mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-02 06:24:59 +08:00
Compare commits
20 Commits
ciflow/op-
...
mlazos/use
| Author | SHA1 | Date | |
|---|---|---|---|
| bcf1a53297 | |||
| 75c6f9b93b | |||
| cf8fb02c33 | |||
| bfd2b03577 | |||
| 6441f7a7fe | |||
| 6d30dba93d | |||
| dc90a72bb5 | |||
| 44de0318c4 | |||
| 66c8640559 | |||
| 923a7c7bcc | |||
| e2b0cfe647 | |||
| 60508c7ed8 | |||
| a43c5f210b | |||
| e8bd37d77c | |||
| 28742d61be | |||
| 104dec4c55 | |||
| 4040707f1f | |||
| c0ec620a09 | |||
| 47d2882ea6 | |||
| 2df9f24b3f |
187
test/dynamo/test_streams.py
Normal file
187
test/dynamo/test_streams.py
Normal file
@ -0,0 +1,187 @@
|
||||
# Owner(s): ["module: dynamo"]
|
||||
import weakref
|
||||
|
||||
import torch
|
||||
import torch._dynamo.test_case
|
||||
import torch._dynamo.testing
|
||||
from torch.testing._internal.common_utils import requires_cuda
|
||||
|
||||
|
||||
class TestStreams(torch._dynamo.test_case.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
super().setUpClass()
|
||||
|
||||
@classmethod
|
||||
def tearDownClass(cls):
|
||||
super().tearDownClass()
|
||||
|
||||
def test_stream_weakref(self):
|
||||
s = torch.Stream()
|
||||
weakref.ref(s)
|
||||
|
||||
def test_event_weakref(self):
|
||||
e = torch.Event()
|
||||
weakref.ref(e)
|
||||
|
||||
def test_stream_enter_exit(self):
|
||||
def fn(x, y):
|
||||
s2 = torch.Stream()
|
||||
s1 = torch.Stream()
|
||||
with s1:
|
||||
z1 = torch.add(x, y)
|
||||
with s2:
|
||||
z = torch.add(x, y)
|
||||
y = z + 2 + z1
|
||||
|
||||
return y
|
||||
|
||||
inp = (torch.ones(2, 2) + 1, torch.ones(2, 2))
|
||||
expected = fn(*inp)
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
actual = fn_opt(*inp)
|
||||
self.assertEqual(expected, actual)
|
||||
|
||||
def test_stream_context_graph_break(self):
|
||||
def fn(x, y):
|
||||
s2 = torch.Stream()
|
||||
s1 = torch.Stream()
|
||||
with s1:
|
||||
z1 = torch.add(x, y)
|
||||
with s2:
|
||||
z = torch.add(x, y)
|
||||
y = z + 2 + z1
|
||||
torch._dynamo.graph_break()
|
||||
y = y + 1
|
||||
|
||||
return y
|
||||
|
||||
inp = (torch.ones(2, 2) + 1, torch.ones(2, 2))
|
||||
expected = fn(*inp)
|
||||
fn_opt = torch.compile(fn)
|
||||
actual = fn_opt(*inp)
|
||||
self.assertEqual(expected, actual)
|
||||
|
||||
def test_stream_input(self):
|
||||
def fn(x, y, s):
|
||||
z = torch.add(x, y)
|
||||
y = z + 2
|
||||
return y, s
|
||||
|
||||
inp = (torch.ones(2, 2) + 1, torch.ones(2, 2), torch.Stream(device="cuda"))
|
||||
expected = fn(*inp)
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
actual = fn_opt(*inp)
|
||||
self.assertEqual(expected, actual)
|
||||
|
||||
def test_local_stream_return(self):
|
||||
def fn(x, y):
|
||||
s = torch.Stream()
|
||||
z = torch.add(x, y)
|
||||
y = z + 2
|
||||
return y, s
|
||||
|
||||
inp = (torch.ones(2, 2) + 1, torch.ones(2, 2))
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
_, s0 = fn_opt(*inp)
|
||||
_, s1 = fn_opt(*inp)
|
||||
# Streams will be different values for each invocation
|
||||
# so don't check for equality
|
||||
self.assertIsInstance(s0, torch.Stream)
|
||||
# Stream should be newly allocated on each call
|
||||
self.assertNotEqual(s0, s1)
|
||||
|
||||
def test_get_current_stream_return(self):
|
||||
def fn(x, s):
|
||||
with s:
|
||||
s0 = torch.accelerator.current_stream()
|
||||
return x, s0
|
||||
|
||||
s_inp = torch.Stream(device="cuda")
|
||||
inp = (torch.ones(2, 2) + 1, s_inp)
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
_, s0 = fn_opt(*inp)
|
||||
_, s1 = fn_opt(*inp)
|
||||
self.assertEqual(s_inp, s0)
|
||||
self.assertEqual(s0, s1)
|
||||
|
||||
def test_get_current_stream_return_different_device(self):
|
||||
def fn(x, s0, s1):
|
||||
with s1:
|
||||
with s0:
|
||||
s = torch.accelerator.current_stream(torch.device("cuda:1"))
|
||||
return s
|
||||
|
||||
s0 = torch.Stream(device="cuda:0")
|
||||
s1 = torch.Stream(device="cuda:1")
|
||||
inp = (torch.ones(2, 2) + 1, s0, s1)
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
s_act = fn_opt(*inp)
|
||||
s_exp = fn(*inp)
|
||||
self.assertEqual(s_act, s_exp)
|
||||
|
||||
def test_get_current_stream_return_no_index(self):
|
||||
def fn(x, s0, s1):
|
||||
with s1:
|
||||
with s0:
|
||||
s = torch.accelerator.current_stream(torch.device("cuda"))
|
||||
return s
|
||||
|
||||
s0 = torch.Stream(device="cuda:0")
|
||||
s1 = torch.Stream(device="cuda:1")
|
||||
inp = (torch.ones(2, 2) + 1, s0, s1)
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
s_act = fn_opt(*inp)
|
||||
s_exp = fn(*inp)
|
||||
self.assertEqual(s_act, s_exp)
|
||||
|
||||
def test_fork_join_backward(self):
|
||||
def fn(x, s0):
|
||||
with s0:
|
||||
y = torch.add(x, x)
|
||||
return y
|
||||
|
||||
inp = (torch.ones(2, 2, requires_grad=True) + 1, torch.Stream(device="cuda"))
|
||||
fn_opt = torch.compile(fn, fullgraph=True)
|
||||
actual = fn_opt(*inp)
|
||||
actual.sum().backward()
|
||||
# expected = fn(*inp)
|
||||
# expected.sum().backward()
|
||||
# self.assertEqual(expected, actual)
|
||||
|
||||
def test_nested_stream_enter_exit(self):
|
||||
pass
|
||||
|
||||
def test_stream_enter_exit_graph_break(self):
|
||||
pass
|
||||
|
||||
def test_nested_stream_enter_exit_graph_break(self):
|
||||
pass
|
||||
|
||||
def test_local_stream_enter_exit(self):
|
||||
pass
|
||||
|
||||
def test_local_stream_nested_enter_exit(self):
|
||||
pass
|
||||
|
||||
def test_stream_with_mutation(self):
|
||||
pass
|
||||
|
||||
@requires_cuda
|
||||
def test_run_opcheck(self):
|
||||
from torch._dynamo.variables.streams import fork_stream, join_stream
|
||||
from torch.library import opcheck
|
||||
|
||||
sample_inputs = [
|
||||
(0, torch.device("cuda:0"), 1, torch.device("cuda:1")),
|
||||
(2, torch.device("cuda:2"), 3, torch.device("cuda:1")),
|
||||
]
|
||||
for args in sample_inputs:
|
||||
opcheck(fork_stream, args)
|
||||
opcheck(join_stream, args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from torch._dynamo.test_case import run_tests
|
||||
|
||||
run_tests()
|
||||
@ -153,7 +153,6 @@ def reset() -> None:
|
||||
GenerationTracker.clear()
|
||||
TensorifyState.clear()
|
||||
torch._dynamo.utils.warn_once_cache.clear()
|
||||
torch._dynamo.utils.user_obj_id_to_weakref.clear()
|
||||
torch._C._autograd._saved_tensors_hooks_set_tracing(False)
|
||||
|
||||
|
||||
|
||||
@ -116,6 +116,7 @@ from .exc import (
|
||||
unimplemented_v2,
|
||||
Unsupported,
|
||||
)
|
||||
from .graph_bytecode_inputs import reset_user_object_tracking
|
||||
from .guards import (
|
||||
CheckFunctionManager,
|
||||
get_and_maybe_log_recompilation_reasons,
|
||||
@ -314,6 +315,7 @@ def preserve_global_state(fn: Callable[_P, _T]) -> Callable[_P, _T]:
|
||||
torch.fx._symbolic_trace._maybe_revert_all_patches()
|
||||
)
|
||||
exit_stack.enter_context(torch_function_mode_stack_state_mgr)
|
||||
reset_user_object_tracking()
|
||||
try:
|
||||
return fn(*args, **kwargs)
|
||||
finally:
|
||||
|
||||
@ -2495,6 +2495,14 @@
|
||||
}
|
||||
],
|
||||
"GB0249": [
|
||||
{
|
||||
"Gb_type": "bad device argument to torch.accelerator.current_stream",
|
||||
"Context": "args={args}, kwargs={kwargs}",
|
||||
"Explanation": "Expected valid string/torch.device argument ('cpu', 'cuda', etc.)",
|
||||
"Hints": [
|
||||
"Dynamo has detected that tracing the code will result in an error when running in eager. Please double check that your code doesn't contain a similar error when actually running eager/uncompiled."
