Compare commits

..

1 Commits

Author SHA1 Message Date
2eacbe792a [dynamo] Revert C++-fying of symbolic shape guards
Moving symbolic shape guards to C++ causes compile time issues. This
basically boils down to a tradeoff question.

For models that have large amount of dynamic shape guards, this flag
will help reduce guard latency. But for most of the models, that have a
very few dynamic shape guards, the guard lantecy is anyways small. These
models will still see a high compile time hit because of calling gcc
during the compile.

So a good default value seems to be False. We can write a doc to give
guidance on reducing guard latency.
2025-10-28 11:13:24 -07:00
16 changed files with 285 additions and 502 deletions

View File

@ -100,8 +100,6 @@ COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface-requirements.txt huggingface-requirements.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
# Only build aoti cpp tests when INDUCTOR_BENCHMARKS is set to True
ENV BUILD_AOT_INDUCTOR_TEST ${INDUCTOR_BENCHMARKS}
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt

View File

@ -460,18 +460,28 @@ test_inductor_shard() {
--verbose
}
test_inductor_aoti_cpp() {
test_inductor_aoti() {
# docker build uses bdist_wheel which does not work with test_aot_inductor
# TODO: need a faster way to build
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
# We need to hipify before building again
python3 tools/amd_build/build_amd.py
fi
if [[ "$BUILD_ENVIRONMENT" == *sm86* ]]; then
BUILD_COMMAND=(TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python -m pip install --no-build-isolation -v -e .)
# TODO: Replace me completely, as one should not use conda libstdc++, nor need special path to TORCH_LIB
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="/opt/conda/envs/py_3.10/lib:${TORCH_LIB_DIR}:${LD_LIBRARY_PATH}")
else
BUILD_COMMAND=(python -m pip install --no-build-isolation -v -e .)
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}")
fi
# aoti cmake custom command requires `torch` to be installed
# initialize the cmake build cache and install torch
/usr/bin/env "${BUILD_COMMAND[@]}"
# rebuild with the build cache with `BUILD_AOT_INDUCTOR_TEST` enabled
/usr/bin/env CMAKE_FRESH=1 BUILD_AOT_INDUCTOR_TEST=1 "${BUILD_COMMAND[@]}"
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
@ -1766,7 +1776,7 @@ elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
install_torchvision
PYTHONPATH=/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
if [[ "$SHARD_NUMBER" -eq "1" ]]; then
test_inductor_aoti_cpp
test_inductor_aoti
fi
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
install_torchvision

View File

@ -1358,15 +1358,9 @@ if(BUILD_TEST)
)
else()
add_subdirectory(${TORCH_ROOT}/test/cpp/jit ${CMAKE_BINARY_DIR}/test_jit)
add_subdirectory(${TORCH_ROOT}/test/cpp/lazy ${CMAKE_BINARY_DIR}/test_lazy)
# NativeRT is disabled
# add_subdirectory(${TORCH_ROOT}/test/cpp/nativert ${CMAKE_BINARY_DIR}/test_nativert)
add_subdirectory(${TORCH_ROOT}/test/inductor ${CMAKE_BINARY_DIR}/test_inductor)
add_subdirectory(${TORCH_ROOT}/test/cpp/aoti_abi_check ${CMAKE_BINARY_DIR}/test_aoti_abi_check)
if(BUILD_AOT_INDUCTOR_TEST)
add_subdirectory(${TORCH_ROOT}/test/cpp/aoti_inference ${CMAKE_BINARY_DIR}/test_aoti_inference)
endif()
if(USE_DISTRIBUTED)
add_subdirectory(${TORCH_ROOT}/test/cpp/c10d ${CMAKE_BINARY_DIR}/test_cpp_c10d)
if(NOT WIN32)
@ -1384,6 +1378,16 @@ if(BUILD_TEST)
${CMAKE_BINARY_DIR}/test_mobile_nnc
)
endif()
add_subdirectory(${TORCH_ROOT}/test/cpp/lazy
${CMAKE_BINARY_DIR}/test_lazy)
endif()
if(BUILD_AOT_INDUCTOR_TEST)
add_subdirectory(
${TORCH_ROOT}/test/cpp/aoti_abi_check
${CMAKE_BINARY_DIR}/test_aoti_abi_check)
add_subdirectory(
${TORCH_ROOT}/test/cpp/aoti_inference
${CMAKE_BINARY_DIR}/test_aoti_inference)
endif()
endif()

View File

@ -1,8 +1,3 @@
# Skip on windows
if(WIN32)
return()
endif()
set(AOTI_ABI_CHECK_TEST_ROOT ${TORCH_ROOT}/test/cpp/aoti_abi_check)
# Build the cpp gtest binary containing the cpp-only tests.
@ -35,15 +30,8 @@ target_compile_definitions(test_aoti_abi_check PRIVATE USE_GTEST)
# WARNING: DO NOT LINK torch!!!
# The purpose is to check if the used aten/c10 headers are written in a header-only way
target_link_libraries(test_aoti_abi_check PRIVATE gtest_main sleef)
target_link_libraries(test_aoti_abi_check PRIVATE gtest_main)
target_include_directories(test_aoti_abi_check PRIVATE ${ATen_CPU_INCLUDE})
if(NOT USE_SYSTEM_SLEEF)
target_include_directories(test_aoti_abi_check PRIVATE ${CMAKE_BINARY_DIR}/include)
endif()
# Disable unused-variable warnings for variables that are only used to test compilation
target_compile_options_if_supported(test_aoti_abi_check -Wno-unused-variable)
target_compile_options_if_supported(test_aoti_abi_check -Wno-unused-but-set-variable)
foreach(test_src ${AOTI_ABI_CHECK_VEC_TEST_SRCS})
foreach(i RANGE ${NUM_CPU_CAPABILITY_NAMES})
@ -53,17 +41,12 @@ foreach(test_src ${AOTI_ABI_CHECK_VEC_TEST_SRCS})
separate_arguments(FLAGS UNIX_COMMAND "${FLAGS}")
add_executable(${test_name}_${CPU_CAPABILITY} "${test_src}")
target_link_libraries(${test_name}_${CPU_CAPABILITY} PRIVATE gtest_main sleef)
target_link_libraries(${test_name}_${CPU_CAPABILITY} PRIVATE gtest_main)
target_include_directories(${test_name}_${CPU_CAPABILITY} PRIVATE ${ATen_CPU_INCLUDE})
if(NOT USE_SYSTEM_SLEEF)
target_include_directories(${test_name}_${CPU_CAPABILITY} PRIVATE ${CMAKE_BINARY_DIR}/include)
endif()
# Define CPU_CAPABILITY and CPU_CAPABILITY_XXX macros for conditional compilation
target_compile_definitions(${test_name}_${CPU_CAPABILITY} PRIVATE CPU_CAPABILITY=${CPU_CAPABILITY} CPU_CAPABILITY_${CPU_CAPABILITY})
target_compile_options(${test_name}_${CPU_CAPABILITY} PRIVATE ${FLAGS})
target_compile_options_if_supported(${test_name}_${CPU_CAPABILITY} -Wno-unused-variable)
target_compile_options_if_supported(${test_name}_${CPU_CAPABILITY} -Wno-unused-but-set-variable)
endforeach()
endforeach()

