Compare commits

..

1 Commits

506 changed files with 5280 additions and 10074 deletions

View File

@ -36,7 +36,11 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)

View File

@ -168,18 +168,6 @@ case "$tag" in
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.11-clang12)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=12
VISION=no
TRITON=no
;;
pytorch-linux-jammy-py3.12-clang12)
ANACONDA_PYTHON_VERSION=3.12
CLANG_VERSION=12
VISION=no
TRITON=no
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-jammy-rocm-n-py3-benchmarks | pytorch-linux-noble-rocm-n-py3)
if [[ $tag =~ "jammy" ]]; then
ANACONDA_PYTHON_VERSION=3.10
@ -207,9 +195,9 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-noble-xpu-n-py3 | pytorch-linux-noble-xpu-n-py3-inductor-benchmarks)
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=13
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.2
NINJA_VERSION=1.9.0
@ -260,12 +248,6 @@ case "$tag" in
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-py3.12-pallas)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
PALLAS=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
@ -387,7 +369,6 @@ docker build \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "PALLAS=${PALLAS}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \

View File

@ -1 +0,0 @@
0.8.0

View File

@ -1,40 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
# Get the pinned JAX version (same for all CUDA versions)
JAX_VERSION=$(get_pinned_commit /ci_commit_pins/jax)
function install_jax_12() {
echo "Installing JAX ${JAX_VERSION} with CUDA 12 support"
pip_install "jax[cuda12]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 12"
}
function install_jax_13() {
echo "Installing JAX ${JAX_VERSION} with CUDA 13 support"
pip_install "jax[cuda13]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Verify installation
python -c "import jax" # check for errors
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 13"
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4|12.6|12.6.*|12.8|12.8.*|12.9|12.9.*) install_jax_12;
;;
13.0|13.0.*) install_jax_13;
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -9,7 +9,7 @@ set -xe
function install_ubuntu() {
. /etc/os-release
if [[ ! " jammy noble " =~ " ${VERSION_CODENAME} " ]]; then
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
echo "Ubuntu version ${VERSION_CODENAME} not supported"
exit
fi
@ -35,24 +35,25 @@ function install_ubuntu() {
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
# Compute and Media Runtimes
if [[ " ${VERSION_CODENAME} " =~ " noble " ]]; then
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
else # jammy
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
else # rolling driver
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
fi
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
# Install Intel Support Packages
apt-get install -y ${XPU_PACKAGES}
@ -65,7 +66,7 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
@ -146,7 +147,7 @@ function install_sles() {
XPU_DRIVER_VERSION=""
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2523"
XPU_DRIVER_VERSION="/lts/2350"
fi
# Default use Intel® oneAPI Deep Learning Essentials 2025.1

View File

@ -49,7 +49,11 @@ case ${DOCKER_TAG_PREFIX} in
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -87,7 +87,11 @@ case ${image} in
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950, gfx115x conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
fi
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -143,15 +143,6 @@ COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG PALLAS
ARG CUDA_VERSION
# Install JAX with CUDA support (for Pallas)
COPY ./common/install_jax.sh install_jax.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/jax.txt /ci_commit_pins/jax.txt
RUN if [ -n "${PALLAS}" ]; then bash ./install_jax.sh ${CUDA_VERSION}; fi
RUN rm -f install_jax.sh common_utils.sh /ci_commit_pins/jax.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./

View File

@ -8,11 +8,9 @@ from abc import ABC, abstractmethod
try:
from collections.abc import Callable # Python 3.11+
from typing import Any, Required, TypedDict
from typing import Any, Callable, Required, TypedDict # Python 3.11+
except ImportError:
from collections.abc import Callable
from typing import Any, TypedDict
from typing import Any, Callable, TypedDict
from typing_extensions import Required # Fallback for Python <3.11

View File

@ -168,16 +168,14 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/umf/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Enable XCCL build
export USE_XCCL=1
export USE_MPI=0
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
export USE_KINETO=0
export TORCH_XPU_ARCH_LIST=pvc
fi

View File

@ -208,8 +208,6 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
source /opt/intel/oneapi/ccl/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# shellcheck disable=SC1091
source /opt/intel/oneapi/pti/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
fi
@ -826,11 +824,6 @@ test_inductor_halide() {
assert_git_not_dirty
}
test_inductor_pallas() {
python test/run_test.py --include inductor/test_pallas.py --verbose
assert_git_not_dirty
}
test_inductor_triton_cpu() {
python test/run_test.py --include inductor/test_triton_cpu_backend.py inductor/test_torchinductor_strided_blocks.py --verbose
assert_git_not_dirty
@ -1731,8 +1724,6 @@ elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
test_inductor_halide
elif [[ "${TEST_CONFIG}" == *inductor-pallas* ]]; then
test_inductor_pallas
elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then

View File

@ -1 +1 @@
ccb801b88af136454798b945175c4c87e636ac33
cfbc5c2f1c798991715a6b06bb3ce46478c4487c

View File

@ -1 +1 @@
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9

9
.github/labeler.yml vendored
View File

@ -138,8 +138,7 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -149,8 +148,7 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
@ -160,8 +158,7 @@
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/*Blas.cpp
- aten/src/ATen/cuda/CUDA*Blas.*
- aten/src/ATen/native/cuda/Blas.cpp
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm

View File

@ -10,4 +10,3 @@
pathFilter:
- 'torch/csrc/inductor/aoti_torch/c/*'
- 'torch/csrc/inductor/aoti_torch/generated/*'
- 'torch/csrc/stable/c/*'

View File

@ -2,8 +2,8 @@ tracking_issue: 24422
ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-distributed
- ciflow/b200-symm-mem
- ciflow/b200-distributed
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
@ -22,8 +22,6 @@ ciflow_push_tags:
- ciflow/inductor-perf-test-nightly-xpu
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/inductor-rocm-mi200
- ciflow/inductor-rocm-mi300
- ciflow/linux-aarch64
- ciflow/mps
- ciflow/nightly
@ -35,13 +33,11 @@ ciflow_push_tags:
- ciflow/quantization-periodic
- ciflow/riscv64
- ciflow/rocm
- ciflow/rocm-mi200
- ciflow/rocm-mi300
- ciflow/rocm-mi355
- ciflow/rocm-navi31
- ciflow/s390
- ciflow/slow
- ciflow/slow-rocm-mi200
- ciflow/torchbench
- ciflow/triton_binaries
- ciflow/trunk

View File

@ -1,11 +1,10 @@
# Delete old branches
import os
import re
from collections.abc import Callable
from datetime import datetime
from functools import lru_cache
from pathlib import Path
from typing import Any
from typing import Any, Callable
from github_utils import gh_fetch_json_dict, gh_graphql
from gitutils import GitRepo

View File

@ -8,11 +8,10 @@ import re
import subprocess
import sys
import warnings
from collections.abc import Callable
from enum import Enum
from functools import cache
from logging import info
from typing import Any, Optional
from typing import Any, Callable, Optional
from urllib.request import Request, urlopen
import yaml

View File

@ -11,8 +11,7 @@ import sys
import time
import urllib
import urllib.parse
from collections.abc import Callable
from typing import Any, Optional
from typing import Any, Callable, Optional
from urllib.request import Request, urlopen

View File

@ -3,9 +3,8 @@
import json
import os
import warnings
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, cast, Optional, Union
from typing import Any, Callable, cast, Optional, Union
from urllib.error import HTTPError
from urllib.parse import quote
from urllib.request import Request, urlopen

View File

@ -4,10 +4,10 @@ import os
import re
import tempfile
from collections import defaultdict
from collections.abc import Callable, Iterator
from collections.abc import Iterator
from datetime import datetime
from functools import wraps
from typing import Any, cast, Optional, TypeVar, Union
from typing import Any, Callable, cast, Optional, TypeVar, Union
T = TypeVar("T")

View File

@ -17,12 +17,12 @@ import re
import time
import urllib.parse
from collections import defaultdict
from collections.abc import Callable, Iterable
from collections.abc import Iterable
from dataclasses import dataclass
from functools import cache
from pathlib import Path
from re import Pattern
from typing import Any, cast, NamedTuple, Optional
from typing import Any, Callable, cast, NamedTuple, Optional
from warnings import warn
import yaml

View File

@ -56,8 +56,6 @@ jobs:
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9,
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.10-clang12,
pytorch-linux-jammy-py3.11-clang12,
pytorch-linux-jammy-py3.12-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-py3.14-clang12,
pytorch-linux-jammy-rocm-n-py3,
@ -67,10 +65,9 @@ jobs:
pytorch-linux-jammy-py3.10-gcc11,
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-cuda12.8-py3.12-pallas,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-noble-xpu-n-py3,
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-xpu-n-py3,
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,

View File

@ -83,8 +83,8 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3-inductor-benchmarks
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
@ -117,7 +117,7 @@ jobs:
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-noble-xpu-n-py3.10
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
@ -137,7 +137,7 @@ jobs:
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-noble-xpu-n-py3.10
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}

View File

@ -7,7 +7,6 @@ on:
- release/*
tags:
- ciflow/inductor-rocm/*
- ciflow/inductor-rocm-mi300/*
workflow_dispatch:
concurrency:

View File

@ -7,7 +7,7 @@ on:
branches:
- release/*
tags:
- ciflow/inductor-rocm-mi200/*
- ciflow/inductor-rocm/*
workflow_dispatch:
concurrency:

View File

@ -81,32 +81,6 @@ jobs:
test-matrix: ${{ needs.inductor-halide-build.outputs.test-matrix }}
secrets: inherit
inductor-pallas-build:
name: inductor-pallas-build
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-py3.12-pallas
cuda-arch-list: '8.9'
runner: linux.8xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
test-matrix: |
{ include: [
{ config: "inductor-pallas", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.12xlarge.nvidia.gpu" },
]}
secrets: inherit
inductor-pallas-test:
name: inductor-pallas-test
uses: ./.github/workflows/_linux-test.yml
needs: inductor-pallas-build
with:
build-environment: linux-jammy-py3.12-gcc11
docker-image: ${{ needs.inductor-pallas-build.outputs.docker-image }}
test-matrix: ${{ needs.inductor-pallas-build.outputs.test-matrix }}
secrets: inherit
inductor-triton-cpu-build:
name: inductor-triton-cpu-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -11,6 +11,7 @@ on:
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi200/*
branches:
- release/*

View File

@ -11,7 +11,6 @@ on:
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi300/*
branches:
- release/*

View File

@ -342,16 +342,16 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
secrets: inherit
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# This should sync with the build in xpu.yml but xpu uses a larger runner
# sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },

View File

@ -6,7 +6,6 @@ on:
- main
- release/*
tags:
- ciflow/rocm/*
- ciflow/rocm-mi300/*
workflow_dispatch:
schedule:

View File

@ -5,7 +5,7 @@ on:
branches:
- release/*
tags:
- ciflow/rocm-mi200/*
- ciflow/rocm/*
workflow_dispatch:
schedule:
- cron: 29 8 * * * # about 1:29am PDT

View File

@ -1,81 +0,0 @@
# This workflow is dedicated to host slow jobs that are run only periodically because
# they are too slow to run in every commit. The list of slow tests can be found in
# https://github.com/pytorch/test-infra/blob/generated-stats/stats/slow-tests.json
name: slow-rocm-mi200
on:
push:
branches:
- release/*
tags:
- ciflow/slow/*
- ciflow/slow-rocm-mi200/*
schedule:
- cron: 0 */3 * * *
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
llm-td:
if: github.repository_owner == 'pytorch'
name: before-test
uses: ./.github/workflows/llm_td_retrieval.yml
permissions:
id-token: write
contents: read
target-determination:
name: before-test
uses: ./.github/workflows/target_determination.yml
needs: llm-td
permissions:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit

View File

@ -105,6 +105,36 @@ jobs:
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-py3_10-clang18-asan-build:
name: linux-jammy-py3.10-clang18-asan
uses: ./.github/workflows/_linux-build.yml

View File

@ -11,16 +11,15 @@ on:
- inductor
- unstable
- slow
- slow-rocm-mi200
- unstable-periodic
- inductor-periodic
- rocm-mi200
- rocm
- rocm-mi300
- rocm-mi355
- inductor-micro-benchmark
- inductor-micro-benchmark-x86
- inductor-cu124
- inductor-rocm-mi200
- inductor-rocm
- inductor-rocm-mi300
- mac-mps
- linux-aarch64

View File

@ -47,15 +47,15 @@ jobs:
]}
secrets: inherit
linux-noble-xpu-n-py3_10-build:
name: linux-noble-xpu-n-py3.10
linux-jammy-xpu-n-py3_10-build:
name: linux-jammy-xpu-n-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-noble-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
@ -74,17 +74,17 @@ jobs:
]}
secrets: inherit
linux-noble-xpu-n-py3_10-test:
name: linux-noble-xpu-n-py3.10
linux-jammy-xpu-n-py3_10-test:
name: linux-jammy-xpu-n-py3.10
uses: ./.github/workflows/_xpu-test.yml
needs: linux-noble-xpu-n-py3_10-build
needs: linux-jammy-xpu-n-py3_10-build
permissions:
id-token: write
contents: read
with:
build-environment: linux-noble-xpu-n-py3.10
docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
build-environment: linux-jammy-xpu-n-py3.10
docker-image: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.test-matrix }}
secrets: inherit
windows-xpu-n-1-build:

