,7 +240,7 @@ struct TORCH_API OptionalType : public UnionType {
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "Optional[" << getElementType()->annotation_str(printer) << ']';
|
||||
ss << "Optional[" << getElementType()->annotation_str(printer) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -906,7 +906,7 @@ struct TORCH_API ListType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "List[" << getElementType()->annotation_str(printer) << ']';
|
||||
ss << "List[" << getElementType()->annotation_str(printer) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -946,7 +946,7 @@ struct TORCH_API DictType : public SharedType {
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "Dict(" << getKeyType()->str() << ", " << getValueType()->str()
|
||||
<< ')';
|
||||
<< ")";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -1018,7 +1018,7 @@ struct TORCH_API FutureType
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "Future(" << getElementType()->str() << ')';
|
||||
ss << "Future(" << getElementType()->str() << ")";
|
||||
return ss.str();
|
||||
}
|
||||
TypePtr createWithContained(
|
||||
@ -1041,7 +1041,7 @@ struct TORCH_API FutureType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "Future[" << getElementType()->annotation_str(printer) << ']';
|
||||
ss << "Future[" << getElementType()->annotation_str(printer) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -1060,7 +1060,7 @@ struct TORCH_API AwaitType
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "Await(" << getElementType()->str() << ')';
|
||||
ss << "Await(" << getElementType()->str() << ")";
|
||||
return ss.str();
|
||||
}
|
||||
TypePtr createWithContained(
|
||||
@ -1083,7 +1083,7 @@ struct TORCH_API AwaitType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "Await[" << getElementType()->annotation_str(printer) << ']';
|
||||
ss << "Await[" << getElementType()->annotation_str(printer) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -1102,7 +1102,7 @@ struct TORCH_API RRefType
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "RRef(" << getElementType()->str() << ')';
|
||||
ss << "RRef(" << getElementType()->str() << ")";
|
||||
return ss.str();
|
||||
}
|
||||
TypePtr createWithContained(
|
||||
@ -1115,7 +1115,7 @@ struct TORCH_API RRefType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "RRef[" << getElementType()->annotation_str(printer) << ']';
|
||||
ss << "RRef[" << getElementType()->annotation_str(printer) << "]";
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
||||
@ -11,7 +11,7 @@ std::string toString(const OperatorName& opName) {
|
||||
std::ostream& operator<<(std::ostream& os, const OperatorName& opName) {
|
||||
os << opName.name;
|
||||
if (!opName.overload_name.empty()) {
|
||||
os << '.' << opName.overload_name;
|
||||
os << "." << opName.overload_name;
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -65,7 +65,7 @@ VaryingShape<T> VaryingShape<T>::merge(const VaryingShape<T>& other) const {
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const VaryingShape<T>& vs) {
|
||||
out << '(';
|
||||
out << "(";
|
||||
if (!vs.size()) {
|
||||
out << "*)";
|
||||
return out;
|
||||
@ -79,10 +79,10 @@ std::ostream& operator<<(std::ostream& out, const VaryingShape<T>& vs) {
|
||||
if (v.has_value()) {
|
||||
out << v.value();
|
||||
} else {
|
||||
out << '*';
|
||||
out << "*";
|
||||
}
|
||||
}
|
||||
out << ')';
|
||||
out << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -105,7 +105,7 @@ std::ostream& operator<<(
|
||||
}
|
||||
auto sizes_opt = ss.sizes();
|
||||
|
||||
os << '(';
|
||||
os << "(";
|
||||
for (size_t i = 0; i < rank_opt.value(); i++) {
|
||||
if (i > 0) {
|
||||
os << ", ";
|
||||
@ -113,10 +113,10 @@ std::ostream& operator<<(
|
||||
if(sizes_opt.has_value() && sizes_opt.value()[i].is_static()) {
|
||||
os << sizes_opt.value()[i];
|
||||
} else {
|
||||
os << '*';
|
||||
os << "*";
|
||||
}
|
||||
}
|
||||
os << ')';
|
||||
os << ")";
|
||||
|
||||
return os;
|
||||
}
|
||||
@ -131,17 +131,17 @@ std::ostream& operator<<(std::ostream& os, const ShapeSymbol& s) {
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const Stride& s) {
|
||||
os << '{';
|
||||
os << "{";
|
||||
if (s.stride_index_.has_value()) {
|
||||
os << *s.stride_index_;
|
||||
} else {
|
||||
os << '*';
|
||||
os << "*";
|
||||
}
|
||||
os << ':';
|
||||
os << ":";
|
||||
if (s.stride_.has_value()) {
|
||||
os << *s.stride_;
|
||||
} else {
|
||||
os << '*';
|
||||
os << "*";
|
||||
}
|
||||
os << '}';
|
||||
return os;
|
||||
|
||||
@ -67,7 +67,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
bool has_valid_strides_info = ndim > 0 &&
|
||||
value->strides().isComplete() && value->strides().size() == ndim;
|
||||
|
||||
out << '(';
|
||||
out << "(";
|
||||
size_t i = 0;
|
||||
bool symbolic = type_verbosity() == TypeVerbosity::Symbolic;
|
||||
for (i = 0; i < *ndim; ++i) {
|
||||
@ -79,7 +79,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
} else if (symbolic) {
|
||||
out << value->symbolic_sizes().at(i);
|
||||
} else {
|
||||
out << '*';
|
||||
out << "*";
|
||||
}
|
||||
}
|
||||
if (has_valid_strides_info &&
|
||||
@ -91,7 +91,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
}
|
||||
out << value->strides()[i].value();
|
||||
}
|
||||
out << ']';
|
||||
out << "]";
|
||||
}
|
||||
if (type_verbosity() >= TypeVerbosity::Full) {
|
||||
if (value->requiresGrad()) {
|
||||
@ -107,12 +107,12 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << "device=" << *value->device();
|
||||
}
|
||||
}
|
||||
out << ')';
|
||||
out << ")";
|
||||
} else {
|
||||
if (type_verbosity() >= TypeVerbosity::Full) {
|
||||
size_t i = 0;
|
||||
if (value->requiresGrad()) {
|
||||
out << '('
|
||||
out << "("
|
||||
<< "requires_grad=" << *value->requiresGrad();
|
||||
i++;
|
||||
}
|
||||
@ -120,7 +120,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << ((i++ > 0) ? ", " : "(") << "device=" << *value->device();
|
||||
}
|
||||
if (i > 0) {
|
||||
out << ')';
|
||||
out << ")";
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -133,18 +133,18 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << *prim << "[]";
|
||||
} else if (t.kind() == TypeKind::OptionalType) {
|
||||
auto prim = t.castRaw<OptionalType>()->getElementType();
|
||||
out << *prim << '?';
|
||||
out << *prim << "?";
|
||||
} else if(t.kind() == TypeKind::FutureType) {
|
||||
auto elem = t.castRaw<FutureType>()->getElementType();
|
||||
out << "Future[" << *elem << ']';
|
||||
out << "Future[" << *elem << "]";
|
||||
} else if(t.kind() == TypeKind::RRefType) {
|
||||
auto elem = t.castRaw<RRefType>()->getElementType();
|
||||
out << "RRef[" << *elem << ']';
|
||||
out << "RRef[" << *elem << "]";
|
||||
} else if(auto tup = t.cast<TupleType>()) {
|
||||
if (tup->schema()) {
|
||||
out << "NamedTuple";
|
||||
}
|
||||
out << '(';
|
||||
out << "(";
|
||||
for(size_t i = 0; i < tup->elements().size(); ++i) {
|
||||
if(i > 0)
|
||||
out << ", ";
|
||||
@ -160,7 +160,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << *(tup->elements()[i]);
|
||||
}
|
||||
}
|
||||
out << ')';
|
||||
out << ")";
|
||||
} else if (t.kind() == TypeKind::FunctionType) {
|
||||
out << "Function";
|
||||
} else {
|
||||
@ -475,7 +475,7 @@ std::optional<TypePtr> unifyTypeList(
|
||||
why_not << "Could not unify type list since element " << i << " of type "
|
||||
<< elements.at(i)->repr_str()
|
||||
<< " did not match the types before it ("
|
||||
<< ret_type->repr_str() << ')';
|
||||
<< ret_type->repr_str() << ")";
|
||||
return std::nullopt;
|
||||
}
|
||||
ret_type = *maybe_unified;
|
||||
@ -907,13 +907,13 @@ std::string TupleType::str() const {
|
||||
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
|
||||
ss << name()->qualifiedName();
|
||||
} else {
|
||||
ss << '(';
|
||||
ss << "(";
|
||||
for(size_t i = 0; i < elements().size(); ++i) {
|
||||
if(i > 0)
|
||||
ss << ", ";
|
||||
ss << elements()[i]->str();
|
||||
}
|
||||
ss << ')';
|
||||
ss << ")";
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
@ -1003,8 +1003,8 @@ bool InterfaceType::isSubTypeImpl(
|
||||
*why_not << "Method on interface '" << lhs.repr_str()
|
||||
<< "' (1) is not compatible with interface '"
|
||||
<< rhs.repr_str() << "' (2)\n"
|
||||
<< " (1) " << *self_schema << '\n'
|
||||
<< " (2) " << schema << '\n';
|
||||
<< " (1) " << *self_schema << "\n"
|
||||
<< " (2) " << schema << "\n";
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
@ -1078,7 +1078,7 @@ SymbolicShape SymbolicShape::merge(const SymbolicShape& other) const {
|
||||
}
|
||||
|
||||
void SymbolicShape::dump() const {
|
||||
std::cout << *this << '\n';
|
||||
std::cout << *this << "\n";
|
||||
}
|
||||
|
||||
bool EnumType::isSubtypeOfExt(const Type& rhs, std::ostream* why_not) const {
|
||||
|
||||
@ -205,9 +205,9 @@ UnionType::UnionType(std::vector<TypePtr> reference, TypeKind kind) : SharedType
|
||||
for (const auto i : c10::irange(reference.size())) {
|
||||
msg << reference[i]->repr_str();
|
||||
if (i > 0) {
|
||||
msg << ',';
|
||||
msg << ",";
|
||||
}
|
||||
msg << ' ';
|
||||
msg << " ";
|
||||
}
|
||||
msg << "} has the single type " << types_[0]->repr_str()
|
||||
<< ". Use the common supertype instead of creating a Union"
|
||||
|
||||
@ -80,7 +80,7 @@ std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << ']';
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -55,7 +55,7 @@ std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << ']';
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <shared_mutex>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cusparse.h>
|
||||
@ -88,8 +89,13 @@ TORCH_CUDA_CPP_API cublasHandle_t getCurrentCUDABlasHandle();
|
||||
TORCH_CUDA_CPP_API cublasLtHandle_t getCurrentCUDABlasLtHandle();
|
||||
|
||||
TORCH_CUDA_CPP_API void clearCublasWorkspaces();
|
||||
TORCH_CUDA_CPP_API std::map<std::tuple<void *, void *>, at::DataPtr>& cublas_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API std::map<std::tuple<void *, void *>, at::DataPtr>& cublaslt_handle_stream_to_workspace();
|
||||
struct WorkspaceMapWithMutex {
|
||||
std::map<std::tuple<void*, void*>, at::DataPtr> map;
|
||||
std::shared_mutex mutex;
|
||||
};
|
||||
|
||||
TORCH_CUDA_CPP_API WorkspaceMapWithMutex& cublas_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API WorkspaceMapWithMutex& cublaslt_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API size_t getChosenWorkspaceSize();
|
||||
TORCH_CUDA_CPP_API size_t getCUDABlasLtWorkspaceSize();
|
||||
TORCH_CUDA_CPP_API void* getCUDABlasLtWorkspace();
|
||||
|
||||
@ -99,7 +99,7 @@ void destroyCublasHandle(cublasHandle_t handle) {
|
||||
// - Comments of @soumith copied from cuDNN handle pool implementation
|
||||
#ifdef NO_CUDNN_DESTROY_HANDLE
|
||||
#else
|
||||
cublasDestroy(handle);
|
||||
cublasDestroy(handle);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -107,19 +107,27 @@ using CuBlasPoolType = DeviceThreadHandlePool<cublasHandle_t, createCublasHandle
|
||||
|
||||
} // namespace
|
||||
|
||||
std::map<std::tuple<void *, void *>, at::DataPtr>& cublas_handle_stream_to_workspace() {
|
||||
static auto& instance = *new std::map<std::tuple<void *, void *>, at::DataPtr>;
|
||||
WorkspaceMapWithMutex& cublas_handle_stream_to_workspace() {
|
||||
static auto& instance = *new WorkspaceMapWithMutex;
|
||||
return instance;
|
||||
}
|
||||
|
||||
std::map<std::tuple<void *, void *>, at::DataPtr>& cublaslt_handle_stream_to_workspace() {
|
||||
static auto& instance = *new std::map<std::tuple<void *, void *>, at::DataPtr>;
|
||||
WorkspaceMapWithMutex& cublaslt_handle_stream_to_workspace() {
|
||||
static auto& instance = *new WorkspaceMapWithMutex;
|
||||
return instance;
|
||||
}
|
||||
|
||||
void clearCublasWorkspaces() {
|
||||
cublas_handle_stream_to_workspace().clear();
|
||||
cublaslt_handle_stream_to_workspace().clear();
|
||||
{
|
||||
auto& workspace = cublas_handle_stream_to_workspace();
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
workspace.map.clear();
|
||||
}
|
||||
{
|
||||
auto& workspace = cublaslt_handle_stream_to_workspace();
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
workspace.map.clear();
|
||||
}
|
||||
}
|
||||
|
||||
size_t parseChosenWorkspaceSize() {
|
||||
@ -233,6 +241,38 @@ at::DataPtr getNewCUDABlasLtWorkspace() {
|
||||
return c10::cuda::CUDACachingAllocator::get()->allocate(getCUDABlasLtWorkspaceSize());
|
||||
}
|
||||
|
||||
void setWorkspaceForHandle(cublasHandle_t handle, c10::cuda::CUDAStream stream) {
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
|
||||
auto& workspace = cublas_handle_stream_to_workspace();
|
||||
|
||||
size_t workspace_size = getChosenWorkspaceSize();
|
||||
|
||||
// Fast path: check if workspace already exists
|
||||
{
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
if (workspace_it != workspace.map.end()) {
|
||||
TORCH_CUDABLAS_CHECK(cublasSetWorkspace(
|
||||
handle, workspace_it->second.get(), workspace_size));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Slow path: allocate workspace outside the lock
|
||||
auto new_workspace = getNewWorkspace();
|
||||
|
||||
// Insert with lock (double-check in case another thread inserted while we
|
||||
// were allocating)
|
||||
{
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.try_emplace(key, std::move(new_workspace)).first;
|
||||
TORCH_CUDABLAS_CHECK(
|
||||
cublasSetWorkspace(handle, workspace_it->second.get(), workspace_size));
|
||||
}
|
||||
}
|
||||
|
||||
void* getCUDABlasLtWorkspace() {
|
||||
#ifndef USE_ROCM
|
||||
static bool unified = c10::utils::check_env(TORCH_CUBLASLT_UNIFIED_WORKSPACE) == true;
|
||||
@ -241,8 +281,10 @@ void* getCUDABlasLtWorkspace() {
|
||||
auto stream = c10::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = at::cuda::cublas_handle_stream_to_workspace().find(key);
|
||||
TORCH_INTERNAL_ASSERT(workspace_it != at::cuda::cublas_handle_stream_to_workspace().end());
|
||||
auto& workspace = at::cuda::cublas_handle_stream_to_workspace();
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
TORCH_INTERNAL_ASSERT(workspace_it != workspace.map.end());
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
#endif
|
||||
@ -250,11 +292,29 @@ void* getCUDABlasLtWorkspace() {
|
||||
auto stream = c10::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = cublaslt_handle_stream_to_workspace().find(key);
|
||||
if (workspace_it == cublaslt_handle_stream_to_workspace().end()) {
|
||||
workspace_it = cublaslt_handle_stream_to_workspace().insert(workspace_it, {key, getNewCUDABlasLtWorkspace()});
|
||||
|
||||
auto& workspace = cublaslt_handle_stream_to_workspace();
|
||||
|
||||
// Fast path: check if workspace already exists
|
||||
{
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
if (workspace_it != workspace.map.end()) {
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
}
|
||||
|
||||
// Slow path: allocate workspace outside the lock
|
||||
auto new_workspace = getNewCUDABlasLtWorkspace();
|
||||
|
||||
// Insert with lock (double-check in case another thread inserted while we
|
||||
// were allocating)
|
||||
{
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it =
|
||||
workspace.map.try_emplace(key, std::move(new_workspace)).first;
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
|
||||
cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
@ -298,13 +358,8 @@ cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
// will allocate memory dynamically (even if they're cheap) outside
|
||||
// PyTorch's CUDA caching allocator. It's possible that CCA used up
|
||||
// all the memory and cublas's cudaMallocAsync will return OOM
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = cublas_handle_stream_to_workspace().find(key);
|
||||
if (workspace_it == cublas_handle_stream_to_workspace().end()) {
|
||||
workspace_it = cublas_handle_stream_to_workspace().insert(workspace_it, {key, getNewWorkspace()});
|
||||
}
|
||||
TORCH_CUDABLAS_CHECK(cublasSetWorkspace(handle, workspace_it->second.get(), getChosenWorkspaceSize()));
|
||||
setWorkspaceForHandle(handle, stream);
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
// On CUDA >= 11, and architecture >= Ampere, cuBLAS can use TF32 to speedup
|
||||
// FP32 data type calculations based on the value of the allow_tf32 flag.