|
||||
]
|
||||
},
|
||||
{
|
||||
"Gb_type": "bad device argument to torch.get_device_module",
|
||||
"Context": "args={args}, kwargs={kwargs}",
|
||||
@ -2734,6 +2742,12 @@
|
||||
}
|
||||
],
|
||||
"GB0272": [
|
||||
{
|
||||
"Gb_type": "Failed to make weakref to User Object when storing by ID",
|
||||
"Context": "user_objected: {obj}",
|
||||
"Explanation": "Object does not allow us to make a weakref to it",
|
||||
"Hints": []
|
||||
},
|
||||
{
|
||||
"Gb_type": "Failed to make weakref to User Object",
|
||||
"Context": "user_objected: {obj}",
|
||||
@ -2776,5 +2790,41 @@
|
||||
"This is likely to be a Dynamo bug. Please report an issue to PyTorch."
|
||||
]
|
||||
}
|
||||
],
|
||||
"GB0276": [
|
||||
{
|
||||
"Gb_type": "Failed to make weakref to User Object",
|
||||
"Context": "user_object: {value}",
|
||||
"Explanation": "Object does not allow us to make a weakref to it",
|
||||
"Hints": []
|
||||
}
|
||||
],
|
||||
"GB0277": [
|
||||
{
|
||||
"Gb_type": "Failed to make weakref to graph-created external object",
|
||||
"Context": "user_object: {example_value}",
|
||||
"Explanation": "Object does not allow us to make a weakref to it",
|
||||
"Hints": []
|
||||
}
|
||||
],
|
||||
"GB0278": [
|
||||
{
|
||||
"Gb_type": "unsupported arguments to torch.accelerator.current_stream",
|
||||
"Context": "args={args}, kwargs={kwargs}",
|
||||
"Explanation": "torch.accelerator.current_stream accepts one optional argument `device`",
|
||||
"Hints": [
|
||||
"Dynamo has detected that tracing the code will result in an error when running in eager. Please double check that your code doesn't contain a similar error when actually running eager/uncompiled."
|
||||
]
|
||||
}
|
||||
],
|
||||
"GB0279": [
|
||||
{
|
||||
"Gb_type": "bad device argument to torch.get_device_module",
|
||||
"Context": "args={args}, kwargs={kwargs}",
|
||||
"Explanation": "Expected valid string/torch.device argument ('cpu', 'cuda', etc.)",
|
||||
"Hints": [
|
||||
"Dynamo has detected that tracing the code will result in an error when running in eager. Please double check that your code doesn't contain a similar error when actually running eager/uncompiled."
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
90
torch/_dynamo/graph_bytecode_inputs.py
Normal file
90
torch/_dynamo/graph_bytecode_inputs.py
Normal file
@ -0,0 +1,90 @@
|
||||
import weakref
|
||||
from typing import Any, Callable
|
||||
|
||||
from torch._dynamo.source import Source
|
||||
|
||||
|
||||
PyCodegen = Any
|
||||
|
||||
# This file is to handle types that we don't want to support
|
||||
# as explicit FX graph inputs. This uses a sidetable which
|
||||
# we populate in bytecode and is loaded during graph execution
|
||||
|
||||
# We use a dynamo-generated index as a level of indirection
|
||||
# this allows us to register objects externally in pre-graph bytecode that we want
|
||||
# to pass to the graph, but not support their types as graph inputs
|
||||
index_to_bytecode_constructor: dict[int, Callable[[PyCodegen], None]] = {}
|
||||
|
||||
index_to_external_object_weakref: dict[int, weakref.ReferenceType[Any]] = {}
|
||||
|
||||
keep_alive: list[Any] = []
|
||||
|
||||
|
||||
def has_user_objects() -> bool:
|
||||
return bool(index_to_bytecode_constructor)
|
||||
|
||||
|
||||
def get_external_object_by_index(index: int) -> Any:
|
||||
assert index in index_to_external_object_weakref, (
|
||||
"Index not registered in index_to_user_object_weakref"
|
||||
)
|
||||
obj = index_to_external_object_weakref[index]()
|
||||
assert obj is not None, "User object is no longer alive"
|
||||
return index_to_external_object_weakref[index]()
|
||||
|
||||
|
||||
def store_user_object_weakrefs(*args: Any) -> None:
|
||||
global index_to_external_object_weakref
|
||||
index_to_external_object_weakref.clear()
|
||||
index_to_external_object_weakref.update(
|
||||
{i: weakref.ref(arg) for i, arg in enumerate(args)}
|
||||
)
|
||||
|
||||
|
||||
def reset_user_object_tracking() -> None:
|
||||
index_to_bytecode_constructor.clear()
|
||||
index_to_external_object_weakref.clear()
|
||||
keep_alive.clear()
|
||||
|
||||
|
||||
def register_graph_created_object(
|
||||
example_value: Any, construct_fn: Callable[[int, PyCodegen], None]
|
||||
) -> int:
|
||||
global index_to_bytecode_constructor
|
||||
global keep_alive
|
||||
keep_alive.append(example_value)
|
||||
index = len(index_to_bytecode_constructor)
|
||||
index_to_bytecode_constructor[index] = lambda cg: construct_fn(index, cg)
|
||||
try:
|
||||
index_to_external_object_weakref[index] = weakref.ref(example_value)
|
||||
except TypeError as e:
|
||||
from .exc import unimplemented_v2
|
||||
|
||||
unimplemented_v2(
|
||||
gb_type="Failed to make weakref to graph-created external object",
|
||||
context=f"user_object: {example_value}",
|
||||
explanation="Object does not allow us to make a weakref to it",
|
||||
hints=[],
|
||||
from_exc=e,
|
||||
)
|
||||
return index
|
||||
|
||||
|
||||
# Register a user object to be used in the graph
|
||||
def register_user_object(value: Any, source: Source) -> int:
|
||||
global index_to_bytecode_constructor
|
||||
index = len(index_to_bytecode_constructor)
|
||||
index_to_bytecode_constructor[index] = lambda cg: cg(source)
|
||||
try:
|
||||
index_to_external_object_weakref[index] = weakref.ref(value)
|
||||
except TypeError as e:
|
||||
from .exc import unimplemented_v2
|
||||
|
||||
unimplemented_v2(
|
||||
gb_type="Failed to make weakref to User Object",
|
||||
context=f"user_object: {value}",
|
||||
explanation="Object does not allow us to make a weakref to it",
|
||||
hints=[],
|
||||
from_exc=e,
|
||||
)
|
||||
return index
|
||||
@ -132,6 +132,7 @@ from .source import (
|
||||
CodeSource,
|
||||
ConstantSource,
|
||||
ConstDictKeySource,
|
||||
CurrentStreamSource,
|
||||
DataclassFieldsSource,
|
||||
DefaultsSource,
|
||||
DictGetItemSource,
|
||||
@ -181,6 +182,7 @@ from .utils import (
|
||||
common_constant_types,
|
||||
dataclass_fields,
|
||||
dict_keys,
|
||||
get_current_stream,
|
||||
get_custom_getattr,
|
||||
get_torch_function_mode_stack,
|
||||
get_torch_function_mode_stack_at,
|
||||
@ -757,6 +759,7 @@ def _get_closure_vars() -> dict[str, object]:
|
||||
"___dataclass_fields": dataclass_fields,
|
||||
"___namedtuple_fields": lambda x: x._fields,
|
||||
"___get_torch_function_mode_stack_at": get_torch_function_mode_stack_at,
|
||||
"___get_current_stream": get_current_stream,
|
||||
"__math_isnan": math.isnan,
|
||||
"__numpy_isnan": None if np is None else np.isnan,
|
||||
"inf": float("inf"),
|
||||
@ -1448,6 +1451,13 @@ class GuardBuilder(GuardBuilderBase):
|
||||
example_value=example_value,
|
||||
guard_manager_enum=guard_manager_enum,
|
||||
)
|
||||
elif istype(source, CurrentStreamSource):
|
||||
out = root_guard_manager.lambda_manager(
|
||||
python_lambda=lambda _: get_current_stream(source.device),
|
||||
source=source_name,
|
||||
example_value=example_value,
|
||||
guard_manager_enum=guard_manager_enum,
|
||||
)
|
||||
elif istype(source, GradSource):
|
||||
assert base_guard_manager # to make mypy happy
|
||||
out = base_guard_manager.grad_manager(
|
||||
@ -2166,6 +2176,8 @@ class GuardBuilder(GuardBuilderBase):
|
||||
range,
|
||||
dict_keys,
|
||||
torch.Size,
|
||||
torch.Stream,
|
||||
torch.cuda.streams.Stream,
|
||||
*np_types,
|
||||
*ok_mutable_types,
|
||||
}
|
||||
|
||||
@ -100,6 +100,7 @@ from .exc import (
|
||||
unimplemented_v2,
|
||||
unimplemented_v2_with_warning,
|
||||
)
|
||||
from .graph_bytecode_inputs import has_user_objects, index_to_bytecode_constructor
|
||||
from .graph_deduplication import apply_graph_deduplication
|
||||
from .graph_region_tracker import GraphRegionTracker
|
||||
from .guards import GuardBuilder, install_guard
|
||||
@ -1512,6 +1513,37 @@ class OutputGraph(OutputGraphCommon):
|
||||
|
||||
from .decorators import disable
|
||||
|
||||
if has_user_objects():