View File

@ -143,8 +143,7 @@ init_command = [
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12" and python_version <= "3.13"',
'numpy==2.3.4 ; python_version >= "3.14"',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'pyrefly==0.36.2',
'sympy==1.13.3',
@ -1402,7 +1401,7 @@ init_command = [
'--dry-run={{DRYRUN}}',
'usort==1.0.8.post1',
'isort==6.0.1',
'ruff==0.14.4', # sync with RUFF
'ruff==0.13.1', # sync with RUFF
]
is_formatter = true
@ -1537,7 +1536,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.14.4', # sync with PYFMT
'ruff==0.13.1', # sync with PYFMT
]
is_formatter = true

View File

@ -210,12 +210,8 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision & Grouped GEMMs
# Low Precision GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/GroupedBlas.cpp @drisspg @slayton58
/aten/src/ATen/native/cuda/ScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDAScaledBlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -174,12 +174,6 @@ class TORCH_API Context {
static long versionCuDNN() {
return detail::getCUDAHooks().versionCuDNN();
}
static long versionRuntimeCuDNN() {
return detail::getCUDAHooks().versionRuntimeCuDNN();
}
static long versionCuDNNFrontend() {
return detail::getCUDAHooks().versionCuDNNFrontend();
}
static bool hasCuSOLVER() {
return detail::getCUDAHooks().hasCuSOLVER();
}

View File

@ -94,11 +94,6 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
}
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
c10::DeviceIndex device_index) {
const auto device_type = getAccelerator(true).value();
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
}
} // namespace at::accelerator
namespace at {

View File

@ -6,7 +6,6 @@
#include <c10/util/Half.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/complex.h>
#include <torch/headeronly/core/Dispatch.h>
#ifdef __CUDACC__
#include <cuda.h> // For CUDA_VERSION
@ -62,9 +61,12 @@ TORCH_API void record_kernel_function_dtype(std::string name);
} \
} while (0)
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
THO_PRIVATE_CASE_TYPE_USING_HINT_TMPL( \
AT_PRIVATE_CHECK_SELECTIVE_BUILD, enum_type, HINT, __VA_ARGS__)
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
case enum_type: { \
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
using HINT [[maybe_unused]] = c10::impl::ScalarTypeToCPPTypeT<enum_type>; \
return __VA_ARGS__(); \
}
#define AT_DISPATCH_CASE(enum_type, ...) \
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
@ -93,6 +95,14 @@ TORCH_API void record_kernel_function_dtype(std::string name);
return __VA_ARGS__(); \
}
namespace detail {
inline at::ScalarType scalar_type(at::ScalarType s) {
return s;
}
} // namespace detail
// The AT_DISPATCH_* family of macros provides the ability to
// conveniently generate specializations of a kernel over all of the
// dtypes we care about in PyTorch. We call it "dispatch" because
@ -180,13 +190,27 @@ TORCH_API void record_kernel_function_dtype(std::string name);
// but we're just being safe (and it doesn't hurt.) Note we must
// use it to shut up warnings about unused store.
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
THO_DISPATCH_SWITCH_TMPL( \
RECORD_KERNEL_FUNCTION_DTYPE, \
TORCH_CHECK_NOT_IMPLEMENTED, \
TYPE, \
NAME, \
__VA_ARGS__)
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
[&] { \
const auto& the_type = TYPE; \
constexpr const char* at_dispatch_name = NAME; \
/* don't use TYPE again in case it is an expensive or side-effect op */ \
at::ScalarType _st = ::detail::scalar_type(the_type); \
RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
switch (_st) { \
__VA_ARGS__ \
default: \
TORCH_CHECK_NOT_IMPLEMENTED( \
false, \
'"', \
at_dispatch_name, \
"\" not implemented for '", \
toString(_st), \
"'"); \
} \
C10_DIAGNOSTIC_POP() \
}()
#define AT_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \

View File

@ -1,8 +1,3 @@
#pragma once
#include <torch/headeronly/core/Dispatch_v2.h>
// Get AT_DISPATCH_SWITCH and AT_DISPATCH_CASE:
#include <ATen/Dispatch.h>
// This is a new implementation of the AT_DISPATCH macro family from
@ -79,19 +74,41 @@
// macro expansion occurs, mediated with AT_EXPAND and AT_GUARD. I mostly
// relied on GPT4 to help me get it right.
// Public API macros
// See documentation above
#define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
THO_DISPATCH_V2_TMPL( \
AT_DISPATCH_SWITCH, \
AT_DISPATCH_CASE, \
TYPE, \
NAME, \
AT_WRAP(BODY), \
__VA_ARGS__)
AT_DISPATCH_SWITCH(TYPE, NAME, AT_AP_VAR(AT_WRAP(BODY), TYPE, __VA_ARGS__))
// This macro lets you pass an arbitrary expression that may contain internal
// commas to another macro without having the commas causing the expression
// to be interpreted as being multiple arguments
#define AT_WRAP(...) __VA_ARGS__
#define AT_FLOAT8_TYPES \
c10::kFloat8_e5m2, c10::kFloat8_e5m2fnuz, c10::kFloat8_e4m3fn, \
c10::kFloat8_e4m3fnuz, c10::kFloat8_e8m0fnu
#define AT_INTEGRAL_TYPES \
c10::kByte, c10::kChar, c10::kInt, c10::kLong, c10::kShort
#define AT_FLOATING_TYPES c10::kDouble, c10::kFloat
#define AT_BAREBONES_UNSIGNED_TYPES c10::kUInt16, c10::kUInt32, c10::kUInt64
#define AT_INTEGRAL_TYPES_V2 \
AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)
#define AT_COMPLEX_TYPES c10::kComplexDouble, c10::kComplexFloat
#define AT_QINT_TYPES c10::kQInt8, c10::kQUInt8, c10::kQInt32
// NB: not *actually* all types
#define AT_ALL_TYPES AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
#define AT_ALL_TYPES_AND_COMPLEX \
AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES)
// Helper macros
// Unused helper macros, kept for BC:
#define AT_AP_VAR(N, T, ...) \
AT_EXPAND(AT_CONCAT(AT_AP, AT_NUM_ARGS(__VA_ARGS__))(AT_WRAP(N), __VA_ARGS__))
#define AT_CONCAT(a, b) AT_CONCAT_AUX(a, b)
#define AT_CONCAT_AUX(a, b) a##b
#define AT_EXPAND(X) X
// Ensure we never have too many scalar types for the expansion here to
// support. To bump this, you must regenerate the macros below.
@ -102,6 +119,12 @@ static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 60);
num_args = 60
nums = ', '.join(str(i) for i in reversed(range(num_args+1)))
args = ', '.join(f'_{i}' for i in range(1, num_args+1))
print(f'#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, {nums}))')
print(f'#define AT_NUM_ARGS_AUX({args}, N, ...) N')
for i in range(1, num_args+1):
args = ', '.join(f'_{i}' for i in range(1, i+1))
cases = ' '.join([f'AT_DISPATCH_CASE(_{j}, N)' for j in range(1, i+1)])
@ -112,6 +135,8 @@ for i in range(1, num_args+1):
// Begin generated code
// clang-format off
#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
#define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, N, ...) N
#define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
#define AT_AP2(N, _1, _2) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N)
#define AT_AP3(N, _1, _2, _3) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N)

View File

@ -226,8 +226,8 @@ template <
typename B = HostBlock<S>>
struct CachingHostAllocatorImpl {
virtual ~CachingHostAllocatorImpl() {
if (active_) {
active_ = false;
active_ = false;
if (pinned_use_background_threads()) {
getBackgroundThreadPool()->waitWorkComplete();
}
}
@ -260,7 +260,6 @@ struct CachingHostAllocatorImpl {
if (pinned_use_background_threads()) {
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
active_ = true;
getBackgroundThreadPool()->run([&]() {
while (active_) {
process_events();
@ -684,9 +683,9 @@ struct CachingHostAllocatorImpl {
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
// Indicates whether the event-processing thread pool is active.
// Indicates whether the object is active.
// Set to false in the destructor to signal background threads to stop.
std::atomic<bool> active_{false};
std::atomic<bool> active_{true};
protected:
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
};

View File

@ -21,7 +21,6 @@
#if AT_CUDNN_ENABLED()
#include <ATen/cudnn/cudnn-wrapper.h>
#include <cudnn_frontend.h>
#endif
#if AT_MAGMA_ENABLED()
@ -352,26 +351,6 @@ long CUDAHooks::versionCuDNN() const {
#endif
}
long CUDAHooks::versionRuntimeCuDNN() const {
#if AT_CUDNN_ENABLED()
#ifndef USE_STATIC_CUDNN
return cudnnGetVersion();
#else
return CUDNN_VERSION;
#endif
#else
TORCH_CHECK(false, "Cannot query CuDNN version if ATen_cuda is not built with CuDNN");
#endif
}
long CUDAHooks::versionCuDNNFrontend() const {
#if AT_CUDNN_ENABLED()
return CUDNN_FRONTEND_VERSION;
#else
TORCH_CHECK(false, "Cannot query CuDNN Frontend version if ATen_cuda is not built with CuDNN");
#endif
}
long CUDAHooks::versionMIOpen() const {
#if AT_ROCM_ENABLED()
return MIOPEN_VERSION_MAJOR * 10000 +

View File

@ -49,8 +49,6 @@ struct CUDAHooks : public at::CUDAHooksInterface {
bool hasCUDART() const override;
long versionCUDART() const override;
long versionCuDNN() const override;
long versionRuntimeCuDNN() const override;
long versionCuDNNFrontend() const override;
long versionMIOpen() const override;
std::string showConfig() const override;
double batchnormMinEpsilonCuDNN() const override;

View File

@ -174,14 +174,6 @@ struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionRuntimeCuDNN() const {
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionCuDNNFrontend() const {
TORCH_CHECK(false, "Cannot query cuDNN Frontend version without ATen_cuda library. ", CUDA_HELP);
}
virtual long versionMIOpen() const {
TORCH_CHECK(false, "Cannot query MIOpen version without ATen_cuda library. ", CUDA_HELP);
}

View File

@ -157,8 +157,6 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
DispatchKey::Negative,
DispatchKey::Conjugate,
DispatchKey::XLA,
DispatchKey::XPU,
DispatchKey::HPU,
DispatchKey::CUDA,
DispatchKey::CPU,
DispatchKey::PrivateUse1,

View File

@ -409,7 +409,7 @@ struct ConvParams {
if (!detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda() || !cudnn_enabled) {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionRuntimeCuDNN();
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
// broken on cuDNN 9.8 - 9.14
if (cudnn_version >= 90800 && cudnn_version < 91500) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
@ -453,7 +453,7 @@ struct ConvParams {
}
// native kernel doesn't support 64-bit non-splittable case
if (!(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionRuntimeCuDNN() : -1;
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionCuDNN() : -1;
// TODO(eqy): remove this once cuDNN fixes 64-bit depthwise support, first broken in 9.11x
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
if (cudnn_version < 0 || cudnn_version > 91000) {

View File

@ -884,69 +884,6 @@ struct type_specialized_kernel_launcher {
}
};
template <int arg_index>
struct type_specialized_broadcast_kernel_launcher {
template <
typename func_t,
typename array_t,
typename dtypes_t,
typename calc_t>
static void apply(
int64_t numel,
func_t f,
array_t data,
dtypes_t dtypes,
calc_t offset_calc) {
using traits = function_traits<func_t>;
using ret_t = typename traits::result_type;
using arg0_t = typename traits::template arg<0>::type;
using arg1_t = typename traits::template arg<1>::type;
if (dtypes[0] == rt_binary_specializations[arg_index][0] &&
dtypes[1] == rt_binary_specializations[arg_index][1] &&
dtypes[2] == rt_binary_specializations[arg_index][2]) {
using ret_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][0]>;
using arg0_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][1]>;
using arg1_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][2]>;
constexpr int grp_sz = 128;
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
if (unrl) {
auto offsets0 = offset_calc.get(idx);
auto offsets1 = offset_calc.get(idx + grp_sz);
auto offsets2 = offset_calc.get(idx + grp_sz * 2);
auto offsets3 = offset_calc.get(idx + grp_sz * 3);
void* out0 = data[0] + offsets0[0];
void* out1 = data[0] + offsets1[0];
void* out2 = data[0] + offsets2[0];
void* out3 = data[0] + offsets3[0];
auto u = c10::load<arg0_cpp_t>(data[1] + offsets0[1]);
auto v = c10::load<arg1_cpp_t>(data[2] + offsets0[2]);
ret_t result0 = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
auto u1 = c10::load<arg0_cpp_t>(data[1] + offsets1[1]);
auto v1 = c10::load<arg1_cpp_t>(data[2]+ offsets1[2]);
ret_t result1 = f(c10::convert<arg0_t>(u1), c10::convert<arg1_t>(v1));
auto u2 = c10::load<arg0_cpp_t>(data[1] + offsets2[1]);
auto v2 = c10::load<arg1_cpp_t>(data[2] + offsets2[2]);
ret_t result2 = f(c10::convert<arg0_t>(u2), c10::convert<arg1_t>(v2));
auto u3 = c10::load<arg0_cpp_t>(data[1] + offsets3[1]);
auto v3 = c10::load<arg1_cpp_t>(data[2] + offsets3[2]);
ret_t result3 = f(c10::convert<arg0_t>(u3), c10::convert<arg1_t>(v3));
*(ret_cpp_t*)out0 = c10::convert<ret_cpp_t>(result0);
*(ret_cpp_t*)out1 = c10::convert<ret_cpp_t>(result1);
*(ret_cpp_t*)out2 = c10::convert<ret_cpp_t>(result2);
*(ret_cpp_t*)out3 = c10::convert<ret_cpp_t>(result3);
} else {
auto offsets = offset_calc.get(idx);
void* out = data[0] + offsets[0];
auto u = c10::load<arg0_cpp_t>(data[1] + offsets[1]);
auto v = c10::load<arg1_cpp_t>(data[2] + offsets[2]);
ret_t result = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
*(ret_cpp_t*)out = c10::convert<ret_cpp_t>(result);
}
});
}
}
};
} // namespace
#endif
@ -1065,32 +1002,6 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
}
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
#ifdef USE_ROCM
if (check_binary_rt_types_for_specialization(iter)) {
// constexpr to reduce the amount of kernels generated for
// broadcast elementwise with mexed dtypes and limit which functors are actually
// applied to the load and store at compile time.
using func_tuple = typename traits::ArgsTuple;
if constexpr (
std::is_same_v<float, arg0_t> && traits::arity == 2 &&
check_binary_functor_types_for_specialization<
func_tuple,
float,
float,
traits::arity,
/*arg_num=*/0>::check()) {
memory::detail::static_unroll<
type_specialized_broadcast_kernel_launcher,
rt_binary_specializations.size()>::with_args(
numel,
f,
data,
dtypes,
offset_calc
);
return;
}
}
constexpr int grp_sz = 128;
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
if (unrl) {