|
||||
|
||||
@ -411,16 +411,16 @@ std::string CUDAHooks::showConfig() const {
|
||||
// HIP_VERSION value format was changed after ROCm v4.2 to include the patch number
|
||||
if(v < 500) {
|
||||
// If major=xx, minor=yy then format -> xxyy
|
||||
oss << (v / 100) << '.' << (v % 10);
|
||||
oss << (v / 100) << "." << (v % 10);
|
||||
}
|
||||
else {
|
||||
// If major=xx, minor=yy & patch=zzzzz then format -> xxyyzzzzz
|
||||
oss << (v / 10000000) << '.' << (v / 100000 % 100) << '.' << (v % 100000);
|
||||
oss << (v / 10000000) << "." << (v / 100000 % 100) << "." << (v % 100000);
|
||||
}
|
||||
#else
|
||||
oss << (v / 1000) << '.' << (v / 10 % 100);
|
||||
oss << (v / 1000) << "." << (v / 10 % 100);
|
||||
if (v % 10 != 0) {
|
||||
oss << '.' << (v % 10);
|
||||
oss << "." << (v % 10);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
@ -431,16 +431,16 @@ std::string CUDAHooks::showConfig() const {
|
||||
oss << " - HIP Runtime ";
|
||||
#endif
|
||||
printCudaStyleVersion(runtimeVersion);
|
||||
oss << '\n';
|
||||
oss << "\n";
|
||||
|
||||
// TODO: Make HIPIFY understand CUDART_VERSION macro
|
||||
#if !defined(USE_ROCM)
|
||||
if (runtimeVersion != CUDART_VERSION) {
|
||||
oss << " - Built with CUDA Runtime ";
|
||||
printCudaStyleVersion(CUDART_VERSION);
|
||||
oss << '\n';
|
||||
oss << "\n";
|
||||
}
|
||||
oss << " - NVCC architecture flags: " << NVCC_FLAGS_EXTRA << '\n';
|
||||
oss << " - NVCC architecture flags: " << NVCC_FLAGS_EXTRA << "\n";
|
||||
#endif
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
@ -448,9 +448,9 @@ std::string CUDAHooks::showConfig() const {
|
||||
|
||||
|
||||
auto printCudnnStyleVersion = [&](size_t v) {
|
||||
oss << (v / 1000) << '.' << (v / 100 % 10);
|
||||
oss << (v / 1000) << "." << (v / 100 % 10);
|
||||
if (v % 100 != 0) {
|
||||
oss << '.' << (v % 100);
|
||||
oss << "." << (v % 100);
|
||||
}
|
||||
};
|
||||
|
||||
@ -461,22 +461,22 @@ std::string CUDAHooks::showConfig() const {
|
||||
if (cudnnCudartVersion != CUDART_VERSION) {
|
||||
oss << " (built against CUDA ";
|
||||
printCudaStyleVersion(cudnnCudartVersion);
|
||||
oss << ')';
|
||||
oss << ")";
|
||||
}
|
||||
oss << '\n';
|
||||
oss << "\n";
|
||||
if (cudnnVersion != CUDNN_VERSION) {
|
||||
oss << " - Built with CuDNN ";
|
||||
printCudnnStyleVersion(CUDNN_VERSION);
|
||||
oss << '\n';
|
||||
oss << "\n";
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// TODO: Check if miopen has the functions above and unify
|
||||
oss << " - MIOpen " << MIOPEN_VERSION_MAJOR << '.' << MIOPEN_VERSION_MINOR << '.' << MIOPEN_VERSION_PATCH << '\n';
|
||||
oss << " - MIOpen " << MIOPEN_VERSION_MAJOR << "." << MIOPEN_VERSION_MINOR << "." << MIOPEN_VERSION_PATCH << "\n";
|
||||
#endif
|
||||
|
||||
#if AT_MAGMA_ENABLED()
|
||||
oss << " - Magma " << MAGMA_VERSION_MAJOR << '.' << MAGMA_VERSION_MINOR << '.' << MAGMA_VERSION_MICRO << '\n';
|
||||
oss << " - Magma " << MAGMA_VERSION_MAJOR << "." << MAGMA_VERSION_MINOR << "." << MAGMA_VERSION_MICRO << "\n";
|
||||
#endif
|
||||
|
||||
return oss.str();
|
||||
|
||||
@ -42,7 +42,7 @@ static inline void launch_jitted_vectorized_kernel_dynamic(
|
||||
|
||||
// The cache key includes all the parameters to generate_code + vec_size + dev_idx
|
||||
std::stringstream ss;
|
||||
ss << nInputs << '_' << nOutputs << f;
|
||||
ss << nInputs << "_" << nOutputs << f;
|
||||
ss << f_inputs_type_str << compute_type_str << result_type_str;
|
||||
ss << static_cast<int>(at::cuda::jit::BinaryFuncVariant::NoScalar);
|
||||
ss << extra_args_types;
|
||||
@ -144,7 +144,7 @@ static inline void launch_jitted_unrolled_kernel_dynamic(
|
||||
|
||||
// The cache key includes all the parameters to generate_code + dev_idx
|
||||
std::stringstream ss;
|
||||
ss << nInputs << '_' << nOutputs << f;
|
||||
ss << nInputs << "_" << nOutputs << f;
|
||||
ss << f_inputs_type_str << compute_type_str << result_type_str;
|
||||
ss << contiguous << dynamic_casting;
|
||||
ss << static_cast<int>(at::cuda::jit::BinaryFuncVariant::NoScalar);
|
||||
|
||||
@ -52,10 +52,10 @@ TuningContext* getTuningContext() {
|
||||
std::ostream& operator<<(std::ostream& stream, const ResultEntry& entry) {
|
||||
static const bool blaslog = c10::utils::get_env("PYTORCH_TUNABLEOP_BLAS_LOG") == "1";
|
||||
if (!blaslog) {
|
||||
return stream << entry.key_ << ',' << entry.time_;
|
||||
return stream << entry.key_ << "," << entry.time_;
|
||||
}
|
||||
else {
|
||||
return stream << entry.key_ << ',' << entry.time_ << ",BLAS_PARAMS: " << entry.blas_sig_;
|
||||
return stream << entry.key_ << "," << entry.time_ << ",BLAS_PARAMS: " << entry.blas_sig_;
|
||||
}
|
||||
}
|
||||
|
||||
@ -156,10 +156,10 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std
|
||||
if (isNew) {
|
||||
static const bool blaslog = c10::utils::get_env("PYTORCH_TUNABLEOP_BLAS_LOG") == "1";
|
||||
if (!blaslog) {
|
||||
untuned_file << op_signature << ',' << params_signature << std::endl;
|
||||
untuned_file << op_signature << "," << params_signature << std::endl;
|
||||
}
|
||||
else {
|
||||
untuned_file << op_signature << ',' << params_signature << ",BLAS_PARAMS: " << blas_signature << std::endl;
|
||||
untuned_file << op_signature << "," << params_signature << ",BLAS_PARAMS: " << blas_signature << std::endl;
|
||||
}
|
||||
TUNABLE_LOG3("Untuned,", op_signature, ",", params_signature);
|
||||
}
|
||||
@ -201,7 +201,7 @@ void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const
|
||||
|
||||
if(!file_exists || file_empty) {
|
||||
for(const auto& [key, val] : validators) {
|
||||
(*realtime_out_) << "Validator," << key << ',' << val << std::endl;
|
||||
(*realtime_out_) << "Validator," << key << "," << val << std::endl;
|
||||
realtime_out_->flush();
|
||||
}
|
||||
validators_written_ = true;
|
||||
@ -219,7 +219,7 @@ void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std
|
||||
return;
|
||||
}
|
||||
|
||||
(*realtime_out_) << op_sig << ',' << param_sig << ',' << result << std::endl;
|
||||
(*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl;
|
||||
realtime_out_->flush(); //ensure immediate write to disk
|
||||
|
||||
TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result);
|
||||
|
||||
@ -93,31 +93,31 @@ std::string cudnnTypeToString(cudnnDataType_t dtype) {
|
||||
return "CUDNN_DATA_UINT8x4";
|
||||
default:
|
||||
std::ostringstream oss;
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ')';
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ")";
|
||||
return oss.str();
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << '\n';
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
|
||||
int nbDims = 0;
|
||||
int dimA[CUDNN_DIM_MAX];
|
||||
int strideA[CUDNN_DIM_MAX];
|
||||
cudnnDataType_t dtype{};
|
||||
cudnnGetTensorNdDescriptor(d.desc(), CUDNN_DIM_MAX, &dtype, &nbDims, dimA, strideA);
|
||||
out << " type = " << cudnnTypeToString(dtype) << '\n';
|
||||
out << " nbDims = " << nbDims << '\n';
|
||||
out << " type = " << cudnnTypeToString(dtype) << "\n";
|
||||
out << " nbDims = " << nbDims << "\n";
|
||||
// Read out only nbDims of the arrays!
|
||||
out << " dimA = ";
|
||||
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << '\n';
|
||||
out << "\n";
|
||||
out << " strideA = ";
|
||||
for (auto i : ArrayRef<int>{strideA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << '\n';
|
||||
out << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -168,27 +168,27 @@ std::string cudnnMemoryFormatToString(cudnnTensorFormat_t tformat) {
|
||||
return "CUDNN_TENSOR_NHWC";
|
||||
default:
|
||||
std::ostringstream oss;
|
||||
oss << "(unknown cudnn tensor format " << static_cast<int>(tformat) << ')';
|
||||
oss << "(unknown cudnn tensor format " << static_cast<int>(tformat) << ")";
|
||||
return oss.str();
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, const FilterDescriptor& d) {
|
||||
out << "FilterDescriptor " << static_cast<void*>(d.desc()) << '\n';
|
||||
out << "FilterDescriptor " << static_cast<void*>(d.desc()) << "\n";
|
||||
int nbDims = 0;
|
||||
int dimA[CUDNN_DIM_MAX];
|
||||
cudnnDataType_t dtype{};
|
||||
cudnnTensorFormat_t tformat{};
|
||||
cudnnGetFilterNdDescriptor(d.desc(), CUDNN_DIM_MAX, &dtype, &tformat, &nbDims, dimA);
|
||||
out << " type = " << cudnnTypeToString(dtype) << '\n';
|
||||
out << " tensor_format = " << cudnnMemoryFormatToString(tformat) << '\n';
|
||||
out << " nbDims = " << nbDims << '\n';
|
||||
out << " type = " << cudnnTypeToString(dtype) << "\n";
|
||||
out << " tensor_format = " << cudnnMemoryFormatToString(tformat) << "\n";
|
||||
out << " nbDims = " << nbDims << "\n";
|
||||
// Read out only nbDims of the arrays!
|
||||
out << " dimA = ";
|
||||
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << '\n';
|
||||
out << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -346,15 +346,15 @@ void foreachTensorInplaceWithFlag(std::vector<IValue>& args, int64_t begin, int6
|
||||
}
|
||||
|
||||
std::ostream& operator<< (std::ostream& os, const DynamicLayer& layer) {
|
||||
os << layer.layerId() << ':' << layer.key();
|
||||
os << layer.layerId() << ":" << layer.key();
|
||||
return os;
|
||||
}
|
||||
std::ostream& operator<< (std::ostream& os, const std::vector<DynamicLayer>& dls) {
|
||||
os << "DynamicLayerStack[ ";
|
||||
for (const auto& layer : dls) {
|
||||
os << layer << ' ';
|
||||
os << layer << " ";
|
||||
}
|
||||
os << ']';
|
||||
os << "]";
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ void dumpTensor(std::ostream& ss, const Tensor& tensor) {
|
||||
if (batched) {
|
||||
ss << "Batched[lvl=" << batched->level() << " dim=" << batched->bdim() << ", ";
|
||||
dumpTensor(ss, batched->value());
|
||||
ss << ']';
|
||||
ss << "]";
|
||||
return;
|
||||
}
|
||||
ss << "Tensor" << tensor.sizes();
|
||||
@ -36,7 +36,7 @@ void dumpTensor(std::ostream& ss, const Tensor& tensor) {
|
||||
ss << "dead, ";
|
||||
}
|
||||
dumpTensor(ss, wrapped->value());
|
||||
ss << ']';
|
||||
ss << "]";
|
||||
}
|
||||
|
||||
void TensorWrapper::refreshMetadata() {
|
||||
|
||||
@ -73,32 +73,32 @@ std::string miopenTypeToString(miopenDataType_t dtype) {
|
||||
return "miopenBFloat16";
|
||||
default:
|
||||
std::ostringstream oss;
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ')';
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ")";
|
||||
return oss.str();
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << '\n';
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
|
||||
int nbDims = 0;
|
||||
int dimA[MIOPEN_DIM_MAX];
|
||||
int strideA[MIOPEN_DIM_MAX];
|
||||
miopenDataType_t dtype;
|
||||
miopenGetTensorDescriptorSize(d.desc(), &nbDims);
|
||||
miopenGetTensorDescriptor(d.desc(), &dtype, dimA, strideA);
|
||||
out << " type = " << miopenTypeToString(dtype) << '\n';
|
||||
out << " nbDims = " << nbDims << '\n';
|
||||
out << " type = " << miopenTypeToString(dtype) << "\n";
|
||||
out << " nbDims = " << nbDims << "\n";
|
||||
// Read out only nbDims of the arrays!