|
||||
# NB: This is where we store possible user objects before running the graph
|
||||
# index_to_user_object_weakref is the function used in the graph to translate
|
||||
# the dynamo-generated index into the actual object passed to the compiled function.
|
||||
# We generate bytecode to store all user objects at the proper index in the below
|
||||
# call.
|
||||
codegen = PyCodegen(
|
||||
self.root_tx, root, overridden_sources=overridden_sources
|
||||
)
|
||||
codegen.add_push_null(
|
||||
lambda: codegen.load_import_from(
|
||||
torch._dynamo.graph_bytecode_inputs.__name__,
|
||||
"store_user_object_weakrefs",
|
||||
)
|
||||
)
|
||||
tmp_vars = []
|
||||
for constructor in reversed(index_to_bytecode_constructor.values()):
|
||||
constructor(codegen)
|
||||
var_name = (
|
||||
self.new_var()
|
||||
) # keep alive any temp objects for the rest of the frame
|
||||
codegen.store(var_name)
|
||||
tmp_vars.append(var_name)
|
||||
|
||||
for var_name in tmp_vars:
|
||||
codegen.append_output(codegen.create_load(var_name))
|
||||
|
||||
codegen.call_function(len(index_to_bytecode_constructor), False)
|
||||
codegen.pop_top()
|
||||
self.add_output_instructions(codegen.get_instructions())
|
||||
|
||||
# to handle random calls
|
||||
if len(self.random_calls) > 0:
|
||||
random_calls_instructions = []
|
||||
@ -1657,7 +1689,7 @@ class OutputGraph(OutputGraphCommon):
|
||||
)
|
||||
elif (
|
||||
vt.source is not None
|
||||
and (source := getattr(vt.source, "base", None))
|
||||
and (source := getattr(vt.source, "base", None)) # type: ignore[assignment]
|
||||
and source.is_input
|
||||
):
|
||||
self.export_metadata.output_return_type[idx] = (
|
||||
|
||||
@ -22,6 +22,7 @@ import enum
|
||||
import functools
|
||||
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
|
||||
|
||||
from torch import device as device_type
|
||||
from torch._guards import ChainedSource, Guard, GuardSource, Source
|
||||
|
||||
from . import utils
|
||||
@ -1078,6 +1079,30 @@ class ShapeEnvSource(Source):
|
||||
return GuardSource.SHAPE_ENV
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class CurrentStreamSource(Source):
|
||||
device: device_type
|
||||
|
||||
def name(self) -> str:
|
||||
return f"___get_current_stream(torch.device('{self.device.type}', {self.device.index}))"
|
||||
|
||||
def reconstruct(self, codegen: "PyCodegen") -> None:
|
||||
num_args = 1
|
||||
codegen.add_push_null(
|
||||
lambda: codegen.load_import_from(utils.__name__, "get_current_stream")
|
||||
)
|
||||
codegen.add_push_null(lambda: codegen.load_import_from("torch", "device"))
|
||||
codegen.extend_output([codegen.create_load_const(self.device.type)])
|
||||
if self.device.index is not None:
|
||||
num_args += 1
|
||||
codegen.extend_output([codegen.create_load_const(self.device.index)])
|
||||
codegen.extend_output(create_call_function(num_args, False))
|
||||
codegen.extend_output(create_call_function(1, False))
|
||||
|
||||
def guard_source(self) -> GuardSource:
|
||||
return GuardSource.GLOBAL
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True)
|
||||
class BackwardStateSource(Source):
|
||||
def name(self) -> str:
|
||||
|
||||
@ -173,6 +173,7 @@ from .variables.misc import (
|
||||
UnknownVariable,
|
||||
)
|
||||
from .variables.nn_module import NNModuleVariable, UnspecializedNNModuleVariable
|
||||
from .variables.streams import SymbolicStreamState
|
||||
from .variables.tensor import supported_comparison_ops, SymNodeVariable, TensorVariable
|
||||
from .variables.torch_function import (
|
||||
SymbolicTorchFunctionState,
|
||||
@ -1170,6 +1171,7 @@ class InstructionTranslatorBase(
|
||||
symbolic_locals: dict[str, VariableTracker]
|
||||
symbolic_globals: dict[str, VariableTracker]
|
||||
symbolic_torch_function_state: SymbolicTorchFunctionState
|
||||
symbolic_stream_state: SymbolicStreamState
|
||||
post_prune_cell_and_freevars: Optional[dict[str, VariableTracker]]
|
||||
stack: list[VariableTracker]
|
||||
instruction_pointer: Optional[int]
|
||||
@ -4069,6 +4071,7 @@ class InstructionTranslatorBase(
|
||||
symbolic_locals: dict[str, VariableTracker],
|
||||
symbolic_globals: dict[str, VariableTracker],
|
||||
symbolic_torch_function_state: SymbolicTorchFunctionState,
|
||||
symbolic_stream_state: SymbolicStreamState,
|
||||
f_code: types.CodeType,
|
||||
export: bool,
|
||||
inline_depth: int,
|
||||
@ -4088,6 +4091,7 @@ class InstructionTranslatorBase(
|
||||
self.symbolic_locals = symbolic_locals
|
||||
self.symbolic_globals = symbolic_globals
|
||||
self.symbolic_torch_function_state = symbolic_torch_function_state
|
||||
self.symbolic_stream_state = symbolic_stream_state
|
||||
# used to keep cell/freevars alive after pruning symbolic_locals (prune_dead_locals)
|
||||
# in order to generate any nested closures
|
||||
self.post_prune_cell_and_freevars = None
|
||||
@ -4241,6 +4245,7 @@ class InstructionTranslator(InstructionTranslatorBase):
|
||||
# A global var is inserted only after a STORE_GLOBAL happens to it
|
||||
symbolic_globals={},
|
||||
symbolic_torch_function_state=None, # type: ignore[arg-type] # set below
|
||||
symbolic_stream_state=None, # type: ignore[arg-type] # set below
|
||||
f_code=f_code,
|
||||
export=export,
|
||||
inline_depth=0,
|
||||
@ -4345,6 +4350,8 @@ class InstructionTranslator(InstructionTranslatorBase):
|
||||
torch_function_mode_stack
|
||||
)
|
||||
|
||||
self.symbolic_stream_state = SymbolicStreamState()
|
||||
|
||||
if export:
|
||||
# export gets confused if we never realize unused inputs
|
||||
# in export mode just eagerly realize everything
|
||||
@ -4673,6 +4680,7 @@ class InliningInstructionTranslator(InstructionTranslatorBase):
|
||||
sub_locals,
|
||||
parent.symbolic_globals,
|
||||
parent.symbolic_torch_function_state,
|
||||
parent.symbolic_stream_state,
|
||||
func,
|
||||
)
|
||||
else:
|
||||
@ -4684,6 +4692,7 @@ class InliningInstructionTranslator(InstructionTranslatorBase):
|
||||
sub_locals,
|
||||
parent.symbolic_globals,
|
||||
parent.symbolic_torch_function_state,
|
||||
parent.symbolic_stream_state,
|
||||
# pyrefly: ignore # bad-argument-type
|
||||
func,
|
||||
)
|
||||
@ -4767,6 +4776,7 @@ class InliningInstructionTranslator(InstructionTranslatorBase):
|
||||
symbolic_locals: dict[str, VariableTracker],
|
||||
symbolic_globals: dict[str, VariableTracker],
|
||||
symbolic_torch_function_state: SymbolicTorchFunctionState,
|
||||
symbolic_stream_state: SymbolicStreamState,
|
||||
funcvar: BaseUserFunctionVariable,
|
||||
) -> None:
|
||||
f_globals = funcvar.get_globals() # type: ignore[attr-defined]
|
||||
@ -4800,6 +4810,7 @@ class InliningInstructionTranslator(InstructionTranslatorBase):
|
||||
symbolic_locals=symbolic_locals,
|
||||
symbolic_globals=symbolic_globals,
|
||||
symbolic_torch_function_state=symbolic_torch_function_state,
|
||||
symbolic_stream_state=symbolic_stream_state,
|
||||
instructions=instructions,
|
||||
code_options={k: getattr(code, k) for k in get_code_keys()},
|
||||
f_code=code,
|
||||
|
||||
@ -4655,6 +4655,10 @@ def clear_torch_function_mode_stack() -> None:
|
||||
_pop_torch_function_stack()
|
||||
|
||||
|
||||
def get_current_stream(device: torch.device) -> torch.Stream:
|
||||
return torch.accelerator.current_stream(device)
|
||||
|
||||
|
||||
# call from C dynamo in order to inspect values in pdb
|
||||
def _breakpoint_for_c_dynamo(*args: Any) -> None:
|
||||
breakpoint()
|
||||
@ -4719,34 +4723,6 @@ def _extract_tensor_dict(t: torch.Tensor) -> dict[str, Any]:
|
||||
return tensor_dict
|
||||
|
||||
|
||||
# This is useful for reconstructing within the Dynamo graph the non-graph-input objects
|
||||
# whose lifetime is governed by the user.
|
||||
# e.g. torch.cuda.Event is a prime example.
|
||||
user_obj_id_to_weakref: dict[int, weakref.ReferenceType[object]] = {}
|
||||
|
||||
|
||||
def get_user_object_from_id(obj_id: int) -> Any:
|
||||
obj = user_obj_id_to_weakref[obj_id]()
|
||||
assert obj is not None, "User object is no longer alive"
|
||||
return obj
|
||||
|
||||
|
||||
def store_user_object_weakref(obj: object) -> None:
|
||||
obj_id = id(obj)
|
||||
try:
|
||||
user_obj_id_to_weakref[obj_id] = weakref.ref(obj)
|
||||
except TypeError as e:
|
||||
from .exc import unimplemented_v2
|
||||
|
||||
unimplemented_v2(
|
||||
gb_type="Failed to make weakref to User Object",
|
||||
context=f"user_objected: {obj}",
|
||||
explanation="Object does not allow us to make a weakref to it",
|
||||
hints=[],
|
||||
from_exc=e,
|
||||
)
|
||||
|
||||
|
||||
class CompileTimeInstructionCounter:
|
||||
_counter: int = 0
|
||||
_id: int = -1
|
||||
|
||||
@ -37,8 +37,6 @@ from .ctx_manager import (
|
||||
JvpIncrementNestingCtxManagerVariable,
|
||||
SDPAKernelVariable,
|
||||
SetFwdGradEnabledContextManager,
|
||||
StreamContextVariable,
|
||||
StreamVariable,
|
||||
TemporarilyPopInterpreterStackCtxManagerVariable,
|
||||
VmapIncrementNestingCtxManagerVariable,
|
||||
WithEnterFunctionVariable,
|
||||
@ -131,6 +129,7 @@ from .nn_module import (
|
||||
)
|
||||
from .optimizer import OptimizerVariable
|
||||
from .sdpa import SDPAParamsVariable
|
||||
from .streams import EventVariable, StreamContextVariable, StreamVariable
|
||||
from .tensor import (
|
||||
DataPtrVariable,
|
||||
FakeItemVariable,
|
||||
|
||||
@ -45,6 +45,10 @@ import sympy
|
||||
import torch
|
||||
from torch import SymInt
|
||||
from torch._dispatch.python import enable_python_dispatcher
|
||||
from torch._dynamo.graph_bytecode_inputs import (
|
||||
get_external_object_by_index,
|
||||
register_user_object,
|
||||
)
|
||||
from torch._dynamo.utils import (
|
||||
get_metrics_context,
|
||||
is_int_specialization_case,
|
||||
@ -172,11 +176,8 @@ from .ctx_manager import (
|
||||
AutocastModeVariable,
|
||||
DynamoConfigPatchVariable,
|
||||
ErrorOnGraphBreakVariable,
|
||||
EventVariable,
|
||||
NullContextVariable,
|
||||
PreserveVersionContextVariable,
|
||||
StreamContextVariable,
|
||||
StreamVariable,
|
||||
)
|
||||
from .dicts import (
|
||||
ConstDictVariable,
|
||||
@ -257,6 +258,7 @@ from .nn_module import (
|
||||
from .optimizer import OptimizerVariable
|
||||
from .script_object import TorchScriptObjectVariable
|
||||
from .sdpa import SDPAParamsVariable
|
||||
from .streams import EventVariable, StreamContextVariable, StreamVariable
|
||||
from .tensor import (
|
||||
NumpyNdarrayVariable,
|
||||
supported_const_comparison_op_values,
|
||||
@ -1036,24 +1038,20 @@ class VariableBuilder:
|
||||
stream_var = VariableBuilder(self.tx, stream_source)(value.stream)
|
||||
return StreamContextVariable.create(self.tx, stream_var)
|
||||
elif isinstance(value, torch.Stream):
|
||||
self.install_guards(GuardBuilder.ID_MATCH)
|
||||
# This refers to the device-agnostic torch.Stream
|
||||
self.install_guards(GuardBuilder.TYPE_MATCH)
|
||||
index = register_user_object(value, self.source)
|
||||
stream_proxy = self.tx.output.create_proxy(
|
||||
"call_function",
|
||||
type(value),
|
||||
(),
|
||||
{
|
||||
"stream_id": value.stream_id,
|
||||
"device_index": value.device_index,
|
||||
"device_type": value.device_type,
|
||||
},
|
||||
"call_function", get_external_object_by_index, (index,), {}
|
||||
)
|
||||
set_example_value(stream_proxy.node, value)
|
||||
return StreamVariable(
|
||||
var = StreamVariable(
|
||||
stream_proxy,
|
||||
value,
|
||||
value.device,
|
||||
source=self.source,
|
||||
)
|
||||
return self.tx.output.side_effects.track_object_existing(value, var)
|
||||
elif isinstance(value, (torch._C._SDPAParams)):
|
||||
self.install_guards(GuardBuilder.TYPE_MATCH)
|
||||
return SDPAParamsVariable.create(self.tx, value, self.source)
|
||||
@ -1061,12 +1059,12 @@ class VariableBuilder:
|
||||
self.install_guards(GuardBuilder.ID_MATCH)
|
||||
return FuncTorchInterpreterVariable(value)
|
||||
elif isinstance(value, torch.Event):
|
||||
self.install_guards(GuardBuilder.ID_MATCH)
|
||||
torch._dynamo.utils.store_user_object_weakref(value)
|
||||
self.install_guards(GuardBuilder.TYPE_MATCH)
|
||||
index = register_user_object(value, self.source)
|
||||
event_proxy = self.tx.output.create_proxy(
|
||||
"call_function",
|
||||
torch._dynamo.utils.get_user_object_from_id,
|
||||
(id(value),),
|
||||
get_external_object_by_index,
|
||||
(index,),
|
||||
{},
|
||||
)
|
||||
set_example_value(event_proxy.node, value)
|
||||
@ -2980,8 +2978,9 @@ def handle_traced_output(example_value, tx, proxy, options, subclass_type, targe
|
||||
set_example_value(proxy.node, example_value)
|
||||
return SymNodeVariable(proxy, example_value, **options)
|
||||
elif (
|
||||
inspect.isclass(proxy.node.target)
|
||||
and issubclass(proxy.node.target, torch.Stream)
|
||||
isinstance(example_value, torch.Stream)
|
||||
and proxy.node.target
|
||||
in (get_external_object_by_index, torch.accelerator.current_stream)
|
||||
) or proxy.node.target in [
|
||||
device_interface.current_stream
|
||||
for _, device_interface in get_registered_device_interfaces()
|
||||
|
||||
@ -83,7 +83,6 @@ from ..utils import (
|
||||
)
|
||||
from .base import AsPythonConstantNotImplementedError, ValueMutationNew, VariableTracker
|
||||
from .constant import ConstantVariable
|
||||
from .ctx_manager import EventVariable, StreamVariable
|
||||
from .dicts import (
|
||||
ConstDictVariable,
|
||||
DefaultDictVariable,
|
||||
@ -101,6 +100,7 @@ from .lists import (
|
||||
TupleIteratorVariable,
|
||||
TupleVariable,
|
||||
)
|
||||
from .streams import EventVariable, StreamVariable
|
||||
from .tensor import (
|
||||
FakeItemVariable,
|
||||
supported_comparison_ops,
|
||||
|
||||
@ -34,7 +34,6 @@ from ..bytecode_transformation import (
|
||||
create_instruction,
|
||||
create_setup_with,
|
||||
)
|
||||
from ..device_interface import get_interface_for_device
|
||||
from ..exc import unimplemented_v2
|
||||
from ..guards import GuardBuilder, install_guard
|
||||
from ..source import AttrSource, GlobalStateSource
|
||||
@ -991,70 +990,6 @@ class ProfilerContextVariable(ContextWrappingVariable):
|
||||
)
|
||||
|
||||
|
||||
class StreamContextVariable(ContextWrappingVariable):
|
||||
@staticmethod
|
||||
def create(tx: "InstructionTranslator", target_value, **kwargs):
|
||||