View File

@ -133,7 +133,7 @@ at::Tensor quantized_convolution(
// supported in conv.
mask_weight = weight_zero_points.numel() > 1 ? 1 : 0;
if (groups > 1 && weight_zero_points.numel() > 1)
mask_weight = (1 << 0) | (1 << 1); // 2^0 (group) | 2^1 (output channel)
mask_weight = (2 ^ 0) | (2 ^ 1); // 2^0 (group) | 2^1 (output channel)
dnnl::primitive_attr pattr;
bool src_need_zp = (act_zero_point != 0);

View File

@ -141,9 +141,6 @@ static Tensor& addmv_out_mps_impl(const Tensor& self,
};
MPSStream* stream = at::mps::getCurrentMPSStream();
if (result.numel() == 0) {
return result;
}
Tensor matMulVec = at::mm(mat, vec.unsqueeze(1)).squeeze(1);
@autoreleasepool {

View File

@ -2803,7 +2803,7 @@
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
device_check: NoCheck # TensorIterator
dispatch:
CPU, CUDA, MPS, MTIA: floor_divide_out
CPU, CUDA, MPS: floor_divide_out
SparseCPU, SparseCUDA, SparseMPS: floor_divide_out_sparse_zerodim
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
@ -4292,7 +4292,6 @@
dispatch:
SparseCPU: sparse_sparse_matmul_cpu
SparseCUDA: sparse_sparse_matmul_cuda
SparseMPS: sparse_sparse_matmul_mps
autogen: _sparse_sparse_matmul.out
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
@ -4384,7 +4383,7 @@
variants: function, method
dispatch:
CompositeExplicitAutograd: mv
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
SparseCPU, SparseCUDA: mv_sparse
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
@ -9833,7 +9832,7 @@
structured_delegate: erfinv.out
variants: method, function
dispatch:
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse
SparseCPU, SparseCUDA: erfinv_sparse
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr
tags: pointwise
@ -9842,7 +9841,7 @@
structured_delegate: erfinv.out
variants: method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_
SparseCPU, SparseCUDA: erfinv_sparse_
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_
tags: pointwise
@ -9852,7 +9851,7 @@
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: erfinv_out
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_out
SparseCPU, SparseCUDA: erfinv_sparse_out
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out
tags: pointwise

View File

@ -10,10 +10,6 @@
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_coalesce_native.h>
#include <ATen/ops/repeat_interleave_native.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/_sparse_sparse_matmul_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/add_native.h>
@ -892,114 +888,5 @@ static void sparse_mask_intersection_out_mps_kernel(
/*coalesce_mask=*/false);
}
Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
TORCH_CHECK(mat1_.is_sparse() && mat2_.is_sparse(),
"sparse_sparse_matmul_mps: both inputs must be sparse COO tensors");
TORCH_CHECK(mat1_.is_mps() && mat2_.is_mps(),
"sparse_sparse_matmul_mps: both inputs must be on MPS device");
TORCH_CHECK(mat1_.dim() == 2 && mat2_.dim() == 2,
"sparse_sparse_matmul_mps: both inputs must be 2D matrices");
TORCH_CHECK(mat1_.dense_dim() == 0 && mat2_.dense_dim() == 0,
"sparse_sparse_matmul_mps: only scalar values supported (dense_dim == 0)");
TORCH_CHECK(mat1_.size(1) == mat2_.size(0),
"mat1 and mat2 shapes cannot be multiplied (", mat1_.size(0), "x", mat1_.size(1), " and ", mat2_.size(0), "x", mat2_.size(1), ")");
TORCH_CHECK(mat1_.scalar_type() == mat2_.scalar_type(),
"sparse_sparse_matmul_mps: mat1 dtype ", mat1_.scalar_type(),
" does not match mat2 dtype ", mat2_.scalar_type());
const auto device = mat1_.device();
auto A = mat1_.coalesce();
auto B = mat2_.coalesce();
const auto I = A.size(0);
const auto K = A.size(1);
const auto N = B.size(1);
const auto nnzA = A._nnz();
const auto nnzB = B._nnz();
// Early empty result, return an empty, coalesced tensor
if (I == 0 || N == 0 || K == 0 || nnzA == 0 || nnzB == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
const auto computeDtype = at::result_type(mat1_, mat2_);
auto A_idx = A._indices().contiguous();
auto A_val = A._values().to(computeDtype).contiguous();
auto A_i = A_idx.select(0, 0).contiguous();
auto A_k = A_idx.select(0, 1).contiguous();
auto B_idx = B._indices().contiguous();
auto B_val = B._values().to(computeDtype).contiguous();
auto B_k = B_idx.select(0, 0).contiguous();
auto B_j = B_idx.select(0, 1).contiguous();
// csr-style row pointers for B by k (the shared dimension)
Tensor row_ptr_B;
{
auto batch_ptr = at::tensor({0LL, nnzB}, at::device(device).dtype(at::kLong));
row_ptr_B = at::empty({K + 1}, at::device(device).dtype(at::kLong));
build_row_ptr_per_batch_mps(B_k, batch_ptr, /*B=*/1, /*I=*/K, row_ptr_B);
}
auto row_ptr_B_lo = row_ptr_B.narrow(0, 0, K);
auto row_ptr_B_hi = row_ptr_B.narrow(0, 1, K);
auto deg_B = row_ptr_B_hi.sub(row_ptr_B_lo);
auto counts = deg_B.index_select(0, A_k);
const int64_t P = counts.sum().item<int64_t>();
if (P == 0) {
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
auto group_ids = repeat_interleave_mps(counts);
// exclusive cumsum of counts
auto offsets = cumsum(counts, /*dim=*/0).sub(counts);
auto offsets_gather = offsets.index_select(0, group_ids);
auto within = at::arange(P, at::device(device).dtype(at::kLong)).sub(offsets_gather);
// Map each output element to its source B row and position
auto k_per_out = A_k.index_select(0, group_ids);
auto start_in_B = row_ptr_B.index_select(0, k_per_out);
auto seg_index = start_in_B.add(within);
// Assemble candidate coo pairs and values
auto i_out = A_i.index_select(0, group_ids).contiguous();
auto j_out = B_j.index_select(0, seg_index).contiguous();
auto vA_out = A_val.index_select(0, group_ids).contiguous();
auto vB_out = B_val.index_select(0, seg_index).contiguous();
auto v_out = vA_out.mul(vB_out);
// build (2, P) indices
auto out_indices = at::empty({2, P}, at::device(device).dtype(at::kLong)).contiguous();
out_indices.select(0, 0).copy_(i_out);
out_indices.select(0, 1).copy_(j_out);
auto result = _sparse_coo_tensor_unsafe(
out_indices, v_out, {I, N}, mat1_.options().dtype(computeDtype));
result = result.coalesce();
if (result.scalar_type() != mat1_.scalar_type()) {
auto cast_vals = result._values().to(mat1_.scalar_type());
auto out = _sparse_coo_tensor_unsafe(result._indices(), cast_vals, {I, N}, mat1_.options());
out._coalesced_(true);
return out;
}
return result;
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -478,7 +478,7 @@ bool check_cudnn_tensor_shapes(sdp_params const& params, bool debug) {
const auto s_k = params.key.sym_size(2);
const auto d_qk = params.query.sym_size(3);
const auto d_v = params.value.sym_size(3);
long cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
if (cudnn_version < 8903) {
if (debug) {
TORCH_WARN("SDPA fprop requires cudnn 8.9.3 or higher");
@ -709,7 +709,7 @@ bool can_use_cudnn_attention(const sdp_params& params, bool debug) {
return false;
#endif
#if defined(CUDNN_VERSION)
static auto cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
static auto cudnn_version = cudnnGetVersion();
if (params.dropout > 0.0 && cudnn_version > 91100 && cudnn_version < 91400) {
if (debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version does not support droppout in SDPA (9.11 - 9.13).");

View File

@ -52,18 +52,19 @@ def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time

View File

@ -1,8 +1,6 @@
#pragma once
#include <c10/core/SafePyObject.h>
#include <c10/macros/Export.h>
#include <optional>
namespace c10 {
@ -17,8 +15,7 @@ struct C10_API AutogradState {
bool inference_mode,
bool fw_grad_mode,
bool multithreading_enabled)
: graph_exec_group_(std::nullopt),
grad_mode_(grad_mode),
: grad_mode_(grad_mode),
inference_mode_(inference_mode),
fw_grad_mode_(fw_grad_mode),
multithreading_enabled_(multithreading_enabled),
@ -44,10 +41,6 @@ struct C10_API AutogradState {
view_replay_enabled_ = view_replay_enabled;
}
void set_graph_exec_group(std::optional<SafePyObject> group) {
graph_exec_group_ = std::move(group);
}
bool get_grad_mode() const {
return grad_mode_;
}
@ -68,12 +61,7 @@ struct C10_API AutogradState {
return view_replay_enabled_;
}
const std::optional<SafePyObject>& get_graph_exec_group() const {
return graph_exec_group_;
}
private:
std::optional<SafePyObject> graph_exec_group_;
bool grad_mode_ : 1;
bool inference_mode_ : 1;
bool fw_grad_mode_ : 1;

View File

@ -96,10 +96,6 @@ struct C10_API DeviceAllocator : public c10::Allocator {
// Resets peak memory usage statistics for the specified device
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
// Return the free memory size and total memory size in bytes for the
// specified device.
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) = 0;
};
// This function is used to get the DeviceAllocator for a specific device type

View File

@ -345,13 +345,6 @@ class CUDAAllocator : public DeviceAllocator {
c10::DeviceIndex device,
std::shared_ptr<AllocatorState> pps) = 0;
virtual std::string name() = 0;
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
c10::DeviceGuard device_guard({at::kCUDA, device});
size_t free = 0;
size_t total = 0;
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
return {free, total};
}
};
// Allocator object, statically initialized

View File

@ -66,15 +66,6 @@ def define_targets(rules):
],
)
rules.cc_test(
name = "util/nofatal_test",
srcs = ["util/nofatal_test.cpp"],
deps = [
"//c10/util:base",
"@com_google_googletest//:gtest_main",
],
)
rules.cc_test(
name = "util/ssize_test",
srcs = ["util/ssize_test.cpp"],

View File

@ -1,53 +0,0 @@
#include <gtest/gtest.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
namespace {
template <typename T>
inline void expectThrowsEq(T&& fn, const char* expected_msg) {
try {
std::forward<T>(fn)();
} catch (const c10::Error& e) {
EXPECT_TRUE(
std::string(e.what_without_backtrace()).find(expected_msg) !=
std::string::npos);
return;
}
ADD_FAILURE() << "Expected to throw exception with message \"" << expected_msg
<< "\" but didn't throw";
}
} // namespace
TEST(NofatalTest, TorchCheckComparisons) {
// quick make sure that no-op works as expected
TORCH_CHECK_EQ(1, 1) << "i am a silly message " << 1;
expectThrowsEq(
[]() { TORCH_CHECK_EQ(1, 2) << "i am a silly message " << 1; },
"Check failed: 1 == 2 (1 vs. 2). i am a silly message 1");
expectThrowsEq(
[]() { TORCH_CHECK_NE(2, 2); }, "Check failed: 2 != 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LT(2, 2); }, "Check failed: 2 < 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_LE(3, 2); }, "Check failed: 3 <= 2 (3 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GT(2, 2); }, "Check failed: 2 > 2 (2 vs. 2).");
expectThrowsEq(
[]() { TORCH_CHECK_GE(2, 3); }, "Check failed: 2 >= 3 (2 vs. 3).");
expectThrowsEq(
[]() {
void* p = nullptr;
TORCH_CHECK_NOTNULL(p);
},
"Check failed: 'p' must be non NULL.");
#if GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
// if dbg build, DCHECK should result in deth
EXPECT_DEATH(TORCH_DCHECK_EQ(1, 2), "Check failed");
#else
TORCH_DCHECK_EQ(1, 2); // no-op
#endif
#endif // GTEST_HAS_DEATH_TEST
}

