mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-12 14:54:55 +08:00
Compare commits
97 Commits
ciflow/ind
...
documentat
| Author | SHA1 | Date | |
|---|---|---|---|
| 27e0a198be | |||
| 256b61734f | |||
| 59307ca1bc | |||
| c28475db7c | |||
| 74aec83841 | |||
| 52e744d68a | |||
| 3cfbf98ea9 | |||
| 47db55258b | |||
| 50af6f3393 | |||
| e545ba2d34 | |||
| a058bbdd6f | |||
| 2c78080ec0 | |||
| fe6615e397 | |||
| abf31db2cc | |||
| a4c7856112 | |||
| afb014541b | |||
| b91a2ab892 | |||
| 14a845a4ec | |||
| 5135ace3a3 | |||
| e7c1905837 | |||
| 9cf623a209 | |||
| 06aa3ef3d3 | |||
| 0384104e23 | |||
| 325ec98009 | |||
| 47acdea74a | |||
| 71606b289c | |||
| e342a7509a | |||
| 27ac58bd70 | |||
| 406719c3da | |||
| 957570e4a3 | |||
| eeb6c96a89 | |||
| 0b12e49795 | |||
| 87646e5db4 | |||
| 29d6bb79e1 | |||
| c2924bbafa | |||
| a2f109dcc3 | |||
| ba5ffa2dca | |||
| c131e4b390 | |||
| 7fd15aa2bd | |||
| c45c966031 | |||
| d18c742779 | |||
| 4957ae5838 | |||
| 31d6d3ef5c | |||
| 2325c511e7 | |||
| d865156967 | |||
| fbc0bd2e90 | |||
| 70f5f55abf | |||
| 69ecb562e7 | |||
| 5062abe4e7 | |||
| c7007e7584 | |||
| 09705ca9b2 | |||
| ea6b0b5d0f | |||
| bbf852d87f | |||
| 6392b986e7 | |||
| 32d30d96cf | |||
| 46516efa85 | |||
| 84b2147b85 | |||
| 1727a71cb6 | |||
| fb9e10fe25 | |||
| 4e277e6323 | |||
| ba327b7a5c | |||
| 8eb21304ab | |||
| b83a3f6e87 | |||
| 289b47e657 | |||
| c20308b79e | |||
| 4c41e9bde7 | |||
| 2f5223564e | |||
| 28615a765d | |||
| d1446ad75c | |||
| e401a56b96 | |||
| 22650c89fb | |||
| c62a17a2fb | |||
| 713e289ae7 | |||
| 69784a0dbe | |||
| 3c2409c465 | |||
| 724cd32b0c | |||
| b62935d1a5 | |||
| ccc8c117dc | |||
| 86db4de10f | |||
| 12860892f8 | |||
| 694592ac1e | |||
| 285748e838 | |||
| 192034c41b | |||
| 5bfce8f345 | |||
| edd611f3b0 | |||
| aded2ebb90 | |||
| 5bda7afa05 | |||
| 341e924981 | |||
| 5a9ae7cefe | |||
| 3d59e8aadf | |||
| 4cf1d1af22 | |||
| 05b8214e6a | |||
| 35d2da32bd | |||
| 0968e74266 | |||
| 57dd6a0656 | |||
| 7318ed627b | |||
| 5b2ad2d5dc |
@ -36,11 +36,7 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
;;
|
||||
rocm*)
|
||||
BASE_TARGET=rocm
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
fi
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
|
||||
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
|
||||
;;
|
||||
*)
|
||||
|
||||
@ -207,9 +207,9 @@ case "$tag" in
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
|
||||
pytorch-linux-noble-xpu-n-py3 | pytorch-linux-noble-xpu-n-py3-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
GCC_VERSION=13
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.2
|
||||
NINJA_VERSION=1.9.0
|
||||
@ -260,6 +260,12 @@ case "$tag" in
|
||||
HALIDE=yes
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-cuda12.8-py3.12-pallas)
|
||||
CUDA_VERSION=12.8.1
|
||||
ANACONDA_PYTHON_VERSION=3.12
|
||||
GCC_VERSION=11
|
||||
PALLAS=yes
|
||||
;;
|
||||
pytorch-linux-jammy-py3.12-triton-cpu)
|
||||
CUDA_VERSION=12.6
|
||||
ANACONDA_PYTHON_VERSION=3.12
|
||||
@ -381,6 +387,7 @@ docker build \
|
||||
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
|
||||
--build-arg "EXECUTORCH=${EXECUTORCH}" \
|
||||
--build-arg "HALIDE=${HALIDE}" \
|
||||
--build-arg "PALLAS=${PALLAS}" \
|
||||
--build-arg "XPU_VERSION=${XPU_VERSION}" \
|
||||
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
|
||||
--build-arg "ACL=${ACL:-}" \
|
||||
|
||||
1
.ci/docker/ci_commit_pins/jax.txt
Normal file
1
.ci/docker/ci_commit_pins/jax.txt
Normal file
@ -0,0 +1 @@
|
||||
0.8.0
|
||||
40
.ci/docker/common/install_jax.sh
Executable file
40
.ci/docker/common/install_jax.sh
Executable file
@ -0,0 +1,40 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
|
||||
|
||||
# Get the pinned JAX version (same for all CUDA versions)
|
||||
JAX_VERSION=$(get_pinned_commit /ci_commit_pins/jax)
|
||||
|
||||
function install_jax_12() {
|
||||
echo "Installing JAX ${JAX_VERSION} with CUDA 12 support"
|
||||
pip_install "jax[cuda12]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
|
||||
|
||||
# Verify installation
|
||||
python -c "import jax" # check for errors
|
||||
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 12"
|
||||
}
|
||||
|
||||
function install_jax_13() {
|
||||
echo "Installing JAX ${JAX_VERSION} with CUDA 13 support"
|
||||
pip_install "jax[cuda13]==${JAX_VERSION}" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
|
||||
|
||||
# Verify installation
|
||||
python -c "import jax" # check for errors
|
||||
echo "JAX ${JAX_VERSION} installation completed successfully for CUDA 13"
|
||||
}
|
||||
|
||||
# idiomatic parameter and option handling in sh
|
||||
while test $# -gt 0
|
||||
do
|
||||
case "$1" in
|
||||
12.4|12.6|12.6.*|12.8|12.8.*|12.9|12.9.*) install_jax_12;
|
||||
;;
|
||||
13.0|13.0.*) install_jax_13;
|
||||
;;
|
||||
*) echo "bad argument $1"; exit 1
|
||||
;;
|
||||
esac
|
||||
shift
|
||||
done
|
||||
@ -9,7 +9,7 @@ set -xe
|
||||
|
||||
function install_ubuntu() {
|
||||
. /etc/os-release
|
||||
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
|
||||
if [[ ! " jammy noble " =~ " ${VERSION_CODENAME} " ]]; then
|
||||
echo "Ubuntu version ${VERSION_CODENAME} not supported"
|
||||
exit
|
||||
fi
|
||||
@ -35,25 +35,24 @@ function install_ubuntu() {
|
||||
# The xpu-smi packages
|
||||
apt-get install -y flex bison xpu-smi
|
||||
|
||||
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
|
||||
# Compute and Media Runtimes
|
||||
# Compute and Media Runtimes
|
||||
if [[ " ${VERSION_CODENAME} " =~ " noble " ]]; then
|
||||
apt-get install -y \
|
||||
intel-opencl-icd intel-level-zero-gpu level-zero \
|
||||
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
intel-opencl-icd libze-intel-gpu1 libze1 \
|
||||
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
|
||||
# Development Packages
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
|
||||
else # rolling driver
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
|
||||
else # jammy
|
||||
apt-get install -y \
|
||||
intel-opencl-icd libze-intel-gpu1 libze1 \
|
||||
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
|
||||
fi
|
||||
# Development Packages
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
|
||||
|
||||
# Install Intel Support Packages
|
||||
apt-get install -y ${XPU_PACKAGES}
|
||||
@ -66,7 +65,7 @@ function install_ubuntu() {
|
||||
function install_rhel() {
|
||||
. /etc/os-release
|
||||
if [[ "${ID}" == "rhel" ]]; then
|
||||
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
echo "RHEL version ${VERSION_ID} not supported"
|
||||
exit
|
||||
fi
|
||||
@ -147,7 +146,7 @@ function install_sles() {
|
||||
XPU_DRIVER_VERSION=""
|
||||
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
|
||||
# Use GPU driver LTS releases
|
||||
XPU_DRIVER_VERSION="/lts/2350"
|
||||
XPU_DRIVER_VERSION="/lts/2523"
|
||||
fi
|
||||
|
||||
# Default use Intel® oneAPI Deep Learning Essentials 2025.1
|
||||
|
||||
@ -49,11 +49,7 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
fi
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
fi
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
|
||||
;;
|
||||
*)
|
||||
|
||||
@ -87,11 +87,7 @@ case ${image} in
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
DEVTOOLSET_VERSION="11"
|
||||
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
fi
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx950;gfx1150;gfx1151"
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
|
||||
;;
|
||||
manylinux2_28-builder:xpu)
|
||||
|
||||
@ -143,6 +143,15 @@ COPY ci_commit_pins/halide.txt halide.txt
|
||||
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
|
||||
RUN rm install_halide.sh common_utils.sh halide.txt
|
||||
|
||||
ARG PALLAS
|
||||
ARG CUDA_VERSION
|
||||
# Install JAX with CUDA support (for Pallas)
|
||||
COPY ./common/install_jax.sh install_jax.sh
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./ci_commit_pins/jax.txt /ci_commit_pins/jax.txt
|
||||
RUN if [ -n "${PALLAS}" ]; then bash ./install_jax.sh ${CUDA_VERSION}; fi
|
||||
RUN rm -f install_jax.sh common_utils.sh /ci_commit_pins/jax.txt
|
||||
|
||||
ARG ONNX
|
||||
# Install ONNX dependencies
|
||||
COPY ./common/install_onnx.sh ./common/common_utils.sh ./
|
||||
|
||||
@ -8,9 +8,11 @@ from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
try:
|
||||
from typing import Any, Callable, Required, TypedDict # Python 3.11+
|
||||
from collections.abc import Callable # Python 3.11+
|
||||
from typing import Any, Required, TypedDict
|
||||
except ImportError:
|
||||
from typing import Any, Callable, TypedDict
|
||||
from collections.abc import Callable
|
||||
from typing import Any, TypedDict
|
||||
|
||||
from typing_extensions import Required # Fallback for Python <3.11
|
||||
|
||||
|
||||
@ -168,14 +168,16 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/compiler/latest/env/vars.sh
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/umf/latest/env/vars.sh
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/ccl/latest/env/vars.sh
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/mpi/latest/env/vars.sh
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/pti/latest/env/vars.sh
|
||||
# Enable XCCL build
|
||||
export USE_XCCL=1
|
||||
export USE_MPI=0
|
||||
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
|
||||
export USE_KINETO=0
|
||||
export TORCH_XPU_ARCH_LIST=pvc
|
||||
fi
|
||||
|
||||
|
||||
@ -208,6 +208,8 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
source /opt/intel/oneapi/ccl/latest/env/vars.sh
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/mpi/latest/env/vars.sh
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/pti/latest/env/vars.sh
|
||||
# Check XPU status before testing
|
||||
timeout 30 xpu-smi discovery || true
|
||||
fi
|
||||
@ -824,6 +826,11 @@ test_inductor_halide() {
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_inductor_pallas() {
|
||||
python test/run_test.py --include inductor/test_pallas.py --verbose
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_inductor_triton_cpu() {
|
||||
python test/run_test.py --include inductor/test_triton_cpu_backend.py inductor/test_torchinductor_strided_blocks.py --verbose
|
||||
assert_git_not_dirty
|
||||
@ -1724,6 +1731,8 @@ elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
|
||||
test_inductor_distributed
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
|
||||
test_inductor_halide
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-pallas* ]]; then
|
||||
test_inductor_pallas
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
|
||||
test_inductor_triton_cpu
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
ca2212438fdd8ce29b66999ed70ed54b0f9372d1
|
||||
ccb801b88af136454798b945175c4c87e636ac33
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
c8b09f5f77d6bf6fb7ed7a9aa83e5d8156b3a5e9
|
||||
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a
|
||||
|
||||
9
.github/labeler.yml
vendored
9
.github/labeler.yml
vendored
@ -138,7 +138,8 @@
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- aten/src/ATen/native/cuda/*Blas.cpp
|
||||
- aten/src/ATen/cuda/CUDA*Blas.*
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
@ -148,7 +149,8 @@
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- aten/src/ATen/native/cuda/*Blas.cpp
|
||||
- aten/src/ATen/cuda/CUDA*Blas.*
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
@ -158,7 +160,8 @@
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- aten/src/ATen/native/cuda/*Blas.cpp
|
||||
- aten/src/ATen/cuda/CUDA*Blas.*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
1
.github/nitpicks.yml
vendored
1
.github/nitpicks.yml
vendored
@ -10,3 +10,4 @@
|
||||
pathFilter:
|
||||
- 'torch/csrc/inductor/aoti_torch/c/*'
|
||||
- 'torch/csrc/inductor/aoti_torch/generated/*'
|
||||
- 'torch/csrc/stable/c/*'
|
||||
|
||||
6
.github/pytorch-probot.yml
vendored
6
.github/pytorch-probot.yml
vendored
@ -2,8 +2,8 @@ tracking_issue: 24422
|
||||
ciflow_tracking_issue: 64124
|
||||
ciflow_push_tags:
|
||||
- ciflow/b200
|
||||
- ciflow/b200-symm-mem
|
||||
- ciflow/b200-distributed
|
||||
- ciflow/b200-symm-mem
|
||||
- ciflow/binaries
|
||||
- ciflow/binaries_libtorch
|
||||
- ciflow/binaries_wheel
|
||||
@ -22,6 +22,8 @@ ciflow_push_tags:
|
||||
- ciflow/inductor-perf-test-nightly-xpu
|
||||
- ciflow/inductor-periodic
|
||||
- ciflow/inductor-rocm
|
||||
- ciflow/inductor-rocm-mi200
|
||||
- ciflow/inductor-rocm-mi300
|
||||
- ciflow/linux-aarch64
|
||||
- ciflow/mps
|
||||
- ciflow/nightly
|