View File

@ -2,27 +2,10 @@
#include <ATen/cpu/vec/vec.h>
#include <iostream>
namespace torch {
namespace aot_inductor {
template <typename T>
void ExpectVecEqual(
const at::vec::Vectorized<T>& expected,
const at::vec::Vectorized<T>& actual) {
using Vec = at::vec::Vectorized<T>;
// Have to use std::vector for comparison because at::vec::Vectorized doesn't
// support operator[] on aarch64
std::vector<T> expected_data(Vec::size());
std::vector<T> actual_data(Vec::size());
expected.store(expected_data.data());
actual.store(actual_data.data());
for (int i = 0; i < Vec::size(); i++) {
EXPECT_EQ(expected_data[i], actual_data[i]);
}
}
TEST(TestVec, TestAdd) {
using Vec = at::vec::Vectorized<int>;
std::vector<int> a(1024, 1);
@ -33,7 +16,9 @@ TEST(TestVec, TestAdd) {
std::vector<int> expected(1024, 3);
Vec expected_vec = Vec::loadu(expected.data());
ExpectVecEqual(expected_vec, actual_vec);
for (int i = 0; i < Vec::size(); i++) {
EXPECT_EQ(expected_vec[i], actual_vec[i]);
}
}
TEST(TestVec, TestMax) {
@ -45,7 +30,9 @@ TEST(TestVec, TestMax) {
Vec actual_vec = at::vec::maximum(a_vec, b_vec);
Vec expected_vec = b_vec;
ExpectVecEqual(expected_vec, actual_vec);
for (int i = 0; i < Vec::size(); i++) {
EXPECT_EQ(expected_vec[i], actual_vec[i]);
}
}
TEST(TestVec, TestMin) {
@ -57,7 +44,9 @@ TEST(TestVec, TestMin) {
Vec actual_vec = at::vec::minimum(a_vec, b_vec);
Vec expected_vec = a_vec;
ExpectVecEqual(expected_vec, actual_vec);
for (int i = 0; i < Vec::size(); i++) {
EXPECT_EQ(expected_vec[i], actual_vec[i]);
}
}
TEST(TestVec, TestConvert) {
@ -69,7 +58,9 @@ TEST(TestVec, TestConvert) {
auto actual_vec = at::vec::convert<float>(a_vec);
auto expected_vec = b_vec;
ExpectVecEqual(expected_vec, actual_vec);
for (int i = 0; i < at::vec::Vectorized<int>::size(); i++) {
EXPECT_EQ(expected_vec[i], actual_vec[i]);
}
}
TEST(TestVec, TestClampMin) {
@ -81,7 +72,9 @@ TEST(TestVec, TestClampMin) {
Vec actual_vec = at::vec::clamp_min(a_vec, min_vec);
Vec expected_vec = min_vec;
ExpectVecEqual(expected_vec, actual_vec);
for (int i = 0; i < Vec::size(); i++) {
EXPECT_EQ(expected_vec[i], actual_vec[i]);
}
}
} // namespace aot_inductor

View File

@ -1,3 +1,4 @@
set(AOT_INDUCTOR_TEST_ROOT ${TORCH_ROOT}/test/cpp/aoti_inference)
# Build custom TorchScript op for AOTInductor
@ -7,12 +8,27 @@ set_target_properties(aoti_custom_class PROPERTIES
if(USE_CUDA)
target_compile_definitions(aoti_custom_class PRIVATE USE_CUDA)
elseif(USE_ROCM)
target_compile_definitions(aoti_custom_class PRIVATE USE_ROCM)
target_compile_definitions(aoti_custom_class PRIVATE USE_ROCM)
endif()
# Link against LibTorch
target_link_libraries(aoti_custom_class torch)
# the custom command that generates the TorchScript module
add_custom_command(
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/script_data.pt
${CMAKE_CURRENT_BINARY_DIR}/script_model_cpu.pt
${CMAKE_CURRENT_BINARY_DIR}/script_model_cuda.pt
# This script requires the torch package to be installed.
COMMAND python ${AOT_INDUCTOR_TEST_ROOT}/compile_model.py
DEPENDS torch torch_python aoti_custom_class ${AOT_INDUCTOR_TEST_ROOT}/compile_model.py
)
add_custom_target(aoti_script_model ALL
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/script_data.pt
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/script_model_cpu.pt
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/script_model_cuda.pt
)
add_dependencies(aoti_script_model aoti_custom_class)
# Build the cpp gtest binary containing the cpp-only tests.
set(INDUCTOR_TEST_SRCS
${AOT_INDUCTOR_TEST_ROOT}/test.cpp
@ -21,12 +37,23 @@ set(INDUCTOR_TEST_SRCS
add_executable(test_aoti_inference
${TORCH_ROOT}/test/cpp/common/main.cpp
${INDUCTOR_TEST_SRCS}
data.pt
script_data.pt
script_model_cpu.pt
script_model_cuda.pt
)
add_dependencies(test_aoti_inference aoti_custom_class)
add_dependencies(test_aoti_inference aoti_custom_class aoti_script_model)
# TODO temporary until we can delete the old gtest polyfills.
target_compile_definitions(test_aoti_inference PRIVATE USE_GTEST)
# Define a custom command to generate the library
add_custom_command(
OUTPUT data.pt
COMMAND python ${AOT_INDUCTOR_TEST_ROOT}/test.py
DEPENDS ${AOT_INDUCTOR_TEST_ROOT}/test.py
)
target_link_libraries(test_aoti_inference PRIVATE
torch
gtest_main
@ -44,10 +71,6 @@ target_compile_definitions(test_aoti_inference PRIVATE
CMAKE_CURRENT_BINARY_DIR=${CMAKE_CURRENT_BINARY_DIR}
)
target_compile_options_if_supported(test_aoti_inference -Wno-unused-variable)
target_compile_options_if_supported(test_aoti_inference -Wno-unused-but-set-variable)
target_compile_options_if_supported(test_aoti_inference -Wno-unused-function)
if(INSTALL_TEST)
install(TARGETS test_aoti_inference DESTINATION bin)
# Install PDB files for MSVC builds