View File

@ -702,98 +702,6 @@ namespace c10::detail {
#define TORCH_CHECK_ARG(cond, argN, ...) \
TORCH_CHECK(cond, "invalid argument ", argN, ": ", __VA_ARGS__)
#ifndef FATAL_IF
#ifdef C10_USE_GLOG
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::google::GLOG_FATAL) \
.stream()
#else
#define FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL).stream()
#endif
#endif
#ifndef NON_FATAL_IF
#ifdef C10_USE_GLOG
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger( \
__FILE__, __LINE__, ::google::GLOG_FATAL, false) \
.stream()
#else
#define NON_FATAL_IF(condition) \
condition ? (void)0 \
: ::c10::LoggerVoidify() & \
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL, false) \
.stream()
#endif
#endif
// Binary comparison check macros
#define TORCH_CHECK_OP(val1, val2, op) \
NON_FATAL_IF(((val1)op(val2))) \
<< "Check failed: " #val1 " " #op " " #val2 " (" << (val1) << " vs. " \
<< (val2) << "). "
#define TORCH_DCHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << "). "
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
// Debug versions of TORCH_CHECK_OP macros
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_DCHECK_OP(val1, val2, >)
#else // !NDEBUG
// Optimized versions - generate no code
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_DCHECK_OP(val1, val2, >)
#endif // NDEBUG
// Null pointer check macro
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), false)
#ifndef NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), true)
#else // !NDEBUG
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ----------------------------------------------------------------------------
// Deprecated macros
// ----------------------------------------------------------------------------

View File

@ -291,32 +291,6 @@ namespace c10 {
using fLB::FLAGS_logtostderr;
using fLI::FLAGS_minloglevel;
using fLI::FLAGS_v;
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: stream_(), severity_(severity), exit_on_fatal_(exit_on_fatal) {}
MessageLogger::~MessageLogger() noexcept(false) {
if (severity_ == ::google::GLOG_FATAL) {
DealWithFatal();
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
LOG(FATAL) << stream_.str();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
C10_DEFINE_int(
@ -438,16 +412,17 @@ void ShowLogInfoToStderr() {
FLAGS_caffe2_log_level = GLOG_INFO;
}
MessageLogger::MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal)
: severity_(severity), exit_on_fatal_(exit_on_fatal) {
MessageLogger::MessageLogger(const char* file, int line, int severity)
: severity_(severity) {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
}
#ifdef ANDROID
tag_ = "native";
#else // !ANDROID
tag_ = "";
#endif // ANDROID
time_t rawtime = 0;
time(&rawtime);
@ -483,7 +458,7 @@ MessageLogger::MessageLogger(
}
// Output the contents of the stream to the proper channel on destruction.
MessageLogger::~MessageLogger() noexcept(false) {
MessageLogger::~MessageLogger() {
if (severity_ < FLAGS_caffe2_log_level) {
// Nothing needs to be logged.
return;
@ -523,18 +498,6 @@ MessageLogger::~MessageLogger() noexcept(false) {
}
}
std::stringstream& MessageLogger::stream() {
return stream_;
}
void MessageLogger::DealWithFatal() {
if (exit_on_fatal_) {
abort();
} else {
throw c10::Error(stream_.str(), nullptr, nullptr);
}
}
} // namespace c10
#endif // !C10_USE_GLOG

View File

@ -1,74 +0,0 @@
#ifndef C10_UTIL_LOGGING_COMMON_H_
#define C10_UTIL_LOGGING_COMMON_H_
#include <c10/macros/Export.h>
#include <sstream>
namespace c10 {
// MessageLogger that throws exceptions instead of aborting (glog version)
// or logs and may abort (non-glog version).
class C10_API MessageLogger {
public:
MessageLogger(
const char* file,
int line,
int severity,
bool exit_on_fatal = true);
~MessageLogger() noexcept(false);
// Return the stream associated with the logger object.
std::stringstream& stream();
private:
// When there is a fatal log, and fatal == true, we abort
// otherwise, we throw.
void DealWithFatal();
#if defined(ANDROID) && !defined(C10_USE_GLOG)
const char* tag_{"native"};
#endif
std::stringstream stream_;
int severity_;
bool exit_on_fatal_;
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class C10_API LoggerVoidify {
public:
LoggerVoidify() = default;
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const std::ostream& s [[maybe_unused]]) {}
};
// Forward declarations for CheckNotNull functions
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal = true);
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal = true);
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal = true);
} // namespace c10
#endif // C10_UTIL_LOGGING_COMMON_H_

View File

@ -47,53 +47,57 @@ INSTANTIATE_FOR_CONTAINER(set)
#endif
#include <c10/util/logging_common.h>
#include <glog/logging.h>
namespace c10 {
// Additional macros on top of glog
#define TORCH_CHECK_EQ(val1, val2) CHECK_EQ(val1, val2)
#define TORCH_CHECK_NE(val1, val2) CHECK_NE(val1, val2)
#define TORCH_CHECK_LE(val1, val2) CHECK_LE(val1, val2)
#define TORCH_CHECK_LT(val1, val2) CHECK_LT(val1, val2)
#define TORCH_CHECK_GE(val1, val2) CHECK_GE(val1, val2)
#define TORCH_CHECK_GT(val1, val2) CHECK_GT(val1, val2)
[[noreturn]] void ThrowEnforceNotMet(
const char* file,
const int line,
const char* condition,
const std::string& msg,
const void* caller);
#ifndef NDEBUG
#define TORCH_DCHECK_EQ(val1, val2) DCHECK_EQ(val1, val2)
#define TORCH_DCHECK_NE(val1, val2) DCHECK_NE(val1, val2)
#define TORCH_DCHECK_LE(val1, val2) DCHECK_LE(val1, val2)
#define TORCH_DCHECK_LT(val1, val2) DCHECK_LT(val1, val2)
#define TORCH_DCHECK_GE(val1, val2) DCHECK_GE(val1, val2)
#define TORCH_DCHECK_GT(val1, val2) DCHECK_GT(val1, val2)
#else // !NDEBUG
// These versions generate no code in optimized mode.
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
DCHECK_EQ(val1, val2)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
DCHECK_NE(val1, val2)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
DCHECK_LE(val1, val2)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
DCHECK_LT(val1, val2)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
DCHECK_GE(val1, val2)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
DCHECK_GT(val1, val2)
#endif // NDEBUG
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
if (t == nullptr) {
MessageLogger(file, line, ::google::GLOG_FATAL, fatal).stream()
<< "Check failed: '" << names << "' must be non NULL. ";
}
return t;
}
// Check that a pointer is not null.
#define TORCH_CHECK_NOTNULL(val) CHECK_NOTNULL(val)
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
}
} // namespace c10
#ifndef NDEBUG
// Debug only version of TORCH_CHECK_NOTNULL
#define TORCH_DCHECK_NOTNULL(val) DCHECK_NOTNULL(val)
#else // !NDEBUG
// Optimized version - generates no code.
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
DCHECK_NOTNULL(val)
#endif // NDEBUG
// Log with source location information override (to be used in generic
// warning/error handlers implemented as functions, not macros)

View File

@ -13,7 +13,6 @@
#include <vector>
#include <c10/util/Flags.h>
#include <c10/util/logging_common.h>
const char CAFFE2_SEVERITY_PREFIX[] = "FEWIV";
@ -25,40 +24,61 @@ const int GLOG_ERROR = 2;
const int GLOG_WARNING = 1;
const int GLOG_INFO = 0;
class C10_API MessageLogger {
public:
MessageLogger(const char* file, int line, int severity);
~MessageLogger();
// Return the stream associated with the logger object.
std::stringstream& stream() {
return stream_;
}
private:
// When there is a fatal log, we simply abort.
void DealWithFatal() {
abort();
}
const char* tag_;
std::stringstream stream_;
int severity_;
};
// This class is used to explicitly ignore values in the conditional
// logging macros. This avoids compiler warnings like "value computed
// is not used" and "statement has no effect".
class C10_API LoggerVoidify {
public:
LoggerVoidify() = default;
// This has to be an operator with a precedence lower than << but
// higher than ?:
void operator&(const std::ostream& s [[maybe_unused]]) {}
};
// Log a message and terminate.
template <class T>
void LogMessageFatal(const char* file, int line, const T& message) {
MessageLogger(file, line, GLOG_FATAL).stream() << message;
}
// Helpers for TORCH_CHECK_NOTNULL(). Two are necessary to support both raw
// pointers and smart pointers.
template <typename T>
T& CheckNotNullCommon(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
T& CheckNotNullCommon(const char* file, int line, const char* names, T& t) {
if (t == nullptr) {
MessageLogger(file, line, GLOG_FATAL, fatal).stream()
<< "Check failed: '" << names << "' must be non NULL. ";
LogMessageFatal(file, line, std::string(names));
}
return t;
}
template <typename T>
T* CheckNotNull(
const char* file,
int line,
const char* names,
T* t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
T* CheckNotNull(const char* file, int line, const char* names, T* t) {
return CheckNotNullCommon(file, line, names, t);
}
template <typename T>
T& CheckNotNull(
const char* file,
int line,
const char* names,
T& t,
bool fatal) {
return CheckNotNullCommon(file, line, names, t, fatal);
T& CheckNotNull(const char* file, int line, const char* names, T& t) {
return CheckNotNullCommon(file, line, names, t);
}
} // namespace c10
@ -116,6 +136,65 @@ static_assert(
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_##n).stream()
#endif // NDEBUG
#define TORCH_CHECK_OP(val1, val2, op) \
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
<< (val1) << " vs. " << (val2) << ") "
// TORCH_CHECK_OP macro definitions
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
#ifndef NDEBUG
// Debug only versions of TORCH_CHECK_OP macros.
#define TORCH_DCHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
#else // !NDEBUG
// These versions generate no code in optimized mode.
#define TORCH_DCHECK_EQ(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, ==)
#define TORCH_DCHECK_NE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, !=)
#define TORCH_DCHECK_LE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, <=)
#define TORCH_DCHECK_LT(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, <)
#define TORCH_DCHECK_GE(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, >=)
#define TORCH_DCHECK_GT(val1, val2) \
while (false) \
TORCH_CHECK_OP(val1, val2, >)
#endif // NDEBUG
// Check that a pointer is not null.
#define TORCH_CHECK_NOTNULL(val) \
::c10::CheckNotNull( \
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
#ifndef NDEBUG
// Debug only version of TORCH_CHECK_NOTNULL
#define TORCH_DCHECK_NOTNULL(val) \
::c10::CheckNotNull( \
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
#else // !NDEBUG
// Optimized version - generates no code.
#define TORCH_DCHECK_NOTNULL(val) \
while (false) \
TORCH_CHECK_NOTNULL(val)
#endif // NDEBUG
// ---------------------- Support for std objects --------------------------
// These are adapted from glog to support a limited set of logging capability
// for STL objects.

View File

@ -926,14 +926,15 @@ class DeviceCachingAllocator {
(release_cached_blocks() && alloc_block(params, true));
}
if (!block_found) {
const auto& raw_device = c10::xpu::get_raw_device(device);
const auto device_total =
raw_device.get_info<sycl::info::device::global_mem_size>();
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device);
auto device_total = device_prop.global_mem_size;
// Estimate the available device memory when the SYCL runtime does not
// support the corresponding aspect (ext_intel_free_memory).
size_t device_free = device_total -
size_t device_free = device_prop.global_mem_size -
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
.current;
auto& raw_device = c10::xpu::get_raw_device(device);
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
// affected devices.
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
@ -1051,37 +1052,21 @@ class DeviceCachingAllocator {
}
}
std::pair<size_t, size_t> getMemoryInfo() {
const auto& device = c10::xpu::get_raw_device(device_index);
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
TORCH_CHECK(
device.has(sycl::aspect::ext_intel_free_memory),
"The device (",
device.get_info<sycl::info::device::name>(),
") doesn't support querying the available free memory. ",
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
"to help us prioritize its implementation.");
const size_t free =
device.get_info<sycl::ext::intel::info::device::free_memory>();
return {free, total};
}
double getMemoryFraction() {
if (!set_fraction) {
return 1.0;
}
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
return static_cast<double>(allowed_memory_maximum) /
static_cast<double>(device_total);
static_cast<double>(device_prop.global_mem_size);
}
void setMemoryFraction(double fraction) {
const auto device_total =
xpu::get_raw_device(device_index)
.get_info<sycl::info::device::global_mem_size>();
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
auto device_total = device_prop.global_mem_size;
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
set_fraction = true;
}
@ -1255,11 +1240,6 @@ class XPUAllocator : public DeviceAllocator {
c10::xpu::get_raw_device(dev_to_access));
}
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
assertValidDevice(device);
return device_allocators[device]->getMemoryInfo();
}
double getMemoryFraction(DeviceIndex device) {
assertValidDevice(device);
return device_allocators[device]->getMemoryFraction();

View File

@ -1941,7 +1941,6 @@ if(BUILD_TEST)
foreach(test_src ${Caffe2_XPU_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
torch_compile_options(${test_name})
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})