||||
@ -33,11 +35,13 @@ ciflow_push_tags:
|
||||
- ciflow/quantization-periodic
|
||||
- ciflow/riscv64
|
||||
- ciflow/rocm
|
||||
- ciflow/rocm-mi200
|
||||
- ciflow/rocm-mi300
|
||||
- ciflow/rocm-mi355
|
||||
- ciflow/rocm-navi31
|
||||
- ciflow/s390
|
||||
- ciflow/slow
|
||||
- ciflow/slow-rocm-mi200
|
||||
- ciflow/torchbench
|
||||
- ciflow/triton_binaries
|
||||
- ciflow/trunk
|
||||
|
||||
3
.github/scripts/delete_old_branches.py
vendored
3
.github/scripts/delete_old_branches.py
vendored
@ -1,10 +1,11 @@
|
||||
# Delete old branches
|
||||
import os
|
||||
import re
|
||||
from collections.abc import Callable
|
||||
from datetime import datetime
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable
|
||||
from typing import Any
|
||||
|
||||
from github_utils import gh_fetch_json_dict, gh_graphql
|
||||
from gitutils import GitRepo
|
||||
|
||||
3
.github/scripts/filter_test_configs.py
vendored
3
.github/scripts/filter_test_configs.py
vendored
@ -8,10 +8,11 @@ import re
|
||||
import subprocess
|
||||
import sys
|
||||
import warnings
|
||||
from collections.abc import Callable
|
||||
from enum import Enum
|
||||
from functools import cache
|
||||
from logging import info
|
||||
from typing import Any, Callable, Optional
|
||||
from typing import Any, Optional
|
||||
from urllib.request import Request, urlopen
|
||||
|
||||
import yaml
|
||||
|
||||
3
.github/scripts/get_workflow_job_id.py
vendored
3
.github/scripts/get_workflow_job_id.py
vendored
@ -11,7 +11,8 @@ import sys
|
||||
import time
|
||||
import urllib
|
||||
import urllib.parse
|
||||
from typing import Any, Callable, Optional
|
||||
from collections.abc import Callable
|
||||
from typing import Any, Optional
|
||||
from urllib.request import Request, urlopen
|
||||
|
||||
|
||||
|
||||
3
.github/scripts/github_utils.py
vendored
3
.github/scripts/github_utils.py
vendored
@ -3,8 +3,9 @@
|
||||
import json
|
||||
import os
|
||||
import warnings
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, cast, Optional, Union
|
||||
from typing import Any, cast, Optional, Union
|
||||
from urllib.error import HTTPError
|
||||
from urllib.parse import quote
|
||||
from urllib.request import Request, urlopen
|
||||
|
||||
4
.github/scripts/gitutils.py
vendored
4
.github/scripts/gitutils.py
vendored
@ -4,10 +4,10 @@ import os
|
||||
import re
|
||||
import tempfile
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterator
|
||||
from collections.abc import Callable, Iterator
|
||||
from datetime import datetime
|
||||
from functools import wraps
|
||||
from typing import Any, Callable, cast, Optional, TypeVar, Union
|
||||
from typing import Any, cast, Optional, TypeVar, Union
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
4
.github/scripts/trymerge.py
vendored
4
.github/scripts/trymerge.py
vendored
@ -17,12 +17,12 @@ import re
|
||||
import time
|
||||
import urllib.parse
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterable
|
||||
from collections.abc import Callable, Iterable
|
||||
from dataclasses import dataclass
|
||||
from functools import cache
|
||||
from pathlib import Path
|
||||
from re import Pattern
|
||||
from typing import Any, Callable, cast, NamedTuple, Optional
|
||||
from typing import Any, cast, NamedTuple, Optional
|
||||
from warnings import warn
|
||||
|
||||
import yaml
|
||||
|
||||
5
.github/workflows/docker-builds.yml
vendored
5
.github/workflows/docker-builds.yml
vendored
@ -67,9 +67,10 @@ jobs:
|
||||
pytorch-linux-jammy-py3.10-gcc11,
|
||||
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
|
||||
pytorch-linux-jammy-py3.12-halide,
|
||||
pytorch-linux-jammy-cuda12.8-py3.12-pallas,
|
||||
pytorch-linux-jammy-xpu-n-1-py3,
|
||||
pytorch-linux-jammy-xpu-n-py3,
|
||||
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
|
||||
pytorch-linux-noble-xpu-n-py3,
|
||||
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,
|
||||
pytorch-linux-jammy-py3-clang18-asan,
|
||||
pytorch-linux-jammy-py3-clang12-onnx,
|
||||
pytorch-linux-jammy-linter,
|
||||
|
||||
@ -83,8 +83,8 @@ jobs:
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3-inductor-benchmarks
|
||||
runner: linux.c7i.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
@ -117,7 +117,7 @@ jobs:
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: xpu-n-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
|
||||
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
@ -137,7 +137,7 @@ jobs:
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: xpu-n-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
|
||||
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
|
||||
@ -7,7 +7,7 @@ on:
|
||||
branches:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/inductor-rocm/*
|
||||
- ciflow/inductor-rocm-mi200/*
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
1
.github/workflows/inductor-rocm-mi300.yml
vendored
1
.github/workflows/inductor-rocm-mi300.yml
vendored
@ -7,6 +7,7 @@ on:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/inductor-rocm/*
|
||||
- ciflow/inductor-rocm-mi300/*
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
|
||||
26
.github/workflows/inductor-unittest.yml
vendored
26
.github/workflows/inductor-unittest.yml
vendored
@ -81,6 +81,32 @@ jobs:
|
||||
test-matrix: ${{ needs.inductor-halide-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
inductor-pallas-build:
|
||||
name: inductor-pallas-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-py3.12-pallas
|
||||
cuda-arch-list: '8.9'
|
||||
runner: linux.8xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor-pallas", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.12xlarge.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
inductor-pallas-test:
|
||||
name: inductor-pallas-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: inductor-pallas-build
|
||||
with:
|
||||
build-environment: linux-jammy-py3.12-gcc11
|
||||
docker-image: ${{ needs.inductor-pallas-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.inductor-pallas-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
inductor-triton-cpu-build:
|
||||
name: inductor-triton-cpu-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
||||
1
.github/workflows/periodic-rocm-mi200.yml
vendored
1
.github/workflows/periodic-rocm-mi200.yml
vendored
@ -11,7 +11,6 @@ on:
|
||||
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
|
||||
push:
|
||||
tags:
|
||||
- ciflow/periodic/*
|
||||
- ciflow/periodic-rocm-mi200/*
|
||||
branches:
|
||||
- release/*
|
||||
|
||||
1
.github/workflows/periodic-rocm-mi300.yml
vendored
1
.github/workflows/periodic-rocm-mi300.yml
vendored
@ -11,6 +11,7 @@ on:
|
||||
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
|
||||
push:
|
||||
tags:
|
||||
- ciflow/periodic/*
|
||||
- ciflow/periodic-rocm-mi300/*
|
||||
branches:
|
||||
- release/*
|
||||
|
||||
8
.github/workflows/pull.yml
vendored
8
.github/workflows/pull.yml
vendored
@ -342,16 +342,16 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-build:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-noble-xpu-n-py3_10-build:
|
||||
name: linux-noble-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# This should sync with the build in xpu.yml but xpu uses a larger runner
|
||||
# sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },
|
||||
|
||||
@ -5,7 +5,7 @@ on:
|
||||
branches:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/rocm/*
|
||||
- ciflow/rocm-mi200/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: 29 8 * * * # about 1:29am PDT
|
||||
1
.github/workflows/rocm-mi300.yml
vendored
1
.github/workflows/rocm-mi300.yml
vendored
@ -6,6 +6,7 @@ on:
|
||||
- main
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/rocm/*
|
||||
- ciflow/rocm-mi300/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
|
||||
81
.github/workflows/slow-rocm-mi200.yml
vendored
Normal file
81
.github/workflows/slow-rocm-mi200.yml
vendored
Normal file
@ -0,0 +1,81 @@
|
||||
# This workflow is dedicated to host slow jobs that are run only periodically because
|
||||
# they are too slow to run in every commit. The list of slow tests can be found in
|
||||
# https://github.com/pytorch/test-infra/blob/generated-stats/stats/slow-tests.json
|
||||
name: slow-rocm-mi200
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/slow/*
|
||||
- ciflow/slow-rocm-mi200/*
|
||||
schedule:
|
||||
- cron: 0 */3 * * *
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
llm-td:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: before-test
|
||||
uses: ./.github/workflows/llm_td_retrieval.yml
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
target-determination:
|
||||
name: before-test
|
||||
uses: ./.github/workflows/target_determination.yml
|
||||
needs: llm-td
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
30
.github/workflows/slow.yml
vendored
30
.github/workflows/slow.yml
vendored
@ -105,36 +105,6 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-py3_10-clang18-asan-build:
|
||||
name: linux-jammy-py3.10-clang18-asan
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
||||
5
.github/workflows/upload-test-stats.yml
vendored
5
.github/workflows/upload-test-stats.yml
vendored
@ -11,15 +11,16 @@ on:
|
||||
- inductor
|
||||
- unstable
|
||||
- slow
|
||||
- slow-rocm-mi200
|
||||
- unstable-periodic
|
||||
- inductor-periodic
|
||||
- rocm
|
||||
- rocm-mi200
|
||||
- rocm-mi300
|
||||
- rocm-mi355
|
||||
- inductor-micro-benchmark
|
||||
- inductor-micro-benchmark-x86
|
||||
- inductor-cu124
|
||||
- inductor-rocm
|
||||
- inductor-rocm-mi200
|
||||
- inductor-rocm-mi300
|
||||
- mac-mps
|
||||
- linux-aarch64
|
||||
|
||||
20
.github/workflows/xpu.yml
vendored
20
.github/workflows/xpu.yml
vendored
@ -47,15 +47,15 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-build:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-noble-xpu-n-py3_10-build:
|
||||
name: linux-noble-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
|
||||
runner: linux.c7i.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
@ -74,17 +74,17 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-test:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-noble-xpu-n-py3_10-test:
|
||||
name: linux-noble-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: linux-jammy-xpu-n-py3_10-build
|
||||
needs: linux-noble-xpu-n-py3_10-build
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.test-matrix }}
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
windows-xpu-n-1-build:
|
||||
|
||||
@ -1402,7 +1402,7 @@ init_command = [
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'usort==1.0.8.post1',
|
||||
'isort==6.0.1',
|
||||
'ruff==0.13.1', # sync with RUFF
|
||||
'ruff==0.14.4', # sync with RUFF
|
||||
]
|
||||
is_formatter = true
|
||||
|
||||
@ -1537,7 +1537,7 @@ init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'ruff==0.13.1', # sync with PYFMT
|
||||
'ruff==0.14.4', # sync with PYFMT
|
||||
]
|
||||
is_formatter = true
|
||||
|
||||
|
||||
@ -210,8 +210,12 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
/test/inductor/test_flex_attention.py @drisspg
|
||||
/test/inductor/test_flex_decoding.py @drisspg
|
||||
|
||||
# Low Precision GEMMs
|
||||
# Low Precision & Grouped GEMMs
|
||||
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/native/cuda/GroupedBlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/native/cuda/ScaledBlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDAScaledBlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDAScaledBlas.h @drisspg @slayton58
|
||||
/test/test_scaled_matmul_cuda.py @drisspg @slayton58
|
||||
|
||||
@ -94,6 +94,11 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
|
||||
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
|
||||
}
|
||||
|
||||
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
|
||||
c10::DeviceIndex device_index) {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
|
||||
}
|
||||
} // namespace at::accelerator
|
||||
|
||||
namespace at {
|
||||
|
||||
@ -226,8 +226,8 @@ template <
|
||||
typename B = HostBlock<S>>
|
||||
struct CachingHostAllocatorImpl {
|
||||
virtual ~CachingHostAllocatorImpl() {
|
||||
active_ = false;
|
||||
if (pinned_use_background_threads()) {
|
||||
if (active_) {
|
||||
active_ = false;
|
||||
getBackgroundThreadPool()->waitWorkComplete();
|
||||
}
|
||||
}
|
||||
@ -260,6 +260,7 @@ struct CachingHostAllocatorImpl {
|
||||
if (pinned_use_background_threads()) {
|
||||
// Launch the background thread and process events in a loop.