View File

@ -2,9 +2,7 @@
#include <gtest/gtest.h>
#include <atomic>
#include <condition_variable>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <functional>
#include <mutex>
#include <queue>
@ -30,64 +28,6 @@
namespace {
// Function to check if test data files exist and are valid
bool testDataFilesExist() {
std::string bindir = STRINGIZE(CMAKE_CURRENT_BINARY_DIR);
std::array<std::string, 4> required_files = {
"data.pt",
"script_data.pt",
"script_model_cpu.pt",
"script_model_cuda.pt"};
for (const auto& filename : required_files) {
std::string filepath = bindir + "/" + filename;
std::ifstream file(filepath);
if (!file.good()) {
return false;
}
}
return true;
}
// Function to ensure test data files are generated at runtime
void ensureTestDataGenerated() {
static std::once_flag generated_flag;
std::call_once(generated_flag, []() {
// Only generate if files don't exist or are placeholders
if (testDataFilesExist()) {
return;
}
std::string bindir = STRINGIZE(CMAKE_CURRENT_BINARY_DIR);
// Calculate path to source directory: build/test_aoti_inference -> build ->
// pytorch
std::string pytorch_root = bindir.substr(0, bindir.find_last_of("/"));
pytorch_root = pytorch_root.substr(0, pytorch_root.find_last_of("/"));
std::string source_dir = pytorch_root + "/test/cpp/aoti_inference";
// Generate test data files (data.pt, etc.) by running test.py directly
std::string test_script = source_dir + "/test.py";
std::string test_data_cmd = "cd " + bindir + " && python " + test_script;
std::cout << "Generating test data: " << test_data_cmd << std::endl;
int result1 = std::system(test_data_cmd.c_str());
if (result1 != 0) {
std::cerr << "Warning: Test data generation failed with code " << result1
<< std::endl;
}
// Generate model files (script_*.pt) by running compile_model.py directly
std::string compile_script = source_dir + "/compile_model.py";
std::string models_cmd = "cd " + bindir + " && python " + compile_script;
std::cout << "Generating model files: " << models_cmd << std::endl;
int result2 = std::system(models_cmd.c_str());
if (result2 != 0) {
std::cerr << "Warning: Model generation failed with code " << result2
<< std::endl;
}
});
}
const std::unordered_map<std::string, at::Tensor> derefTensorConstantMap(
torch::inductor::TensorConstantMap tensor_constant_map) {
std::unordered_map<std::string, at::Tensor> ret;
@ -915,6 +855,7 @@ void test_aoti_free_buffer(bool use_runtime_constant_folding) {
}
}
#if defined(USE_CUDA) || defined(USE_ROCM)
void test_cuda_alloc_test() {
torch::NoGradGuard no_grad;
@ -954,8 +895,8 @@ void test_cuda_alloc_test() {
runner->run(data_loader.attr(inputs_attr.c_str()).toTensorList().vec());
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}
#endif
#ifdef USE_CUDA
class ThreadPool {
private:
struct Task {
@ -1096,96 +1037,86 @@ void test_multi_cuda_streams(const std::string& device) {
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], all_outputs[i][0]));
}
}
#endif // USE_CUDA
#endif // USE_CUDA || USE_ROCM
#endif
} // namespace
namespace torch::aot_inductor {
// Test fixture that ensures test data is generated once for all tests
class AotInductorTest : public ::testing::Test {
public:
// This runs once before all tests in this test suite
static void SetUpTestSuite() {
ensureTestDataGenerated();
}
};
TEST_F(AotInductorTest, BasicTestCpu) {
TEST(AotInductorTest, BasicTestCpu) {
test_aoti("cpu", false);
}
TEST_F(AotInductorTest, BasicScriptTestCpu) {
TEST(AotInductorTest, BasicScriptTestCpu) {
test_aoti_script("cpu");
}
TEST_F(AotInductorTest, BasicPackageLoaderTestCpu) {
TEST(AotInductorTest, BasicPackageLoaderTestCpu) {
test_aoti_package_loader("cpu", false);
}
TEST_F(AotInductorTest, ExtractConstantsMapCpu) {
TEST(AotInductorTest, ExtractConstantsMapCpu) {
test_aoti_extract_constants_map("cpu");
}
#ifdef USE_CUDA
TEST_F(AotInductorTest, BasicTestCuda) {
TEST(AotInductorTest, BasicTestCuda) {
test_aoti("cuda", true);
test_aoti("cuda", false);
}
TEST_F(AotInductorTest, BasicScriptTestCuda) {
TEST(AotInductorTest, BasicScriptTestCuda) {
test_aoti_script("cuda");
}
TEST_F(AotInductorTest, BasicPackageLoaderTestCuda) {
TEST(AotInductorTest, BasicPackageLoaderTestCuda) {
test_aoti_package_loader("cuda", false);
}
TEST_F(AotInductorTest, BasicPackageLoaderTestMultiGpuCuda) {
TEST(AotInductorTest, BasicPackageLoaderTestMultiGpuCuda) {
test_aoti_package_loader_multi_gpu("cuda", false);
}
TEST_F(AotInductorTest, UpdateUserManagedConstantsCuda) {
TEST(AotInductorTest, UpdateUserManagedConstantsCuda) {
test_aoti_user_managed_buffer();
}
TEST_F(AotInductorTest, RuntimeUpdateConstantsCuda) {
TEST(AotInductorTest, RuntimeUpdateConstantsCuda) {
test_aoti_constants_update("cuda", true);
}
TEST_F(AotInductorTest, UpdateConstantsCuda) {
TEST(AotInductorTest, UpdateConstantsCuda) {
test_aoti_constants_update("cuda", false);
}
TEST_F(AotInductorTest, ExtractConstantsMapCuda) {
TEST(AotInductorTest, ExtractConstantsMapCuda) {
test_aoti_extract_constants_map("cuda");
}
TEST_F(AotInductorTest, RuntimeUpdateInactiveConstantsCuda) {
TEST(AotInductorTest, RuntimeUpdateInactiveConstantsCuda) {
test_aoti_double_buffering("cuda", true);
}
TEST_F(AotInductorTest, UpdateInactiveConstantsCuda) {
TEST(AotInductorTest, UpdateInactiveConstantsCuda) {
test_aoti_double_buffering("cuda", false);
}
TEST_F(AotInductorTest, UpdateInactiveConstantsWithTensorConstantsCuda) {
TEST(AotInductorTest, UpdateInactiveConstantsWithTensorConstantsCuda) {
test_aoti_double_buffering_with_tensor_constants();
}
TEST_F(AotInductorTest, FreeInactiveConstantBufferCuda) {
TEST(AotInductorTest, FreeInactiveConstantBufferCuda) {
test_aoti_free_buffer(false);
}
TEST_F(AotInductorTest, FreeInactiveConstantBufferRuntimeConstantFoldingCuda) {
TEST(AotInductorTest, FreeInactiveConstantBufferRuntimeConstantFoldingCuda) {
test_aoti_free_buffer(true);
}
TEST_F(AotInductorTest, MultiStreamTestCuda) {
TEST(AotInductorTest, MultiStreamTestCuda) {
test_multi_cuda_streams("cuda");
}
TEST_F(AotInductorTest, CudaAllocTestCuda) {
TEST(AotInductorTest, CudaAllocTestCuda) {
test_cuda_alloc_test();
}
#endif