from .builder import wrap_fx_proxy_cls
|
||||
|
||||
current_stream_method = get_interface_for_device(
|
||||
target_value.device
|
||||
).current_stream
|
||||
current_stream = wrap_fx_proxy_cls(
|
||||
StreamVariable,
|
||||
tx,
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
current_stream_method,
|
||||
(None,),
|
||||
{},
|
||||
),
|
||||
)
|
||||
return StreamContextVariable(
|
||||
target_values=[target_value],
|
||||
initial_values=[current_stream],
|
||||
device=target_value.device,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def __init__(self, target_values, device, initial_values=None, **kwargs) -> None:
|
||||
super().__init__(
|
||||
target_values=target_values, initial_values=initial_values, **kwargs
|
||||
)
|
||||
self.device = device
|
||||
self.set_stream = get_interface_for_device(self.device).set_stream
|
||||
self.set_stream_id = get_interface_for_device(self.device)._set_stream_by_id
|
||||
|
||||
def enter(self, tx):
|
||||
# stream generated inside the traced function
|
||||
if self.target_values[0].as_proxy() is not None:
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
self.set_stream,
|
||||
(self.target_values[0].as_proxy(),),
|
||||
{},
|
||||
)
|
||||
# stream passed from outside the traced function
|
||||
else:
|
||||
stream = self.target_values[0].value
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
self.set_stream_id,
|
||||
(stream.stream_id, stream.device_index, stream.device_type),
|
||||
{},
|
||||
)
|
||||
self.set_stream(self.target_values[0].value)
|
||||
self.set_cleanup_hook(tx, lambda: self.set_stream(self.initial_values[0].value))
|
||||
|
||||
def exit(self, tx: "InstructionTranslator", *args):
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
self.set_stream,
|
||||
(self.initial_values[0].as_proxy(),),
|
||||
{},
|
||||
)
|
||||
self.cleanup_assert()
|
||||
|
||||
|
||||
class PreserveVersionContextVariable(ContextWrappingVariable):
|
||||
"""
|
||||
Wraps torch.autograd._unsafe_preserve_version_counter
|
||||
@ -1290,142 +1225,6 @@ class FxTracebackAnnotateVariable(ContextWrappingVariable):
|
||||
return "annotate"
|
||||
|
||||
|
||||
class StreamVariable(VariableTracker):
|
||||
def __init__(self, proxy, value, device, **kwargs) -> None:
|
||||
if proxy is not None and "example_value" in proxy.node.meta:
|
||||
assert proxy.node.meta["example_value"] == value
|
||||
assert value.device.type == device.type, (
|
||||
"stream value is not equal to the passed device"
|
||||
)
|
||||
super().__init__(**kwargs)
|
||||
self.proxy = proxy
|
||||
self.value = value
|
||||
self.device = device
|
||||
|
||||
def python_type(self):
|
||||
return torch.Stream
|
||||
|
||||
def call_method(
|
||||
self,
|
||||
tx,
|
||||
name,
|
||||
args: "list[VariableTracker]",
|
||||
kwargs: "dict[str, VariableTracker]",
|
||||
) -> "VariableTracker":
|
||||
assert hasattr(self.value, name), f"no stream method found named {name}"
|
||||
|
||||
from ..utils import cmp_name_to_op_mapping, proxy_args_kwargs
|
||||
from .builder import wrap_fx_proxy_cls
|
||||
|
||||
if name in ("wait_stream", "synchronize", "wait_event"):
|
||||
tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
)
|
||||
return variables.ConstantVariable(None)
|
||||
elif name == "query":
|
||||
return wrap_fx_proxy_cls(
|
||||
target_cls=variables.ConstantVariable,
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
),
|
||||
)
|
||||
elif name == "record_event":
|
||||
return wrap_fx_proxy_cls(
|
||||
target_cls=EventVariable,
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
),
|
||||
)
|
||||
elif name in cmp_name_to_op_mapping and len(args) == 1 and not kwargs:
|
||||
# NB : Checking for mutation is necessary because we compare
|
||||
# constant values
|
||||
other = args[0]
|
||||
if not isinstance(other, StreamVariable):
|
||||
return variables.ConstantVariable.create(NotImplemented)
|
||||
return variables.ConstantVariable.create(
|
||||
cmp_name_to_op_mapping[name](self.value, other.value)
|
||||
)
|
||||
|
||||
return super().call_method(tx, name, args, kwargs)
|
||||
|
||||
def as_proxy(self):
|
||||
return self.proxy
|
||||
|
||||
def reconstruct(self, codegen: "PyCodegen"):
|
||||
# If we got here, this stream is fully subsumed by the graph - this means it is
|
||||
# not an input or global
|
||||
assert not self.source
|
||||
# Since we just proved that - for other such structures, like lists and dicts, reconstruction
|
||||
# is fine and sound according to dynamo principles of treating collectives. However,
|
||||
# streams are special in that we want to preserve the identity of the stream as the same as in the graph
|
||||
# Normally, we would do this via codegen for the proxy mapping to an output - we cannot do this yet, as we do not
|
||||
# yet have a plan for how we want to handle the case where the stream is used as an input or an output. Pending
|
||||
# design, to unblock current work, we lift the stream into a global and then codegen bytecode to load it from there.
|
||||
prefix = f"_stream_{self.device}"
|
||||
name = codegen.tx.output.install_global_by_id(prefix, self.value)
|
||||
codegen.append_output(codegen.create_load_global(name, add=True))
|
||||
|
||||
|
||||
class EventVariable(VariableTracker):
|
||||
def __init__(self, proxy, value, **kwargs) -> None:
|
||||
if proxy is not None and "example_value" in proxy.node.meta:
|
||||
assert proxy.node.meta["example_value"] == value
|
||||
super().__init__(**kwargs)
|
||||
self.proxy = proxy
|
||||
self.value = value
|
||||
|
||||
def call_method(
|
||||
self,
|
||||
tx,
|
||||
name,
|
||||
args: "list[VariableTracker]",
|
||||
kwargs: "dict[str, VariableTracker]",
|
||||
) -> "VariableTracker":
|
||||
from ..utils import proxy_args_kwargs
|
||||
from .builder import wrap_fx_proxy_cls
|
||||
|
||||
if name in ("wait", "record", "synchronize"):
|
||||
tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
)
|
||||
return variables.ConstantVariable(None)
|
||||
elif name == "query":
|
||||
return wrap_fx_proxy_cls(
|
||||
target_cls=variables.ConstantVariable,
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
),
|
||||
)
|
||||
else:
|
||||
method_name = (
|
||||
f"{type(self.value).__module__}.{type(self.value).__qualname__}.{name}"
|
||||
)
|
||||
unimplemented_v2(
|
||||
gb_type="Unsupported event method",
|
||||
context=str(name),
|
||||
explanation=f"Dynamo doesn't support tracing the {method_name} method. "
|
||||
f"We currently support wait, record, synchronize, and query.",
|
||||
hints=[
|
||||
*graph_break_hints.SUPPORTABLE,
|
||||
],
|
||||
)
|
||||
|
||||
def as_proxy(self):
|
||||
return self.proxy
|
||||
|
||||
def reconstruct(self, codegen: "PyCodegen"):