|
||||
static bool background_thread_flag [[maybe_unused]] = [this] {
|
||||
active_ = true;
|
||||
getBackgroundThreadPool()->run([&]() {
|
||||
while (active_) {
|
||||
process_events();
|
||||
@ -683,9 +684,9 @@ struct CachingHostAllocatorImpl {
|
||||
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
|
||||
std::deque<std::pair<E, B*>> events_; // event queue paired with block
|
||||
|
||||
// Indicates whether the object is active.
|
||||
// Indicates whether the event-processing thread pool is active.
|
||||
// Set to false in the destructor to signal background threads to stop.
|
||||
std::atomic<bool> active_{true};
|
||||
std::atomic<bool> active_{false};
|
||||
protected:
|
||||
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
|
||||
};
|
||||
|
||||
@ -157,6 +157,8 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
|
||||
DispatchKey::Negative,
|
||||
DispatchKey::Conjugate,
|
||||
DispatchKey::XLA,
|
||||
DispatchKey::XPU,
|
||||
DispatchKey::HPU,
|
||||
DispatchKey::CUDA,
|
||||
DispatchKey::CPU,
|
||||
DispatchKey::PrivateUse1,
|
||||
|
||||
@ -133,7 +133,7 @@ at::Tensor quantized_convolution(
|
||||
// supported in conv.
|
||||
mask_weight = weight_zero_points.numel() > 1 ? 1 : 0;
|
||||
if (groups > 1 && weight_zero_points.numel() > 1)
|
||||
mask_weight = (2 ^ 0) | (2 ^ 1); // 2^0 (group) | 2^1 (output channel)
|
||||
mask_weight = (1 << 0) | (1 << 1); // 2^0 (group) | 2^1 (output channel)
|
||||
dnnl::primitive_attr pattr;
|
||||
|
||||
bool src_need_zp = (act_zero_point != 0);
|
||||
|
||||
@ -141,6 +141,9 @@ static Tensor& addmv_out_mps_impl(const Tensor& self,
|
||||
};
|
||||
|
||||
MPSStream* stream = at::mps::getCurrentMPSStream();
|
||||
if (result.numel() == 0) {
|
||||
return result;
|
||||
}
|
||||
Tensor matMulVec = at::mm(mat, vec.unsqueeze(1)).squeeze(1);
|
||||
|
||||
@autoreleasepool {
|
||||
|
||||
@ -2803,7 +2803,7 @@
|
||||
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
||||
device_check: NoCheck # TensorIterator
|
||||
dispatch:
|
||||
CPU, CUDA, MPS: floor_divide_out
|
||||
CPU, CUDA, MPS, MTIA: floor_divide_out
|
||||
SparseCPU, SparseCUDA, SparseMPS: floor_divide_out_sparse_zerodim
|
||||
|
||||
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
||||
@ -4292,6 +4292,7 @@
|
||||
dispatch:
|
||||
SparseCPU: sparse_sparse_matmul_cpu
|
||||
SparseCUDA: sparse_sparse_matmul_cuda
|
||||
SparseMPS: sparse_sparse_matmul_mps
|
||||
autogen: _sparse_sparse_matmul.out
|
||||
|
||||
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
||||
@ -4383,7 +4384,7 @@
|
||||
variants: function, method
|
||||
dispatch:
|
||||
CompositeExplicitAutograd: mv
|
||||
SparseCPU, SparseCUDA: mv_sparse
|
||||
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
|
||||
|
||||
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
||||
dispatch:
|
||||
@ -9832,7 +9833,7 @@
|
||||
structured_delegate: erfinv.out
|
||||
variants: method, function
|
||||
dispatch:
|
||||
SparseCPU, SparseCUDA: erfinv_sparse
|
||||
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr
|
||||
tags: pointwise
|
||||
|
||||
@ -9841,7 +9842,7 @@
|
||||
structured_delegate: erfinv.out
|
||||
variants: method
|
||||
dispatch:
|
||||
SparseCPU, SparseCUDA: erfinv_sparse_
|
||||
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_
|
||||
tags: pointwise
|
||||
|
||||
@ -9851,7 +9852,7 @@
|
||||
structured_inherits: TensorIteratorBase
|
||||
dispatch:
|
||||
CPU, CUDA, MPS: erfinv_out
|
||||
SparseCPU, SparseCUDA: erfinv_sparse_out
|
||||
SparseCPU, SparseCUDA, SparseMPS: erfinv_sparse_out
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: erfinv_sparse_csr_out
|
||||
tags: pointwise
|
||||
|
||||
|
||||
@ -10,6 +10,10 @@
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_coalesce_native.h>
|
||||
#include <ATen/ops/repeat_interleave_native.h>
|
||||
#include <ATen/ops/cumsum.h>
|
||||
#include <ATen/ops/_sparse_sparse_matmul_native.h>
|
||||
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
||||
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
|
||||
#include <ATen/ops/cat.h>
|
||||
#include <ATen/ops/add_native.h>
|
||||
@ -888,5 +892,114 @@ static void sparse_mask_intersection_out_mps_kernel(
|
||||
/*coalesce_mask=*/false);
|
||||
}
|
||||
|
||||
Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
|
||||
TORCH_CHECK(mat1_.is_sparse() && mat2_.is_sparse(),
|
||||
"sparse_sparse_matmul_mps: both inputs must be sparse COO tensors");
|
||||
TORCH_CHECK(mat1_.is_mps() && mat2_.is_mps(),
|
||||
"sparse_sparse_matmul_mps: both inputs must be on MPS device");
|
||||
TORCH_CHECK(mat1_.dim() == 2 && mat2_.dim() == 2,
|
||||
"sparse_sparse_matmul_mps: both inputs must be 2D matrices");
|
||||
TORCH_CHECK(mat1_.dense_dim() == 0 && mat2_.dense_dim() == 0,
|
||||
"sparse_sparse_matmul_mps: only scalar values supported (dense_dim == 0)");
|
||||
TORCH_CHECK(mat1_.size(1) == mat2_.size(0),
|
||||
"mat1 and mat2 shapes cannot be multiplied (", mat1_.size(0), "x", mat1_.size(1), " and ", mat2_.size(0), "x", mat2_.size(1), ")");
|
||||
TORCH_CHECK(mat1_.scalar_type() == mat2_.scalar_type(),
|
||||
"sparse_sparse_matmul_mps: mat1 dtype ", mat1_.scalar_type(),
|
||||
" does not match mat2 dtype ", mat2_.scalar_type());
|
||||
|
||||
const auto device = mat1_.device();
|
||||
|
||||
auto A = mat1_.coalesce();
|
||||
auto B = mat2_.coalesce();
|
||||
|
||||
const auto I = A.size(0);
|
||||
const auto K = A.size(1);
|
||||
const auto N = B.size(1);
|
||||
|
||||
const auto nnzA = A._nnz();
|
||||
const auto nnzB = B._nnz();
|
||||
|
||||
// Early empty result, return an empty, coalesced tensor
|
||||
if (I == 0 || N == 0 || K == 0 || nnzA == 0 || nnzB == 0) {
|
||||
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
|
||||
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
|
||||
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
|
||||
out._coalesced_(true);
|
||||
return out;
|
||||
}
|
||||
|
||||
const auto computeDtype = at::result_type(mat1_, mat2_);
|
||||
|
||||
auto A_idx = A._indices().contiguous();
|
||||
auto A_val = A._values().to(computeDtype).contiguous();
|
||||
auto A_i = A_idx.select(0, 0).contiguous();
|
||||
auto A_k = A_idx.select(0, 1).contiguous();
|
||||
|
||||
auto B_idx = B._indices().contiguous();
|
||||
auto B_val = B._values().to(computeDtype).contiguous();
|
||||
auto B_k = B_idx.select(0, 0).contiguous();
|
||||
auto B_j = B_idx.select(0, 1).contiguous();
|
||||
|
||||
// csr-style row pointers for B by k (the shared dimension)
|
||||
Tensor row_ptr_B;
|
||||
{
|
||||
auto batch_ptr = at::tensor({0LL, nnzB}, at::device(device).dtype(at::kLong));
|
||||
row_ptr_B = at::empty({K + 1}, at::device(device).dtype(at::kLong));
|
||||
build_row_ptr_per_batch_mps(B_k, batch_ptr, /*B=*/1, /*I=*/K, row_ptr_B);
|
||||
}
|
||||
|
||||
auto row_ptr_B_lo = row_ptr_B.narrow(0, 0, K);
|
||||
auto row_ptr_B_hi = row_ptr_B.narrow(0, 1, K);
|
||||
auto deg_B = row_ptr_B_hi.sub(row_ptr_B_lo);
|
||||
|
||||
auto counts = deg_B.index_select(0, A_k);
|
||||
|
||||
const int64_t P = counts.sum().item<int64_t>();
|
||||
if (P == 0) {
|
||||
auto empty_idx = at::empty({2, 0}, at::device(device).dtype(at::kLong));
|
||||
auto empty_val = at::empty({0}, at::device(device).dtype(mat1_.scalar_type()));
|
||||
auto out = _sparse_coo_tensor_unsafe(empty_idx, empty_val, {I, N}, mat1_.options());
|
||||
out._coalesced_(true);
|
||||
return out;
|
||||
}
|
||||
|
||||
auto group_ids = repeat_interleave_mps(counts);
|
||||
|
||||
// exclusive cumsum of counts
|
||||
auto offsets = cumsum(counts, /*dim=*/0).sub(counts);
|
||||
auto offsets_gather = offsets.index_select(0, group_ids);
|
||||
auto within = at::arange(P, at::device(device).dtype(at::kLong)).sub(offsets_gather);
|
||||
|
||||
// Map each output element to its source B row and position
|
||||
auto k_per_out = A_k.index_select(0, group_ids);
|
||||
auto start_in_B = row_ptr_B.index_select(0, k_per_out);
|
||||
auto seg_index = start_in_B.add(within);
|
||||
|
||||
// Assemble candidate coo pairs and values
|
||||
auto i_out = A_i.index_select(0, group_ids).contiguous();
|
||||
auto j_out = B_j.index_select(0, seg_index).contiguous();
|
||||
auto vA_out = A_val.index_select(0, group_ids).contiguous();
|
||||
auto vB_out = B_val.index_select(0, seg_index).contiguous();
|
||||
auto v_out = vA_out.mul(vB_out);
|
||||
|
||||
// build (2, P) indices
|
||||
auto out_indices = at::empty({2, P}, at::device(device).dtype(at::kLong)).contiguous();
|
||||
out_indices.select(0, 0).copy_(i_out);
|
||||
out_indices.select(0, 1).copy_(j_out);
|
||||
|
||||
auto result = _sparse_coo_tensor_unsafe(
|
||||
out_indices, v_out, {I, N}, mat1_.options().dtype(computeDtype));
|
||||
|
||||
result = result.coalesce();
|
||||
|
||||
if (result.scalar_type() != mat1_.scalar_type()) {
|
||||
auto cast_vals = result._values().to(mat1_.scalar_type());
|
||||
auto out = _sparse_coo_tensor_unsafe(result._indices(), cast_vals, {I, N}, mat1_.options());
|
||||
out._coalesced_(true);
|
||||
return out;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
|
||||
} // namespace at::native
|
||||
@ -52,19 +52,18 @@ def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
|
||||
start.record()
|
||||
coo.matmul(mat)
|
||||
stop.record()
|
||||
|
||||
times.append(start.elapsed_time(stop))
|
||||
|
||||
coo_mean_time = sum(times) / len(times)
|
||||
coo_mean_time = sum(times) / len(times)
|
||||
|
||||
times = []
|
||||
for _ in range(test_count):
|
||||
start.record()
|
||||
csr.matmul(mat)
|
||||
stop.record()
|
||||
times.append(start.elapsed_time(stop))
|
||||
times = []
|
||||
for _ in range(test_count):
|
||||
start.record()
|
||||
csr.matmul(mat)
|
||||
stop.record()
|
||||
times.append(start.elapsed_time(stop))
|
||||
|
||||
csr_mean_time = sum(times) / len(times)
|
||||
csr_mean_time = sum(times) / len(times)
|
||||
|
||||
return coo_mean_time, csr_mean_time
|
||||
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/SafePyObject.h>
|
||||
#include <c10/macros/Export.h>
|
||||
#include <optional>
|
||||
|
||||
namespace c10 {
|
||||
|
||||
@ -15,7 +17,8 @@ struct C10_API AutogradState {
|
||||
bool inference_mode,
|
||||
bool fw_grad_mode,
|
||||
bool multithreading_enabled)
|
||||
: grad_mode_(grad_mode),
|
||||
: graph_exec_group_(std::nullopt),
|
||||
grad_mode_(grad_mode),
|
||||
inference_mode_(inference_mode),
|
||||
fw_grad_mode_(fw_grad_mode),
|
||||
multithreading_enabled_(multithreading_enabled),
|
||||
@ -41,6 +44,10 @@ struct C10_API AutogradState {
|
||||
view_replay_enabled_ = view_replay_enabled;
|
||||
}
|
||||
|
||||
void set_graph_exec_group(std::optional<SafePyObject> group) {
|
||||
graph_exec_group_ = std::move(group);
|
||||
}
|
||||
|
||||
bool get_grad_mode() const {
|
||||
return grad_mode_;
|
||||
}
|
||||
@ -61,7 +68,12 @@ struct C10_API AutogradState {
|
||||
return view_replay_enabled_;
|
||||
}
|
||||
|
||||
const std::optional<SafePyObject>& get_graph_exec_group() const {
|
||||
return graph_exec_group_;
|
||||
}
|
||||
|
||||
private:
|
||||
std::optional<SafePyObject> graph_exec_group_;
|
||||
bool grad_mode_ : 1;
|
||||
bool inference_mode_ : 1;
|
||||
bool fw_grad_mode_ : 1;
|
||||
|
||||
@ -96,6 +96,10 @@ struct C10_API DeviceAllocator : public c10::Allocator {
|
||||
|
||||
// Resets peak memory usage statistics for the specified device
|
||||
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
|
||||
|
||||
// Return the free memory size and total memory size in bytes for the
|
||||
// specified device.