View File

@ -892,16 +892,10 @@ fn(torch.randn(5))
os.remove(
file_path
) # Delete temp file manually, due to setup NamedTemporaryFile as delete=False.
orig_maxDiff = unittest.TestCase.maxDiff
unittest.TestCase.maxDiff = None
try:
self.assertEqual( # process wrap difference: /r/n on Windows, /n on posix.
empty_line_normalizer(lines),
empty_line_normalizer(stderr.decode("utf-8")),
)
except Exception:
unittest.TestCase.maxDiff = orig_maxDiff
raise
self.assertEqual( # process wrap difference: /r/n on Windows, /n on posix.
empty_line_normalizer(lines),
empty_line_normalizer(stderr.decode("utf-8")),
)
@make_settings_test("torch._dynamo.eval_frame")
def test_log_traced_frames(self, records):

View File

@ -122,52 +122,16 @@ def cuda_kernel_profiler(kernel_pattern="flash_attncute"):
result["found"] = any(kernel_pattern in name for name in kernel_names)
def flash_vs_triton(q, k, v, score_mod=None, block_mask=None, rtol=2):
def flash_vs_triton(q, k, v, score_mod=None, rtol=5e-3, atol=5e-3):
compiled_fn = torch.compile(flex_attention)
out_ref_fp32 = flex_attention(
q.to(torch.float32),
k.to(torch.float32),
v.to(torch.float32),
score_mod=score_mod,
block_mask=block_mask,
).to(q.dtype)
out_flash = compiled_fn(
q,
k,
v,
score_mod=score_mod,
block_mask=block_mask,
kernel_options={"force_flash": True},
q, k, v, score_mod=score_mod, kernel_options={"force_flash": True}
)
out_triton = compiled_fn(
q,
k,
v,
score_mod=score_mod,
block_mask=block_mask,
kernel_options={"force_flash": False},
out_no_flash = compiled_fn(
q, k, v, score_mod=score_mod, kernel_options={"force_flash": False}
)
assert out_flash.shape == out_ref_fp32.shape == out_triton.shape
assert not torch.isnan(out_flash).any()
assert not torch.isnan(out_triton).any()
assert not torch.isnan(out_ref_fp32).any()
assert torch.isfinite(out_flash).all()
assert torch.isfinite(out_triton).all()
assert torch.isfinite(out_ref_fp32).all()
fwd_atol = 2 * (out_ref_fp32 + 0.3 - 0.3 - out_ref_fp32).abs().max().item()
triton_error = (out_triton - out_ref_fp32).abs().max().item()
flash_error = (out_flash - out_ref_fp32).abs().max().item()
assert flash_error <= rtol * triton_error + fwd_atol, (
f"Flash error {flash_error:.2e} exceeds {rtol}x Triton error {triton_error:.2e} + {fwd_atol:.2e}"
)
return out_flash, out_triton, out_ref_fp32
torch.testing.assert_close(out_flash, out_no_flash, rtol=rtol, atol=atol)
return out_flash, out_no_flash
def name_fn(score_mod):
@ -198,6 +162,26 @@ class TestFlexFlash(InductorTestCase):
q, k, v = create_test_tensors(seq_len=seq_len, dtype=dtype, device=device)
flash_vs_triton(q, k, v, score_mod=_causal)
@dtypes(torch.float16, torch.bfloat16)
def test_force_flash_error_with_block_mask(self, device, dtype):
"""Test that force_flash=True raises error when BlockMask is provided."""
q, k, v = create_test_tensors(dtype=dtype, device=device)
# Create a causal block mask
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
block_mask = create_block_mask(causal_mask, 2, 4, 512, 512, device=device)
compiled_fn = torch.compile(flex_attention)
with self.assertRaisesRegex(
RuntimeError,
r"force_flash=True but flash attention cannot be used.*BlockMask.*not supported",
):
compiled_fn(
q, k, v, block_mask=block_mask, kernel_options={"force_flash": True}
)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_kernel_called(self, device, dtype):
"""Test that flash attention kernel is actually called when force_flash=True."""
@ -273,6 +257,7 @@ class TestFlexFlash(InductorTestCase):
"""Test that force_flash=True raises error when tensor requires gradients."""
q, k, v = create_test_tensors(dtype=dtype, device=device)
# Create a score mod with requires_grad tensor
bias = torch.randn(4, device=device, dtype=dtype, requires_grad=True)
def score_mod_with_grad(score, b, h, q_idx, kv_idx):
@ -291,108 +276,6 @@ class TestFlexFlash(InductorTestCase):
kernel_options={"force_flash": True},
)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_with_block_mask(self, device, dtype):
"""Test flash attention with block mask and mask_mod."""
q, k, v = create_test_tensors(dtype=dtype, device=device)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
block_mask = create_block_mask(causal_mask, 2, 4, 512, 512, device=device)
flash_vs_triton(q, k, v, block_mask=block_mask)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_block_mask_with_score_mod(self, device, dtype):
"""Test flash attention with both block mask and score_mod."""
q, k, v = create_test_tensors(dtype=dtype, device=device)
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
block_mask = create_block_mask(causal_mask, 2, 4, 512, 512, device=device)
flash_vs_triton(q, k, v, score_mod=_times_two, block_mask=block_mask)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_with_mask_mod_buffer(self, device, dtype):
"""Test flash attention with mask_mod that loads from buffer."""
q, k, v = create_test_tensors(
batch_size=2, num_heads=4, dtype=dtype, device=device
)
mask_bias = torch.randn(4, device=device, dtype=dtype) * 0.1
def custom_mask(b, h, q_idx, kv_idx):
bias_value = mask_bias[h]
return (q_idx >= kv_idx) | (bias_value > 0)
block_mask = create_block_mask(custom_mask, 2, 4, 512, 512, device=device)
flash_vs_triton(q, k, v, block_mask=block_mask)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_mask_mod_with_dual_buffers(self, device, dtype):
"""Mask modifier should support multiple captured buffers."""
batch_size, num_heads, seq_len = 2, 4, 512
q, k, v = create_test_tensors(
batch_size=batch_size, num_heads=num_heads, dtype=dtype, device=device
)
head_bias = torch.randn(num_heads, device=device, dtype=dtype) * 0.2
batch_bias = torch.randn(batch_size, device=device, dtype=dtype) * 0.2
def dual_buffer_mask(b, h, q_idx, kv_idx):
head_term = head_bias[h]
batch_term = batch_bias[b]
causal = q_idx >= kv_idx
bias_cond = (head_term + batch_term).to(torch.float32) > 0
return causal | bias_cond
block_mask = create_block_mask(
dual_buffer_mask, batch_size, num_heads, seq_len, seq_len, device=device
)
flash_vs_triton(q, k, v, block_mask=block_mask)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_score_mod_with_many_buffer_indexing(self, device, dtype):
batch_size, num_heads, seq_len = 2, 4, 512
q, k, v = create_test_tensors(
batch_size=batch_size, num_heads=num_heads, dtype=dtype, device=device
)
head_bias = torch.randn(num_heads, device=device, dtype=dtype) * 0.15
query_scale = torch.randn(seq_len, device=device, dtype=dtype) * 0.05
kv_scale = torch.randn(seq_len, device=device, dtype=dtype) * 0.05
batch_bias = torch.randn(batch_size, device=device, dtype=dtype) * 0.1
def complex_score(score, b, h, q_idx, kv_idx):
head_term = head_bias[h]
query_term = query_scale[q_idx]
kv_term = kv_scale[kv_idx]
batch_term = batch_bias[b]
return score + head_term + query_term - kv_term + batch_term
flash_vs_triton(q, k, v, score_mod=complex_score)
@dtypes(torch.float16, torch.bfloat16)
def test_flash_attention_with_score_and_mask_buffers(self, device, dtype):
"""Test flash attention with both score_mod and mask_mod using buffers."""
q, k, v = create_test_tensors(
batch_size=2, num_heads=4, dtype=dtype, device=device
)
score_bias = torch.randn(4, device=device, dtype=dtype) * 0.2
mask_bias = torch.randn(4, device=device, dtype=dtype) * 0.1
def score_with_buffer(score, b, h, q_idx, kv_idx):
return score + score_bias[h]
def mask_with_buffer(b, h, q_idx, kv_idx):
bias_value = mask_bias[h]
return (q_idx >= kv_idx) | (bias_value > 0)
block_mask = create_block_mask(mask_with_buffer, 2, 4, 512, 512, device=device)
flash_vs_triton(q, k, v, score_mod=score_with_buffer, block_mask=block_mask)
instantiate_device_type_tests(TestFlexFlash, globals(), only_for="cuda")

View File

@ -529,7 +529,7 @@ class TestProfiler(TestCase):
found_mm = True
if "gemm" in e.name.lower() or "Cijk" in e.name:
found_gemm = True
if "memcpy" in e.name.lower() or "__amd_rocclr_copyBuffer" in e.name:
if "memcpy" in e.name.lower():
found_memcpy = True
if use_cuda:
self.assertTrue(found_gemm)

View File

@ -445,7 +445,7 @@ use_numpy_random_stream = False
enable_cpp_guard_manager = True
# Use C++ guard manager for symbolic shapes
enable_cpp_symbolic_shape_guards = not is_fbcode()
enable_cpp_symbolic_shape_guards = False
# Enable tracing through contextlib.contextmanager
enable_trace_contextlib = True