|
||||
# If we got here, this event is fully subsumed by the graph - this means it is
|
||||
# not an input or global
|
||||
assert not self.source
|
||||
# Similar to stream handling, we lift the event into a global and then codegen bytecode to load it from there.
|
||||
prefix = "_event"
|
||||
name = codegen.tx.output.install_global_by_id(prefix, self.value)
|
||||
codegen.append_output(codegen.create_load_global(name, add=True))
|
||||
|
||||
|
||||
class DynamoConfigPatchVariable(ContextWrappingVariable):
|
||||
"""represents torch._dynamo.patch_dynamo_config"""
|
||||
|
||||
|
||||
418
torch/_dynamo/variables/streams.py
Normal file
418
torch/_dynamo/variables/streams.py
Normal file
@ -0,0 +1,418 @@
|
||||
import collections
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
from torch.fx import Proxy
|
||||
|
||||
from .. import graph_break_hints
|
||||
from ..bytecode_transformation import create_call_function
|
||||
from ..device_interface import get_interface_for_device
|
||||
from ..exc import TYPE_CHECKING, unimplemented_v2
|
||||
from ..source import AttrSource, CallFunctionNoArgsSource, TorchSource
|
||||
from .base import VariableTracker
|
||||
from .constant import ConstantVariable
|
||||
from .ctx_manager import ContextWrappingVariable
|
||||
from .lazy import LazyVariableTracker
|
||||
from .misc import GetAttrVariable
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from torch._dynamo.symbolic_convert import InstructionTranslator
|
||||
|
||||
from ..codegen import PyCodegen
|
||||
|
||||
from torch._library.custom_ops import custom_op
|
||||
|
||||
|
||||
Tensor = torch.Tensor
|
||||
|
||||
from torch._higher_order_ops.effects import _EffectType, _register_effectful_op
|
||||
|
||||
|
||||
@custom_op("streams::fork", mutates_args=())
|
||||
def fork_stream(
|
||||
from_index: int,
|
||||
from_device: torch.device,
|
||||
to_index: int,
|
||||
to_device: torch.device,
|
||||
) -> int:
|
||||
return from_index
|
||||
|
||||
|
||||
@fork_stream.register_fake
|
||||
def _(
|
||||
from_index: int,
|
||||
from_device: torch.device,
|
||||
to_index: int,
|
||||
to_device: torch.device,
|
||||
) -> int:
|
||||
return from_index
|
||||
|
||||
|
||||
def fork_backward(ctx, grad_output):
|
||||
from_index, from_device, to_index, to_device = ctx.args
|
||||
from_index = join_stream(to_index, to_device, from_index, from_device)
|
||||
return None, from_index, None, None, None, None
|
||||
|
||||
|
||||
def fork_setup_context(ctx, inputs, output):
|
||||
from_index, from_device, to_index, to_device, _ = inputs
|
||||
ctx.args = (from_index, from_device, to_index, to_device)
|
||||
|
||||
|
||||
_register_effectful_op(fork_stream._opoverload, _EffectType.ORDERED)
|
||||
fork_stream.register_autograd(fork_backward, setup_context=fork_setup_context)
|
||||
|
||||
|
||||
@custom_op("streams::join", mutates_args=())
|
||||
def join_stream(
|
||||
from_index: int,
|
||||
from_device: torch.device,
|
||||
to_index: int,
|
||||
to_device: torch.device,
|
||||
) -> int:
|
||||
return from_index
|
||||
|
||||
|
||||
@join_stream.register_fake
|
||||
def _(
|
||||
from_index: int,
|
||||
from_device: torch.device,
|
||||
to_index: int,
|
||||
to_device: torch.device,
|
||||
) -> int:
|
||||
return from_index
|
||||
|
||||
|
||||
def join_backward(ctx, grad_output):
|
||||
from_index, from_device, to_index, to_device = ctx.args
|
||||
from_index = fork_stream(from_index, from_device, to_index, to_device)
|
||||
return None, from_index, None, None, None, None
|
||||
|
||||
|
||||
def join_setup_context(ctx, inputs, output):
|
||||
from_index, from_device, to_index, to_device = inputs
|
||||
ctx.args = (from_index, from_device, to_index, to_device)
|
||||
|
||||
|
||||
_register_effectful_op(join_stream._opoverload, _EffectType.ORDERED)
|
||||
join_stream.register_autograd(join_backward, setup_context=join_setup_context)
|
||||
|
||||
|
||||
class SymbolicStreamState:
|
||||
"""Track the currently entered stream if any"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
from ..source import CurrentStreamSource
|
||||
|
||||
stream_var = LazyVariableTracker.create(
|
||||
torch.accelerator.current_stream(),
|
||||
source=CurrentStreamSource(torch.accelerator.current_stream().device),
|
||||
)
|
||||
self.cur_stream_stack: collections.deque[StreamVariable] = collections.deque(
|
||||
[stream_var] # type: ignore[list-item]
|
||||
)
|
||||
|
||||
def enter_stream(self, stream: "StreamVariable") -> None:
|
||||
self.cur_stream_stack.append(stream)
|
||||
|
||||
def exit_stream(self) -> None:
|
||||
self.cur_stream_stack.pop()
|
||||
|
||||
def cur_stream(self, device: Optional[torch.device] = None) -> "StreamVariable":
|
||||
if device is not None:
|
||||
for stream in reversed(self.cur_stream_stack):
|
||||
if stream.device == device:
|
||||
return stream
|
||||
|
||||
return self.cur_stream_stack[-1]
|
||||
|
||||
def in_stream_context(self) -> bool:
|
||||
return len(self.cur_stream_stack) > 0
|
||||
|
||||
|
||||
class StreamContextVariable(ContextWrappingVariable):
|
||||
"""This represents torch.cuda.StreamContext"""
|
||||
|
||||
@staticmethod
|
||||
def create(
|
||||
tx: "InstructionTranslator",
|
||||
target_value: "StreamVariable",
|
||||
**kwargs: dict[str, Any],
|
||||
) -> "StreamContextVariable":
|
||||
return StreamContextVariable(
|
||||
target_values=[target_value],
|
||||
initial_values=[
|
||||
StreamContextVariable._get_current_stream(target_value.device, tx)
|
||||
],
|
||||
device=target_value.device,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
target_values: list["StreamVariable"],
|
||||
device: torch.device,
|
||||
initial_values: Optional[list["StreamVariable"]] = None,
|
||||
**kwargs: dict[str, Any],
|
||||
) -> None:
|
||||
super().__init__(
|
||||
target_values=target_values, initial_values=initial_values, **kwargs
|
||||
)
|
||||
self.device = device
|
||||
|
||||
def enter(self, tx: "InstructionTranslator") -> "VariableTracker":
|
||||
# to stream, from stream is the order of the arguments
|
||||
# we are entering the target, and leaving the initial stream
|
||||
tx.symbolic_stream_state.enter_stream(self._get_target_values()[0])
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
torch.ops.streams.fork.default,
|
||||
self._target_stream_proxies() + self._initial_stream_proxies(),
|
||||
{},
|
||||
)
|
||||
return ConstantVariable.create(None)
|
||||
|
||||
def exit(self, tx: "InstructionTranslator", *args: tuple[Any]) -> "VariableTracker":
|
||||
# to stream, from stream is the order of the arguments
|
||||
# we are leaving the target, and entering the initial stream
|
||||
tx.symbolic_stream_state.exit_stream()
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
torch.ops.streams.join.default,
|
||||
self._initial_stream_proxies() + self._target_stream_proxies(),
|
||||
{},
|
||||
)
|
||||
return ConstantVariable.create(None)
|
||||
|
||||
def _initial_stream_proxies(self) -> tuple[Proxy, Proxy]:
|
||||
assert self.initial_values, "No initial stream to move from"
|
||||
return StreamContextVariable._extract_stream_properties(
|
||||
self.initial_values[0].as_proxy()
|
||||
)
|
||||
|
||||
def _target_stream_proxies(self) -> tuple[Proxy, Proxy]:
|
||||
return StreamContextVariable._extract_stream_properties(
|
||||