|
||||
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) = 0;
|
||||
};
|
||||
|
||||
// This function is used to get the DeviceAllocator for a specific device type
|
||||
|
||||
@ -345,6 +345,13 @@ class CUDAAllocator : public DeviceAllocator {
|
||||
c10::DeviceIndex device,
|
||||
std::shared_ptr<AllocatorState> pps) = 0;
|
||||
virtual std::string name() = 0;
|
||||
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
|
||||
c10::DeviceGuard device_guard({at::kCUDA, device});
|
||||
size_t free = 0;
|
||||
size_t total = 0;
|
||||
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
|
||||
return {free, total};
|
||||
}
|
||||
};
|
||||
|
||||
// Allocator object, statically initialized
|
||||
|
||||
@ -66,6 +66,15 @@ def define_targets(rules):
|
||||
],
|
||||
)
|
||||
|
||||
rules.cc_test(
|
||||
name = "util/nofatal_test",
|
||||
srcs = ["util/nofatal_test.cpp"],
|
||||
deps = [
|
||||
"//c10/util:base",
|
||||
"@com_google_googletest//:gtest_main",
|
||||
],
|
||||
)
|
||||
|
||||
rules.cc_test(
|
||||
name = "util/ssize_test",
|
||||
srcs = ["util/ssize_test.cpp"],
|
||||
|
||||
53
c10/test/util/nofatal_test.cpp
Normal file
53
c10/test/util/nofatal_test.cpp
Normal file
@ -0,0 +1,53 @@
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/Logging.h>
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
inline void expectThrowsEq(T&& fn, const char* expected_msg) {
|
||||
try {
|
||||
std::forward<T>(fn)();
|
||||
} catch (const c10::Error& e) {
|
||||
EXPECT_TRUE(
|
||||
std::string(e.what_without_backtrace()).find(expected_msg) !=
|
||||
std::string::npos);
|
||||
return;
|
||||
}
|
||||
ADD_FAILURE() << "Expected to throw exception with message \"" << expected_msg
|
||||
<< "\" but didn't throw";
|
||||
}
|
||||
} // namespace
|
||||
|
||||
TEST(NofatalTest, TorchCheckComparisons) {
|
||||
// quick make sure that no-op works as expected
|
||||
TORCH_CHECK_EQ(1, 1) << "i am a silly message " << 1;
|
||||
expectThrowsEq(
|
||||
[]() { TORCH_CHECK_EQ(1, 2) << "i am a silly message " << 1; },
|
||||
"Check failed: 1 == 2 (1 vs. 2). i am a silly message 1");
|
||||
expectThrowsEq(
|
||||
[]() { TORCH_CHECK_NE(2, 2); }, "Check failed: 2 != 2 (2 vs. 2).");
|
||||
expectThrowsEq(
|
||||
[]() { TORCH_CHECK_LT(2, 2); }, "Check failed: 2 < 2 (2 vs. 2).");
|
||||
expectThrowsEq(
|
||||
[]() { TORCH_CHECK_LE(3, 2); }, "Check failed: 3 <= 2 (3 vs. 2).");
|
||||
expectThrowsEq(
|
||||
[]() { TORCH_CHECK_GT(2, 2); }, "Check failed: 2 > 2 (2 vs. 2).");
|
||||
expectThrowsEq(
|
||||
[]() { TORCH_CHECK_GE(2, 3); }, "Check failed: 2 >= 3 (2 vs. 3).");
|
||||
expectThrowsEq(
|
||||
[]() {
|
||||
void* p = nullptr;
|
||||
TORCH_CHECK_NOTNULL(p);
|
||||
},
|
||||
"Check failed: 'p' must be non NULL.");
|
||||
|
||||
#if GTEST_HAS_DEATH_TEST
|
||||
#ifndef NDEBUG
|
||||
// if dbg build, DCHECK should result in deth
|
||||
EXPECT_DEATH(TORCH_DCHECK_EQ(1, 2), "Check failed");
|
||||
#else
|
||||
TORCH_DCHECK_EQ(1, 2); // no-op
|
||||
#endif
|
||||
#endif // GTEST_HAS_DEATH_TEST
|
||||
}
|
||||
@ -702,6 +702,98 @@ namespace c10::detail {
|
||||
#define TORCH_CHECK_ARG(cond, argN, ...) \
|
||||
TORCH_CHECK(cond, "invalid argument ", argN, ": ", __VA_ARGS__)
|
||||
|
||||
#ifndef FATAL_IF
|
||||
#ifdef C10_USE_GLOG
|
||||
#define FATAL_IF(condition) \
|
||||
condition ? (void)0 \
|
||||
: ::c10::LoggerVoidify() & \
|
||||
::c10::MessageLogger(__FILE__, __LINE__, ::google::GLOG_FATAL) \
|
||||
.stream()
|
||||
#else
|
||||
#define FATAL_IF(condition) \
|
||||
condition ? (void)0 \
|
||||
: ::c10::LoggerVoidify() & \
|
||||
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL).stream()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef NON_FATAL_IF
|
||||
#ifdef C10_USE_GLOG
|
||||
#define NON_FATAL_IF(condition) \
|
||||
condition ? (void)0 \
|
||||
: ::c10::LoggerVoidify() & \
|
||||
::c10::MessageLogger( \
|
||||
__FILE__, __LINE__, ::google::GLOG_FATAL, false) \
|
||||
.stream()
|
||||
#else
|
||||
#define NON_FATAL_IF(condition) \
|
||||
condition ? (void)0 \
|
||||
: ::c10::LoggerVoidify() & \
|
||||
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_FATAL, false) \
|
||||
.stream()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Binary comparison check macros
|
||||
#define TORCH_CHECK_OP(val1, val2, op) \
|
||||
NON_FATAL_IF(((val1)op(val2))) \
|
||||
<< "Check failed: " #val1 " " #op " " #val2 " (" << (val1) << " vs. " \
|
||||
<< (val2) << "). "
|
||||
|
||||
#define TORCH_DCHECK_OP(val1, val2, op) \
|
||||
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
|
||||
<< (val1) << " vs. " << (val2) << "). "
|
||||
|
||||
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
|
||||
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
|
||||
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
|
||||
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
|
||||
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
|
||||
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
|
||||
|
||||
// Debug versions of TORCH_CHECK_OP macros
|
||||
#ifndef NDEBUG
|
||||
#define TORCH_DCHECK_EQ(val1, val2) TORCH_DCHECK_OP(val1, val2, ==)
|
||||
#define TORCH_DCHECK_NE(val1, val2) TORCH_DCHECK_OP(val1, val2, !=)
|
||||
#define TORCH_DCHECK_LE(val1, val2) TORCH_DCHECK_OP(val1, val2, <=)
|
||||
#define TORCH_DCHECK_LT(val1, val2) TORCH_DCHECK_OP(val1, val2, <)
|
||||
#define TORCH_DCHECK_GE(val1, val2) TORCH_DCHECK_OP(val1, val2, >=)
|
||||
#define TORCH_DCHECK_GT(val1, val2) TORCH_DCHECK_OP(val1, val2, >)
|
||||
#else // !NDEBUG
|
||||
// Optimized versions - generate no code
|
||||
#define TORCH_DCHECK_EQ(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_DCHECK_OP(val1, val2, ==)
|
||||
#define TORCH_DCHECK_NE(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_DCHECK_OP(val1, val2, !=)
|
||||
#define TORCH_DCHECK_LE(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_DCHECK_OP(val1, val2, <=)
|
||||
#define TORCH_DCHECK_LT(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_DCHECK_OP(val1, val2, <)
|
||||
#define TORCH_DCHECK_GE(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_DCHECK_OP(val1, val2, >=)
|
||||
#define TORCH_DCHECK_GT(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_DCHECK_OP(val1, val2, >)
|
||||
#endif // NDEBUG
|
||||
|
||||
// Null pointer check macro
|
||||
#define TORCH_CHECK_NOTNULL(val) \
|
||||
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), false)
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define TORCH_DCHECK_NOTNULL(val) \
|
||||
::c10::CheckNotNull(__FILE__, __LINE__, #val, (val), true)
|
||||
#else // !NDEBUG
|
||||
#define TORCH_DCHECK_NOTNULL(val) \
|
||||
while (false) \
|
||||
TORCH_CHECK_NOTNULL(val)
|
||||
#endif // NDEBUG
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Deprecated macros
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
@ -291,6 +291,32 @@ namespace c10 {
|
||||
using fLB::FLAGS_logtostderr;
|
||||
using fLI::FLAGS_minloglevel;
|
||||
using fLI::FLAGS_v;
|
||||
|
||||
MessageLogger::MessageLogger(
|
||||
const char* file,
|
||||
int line,
|
||||
int severity,
|
||||
bool exit_on_fatal)
|
||||
: stream_(), severity_(severity), exit_on_fatal_(exit_on_fatal) {}
|
||||
|
||||
MessageLogger::~MessageLogger() noexcept(false) {
|
||||
if (severity_ == ::google::GLOG_FATAL) {
|
||||
DealWithFatal();
|
||||
}
|
||||
}
|
||||
|
||||
std::stringstream& MessageLogger::stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
void MessageLogger::DealWithFatal() {
|
||||
if (exit_on_fatal_) {
|
||||
LOG(FATAL) << stream_.str();
|
||||
} else {
|
||||
throw c10::Error(stream_.str(), nullptr, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace c10
|
||||
|
||||
C10_DEFINE_int(
|
||||
@ -412,17 +438,16 @@ void ShowLogInfoToStderr() {
|
||||
FLAGS_caffe2_log_level = GLOG_INFO;
|
||||
}
|
||||
|
||||
MessageLogger::MessageLogger(const char* file, int line, int severity)
|
||||
: severity_(severity) {
|
||||
MessageLogger::MessageLogger(
|
||||
const char* file,
|
||||
int line,
|
||||
int severity,
|
||||
bool exit_on_fatal)
|
||||
: severity_(severity), exit_on_fatal_(exit_on_fatal) {
|
||||
if (severity_ < FLAGS_caffe2_log_level) {
|
||||
// Nothing needs to be logged.
|
||||
return;
|
||||
}
|
||||
#ifdef ANDROID
|
||||
tag_ = "native";
|
||||
#else // !ANDROID
|
||||
tag_ = "";
|
||||
#endif // ANDROID
|
||||
|
||||
time_t rawtime = 0;
|
||||
time(&rawtime);
|
||||
@ -458,7 +483,7 @@ MessageLogger::MessageLogger(const char* file, int line, int severity)
|
||||
}
|
||||
|
||||
// Output the contents of the stream to the proper channel on destruction.
|
||||
MessageLogger::~MessageLogger() {
|
||||
MessageLogger::~MessageLogger() noexcept(false) {
|
||||
if (severity_ < FLAGS_caffe2_log_level) {
|
||||
// Nothing needs to be logged.
|
||||
return;
|
||||
@ -498,6 +523,18 @@ MessageLogger::~MessageLogger() {
|
||||
}
|
||||
}
|
||||
|
||||
std::stringstream& MessageLogger::stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
void MessageLogger::DealWithFatal() {
|
||||
if (exit_on_fatal_) {
|
||||
abort();
|
||||
} else {
|
||||
throw c10::Error(stream_.str(), nullptr, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace c10
|
||||
|
||||
#endif // !C10_USE_GLOG
|
||||
|
||||
74
c10/util/logging_common.h
Normal file
74
c10/util/logging_common.h
Normal file
@ -0,0 +1,74 @@
|
||||
#ifndef C10_UTIL_LOGGING_COMMON_H_
|
||||
#define C10_UTIL_LOGGING_COMMON_H_
|
||||
|
||||
#include <c10/macros/Export.h>
|
||||
#include <sstream>
|
||||
|
||||
namespace c10 {
|
||||
|
||||
// MessageLogger that throws exceptions instead of aborting (glog version)
|
||||
// or logs and may abort (non-glog version).