View File

@ -65,10 +65,6 @@ class CuteDSLSubgraphInfo:
body: IndentedBuffer
template_mask: Optional[str] = None
template_out: Optional[str] = None
cse: Optional[CSE[Any]] = None
def __post_init__(self):
self.only_copy_if_non_none_fields = ("cse",)
def to_dict(self):
return {
@ -195,15 +191,10 @@ class CuteDSLTemplateKernel(Kernel):
body=IndentedBuffer(),
template_mask=None,
template_out=None,
cse=None,
)
subgraph = self.subgraph_bodies[body_name]
for key, value in subgraph.to_dict().items():
if value is None and key in getattr(
subgraph, "only_copy_if_non_none_fields", ()
):
continue
setattr(self, key, value)
try:
@ -221,17 +212,15 @@ class CuteDSLTemplateKernel(Kernel):
setattr(self, key, value)
@contextlib.contextmanager
def create_subgraph_body(self, body_name: str, *, clear_cse: bool = False):
def create_subgraph_body(self, body_name: str):
"""Create a new subgraph body for template processing."""
assert body_name not in self.subgraph_bodies, (
f"Subgraph body '{body_name}' already exists"
)
new_cse = self.cse.clone() if clear_cse else None
self.subgraph_bodies[body_name] = CuteDSLSubgraphInfo(
body=IndentedBuffer(),
template_mask=None,
template_out=None,
cse=new_cse,
)
with self.set_subgraph_body(body_name):
yield
@ -305,8 +294,7 @@ class CuteDSLTemplateKernel(Kernel):
# Register the hook and return placeholder
placeholder = "<UNPACK_BUFFERS>"
# TODO: I think double invoking is fine for this specific hook
# assert placeholder not in self.render_hooks
assert placeholder not in self.render_hooks
self.render_hooks[placeholder] = hook
return placeholder
@ -342,7 +330,7 @@ class CuteDSLTemplateKernel(Kernel):
while f"mod_{subgraph_number}_{num}" in self.subgraph_bodies:
num += 1
with self.create_subgraph_body(f"mod_{subgraph_number}_{num}", clear_cse=True):
with self.create_subgraph_body(f"mod_{subgraph_number}_{num}"):
subgraph = self._get_subgraph(subgraph_number)
modification_handler = ModificationWrapperCuteDSL(
self, subgraph_number, fixed_inputs, mask
@ -441,20 +429,40 @@ class ModificationWrapperCuteDSL(V.WrapperHandler): # type: ignore[name-defined
# val_frag[0] = tensor[index]
# result = val_frag.load()
index_frag = self.kernel.cse.newvar(dtype=torch.int32)
self.kernel.body.writeline(
f"{index_frag} = cute.make_fragment(1, cutlass.Int32)"
)
self.kernel.body.writeline(f"{index_frag}.store({index_str})")
val_frag = self.kernel.cse.newvar(dtype=var_dtype)
self.kernel.body.writeline(
f"{val_frag} = cute.make_fragment(1, {cute_dtype})"
index_frag = self.kernel.cse.generate(
self.kernel.body,
"cute.make_fragment(1, cutlass.Int32)",
dtype=torch.int32,
bounds=ValueRanges.unknown(),
)
index_var = self.kernel.cse.newvar(dtype=torch.int32)
self.kernel.body.writeline(f"{index_var} = {index_frag}[0]")
self.kernel.body.writeline(f"{val_frag}[0] = ({var}[{index_var}])")
self.kernel.cse.generate(
self.kernel.body,
f"{index_frag}.store({index_str})",
dtype=torch.int32,
bounds=ValueRanges.unknown(),
)
val_frag = self.kernel.cse.generate(
self.kernel.body,
f"cute.make_fragment(1, {cute_dtype})",
dtype=var_dtype,
bounds=ValueRanges.unknown(),
)
index_var = self.kernel.cse.generate(
self.kernel.body,
f"{index_frag}[0]",
dtype=torch.int32,
bounds=ValueRanges.unknown(),
)
self.kernel.cse.generate(
self.kernel.body,
f"{val_frag}[0] = ({var}[{index_var}])",
dtype=var_dtype,
bounds=ValueRanges.unknown(),
)
final_expr = f"{val_frag}.load()"

View File

@ -193,6 +193,24 @@ def flex_attention(
score_mod_other_buffers,
mask_mod_other_buffers,
)
if _use_flex_flash_attention(
subgraph,
mask_graph,
kernel_options,
num_score_mod_placeholders=len(placeholder_inps),
):
return create_flex_flash_attention_kernel(
query,
key,
value,
block_mask,
scale,
kernel_options,
subgraph_buffer,
mask_graph_buffer,
score_mod_other_buffers,
mask_mod_other_buffers,
)
(
query,
@ -222,30 +240,6 @@ def flex_attention(
]
)
if _use_flex_flash_attention(
subgraph,
mask_graph,
kernel_options,
num_score_mod_placeholders=len(placeholder_inps),
):
return create_flex_flash_attention_kernel(
query,
key,
value,
block_mask,
scale,
kernel_options,
subgraph_buffer,
mask_graph_buffer,
score_mod_other_buffers,
mask_mod_other_buffers,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