View File

@ -40,7 +40,6 @@
:nosignatures:
empty_cache
get_memory_info
max_memory_allocated
max_memory_reserved
memory_allocated

View File

@ -382,6 +382,20 @@ coverage_ignore_functions = [
# torch.ao.quantization.backend_config.tensorrt
"get_tensorrt_backend_config",
"get_tensorrt_backend_config_dict",
# torch.ao.quantization.backend_config.utils
"entry_to_pretty_str",
"get_fused_module_classes",
"get_fuser_method_mapping",
"get_fusion_pattern_to_extra_inputs_getter",
"get_fusion_pattern_to_root_node_getter",
"get_module_to_qat_module",
"get_pattern_to_dtype_configs",
"get_pattern_to_input_type_to_index",
"get_qat_module_classes",
"get_root_module_to_quantized_reference_module",
"pattern_to_human_readable",
"remove_boolean_dispatch_from_name",
# torch.ao.quantization.backend_config.x86
"get_x86_backend_config",
# torch.ao.quantization.fuse_modules
"fuse_known_modules",
@ -412,6 +426,25 @@ coverage_ignore_functions = [
"insert_observers_for_model",
"prepare",
"propagate_dtypes_for_known_nodes",
# torch.ao.quantization.fx.utils
"all_node_args_except_first",
"all_node_args_have_no_tensors",
"assert_and_get_unique_device",
"collect_producer_nodes",
"create_getattr_from_value",
"create_node_from_old_node_preserve_meta",
"get_custom_module_class_keys",
"get_linear_prepack_op_for_dtype",
"get_new_attr_name_with_prefix",
"get_non_observable_arg_indexes_and_types",
"get_qconv_prepack_op",
"get_skipped_module_name_and_classes",
"graph_module_from_producer_nodes",
"maybe_get_next_module",
"node_arg_is_bias",
"node_arg_is_weight",
"return_arg_list",
# torch.ao.quantization.pt2e.graph_utils
"bfs_trace_with_node_process",
"find_sequential_partitions",
"get_equivalent_types",
@ -827,10 +860,80 @@ coverage_ignore_functions = [
"get_latency_of_one_partition",
"get_latency_of_partitioned_graph",
"get_partition_to_latency_mapping",
# torch.fx.experimental.proxy_tensor
"decompose",
"disable_autocast_cache",
"disable_proxy_modes_tracing",
"dispatch_trace",
"extract_val",
"fake_signature",
"fetch_sym_proxy",
"fetch_object_proxy",
"get_innermost_proxy_mode",
"get_isolated_graphmodule",
"get_proxy_slot",
"get_torch_dispatch_modes",
"has_proxy_slot",
"is_sym_node",
"maybe_handle_decomp",
"proxy_call",
"set_meta",
"set_original_aten_op",
"set_proxy_slot",
"snapshot_fake",
"thunkify",
"track_tensor",
"track_tensor_tree",
"wrap_key",
"wrapper_and_args_for_make_fx",
# torch.fx.experimental.recording
"record_shapeenv_event",
"replay_shape_env_events",
"shape_env_check_state_equal",
# torch.fx.experimental.sym_node
"ceil_impl",
"floor_ceil_helper",
"floor_impl",
"method_to_operator",
"sympy_is_channels_last_contiguous_2d",
"sympy_is_channels_last_contiguous_3d",
"sympy_is_channels_last_strides_2d",
"sympy_is_channels_last_strides_3d",
"sympy_is_channels_last_strides_generic",
"sympy_is_contiguous",
"sympy_is_contiguous_generic",
"to_node",
"wrap_node",
"sym_sqrt",
# torch.fx.experimental.symbolic_shapes
"bind_symbols",
"cast_symbool_to_symint_guardless",
"create_contiguous",
"error",
"eval_guards",
"eval_is_non_overlapping_and_dense",
"expect_true",
"find_symbol_binding_fx_nodes",
"free_symbols",
"free_unbacked_symbols",
"fx_placeholder_targets",
"fx_placeholder_vals",
"guard_bool",
"guard_float",
"guard_int",
"guard_scalar",
"has_hint",
"has_symbolic_sizes_strides",
"is_channels_last_contiguous_2d",
"is_channels_last_contiguous_3d",
"is_channels_last_strides_2d",
"is_channels_last_strides_3d",
"is_contiguous",
"is_non_overlapping_and_dense_indicator",
"is_nested_int",
"is_symbol_binding_fx_node",
"is_symbolic",
# torch.fx.experimental.unification.core
"reify",
# torch.fx.experimental.unification.match
"edge",
@ -868,6 +971,24 @@ coverage_ignore_functions = [
"reverse_dict",
# torch.fx.experimental.unification.multipledispatch.variadic
"isvariadic",
# torch.fx.experimental.unification.unification_tools
"assoc",
"assoc_in",
"dissoc",
"first",
"get_in",
"getter",
"groupby",
"itemfilter",
"itemmap",
"keyfilter",
"keymap",
"merge",
"merge_with",
"update_in",
"valfilter",
"valmap",
# torch.fx.experimental.unification.utils
"freeze",
"hashable",
"raises",