|
||||
class C10_API MessageLogger {
|
||||
public:
|
||||
MessageLogger(
|
||||
const char* file,
|
||||
int line,
|
||||
int severity,
|
||||
bool exit_on_fatal = true);
|
||||
~MessageLogger() noexcept(false);
|
||||
|
||||
// Return the stream associated with the logger object.
|
||||
std::stringstream& stream();
|
||||
|
||||
private:
|
||||
// When there is a fatal log, and fatal == true, we abort
|
||||
// otherwise, we throw.
|
||||
void DealWithFatal();
|
||||
|
||||
#if defined(ANDROID) && !defined(C10_USE_GLOG)
|
||||
const char* tag_{"native"};
|
||||
#endif
|
||||
std::stringstream stream_;
|
||||
int severity_;
|
||||
bool exit_on_fatal_;
|
||||
};
|
||||
|
||||
// This class is used to explicitly ignore values in the conditional
|
||||
// logging macros. This avoids compiler warnings like "value computed
|
||||
// is not used" and "statement has no effect".
|
||||
class C10_API LoggerVoidify {
|
||||
public:
|
||||
LoggerVoidify() = default;
|
||||
// This has to be an operator with a precedence lower than << but
|
||||
// higher than ?:
|
||||
void operator&(const std::ostream& s [[maybe_unused]]) {}
|
||||
};
|
||||
|
||||
// Forward declarations for CheckNotNull functions
|
||||
template <typename T>
|
||||
T& CheckNotNullCommon(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T& t,
|
||||
bool fatal = true);
|
||||
|
||||
template <typename T>
|
||||
T* CheckNotNull(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T* t,
|
||||
bool fatal = true);
|
||||
|
||||
template <typename T>
|
||||
T& CheckNotNull(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T& t,
|
||||
bool fatal = true);
|
||||
|
||||
} // namespace c10
|
||||
|
||||
#endif // C10_UTIL_LOGGING_COMMON_H_
|
||||
@ -47,57 +47,53 @@ INSTANTIATE_FOR_CONTAINER(set)
|
||||
|
||||
#endif
|
||||
|
||||
#include <c10/util/logging_common.h>
|
||||
#include <glog/logging.h>
|
||||
|
||||
// Additional macros on top of glog
|
||||
#define TORCH_CHECK_EQ(val1, val2) CHECK_EQ(val1, val2)
|
||||
#define TORCH_CHECK_NE(val1, val2) CHECK_NE(val1, val2)
|
||||
#define TORCH_CHECK_LE(val1, val2) CHECK_LE(val1, val2)
|
||||
#define TORCH_CHECK_LT(val1, val2) CHECK_LT(val1, val2)
|
||||
#define TORCH_CHECK_GE(val1, val2) CHECK_GE(val1, val2)
|
||||
#define TORCH_CHECK_GT(val1, val2) CHECK_GT(val1, val2)
|
||||
namespace c10 {
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define TORCH_DCHECK_EQ(val1, val2) DCHECK_EQ(val1, val2)
|
||||
#define TORCH_DCHECK_NE(val1, val2) DCHECK_NE(val1, val2)
|
||||
#define TORCH_DCHECK_LE(val1, val2) DCHECK_LE(val1, val2)
|
||||
#define TORCH_DCHECK_LT(val1, val2) DCHECK_LT(val1, val2)
|
||||
#define TORCH_DCHECK_GE(val1, val2) DCHECK_GE(val1, val2)
|
||||
#define TORCH_DCHECK_GT(val1, val2) DCHECK_GT(val1, val2)
|
||||
#else // !NDEBUG
|
||||
// These versions generate no code in optimized mode.
|
||||
#define TORCH_DCHECK_EQ(val1, val2) \
|
||||
while (false) \
|
||||
DCHECK_EQ(val1, val2)
|
||||
#define TORCH_DCHECK_NE(val1, val2) \
|
||||
while (false) \
|
||||
DCHECK_NE(val1, val2)
|
||||
#define TORCH_DCHECK_LE(val1, val2) \
|
||||
while (false) \
|
||||
DCHECK_LE(val1, val2)
|
||||
#define TORCH_DCHECK_LT(val1, val2) \
|
||||
while (false) \
|
||||
DCHECK_LT(val1, val2)
|
||||
#define TORCH_DCHECK_GE(val1, val2) \
|
||||
while (false) \
|
||||
DCHECK_GE(val1, val2)
|
||||
#define TORCH_DCHECK_GT(val1, val2) \
|
||||
while (false) \
|
||||
DCHECK_GT(val1, val2)
|
||||
#endif // NDEBUG
|
||||
[[noreturn]] void ThrowEnforceNotMet(
|
||||
const char* file,
|
||||
const int line,
|
||||
const char* condition,
|
||||
const std::string& msg,
|
||||
const void* caller);
|
||||
|
||||
// Check that a pointer is not null.
|
||||
#define TORCH_CHECK_NOTNULL(val) CHECK_NOTNULL(val)
|
||||
template <typename T>
|
||||
T& CheckNotNullCommon(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T& t,
|
||||
bool fatal) {
|
||||
if (t == nullptr) {
|
||||
MessageLogger(file, line, ::google::GLOG_FATAL, fatal).stream()
|
||||
<< "Check failed: '" << names << "' must be non NULL. ";
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Debug only version of TORCH_CHECK_NOTNULL
|
||||
#define TORCH_DCHECK_NOTNULL(val) DCHECK_NOTNULL(val)
|
||||
#else // !NDEBUG
|
||||
// Optimized version - generates no code.
|
||||
#define TORCH_DCHECK_NOTNULL(val) \
|
||||
while (false) \
|
||||
DCHECK_NOTNULL(val)
|
||||
#endif // NDEBUG
|
||||
template <typename T>
|
||||
T* CheckNotNull(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T* t,
|
||||
bool fatal) {
|
||||
return CheckNotNullCommon(file, line, names, t, fatal);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T& CheckNotNull(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T& t,
|
||||
bool fatal) {
|
||||
return CheckNotNullCommon(file, line, names, t, fatal);
|
||||
}
|
||||
|
||||
} // namespace c10
|
||||
|
||||
// Log with source location information override (to be used in generic
|
||||
// warning/error handlers implemented as functions, not macros)
|
||||
|
||||
@ -13,6 +13,7 @@
|
||||
#include <vector>
|
||||
|
||||
#include <c10/util/Flags.h>
|
||||
#include <c10/util/logging_common.h>
|
||||
|
||||
const char CAFFE2_SEVERITY_PREFIX[] = "FEWIV";
|
||||
|
||||
@ -24,61 +25,40 @@ const int GLOG_ERROR = 2;
|
||||
const int GLOG_WARNING = 1;
|
||||
const int GLOG_INFO = 0;
|
||||
|
||||
class C10_API MessageLogger {
|
||||
public:
|
||||
MessageLogger(const char* file, int line, int severity);
|
||||
~MessageLogger();
|
||||
// Return the stream associated with the logger object.
|
||||
std::stringstream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
private:
|
||||
// When there is a fatal log, we simply abort.
|
||||
void DealWithFatal() {
|
||||
abort();
|
||||
}
|
||||
|
||||
const char* tag_;
|
||||
std::stringstream stream_;
|
||||
int severity_;
|
||||
};
|
||||
|
||||
// This class is used to explicitly ignore values in the conditional
|
||||
// logging macros. This avoids compiler warnings like "value computed
|
||||
// is not used" and "statement has no effect".
|
||||
class C10_API LoggerVoidify {
|
||||
public:
|
||||
LoggerVoidify() = default;
|
||||
// This has to be an operator with a precedence lower than << but
|
||||
// higher than ?:
|
||||
void operator&(const std::ostream& s [[maybe_unused]]) {}
|
||||
};
|
||||
|
||||
// Log a message and terminate.
|
||||
template <class T>
|
||||
void LogMessageFatal(const char* file, int line, const T& message) {
|
||||
MessageLogger(file, line, GLOG_FATAL).stream() << message;
|
||||
}
|
||||
|
||||
// Helpers for TORCH_CHECK_NOTNULL(). Two are necessary to support both raw
|
||||
// pointers and smart pointers.
|
||||
template <typename T>
|
||||
T& CheckNotNullCommon(const char* file, int line, const char* names, T& t) {
|
||||
T& CheckNotNullCommon(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T& t,
|
||||
bool fatal) {
|
||||
if (t == nullptr) {
|
||||
LogMessageFatal(file, line, std::string(names));
|
||||
MessageLogger(file, line, GLOG_FATAL, fatal).stream()
|
||||
<< "Check failed: '" << names << "' must be non NULL. ";
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T* CheckNotNull(const char* file, int line, const char* names, T* t) {
|
||||
return CheckNotNullCommon(file, line, names, t);
|
||||
T* CheckNotNull(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T* t,
|
||||
bool fatal) {
|
||||
return CheckNotNullCommon(file, line, names, t, fatal);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T& CheckNotNull(const char* file, int line, const char* names, T& t) {
|
||||
return CheckNotNullCommon(file, line, names, t);
|
||||
T& CheckNotNull(
|
||||
const char* file,
|
||||
int line,
|
||||
const char* names,
|
||||
T& t,
|
||||
bool fatal) {
|
||||
return CheckNotNullCommon(file, line, names, t, fatal);
|
||||
}
|
||||
} // namespace c10
|
||||
|
||||
@ -136,65 +116,6 @@ static_assert(
|
||||
::c10::MessageLogger(__FILE__, __LINE__, ::c10::GLOG_##n).stream()
|
||||
#endif // NDEBUG
|
||||
|
||||
#define TORCH_CHECK_OP(val1, val2, op) \
|
||||
FATAL_IF(((val1)op(val2))) << "Check failed: " #val1 " " #op " " #val2 " (" \
|
||||
<< (val1) << " vs. " << (val2) << ") "
|
||||
|
||||
// TORCH_CHECK_OP macro definitions
|
||||
#define TORCH_CHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
|
||||
#define TORCH_CHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
|
||||
#define TORCH_CHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
|
||||
#define TORCH_CHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
|
||||
#define TORCH_CHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
|
||||
#define TORCH_CHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Debug only versions of TORCH_CHECK_OP macros.
|
||||
#define TORCH_DCHECK_EQ(val1, val2) TORCH_CHECK_OP(val1, val2, ==)
|
||||
#define TORCH_DCHECK_NE(val1, val2) TORCH_CHECK_OP(val1, val2, !=)
|
||||
#define TORCH_DCHECK_LE(val1, val2) TORCH_CHECK_OP(val1, val2, <=)
|
||||
#define TORCH_DCHECK_LT(val1, val2) TORCH_CHECK_OP(val1, val2, <)
|
||||
#define TORCH_DCHECK_GE(val1, val2) TORCH_CHECK_OP(val1, val2, >=)
|
||||
#define TORCH_DCHECK_GT(val1, val2) TORCH_CHECK_OP(val1, val2, >)
|
||||
#else // !NDEBUG
|
||||
// These versions generate no code in optimized mode.
|
||||
#define TORCH_DCHECK_EQ(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_CHECK_OP(val1, val2, ==)
|
||||
#define TORCH_DCHECK_NE(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_CHECK_OP(val1, val2, !=)
|
||||
#define TORCH_DCHECK_LE(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_CHECK_OP(val1, val2, <=)
|
||||
#define TORCH_DCHECK_LT(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_CHECK_OP(val1, val2, <)
|
||||
#define TORCH_DCHECK_GE(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_CHECK_OP(val1, val2, >=)
|
||||
#define TORCH_DCHECK_GT(val1, val2) \
|
||||
while (false) \
|
||||
TORCH_CHECK_OP(val1, val2, >)
|
||||
#endif // NDEBUG
|
||||
|
||||
// Check that a pointer is not null.
|
||||
#define TORCH_CHECK_NOTNULL(val) \
|
||||
::c10::CheckNotNull( \
|
||||
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
|
||||
|
||||
#ifndef NDEBUG
|
||||
// Debug only version of TORCH_CHECK_NOTNULL
|
||||
#define TORCH_DCHECK_NOTNULL(val) \
|
||||
::c10::CheckNotNull( \
|
||||
__FILE__, __LINE__, "Check failed: '" #val "' Must be non NULL", (val))
|
||||
#else // !NDEBUG
|
||||
// Optimized version - generates no code.
|
||||
#define TORCH_DCHECK_NOTNULL(val) \
|
||||
while (false) \
|
||||
TORCH_CHECK_NOTNULL(val)
|
||||
#endif // NDEBUG
|
||||
|
||||
// ---------------------- Support for std objects --------------------------
|
||||
// These are adapted from glog to support a limited set of logging capability
|
||||
// for STL objects.