mask_graph=mask_graph,
)
score_mod_other_buffers = maybe_realize(score_mod_other_buffers)
mask_mod_other_buffers = maybe_realize(mask_mod_other_buffers)

View File

@ -56,8 +56,10 @@ def input_buffers_require_grads(graph_module, num_score_mod_placeholders: int):
return any(requires_grad(n) for n in inputs[num_score_mod_placeholders:])
def is_trivial_mask_graph(graph_module: GraphModule) -> bool:
"""Mask graph is trivial when it only gates via the default full op."""
def is_trivial_graph(
graph_module: GraphModule, is_score_graph: bool, num_score_mod_placeholders: int
):
"""Check if the flex graphs are compatible with Flash Attention."""
graph = graph_module.graph
nodes = list(graph.nodes)
placeholders = [n for n in nodes if n.op == "placeholder"]
@ -65,16 +67,14 @@ def is_trivial_mask_graph(graph_module: GraphModule) -> bool:
assert len(output) == 1, "Got graph w/ multiple outputs"
output_val = output[0].args[0]
if is_score_graph:
if input_buffers_require_grads(graph_module, num_score_mod_placeholders):
return False
return True # party on garth
# mask mod graph is empty if we have 4 inputs and full_default output
return len(placeholders) == 4 and output_val.target == torch.ops.aten.full.default
@functools.lru_cache(maxsize=1)
def _supports_nontrivial_mask_graphs() -> bool:
"""Currently only supported on Hopper (SM90) GPUs."""
return torch.cuda.get_device_capability()[0] == 9
def _can_use_flex_flash_attention(
subgraph: Subgraph, mask_graph: Subgraph, num_score_mod_placeholders: int
) -> tuple[bool, str]:
@ -91,15 +91,32 @@ def _can_use_flex_flash_attention(
False,
"Input buffers require gradients (not supported by flash attention)",
)
mask_trivial = is_trivial_mask_graph(mask_graph.graph_module)
if mask_trivial:
return True, ""
score_trivial = is_trivial_graph(
subgraph.graph_module,
is_score_graph=True,
num_score_mod_placeholders=num_score_mod_placeholders,
)
mask_trivial = is_trivial_graph(
mask_graph.graph_module,
is_score_graph=False,
num_score_mod_placeholders=num_score_mod_placeholders,
)
if not _supports_nontrivial_mask_graphs():
if not score_trivial and not mask_trivial:
return (
False,
"NYI: Non-trivial mask graphs only supported on Hopper (SM90) for flash attention",
"Both score and mask graphs are too complex for flash attention (require simple operations only)",
)
elif not score_trivial:
return (
False,
"Score modification captured tensors that require gradients (not supported by flash attention)",
)
elif not mask_trivial:
return (
False,
"A non None BlockMask was passed to flex attention (not supported by flash attention yet)",
)
return True, ""
@ -137,11 +154,6 @@ def create_flex_flash_attention_kernel(
mask_graph_buffer: SubgraphResults,
score_mod_other_buffers: list[TensorBox],
mask_mod_other_buffers: list[TensorBox],
kv_num_blocks: TensorBox | None,
kv_indices: TensorBox | None,
full_kv_num_blocks: TensorBox | None,
full_kv_indices: TensorBox | None,
mask_graph: Subgraph,
) -> tuple[TensorBox | ShapeAsConstantBuffer, TensorBox | ShapeAsConstantBuffer]:
"""Create a flex flash attention kernel using CuteDSL template."""
if not ensure_flash_available():
@ -181,34 +193,17 @@ def create_flex_flash_attention_kernel(
stride=[sympy.sympify(s) for s in output.get_stride()],
)
# Used to check if we can skip block sparse impl
mask_graph_is_trivial = is_trivial_mask_graph(mask_graph.graph_module)
needs_block_mask = not mask_graph_is_trivial
has_full_blocks = full_kv_num_blocks is not None
choices: list[Any] = []
causal = kernel_options.get("causal", False)
assert flash_attention_cutedsl_template is not None
input_nodes = [query, key, value, lse]
if has_full_blocks:
input_nodes.extend(
[kv_num_blocks, kv_indices, full_kv_num_blocks, full_kv_indices]
)
if needs_block_mask and not has_full_blocks:
raise NotImplementedError(
"Flash attention with block mask but without full blocks is not supported yet"
)
error = flash_attention_cutedsl_template.maybe_append_choice(
choices,
input_nodes=input_nodes,
input_nodes=[query, key, value, lse],
layout=output_layout,
mutated_inputs=[lse],
subgraphs=[subgraph_buffer, mask_graph_buffer],
SM_SCALE=scale,
NEEDS_BLOCK_MASK=needs_block_mask,
CAUSAL=causal,
)
if error or not choices:

View File

@ -1,10 +1,6 @@
{% if NEEDS_BLOCK_MASK %}
{{def_kernel("Q", "K", "V", "LOGSUMEXP", "KV_NUM_BLKS", "KV_IDX", "FULL_KV_NUM_BLKS", "FULL_KV_IDX")}}
{% else %}
{{def_kernel("Q", "K", "V", "LOGSUMEXP")}}
{% endif %}
from flash_attn.cute.interface import _flash_attn_fwd
from flash_attn.cute.block_sparsity import BlockSparseTensorsTorch
# Transpose tensors for _flash_attn_fwd compatibility (B,H,M,D) -> (B,M,H,D)
q_transposed = Q.transpose(1, 2)
@ -30,25 +26,6 @@
output = {{get_output()}}
output_transposed = output.transpose(1, 2)
{% if NEEDS_BLOCK_MASK %}
@cute.jit
def mask_mod(b_idx, h_idx, q_idx, kv_idx, aux_tensors):
{{unpack_buffers("aux_tensors", indent_width=8)}}
{{ modification(
subgraph_number=1,
output_name="mask_mod_output",
b="b_idx",
h="h_idx",
m="q_idx",
n="kv_idx",
) | indent_except_first(2) }}
return mask_mod_output
block_sparse_tensors = BlockSparseTensorsTorch(KV_NUM_BLKS, KV_IDX, FULL_KV_NUM_BLKS, FULL_KV_IDX)
{% else %}
block_sparse_tensors = None
mask_mod = None
{% endif %}
# Collect any additional tensor buffers that were added during modifications
{% set tensor_buffers = get_tensor_buffers() -%}
{% if tensor_buffers -%}
@ -64,11 +41,10 @@
k_transposed,
v_transposed,
softmax_scale={{SM_SCALE}},
causal={{CAUSAL}},
return_lse=True,
score_mod=score_mod,
mask_mod=mask_mod,
out=output_transposed,
lse=LOGSUMEXP,
block_sparse_tensors=block_sparse_tensors,
aux_tensors=buffers
)
)