|
||||
out << " dimA = ";
|
||||
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << '\n';
|
||||
out << "\n";
|
||||
out << " strideA = ";
|
||||
for (auto i : ArrayRef<int>{strideA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << '\n';
|
||||
out << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -91,7 +91,7 @@ struct OperationInfo : BaseInfo {
|
||||
std::stringstream kernelStr;
|
||||
kernelStr << kernelName;
|
||||
for (const Tensor& tensor : tensors) {
|
||||
kernelStr << ':' << BaseInfo::buildTensorString(tensor, includeBufferId);
|
||||
kernelStr << ":" << BaseInfo::buildTensorString(tensor, includeBufferId);
|
||||
}
|
||||
return kernelStr.str();
|
||||
}
|
||||
|
||||
@ -39,9 +39,9 @@ std::string BaseInfo::buildTensorString(const Tensor& tensor, bool includeBuffer
|
||||
// see comments for INCLUDE_BUFFER_ID
|
||||
if (includeBufferId && deviceType == at::kMPS) {
|
||||
id<MTLBuffer> buffer = __builtin_bit_cast(id<MTLBuffer>, tensor.storage().data());
|
||||
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer)) << ':' << buffer.retainCount << ')';
|
||||
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer)) << ":" << buffer.retainCount << ")";
|
||||
}
|
||||
tensorStr << ':' << tensor.scalar_type() << tensor.sizes();
|
||||
tensorStr << ":" << tensor.scalar_type() << tensor.sizes();
|
||||
return tensorStr.str();
|
||||
} else {
|
||||
return "undefined";
|
||||
|
||||
@ -167,7 +167,7 @@ static void check_args(CheckedFrom c, IntArrayRef args, size_t expected_size, co
|
||||
std::stringstream ss;
|
||||
ss << arg_name << " should be greater than zero but got (";
|
||||
std::copy(args.begin(), args.end() - 1, std::ostream_iterator<int>(ss,", "));
|
||||
ss << args.back() << ")" << " (while checking arguments for " << c << ')';
|
||||
ss << args.back() << ")" << " (while checking arguments for " << c << ")";
|
||||
TORCH_CHECK(false, ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
@ -639,7 +639,7 @@ static std::ostream& operator<<(std::ostream & out, const ConvParams<T>& params)
|
||||
<< " deterministic = " << params.deterministic
|
||||
<< " cudnn_enabled = " << params.cudnn_enabled
|
||||
<< " allow_tf32 = " << params.allow_tf32
|
||||
<< '}';
|
||||
<< "}";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -847,7 +847,7 @@ Tensor stft(const Tensor& self, const int64_t n_fft, const std::optional<int64_t
|
||||
<< ", hop_length=" << hop_length << ", win_length=" << win_length \
|
||||
<< ", window="; \
|
||||
if (window.defined()) { \
|
||||
SS << window.toString() << '{' << window.sizes() << '}'; \
|
||||
SS << window.toString() << "{" << window.sizes() << "}"; \
|
||||
} else { \
|
||||
SS << "None"; \
|
||||
} \
|
||||
@ -1046,7 +1046,7 @@ Tensor istft(const Tensor& self, const int64_t n_fft, const std::optional<int64_
|
||||
<< ", hop_length=" << hop_length << ", win_length=" << win_length \
|
||||
<< ", window="; \
|
||||
if (window.defined()) { \
|
||||
SS << window.toString() << '{' << window.sizes() << '}'; \
|
||||
SS << window.toString() << "{" << window.sizes() << "}"; \
|
||||
} else { \
|
||||
SS << "None"; \
|
||||
} \
|
||||
|
||||
@ -523,7 +523,7 @@ Tensor _functional_assert_async_msg_cpu(
|
||||
}
|
||||
|
||||
void _print(std::string_view s) {
|
||||
std::cout << s << '\n';
|
||||
std::cout << s << "\n";
|
||||
}
|
||||
|
||||
// Sorting-based algorithm for isin(); used when the number of test elements is
|
||||
|
||||
@ -296,7 +296,7 @@ template <typename scalar_t, typename res_scalar_t = scalar_t>
|
||||
bool launchGemmAndBiasCublasLt(
|
||||
// args contains result which is modified
|
||||
cublasCommonArgs& args,
|
||||
const Tensor& self,
|
||||
const std::optional<Tensor>& self,
|
||||
const Scalar& alpha,
|
||||
Activation activation = Activation::None
|
||||
) {
|
||||
@ -304,12 +304,8 @@ bool launchGemmAndBiasCublasLt(
|
||||
// or when it can be squeezed to 1D.
|
||||
// self_ptr == nullptr implies ignore bias epilogue
|
||||
// and use standard gemm-like API.
|
||||
const auto* self_ptr = [&]() -> auto {
|
||||
if (self.dim() == 1 || self.squeeze().dim() == 1) {
|
||||
return self.const_data_ptr<scalar_t>();
|
||||
}
|
||||
return static_cast<const scalar_t*>(nullptr);
|
||||
}();
|
||||
const auto* self_ptr = self.has_value() ? self.value().const_data_ptr<scalar_t>() : static_cast<const scalar_t*>(nullptr);
|
||||
|
||||
|
||||
const auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
@ -392,35 +388,30 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
bool disable_addmm_cuda_lt = persistent_disable_addmm_cuda_lt || disable_addmm_cuda_lt_override;
|
||||
#ifdef USE_ROCM
|
||||
// Conditioned on the device index, which is not persistent
|
||||
disable_addmm_cuda_lt = isGloballyDisabledAddmmCudaLt(self.device()) || disable_addmm_cuda_lt;
|
||||
disable_addmm_cuda_lt = disable_addmm_cuda_lt || isGloballyDisabledAddmmCudaLt(self.device());
|
||||
#endif
|
||||
// Condition on the input
|
||||
disable_addmm_cuda_lt = !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha, activation) || disable_addmm_cuda_lt;
|
||||
// }
|
||||
disable_addmm_cuda_lt = disable_addmm_cuda_lt || !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha, activation);
|
||||
|
||||
at::ScalarType scalar_type = mat1.scalar_type();
|
||||
bool is_float_output_with_half_input = (scalar_type == at::ScalarType::Half || scalar_type == at::ScalarType::BFloat16) && result.scalar_type() == at::ScalarType::Float;
|
||||
|
||||
#ifdef USE_ROCM
|
||||
disable_addmm_cuda_lt = disable_addmm_cuda_lt || is_float_output_with_half_input;
|
||||
#endif
|
||||
|
||||
bool use_bias_ptr_lt = (self.dim() == 1) && !disable_addmm_cuda_lt;
|
||||
// for float output with half input cublasLT with bias produces wrong results
|
||||
use_bias_ptr_lt &= !is_float_output_with_half_input;
|
||||
|
||||
// Handle result/self shapes
|
||||
if (!result.is_same(self)) {
|
||||
at::native::resize_output(result, {mat1.sizes()[0], mat2.sizes()[1]});
|
||||
|
||||
// We use bias ptr in the Lt path only when bias is 1D
|
||||
const auto use_bias_ptr_lt = (self.dim() == 1) && !disable_addmm_cuda_lt;
|
||||
const auto self_maybe_expanded = [&]() -> c10::MaybeOwned<Tensor> {
|
||||
if (!use_bias_ptr_lt) {
|
||||
// We do expand self even before
|
||||
// check for beta != 0.0 to make sure that
|
||||
// test_sparse_csr.py::TestSparseCSRCUDA::test_addmm_errors_*
|
||||
// runs green.
|
||||
return expand_size(self, result.sizes(), "addmm");
|
||||
}
|
||||
return c10::MaybeOwned<Tensor>::borrowed(self);
|
||||
}();
|
||||
// We do not copy bias only when we need the bias ptr
|
||||
// We do not copy bias only when we need the bias ptr
|
||||
if (beta.toComplexDouble() != 0.0 && !use_bias_ptr_lt) {
|
||||
// NOTE: self should broadcast over result
|
||||
at::native::copy_(result, *self_maybe_expanded);
|
||||
at::native::copy_(result, *expand_size(self, result.sizes(), "addmm"));
|
||||
}
|
||||
}
|
||||
|
||||
@ -468,7 +459,7 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t, float>(args, self, alpha, activation);
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t, float>(args, use_bias_ptr_lt ? std::make_optional(self) : std::nullopt, alpha, activation);
|
||||
}
|
||||
);
|
||||
#endif
|
||||
@ -480,7 +471,7 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t>(args, self, alpha, activation);
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t>(args, use_bias_ptr_lt ? std::make_optional(self) : std::nullopt, alpha, activation);
|
||||
}
|
||||
);
|
||||
} // end is_float_output_with_half_input
|
||||
@ -936,7 +927,7 @@ Tensor _int_mm_cuda(const Tensor& self, const Tensor& mat2) {
|
||||
return _int_mm_out_cuda(self, mat2, result);
|
||||
}
|
||||
|
||||
static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const at::ScalarType out_dtype, bool is_bmm, const std::optional<Tensor>& self_baddbmm = std::nullopt) {
|
||||
static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const at::ScalarType out_dtype, const std::optional<Tensor>& self_baddbmm = std::nullopt) {
|
||||
// ref ATen/native/LinearAlgebra.cpp common_checks_baddbmm_bmm
|
||||
TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor");
|
||||
TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor");
|
||||
@ -960,7 +951,7 @@ static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& bat
|
||||
(out_dtype == at::ScalarType::Float && (batch1.scalar_type() == at::ScalarType::Half || batch1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
if (!is_bmm && self_baddbmm.has_value()) {
|
||||
if (self_baddbmm.has_value()) {
|
||||
const auto& self = self_baddbmm.value();
|
||||
TORCH_CHECK(self.dim() == 3, "self must be a 3D tensor");
|
||||
TORCH_CHECK(self.sizes() == output_size, "self must have the same shape as the output");
|
||||
@ -968,15 +959,12 @@ static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& bat
|
||||
}
|
||||
|
||||
Tensor _bmm_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype) {
|
||||
IntArrayRef batch1_sizes = batch1.sizes();
|
||||
IntArrayRef batch2_sizes = batch2.sizes();
|
||||
|
||||
Tensor out = at::empty({batch1_sizes[0], batch1_sizes[1], batch2_sizes[2]}, batch1.options().dtype(out_dtype));
|
||||
Tensor out = at::empty({batch1.size(0), batch1.size(1), batch2.size(2)}, batch1.options().dtype(out_dtype));
|
||||
return _bmm_out_dtype_cuda(batch1, batch2, out_dtype, out);
|
||||
}
|
||||
|
||||
Tensor& _bmm_out_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, Tensor &out) {
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, 0.0, 1.0, out_dtype, true);
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, 0.0, 1.0, out_dtype);
|
||||
Scalar beta(0.0);
|
||||
Scalar alpha(1.0);
|
||||
{
|
||||
@ -988,14 +976,16 @@ Tensor& _bmm_out_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at
|
||||
}
|
||||
|
||||
Tensor _baddbmm_dtype_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha) {
|
||||
// We need to copy the tensor
|
||||
Tensor out = self.clone().to(self.options().dtype(out_dtype));
|
||||
|
||||
return _baddbmm_out_dtype_cuda(out, batch1, batch2, out_dtype, beta, alpha, out);
|
||||
TORCH_CHECK(self.scalar_type() == out_dtype || self.scalar_type() == batch1.dtype(),
|
||||
"self dtype must match either out_dtype or batch1 dtype");
|
||||
Tensor out = at::empty({batch1.size(0), batch1.size(1), batch2.size(2)}, batch1.options().dtype(out_dtype));
|
||||
return _baddbmm_out_dtype_cuda(self, batch1, batch2, out_dtype, beta, alpha, out);
|
||||
}
|
||||
|
||||
Tensor& _baddbmm_out_dtype_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha, Tensor &out) {
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, beta, alpha, out_dtype, false, self);
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, beta, alpha, out_dtype, out);
|
||||
// We need to copy the tensor
|
||||
out.copy_(self);
|
||||
{
|
||||
NoNamesGuard guard;
|
||||
baddbmm_out_cuda_impl(out, out, batch1, batch2, beta, alpha);
|
||||
@ -1030,24 +1020,27 @@ Tensor& _mm_dtype_out_cuda(const Tensor& self, const Tensor& mat2, const at::Sca
|
||||
}
|
||||
|
||||
Tensor _addmm_dtype_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha) {
|
||||
Tensor result = at::empty(self.sizes(), self.options().dtype(out_dtype));
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix, got ", mat1.dim(), "-D tensor");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix, got ", mat2.dim(), "-D tensor");
|
||||
Tensor result = at::empty({mat1.size(0), mat2.size(1)}, self.options().dtype(out_dtype));
|
||||
return _addmm_dtype_out_cuda(self, mat1, mat2, out_dtype, beta, alpha, result);
|
||||
}
|
||||
|
||||
Tensor& _addmm_dtype_out_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha, Tensor &out) {
|
||||
TORCH_CHECK(self.scalar_type() == mat2.scalar_type(), "self and mat2 must have the same dtype, but got ", self.scalar_type(), " and ", mat2.scalar_type());
|
||||
TORCH_CHECK(mat1.scalar_type() == mat2.scalar_type(), "mat1 and mat2 must have the same dtype, but got ", mat1.scalar_type(), " and ", mat2.scalar_type());
|
||||
// repeat dimensionality checks for direct calls to `out` overload
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix, got ", mat1.dim(), "-D tensor");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix, got ", mat2.dim(), "-D tensor");
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] == mat2.sizes()[0], "mat1 and mat2 shapes cannot be multiplied (",
|
||||
mat1.sizes()[0], "x", mat1.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")");
|
||||
TORCH_CHECK(mat1.scalar_type() == mat2.scalar_type(), "mat1 and mat2 must have the same dtype, but got ", mat1.scalar_type(), " and ", mat2.scalar_type());
|
||||
TORCH_CHECK(out_dtype == mat1.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (mat1.scalar_type() == at::ScalarType::Half || mat1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
TORCH_CHECK(out_dtype == self.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (self.scalar_type() == at::ScalarType::Half || self.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
TORCH_CHECK(out_dtype == self.scalar_type() || self.scalar_type() == mat1.scalar_type(),
|
||||
"self dtype must match either out_dtype or mat1 dtype");
|
||||
|
||||
addmm_out_cuda_impl(out, self, mat1, mat2, beta, alpha);
|
||||
|
||||
|
||||
@ -5,69 +5,11 @@
|
||||
#include <cuda_bf16.h>
|
||||
#endif
|
||||
|
||||
// ROCm 6.3 is planned to have these functions, but until then here they are.
|
||||
#if defined(USE_ROCM)
|
||||
#include <device_functions.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
|
||||
__device__ inline __hip_bfloat162 preview_unsafeAtomicAdd(__hip_bfloat162* address, __hip_bfloat162 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2bf16)
|
||||
typedef unsigned short __attribute__((ext_vector_type(2))) vec_short2;
|
||||
static_assert(sizeof(vec_short2) == sizeof(__hip_bfloat162_raw));
|
||||
union {
|
||||
__hip_bfloat162_raw bf162_raw;
|
||||
vec_short2 vs2;
|
||||
} u{static_cast<__hip_bfloat162_raw>(value)};
|
||||
u.vs2 = __builtin_amdgcn_flat_atomic_fadd_v2bf16((vec_short2*)address, u.vs2);
|
||||
return static_cast<__hip_bfloat162>(u.bf162_raw);
|
||||
#else
|
||||
static_assert(sizeof(unsigned int) == sizeof(__hip_bfloat162_raw));
|
||||
union u_hold {
|
||||
__hip_bfloat162_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
|
||||
__device__ inline __half2 preview_unsafeAtomicAdd(__half2* address, __half2 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2f16)
|
||||
// The api expects an ext_vector_type of half
|
||||
typedef _Float16 __attribute__((ext_vector_type(2))) vec_fp162;
|
||||
static_assert(sizeof(vec_fp162) == sizeof(__half2_raw));
|
||||
union {
|
||||
__half2_raw h2r;
|
||||
vec_fp162 fp16;
|
||||
} u {static_cast<__half2_raw>(value)};
|
||||
u.fp16 = __builtin_amdgcn_flat_atomic_fadd_v2f16((vec_fp162*)address, u.fp16);
|
||||
return static_cast<__half2>(u.h2r);
|
||||
#else
|
||||
static_assert(sizeof(__half2_raw) == sizeof(unsigned int));
|
||||
union u_hold {
|
||||
__half2_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
#define ATOMICADD preview_unsafeAtomicAdd
|
||||
#define ATOMICADD unsafeAtomicAdd
|
||||
#define NATIVE_ZERO_BF16 __float2bfloat16(0.0f)
|
||||
#else
|
||||
#define ATOMICADD atomicAdd
|
||||
|
||||
@ -2,18 +2,250 @@
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/native/DispatchStub.h>
|
||||
#include <ATen/native/cuda/Loops.cuh>
|
||||
#include <ATen/native/cuda/JitLoops.cuh>
|
||||
#include <ATen/native/cuda/jit_utils.h>
|
||||
#include <ATen/native/cuda/ScanUtils.cuh>
|
||||
#include <ATen/native/TensorIterator.h>
|
||||
#include <ATen/native/BinaryOps.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <c10/util/MathConstants.h>
|
||||
#include <c10/util/complex.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
// NOTE: CUDA on Windows requires that the enclosing function
|
||||
// of a __device__ lambda not have internal linkage.