View File

@ -12,37 +12,6 @@ These APIs are experimental and subject to change without notice.
.. autoclass:: torch.fx.experimental.sym_node.DynamicInt
```
## torch.fx.experimental.sym_node
```{eval-rst}
.. currentmodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. automodule:: torch.fx.experimental.sym_node
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
is_channels_last_contiguous_2d
is_channels_last_contiguous_3d
is_channels_last_strides_2d
is_channels_last_strides_3d
is_contiguous
is_non_overlapping_and_dense_indicator
method_to_operator
sympy_is_channels_last_contiguous_2d
sympy_is_channels_last_contiguous_3d
sympy_is_channels_last_strides_2d
sympy_is_channels_last_strides_3d
sympy_is_channels_last_strides_generic
sympy_is_contiguous
sympy_is_contiguous_generic
```
## torch.fx.experimental.symbolic_shapes
```{eval-rst}
@ -100,25 +69,6 @@ These APIs are experimental and subject to change without notice.
rebind_unbacked
resolve_unbacked_bindings
is_accessor_node
cast_symbool_to_symint_guardless
create_contiguous
error
eval_guards
eval_is_non_overlapping_and_dense
find_symbol_binding_fx_nodes
free_symbols
free_unbacked_symbols
fx_placeholder_targets
fx_placeholder_vals
guard_bool
guard_float
guard_int
guard_scalar
has_hint
has_symbolic_sizes_strides
is_nested_int
is_symbol_binding_fx_node
is_symbolic
```
## torch.fx.experimental.proxy_tensor
@ -141,46 +91,4 @@ These APIs are experimental and subject to change without notice.
get_proxy_mode
maybe_enable_thunkify
maybe_disable_thunkify
decompose
disable_autocast_cache
disable_proxy_modes_tracing
extract_val
fake_signature
fetch_object_proxy
fetch_sym_proxy
has_proxy_slot
is_sym_node
maybe_handle_decomp
proxy_call
set_meta
set_original_aten_op
set_proxy_slot
snapshot_fake
```
## torch.fx.experimental.unification.unification_tools
```{eval-rst}
.. currentmodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. automodule:: torch.fx.experimental.unification.unification_tools
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
assoc
assoc_in
dissoc
first
keyfilter
keymap
merge
merge_with
update_in
valfilter
valmap

View File

@ -1134,6 +1134,7 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.refinement_types
.. py:module:: torch.fx.experimental.rewriter
.. py:module:: torch.fx.experimental.schema_type_annotation
.. py:module:: torch.fx.experimental.sym_node
.. py:module:: torch.fx.experimental.unification.core
.. py:module:: torch.fx.experimental.unification.dispatch
.. py:module:: torch.fx.experimental.unification.match
@ -1143,6 +1144,7 @@ The set of leaf modules can be customized by overriding
.. py:module:: torch.fx.experimental.unification.multipledispatch.dispatcher
.. py:module:: torch.fx.experimental.unification.multipledispatch.utils
.. py:module:: torch.fx.experimental.unification.multipledispatch.variadic
.. py:module:: torch.fx.experimental.unification.unification_tools
.. py:module:: torch.fx.experimental.unification.utils
.. py:module:: torch.fx.experimental.unification.variable
.. py:module:: torch.fx.experimental.unify_refinements

View File

@ -134,23 +134,6 @@ Quantization to work with this as well.
ObservationType
```
## torch.ao.quantization.backend_config.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.backend_config.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
entry_to_pretty_str
pattern_to_human_readable
remove_boolean_dispatch_from_name
```
## torch.ao.quantization.fx.custom_config
This module contains a few CustomConfig classes that's used in both eager mode and FX graph mode quantization
@ -171,30 +154,6 @@ This module contains a few CustomConfig classes that's used in both eager mode a
StandaloneModuleConfigEntry
```
## torch.ao.quantization.fx.utils
```{eval-rst}
.. currentmodule:: torch.ao.quantization.fx.utils
```
```{eval-rst}
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
all_node_args_except_first
all_node_args_have_no_tensors
collect_producer_nodes
create_getattr_from_value
create_node_from_old_node_preserve_meta
graph_module_from_producer_nodes
maybe_get_next_module
node_arg_is_bias
node_arg_is_weight
return_arg_list
```
## torch.ao.quantization.quantizer
```{eval-rst}

View File

@ -172,9 +172,9 @@ ignore = [
"SIM102", "SIM103", "SIM112", # flake8-simplify code styles
"SIM105", # these ignores are from flake8-simplify. please fix or ignore with commented reason
"SIM108", # SIM108 ignored because we prefer if-else-block instead of ternary expression
"SIM110", # Checks for for loops that can be replaced with a builtin function, like any or all.
"SIM110",
"SIM114", # Combine `if` branches using logical `or` operator
"SIM115", # Checks for cases where files are opened without using a context manager.
"SIM115",
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
@ -184,6 +184,7 @@ ignore = [
"TC006",
# TODO: Remove Python-3.10 specific suppressions
"B905",
"UP035",
]
select = [
"B",
@ -260,7 +261,6 @@ select = [
"TRY401", # verbose-log-message
"UP",
"YTT",
"S101",
]
[tool.ruff.lint.pyupgrade]
@ -340,39 +340,6 @@ keep-runtime-typing = true
"tools/linter/**" = [
"LOG015" # please fix
]
"benchmarks/**" = [
"S101"
]
"test/**" = [
"S101"
]
"torchgen/**" = [
"S101"
]
"torch/**" = [
"S101"
]
"tools/**" = [
"S101"
]
"setup.py" = [
"S101"
]
"functorch/**" = [
"S101"
]
"docs/**" = [
"S101"
]
"android/**" = [
"S101"
]
".github/**" = [
"S101"
]
".ci/**" = [
"S101"
]
[tool.codespell]
ignore-words = "tools/linter/dictionary.txt"

View File

@ -1646,7 +1646,8 @@ def main() -> None:
mirror_files_into_torchgen()
if RUN_BUILD_DEPS:
build_deps()
mirror_inductor_external_kernels()
mirror_inductor_external_kernels()
(
ext_modules,

View File

@ -208,7 +208,7 @@ class _BaseDataSparsiferTestCase(TestCase):
assert len(sparsifier1.data_groups) == len(sparsifier2.data_groups)
state1 = state_dict1["state"]
for name in state1:
for name in state1.keys():
# compare mask
assert name in sparsifier2.state
assert "mask" in sparsifier2.state[name]

View File

@ -119,7 +119,7 @@ class TestBaseSparsifier(TestCase):
for idx in range(len(sparsifier0.groups)):
mg0 = sparsifier0.groups[idx]
mg1 = sparsifier1.groups[idx]
for key in mg0:
for key in mg0.keys():
assert key in mg1
if key == "module":
# We cannot compare modules as they are different

View File

@ -10,8 +10,6 @@ set(AOTI_ABI_CHECK_TEST_SRCS
${AOTI_ABI_CHECK_TEST_ROOT}/main.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_cast.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_devicetype.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_dispatch.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_dispatch_v2.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_dtype.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_exception.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_headeronlyarrayref.cpp

View File

@ -1,82 +0,0 @@
#include <gtest/gtest.h>
#include <torch/headeronly/core/Dispatch.h>
#include <torch/headeronly/core/Dispatch_v2.h>
// MY_PRIVATE_CHECK_SELECTIVE_BUILD is a prelude to case block. For
// testing, we do nothing:
#define MY_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type) /* empty */
#define MY_PRIVATE_CASE_TYPE_USING_HINT(...) \
THO_PRIVATE_CASE_TYPE_USING_HINT_TMPL( \
MY_PRIVATE_CHECK_SELECTIVE_BUILD, __VA_ARGS__)
#define MY_DISPATCH_CASE(...) \
THO_DISPATCH_CASE_TMPL(MY_PRIVATE_CASE_TYPE_USING_HINT, __VA_ARGS__)
// MY_RECORD_KERNEL_FUNCTION_DTYPE is a prelude to switch
// statement. For testing, we just avoid unused variable warning:
#define MY_RECORD_KERNEL_FUNCTION_DTYPE(DISPATCHNAME, ENUMTYPE) \
(void)DISPATCHNAME
// MY_CHECK_NOT_IMPLEMENTED is called in switch default block. For
// testing, we count case mismatches:
#define MY_CHECK_NOT_IMPLEMENTED(...) default_count++
#define MY_DISPATCH_SWITCH(...) \
THO_DISPATCH_SWITCH_TMPL( \
MY_RECORD_KERNEL_FUNCTION_DTYPE, MY_CHECK_NOT_IMPLEMENTED, __VA_ARGS__)
// MY_CASE_FUNCTION is called in a case block. For testing, we count
// case matches and ensure that scalar_t/index_t type is defined:
#define MY_CASE_FUNCTION \
[&] { \
count++; \
scalar_t tmp; \
(void)tmp; \
}
#define MY_INDEX_CASE_FUNCTION \
[&] { \
count++; \
index_t tmp; \
(void)tmp; \
}
#define DEFINE_ITEM(TYPE, SCALARTYPE) ScalarType::SCALARTYPE,
#define MY_DISPATCH_V2(TYPE, NAME, BODY, ...) \
THO_DISPATCH_V2_TMPL( \
MY_DISPATCH_SWITCH, \
MY_DISPATCH_CASE, \
TYPE, \
NAME, \
AT_WRAP(BODY), \
__VA_ARGS__)
#define TEST_DISPATCH_V2(NAME, EXPECTEDCOUNT, ...) \
TEST(TestDispatchV2, NAME) { \
using torch::headeronly::ScalarType; \
using torch::headeronly::impl::ScalarTypeToCPPTypeT; \
int8_t total_count = 0; \
int8_t count = 0; \
int8_t default_count = 0; \
for (ScalarType t : \
{AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_ITEM)}) { \
total_count++; \
MY_DISPATCH_V2(t, "test_my_dispatch_v2", MY_CASE_FUNCTION, __VA_ARGS__); \
} \
EXPECT_EQ(count, EXPECTEDCOUNT); \
EXPECT_EQ(default_count + count, total_count); \
}
TEST_DISPATCH_V2(AT_FLOAT8_TYPES_, 5, AT_FLOAT8_TYPES);
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_, 5, AT_INTEGRAL_TYPES);
TEST_DISPATCH_V2(AT_FLOATING_TYPES_, 2, AT_FLOATING_TYPES);
TEST_DISPATCH_V2(AT_BAREBONES_UNSIGNED_TYPES_, 3, AT_BAREBONES_UNSIGNED_TYPES);
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_V2_, 8, AT_INTEGRAL_TYPES_V2);
TEST_DISPATCH_V2(AT_COMPLEX_TYPES_, 2, AT_COMPLEX_TYPES);
TEST_DISPATCH_V2(AT_QINT_TYPES_, 3, AT_QINT_TYPES);
TEST_DISPATCH_V2(AT_ALL_TYPES_, 7, AT_ALL_TYPES);
TEST_DISPATCH_V2(AT_ALL_TYPES_AND_COMPLEX_, 9, AT_ALL_TYPES_AND_COMPLEX);
#undef DEFINE_ITEM

View File

@ -1,45 +0,0 @@
#include <gtest/gtest.h>
#include <torch/headeronly/core/Dispatch_v2.h>
#include <torch/headeronly/util/Exception.h>
#define DEFINE_ITEM(TYPE, SCALARTYPE) ScalarType::SCALARTYPE,
#define TEST_DISPATCH_V2(NAME, EXPECTEDCOUNT, ...) \
TEST(TestThoDispatchV2, NAME) { \
using torch::headeronly::ScalarType; \
using torch::headeronly::impl::ScalarTypeToCPPTypeT; \
int8_t total_count = 0; \
int8_t count = 0; \
int8_t default_count = 0; \
for (ScalarType t : \
{AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_ITEM)}) { \
total_count++; \
try { \
THO_DISPATCH_V2( \
t, \
"test_tho_dispatch_v2", \
[&] { \
count++; \
scalar_t tmp; \
(void)tmp; \
}, \
__VA_ARGS__); \
} catch (...) { \
default_count++; /* counts mismatches */ \
} \
} \
EXPECT_EQ(count, EXPECTEDCOUNT); \
EXPECT_EQ(default_count + count, total_count); \
}
TEST_DISPATCH_V2(AT_FLOAT8_TYPES_, 5, AT_FLOAT8_TYPES);
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_, 5, AT_INTEGRAL_TYPES);
TEST_DISPATCH_V2(AT_FLOATING_TYPES_, 2, AT_FLOATING_TYPES);
TEST_DISPATCH_V2(AT_BAREBONES_UNSIGNED_TYPES_, 3, AT_BAREBONES_UNSIGNED_TYPES);
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_V2_, 8, AT_INTEGRAL_TYPES_V2);
TEST_DISPATCH_V2(AT_COMPLEX_TYPES_, 2, AT_COMPLEX_TYPES);
TEST_DISPATCH_V2(AT_QINT_TYPES_, 3, AT_QINT_TYPES);
TEST_DISPATCH_V2(AT_ALL_TYPES_, 7, AT_ALL_TYPES);
TEST_DISPATCH_V2(AT_ALL_TYPES_AND_COMPLEX_, 9, AT_ALL_TYPES_AND_COMPLEX);
#undef DEFINE_ITEM

View File

@ -67,13 +67,13 @@ Tensor sgd_out_of_place(
void boxed_sgd_out_of_place(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = sgd_out_of_place(
torch::stable::detail::to<Tensor>(stack[0]),
torch::stable::detail::to<Tensor>(stack[1]),
float(torch::stable::detail::to<double>(stack[2])),
torch::stable::detail::to<double>(stack[3]),
torch::stable::detail::to<bool>(stack[4]));
to<Tensor>(stack[0]),
to<Tensor>(stack[1]),
float(to<double>(stack[2])),
to<double>(stack[3]),
to<bool>(stack[4]));
stack[0] = torch::stable::detail::from(res);
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY(libtorch_agnostic, m) {
@ -89,8 +89,8 @@ Tensor identity(Tensor t) {
}
void boxed_identity(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = identity(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
Tensor res = identity(to<Tensor>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -108,14 +108,14 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CPU, m) {
Tensor my_abs(Tensor t) {
const auto num_args = 1;
StableIValue stack[num_args];
stack[0] = torch::stable::detail::from(t);
stack[0] = from(t);
aoti_torch_call_dispatcher("aten::abs", "", stack);
return torch::stable::detail::to<Tensor>(stack[0]);
return to<Tensor>(stack[0]);
}
void boxed_my_abs(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_abs(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(tensor_res);
Tensor tensor_res = my_abs(to<Tensor>(stack[0]));
stack[0] = from(tensor_res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -132,21 +132,21 @@ Tensor my_ones_like(Tensor t, StableIValue device) {
auto mf = aoti_torch_memory_format_contiguous_format();
stack[0] = torch::stable::detail::from(t);
stack[1] = torch::stable::detail::from(std::optional(t.scalar_type())); // dtype
stack[2] = torch::stable::detail::from(std::nullopt); // layout
stack[3] = torch::stable::detail::from(std::optional(device)); // device
stack[4] = torch::stable::detail::from(std::optional(false)); // pin_memory
stack[5] = torch::stable::detail::from(std::optional(mf)); // memory_format
stack[0] = from(t);
stack[1] = from(std::optional(t.scalar_type())); // dtype
stack[2] = from(std::nullopt); // layout
stack[3] = from(std::optional(device)); // device
stack[4] = from(std::optional(false)); // pin_memory
stack[5] = from(std::optional(mf)); // memory_format
aoti_torch_call_dispatcher("aten::ones_like", "", stack);
return torch::stable::detail::to<Tensor>(stack[0]);
return to<Tensor>(stack[0]);
}
void boxed_my_ones_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = my_ones_like(torch::stable::detail::to<Tensor>(stack[0]), stack[1]);
stack[0] = torch::stable::detail::from(res);
Tensor res = my_ones_like(to<Tensor>(stack[0]), stack[1]);
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -159,28 +159,28 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
std::tuple<Tensor, Tensor, bool> exp_neg_is_leaf(Tensor t1, Tensor t2, Tensor t3) {
StableIValue stack_exp[1];
stack_exp[0] = torch::stable::detail::from(t1);
stack_exp[0] = from(t1);
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
StableIValue stack_neg[1];
stack_neg[0] = torch::stable::detail::from(t2);
stack_neg[0] = from(t2);
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
StableIValue stack_is_leaf[1];
stack_is_leaf[0] = torch::stable::detail::from(t3);
stack_is_leaf[0] = from(t3);
aoti_torch_call_dispatcher("aten::is_leaf", "", stack_is_leaf);
return std::make_tuple(
torch::stable::detail::to<Tensor>(stack_exp[0]),
torch::stable::detail::to<Tensor>(stack_neg[0]),
torch::stable::detail::to<bool>(stack_is_leaf[0]));
to<Tensor>(stack_exp[0]),
to<Tensor>(stack_neg[0]),
to<bool>(stack_is_leaf[0]));
}
void boxed_exp_neg_is_leaf(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto tuple = exp_neg_is_leaf(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<Tensor>(stack[2]));
stack[0] = torch::stable::detail::from(std::get<0>(tuple));
stack[1] = torch::stable::detail::from(std::get<1>(tuple));
stack[2] = torch::stable::detail::from(std::get<2>(tuple));
auto tuple = exp_neg_is_leaf(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<Tensor>(stack[2]));
stack[0] = from(std::get<0>(tuple));
stack[1] = from(std::get<1>(tuple));