|
||||
|
||||
@ -926,15 +926,14 @@ class DeviceCachingAllocator {
|
||||
(release_cached_blocks() && alloc_block(params, true));
|
||||
}
|
||||
if (!block_found) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device);
|
||||
auto device_total = device_prop.global_mem_size;
|
||||
const auto& raw_device = c10::xpu::get_raw_device(device);
|
||||
const auto device_total =
|
||||
raw_device.get_info<sycl::info::device::global_mem_size>();
|
||||
// Estimate the available device memory when the SYCL runtime does not
|
||||
// support the corresponding aspect (ext_intel_free_memory).
|
||||
size_t device_free = device_prop.global_mem_size -
|
||||
size_t device_free = device_total -
|
||||
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
|
||||
.current;
|
||||
auto& raw_device = c10::xpu::get_raw_device(device);
|
||||
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
|
||||
// affected devices.
|
||||
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
|
||||
@ -1052,21 +1051,37 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> getMemoryInfo() {
|
||||
const auto& device = c10::xpu::get_raw_device(device_index);
|
||||
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
|
||||
TORCH_CHECK(
|
||||
device.has(sycl::aspect::ext_intel_free_memory),
|
||||
"The device (",
|
||||
device.get_info<sycl::info::device::name>(),
|
||||
") doesn't support querying the available free memory. ",
|
||||
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
|
||||
"to help us prioritize its implementation.");
|
||||
const size_t free =
|
||||
device.get_info<sycl::ext::intel::info::device::free_memory>();
|
||||
return {free, total};
|
||||
}
|
||||
|
||||
double getMemoryFraction() {
|
||||
if (!set_fraction) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
const auto device_total =
|
||||
xpu::get_raw_device(device_index)
|
||||
.get_info<sycl::info::device::global_mem_size>();
|
||||
return static_cast<double>(allowed_memory_maximum) /
|
||||
static_cast<double>(device_prop.global_mem_size);
|
||||
static_cast<double>(device_total);
|
||||
}
|
||||
|
||||
void setMemoryFraction(double fraction) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
auto device_total = device_prop.global_mem_size;
|
||||
const auto device_total =
|
||||
xpu::get_raw_device(device_index)
|
||||
.get_info<sycl::info::device::global_mem_size>();
|
||||
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
|
||||
set_fraction = true;
|
||||
}
|
||||
@ -1240,6 +1255,11 @@ class XPUAllocator : public DeviceAllocator {
|
||||
c10::xpu::get_raw_device(dev_to_access));
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryInfo();
|
||||
}
|
||||
|
||||
double getMemoryFraction(DeviceIndex device) {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryFraction();
|
||||
|
||||
@ -1941,6 +1941,7 @@ if(BUILD_TEST)
|
||||
foreach(test_src ${Caffe2_XPU_TEST_SRCS})
|
||||
get_filename_component(test_name ${test_src} NAME_WE)
|
||||
add_executable(${test_name} "${test_src}")
|
||||
torch_compile_options(${test_name})
|
||||
target_link_libraries(${test_name} torch_library gtest_main)
|
||||
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
|
||||
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
|
||||
|
||||
@ -40,6 +40,7 @@
|
||||
:nosignatures:
|
||||
|
||||
empty_cache
|
||||
get_memory_info
|
||||
max_memory_allocated
|
||||
max_memory_reserved
|
||||
memory_allocated
|
||||
|
||||
@ -382,20 +382,6 @@ coverage_ignore_functions = [
|
||||
# torch.ao.quantization.backend_config.tensorrt
|
||||
"get_tensorrt_backend_config",
|
||||
"get_tensorrt_backend_config_dict",
|
||||
# torch.ao.quantization.backend_config.utils
|
||||
"entry_to_pretty_str",
|
||||
"get_fused_module_classes",
|
||||
"get_fuser_method_mapping",
|
||||
"get_fusion_pattern_to_extra_inputs_getter",
|
||||
"get_fusion_pattern_to_root_node_getter",
|
||||
"get_module_to_qat_module",
|
||||
"get_pattern_to_dtype_configs",
|
||||
"get_pattern_to_input_type_to_index",
|
||||
"get_qat_module_classes",
|
||||
"get_root_module_to_quantized_reference_module",
|
||||
"pattern_to_human_readable",
|
||||
"remove_boolean_dispatch_from_name",
|
||||
# torch.ao.quantization.backend_config.x86
|
||||
"get_x86_backend_config",
|
||||
# torch.ao.quantization.fuse_modules
|
||||
"fuse_known_modules",
|
||||
@ -426,25 +412,6 @@ coverage_ignore_functions = [
|
||||
"insert_observers_for_model",
|
||||
"prepare",
|
||||
"propagate_dtypes_for_known_nodes",
|
||||
# torch.ao.quantization.fx.utils
|
||||
"all_node_args_except_first",
|
||||
"all_node_args_have_no_tensors",
|
||||
"assert_and_get_unique_device",
|
||||
"collect_producer_nodes",
|
||||
"create_getattr_from_value",
|
||||
"create_node_from_old_node_preserve_meta",
|
||||
"get_custom_module_class_keys",
|
||||
"get_linear_prepack_op_for_dtype",
|
||||
"get_new_attr_name_with_prefix",
|
||||
"get_non_observable_arg_indexes_and_types",
|
||||
"get_qconv_prepack_op",
|
||||
"get_skipped_module_name_and_classes",
|
||||
"graph_module_from_producer_nodes",
|
||||
"maybe_get_next_module",
|
||||
"node_arg_is_bias",
|
||||
"node_arg_is_weight",
|
||||
"return_arg_list",
|
||||
# torch.ao.quantization.pt2e.graph_utils
|
||||
"bfs_trace_with_node_process",
|
||||
"find_sequential_partitions",
|
||||
"get_equivalent_types",
|
||||
@ -860,80 +827,10 @@ coverage_ignore_functions = [
|
||||
"get_latency_of_one_partition",
|
||||
"get_latency_of_partitioned_graph",
|
||||
"get_partition_to_latency_mapping",
|
||||
# torch.fx.experimental.proxy_tensor
|
||||
"decompose",
|
||||
"disable_autocast_cache",
|
||||
"disable_proxy_modes_tracing",
|
||||
"dispatch_trace",
|
||||
"extract_val",
|
||||
"fake_signature",
|
||||
"fetch_sym_proxy",
|
||||
"fetch_object_proxy",
|
||||
"get_innermost_proxy_mode",
|
||||
"get_isolated_graphmodule",
|
||||
"get_proxy_slot",
|
||||
"get_torch_dispatch_modes",
|
||||
"has_proxy_slot",
|
||||
"is_sym_node",
|
||||
"maybe_handle_decomp",
|
||||
"proxy_call",
|
||||
"set_meta",
|
||||
"set_original_aten_op",
|
||||
"set_proxy_slot",
|
||||
"snapshot_fake",
|
||||
"thunkify",
|
||||
"track_tensor",
|
||||
"track_tensor_tree",
|
||||
"wrap_key",
|
||||
"wrapper_and_args_for_make_fx",
|
||||
# torch.fx.experimental.recording
|
||||
"record_shapeenv_event",
|
||||
"replay_shape_env_events",
|
||||
"shape_env_check_state_equal",
|
||||
# torch.fx.experimental.sym_node
|
||||
"ceil_impl",
|
||||
"floor_ceil_helper",
|
||||
"floor_impl",
|
||||
"method_to_operator",
|
||||
"sympy_is_channels_last_contiguous_2d",
|
||||
"sympy_is_channels_last_contiguous_3d",
|
||||
"sympy_is_channels_last_strides_2d",
|
||||
"sympy_is_channels_last_strides_3d",
|
||||
"sympy_is_channels_last_strides_generic",
|
||||
"sympy_is_contiguous",
|
||||
"sympy_is_contiguous_generic",
|
||||
"to_node",
|
||||
"wrap_node",
|
||||
"sym_sqrt",
|
||||
# torch.fx.experimental.symbolic_shapes
|
||||
"bind_symbols",
|
||||
"cast_symbool_to_symint_guardless",
|
||||
"create_contiguous",
|
||||
"error",
|
||||
"eval_guards",
|
||||
"eval_is_non_overlapping_and_dense",
|
||||
"expect_true",
|
||||
"find_symbol_binding_fx_nodes",
|
||||
"free_symbols",
|
||||
"free_unbacked_symbols",
|
||||
"fx_placeholder_targets",
|
||||
"fx_placeholder_vals",
|
||||
"guard_bool",
|
||||
"guard_float",
|
||||
"guard_int",
|
||||
"guard_scalar",
|
||||
"has_hint",
|
||||
"has_symbolic_sizes_strides",
|
||||
"is_channels_last_contiguous_2d",
|
||||
"is_channels_last_contiguous_3d",
|
||||
"is_channels_last_strides_2d",
|
||||
"is_channels_last_strides_3d",
|
||||
"is_contiguous",
|
||||
"is_non_overlapping_and_dense_indicator",
|
||||
"is_nested_int",
|
||||
"is_symbol_binding_fx_node",
|
||||
"is_symbolic",
|
||||
# torch.fx.experimental.unification.core
|
||||
"reify",
|
||||
# torch.fx.experimental.unification.match
|
||||
"edge",
|
||||
@ -971,24 +868,6 @@ coverage_ignore_functions = [
|
||||
"reverse_dict",
|
||||
# torch.fx.experimental.unification.multipledispatch.variadic
|
||||
"isvariadic",
|
||||
# torch.fx.experimental.unification.unification_tools
|
||||
"assoc",
|
||||
"assoc_in",
|
||||
"dissoc",
|
||||
"first",
|
||||
"get_in",
|
||||
"getter",
|
||||
"groupby",
|
||||
"itemfilter",
|
||||
"itemmap",
|
||||
"keyfilter",
|
||||
"keymap",
|
||||
"merge",
|
||||
"merge_with",
|
||||
"update_in",
|
||||
"valfilter",
|
||||
"valmap",
|
||||
# torch.fx.experimental.unification.utils
|
||||
"freeze",
|
||||
"hashable",
|
||||
"raises",
|
||||
@ -1429,319 +1308,8 @@ coverage_ignore_functions = [
|
||||
# torch.onnx.symbolic_opset7
|
||||
"max",
|
||||
"min",
|
||||
# torch.onnx.symbolic_opset8
|
||||
"addmm",
|
||||
"bmm",
|
||||
"empty",
|
||||
"empty_like",
|
||||
"flatten",
|
||||
"full",
|
||||
"full_like",
|
||||
"gt",
|
||||
"lt",
|
||||
"matmul",
|
||||
"mm",
|
||||
"ones",
|
||||
"ones_like",
|
||||
"prelu",
|
||||
"repeat",
|
||||
"zeros",
|
||||
"zeros_like",
|
||||
# torch.onnx.symbolic_opset9
|
||||
"abs",
|
||||
"acos",
|
||||
"adaptive_avg_pool1d",
|
||||
"adaptive_avg_pool2d",
|
||||
"adaptive_avg_pool3d",
|
||||
"adaptive_max_pool1d",
|
||||
"adaptive_max_pool2d",
|
||||
"adaptive_max_pool3d",
|
||||
"add",
|
||||
"addcmul",
|
||||
"addmm",
|
||||
"alias",
|
||||
"amax",
|
||||
"amin",
|
||||
"aminmax",
|
||||
"arange",
|
||||
"argmax",
|
||||
"argmin",
|
||||
"as_strided",
|
||||
"as_tensor",
|
||||
"asin",
|
||||
"atan",
|
||||
"atan2",
|
||||
"avg_pool1d",
|
||||
"avg_pool2d",
|
||||
"avg_pool3d",
|
||||
"baddbmm",
|
||||
"batch_norm",
|
||||
"bernoulli",
|
||||
"bitwise_not",
|
||||
"bitwise_or",
|
||||
"bmm",
|
||||
"broadcast_tensors",
|
||||
"broadcast_to",
|
||||
"bucketize",
|
||||
"cat",
|
||||
"cdist",