|
||||
|
||||
namespace at::native {
|
||||
|
||||
// custom min and max to be used in logaddexp for complex arguments
|
||||
template <typename scalar_t, bool min>
|
||||
__host__ __device__ c10::complex<scalar_t> _logaddexp_minmax(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
|
||||
scalar_t xr = std::real(x);
|
||||
scalar_t yr = std::real(y);
|
||||
if (::isnan(yr) || (::isnan(std::imag(y)))) {
|
||||
return y;
|
||||
} else if (::isnan(xr) || (::isnan(std::imag(x)))) {
|
||||
return x;
|
||||
} else if (min) { // min
|
||||
return (xr < yr) ? x : y;
|
||||
} else { // max
|
||||
return (xr >= yr) ? x : y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ scalar_t _log_add_exp_helper(const scalar_t& x, const scalar_t& y) {
|
||||
// Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp
|
||||
// Using the original expression: `at::_isnan(y) ? y : std::min(x, y)` causes an error in ROCM
|
||||
const auto isnan_x = at::_isnan(x);
|
||||
const auto isnan_y = at::_isnan(y);
|
||||
scalar_t min = isnan_y ? y : (isnan_x ? x : std::min(x, y));
|
||||
scalar_t max = isnan_y ? y : (isnan_x ? x : std::max(x, y));
|
||||
if (min != max || ::isfinite(min)) {
|
||||
// nan will be propagated here
|
||||
return ::log1p(std::exp(min - max)) + max;
|
||||
} else {
|
||||
// special case to correctly handle infinite cases
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ c10::complex<scalar_t> _fast_build_exp(const c10::complex<scalar_t>& x) {
|
||||
// complex exponential function, but implemented manually to get fast compilation time
|
||||
// this function only handles the case where the x is finite (not inf nor nan)
|
||||
const auto xreal = std::real(x);
|
||||
const auto ximag = std::imag(x);
|
||||
const auto exp_x_abs = std::exp(xreal);
|
||||
auto exp_x_real = exp_x_abs * std::cos(ximag);
|
||||
auto exp_x_imag = exp_x_abs * std::sin(ximag);
|
||||
return {exp_x_real, exp_x_imag};
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ c10::complex<scalar_t> _fast_build_exp_inf(const c10::complex<scalar_t>& x) {
|
||||
// complex exponential function, but implemented manually to get fast compilation time
|
||||
// this function only handles the case where the real part of x is infinite
|
||||
const auto ximag = std::imag(x);
|
||||
constexpr auto exp_x_abs = std::numeric_limits<scalar_t>::infinity();
|
||||
if (!::isfinite(ximag)) { // add this to make consitent with std::exp(x+yi)
|
||||
return {exp_x_abs, std::numeric_limits<scalar_t>::quiet_NaN()};
|
||||
}
|
||||
const auto sin = std::sin(ximag);
|
||||
const auto cos = std::cos(ximag);
|
||||
// special case if the angle is exactly the multiple of pi/2
|
||||
auto exp_x_real = (cos == 0) ? (scalar_t)0.0 : exp_x_abs * cos;
|
||||
auto exp_x_imag = (sin == 0) ? (scalar_t)0.0 : exp_x_abs * sin;
|
||||
return {exp_x_real, exp_x_imag};
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
|
||||
c10::complex<scalar_t> min = _logaddexp_minmax<scalar_t, /*min=*/true>(x, y);
|
||||
c10::complex<scalar_t> max = _logaddexp_minmax<scalar_t, /*min=*/false>(x, y);
|
||||
scalar_t min_real = std::real(min);
|
||||
scalar_t max_real = std::real(max);
|
||||
|
||||
if (::isnan(min_real) || ::isnan(std::imag(min))) {
|
||||
// handling the "infectious" NaNs
|
||||
return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()};
|
||||
}
|
||||
else if ((!::isfinite(min_real)) && (min_real == max_real)) {
|
||||
if (min_real < 0) {
|
||||
// handle the -inf case, the imaginary part here does not really matter as the exp(value)
|
||||
// will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined.
|
||||
// It does not matter if we're taking the exp of this value
|
||||
return min;
|
||||
} else {
|
||||
// handle the +inf case, we don't need the special precision for log1p for small values
|
||||
// and to avoid producing nan in case of real(max) == real(min) == +inf
|
||||
const auto exp_min = _fast_build_exp_inf(min);
|
||||
const auto exp_max = _fast_build_exp_inf(max);
|
||||
return ::log1p(exp_min + exp_max - 1); // log1p(x - 1) builds faster than log
|
||||
}
|
||||
} else {
|
||||
const auto minmax = min - max;
|
||||
c10::complex<scalar_t> exp_minmax;
|
||||
if (!::isfinite(minmax.real())) {
|
||||
exp_minmax = minmax.real() < 0 ? c10::complex<scalar_t>{0.0, 0.0} : _fast_build_exp_inf(minmax);
|
||||
} else {
|
||||
exp_minmax = _fast_build_exp(minmax);
|
||||
}
|
||||
return ::log1p(exp_minmax) + max;
|
||||
}
|
||||
}
|
||||
|
||||
// Complex logaddexp jiterator string
|
||||
const auto logaddexp_complex_string = jiterator_stringify(
|
||||
template<typename T>
|
||||
std::complex<T> log1p(const std::complex<T>& z)
|
||||
{
|
||||
using complex_t = std::complex<T>;
|
||||
T x = z.real();
|
||||
T y = z.imag();
|
||||
T zabs = abs(z);
|
||||
T theta = atan2(y, x + T(1));
|
||||
if (zabs < 0.5) {
|
||||
T r = x * (T(2) + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return complex_t(x, theta);
|
||||
}
|
||||
return complex_t(T(0.5) * std::log1p(r), theta);
|
||||
} else {
|
||||
T z0 = std::hypot(x + 1, y);
|
||||
return complex_t(log(z0), theta);
|
||||
}
|
||||
}
|
||||
|
||||
// separated _logaddexp_minmax into 2 different functions for jiterator_string
|
||||
template <typename T>
|
||||
std::complex<T> logaddexp_min(const std::complex<T>& x, const std::complex<T>& y) {
|
||||
T xr = x.real();
|
||||
T yr = y.real();
|
||||
if (isnan(yr) || isnan(y.imag())) {
|
||||
return y;
|
||||
} else if (isnan(xr) || isnan(x.imag())) {
|
||||
return x;
|
||||
} else {
|
||||
return (xr < yr) ? x : y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> logaddexp_max(const std::complex<T>& x, const std::complex<T>& y) {
|
||||
T xr = x.real();
|
||||
T yr = y.real();
|
||||
if (isnan(yr) || isnan(y.imag())) {
|
||||
return y;
|
||||
} else if (isnan(xr) || isnan(x.imag())) {
|
||||
return x;
|
||||
} else {
|
||||
return (xr >= yr) ? x : y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> fast_build_exp(const std::complex<T>& x) {
|
||||
const auto xreal = x.real();
|
||||
const auto ximag = x.imag();
|
||||
const auto exp_x_abs = exp(xreal);
|
||||
auto exp_x_real = exp_x_abs * cos(ximag);
|
||||
auto exp_x_imag = exp_x_abs * sin(ximag);
|
||||
return std::complex<T>(exp_x_real, exp_x_imag);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> fast_build_exp_inf(const std::complex<T>& x) {
|
||||
using complex_t = std::complex<T>;
|
||||
const auto ximag = x.imag();
|
||||
const T exp_x_abs = INFINITY;
|
||||
if (!isfinite(ximag)) {
|
||||
return complex_t(exp_x_abs, NAN);
|
||||
}
|
||||
const auto sin_val = sin(ximag);
|
||||
const auto cos_val = cos(ximag);
|
||||
auto exp_x_real = (cos_val == T(0)) ? T(0) : exp_x_abs * cos_val;
|
||||
auto exp_x_imag = (sin_val == T(0)) ? T(0) : exp_x_abs * sin_val;
|
||||
return complex_t(exp_x_real, exp_x_imag);
|
||||
}
|
||||
|
||||
template <typename complex_t>
|
||||
complex_t logaddexp_complex(complex_t x, complex_t y) {
|
||||
using T = typename complex_t::value_type;
|
||||
complex_t min_val = logaddexp_min(x, y);
|
||||
complex_t max_val = logaddexp_max(x, y);
|
||||
T min_real = min_val.real();
|
||||
T max_real = max_val.real();
|
||||
|
||||
if (isnan(min_real) || isnan(min_val.imag())) {
|
||||
return complex_t(NAN, NAN);
|
||||
}
|
||||
else if ((!isfinite(min_real)) && (min_real == max_real)) {
|
||||
if (min_real < T(0)) {
|
||||
return min_val;
|
||||
} else {
|
||||
const auto exp_min = fast_build_exp_inf<T>(min_val);
|
||||
const auto exp_max = fast_build_exp_inf<T>(max_val);
|
||||
return log1p(exp_min + exp_max - complex_t(1, 0));
|
||||
}
|
||||
} else {
|
||||
const auto minmax = min_val - max_val;
|
||||
complex_t exp_minmax;
|
||||
if (!isfinite(minmax.real())) {
|
||||
exp_minmax = (minmax.real() < T(0)) ? complex_t(0, 0) : fast_build_exp_inf<T>(minmax);
|
||||
} else {
|
||||
exp_minmax = fast_build_exp<T>(minmax);
|
||||
}
|
||||
return log1p(exp_minmax) + max_val;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
constexpr char logaddexp_complex_name[] = "logaddexp_complex";
|
||||
void logaddexp_kernel_cuda(TensorIteratorBase& iter) {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
if (at::isComplexType(iter.dtype())) {
|
||||
#if AT_USE_JITERATOR()
|
||||
AT_DISPATCH_COMPLEX_TYPES_AND(at::ScalarType::ComplexHalf, iter.dtype(), "logaddexp_cuda", [&]() {
|
||||
jitted_gpu_kernel<
|
||||
/*name=*/logaddexp_complex_name,
|
||||
/*return_dtype=*/scalar_t,
|
||||
/*common_dtype=*/scalar_t,
|
||||
/*arity=*/2>(iter, logaddexp_complex_string);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_COMPLEX_TYPES_AND(at::ScalarType::ComplexHalf, iter.dtype(), "logaddexp_cuda", [&]() {
|
||||
using opmath_t = at::opmath_type<scalar_t>;
|
||||
gpu_kernel(iter, [] GPU_LAMBDA (scalar_t a_, scalar_t b_) -> scalar_t {
|
||||
const auto a = static_cast<opmath_t>(a_);
|
||||
const auto b = static_cast<opmath_t>(b_);
|
||||
return static_cast<scalar_t>(_log_add_exp_helper(a, b));
|
||||
});
|
||||
});
|
||||
#endif
|
||||
} else {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
ScalarType::BFloat16, ScalarType::Half,
|
||||
iter.dtype(), "logaddexp_cuda",
|
||||
[&]() {
|
||||
@ -29,6 +261,7 @@ void logaddexp_kernel_cuda(TensorIteratorBase& iter) {
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void logaddexp2_kernel_cuda(TensorIteratorBase& iter) {
|
||||
|
||||
@ -11,7 +11,7 @@ static inline std::ostream& operator<<(std::ostream& out, dim3 dim) {
|
||||
if (dim.y == 1 && dim.z == 1) {
|
||||
out << dim.x;
|
||||
} else {
|
||||
out << '[' << dim.x << ',' << dim.y << ',' << dim.z << ']';
|
||||
out << "[" << dim.x << "," << dim.y << "," << dim.z << "]";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
@ -27,7 +27,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
|
||||
out << "input_mult=[";
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (i != 0) {
|
||||
out << ',';
|
||||
out << ",";
|
||||
}
|
||||
out << config.input_mult[i];
|
||||
}
|
||||
@ -35,7 +35,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
|
||||
out << "output_mult=[";
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (i != 0) {
|
||||
out << ',';
|
||||
out << ",";
|
||||
}
|
||||
out << config.output_mult[i];
|
||||
}
|
||||
@ -49,7 +49,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
|
||||
out << "block=" << config.block() << ", ";
|
||||
out << "grid=" << config.grid() << ", ";
|
||||
out << "global_memory_size=" << config.global_memory_size();
|
||||
out << ')';
|
||||
out << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -1101,6 +1101,19 @@ _scaled_mxfp8_mxfp8(
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
}
|
||||
|
||||
void
|
||||
_check_mxfp4_support() {
|
||||
#ifndef USE_ROCM
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
// Only on B200 GPUs
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
// B200 = 10.0, B300 = 10.3
|
||||
dprops->major == 10,
|
||||
"MXFP4 scaling only supported in CUDA for B200/B300"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
Tensor&
|
||||
_scaled_mxfp4_mxfp4(
|
||||
@ -1113,6 +1126,7 @@ _scaled_mxfp4_mxfp4(
|
||||
#if defined(_WIN32) || (!defined(USE_ROCM) && !defined(USE_FBGEMM_GENAI))
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "MXFP4 scaling supported on ROCM and CUDA+FBGEMM_GENAI only");
|
||||
#else
|
||||
_check_mxfp4_support();
|
||||
// Restrictions:
|
||||
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
|
||||
TORCH_CHECK_VALUE(mat_a.scalar_type() == at::kFloat4_e2m1fn_x2 && mat_b.scalar_type() == at::kFloat4_e2m1fn_x2, "mat_a and mat_b must be fp4 types, got: ",
|
||||
|
||||
@ -364,9 +364,9 @@ void f8f8bf16_grouped_gemm_impl_sm90(
|
||||
// reinterpret_cast<ProblemShape::UnderlyingProblemShape*>(
|
||||
// stride_output_h + group_count);
|
||||
|
||||
// std::cout << "PTRS " << mat_a.data_ptr() << ' ' << mat_b.data_ptr() << "
|
||||
// std::cout << "PTRS " << mat_a.data_ptr() << " " << mat_b.data_ptr() << "
|
||||
// "
|
||||
// << out.data_ptr() << ' ' << scale_a.data_ptr() << ' '
|
||||
// << out.data_ptr() << " " << scale_a.data_ptr() << " "
|
||||
// << scale_b.data_ptr() << "\n";
|
||||
// for (int i = 0; i < group_count; i++) {
|
||||
// std::cout << "A " << (void*)inputA_ptrs_h[i] << "\n";
|
||||
|
||||
@ -1057,14 +1057,14 @@ std::string generate_code(
|
||||
// TODO these arrays are potentially of the different types, use function
|
||||
// traits to determine the types
|
||||
declare_load_arrays << f_inputs_type << " arg" << std::to_string(i)
|
||||
<< '[' << std::to_string(thread_work_size) << "];\n";
|
||||
<< "[" << std::to_string(thread_work_size) << "];\n";
|
||||
}
|
||||
env.s("declare_load_arrays", declare_load_arrays.str());
|
||||
|
||||
std::stringstream declare_store_arrays;
|
||||
for (int i = 0; i < nOutputs; i++) {
|
||||
declare_store_arrays << result_type << " out" << std::to_string(i)
|
||||
<< '[' << std::to_string(thread_work_size) << "];\n";
|
||||
<< "[" << std::to_string(thread_work_size) << "];\n";
|
||||
}
|
||||
env.s("declare_store_arrays", declare_store_arrays.str());
|
||||
|
||||
@ -1217,7 +1217,7 @@ std::string generate_code(
|
||||
for (const auto i : c10::irange(nInputs)){
|
||||
auto i_string = std::to_string(i);
|
||||
vector_inputs << "auto * input" << i_string <<
|
||||
" = reinterpret_cast<const scalar_t*>(data[" << i_string << '+' << nOutputs << "])" <<
|
||||
" = reinterpret_cast<const scalar_t*>(data[" << i_string << "+" << nOutputs << "])" <<
|
||||