View File

@ -409,10 +409,9 @@ class SchedulerDonatedBuffer(SchedulerBuffer):
class BaseSchedulerNode:
ancestors: OrderedSet[str]
debug_device_str: Callable[[BaseSchedulerNode], list[str]]
group: tuple[torch.device, tuple[tuple[sympy.Expr, ...], ...]]
last_usage: OrderedSet[str]
read_writes: dependencies.ReadWrites
unmet_dependencies: OrderedSet[Dep]
# .min_order and .max_order are only relevant for "grouped" nodes such as FusedSchedulerNode.
# e.g. if the FusedSchedulerNode includes nodes (op_1, op_2, op_3), and op_X is X-th node
# in `self.scheduler.nodes`, then for this FusedSchedulerNode, .min_order is 1 and .max_order is 3.
@ -421,24 +420,22 @@ class BaseSchedulerNode:
min_order: int
max_order: int
mpi_node: MemoryPlanningInfoForNode
mutation_renames: dict[str, str]
node: Optional[ir.Operation]
outputs: list[SchedulerBuffer]
outputs_by_name: dict[str, SchedulerBuffer]
override_estimated_runtime: Optional[float] = None
read_writes: dependencies.ReadWrites
unmet_dependencies: OrderedSet[Dep]
def __init__(self, scheduler: Scheduler) -> None:
self.scheduler = scheduler
self.debug_device_str = lambda *args, **kwargs: []
self.scheduler: Scheduler = scheduler
self.debug_device_str: Callable[[BaseSchedulerNode], list[str]] = (
lambda *args, **kwargs: []
)
def _init_from_node(self, node: ir.Operation) -> None:
self.node = node
self.ancestors = OrderedSet()
self.last_usage = OrderedSet() # buffers that won't be used after this kernel
self.node: Optional[ir.Operation] = node
self.ancestors: OrderedSet[str] = OrderedSet()
self.last_usage = OrderedSet[
str
]() # buffers that won't be used after this kernel
self.written = False
self.outputs = [
self.outputs: list[SchedulerBuffer] = [
SchedulerBuffer(
scheduler=self.scheduler,
node=output,
@ -446,14 +443,16 @@ class BaseSchedulerNode:
)
for output in node.get_outputs()
]
self.outputs_by_name = {buf.get_name(): buf for buf in self.outputs}
self.outputs_by_name: dict[str, SchedulerBuffer] = {
buf.get_name(): buf for buf in self.outputs
}
# mutation_renames for the current node. Due to potential
# more mutations happening later, this can be different
# to Scheduler.mutation_renames. Also this dict should be small
# since only mutation information relevant to the deps for this
# node is stored here.
self.mutation_renames = {}
self.mutation_renames: dict[str, str] = {}
def __repr__(self) -> str:
return f"{type(self).__name__}(name={self.get_name()!r})"
@ -2436,34 +2435,6 @@ def pick_loop_order(
return order
def _replace_operation_buffer(
orig_node: ir.MultiTemplateBuffer, new_node: ir.OperationBuffer
) -> None:
replaced_buf_name = new_node.get_name()
orig_buf_name = orig_node.get_name()
assert isinstance(orig_buf_name, str) and isinstance(replaced_buf_name, str)
replaced_op_name = new_node.get_operation_name()
orig_op_name = orig_node.get_operation_name()
assert isinstance(orig_op_name, str) and isinstance(replaced_op_name, str)
del V.graph.name_to_buffer[replaced_buf_name]
new_node.name = orig_buf_name
del V.graph.name_to_op[replaced_op_name]
new_node.operation_name = orig_op_name
orig = V.graph.buffers.index(orig_node)
V.graph.buffers.remove(new_node)
V.graph.buffers[orig] = new_node
V.graph.name_to_buffer[orig_buf_name] = new_node
orig = V.graph.operations.index(orig_node)
V.graph.operations.remove(new_node)
V.graph.operations[orig] = new_node
V.graph.name_to_op[orig_op_name] = new_node
@dataclasses.dataclass
class NodeUser:
node: Union[BaseSchedulerNode, OutputNode]
@ -3365,6 +3336,33 @@ class Scheduler:
will force completion of compilation and benchmarking.
"""
def replace_operation_buffer(
orig_node: ir.MultiTemplateBuffer, new_node: ir.OperationBuffer
) -> None:
replaced_buf_name = new_node.get_name()
orig_buf_name = orig_node.get_name()
assert isinstance(orig_buf_name, str) and isinstance(replaced_buf_name, str)
replaced_op_name = new_node.get_operation_name()
orig_op_name = orig_node.get_operation_name()
assert isinstance(orig_op_name, str) and isinstance(replaced_op_name, str)
del V.graph.name_to_buffer[replaced_buf_name]
new_node.name = orig_buf_name
del V.graph.name_to_op[replaced_op_name]
new_node.operation_name = orig_op_name
orig = V.graph.buffers.index(orig_node)
V.graph.buffers.remove(new_node)
V.graph.buffers[orig] = new_node
V.graph.name_to_buffer[orig_buf_name] = new_node
orig = V.graph.operations.index(orig_node)
V.graph.operations.remove(new_node)
V.graph.operations[orig] = new_node
V.graph.name_to_op[orig_op_name] = new_node
for i, node in enumerate(self.nodes):
if isinstance(node, SchedulerNode) and isinstance(
node.node, ir.MultiTemplateBuffer
@ -3418,47 +3416,40 @@ class Scheduler:
assign_origin_node(out_tensorbox, multi_node.origin_node)
out_buffer.layout = multi_node.layout
self._replace_node(out_buffer, multi_node, i, node)
replace_operation_buffer(multi_node, out_buffer)
new_scheduler_node = self.create_scheduler_node(out_buffer)
def _replace_node(
self,
out_buffer: ir.OperationBuffer,
multi_node: ir.MultiTemplateBuffer,
i: int,
node: SchedulerNode,
) -> None:
_replace_operation_buffer(multi_node, out_buffer)
new_scheduler_node = self.create_scheduler_node(out_buffer)
self.nodes[i] = new_scheduler_node
self.name_to_node[node.get_name()] = new_scheduler_node
self.name_to_fused_node[node.get_name()] = new_scheduler_node
self.nodes[i] = new_scheduler_node
self.name_to_node[node.get_name()] = new_scheduler_node
self.name_to_fused_node[node.get_name()] = new_scheduler_node
# We need to reflect the mutation renames that were recorded in the original node
mutation_renames = {}
for dep in itertools.chain(
node.read_writes.reads, node.unmet_dependencies
):
if real_name := self.mutation_real_name.get(dep.name, None):
mutation_renames[real_name] = dep.name
# We need to reflect the mutation renames that were recorded in the original node
mutation_renames = {}
for dep in itertools.chain(node.read_writes.reads, node.unmet_dependencies):
if real_name := self.mutation_real_name.get(dep.name, None):
mutation_renames[real_name] = dep.name
def rename_deps(deps: OrderedSet[Dep]) -> OrderedSet[Dep]:
return OrderedSet(dep.rename(mutation_renames) for dep in deps)
def rename_deps(deps: OrderedSet[Dep]) -> OrderedSet[Dep]:
return OrderedSet(dep.rename(mutation_renames) for dep in deps)
new_scheduler_node.unmet_dependencies = rename_deps(
new_scheduler_node.unmet_dependencies
)
new_scheduler_node.read_writes.reads = rename_deps(
new_scheduler_node.read_writes.reads
)
new_scheduler_node.unmet_dependencies = rename_deps(
new_scheduler_node.unmet_dependencies
)
new_scheduler_node.read_writes.reads = rename_deps(
new_scheduler_node.read_writes.reads
)
for new_out, old_out in zip(
new_scheduler_node.get_outputs(), node.get_outputs()
):
self.name_to_buf[old_out.get_name()] = new_out
new_out.users = old_out.users
for new_out, old_out in zip(
new_scheduler_node.get_outputs(), node.get_outputs()
):
self.name_to_buf[old_out.get_name()] = new_out
new_out.users = old_out.users
new_scheduler_node.min_order = node.min_order
new_scheduler_node.max_order = node.max_order
new_scheduler_node.last_usage = node.last_usage
new_scheduler_node.min_order = node.min_order
new_scheduler_node.max_order = node.max_order
new_scheduler_node.last_usage = node.last_usage
def _any_atomic_add(self, node_list: Sequence[BaseSchedulerNode]) -> bool:
return any(