|
||||
"ceil",
|
||||
"clamp",
|
||||
"clamp_max",
|
||||
"clamp_min",
|
||||
"clone",
|
||||
"constant_pad_nd",
|
||||
"contiguous",
|
||||
"conv1d",
|
||||
"conv2d",
|
||||
"conv3d",
|
||||
"conv_tbc",
|
||||
"conv_transpose1d",
|
||||
"conv_transpose2d",
|
||||
"conv_transpose3d",
|
||||
"convert_element_type",
|
||||
"convolution",
|
||||
"cos",
|
||||
"cosine_similarity",
|
||||
"cross",
|
||||
"cumsum",
|
||||
"detach",
|
||||
"dim",
|
||||
"div",
|
||||
"dot",
|
||||
"dropout",
|
||||
"elu",
|
||||
"embedding",
|
||||
"embedding_bag",
|
||||
"empty",
|
||||
"empty_like",
|
||||
"eq",
|
||||
"erf",
|
||||
"exp",
|
||||
"expand",
|
||||
"expand_as",
|
||||
"eye",
|
||||
"fill",
|
||||
"flatten",
|
||||
"floor",
|
||||
"floor_divide",
|
||||
"floordiv",
|
||||
"frobenius_norm",
|
||||
"full",
|
||||
"full_like",
|
||||
"gather",
|
||||
"ge",
|
||||
"gelu",
|
||||
"get_pool_ceil_padding",
|
||||
"glu",
|
||||
"group_norm",
|
||||
"gru",
|
||||
"gt",
|
||||
"hann_window",
|
||||
"hardshrink",
|
||||
"hardsigmoid",
|
||||
"hardswish",
|
||||
"hardtanh",
|
||||
"index",
|
||||
"index_add",
|
||||
"index_copy",
|
||||
"index_fill",
|
||||
"index_put",
|
||||
"index_select",
|
||||
"instance_norm",
|
||||
"is_floating_point",
|
||||
"is_pinned",
|
||||
"isnan",
|
||||
"item",
|
||||
"kl_div",
|
||||
"layer_norm",
|
||||
"le",
|
||||
"leaky_relu",
|
||||
"lerp",
|
||||
"lift",
|
||||
"linalg_cross",
|
||||
"linalg_matrix_norm",
|
||||
"linalg_norm",
|
||||
"linalg_vector_norm",
|
||||
"linear",
|
||||
"linspace",
|
||||
"log",
|
||||
"log10",
|
||||
"log1p",
|
||||
"log2",
|
||||
"log_sigmoid",
|
||||
"log_softmax",
|
||||
"logical_and",
|
||||
"logical_not",
|
||||
"logical_or",
|
||||
"logical_xor",
|
||||
"logit",
|
||||
"logsumexp",
|
||||
"lstm",
|
||||
"lstm_cell",
|
||||
"lt",
|
||||
"masked_fill",
|
||||
"masked_fill_",
|
||||
"matmul",
|
||||
"max",
|
||||
"max_pool1d",
|
||||
"max_pool1d_with_indices",
|
||||
"max_pool2d",
|
||||
"max_pool2d_with_indices",
|
||||
"max_pool3d",
|
||||
"max_pool3d_with_indices",
|
||||
"maximum",
|
||||
"meshgrid",
|
||||
"min",
|
||||
"minimum",
|
||||
"mish",
|
||||
"mm",
|
||||
"movedim",
|
||||
"mse_loss",
|
||||
"mul",
|
||||
"multinomial",
|
||||
"mv",
|
||||
"narrow",
|
||||
"native_layer_norm",
|
||||
"ne",
|
||||
"neg",
|
||||
"new_empty",
|
||||
"new_full",
|
||||
"new_ones",
|
||||
"new_zeros",
|
||||
"nonzero",
|
||||
"nonzero_numpy",
|
||||
"noop_complex_operators",
|
||||
"norm",
|
||||
"numel",
|
||||
"numpy_T",
|
||||
"one_hot",
|
||||
"ones",
|
||||
"ones_like",
|
||||
"onnx_placeholder",
|
||||
"overload_by_arg_count",
|
||||
"pad",
|
||||
"pairwise_distance",
|
||||
"permute",
|
||||
"pixel_shuffle",
|
||||
"pixel_unshuffle",
|
||||
"pow",
|
||||
"prelu",
|
||||
"prim_constant",
|
||||
"prim_constant_chunk",
|
||||
"prim_constant_split",
|
||||
"prim_data",
|
||||
"prim_device",
|
||||
"prim_dtype",
|
||||
"prim_if",
|
||||
"prim_layout",
|
||||
"prim_list_construct",
|
||||
"prim_list_unpack",
|
||||
"prim_loop",
|
||||
"prim_max",
|
||||
"prim_min",
|
||||
"prim_shape",
|
||||
"prim_tolist",
|
||||
"prim_tuple_construct",
|
||||
"prim_type",
|
||||
"prim_unchecked_cast",
|
||||
"prim_uninitialized",
|
||||
"rand",
|
||||
"rand_like",
|
||||
"randint",
|
||||
"randint_like",
|
||||
"randn",
|
||||
"randn_like",
|
||||
"reciprocal",
|
||||
"reflection_pad",
|
||||
"relu",
|
||||
"relu6",
|
||||
"remainder",
|
||||
"repeat",
|
||||
"repeat_interleave",
|
||||
"replication_pad",
|
||||
"reshape",
|
||||
"reshape_as",
|
||||
"rnn_relu",
|
||||
"rnn_tanh",
|
||||
"roll",
|
||||
"rrelu",
|
||||
"rsqrt",
|
||||
"rsub",
|
||||
"scalar_tensor",
|
||||
"scatter",
|
||||
"scatter_add",
|
||||
"select",
|
||||
"selu",
|
||||
"sigmoid",
|
||||
"sign",
|
||||
"silu",
|
||||
"sin",
|
||||
"size",
|
||||
"slice",
|
||||
"softmax",
|
||||
"softplus",
|
||||
"softshrink",
|
||||
"sort",
|
||||
"split",
|
||||
"split_with_sizes",
|
||||
"sqrt",
|
||||
"square",
|
||||
"squeeze",
|
||||
"stack",
|
||||
"std",
|
||||
"std_mean",
|
||||
"sub",
|
||||
"t",
|
||||
"take",
|
||||
"tan",
|
||||
"tanh",
|
||||
"tanhshrink",
|
||||
"tensor",
|
||||
"threshold",
|
||||
"to",
|
||||
"topk",
|
||||
"transpose",
|
||||
"true_divide",
|
||||
"type_as",
|
||||
"unbind",
|
||||
"unfold",
|
||||
"unsafe_chunk",
|
||||
"unsafe_split",
|
||||
"unsafe_split_with_sizes",
|
||||
"unsqueeze",
|
||||
"unsupported_complex_operators",
|
||||
"unused",
|
||||
"upsample_bilinear2d",
|
||||
"upsample_linear1d",
|
||||
"upsample_nearest1d",
|
||||
"upsample_nearest2d",
|
||||
"upsample_nearest3d",
|
||||
"upsample_trilinear3d",
|
||||
"var",
|
||||
"var_mean",
|
||||
"view",
|
||||
"view_as",
|
||||
"where",
|
||||
"wrap_logical_op_with_cast_to",
|
||||
"wrap_logical_op_with_negation",
|
||||
"zero",
|
||||
"zeros",
|
||||
"zeros_like",
|
||||
# torch.onnx.utils
|
||||
"disable_apex_o2_state_dict_hook",
|
||||
"export",
|
||||
"export_to_pretty_string",
|
||||
"exporter_context",
|
||||
"is_in_onnx_export",
|
||||
"model_signature",
|
||||
"register_custom_op_symbolic",
|
||||
"select_model_mode_for_export",
|
||||
"setup_onnx_logging",
|
||||
"unconvertible_ops",
|
||||
"unpack_quantized_tensor",
|
||||
"warn_on_static_input_change",
|
||||
# torch.onnx.verification
|
||||
"check_export_model_diff",
|
||||
"verify",
|
||||
"verify_aten_graph",
|
||||
@ -1832,32 +1400,6 @@ coverage_ignore_functions = [
|
||||
"noop_context_fn",
|
||||
"set_checkpoint_early_stop",
|
||||
"set_device_states",
|
||||
# torch.utils.collect_env
|
||||
"check_release_file",
|
||||
"get_cachingallocator_config",
|
||||
"get_clang_version",
|
||||
"get_cmake_version",
|
||||
"get_conda_packages",
|
||||
"get_cpu_info",
|
||||
"get_cuda_module_loading_config",
|
||||
"get_cudnn_version",
|
||||
"get_env_info",
|
||||
"get_gcc_version",
|
||||
"get_gpu_info",
|
||||
"get_libc_version",
|
||||
"get_lsb_version",
|
||||
"get_mac_version",
|
||||
"get_nvidia_driver_version",
|
||||
"get_nvidia_smi",
|
||||
"get_os",
|
||||
"get_pip_packages",
|
||||
"get_platform",
|
||||
"get_pretty_env_info",
|
||||
"get_python_platform",
|
||||
"get_running_cuda_version",
|
||||
"get_windows_version",
|
||||
"is_xnnpack_available",
|
||||
"pretty_str",
|
||||
# torch.utils.cpp_backtrace
|
||||
"get_cpp_backtrace",
|
||||
# torch.utils.cpp_extension
|
||||
@ -1921,52 +1463,6 @@ coverage_ignore_functions = [
|
||||
"apply_shuffle_seed",
|
||||
"apply_shuffle_settings",
|
||||
"get_all_graph_pipes",
|
||||
# torch.utils.flop_counter
|
||||
"addmm_flop",
|
||||
"baddbmm_flop",
|
||||
"bmm_flop",
|
||||
"conv_backward_flop",
|
||||
"conv_flop",
|
||||
"conv_flop_count",
|
||||
"convert_num_with_suffix",
|
||||
"get_shape",
|
||||
"get_suffix_str",
|
||||
"mm_flop",
|
||||
"normalize_tuple",
|
||||
"register_flop_formula",
|
||||
"sdpa_backward_flop",
|
||||
"sdpa_backward_flop_count",
|
||||
"sdpa_flop",
|
||||
"sdpa_flop_count",
|
||||
"shape_wrapper",
|
||||
"transpose_shape",
|
||||
# torch.utils.hipify.hipify_python
|
||||
"add_dim3",
|
||||
"compute_stats",
|
||||
"extract_arguments",
|
||||
"file_add_header",
|
||||
"file_specific_replacement",
|
||||
"find_bracket_group",
|
||||
"find_closure_group",
|
||||
"find_parentheses_group",
|
||||
"fix_static_global_kernels",
|
||||
"get_hip_file_path",
|
||||
"hip_header_magic",
|
||||
"hipify",
|
||||
"is_caffe2_gpu_file",
|
||||
"is_cusparse_file",
|
||||
"is_out_of_place",
|
||||
"is_pytorch_file",
|
||||
"is_special_file",
|
||||
"match_extensions",
|
||||
"matched_files_iter",
|
||||
"openf",
|
||||
"preprocess_file_and_save_result",
|
||||
"preprocessor",
|
||||
"processKernelLaunches",
|
||||
"replace_extern_shared",
|
||||
"replace_math_functions",
|
||||
"str2bool",
|
||||
# torch.utils.hooks
|
||||
"unserializable_hook",
|
||||
"warn_if_has_hooks",
|
||||
|
||||
@ -12,6 +12,37 @@ These APIs are experimental and subject to change without notice.
|
||||
.. autoclass:: torch.fx.experimental.sym_node.DynamicInt
|
||||
```
|
||||
|
||||
## torch.fx.experimental.sym_node
|
||||
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.fx.experimental.sym_node
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.fx.experimental.sym_node
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
is_channels_last_contiguous_2d
|
||||
is_channels_last_contiguous_3d
|
||||
is_channels_last_strides_2d
|
||||
is_channels_last_strides_3d
|
||||
is_contiguous
|
||||
is_non_overlapping_and_dense_indicator
|
||||
method_to_operator
|
||||
sympy_is_channels_last_contiguous_2d
|
||||
sympy_is_channels_last_contiguous_3d
|
||||
sympy_is_channels_last_strides_2d
|
||||
sympy_is_channels_last_strides_3d
|
||||
sympy_is_channels_last_strides_generic
|
||||
sympy_is_contiguous
|
||||
sympy_is_contiguous_generic
|
||||
```
|
||||
|
||||
## torch.fx.experimental.symbolic_shapes
|
||||
|
||||
```{eval-rst}
|
||||
@ -69,6 +100,25 @@ These APIs are experimental and subject to change without notice.
|
||||
rebind_unbacked
|
||||
resolve_unbacked_bindings
|
||||
is_accessor_node
|
||||
cast_symbool_to_symint_guardless
|
||||
create_contiguous
|
||||
error
|
||||
eval_guards
|
||||
eval_is_non_overlapping_and_dense
|
||||
find_symbol_binding_fx_nodes
|
||||
free_symbols
|
||||
free_unbacked_symbols
|
||||
fx_placeholder_targets
|
||||
fx_placeholder_vals
|
||||
guard_bool
|
||||
guard_float
|
||||
guard_int
|
||||
guard_scalar
|
||||
has_hint
|
||||
has_symbolic_sizes_strides
|
||||
is_nested_int
|
||||
is_symbol_binding_fx_node
|
||||
is_symbolic
|
||||
```
|
||||
|
||||
## torch.fx.experimental.proxy_tensor
|
||||
@ -91,4 +141,46 @@ These APIs are experimental and subject to change without notice.