" + block_work_size * idx;\n";
|
||||
}
|
||||
env.s("vector_inputs", vector_inputs.str());
|
||||
@ -1543,17 +1543,17 @@ NvrtcFunction jit_pwise_function(
|
||||
|
||||
// Constructs file path by appending constructed cubin name to cache path
|
||||
std::stringstream ss;
|
||||
ss << *cache_dir << '/';
|
||||
ss << *cache_dir << "/";
|
||||
ss << kernel_name;
|
||||
#ifdef USE_ROCM
|
||||
ss << "_arch" << prop->gcnArchName;
|
||||
#else
|
||||
ss << "_arch" << cuda_major << '.' << cuda_minor;
|
||||
ss << "_arch" << cuda_major << "." << cuda_minor;
|
||||
#endif
|
||||
ss << "_nvrtc" << nvrtc_major << '.' << nvrtc_minor;
|
||||
ss << "_nvrtc" << nvrtc_major << "." << nvrtc_minor;
|
||||
ss << (compile_to_sass ? "_sass" : "_ptx");
|
||||
ss << '_' << code.length();
|
||||
ss << '_' << hash_code;
|
||||
ss << "_" << code.length();
|
||||
ss << "_" << hash_code;
|
||||
file_path = ss.str();
|
||||
|
||||
std::ifstream readin{file_path, std::ios::in | std::ifstream::binary};
|
||||
|
||||
@ -82,15 +82,15 @@ namespace native {
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const ConvolutionParams& params) {
|
||||
out << "ConvolutionParams \n"
|
||||
<< " memory_format = " << params.memory_format << '\n'
|
||||
<< " data_type = " << cudnnTypeToString(params.dataType) << '\n'
|
||||
<< " padding = " << ArrayRef<int>{params.padding} << '\n'
|
||||
<< " stride = " << ArrayRef<int>{params.stride} << '\n'
|
||||
<< " dilation = " << ArrayRef<int>{params.dilation} << '\n'
|
||||
<< " groups = " << params.groups << '\n'
|
||||
<< " memory_format = " << params.memory_format << "\n"
|
||||
<< " data_type = " << cudnnTypeToString(params.dataType) << "\n"
|
||||
<< " padding = " << ArrayRef<int>{params.padding} << "\n"
|
||||
<< " stride = " << ArrayRef<int>{params.stride} << "\n"
|
||||
<< " dilation = " << ArrayRef<int>{params.dilation} << "\n"
|
||||
<< " groups = " << params.groups << "\n"
|
||||
<< " deterministic = " << (params.deterministic ? "true" : "false")
|
||||
<< '\n'
|
||||
<< " allow_tf32 = " << (params.allow_tf32 ? "true" : "false") << '\n';
|
||||
<< "\n"
|
||||
<< " allow_tf32 = " << (params.allow_tf32 ? "true" : "false") << "\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
@ -173,16 +173,16 @@ std::string repro_from_args(const ConvolutionParams& params) {
|
||||
at::globalContext().float32Precision(
|
||||
at::Float32Backend::CUDA, at::Float32Op::MATMUL) ==
|
||||
at::Float32Precision::TF32)
|
||||
<< '\n';
|
||||
<< "\n";
|
||||
ss << "torch.backends.cudnn.benchmark = "
|
||||
<< pybool(at::globalContext().benchmarkCuDNN()) << '\n';
|
||||
<< pybool(at::globalContext().benchmarkCuDNN()) << "\n";
|
||||
ss << "torch.backends.cudnn.deterministic = " << pybool(params.deterministic)
|
||||
<< '\n';
|
||||
<< "\n";
|
||||
ss << "torch.backends.cudnn.allow_tf32 = " << pybool(params.allow_tf32)
|
||||
<< '\n';
|
||||
<< "\n";
|
||||
ss << "data = torch.randn(" << ArrayRef<int>(params.input_size, dim)
|
||||
<< ", dtype=" << full_dtype << ", ";
|
||||
ss << "device='cuda', requires_grad=True)" << to_channels_last << '\n';
|
||||
ss << "device='cuda', requires_grad=True)" << to_channels_last << "\n";
|
||||
ss << "net = torch.nn.Conv" << dim - 2 << "d(" << in_channels << ", "
|
||||
<< out_channels << ", ";
|
||||
ss << "kernel_size=" << ArrayRef<int>(¶ms.weight_size[2], dim - 2)
|
||||
@ -192,7 +192,7 @@ std::string repro_from_args(const ConvolutionParams& params) {
|
||||
ss << "dilation=" << ArrayRef<int>(params.dilation, dim - 2) << ", ";
|
||||
ss << "groups=" << params.groups << ")\n";
|
||||
ss << "net = net.cuda()." << partial_dtype << "()" << to_channels_last
|
||||
<< '\n';
|
||||
<< "\n";
|
||||
ss << "out = net(data)\n";
|
||||
ss << "out.backward(torch.randn_like(out))\n";
|
||||
ss << "torch.cuda.synchronize()\n\n";
|
||||
|
||||
@ -93,10 +93,11 @@ std::ostream& operator<<(std::ostream& out, const ConvolutionArgs& args) {
|
||||
<< "input: " << args.idesc // already has a trailing newline
|
||||
<< "output: " << args.odesc // already has a trailing newline
|
||||
<< "weight: " << args.wdesc // already has a trailing newline
|
||||
<< "Pointer addresses: " << '\n'
|
||||
<< " input: " << args.input.const_data_ptr() << '\n'
|
||||
<< " output: " << args.output.const_data_ptr() << '\n'
|
||||
<< " weight: " << args.weight.const_data_ptr() << '\n';
|
||||
<< "Pointer addresses: "
|
||||
<< "\n"
|
||||
<< " input: " << args.input.const_data_ptr() << "\n"
|
||||
<< " output: " << args.output.const_data_ptr() << "\n"
|
||||
<< " weight: " << args.weight.const_data_ptr() << "\n";
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -115,7 +115,7 @@ std::ostream& operator<<(
|
||||
std::copy(
|
||||
strides.begin(), strides.end() - 1, std::ostream_iterator<int>(oss, ","));
|
||||
oss << sizes.back();
|
||||
output << oss.str() << '}';
|
||||
output << oss.str() << "}";
|
||||
return output;
|
||||
}
|
||||
|
||||
|
||||
@ -53,7 +53,7 @@ std::ostream& operator<<(std::ostream& out, const ConvParams& params) {
|
||||
<< " transposed = " << params.transposed
|
||||
<< " output_padding = " << IntArrayRef{params.output_padding}
|
||||
<< " groups = " << params.groups << " benchmark = " << params.benchmark
|
||||
<< " deterministic = " << params.deterministic << '}';
|
||||
<< " deterministic = " << params.deterministic << "}";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -91,25 +91,30 @@ static auto& lib = mps::MetalShaderLibrary::getBundledLibrary();
|
||||
#include <ATen/native/mps/Repeat_metallib.h>
|
||||
#endif
|
||||
|
||||
template <typename index_t>
|
||||
void computeRepeatIndices(const index_t* repeat_ptr,
|
||||
const int64_t* cumsum_ptr,
|
||||
index_t* result_ptr,
|
||||
int64_t size,
|
||||
int64_t result_size) {
|
||||
id<MTLBuffer> repeatBuffer = reinterpret_cast<id<MTLBuffer>>(repeat_ptr);
|
||||
id<MTLBuffer> cumsumBuffer = reinterpret_cast<id<MTLBuffer>>(cumsum_ptr);
|
||||
id<MTLBuffer> resultBuffer = reinterpret_cast<id<MTLBuffer>>(result_ptr);
|
||||
TORCH_CHECK(repeatBuffer && cumsumBuffer && resultBuffer);
|
||||
|
||||
Tensor repeat_interleave_mps(const Tensor& repeat, std::optional<int64_t> output_size) {
|
||||
TORCH_CHECK(repeat.dim() == 1, "repeat_interleave only accept 1D vector as repeat");
|
||||
std::string scalar_type;
|
||||
if constexpr (std::is_same_v<index_t, int32_t>) {
|
||||
if (repeat.scalar_type() == kInt) {
|
||||
scalar_type = "int32_t";
|
||||
} else if constexpr (std::is_same_v<index_t, int64_t>) {
|
||||
} else if (repeat.scalar_type() == kLong) {
|
||||
scalar_type = "int64_t";
|
||||
} else {
|
||||
TORCH_CHECK(false, "repeat_interleave: unsupported indexing data type");
|
||||
TORCH_CHECK(false, "repeats has to be Long or Int tensor");
|
||||
}
|
||||
if (repeat.size(0) == 0) {
|
||||
return at::empty_like(repeat, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
}
|
||||
Tensor repeat_ = repeat.contiguous();
|
||||
Tensor cumsum = repeat.cumsum(0);
|
||||
int64_t total = 0;
|
||||
if (output_size.has_value()) {
|
||||
total = output_size.value();
|
||||
} else {
|
||||
total = cumsum[-1].item<int64_t>();
|
||||
TORCH_CHECK((repeat >= 0).all().item<uint8_t>(), "repeats can not be negative");
|
||||
}
|
||||
|
||||
auto result = at::empty({total}, repeat.options());
|
||||
|
||||
MPSStream* mpsStream = getCurrentMPSStream();
|
||||
dispatch_sync(mpsStream->queue(), ^() {
|
||||
@ -121,20 +126,13 @@ void computeRepeatIndices(const index_t* repeat_ptr,
|
||||
getMPSProfiler().beginProfileKernel(pipelineState, "repeat_interleave:" + scalar_type, false);
|
||||
|
||||
[computeEncoder setComputePipelineState:pipelineState];
|
||||
mps::mtl_setArgs(computeEncoder, repeatBuffer, cumsumBuffer, resultBuffer, size);
|
||||
mps::mtl_dispatch1DJob(computeEncoder, pipelineState, size);
|
||||
mps::mtl_setArgs(computeEncoder, repeat_, cumsum, result, repeat.size(0));
|
||||
mps::mtl_dispatch1DJob(computeEncoder, pipelineState, repeat.size(0));
|
||||
|
||||
getMPSProfiler().endProfileKernel(pipelineState);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Tensor repeat_interleave_mps(const Tensor& repeat, std::optional<int64_t> output_size) {
|
||||
Tensor output;
|
||||
AT_DISPATCH_INDEX_TYPES(repeat.scalar_type(), "repeat_interleave_mps", [&]() {
|
||||
output = repeat_interleave_common<index_t, computeRepeatIndices<index_t>>(repeat, output_size);
|
||||
});
|
||||
return output;
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
|
||||
@ -4225,7 +4225,7 @@
|
||||
MTIA: mm_out_mtia
|
||||
MPS: mm_out_mps
|
||||
XPU: mm_out_xpu
|
||||
SparseCPU, SparseCUDA: _sparse_mm_out
|
||||
SparseCPU, SparseCUDA, SparseMPS: _sparse_mm_out
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm_out
|
||||
|
||||
- func: mm.dtype(Tensor self, Tensor mat2, ScalarType out_dtype) -> Tensor
|
||||
|
||||
@ -301,12 +301,12 @@ class AvgPoolMicrokernelTester {
|
||||
ASSERT_NEAR(
|
||||
float(int32_t(y[i * yStride() + k])), yFP[i * kc() + k], 0.5001f)
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
ASSERT_EQ(
|
||||
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
}
|
||||
}
|
||||
@ -396,12 +396,12 @@ class AvgPoolMicrokernelTester {
|
||||
ASSERT_NEAR(
|
||||
float(int32_t(y[i * yStride() + k])), yFP[i * kc() + k], 0.5001f)
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
ASSERT_EQ(
|
||||
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
}
|
||||
}
|
||||
|
||||
@ -232,7 +232,7 @@ class MaxPoolMicrokernelTester {
|
||||
ASSERT_EQ(
|
||||
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< "), kc = " << kc();
|
||||
}
|
||||
}
|
||||
|
||||
@ -17,7 +17,7 @@ inline std::vector<T> _expand_param_if_needed(
|
||||
std::ostringstream ss;
|
||||
ss << "expected " << param_name << " to be a single integer value or a "
|
||||
<< "list of " << expected_dim << " values to match the convolution "
|
||||
<< "dimensions, but got " << param_name << '=' << list_param;
|
||||
<< "dimensions, but got " << param_name << "=" << list_param;
|
||||
TORCH_CHECK(false, ss.str());
|
||||
} else {
|
||||
return list_param.vec();
|
||||
|
||||
@ -358,9 +358,9 @@ std::string Adapter::stringize() const {
|
||||
std::string device_type = get_device_type_str(properties.deviceType);
|
||||
VkPhysicalDeviceLimits limits = properties.limits;
|
||||
|
||||
ss << '{' << std::endl;
|
||||
ss << "{" << std::endl;
|
||||
ss << " Physical Device Info {" << std::endl;
|
||||
ss << " apiVersion: " << v_major << '.' << v_minor << std::endl;
|
||||
ss << " apiVersion: " << v_major << "." << v_minor << std::endl;
|
||||
ss << " driverversion: " << properties.driverVersion << std::endl;
|
||||
ss << " deviceType: " << device_type << std::endl;
|
||||
ss << " deviceName: " << properties.deviceName << std::endl;
|
||||
@ -371,7 +371,7 @@ std::string Adapter::stringize() const {
|
||||
|
||||
#define PRINT_LIMIT_PROP_VEC3(name) \
|
||||
ss << " " << std::left << std::setw(36) << #name << limits.name[0] \
|
||||
<< ',' << limits.name[1] << ',' << limits.name[2] << std::endl;
|
||||
<< "," << limits.name[1] << "," << limits.name[2] << std::endl;
|
||||
|
||||
ss << " Physical Device Limits {" << std::endl;
|
||||
PRINT_LIMIT_PROP(maxImageDimension1D);
|
||||
@ -425,7 +425,7 @@ std::string Adapter::stringize() const {
|
||||
;
|
||||
}
|
||||
ss << " ]" << std::endl;
|
||||
ss << '}';
|
||||
ss << "}";
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -33,7 +33,7 @@ std::ostream& operator<<(std::ostream& out, const VkResult result) {
|
||||
VK_RESULT_CASE(VK_ERROR_FORMAT_NOT_SUPPORTED)
|
||||
VK_RESULT_CASE(VK_ERROR_FRAGMENTED_POOL)
|
||||
default:
|
||||
out << "VK_ERROR_UNKNOWN (VkResult " << result << ')';
|
||||
out << "VK_ERROR_UNKNOWN (VkResult " << result << ")";
|
||||
break;
|
||||
}
|
||||
return out;
|
||||
@ -46,7 +46,7 @@ std::ostream& operator<<(std::ostream& out, const VkResult result) {
|
||||
//
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const SourceLocation& loc) {
|
||||
out << loc.function << " at " << loc.file << ':' << loc.line;
|
||||
out << loc.function << " at " << loc.file << ":" << loc.line;
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -66,7 +66,7 @@ Error::Error(SourceLocation source_location, const char* cond, std::string msg)
|
||||
: msg_(std::move(msg)), source_location_{source_location} {
|
||||
std::ostringstream oss;
|
||||
oss << "Exception raised from " << source_location_ << ": ";
|
||||
oss << '(' << cond << ") is false! ";
|
||||
oss << "(" << cond << ") is false! ";
|
||||
oss << msg_;
|
||||
what_ = oss.str();
|
||||
}
|
||||
|
||||
@ -173,8 +173,8 @@ void QueryPool::extract_results() {
|
||||
|
||||
static std::string stringize(const VkExtent3D& extents) {
|
||||
std::stringstream ss;
|
||||
ss << '{' << extents.width << ", " << extents.height << ", " << extents.depth
|
||||
<< '}';
|
||||
ss << "{" << extents.width << ", " << extents.height << ", " << extents.depth
|
||||
<< "}";
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -149,7 +149,7 @@ VKAPI_ATTR VkBool32 VKAPI_CALL debug_report_callback_fn(
|
||||
(void)flags;
|
||||
|
||||
std::stringstream stream;
|
||||
stream << layer_prefix << ' ' << message_code << ' ' << message << std::endl;
|
||||
stream << layer_prefix << " " << message_code << " " << message << std::endl;
|
||||
const std::string log = stream.str();
|
||||
|
||||
std::cout << log;
|
||||
|
||||
@ -253,7 +253,7 @@ using vec4 = vec<4u>;
|
||||
|
||||
// uvec3 is the type representing tensor extents. Useful for debugging.