self._get_target_values()[0].as_proxy()
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _extract_stream_properties(stream_proxy: Proxy) -> tuple[Proxy, Proxy]:
|
||||
stream_index = GetAttrVariable.create_getattr_proxy(stream_proxy, "stream_id")
|
||||
stream_device = GetAttrVariable.create_getattr_proxy(stream_proxy, "device")
|
||||
return stream_index, stream_device
|
||||
|
||||
@staticmethod
|
||||
def _get_current_stream(
|
||||
device: torch.device, tx: "InstructionTranslator"
|
||||
) -> "StreamVariable":
|
||||
from .builder import wrap_fx_proxy_cls
|
||||
|
||||
current_stream_method = get_interface_for_device(device).current_stream
|
||||
current_stream = wrap_fx_proxy_cls(
|
||||
StreamVariable,
|
||||
tx,
|
||||
tx.output.create_proxy(
|
||||
"call_function",
|
||||
current_stream_method,
|
||||
(None,),
|
||||
{},
|
||||
),
|
||||
)
|
||||
return current_stream
|
||||
|
||||
def _get_target_values(self) -> list["StreamVariable"]:
|
||||
# We need this to be overridable, since StreamVariable does
|
||||
# not store target values (it does not require any arguments)
|
||||
# and captures the current stream at the time of entering the context
|
||||
return self.target_values
|
||||
|
||||
def supports_graph_breaks(self) -> bool:
|
||||
return True
|
||||
|
||||
|
||||
class StreamVariable(StreamContextVariable):
|
||||
"""Represents the device-agnostic torch.Stream class"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
proxy: Proxy,
|
||||
value: torch.Stream,
|
||||
device: torch.device,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
# Index into the user object table
|
||||
# used to pass arbitrary objects to the graph
|
||||
user_object_index = kwargs.pop("user_obj_index", None)
|
||||
if proxy is not None and "example_value" in proxy.node.meta:
|
||||
assert proxy.node.meta["example_value"] == value
|
||||
assert value.device.type == device.type, (
|
||||
"stream value is not equal to the passed device"
|
||||
)
|
||||
super().__init__(target_values=[], initial_values=None, device=device, **kwargs)
|
||||
self.proxy = proxy
|
||||
self.value = value
|
||||
self.device = device
|
||||
|
||||
self.user_object_index = user_object_index
|
||||
|
||||
def python_type(self) -> type:
|
||||
return torch.Stream
|
||||
|
||||
def call_method(
|
||||
self,
|
||||
tx: "InstructionTranslator",
|
||||
name: str,
|
||||
args: list[VariableTracker],
|
||||
kwargs: dict[str, VariableTracker],
|
||||
) -> "VariableTracker":
|
||||
assert hasattr(self.value, name), f"no stream method found named {name}"
|
||||
|
||||
from ..utils import cmp_name_to_op_mapping, proxy_args_kwargs
|
||||
from .builder import wrap_fx_proxy_cls
|
||||
|
||||
if name in ("wait_stream", "synchronize", "wait_event"):
|
||||
tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
)
|
||||
return ConstantVariable(None)
|
||||
elif name == "query":
|
||||
return wrap_fx_proxy_cls(
|
||||
target_cls=ConstantVariable,
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
),
|
||||
)
|
||||
elif name == "record_event":
|
||||
return wrap_fx_proxy_cls(
|
||||
target_cls=EventVariable,
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
),
|
||||
)
|
||||
elif name in cmp_name_to_op_mapping and len(args) == 1 and not kwargs:
|
||||
from ..guards import GuardBuilder, install_guard
|
||||
|
||||
if self.source:
|
||||
install_guard(self.source.make_guard(GuardBuilder.EQUALS_MATCH))
|
||||
|
||||
# NB : Checking for mutation is necessary because we compare
|
||||
# constant values
|
||||
other = args[0]
|
||||
if not isinstance(other, StreamVariable):
|
||||
return ConstantVariable.create(NotImplemented)
|
||||
|
||||
if other.source:
|
||||
install_guard(self.source.make_guard(GuardBuilder.EQUALS_MATCH))
|
||||
return ConstantVariable.create(
|
||||
cmp_name_to_op_mapping[name](self.value, other.value) # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
return super().call_method(tx, name, args, kwargs)
|
||||
|
||||
def enter(self, tx: "InstructionTranslator") -> "VariableTracker":
|
||||
# NB: Set initial values when we enter
|
||||
# Don't do this at object creation, as we need to record the current stream
|
||||
# at the time the context is entered.
|
||||
self.initial_values = [
|
||||
StreamContextVariable._get_current_stream(self.device, tx)
|
||||
]
|
||||
return super().enter(tx)
|
||||
|
||||
def as_proxy(self) -> Proxy:
|
||||
return self.proxy
|
||||
|
||||
def module_name(self) -> str:
|
||||
return "torch._C"
|
||||
|
||||
def fn_name(self) -> str:
|
||||
return "Stream"
|
||||
|
||||
def reconstruct(self, codegen: "PyCodegen") -> None:
|
||||
# If we got here, this stream is fully subsumed by the graph - this means it is
|
||||
# not an input or global
|
||||
assert not self.source
|
||||
if self.user_object_index is not None:
|
||||
codegen.add_push_null(
|
||||
lambda: codegen.load_import_from(
|
||||
torch._dynamo.graph_bytecode_inputs.__name__,
|
||||
"get_external_object_by_index",
|
||||
)
|
||||
)
|
||||
codegen.append_output(codegen.create_load_const(self.user_object_index))
|
||||
codegen.extend_output(create_call_function(1, False))
|
||||
else:
|
||||
# TODO mlazos: evaluate if we still need this
|
||||
prefix = f"_stream_{self.device}"
|
||||
name = codegen.tx.output.install_global_by_id(prefix, self.value)
|
||||
codegen.append_output(codegen.create_load_global(name, add=True))
|
||||
|
||||
@staticmethod
|
||||
def construct_in_graph_stream(index: int, codegen: "PyCodegen") -> None:
|
||||
# Use source to create the right bytecode, this
|
||||
# isn't an actual input
|
||||
source = CallFunctionNoArgsSource(AttrSource(TorchSource(), "Stream"))
|
||||
codegen(source)
|
||||
|
||||
def _get_target_values(self) -> list["StreamVariable"]:
|
||||
return [self]
|
||||
|
||||
|
||||
class EventVariable(VariableTracker):
|
||||
def __init__(self, proxy: Proxy, value: torch.Event, **kwargs: Any) -> None:
|
||||
if proxy is not None and "example_value" in proxy.node.meta:
|
||||
assert proxy.node.meta["example_value"] == value
|
||||
super().__init__(**kwargs)
|
||||
self.proxy = proxy
|
||||
self.value = value
|
||||
|
||||
def call_method(
|
||||
self,
|
||||
tx: "InstructionTranslator",
|
||||
name: str,
|
||||
args: list[VariableTracker],
|
||||
kwargs: dict[str, VariableTracker],
|
||||
) -> VariableTracker:
|
||||
from ..utils import proxy_args_kwargs
|
||||
from .builder import wrap_fx_proxy_cls
|
||||
|
||||
if name in ("wait", "record", "synchronize"):
|
||||
tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
)
|
||||
return ConstantVariable(None)
|
||||
elif name == "query":
|
||||
return wrap_fx_proxy_cls(
|
||||
target_cls=ConstantVariable,
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
|
||||
),
|
||||
)
|
||||
else:
|
||||
method_name = (
|
||||
f"{type(self.value).__module__}.{type(self.value).__qualname__}.{name}"
|
||||
)
|
||||
unimplemented_v2(
|
||||
gb_type="Unsupported event method",
|
||||
context=str(name),
|
||||
explanation=f"Dynamo doesn't support tracing the {method_name} method. "
|
||||
f"We currently support wait, record, synchronize, and query.",
|
||||
hints=[
|
||||
*graph_break_hints.SUPPORTABLE,
|
||||
],
|
||||
)
|
||||
|
||||
def as_proxy(self) -> Proxy:
|
||||
return self.proxy
|
||||
|
||||
def reconstruct(self, codegen: "PyCodegen") -> None:
|
||||
# If we got here, this event is fully subsumed by the graph - this means it is
|
||||
# not an input or global
|
||||
assert not self.source
|
||||
# Similar to stream handling, we lift the event into a global and then codegen bytecode to load it from there.
|
||||
prefix = "_event"
|
||||
name = codegen.tx.output.install_global_by_id(prefix, self.value)
|
||||
codegen.append_output(codegen.create_load_global(name, add=True))
|
||||
@ -1237,6 +1237,35 @@ class TorchInGraphFunctionVariable(BaseTorchVariable):
|
||||
# pyrefly: ignore # unbound-name
|
||||
return VariableTracker.build(tx, module, new_source)
|
||||
|
||||
@register(torch.accelerator.current_stream)
|
||||
def handle_current_stream(self, tx: "InstructionTranslator", *args, **kwargs):
|
||||
if len(args) + len(kwargs) > 1 or (kwargs and "device" not in kwargs):
|
||||
unimplemented_v2(
|
||||
gb_type="unsupported arguments to torch.accelerator.current_stream",
|
||||
context=f"args={args}, kwargs={kwargs}",
|
||||
explanation="torch.accelerator.current_stream accepts one optional argument `device`",
|
||||
hints=[
|
||||
*graph_break_hints.USER_ERROR,
|
||||
],
|
||||
)
|
||||
try:
|
||||
if kwargs:
|
||||
device = torch.device(kwargs["device"].as_python_constant())
|
||||
elif args:
|
||||
device = torch.device(args[0].as_python_constant())
|
||||
else:
|
||||
device = None
|
||||
|
||||
return tx.symbolic_stream_state.cur_stream(device)
|
||||
except Exception as e:
|
||||
unimplemented_v2(
|
||||
gb_type="bad device argument to torch.accelerator.current_stream",
|
||||
context=f"args={args}, kwargs={kwargs}",
|
||||
explanation="Expected valid string/torch.device argument ('cpu', 'cuda', etc.)",
|
||||
hints=[*graph_break_hints.USER_ERROR],
|
||||
from_exc=e,
|
||||
)
|
||||
|
||||
@register(torch.set_default_device)
|
||||
def handle_set_default_device(
|
||||
self, tx: "InstructionTranslator", *args, **kwargs
|
||||
|
||||
@ -58,6 +58,7 @@ from ..exc import (
|
||||
raise_observed_exception,
|
||||
unimplemented_v2,
|
||||
)
|
||||
from ..graph_bytecode_inputs import get_external_object_by_index
|
||||
from ..guards import GuardBuilder, install_guard
|
||||
from ..source import (
|
||||
AttrSource,
|
||||
@ -792,14 +793,31 @@ class UserDefinedClassVariable(UserDefinedVariable):
|
||||
)
|
||||
args = [stacked]
|
||||
|
||||
tensor_variable = wrap_fx_proxy(
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_function",
|
||||
self.value,
|
||||
*proxy_args_kwargs(args, kwargs),
|
||||
),
|
||||
)
|
||||
if issubclass(self.value, torch.Stream):
|
||||
# Register newly created stream for reconstruction
|
||||
stream = self.value()
|
||||
from ..graph_bytecode_inputs import register_graph_created_object
|
||||
from .streams import StreamVariable
|
||||
|
||||
ind = register_graph_created_object(
|
||||
stream, StreamVariable.construct_in_graph_stream
|
||||
)
|
||||
tensor_variable = wrap_fx_proxy(
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_function", get_external_object_by_index, (ind,), {}
|
||||
),
|
||||
user_obj_index=ind,
|
||||
)
|
||||
else:
|
||||
tensor_variable = wrap_fx_proxy(
|
||||
tx=tx,
|
||||
proxy=tx.output.create_proxy(
|
||||
"call_function",
|
||||
self.value,
|
||||
*proxy_args_kwargs(args, kwargs),
|
||||
),
|
||||
)
|
||||
|
||||
return tensor_variable
|
||||
elif self.value is random.Random:
|
||||
|
||||
@ -49,6 +49,7 @@ static PyObject* THPEvent_pynew(
|
||||
}
|
||||
|
||||
THPEvent* self = (THPEvent*)ptr.get();
|
||||
self->weakreflist = nullptr;
|
||||
|
||||
// TODO: blocking and interprocess are not supported yet. To support them, the
|
||||
// flag system of c10::Event needs to be refactored. C10::Event should also
|
||||
@ -73,6 +74,7 @@ PyObject* THPEvent_new(c10::DeviceType device_type, c10::EventFlag flag) {
|
||||
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
|
||||
TORCH_CHECK(self, "Failed to allocate memory for Event");
|
||||
auto self_ = reinterpret_cast<THPEvent*>(self.get());
|
||||
self_->weakreflist = nullptr;
|
||||
new (&self_->event) c10::Event(device_type, flag);
|
||||
return self.release();
|
||||
}
|
||||
@ -82,6 +84,7 @@ static void THPEvent_dealloc(THPEvent* self) {
|
||||
pybind11::gil_scoped_release no_gil{};
|
||||
self->event.~Event();
|
||||
}
|
||||
PyObject_ClearWeakRefs((PyObject*)self);
|
||||
Py_TYPE(self)->tp_free((PyObject*)self);
|
||||
}
|
||||
|
||||
@ -274,7 +277,8 @@ static PyMethodDef THPEvent_methods[] = {
|
||||
{"synchronize", THPEvent_synchronize, METH_NOARGS, nullptr},
|
||||
{"ipc_handle", THPEvent_ipc_handle, METH_NOARGS, nullptr},
|
||||
{nullptr}};
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Winvalid-offsetof"
|
||||
PyTypeObject THPEventType = {
|
||||
PyVarObject_HEAD_INIT(nullptr, 0)
|
||||
"torch.Event", /* tp_name */
|
||||
@ -300,7 +304,7 @@ PyTypeObject THPEventType = {
|
||||
nullptr, /* tp_traverse */
|
||||
nullptr, /* tp_clear */
|
||||
nullptr, /* tp_richcompare */
|
||||
0, /* tp_weaklistoffset */
|
||||
offsetof(THPEvent, weakreflist), /* tp_weaklistoffset */
|
||||
nullptr, /* tp_iter */
|
||||
nullptr, /* tp_iternext */
|
||||
THPEvent_methods, /* tp_methods */
|
||||
@ -315,6 +319,7 @@ PyTypeObject THPEventType = {
|
||||
nullptr, /* tp_alloc */
|
||||
THPEvent_pynew, /* tp_new */
|
||||
};
|
||||
#pragma GCC diagnostic pop
|
||||
|
||||
void THPEvent_init(PyObject* module) {
|
||||
THPEventClass = &THPEventType;
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
struct TORCH_API THPEvent {
|
||||
PyObject_HEAD
|
||||
c10::Event event;
|
||||
PyObject* weakreflist;
|
||||
};
|
||||
TORCH_API extern PyTypeObject* THPEventClass;
|
||||
TORCH_API extern PyTypeObject THPEventType;
|
||||
|
||||
@ -95,6 +95,7 @@ static PyObject* THPStream_pynew(
|
||||
self->device_index = static_cast<int64_t>(stream_opt->device_index());
|
||||
self->device_type = static_cast<int64_t>(stream_opt->device_type());
|
||||
self->context = nullptr;
|
||||
self->weakreflist = nullptr;
|
||||
|
||||
return (PyObject*)ptr.release();
|
||||
END_HANDLE_TH_ERRORS
|
||||
@ -114,11 +115,13 @@ PyObject* THPStream_Wrap(const c10::Stream& stream) {
|
||||
self->device_index = static_cast<int64_t>(stream.device_index());
|
||||
self->device_type = static_cast<int64_t>(stream.device_type());
|
||||
self->context = nullptr;
|
||||
self->weakreflist = nullptr;
|
||||
return ptr.release();
|
||||
END_HANDLE_TH_ERRORS
|
||||
}
|
||||
|
||||
static void THPStream_dealloc(THPStream* self) {
|
||||
PyObject_ClearWeakRefs((PyObject*)self);
|
||||
Py_TYPE(self)->tp_free((PyObject*)self);
|
||||
}
|
||||
|
||||
@ -436,7 +439,7 @@ static PyTypeObject THPStreamType = {
|
||||
nullptr, /* tp_traverse */
|
||||
nullptr, /* tp_clear */
|
||||
THPStream_richcompare, /* tp_richcompare */
|
||||
0, /* tp_weaklistoffset */
|
||||
offsetof(THPStream, weakreflist), /* tp_weaklistoffset */
|
||||
nullptr, /* tp_iter */
|
||||
nullptr, /* tp_iternext */
|
||||
// NOLINTNEXTLINE(*const-cast)
|
||||
|
||||
@ -13,6 +13,7 @@ struct THPStream {
|
||||
int64_t device_index;
|
||||
// Used to switch stream context management, initialized lazily.
|
||||
PyObject* context;
|
||||
PyObject* weakreflist;
|
||||
};
|
||||
extern TORCH_API PyTypeObject* THPStreamClass;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user