stack[2] = from(std::get<2>(tuple));
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -193,15 +193,15 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
Tensor neg_exp(Tensor t) {
StableIValue stack[1];
stack[0] = torch::stable::detail::from(t);
stack[0] = from(t);
aoti_torch_call_dispatcher("aten::exp", "", stack);
aoti_torch_call_dispatcher("aten::neg", "", stack);
return torch::stable::detail::to<Tensor>(stack[0]);
return to<Tensor>(stack[0]);
}
void boxed_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
Tensor res = neg_exp(to<Tensor>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -214,10 +214,10 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
Tensor divide_neg_exp(Tensor t) {
StableIValue stack_neg[1];
stack_neg[0] = torch::stable::detail::from(t);
stack_neg[0] = from(t);
StableIValue stack_exp[1];
stack_exp[0] = torch::stable::detail::from(t);
stack_exp[0] = from(t);
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
@ -225,12 +225,12 @@ Tensor divide_neg_exp(Tensor t) {
stack_div[0] = stack_neg[0];
stack_div[1] = stack_exp[0];
aoti_torch_call_dispatcher("aten::divide", "Tensor", stack_div);
return torch::stable::detail::to<Tensor>(stack_div[0]);
return to<Tensor>(stack_div[0]);
}
void boxed_divide_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor res = divide_neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
Tensor res = divide_neg_exp(to<Tensor>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -246,8 +246,8 @@ bool is_contiguous(Tensor t) {
}
void boxed_is_contiguous(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
bool res = is_contiguous(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
bool res = is_contiguous(to<Tensor>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -263,9 +263,9 @@ Tensor my_transpose(Tensor t, int64_t dim0, int64_t dim1) {
}
void boxed_my_transpose(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_transpose(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<int64_t>(stack[1]), torch::stable::detail::to<int64_t>(stack[2]));
auto res = my_transpose(to<Tensor>(stack[0]), to<int64_t>(stack[1]), to<int64_t>(stack[2]));
stack[0] = torch::stable::detail::from(res);
stack[0] = from(res);
}
Tensor my_empty_like(Tensor t) {
@ -273,8 +273,8 @@ Tensor my_empty_like(Tensor t) {
}
void boxed_empty_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_empty_like(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_empty_like(to<Tensor>(stack[0]));
stack[0] = from(res);
}
bool my_is_cpu(Tensor t) {
@ -283,8 +283,8 @@ bool my_is_cpu(Tensor t) {
void boxed_my_is_cpu(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_is_cpu(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_is_cpu(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor fill_infinity(Tensor t) {
@ -296,8 +296,8 @@ void boxed_fill_infinity(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
auto res = fill_infinity(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = fill_infinity(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor my_pad(Tensor t) {
@ -310,8 +310,8 @@ void boxed_my_pad(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
auto res = my_pad(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_pad(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor my_narrow(Tensor t, int64_t dim, int64_t start, int64_t length) {
@ -323,11 +323,11 @@ void boxed_my_narrow(
uint64_t num_args,
uint64_t num_outputs) {
auto res = my_narrow(
torch::stable::detail::to<Tensor>(stack[0]),
torch::stable::detail::to<int64_t>(stack[1]),
torch::stable::detail::to<int64_t>(stack[2]),
torch::stable::detail::to<int64_t>(stack[3]));
stack[0] = torch::stable::detail::from(res);
to<Tensor>(stack[0]),
to<int64_t>(stack[1]),
to<int64_t>(stack[2]),
to<int64_t>(stack[3]));
stack[0] = from(res);
}
Tensor my_new_empty_dtype_variant(Tensor t) {
@ -342,8 +342,8 @@ Tensor my_new_empty_dtype_variant(Tensor t) {
}
void boxed_my_new_empty_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_empty_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_new_empty_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor my_new_zeros_dtype_variant(Tensor t) {
@ -352,8 +352,8 @@ Tensor my_new_zeros_dtype_variant(Tensor t) {
}
void boxed_my_new_zeros_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_new_zeros_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_new_zeros_dtype_variant(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
@ -361,8 +361,8 @@ Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
}
void boxed_my_copy_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_copy_(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<bool>(stack[2]));
stack[0] = torch::stable::detail::from(tensor_res);
Tensor tensor_res = my_copy_(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<bool>(stack[2]));
stack[0] = from(tensor_res);
}
Tensor my_clone(Tensor t) {
@ -370,8 +370,8 @@ Tensor my_clone(Tensor t) {
}
void boxed_my_clone(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
Tensor tensor_res = my_clone(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(tensor_res);
Tensor tensor_res = my_clone(to<Tensor>(stack[0]));
stack[0] = from(tensor_res);
}
@ -408,8 +408,8 @@ Tensor my_zero_(Tensor t) {
}
void boxed_my_zero_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_zero_(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_zero_(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor my_amax(Tensor t) {
@ -417,8 +417,8 @@ Tensor my_amax(Tensor t) {
}
void boxed_my_amax(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_amax(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_amax(to<Tensor>(stack[0]));
stack[0] = from(res);
}
Tensor my_amax_vec(Tensor t) {
@ -426,8 +426,8 @@ Tensor my_amax_vec(Tensor t) {
}
void boxed_my_amax_vec(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = my_amax_vec(torch::stable::detail::to<Tensor>(stack[0]));
stack[0] = torch::stable::detail::from(res);
auto res = my_amax_vec(to<Tensor>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -464,8 +464,8 @@ void boxed_test_default_constructor(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
bool res = test_default_constructor(torch::stable::detail::to<bool>(stack[0]));
stack[0] = torch::stable::detail::from(res);
bool res = test_default_constructor(to<bool>(stack[0]));
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -478,56 +478,6 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my_amax_vec", &boxed_my_amax_vec);
}
std::vector<Tensor> my__foreach_mul(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
aoti_torch_call_dispatcher("aten::_foreach_mul", "List", stack.data());
return torch::stable::detail::to<std::vector<Tensor>>(stack[0]);
}
void boxed_my__foreach_mul(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
// Why is the following NOT torch::stable::detail::to<HeaderOnlyArrayRef<Tensor>>(stack[0])? Because calling `to`
// on a StableIValue means that the result is owning its underlying data now! HeaderOnlyArrayRef
// is not owning, so it cannot safely steward the result of the torch::stable::detail::to<>.
auto res = my__foreach_mul(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
void my__foreach_mul_(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
aoti_torch_call_dispatcher("aten::_foreach_mul_", "List", stack.data());
}
void boxed_my__foreach_mul_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
my__foreach_mul_(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
}
std::vector<Tensor> make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) {
// This function tests that my__foreach_mul can take in std::initializer_lists
// in addition to std::vectors.
Tensor t1_1 = my_clone(t1);
Tensor t1_2 = my_clone(t1);
Tensor t2_1 = my_clone(t2);
Tensor t2_2 = my_clone(t2);
return my__foreach_mul({t1_1, t2_1}, {t1_2, t2_2});
}
void boxed_make_tensor_clones_and_call_foreach(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
auto res = make_tensor_clones_and_call_foreach(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]));
stack[0] = torch::stable::detail::from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
m.def("my__foreach_mul(Tensor[] self, Tensor[] other) -> Tensor[]");
m.def("my__foreach_mul_(Tensor(a!)[] self, Tensor[] other) -> ()");
m.def("make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) -> Tensor[]");
}
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("my__foreach_mul", &boxed_my__foreach_mul);
m.impl("my__foreach_mul_", &boxed_my__foreach_mul_);
m.impl("make_tensor_clones_and_call_foreach", &boxed_make_tensor_clones_and_call_foreach);
}
// Test functions for torch::stable::accelerator APIs
#ifdef LAE_USE_CUDA
@ -550,8 +500,8 @@ void boxed_test_device_guard(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
int res = test_device_guard(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
stack[0] = torch::stable::detail::from(res);
int res = test_device_guard(static_cast<int64_t>(to<int64_t>(stack[0])));
stack[0] = from(res);
}
int64_t test_device_guard_set_index() {
@ -570,7 +520,7 @@ void boxed_test_device_guard_set_index(
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_device_guard_set_index();
stack[0] = torch::stable::detail::from(res);
stack[0] = from(res);
}
int64_t test_stream(int32_t device_index) {
@ -586,8 +536,8 @@ void boxed_test_stream(
StableIValue* stack,
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_stream(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
stack[0] = torch::stable::detail::from(res);
int64_t res = test_stream(static_cast<int64_t>(to<int64_t>(stack[0])));
stack[0] = from(res);
}
int64_t test_get_current_device_index() {
@ -599,7 +549,7 @@ void boxed_test_get_current_device_index(
uint64_t num_args,
uint64_t num_outputs) {
int64_t res = test_get_current_device_index();
stack[0] = torch::stable::detail::from(res);
stack[0] = from(res);
}
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
@ -615,5 +565,4 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
m.impl("test_stream", &boxed_test_stream);
m.impl("test_get_current_device_index", &boxed_test_get_current_device_index);
}
#endif // LAE_USE_CUDA

View File

@ -333,45 +333,3 @@ def my_new_zeros_dtype_variant(t) -> Tensor:
Returns: New zeros tensor
"""
return torch.ops.libtorch_agnostic.my_new_zeros_dtype_variant.default(t)
def my__foreach_mul_(tensors, others) -> ():
"""
Updates tensors to be the result of pointwise multiplying with others.
Args:
tensors: list of tensors
others: list of tensors (with the same corresponding shapes as tensors)
Returns: nothing, tensors is updated in place.
"""
torch.ops.libtorch_agnostic.my__foreach_mul_.default(tensors, others)
def my__foreach_mul(tensors, others) -> list[Tensor]:
"""
Returns a list of tensors that are the results of pointwise multiplying
tensors and others.
Args:
tensors: list of tensors
others: list of tensors (with the same corresponding shapes as tensors)
Returns: list of multiplied tensors
"""
return torch.ops.libtorch_agnostic.my__foreach_mul.default(tensors, others)
def make_tensor_clones_and_call_foreach(t1, t2) -> list[Tensor]:
"""
Returns a list of 2 tensors corresponding to the square of the inputs.
Args:
t1: Tensor
t2: Tensor
Returns: list of [t1^2, t2^2]
"""
return torch.ops.libtorch_agnostic.make_tensor_clones_and_call_foreach.default(
t1, t2
)

View File

@ -367,57 +367,6 @@ if not IS_WINDOWS:
self.assertNotEqual(result.data_ptr(), expected.data_ptr())
self.assertEqual(result.stride(), expected.stride())
def test_my__foreach_mul_(self, device):
import libtorch_agnostic
N = 5
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
tensors_c = [t.clone() for t in tensors]
others = [torch.rand(32, 16, device=device) for _ in range(N)]
libtorch_agnostic.ops.my__foreach_mul_(tensors, others)
expected_values = torch._foreach_mul(tensors_c, others)
for tensor_t, expected_t in zip(tensors, expected_values):
self.assertEqual(tensor_t, expected_t)
def test_my__foreach_mul(self, device):
import libtorch_agnostic
N = 5
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
others = [torch.rand(32, 16, device=device) for _ in range(N)]
result = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
expected = torch._foreach_mul(tensors, others)
for result_t, expected_t in zip(result, expected):
self.assertEqual(result_t, expected_t)
def _make_cuda_tensors(prior_mem):
cuda_res = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
self.assertGreater(torch.cuda.memory_allocated(device), prior_mem)
expected = torch._foreach_mul(tensors, others)
for result_t, expected_t in zip(cuda_res, expected):
self.assertEqual(result_t, expected_t)
if tensors[0].is_cuda:
init_mem = torch.cuda.memory_allocated(device)
for _ in range(3):
_make_cuda_tensors(init_mem)
curr_mem = torch.cuda.memory_allocated(device)
self.assertEqual(curr_mem, init_mem)
def test_make_tensor_clones_and_call_foreach(self, device):
import libtorch_agnostic
t1 = torch.rand(2, 5, device=device)
t2 = torch.rand(3, 4, device=device)
result = libtorch_agnostic.ops.make_tensor_clones_and_call_foreach(t1, t2)
self.assertEqual(result[0], t1 * t1)
self.assertEqual(result[1], t2 * t2)
instantiate_device_type_tests(TestLibtorchAgnostic, globals(), except_for=None)
if __name__ == "__main__":

View File

@ -1,5 +1,6 @@
# Owner(s): ["module: unknown"]
import os
import tempfile
from backend import get_custom_backend_library_path, Model, to_custom_backend
@ -40,11 +41,14 @@ class TestCustomBackend(TestCase):
self.test_execute()
# Save and load.
with tempfile.NamedTemporaryFile() as f:
f = tempfile.NamedTemporaryFile(delete=False)
try:
f.close()
torch.jit.save(self.model, f.name)
loaded = torch.jit.load(f.name)
self.model = loaded
finally:
os.unlink(f.name)
self.model = loaded
# Test execution again.
self.test_execute()

View File

@ -1,5 +1,6 @@
# Owner(s): ["module: unknown"]
import os.path
import sys
import tempfile
import unittest
@ -143,13 +144,16 @@ def forward(self, arg0_1):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually.
with tempfile.NamedTemporaryFile() as file:
file = tempfile.NamedTemporaryFile(delete=False)
try:
file.close()
model.save(file.name)
loaded = torch.jit.load(file.name)
finally:
os.unlink(file.name)
output = loaded.forward(torch.ones(5))
self.assertTrue(output.allclose(torch.ones(5) + 1))
output = loaded.forward(torch.ones(5))
self.assertTrue(output.allclose(torch.ones(5) + 1))
if __name__ == "__main__":

View File

@ -1,7 +1,7 @@
# Owner(s): ["module: fsdp"]
import functools
import os
import unittest
import unittest.mock
import torch.distributed as dist
from torch._dynamo.test_case import run_tests
@ -37,9 +37,9 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import fully_shard
logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
logger = logging.getLogger("torch.distributed._composable.fsdp")
logger.setLevel(logging.DEBUG)
device = '{device_type.type}'
device = {device_type.type}
torch.manual_seed(0)
model = nn.Sequential(*[nn.Linear(4, 4, device=device, bias=False) for _ in range(2)])
for layer in model:

View File

@ -76,7 +76,7 @@ class ReplicateTest(MultiProcessTestCase):
store=dist.FileStore(self.file_name, self.world_size),
)
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_replicate_transformer(self):