|
||||
inline std::ostream& operator<<(std::ostream& os, const uvec3& v) {
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ')';
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
@ -61,6 +61,7 @@ list(APPEND ATen_CUDA_TEST_SRCS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_complex_math_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_complex_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_cub_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_cublas_handle_pool_test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_device_test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_distributions_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_dlconvertor_test.cpp
|
||||
|
||||
@ -246,7 +246,7 @@ void TestToCFloat() {
|
||||
void TestToString() {
|
||||
Tensor b = ones({3, 7}) * .0000001f;
|
||||
std::stringstream s;
|
||||
s << b << '\n';
|
||||
s << b << "\n";
|
||||
std::string expect = "1e-07 *";
|
||||
ASSERT_EQ_RESOLVED(s.str().substr(0, expect.size()), expect);
|
||||
}
|
||||
|
||||
77
aten/src/ATen/test/cuda_cublas_handle_pool_test.cpp
Normal file
77
aten/src/ATen/test/cuda_cublas_handle_pool_test.cpp
Normal file
@ -0,0 +1,77 @@
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDACachingAllocator.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// Test concurrent access to getCurrentCUDABlasHandle and getCUDABlasLtWorkspace
|
||||
// to verify that the data race fix is working correctly
|
||||
|
||||
TEST(CUDABlasHandlePoolTest, ConcurrentGetAndClearWorkspaces) {
|
||||
if (!at::cuda::is_available()) {
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int num_accessor_threads = 15;
|
||||
constexpr int num_clear_threads = 5;
|
||||
constexpr int iterations_per_thread = 50;
|
||||
|
||||
std::atomic<bool> stop{false};
|
||||
std::atomic<int> error_count{0};
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(num_accessor_threads + num_clear_threads);
|
||||
|
||||
// Launch accessor threads
|
||||
for (int i = 0; i < num_accessor_threads; ++i) {
|
||||
threads.emplace_back([&stop, &error_count]() {
|
||||
try {
|
||||
at::cuda::CUDAGuard device_guard(0);
|
||||
|
||||
while (!stop.load(std::memory_order_relaxed)) {
|
||||
const auto handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
const auto workspace = at::cuda::getCUDABlasLtWorkspace();
|
||||
|
||||
if (handle == nullptr || workspace == nullptr) {
|
||||
error_count++;
|
||||
}
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
error_count++;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Launch threads that clear workspaces
|
||||
for (int i = 0; i < num_clear_threads; ++i) {
|
||||
threads.emplace_back([&error_count]() {
|
||||
try {
|
||||
for (int j = 0; j < iterations_per_thread; ++j) {
|
||||
at::cuda::clearCublasWorkspaces();
|
||||
std::this_thread::yield();
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
error_count++;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Let them run for a bit
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
stop.store(true, std::memory_order_relaxed);
|
||||
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
EXPECT_EQ(error_count.load(), 0);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
c10::cuda::CUDACachingAllocator::init(1);
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
||||
@ -33,7 +33,7 @@ struct Foo {
|
||||
static void apply(Tensor a, Tensor b) {
|
||||
scalar_type s = 1;
|
||||
std::stringstream ss;
|
||||
ss << "hello, dispatch: " << a.toString() << s << '\n';
|
||||
ss << "hello, dispatch: " << a.toString() << s << "\n";
|
||||
auto data = (scalar_type*)a.data_ptr();
|
||||
(void)data;
|
||||
}
|
||||
@ -73,8 +73,8 @@ TEST(TestScalar, TestScalar) {
|
||||
Scalar bar = 3.0;
|
||||
Half h = bar.toHalf();
|
||||
Scalar h2 = h;
|
||||
cout << "H2: " << h2.toDouble() << ' ' << what.toFloat() << ' '
|
||||
<< bar.toDouble() << ' ' << what.isIntegral(false) << '\n';
|
||||
cout << "H2: " << h2.toDouble() << " " << what.toFloat() << " "
|
||||
<< bar.toDouble() << " " << what.isIntegral(false) << "\n";
|
||||
auto gen = at::detail::getDefaultCPUGenerator();
|
||||
{
|
||||
// See Note [Acquire lock when using random generators]
|
||||
@ -84,7 +84,7 @@ TEST(TestScalar, TestScalar) {
|
||||
}
|
||||
if (at::hasCUDA()) {
|
||||
auto t2 = zeros({4, 4}, at::kCUDA);
|
||||
cout << &t2 << '\n';
|
||||
cout << &t2 << "\n";
|
||||
}
|
||||
auto t = ones({4, 4});
|
||||
|
||||
@ -129,7 +129,7 @@ TEST(TestScalar, TestScalar) {
|
||||
std::stringstream ss;
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
|
||||
ASSERT_NO_THROW(
|
||||
ss << "hello, dispatch" << x.toString() << s << '\n');
|
||||
ss << "hello, dispatch" << x.toString() << s << "\n");
|
||||
auto data = (scalar_t*)x.data_ptr();
|
||||
(void)data;
|
||||
});
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
int main() {
|
||||
std::cout << at::ones({3,4}, at::CPU(at::kFloat)) << '\n';
|
||||
std::cout << at::ones({3,4}, at::CPU(at::kFloat)) << "\n";
|
||||
}
|
||||
|
||||
@ -1828,9 +1828,9 @@ namespace {
|
||||
#endif
|
||||
|
||||
EXPECT_EQ(u16, c10::detail::fp16_ieee_from_fp32_value(f32s[i]))
|
||||
<< "Test failed for float to uint16 " << f32s[i] << '\n';
|
||||
<< "Test failed for float to uint16 " << f32s[i] << "\n";
|
||||
EXPECT_EQ(x, c10::detail::fp16_ieee_to_fp32_value(u16))
|
||||
<< "Test failed for uint16 to float " << u16 << '\n';
|
||||
<< "Test failed for uint16 to float " << u16 << "\n";
|
||||
}
|
||||
}
|
||||
TEST(FP8E4M3Test, FP8E4M3ConversionFloat) {
|
||||
@ -1848,10 +1848,10 @@ namespace {
|
||||
EXPECT_TRUE(std::isnan(f32));
|
||||
} else {
|
||||
EXPECT_EQ(f32, c10::detail::fp8e4m3fn_to_fp32_value(input))
|
||||
<< "Test failed for u8 to float " << input << '\n';
|
||||
<< "Test failed for u8 to float " << input << "\n";
|
||||
}
|
||||
EXPECT_EQ(u8, c10::detail::fp8e4m3fn_from_fp32_value(f32))
|
||||
<< "Test failed for float to u8 " << f32 << '\n';
|
||||
<< "Test failed for float to u8 " << f32 << "\n";
|
||||
}
|
||||
}
|
||||
TEST(FP8E4M3Test, FP8E4M3BinaryAdd) {
|
||||
@ -2015,10 +2015,10 @@ namespace {
|
||||
EXPECT_TRUE(std::isnan(f32));
|
||||
} else {
|
||||
EXPECT_EQ(f32, c10::detail::fp8e5m2_to_fp32_value(input))
|
||||
<< "Test failed for u8 to float " << input << '\n';
|
||||
<< "Test failed for u8 to float " << input << "\n";
|
||||
}
|
||||
EXPECT_EQ(u8, c10::detail::fp8e5m2_from_fp32_value(f32))
|
||||
<< "Test failed for float to u8 " << f32 << '\n';
|
||||
<< "Test failed for float to u8 " << f32 << "\n";
|
||||
}
|
||||
}
|
||||
TEST(FP8E5M2Test, FP8E5M2BinaryAdd) {
|
||||
|
||||
@ -19,7 +19,7 @@ TEST(Vitals, Basic) {
|
||||
c10::utils::set_env("TORCH_VITAL", "1");
|
||||
TORCH_VITAL_DEFINE(Testing);
|
||||
TORCH_VITAL(Testing, Attribute0) << 1;
|
||||
TORCH_VITAL(Testing, Attribute1) << '1';
|
||||
TORCH_VITAL(Testing, Attribute1) << "1";
|
||||
TORCH_VITAL(Testing, Attribute2) << 1.0f;
|
||||
TORCH_VITAL(Testing, Attribute3) << 1.0;
|
||||
auto t = at::ones({1, 1});
|
||||
|
||||
@ -129,14 +129,14 @@ void showRtol(const at::Tensor& a, const at::Tensor& b) {
|
||||
std::cout << "Max Diff allowed: " << maxDiff << std::endl;
|
||||
if (diff.sizes().size() == 2) {
|
||||
for (const auto y : c10::irange(diff.sizes()[0])) {
|
||||
std::cout << y << ':';
|
||||
std::cout << y << ":";
|
||||
for (const auto x : c10::irange(diff.sizes()[1])) {
|
||||
float diff_xy = diff[y][x].item<float>();
|
||||
if (diff_xy > maxDiff) {
|
||||
std::cout << std::setw(5) << x;
|
||||
}
|
||||
else {
|
||||
std::cout << std::setw(5) << ' ';
|
||||
std::cout << std::setw(5) << " ";
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
@ -3276,7 +3276,7 @@ TEST_F(VulkanAPITest, masked_fill_invalidinputs_exceptions) {
|
||||
|
||||
void print_shape(const std::vector<int64_t>& shape) {
|
||||
for (const auto& num : shape) {
|
||||
std::cout << num << ' ';
|
||||
std::cout << num << " ";
|
||||
}
|
||||
}
|
||||
|
||||
@ -3367,7 +3367,7 @@ void test_masked_fill_scalar(
|
||||
print_shape(tmp_curr_input_shape);
|
||||
std::cout << "], and mask of shape [";
|
||||
print_shape(tmp_curr_mask_shape);
|
||||
std::cout << ']' << std::endl;
|
||||
std::cout << "]" << std::endl;
|
||||
}
|
||||
|
||||
ASSERT_TRUE(check);
|
||||
@ -4542,9 +4542,9 @@ void test_softmax(const at::IntArrayRef shape, bool log_softmax = false) {
|
||||
if (!check) {
|
||||
std::cout << "Softmax test failed on axis " << dim << "for tensor dims {";
|
||||
for (uint32_t place = 0; place < shape.size() - 1; place++) {
|
||||
std::cout << shape[place] << ' ';
|
||||
std::cout << shape[place] << " ";
|
||||
}
|
||||
std::cout << shape.back() << '}' << std::endl;
|
||||
std::cout << shape.back() << "}" << std::endl;
|
||||
showRtol(out_cpu, out_vulkan.cpu());
|
||||
}
|
||||
ASSERT_TRUE(check);
|
||||
|
||||
@ -95,7 +95,7 @@ void showRtol(
|
||||
std::cout << "Max Diff found is: " << diff.max().item<double>() << std::endl;
|
||||
if (diff.sizes().size() == 2) {
|
||||
for (const auto y : c10::irange(diff.sizes()[0])) {
|
||||
std::cout << y << ':';
|
||||
std::cout << y << ":";
|
||||
for (const auto x : c10::irange(diff.sizes()[1])) {
|
||||
double diff_xy = diff[y][x].item<double>();
|
||||
if (diff_xy > maxDiff) {
|
||||
@ -109,7 +109,7 @@ void showRtol(
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cout << std::setw(5) << ' ';
|
||||
std::cout << std::setw(5) << " ";
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
@ -148,19 +148,19 @@ using at::native::vulkan::api::utils::ivec4;
|
||||
using at::native::vulkan::api::utils::vec4;
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const vec4& v) {
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ')';
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const ivec3& v) {
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ')';
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const ivec4& v) {
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ')';
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -3379,51 +3379,51 @@ bool _test_quantized_linear(
|
||||
showRtol(out_cpu_dequant, out_vk_to_cpu_dequant);
|
||||
}
|
||||
if (xpos != -1 && ypos != -1) {
|
||||
std::cout << "\nFailure caused on row/col: " << ypos << '/' << xpos
|
||||
<< '\n';
|
||||
std::cout << "\nFailure caused on row/col: " << ypos << "/" << xpos
|
||||
<< "\n";
|
||||
std::cout << "Input tensor scale: " << scale << " zerop: " << zero_point
|
||||
<< '\n';
|
||||
std::cout << "Input tensor row " << ypos << '\n';
|
||||
<< "\n";
|
||||
std::cout << "Input tensor row " << ypos << "\n";
|
||||
for (int i = 0; i < input_cpu.sizes()[1]; i++) {
|
||||
std::cout << input_cpu[ypos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "Weight tensor scale: " << w_scale
|
||||
<< " zerop: " << w_zero_point << '\n';
|
||||
std::cout << "Weight tensor col " << xpos << '\n';
|
||||
<< " zerop: " << w_zero_point << "\n";
|
||||
std::cout << "Weight tensor col " << xpos << "\n";
|
||||
for (int i = 0; i < weight.sizes()[1]; i++) {
|
||||
std::cout << weight[xpos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "Input tensor quantized row " << ypos << " with dtype "
|
||||
<< (input_quant_dtype_int8 ? "QInt8" : "QUInt8") << '\n';
|
||||
<< (input_quant_dtype_int8 ? "QInt8" : "QUInt8") << "\n";
|
||||
for (int i = 0; i < input_cpu.sizes()[1]; i++) {
|
||||
std::cout << input_cpu_quantized[ypos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "Weight tensor quantized col " << xpos << " with dtype "
|
||||
<< (weight_quant_dtype_int8 ? "QInt8" : "QUInt8") << '\n';
|
||||
<< (weight_quant_dtype_int8 ? "QInt8" : "QUInt8") << "\n";
|
||||
for (int i = 0; i < weight.sizes()[1]; i++) {
|
||||
std::cout << weight_cpu_quantized[xpos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "bias tensor\n";
|
||||
for (int i = 0; i < bias.sizes()[0]; i++) {
|
||||
std::cout << bias[i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
std::cout << "\n";
|
||||
|
||||
std::cout << "out_scale: " << out_scale
|
||||
<< " out_zero_point: " << out_zero_point << '\n';
|
||||
<< " out_zero_point: " << out_zero_point << "\n";
|
||||
|
||||
std::cout << "cpu unmatched output: "
|
||||
<< out_cpu_dequant[ypos][xpos].item<double>() << '\n';
|
||||
<< out_cpu_dequant[ypos][xpos].item<double>() << "\n";
|
||||
std::cout << "vk unmatched output: "
|
||||
<< out_vk_to_cpu_dequant[ypos][xpos].item<double>() << '\n';
|
||||
<< out_vk_to_cpu_dequant[ypos][xpos].item<double>() << "\n";
|
||||
}
|
||||
}
|
||||
return check;
|
||||
|
||||
@ -10,6 +10,13 @@
|
||||
...
|
||||
}
|
||||
|
||||
{
|
||||
ignore_empty_generic_uninitialised_conditional_jump
|
||||
Memcheck:Cond
|
||||
fun:_ZN2at6detail13empty_genericEN3c108ArrayRefIlEEPNS1_9AllocatorENS1_14DispatchKeySetENS1_10ScalarTypeESt8optionalINS1_12MemoryFormatEE
|
||||
...
|
||||
}
|
||||
|
||||
{
|
||||
Cond_cuda
|
||||
Memcheck:Cond
|
||||
|
||||
@ -9,28 +9,61 @@ def check_perf_csv(filename, threshold, threshold_scale):
|
||||
"""
|
||||
Basic performance checking.
|
||||
"""
|
||||
try:
|
||||
df = pd.read_csv(filename)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: File {filename} not found")
|
||||
sys.exit(1)
|
||||
|
||||
df = pd.read_csv(filename)
|
||||
effective_threshold = threshold * threshold_scale
|
||||
print(f"Checking {filename} (speedup threshold >= {effective_threshold:.2f}x)\n")
|
||||
|
||||
failed = []
|
||||
for _, row in df.iterrows():
|
||||
model_name = row["name"]
|
||||
speedup = row["speedup"]
|
||||
if speedup < threshold * threshold_scale:
|
||||
failed.append(model_name)
|
||||
speedup = float(row["speedup"])
|
||||
abs_latency = float(row["abs_latency"])
|
||||
compilation_latency = float(row["compilation_latency"])
|
||||
compression_ratio = float(row["compression_ratio"])
|
||||
eager_peak_mem = float(row["eager_peak_mem"])
|
||||
dynamo_peak_mem = float(row["dynamo_peak_mem"])
|
||||
|
||||
print(f"{model_name:34} {speedup}")
|
||||
perf_summary = f"{model_name:34} speedup={speedup:.3f}x"
|
||||
if pd.notna(abs_latency):
|
||||
perf_summary += f", latency={abs_latency:.1f} ms/iter"
|
||||
if pd.notna(compilation_latency):
|
||||
perf_summary += f", compile={compilation_latency:.3f}s"
|
||||
if pd.notna(compression_ratio):
|
||||
perf_summary += f", mem_ratio={1 / compression_ratio:.2f}x"
|
||||
if pd.notna(eager_peak_mem) and pd.notna(dynamo_peak_mem):
|
||||
perf_summary += (
|
||||
f" (eager={eager_peak_mem:.1f} GB, dynamo={dynamo_peak_mem:.1f} GB)"
|
||||
)
|
||||
|
||||
if speedup < effective_threshold:
|
||||
failed.append((model_name, speedup))
|
||||
|
||||
print(perf_summary)
|
||||
|
||||
if failed:
|
||||
print(
|
||||
textwrap.dedent(
|
||||
f"""
|
||||
Error {len(failed)} models performance regressed
|
||||
{" ".join(failed)}
|
||||
Error {len(failed)} model(s) performance regressed
|
||||
{" ".join([name for name, _ in failed])}
|
||||
"""
|
||||
)
|
||||
)
|
||||
for name, sp in sorted(failed, key=lambda x: x[1]):
|
||||
pct_from_target = (sp / effective_threshold - 1.0) * 100.0
|
||||
print(
|
||||
f" - {name}: {sp:.3f}x (< {effective_threshold:.2f}x; {pct_from_target:.1f}% from target)"
|
||||
)
|
||||
sys.exit(1)
|
||||
else:
|
||||
print(
|
||||
f"\nAll {len(df)} model(s) passed threshold check (>= {effective_threshold:.2f}x)"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -44,7 +77,7 @@ if __name__ == "__main__":
|
||||
"-s",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="multiple threshold by this value to relax the check",
|
||||
help="multiply threshold by this value to relax the check",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
check_perf_csv(args.file, args.threshold, args.threshold_scale)
|
||||
|
||||
@ -2379,7 +2379,9 @@ class BenchmarkRunner:
|
||||
print(
|
||||
f"Load model outputs from {self.args.compare_model_outputs_with} to compare"
|
||||
)
|
||||
saved_result = torch.load(self.args.compare_model_outputs_with)
|
||||
saved_result = torch.load(
|
||||
self.args.compare_model_outputs_with, weights_only=False
|
||||
)
|
||||
is_bitwise_same = bitwise_same(saved_result, new_result)
|
||||
if not is_bitwise_same:
|
||||
print(
|
||||
|
||||
@ -176,7 +176,7 @@ std::ostream& operator<<(std::ostream& os, DispatchKeySet ts) {
|
||||
os << k;
|
||||
first = false;
|
||||
}
|
||||
os << ')';
|
||||
os << ")";
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
@ -44,7 +44,7 @@ struct C10_API SafePyObject {
|
||||
(*other.pyinterpreter_)->incref(other.data_);
|
||||
}
|
||||
if (data_ != nullptr) {
|
||||
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
||||
(*pyinterpreter_)->decref(data_);
|
||||
}
|
||||
data_ = other.data_;
|
||||
pyinterpreter_ = other.pyinterpreter_;
|
||||
@ -53,7 +53,7 @@ struct C10_API SafePyObject {
|
||||
|
||||
~SafePyObject() {
|
||||
if (data_ != nullptr) {
|
||||
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
||||
(*pyinterpreter_)->decref(data_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -92,13 +92,6 @@ inline bool isComplexType(ScalarType t) {
|
||||
t == ScalarType::ComplexDouble);
|
||||
}
|
||||
|
||||
inline bool isQIntType(ScalarType t) {
|
||||
// Don't forget to extend this when adding new QInt types
|
||||
return t == ScalarType::QInt8 || t == ScalarType::QUInt8 ||
|
||||
t == ScalarType::QInt32 || t == ScalarType::QUInt4x2 ||
|
||||
t == ScalarType::QUInt2x4;
|
||||
}
|
||||
|
||||
inline bool isBitsType(ScalarType t) {
|
||||
return t == ScalarType::Bits1x8 || t == ScalarType::Bits2x4 ||
|
||||
t == ScalarType::Bits4x2 || t == ScalarType::Bits8 ||
|
||||
|
||||
@ -48,6 +48,30 @@ void warnDeprecatedDataPtr() {
|
||||
TORCH_CHECK(false, "Cannot access data pointer of Storage that is invalid.");
|
||||
}
|
||||
|
||||
void StorageImpl::incref_pyobject() const {
|
||||
// Because intrusive_ptr incref uses relaxed memory order, we need to
|
||||
// do an acquire fence to ensure that the kHasPyObject bit was
|
||||
// observed before the load of the PyObject* below.
|
||||
// NB: This is a no-op on x86/x86-64
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
|
||||
}
|
||||
|
||||
void StorageImpl::decref_pyobject() const {
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
|
||||
}
|
||||
|
||||
bool StorageImpl::try_incref_pyobject() const {
|
||||
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
|
||||
if (C10_UNLIKELY(!interp)) {
|
||||
return false;
|
||||
}
|
||||
return (*interp)->try_incref(pyobj_slot_);
|
||||
}
|
||||
|
||||
void SetStorageImplCreate(DeviceType t, StorageImplCreateHelper fptr) {
|
||||
// Allowlist verification.
|
||||
// Only if the devicetype is in the allowlist,
|
||||
|
||||
@ -105,6 +105,12 @@ struct C10_API StorageImpl : public c10::intrusive_ptr_target {
|
||||
data_ptr_.clear();
|
||||
}
|
||||
|
||||
void incref_pyobject() const override final;
|
||||
|
||||
void decref_pyobject() const override final;
|
||||
|
||||
bool try_incref_pyobject() const override final;
|
||||
|
||||
size_t nbytes() const {
|
||||
// OK to do this instead of maybe_as_int as nbytes is guaranteed positive
|
||||
TORCH_CHECK(!size_bytes_is_heap_allocated_);
|
||||
@ -370,4 +376,18 @@ C10_API c10::intrusive_ptr<c10::StorageImpl> make_storage_impl(
|
||||
bool resizable,
|
||||
std::optional<at::Device> device_opt);
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <class T>
|
||||
struct TargetTraits<
|
||||
T,
|
||||
std::enable_if_t<
|
||||
std::is_base_of_v<c10::StorageImpl, std::remove_cv_t<T>>>> {
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
} // namespace c10
|
||||
|
||||
@ -277,7 +277,6 @@ void TensorImpl::release_resources() {
|
||||
if (storage_) {
|
||||
storage_ = {};
|
||||
}
|
||||
pyobj_slot_.maybe_destroy_pyobj();
|
||||
}
|
||||
|
||||
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
|
||||
@ -989,6 +988,30 @@ void TensorImpl::empty_tensor_restride_symint(MemoryFormat memory_format) {
|
||||
}
|
||||
}
|
||||
|
||||
void TensorImpl::incref_pyobject() const {
|
||||
// Because intrusive_ptr incref uses relaxed memory order, we need to
|
||||
// do an acquire fence to ensure that the kHasPyObject bit was
|
||||
// observed before the load of the PyObject* below.
|
||||
// NB: This is a no-op on x86/x86-64
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
|
||||
}
|
||||
|
||||
void TensorImpl::decref_pyobject() const {
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
|
||||
}
|
||||
|
||||
bool TensorImpl::try_incref_pyobject() const {
|
||||
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
|
||||
if (C10_UNLIKELY(!interp)) {
|
||||
return false;
|
||||
}
|
||||
return (*interp)->try_incref(pyobj_slot_);
|
||||
}
|
||||
|
||||
namespace impl {
|
||||
|
||||
namespace {
|
||||
|
||||
@ -2178,6 +2178,12 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
|
||||
return &pyobj_slot_;
|
||||
}
|
||||
|
||||
void incref_pyobject() const override final;
|
||||
|
||||
void decref_pyobject() const override final;
|
||||
|
||||
bool try_incref_pyobject() const override final;
|
||||
|
||||
private:
|
||||
// See NOTE [std::optional operator usage in CUDA]
|
||||
// We probably don't want to expose this publicly until
|
||||
@ -3079,6 +3085,19 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
|
||||
friend class C10_TensorImpl_Size_Check_Dummy_Class;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <class T>
|
||||
struct TargetTraits<
|
||||
T,
|
||||
std::enable_if_t<std::is_base_of_v<c10::TensorImpl, std::remove_cv_t<T>>>> {
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// Note [TensorImpl size constraints]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// Changed the size of TensorImpl? If the size went down, good for
|
||||
|
||||
@ -33,7 +33,7 @@ std::ostream& operator<<(std::ostream& stream, const TensorOptions& options) {
|
||||
} else {
|
||||
stream << "(nullopt)";
|
||||
}
|
||||
stream << ')';
|
||||
stream << ")";
|
||||
|
||||
return stream;
|
||||
}
|
||||
|
||||
@ -11,8 +11,11 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
|
||||
|
||||
void incref(PyObject* pyobj) const override {} // do nothing
|
||||
|
||||
void decref(PyObject* pyobj, bool has_pyobj_slot) const override {
|
||||
} // do nothing
|
||||
void decref(PyObject* pyobj) const override {} // do nothing
|
||||
|
||||
bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
#define PANIC(m) \
|
||||
TORCH_INTERNAL_ASSERT( \
|
||||
@ -20,6 +23,10 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
|
||||
"attempted to call " #m \
|
||||
" on a Tensor with nontrivial PyObject after corresponding interpreter died")
|
||||
|
||||
size_t refcnt(PyObject* pyobj) const override {
|
||||
PANIC(refcnt);
|
||||
}
|
||||
|
||||
c10::intrusive_ptr<TensorImpl> detach(const TensorImpl* self) const override {
|
||||
PANIC(detach);
|
||||
}
|
||||
|
||||
@ -18,6 +18,9 @@ namespace c10 {
|
||||
struct IValue;
|
||||
class OperatorHandle;
|
||||
struct TensorImpl;
|
||||
namespace impl {
|
||||
struct PyObjectSlot;
|
||||
} // namespace impl
|
||||
} // namespace c10
|
||||
|
||||
namespace torch::jit {
|
||||
@ -126,9 +129,12 @@ struct C10_API PyInterpreterVTable {
|
||||
|
||||
// Run Py_INCREF on a PyObject.
|
||||
virtual void incref(PyObject* pyobj) const = 0;
|
||||
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call
|
||||
// See NOTE [PyInterpreter::decref takes a `has_pyobj_slot` arg]
|
||||
virtual void decref(PyObject* pyobj, bool has_pyobj_slot) const = 0;
|
||||
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call.
|
||||
virtual void decref(PyObject* pyobj) const = 0;
|
||||
// Run PyUnstable_TryIncRef on a PyObject if it's not NULL.
|
||||
virtual bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const = 0;
|
||||
// Run Py_REFCNT on a PyObject.
|
||||
virtual size_t refcnt(PyObject* pyobj) const = 0;
|
||||
|
||||
// Perform a detach by deferring to the __torch_dispatch__ implementation of
|
||||
// detach, which will also arrange for the PyObject to get copied in this
|
||||
|
||||
@ -1,56 +0,0 @@
|
||||
#include <c10/core/impl/PyObjectSlot.h>
|
||||
|
||||
namespace c10::impl {
|
||||
|
||||
PyObjectSlot::PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
|
||||
|
||||
PyObjectSlot::~PyObjectSlot() {
|
||||
maybe_destroy_pyobj();
|
||||
}
|
||||
|
||||
void PyObjectSlot::maybe_destroy_pyobj() {
|
||||
if (owns_pyobj()) {
|
||||
TORCH_INTERNAL_ASSERT(pyobj_interpreter_ != nullptr);
|
||||
TORCH_INTERNAL_ASSERT(pyobj_ != nullptr);
|
||||
(*pyobj_interpreter_.load(std::memory_order_acquire))
|
||||
->decref(_unchecked_untagged_pyobj(), /*has_pyobj_slot*/ true);
|
||||
// NB: this destructor can only be entered when there are no
|
||||
// references to this C++ object (obviously), NOR any references
|
||||
// to the PyObject (if there are references to the PyObject,
|
||||
// then the PyObject holds an owning reference to the tensor).
|
||||
// So it is OK to clear pyobj_ here as it is impossible for it to
|
||||
// be used again (modulo weak reference races)
|
||||
pyobj_ = nullptr; // for safety
|
||||
}
|
||||
}
|
||||
|
||||
PyInterpreter* PyObjectSlot::pyobj_interpreter() {
|
||||
return pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
PyObject* PyObjectSlot::_unchecked_untagged_pyobj() const {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
return reinterpret_cast<PyObject*>(
|
||||
reinterpret_cast<uintptr_t>(pyobj_) & ~0x1ULL);
|
||||
}
|
||||
|
||||
PyInterpreter& PyObjectSlot::load_pyobj_interpreter() const {
|
||||
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
if (interpreter) {
|
||||
return *interpreter;
|
||||
}
|
||||
TORCH_CHECK(false, "cannot access PyObject for Tensor - no interpreter set");
|
||||
}
|
||||
|
||||
bool PyObjectSlot::owns_pyobj() {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
return reinterpret_cast<uintptr_t>(pyobj_) & 1;
|
||||
}
|
||||
|
||||
void PyObjectSlot::set_owns_pyobj(bool b) {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
pyobj_ = reinterpret_cast<PyObject*>(
|
||||
reinterpret_cast<uintptr_t>(_unchecked_untagged_pyobj()) | b);
|
||||
}
|
||||
|
||||
} // namespace c10::impl
|
||||
@ -8,117 +8,58 @@
|
||||
|
||||
#include <atomic>
|
||||
|
||||
namespace torch::utils {
|
||||
class PyObjectPreservation;
|
||||
}
|
||||
|
||||
namespace c10::impl {
|
||||
|
||||
struct C10_API PyObjectSlot {
|
||||
public:
|
||||
PyObjectSlot();
|
||||
|
||||
~PyObjectSlot();
|
||||
|
||||
void maybe_destroy_pyobj();
|
||||
|
||||
// Associate the TensorImpl with the specified PyObject, and, if necessary,
|
||||
// also tag the interpreter.
|
||||
//
|
||||
// NB: This lives in a header so that we can inline away the switch on status
|
||||
//
|
||||
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
|
||||
// PyObject if necessary!
|
||||
void init_pyobj(PyObject* pyobj) {
|
||||
pyobj_interpreter_.store(
|
||||
getGlobalPyInterpreter(), std::memory_order_relaxed);
|
||||
pyobj_ = pyobj;
|
||||
}
|
||||
PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
|
||||
|
||||
// Query the PyObject interpreter. This may return null if there is no
|
||||
// interpreter. This is racy!
|
||||
PyInterpreter* pyobj_interpreter();
|
||||
|
||||
PyObject* _unchecked_untagged_pyobj() const;
|
||||
|
||||
// Test the interpreter tag. If tagged for the current interpreter, return
|
||||
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
|
||||
// returns a nullopt. If it is definitely invalid, raises an error.