"""
This tests that replicate works on a transformer model with fully_shard and replicate layers
@ -126,7 +126,7 @@ class ReplicateTest(MultiProcessTestCase):
for parameter in layer.parameters():
self.assertEqual(parameter.placements, (Shard(dim=0),))
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_replicate_transformer_managed_modules(self):
"""
This tests that replicate managed modules works properly. In this test we use a Transformer Module with 3 layers,
@ -178,7 +178,7 @@ class ReplicateTest(MultiProcessTestCase):
replicate_model = replicate(replicate_model)
self.assertEqual(len(_get_managed_modules((replicate_model,))), 21)
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_replicate_tp_device_mesh(self):
"""
This tests that a user can pass in a device mesh to replicate a module
@ -206,7 +206,7 @@ class ReplicateTest(MultiProcessTestCase):
self.assertEqual(parameter.device_mesh.shape, (2,))
self.assertEqual(parameter.placements, (Replicate(),))
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_train_replicate_fsdp(self):
"""
Tests that replicate_model has the same behavior as original model when training
@ -253,7 +253,7 @@ class ReplicateTest(MultiProcessTestCase):
self.assertEqual(replicate_loss, loss)
check_sharded_parity(self, model, replicate_model)
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_train_parity_2d_mlp(self):
"""
Verifies when a device mesh is passed in, the model has the same behavior as the original model when training

View File

@ -80,7 +80,7 @@ class TestSACILP(TestCase):
# postprocessing due to the fact that for ModTracker, the post backward hook
# is not being called for modules whose inputs don't require gradients
# TODO: fix this in ModTracker and ensure it does not lead to any perf regression
if _ModState.POST_BW not in mod_stats.snapshots:
if _ModState.POST_BW not in mod_stats.snapshots.keys():
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
copy.deepcopy(last_snapshot)
)

View File

@ -16,7 +16,7 @@ from torch.distributed.argparse_util import check_env, env
class ArgParseUtilTest(unittest.TestCase):
def setUp(self):
# remove any lingering environment variables
for e in os.environ.keys(): # noqa: SIM118
for e in os.environ.keys():
if e.startswith("PET_"):
del os.environ[e]

View File

@ -207,7 +207,7 @@ class TestDefaultStager(TestCase):
for i, result in enumerate(staged_results):
self.assertIsInstance(result, dict)
# Verify the result contains the expected keys
for key in state_dicts[i]:
for key in state_dicts[i].keys():
self.assertIn(key, result)
stager.close()

View File

@ -299,7 +299,7 @@ class TestDTensorReshardMeshChange(DTensorTestBase):
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_dtensor_checkpoint_with_uneven_shards(self) -> None:
"""
Saving a dtensor with uneven shards.
@ -436,7 +436,6 @@ class TestCheckpointableReshard(DTensorTestBase):
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(4)
def test_uneven_reshard_with_checkpointable_api(self) -> None:
"""
Saves a 1d distributed tensor that has shards with uneven sizes using Checkpointable API.
@ -499,7 +498,6 @@ class TestCheckpointableReshard(DTensorTestBase):
@with_comms
@with_temp_dir
@skip_if_lt_x_gpu(4)
def test_uneven_reshard_with_dtensor_shards_wrapper_api(self) -> None:
"""
Saves a 1d distributed tensor that has shards with uneven sizes using Checkpointable API.

View File

@ -60,7 +60,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_loaded.keys())
)
for key in state_dict_to_save:
for key in state_dict_to_save.keys():
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_loaded[key])
)
@ -89,7 +89,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_to_load.keys())
)
for key in state_dict_to_save:
for key in state_dict_to_save.keys():
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_to_load[key])
)
@ -116,7 +116,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_loaded.keys())
)
for key in state_dict_to_save:
for key in state_dict_to_save.keys():
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_loaded[key])
)
@ -156,7 +156,7 @@ class TestSingleRankSaveLoad(TestCase):
self.assertEqual(
sorted(state_dict_to_save.keys()), sorted(state_dict_to_load.keys())
)
for key in state_dict_to_save:
for key in state_dict_to_save.keys():
self.assertTrue(
torch.equal(state_dict_to_save[key], state_dict_to_load[key])
)

View File

@ -18,7 +18,6 @@ from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans
from torch.distributed.checkpoint.api import CheckpointException
from torch.distributed.checkpoint.default_planner import (
_create_default_local_metadata,
_validate_global_plan,
create_default_global_save_plan,
create_default_local_load_plan,
create_default_local_save_plan,
@ -29,7 +28,6 @@ from torch.distributed.checkpoint.filesystem import CURRENT_DCP_VERSION
from torch.distributed.checkpoint.metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
Metadata,
MetadataIndex,
TensorProperties,
TensorStorageMetadata,
@ -562,32 +560,6 @@ class TestPlannerHelpers(TestCase):
self.assertTrue(_compare_save_plans(plan2, plan2))
class TestValidateGlobalPlan(TestCase):
def _make_metadata(self, chunks, size):
storage = TensorStorageMetadata(
properties=TensorProperties(dtype=torch.float32),
size=torch.Size(size),
chunks=chunks,
)
return Metadata(state_dict_metadata={"param": storage})
def test_non_overlapping_chunks(self):
chunks = [
ChunkStorageMetadata(offsets=torch.Size([i]), sizes=torch.Size([1]))
for i in range(4)
]
metadata = self._make_metadata(chunks, [4])
self.assertTrue(_validate_global_plan([SavePlan([])], metadata))
def test_detect_overlapping_chunks(self):
chunks = [
ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([2])),
ChunkStorageMetadata(offsets=torch.Size([1]), sizes=torch.Size([2])),
]
metadata = self._make_metadata(chunks, [4])
self.assertFalse(_validate_global_plan([SavePlan([])], metadata))
class TestLoadPlanner(TestCase):
@with_temp_dir
def test_strict(self):

View File

@ -769,7 +769,7 @@ class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
model_state_dict3 = copy.deepcopy(model_state_dict3)
self.assertEqual(len(model_state_dict2), 2)
self.assertEqual(len(model_state_dict3), 2)
for key in model_state_dict3:
for key in model_state_dict3.keys():
full_fqn = f"l.{key}"
value1 = model_state_dict1[full_fqn]
value2 = model_state_dict2[full_fqn]
@ -886,7 +886,7 @@ class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
self.assertEqual(cpu_model_value, meta_model_value)
@with_comms
@skip_if_lt_x_gpu(4)
@skip_if_lt_x_gpu(2)
def test_setting_meta_device_model_broadcasting_and_memory(self) -> None:
# This test verifies that we can set model state dict by a meta device model
# With the correlated changes in state_dict, meta device model should be accepted

View File

@ -479,7 +479,6 @@ class TestFSDPMiscMultiProcess(FSDPTest):
for (n, p), (n_prev, p_prev) in zip(
fsdp_overlap.named_parameters(), fsdp_overlap_prev_params
):
self.assertEqual(n, n_prev)
self.assertNotEqual(
p,
p_prev,

View File

@ -587,7 +587,9 @@ class TestFSDPStateDict(FSDPTest):
model, cpu_offload.offload_params, fp16
)
ignore_keys = [k for k in fsdp_state_dict if NON_ROOT_FSDP_PREFIX in k]
ignore_keys = [
k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k
]
self._validate_state_dict_contents(
model,
@ -908,7 +910,7 @@ class TestFSDPStateDict(FSDPTest):
with sd_mgr:
fsdp_state_dict = model.state_dict()
ignore_keys = [k for k in fsdp_state_dict if NON_ROOT_FSDP_PREFIX in k]
ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]
self._validate_state_dict_contents(
model,
fsdp_state_dict,
@ -957,7 +959,9 @@ class TestFSDPStateDict(FSDPTest):
# Full name of linear_skip param tensors in SkipModel, as would be
# stored in checkpoint.
linear_skip_tensor_names = [
k for k in dict(module.named_parameters()) if LINEAR_SKIP in k
k
for k in dict(module.named_parameters()).keys()
if LINEAR_SKIP in k
]
# skip SkipModule
linear_skip = getattr(module, LINEAR_SKIP)

View File

@ -137,7 +137,7 @@ class ElasticLaunchTest(unittest.TestCase):
self.test_dir = tempfile.mkdtemp()
# remove any lingering environment variables.
for env in os.environ.keys(): # noqa: SIM118
for env in os.environ.keys():
if env.startswith("PET_"):
del os.environ[env]

View File

@ -69,7 +69,7 @@ class ElasticLaunchTest(TestCase):
self.test_dir = tempfile.mkdtemp()
# remove any lingering environment variables
for env in os.environ.keys(): # noqa: SIM118
for env in os.environ.keys():
if env.startswith("PET_"):
del os.environ[env]

View File

@ -39,7 +39,6 @@ from torch.nn.modules.loss import MSELoss
from torch.testing._internal.common_distributed import (
MultiProcContinuousTest,
requires_accelerator_dist_backend,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
check_leaked_tensors,
@ -47,7 +46,6 @@ from torch.testing._internal.common_utils import (
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_MULTIACCELERATOR,
)
@ -58,6 +56,7 @@ batch_size = 64
torch.manual_seed(0)
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
backend = dist.get_default_backend_for_device(device_type)
TEST_MULTIACCELERATOR = torch.accelerator.device_count() >= 2
@dataclass
@ -232,7 +231,6 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [_ScheduleForwardOnly])
@skip_if_lt_x_gpu(4)
def test_forward_only(self, ScheduleClass):
mod, mod_ref, x, _, _ = setup_models_and_data(self.config)
x_clone = x.clone()
@ -276,7 +274,6 @@ class ScheduleTest(MultiProcContinuousTest):
ScheduleInterleavedZeroBubble,
],
)
@skip_if_lt_x_gpu(4)
def test_eval_inference_mode(self, ScheduleClass):
num_microbatches = 4
if ScheduleClass in [
@ -354,7 +351,6 @@ class ScheduleTest(MultiProcContinuousTest):
ScheduleInterleavedZeroBubble,
],
)
@skip_if_lt_x_gpu(4)
def test_return_output(self, ScheduleClass):
num_microbatches = 4
if ScheduleClass in [
@ -410,7 +406,6 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@skip_if_lt_x_gpu(4)
def test_multi_iter(self, ScheduleClass):
mod, _, x, target, loss_fn = setup_models_and_data(self.config)
chunks = 4
@ -434,7 +429,6 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@skip_if_lt_x_gpu(4)
def test_kwargs_with_tracer(self, ScheduleClass):
mod = ModelWithKwargs(d_hid, splits=self.world_size)
mod.to(self.device)
@ -487,7 +481,6 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@skip_if_lt_x_gpu(4)
def test_grad_with_tracer(self, ScheduleClass):
mod, ref_mod, x, target, loss_fn = setup_models_and_data(self.config)
@ -530,7 +523,6 @@ class ScheduleTest(MultiProcContinuousTest):
)
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
@parametrize("shape_inference", [True, False])
@skip_if_lt_x_gpu(4)
def test_grad_with_manual(self, ScheduleClass, shape_inference):
mod, ref_mod, x, target, loss_fn = setup_models_and_data(self.config)
@ -594,7 +586,6 @@ class ScheduleTest(MultiProcContinuousTest):
ScheduleInterleavedZeroBubble,
],
)
@skip_if_lt_x_gpu(4)
def test_grad_with_manual_interleaved(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
@ -659,7 +650,6 @@ class ScheduleTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleInterleavedZeroBubble])
@skip_if_lt_x_gpu(4)
def test_schedule_with_weight_update_mlp_e2e(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
@ -746,7 +736,6 @@ class ScheduleTest(MultiProcContinuousTest):
"schedule_class",
[ScheduleZBVZeroBubble, ScheduleDualPipeV],
)
@skip_if_lt_x_gpu(4)
def test_v_shape_schedules(self, schedule_class):
n_stages = 8
rank_stages = {0: [0, 7], 1: [1, 6], 2: [2, 5], 3: [3, 4]}
@ -791,7 +780,6 @@ class ScheduleTest(MultiProcContinuousTest):
@skip_but_pass_in_sandcastle_if(
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@skip_if_lt_x_gpu(4)
def test_custom_function_callback(self):
"""Test the custom function callback functionality with _PipelineScheduleRuntime."""
n_stages = 8
@ -991,7 +979,6 @@ class ScheduleTest(MultiProcContinuousTest):
"ScheduleClass",
[ScheduleInterleavedZeroBubble, ScheduleInterleaved1F1B],
)
@skip_if_lt_x_gpu(4)
def test_zero_bubble_with_model_kwargs(self, ScheduleClass):
stages_per_rank = 2
n_stages = stages_per_rank * self.world_size
@ -1085,7 +1072,6 @@ class CustomSchedulesTest(MultiProcContinuousTest):
"schedule_class",
[ScheduleVShaped, ScheduleUnbalanced],
)
@skip_if_lt_x_gpu(4)
def test_non_symmetric_stage_ids(self, schedule_class):
n_stages = schedule_class.n_stages
rank_stages = schedule_class.rank_stages
@ -1135,7 +1121,6 @@ class CustomSchedulesTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleWithReorderedB])
@skip_if_lt_x_gpu(4)
def test_pipeline_schedule_runtime_custom_sched(self, ScheduleClass):
n_stages = 2
stages_per_rank = 1
@ -1196,7 +1181,6 @@ class CustomSchedulesTest(MultiProcContinuousTest):
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
)
@parametrize("ScheduleClass", [ScheduleWithW])
@skip_if_lt_x_gpu(4)
def test_schedule_with_native_zero_bubble(self, ScheduleClass):
n_stages = ScheduleClass.n_stages
num_microbatches = ScheduleClass.num_microbatches

View File

@ -24,7 +24,6 @@ from torch.testing._internal.common_utils import (
parametrize,
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_MULTIACCELERATOR,
)
from torch.utils._pytree import tree_map_only
@ -35,6 +34,7 @@ chunks = 8
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
backend = dist.get_default_backend_for_device(device_type)
TEST_MULTIACCELERATOR = torch.accelerator.device_count() >= 2
torch.manual_seed(0)

View File

@ -204,16 +204,14 @@ class DistConvolutionOpsTest(DTensorTestBase):
self.assertTrue(b_dt.grad is not None)
self.assertTrue(x_dt.grad is None)
def _run_single_arg_fwd(
self, model, arg, placements=None
) -> tuple[torch.Tensor, torch.Tensor]:
def _run_single_arg_fwd(self, model, arg) -> tuple[torch.Tensor, torch.Tensor]:
"""Given model and arg, runs fwd model local and distbuted given device_mesh"""
device_mesh = self.build_device_mesh()
model_copy = copy.deepcopy(model).to(device=self.device_type)
dist_model = distribute_module(model, device_mesh, _conv_fn)
arg_dt = DTensor.from_local(arg, device_mesh, placements)
arg_dt = DTensor.from_local(arg, device_mesh, [Replicate()])
out_dt = dist_model(arg_dt.to(device=self.device_type))
out = model_copy(arg_dt.full_tensor())
out = model_copy(arg)
return (out_dt.full_tensor(), out)
@with_comms
@ -221,20 +219,22 @@ class DistConvolutionOpsTest(DTensorTestBase):
model = nn.Conv1d(64, 64, 3, padding=1)
x = torch.randn(1, 64, 8, device=self.device_type)
out_dt, out = self._run_single_arg_fwd(model, x)
self.assertEqual(out_dt, out)
self.assertEqual(out_dt.shape, out.shape)
@with_comms
def test_conv3d(self):
model = nn.Conv3d(64, 64, 3, padding=1)
x = torch.randn(1, 64, 8, 8, 8, device=self.device_type)
out_dt, out = self._run_single_arg_fwd(model, x, [Shard(0)])
self.assertEqual(out_dt, out)
out_dt, out = self._run_single_arg_fwd(model, x)
self.assertEqual(out_dt.shape, out.shape)
DistConvolutionOpsTestWithLocalTensor = create_local_tensor_test_class(
DistConvolutionOpsTest,
# Send / recv ops are not supported
skipped_tests=[
"test_conv1d",
"test_conv3d",
"test_conv_backward_none_grad_inp",
"test_depthwise_convolution",
"test_downsampling_convolution",

Some files were not shown because too many files have changed in this diff Show More