|
||||
//
|
||||
// If `ignore_hermetic_tls` is false and this function is called from a
|
||||
// hermetic context (ie, `HermeticPyObjectTLS::get_state()` is true), then
|
||||
// nullopt is returned. If `ignore_hermetic_tls` is true, then the hermetic
|
||||
// context is ignored, allowing you to check the interpreter tag of a
|
||||
// nonhermetic PyObject from within a hermetic context. This is necessary
|
||||
// because there are some cases where the deallocator function of a
|
||||
// nonhermetic PyObject is called from within a hermetic context, so it must
|
||||
// be properly treated as a nonhermetic PyObject.
|
||||
//
|
||||
// NB: this lives in header so that we can avoid actually creating the
|
||||
// std::optional
|
||||
|
||||
// @todo alban: I'm not too sure what's going on here, we can probably delete
|
||||
// it but it's worthwhile making sure
|
||||
std::optional<PyObject*> check_pyobj(bool ignore_hermetic_tls = false) const {
|
||||
impl::PyInterpreter* interpreter =
|
||||
pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
if (interpreter == nullptr) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
if (!ignore_hermetic_tls && c10::impl::HermeticPyObjectTLS::get_state()) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
return _unchecked_untagged_pyobj();
|
||||
}
|
||||
// interpreter.
|
||||
PyInterpreter* pyobj_interpreter() const {
|
||||
return pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
PyInterpreter& load_pyobj_interpreter() const;
|
||||
PyInterpreter& load_pyobj_interpreter() const {
|
||||
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
interpreter, "cannot access PyObject for Tensor - no interpreter set");
|
||||
return *interpreter;
|
||||
}
|
||||
|
||||
bool owns_pyobj();
|
||||
PyObject* load_pyobj() const {
|
||||
return pyobj_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
void set_owns_pyobj(bool b);
|
||||
void store_pyobj(PyObject* obj) {
|
||||
pyobj_.store(obj, std::memory_order_release);
|
||||
}
|
||||
|
||||
bool has_unique_reference() const {
|
||||
PyObject* pyobj = load_pyobj();
|
||||
return pyobj != nullptr && load_pyobj_interpreter()->refcnt(pyobj) == 1;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
pyobj_.store(nullptr, std::memory_order_relaxed);
|
||||
pyobj_interpreter_.store(nullptr, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
private:
|
||||
// This field contains the interpreter tag for this object. See
|
||||
// Note [Python interpreter tag] for general context
|
||||
//
|
||||
// Note [Memory ordering on Python interpreter tag]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// What memory_order do we need when accessing this atomic? We don't
|
||||
// need a single total modification order (as provided by
|
||||
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
|
||||
// transition from -1 to some positive integer and never changes afterwards.
|
||||
// Because there is only one modification, it trivially already has a total
|
||||
// modification order (e.g., we don't need fences or locked instructions on
|
||||
// x86)
|
||||
//
|
||||
// In fact, one could make a reasonable argument that relaxed reads are OK,
|
||||
// due to the presence of external locking (GIL) to ensure that interactions
|
||||
// with other data structures are still correctly synchronized, so that
|
||||
// we fall in the "Single-Location Data Structures" case as described in
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
|
||||
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
|
||||
// as I get the same assembly in both cases. So I just use the more
|
||||
// conservative acquire (which will impede compiler optimizations but I don't
|
||||
// care)
|
||||
// This is now always the global interpreter if the PyObject is set.
|
||||
// Maybe we can remove this field some day...
|
||||
std::atomic<PyInterpreter*> pyobj_interpreter_;
|
||||
|
||||
// This field contains a reference to a PyObject representing this Tensor.
|
||||
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
|
||||
// PyObject for it and set this field. This field does not have to be
|
||||
// protected by an atomic as it is only allowed to be accessed when you hold
|
||||
// the GIL, or during destruction of the tensor.
|
||||
//
|
||||
// When a PyObject dies, you are obligated to clear this field
|
||||
// (otherwise, you will try to use-after-free the pyobj); this currently
|
||||
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
|
||||
//
|
||||
// NB: Ordinarily, this should not be a strong reference, as if the
|
||||
// PyObject owns the Tensor, this would create a reference cycle.
|
||||
// However, sometimes this ownership flips. To track who owns
|
||||
// who, this has a single pointer tag indicating whether or not the
|
||||
// C++ object owns the PyObject (the common case, zero, means PyObject
|
||||
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
|
||||
// or check_pyobj for checked access. See references to PyObject
|
||||
// resurrection in torch/csrc/autograd/python_variable.cpp
|
||||
PyObject* pyobj_;
|
||||
// The PyObject representing this Tensor or nullptr. Ownership is managed
|
||||
// by intrusive_ptr. By the time the PyObjectSlot is destroyed, this
|
||||
// reference is already dead.
|
||||
std::atomic<PyObject*> pyobj_;
|
||||
|
||||
friend class torch::utils::PyObjectPreservation;
|
||||
};
|
||||
|
||||
} // namespace c10::impl
|
||||
|
||||
@ -136,7 +136,7 @@ std::string c10_retrieve_device_side_assertion_info() {
|
||||
// Something failed, let's talk about that
|
||||
oss << failures_found
|
||||
<< " CUDA device-side assertion failures were found on GPU #"
|
||||
<< device_num << '!' << std::endl;
|
||||
<< device_num << "!" << std::endl;
|
||||
if (assertion_data_for_device.assertion_count >
|
||||
C10_CUDA_DSA_ASSERTION_COUNT) {
|
||||
oss << "But at least " << assertion_data_for_device.assertion_count
|
||||
@ -151,17 +151,17 @@ std::string c10_retrieve_device_side_assertion_info() {
|
||||
oss << "Assertion failure " << i << std::endl;
|
||||
oss << " GPU assertion failure message = " << self.assertion_msg
|
||||
<< std::endl;
|
||||
oss << " File containing assertion = " << self.filename << ':'
|
||||
oss << " File containing assertion = " << self.filename << ":"
|
||||
<< self.line_number << std::endl;
|
||||
oss << " Device function containing assertion = " << self.function_name
|
||||
<< std::endl;
|
||||
oss << " Thread ID that failed assertion = [" << self.thread_id[0] << ','
|
||||
<< self.thread_id[1] << ',' << self.thread_id[2] << ']' << std::endl;
|
||||
oss << " Block ID that failed assertion = [" << self.block_id[0] << ','
|
||||
<< self.block_id[1] << ',' << self.block_id[2] << ']' << std::endl;
|
||||
oss << " Thread ID that failed assertion = [" << self.thread_id[0] << ","
|
||||
<< self.thread_id[1] << "," << self.thread_id[2] << "]" << std::endl;
|
||||
oss << " Block ID that failed assertion = [" << self.block_id[0] << ","
|
||||
<< self.block_id[1] << "," << self.block_id[2] << "]" << std::endl;
|
||||
if (launch_info.generation_number == self.caller) {
|
||||
oss << " File containing kernel launch = "
|
||||
<< launch_info.launch_filename << ':' << launch_info.launch_linenum
|
||||
<< launch_info.launch_filename << ":" << launch_info.launch_linenum
|
||||
<< std::endl;
|
||||
oss << " Function containing kernel launch = "
|
||||
<< launch_info.launch_function << std::endl;
|
||||
@ -175,7 +175,7 @@ std::string c10_retrieve_device_side_assertion_info() {
|
||||
if (launch_registry.gather_launch_stacktrace) {
|
||||
oss << "Launch stacktracing disabled." << std::endl;
|
||||
} else {
|
||||
oss << '\n' << launch_info.launch_stacktrace << std::endl;
|
||||
oss << "\n" << launch_info.launch_stacktrace << std::endl;
|
||||
}
|
||||
} else {
|
||||
oss << " CPU launch site info: Unavailable, the circular queue wrapped around. Increase `CUDAKernelLaunchRegistry::max_size`."
|
||||
|
||||
@ -435,7 +435,7 @@ TEST(DispatchKeySet, TestFunctionalityDispatchKeyToString) {
|
||||
if (i > 0) {
|
||||
ASSERT_TRUE(res.find("Unknown") == std::string::npos)
|
||||
<< i << " (before is " << toString(static_cast<DispatchKey>(i - 1))
|
||||
<< ')';
|
||||
<< ")";
|
||||
} else {
|
||||
ASSERT_TRUE(res.find("Unknown") == std::string::npos) << i;
|
||||
}
|
||||
|
||||
@ -96,10 +96,10 @@ TEST(HalfConversionTest, TestPorableConversion) {
|
||||
for (auto x : inputs) {
|
||||
auto target = c10::detail::fp16_ieee_to_fp32_value(x);
|
||||
EXPECT_EQ(halfbits2float(x), target)
|
||||
<< "Test failed for uint16 to float " << x << '\n';
|
||||
<< "Test failed for uint16 to float " << x << "\n";
|
||||
EXPECT_EQ(
|
||||
float2halfbits(target), c10::detail::fp16_ieee_from_fp32_value(target))
|
||||
<< "Test failed for float to uint16" << target << '\n';
|
||||
<< "Test failed for float to uint16" << target << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -98,7 +98,7 @@ struct Noncopyable {
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const Noncopyable& nc) {
|
||||
out << "Noncopyable(" << nc.x << ')';
|
||||
out << "Noncopyable(" << nc.x << ")";
|
||||
return out;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
@ -204,13 +204,13 @@ ArrayRef(const std::initializer_list<T>&) -> ArrayRef<T>;
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& out, ArrayRef<T> list) {
|
||||
int i = 0;
|
||||
out << '[';
|
||||
out << "[";
|
||||
for (const auto& e : list) {
|
||||
if (i++ > 0)
|
||||
out << ", ";
|
||||
out << e;
|
||||
}
|
||||
out << ']';
|
||||
out << "]";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -106,8 +106,8 @@ class GetBacktraceImpl {
|
||||
/*length*/ &length,
|
||||
/*status*/ &status);
|
||||
|
||||
os << " frame #" << idx++ << '\t'
|
||||
<< ((demangled != NULL && status == 0) ? demangled : symbol) << '['
|
||||
os << " frame #" << idx++ << "\t"
|
||||
<< ((demangled != NULL && status == 0) ? demangled : symbol) << "["
|
||||
<< addr << "]\t" << std::endl;
|
||||
}
|
||||
free(demangled);
|
||||
@ -274,7 +274,7 @@ class GetBacktraceImpl {
|
||||
} else {
|
||||
// In the edge-case where we couldn't parse the frame string, we can
|
||||
// just use it directly (it may have a different format).
|
||||
stream << symbols[frame_number] << '\n';
|
||||
stream << symbols[frame_number] << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
@ -413,8 +413,8 @@ class GetBacktraceImpl {
|
||||
<< back_trace_[i_frame] << std::dec;
|
||||
if (with_symbol) {
|
||||
stream << std::setfill('0') << std::setw(16) << std::uppercase
|
||||
<< std::hex << p_symbol->Address << std::dec << ' ' << module
|
||||
<< '!' << p_symbol->Name;
|
||||
<< std::hex << p_symbol->Address << std::dec << " " << module
|
||||
<< "!" << p_symbol->Name;
|
||||
} else {
|
||||
stream << " <unknown symbol address> " << module << "!<unknown symbol>";
|
||||
}
|
||||
@ -424,7 +424,7 @@ class GetBacktraceImpl {
|
||||
} else {
|
||||
stream << "<unknown file> @ <unknown line number>";
|
||||
}
|
||||
stream << ']' << std::endl;
|
||||
stream << "]" << std::endl;
|
||||
}
|
||||
|
||||
return stream.str();
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/FileSystem.h>
|
||||
#include <c10/util/Logging.h>
|
||||
#include <c10/util/Type.h>
|
||||
|
||||
@ -28,7 +27,7 @@ Error::Error(
|
||||
const void* caller)
|
||||
: Error(
|
||||
str("[enforce fail at ",
|
||||
c10::filesystem::path(file).filename(),
|
||||
detail::StripBasename(file),
|
||||
":",
|
||||
line,
|
||||
"] ",
|
||||
@ -45,7 +44,7 @@ std::string Error::compute_what(bool include_backtrace) const {
|
||||
|
||||
if (context_.size() == 1) {
|
||||
// Fold error and context in one line
|
||||
oss << " (" << context_[0] << ')';
|
||||
oss << " (" << context_[0] << ")";
|
||||
} else {
|
||||
for (const auto& c : context_) {
|
||||
oss << "\n " << c;
|
||||
@ -53,7 +52,7 @@ std::string Error::compute_what(bool include_backtrace) const {
|
||||
}
|
||||
|
||||
if (include_backtrace && backtrace_) {
|
||||
oss << '\n' << backtrace_->get();
|
||||
oss << "\n" << backtrace_->get();
|
||||
}
|
||||
|
||||
return oss.str();
|
||||
@ -248,7 +247,7 @@ void WarningHandler::process(const Warning& warning) {
|
||||
LOG_AT_FILE_LINE(
|
||||
WARNING, warning.source_location().file, warning.source_location().line)
|
||||
<< "Warning: " << warning.msg() << " (function "
|
||||
<< warning.source_location().function << ')';
|
||||
<< warning.source_location().function << ")";
|
||||
}
|
||||
|
||||
std::string GetExceptionString(const std::exception& e) {
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
#include <c10/util/Backtrace.h>
|
||||
#include <c10/util/FileSystem.h>
|
||||
#include <c10/util/Flags.h>
|
||||
#include <c10/util/Lazy.h>
|
||||
#include <c10/util/Logging.h>
|
||||
@ -474,12 +473,13 @@ MessageLogger::MessageLogger(
|
||||
if (GLOBAL_RANK != -1) {
|
||||
stream_ << "[rank" << GLOBAL_RANK << "]:";
|
||||
}
|
||||
stream_ << '[' << CAFFE2_SEVERITY_PREFIX[std::min(4, GLOG_FATAL - severity_)]
|
||||
stream_ << "[" << CAFFE2_SEVERITY_PREFIX[std::min(4, GLOG_FATAL - severity_)]
|
||||
<< (timeinfo->tm_mon + 1) * 100 + timeinfo->tm_mday
|
||||
<< std::setfill('0') << ' ' << std::setw(2) << timeinfo->tm_hour
|
||||
<< ':' << std::setw(2) << timeinfo->tm_min << ':' << std::setw(2)
|
||||
<< timeinfo->tm_sec << '.' << std::setw(9) << ns << ' '
|
||||
<< c10::filesystem::path(file).filename() << ':' << line << "] ";
|
||||
<< std::setfill('0') << " " << std::setw(2) << timeinfo->tm_hour
|
||||
<< ":" << std::setw(2) << timeinfo->tm_min << ":" << std::setw(2)
|
||||
<< timeinfo->tm_sec << "." << std::setw(9) << ns << " "
|
||||
<< c10::detail::StripBasename(std::string(file)) << ":" << line
|
||||
<< "] ";
|
||||
}
|
||||
|
||||
// Output the contents of the stream to the proper channel on destruction.
|
||||
@ -488,7 +488,7 @@ MessageLogger::~MessageLogger() noexcept(false) {
|
||||
// Nothing needs to be logged.
|
||||
return;
|
||||
}
|
||||
stream_ << '\n';
|
||||
stream_ << "\n";
|
||||
#ifdef ANDROID
|
||||
static const int android_log_levels[] = {
|
||||
ANDROID_LOG_FATAL, // LOG_FATAL
|
||||
|
||||
@ -1412,13 +1412,13 @@ inline size_t capacity_in_bytes(const SmallVector<T, N>& X) {
|
||||
template <typename T, unsigned N>
|
||||
std::ostream& operator<<(std::ostream& out, const SmallVector<T, N>& list) {
|
||||
int i = 0;
|
||||
out << '[';
|
||||
out << "[";
|
||||
for (auto e : list) {
|
||||
if (i++ > 0)
|
||||
out << ", ";
|
||||
out << e;
|
||||
}
|
||||
out << ']';
|
||||
out << "]";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -79,7 +79,7 @@ std::ostream& _str(std::ostream& ss, const std::wstring& wString) {
|
||||
} // namespace detail
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const SourceLocation& loc) {
|
||||
out << loc.function << " at " << loc.file << ':' << loc.line;
|
||||
out << loc.function << " at " << loc.file << ":" << loc.line;
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user