|
||||
get_proxy_mode
|
||||
maybe_enable_thunkify
|
||||
maybe_disable_thunkify
|
||||
decompose
|
||||
disable_autocast_cache
|
||||
disable_proxy_modes_tracing
|
||||
extract_val
|
||||
fake_signature
|
||||
fetch_object_proxy
|
||||
fetch_sym_proxy
|
||||
has_proxy_slot
|
||||
is_sym_node
|
||||
maybe_handle_decomp
|
||||
proxy_call
|
||||
set_meta
|
||||
set_original_aten_op
|
||||
set_proxy_slot
|
||||
snapshot_fake
|
||||
```
|
||||
|
||||
## torch.fx.experimental.unification.unification_tools
|
||||
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.fx.experimental.unification.unification_tools
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.fx.experimental.unification.unification_tools
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
assoc
|
||||
assoc_in
|
||||
dissoc
|
||||
first
|
||||
keyfilter
|
||||
keymap
|
||||
merge
|
||||
merge_with
|
||||
update_in
|
||||
valfilter
|
||||
valmap
|
||||
|
||||
@ -1134,7 +1134,6 @@ The set of leaf modules can be customized by overriding
|
||||
.. py:module:: torch.fx.experimental.refinement_types
|
||||
.. py:module:: torch.fx.experimental.rewriter
|
||||
.. py:module:: torch.fx.experimental.schema_type_annotation
|
||||
.. py:module:: torch.fx.experimental.sym_node
|
||||
.. py:module:: torch.fx.experimental.unification.core
|
||||
.. py:module:: torch.fx.experimental.unification.dispatch
|
||||
.. py:module:: torch.fx.experimental.unification.match
|
||||
@ -1144,7 +1143,6 @@ The set of leaf modules can be customized by overriding
|
||||
.. py:module:: torch.fx.experimental.unification.multipledispatch.dispatcher
|
||||
.. py:module:: torch.fx.experimental.unification.multipledispatch.utils
|
||||
.. py:module:: torch.fx.experimental.unification.multipledispatch.variadic
|
||||
.. py:module:: torch.fx.experimental.unification.unification_tools
|
||||
.. py:module:: torch.fx.experimental.unification.utils
|
||||
.. py:module:: torch.fx.experimental.unification.variable
|
||||
.. py:module:: torch.fx.experimental.unify_refinements
|
||||
|
||||
@ -134,6 +134,23 @@ Quantization to work with this as well.
|
||||
ObservationType
|
||||
```
|
||||
|
||||
## torch.ao.quantization.backend_config.utils
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.ao.quantization.backend_config.utils
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
entry_to_pretty_str
|
||||
pattern_to_human_readable
|
||||
remove_boolean_dispatch_from_name
|
||||
|
||||
```
|
||||
|
||||
## torch.ao.quantization.fx.custom_config
|
||||
|
||||
This module contains a few CustomConfig classes that's used in both eager mode and FX graph mode quantization
|
||||
@ -154,6 +171,30 @@ This module contains a few CustomConfig classes that's used in both eager mode a
|
||||
StandaloneModuleConfigEntry
|
||||
```
|
||||
|
||||
## torch.ao.quantization.fx.utils
|
||||
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.ao.quantization.fx.utils
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
all_node_args_except_first
|
||||
all_node_args_have_no_tensors
|
||||
collect_producer_nodes
|
||||
create_getattr_from_value
|
||||
create_node_from_old_node_preserve_meta
|
||||
graph_module_from_producer_nodes
|
||||
maybe_get_next_module
|
||||
node_arg_is_bias
|
||||
node_arg_is_weight
|
||||
return_arg_list
|
||||
```
|
||||
|
||||
## torch.ao.quantization.quantizer
|
||||
|
||||
```{eval-rst}
|
||||
|
||||
@ -19,6 +19,91 @@
|
||||
swap_tensors
|
||||
```
|
||||
|
||||
# torch.utils.collect_env
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.utils.collect_env
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.utils.collect_env
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
check_release_file
|
||||
is_xnnpack_available
|
||||
pretty_str
|
||||
```
|
||||
|
||||
# torch.utils.flop_counter
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.utils.flop_counter
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.utils.flop_counter
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
baddbmm_flop
|
||||
bmm_flop
|
||||
conv_backward_flop
|
||||
conv_flop
|
||||
conv_flop_count
|
||||
register_flop_formula
|
||||
sdpa_backward_flop
|
||||
sdpa_backward_flop_count
|
||||
sdpa_flop
|
||||
sdpa_flop_count
|
||||
shape_wrapper
|
||||
```
|
||||
|
||||
# torch.utils.hipify.hipify_python
|
||||
```{eval-rst}
|
||||
.. automodule:: torch.utils.hipify.hipify_python
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. currentmodule:: torch.utils.hipify.hipify_python
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
|
||||
compute_stats
|
||||
extract_arguments
|
||||
file_add_header
|
||||
file_specific_replacement
|
||||
find_bracket_group
|
||||
find_closure_group
|
||||
find_parentheses_group
|
||||
fix_static_global_kernels
|
||||
hip_header_magic
|
||||
hipify
|
||||
is_caffe2_gpu_file
|
||||
is_cusparse_file
|
||||
is_out_of_place
|
||||
is_pytorch_file
|
||||
is_special_file
|
||||
openf
|
||||
preprocess_file_and_save_result
|
||||
preprocessor
|
||||
processKernelLaunches
|
||||
replace_extern_shared
|
||||
replace_math_functions
|
||||
str2bool
|
||||
```
|
||||
|
||||
|
||||
<!-- This module needs to be documented. Adding here in the meantime
|
||||
for tracking purposes -->
|
||||
```{eval-rst}
|
||||
@ -43,7 +128,6 @@ for tracking purposes -->
|
||||
.. py:module:: torch.utils.benchmark.utils.valgrind_wrapper.timer_interface
|
||||
.. py:module:: torch.utils.bundled_inputs
|
||||
.. py:module:: torch.utils.checkpoint
|
||||
.. py:module:: torch.utils.collect_env
|
||||
.. py:module:: torch.utils.cpp_backtrace
|
||||
.. py:module:: torch.utils.cpp_extension
|
||||
.. py:module:: torch.utils.data.backward_compatibility
|
||||
@ -80,10 +164,8 @@ for tracking purposes -->
|
||||
.. py:module:: torch.utils.data.sampler
|
||||
.. py:module:: torch.utils.dlpack
|
||||
.. py:module:: torch.utils.file_baton
|
||||
.. py:module:: torch.utils.flop_counter
|
||||
.. py:module:: torch.utils.hipify.constants
|
||||
.. py:module:: torch.utils.hipify.cuda_to_hip_mappings
|
||||
.. py:module:: torch.utils.hipify.hipify_python
|
||||
.. py:module:: torch.utils.hipify.version
|
||||
.. py:module:: torch.utils.hooks
|
||||
.. py:module:: torch.utils.jit.log_extract
|
||||
|
||||
@ -172,9 +172,9 @@ ignore = [
|
||||
"SIM102", "SIM103", "SIM112", # flake8-simplify code styles
|
||||
"SIM105", # these ignores are from flake8-simplify. please fix or ignore with commented reason
|
||||
"SIM108", # SIM108 ignored because we prefer if-else-block instead of ternary expression
|
||||
"SIM110",
|
||||
"SIM110", # Checks for for loops that can be replaced with a builtin function, like any or all.
|
||||
"SIM114", # Combine `if` branches using logical `or` operator
|
||||
"SIM115",
|
||||
"SIM115", # Checks for cases where files are opened without using a context manager.
|
||||
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
|
||||
"SIM117",
|
||||
"SIM118",
|
||||
@ -184,7 +184,6 @@ ignore = [
|
||||
"TC006",
|
||||
# TODO: Remove Python-3.10 specific suppressions
|
||||
"B905",
|
||||
"UP035",
|
||||
]
|
||||
select = [
|
||||
"B",
|
||||
|
||||
3
setup.py
3
setup.py
@ -1646,8 +1646,7 @@ def main() -> None:
|
||||
mirror_files_into_torchgen()
|
||||
if RUN_BUILD_DEPS:
|
||||
build_deps()
|
||||
|
||||
mirror_inductor_external_kernels()
|
||||
mirror_inductor_external_kernels()
|
||||
|
||||
(
|
||||
ext_modules,
|
||||
|
||||
@ -208,7 +208,7 @@ class _BaseDataSparsiferTestCase(TestCase):
|
||||
assert len(sparsifier1.data_groups) == len(sparsifier2.data_groups)
|
||||
|
||||
state1 = state_dict1["state"]
|
||||
for name in state1.keys():
|
||||
for name in state1:
|
||||
# compare mask
|
||||
assert name in sparsifier2.state
|
||||
assert "mask" in sparsifier2.state[name]
|
||||
|
||||
@ -119,7 +119,7 @@ class TestBaseSparsifier(TestCase):
|
||||
for idx in range(len(sparsifier0.groups)):
|
||||
mg0 = sparsifier0.groups[idx]
|
||||
mg1 = sparsifier1.groups[idx]
|
||||
for key in mg0.keys():
|
||||
for key in mg0:
|
||||
assert key in mg1
|
||||
if key == "module":
|
||||
# We cannot compare modules as they are different
|
||||
|
||||
@ -67,13 +67,13 @@ Tensor sgd_out_of_place(
|
||||
|
||||
void boxed_sgd_out_of_place(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor res = sgd_out_of_place(
|
||||
to<Tensor>(stack[0]),
|
||||
to<Tensor>(stack[1]),
|
||||
float(to<double>(stack[2])),
|
||||
to<double>(stack[3]),
|
||||
to<bool>(stack[4]));
|
||||
torch::stable::detail::to<Tensor>(stack[0]),
|
||||
torch::stable::detail::to<Tensor>(stack[1]),
|
||||
float(torch::stable::detail::to<double>(stack[2])),
|
||||
torch::stable::detail::to<double>(stack[3]),
|
||||
torch::stable::detail::to<bool>(stack[4]));
|
||||
|
||||
stack[0] = from(res);
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY(libtorch_agnostic, m) {
|
||||
@ -89,8 +89,8 @@ Tensor identity(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_identity(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor res = identity(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
Tensor res = identity(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -108,14 +108,14 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CPU, m) {
|
||||
Tensor my_abs(Tensor t) {
|
||||
const auto num_args = 1;
|
||||
StableIValue stack[num_args];
|
||||
stack[0] = from(t);
|
||||
stack[0] = torch::stable::detail::from(t);
|
||||
aoti_torch_call_dispatcher("aten::abs", "", stack);
|
||||
return to<Tensor>(stack[0]);
|
||||
return torch::stable::detail::to<Tensor>(stack[0]);
|
||||
}
|
||||
|
||||
void boxed_my_abs(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor tensor_res = my_abs(to<Tensor>(stack[0]));
|
||||
stack[0] = from(tensor_res);
|
||||
Tensor tensor_res = my_abs(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(tensor_res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -132,21 +132,21 @@ Tensor my_ones_like(Tensor t, StableIValue device) {
|
||||
|
||||
auto mf = aoti_torch_memory_format_contiguous_format();
|
||||
|
||||
stack[0] = from(t);
|
||||
stack[1] = from(std::optional(t.scalar_type())); // dtype
|
||||
stack[2] = from(std::nullopt); // layout
|
||||
stack[3] = from(std::optional(device)); // device
|
||||
stack[4] = from(std::optional(false)); // pin_memory
|
||||
stack[5] = from(std::optional(mf)); // memory_format
|
||||
stack[0] = torch::stable::detail::from(t);
|
||||
stack[1] = torch::stable::detail::from(std::optional(t.scalar_type())); // dtype
|
||||
stack[2] = torch::stable::detail::from(std::nullopt); // layout
|
||||
stack[3] = torch::stable::detail::from(std::optional(device)); // device
|
||||
stack[4] = torch::stable::detail::from(std::optional(false)); // pin_memory
|
||||
stack[5] = torch::stable::detail::from(std::optional(mf)); // memory_format
|
||||
|
||||
aoti_torch_call_dispatcher("aten::ones_like", "", stack);
|
||||
|
||||
return to<Tensor>(stack[0]);
|
||||
return torch::stable::detail::to<Tensor>(stack[0]);
|
||||
}
|
||||
|
||||
void boxed_my_ones_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor res = my_ones_like(to<Tensor>(stack[0]), stack[1]);
|
||||
stack[0] = from(res);
|
||||
Tensor res = my_ones_like(torch::stable::detail::to<Tensor>(stack[0]), stack[1]);
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -159,28 +159,28 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
|
||||
|
||||
std::tuple<Tensor, Tensor, bool> exp_neg_is_leaf(Tensor t1, Tensor t2, Tensor t3) {
|
||||
StableIValue stack_exp[1];
|
||||
stack_exp[0] = from(t1);
|
||||
stack_exp[0] = torch::stable::detail::from(t1);
|
||||
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
|
||||
|
||||
StableIValue stack_neg[1];
|
||||
stack_neg[0] = from(t2);
|
||||
stack_neg[0] = torch::stable::detail::from(t2);
|
||||
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
|
||||
|
||||
StableIValue stack_is_leaf[1];
|
||||
stack_is_leaf[0] = from(t3);
|
||||
stack_is_leaf[0] = torch::stable::detail::from(t3);
|
||||
aoti_torch_call_dispatcher("aten::is_leaf", "", stack_is_leaf);
|
||||
|
||||
return std::make_tuple(
|
||||
to<Tensor>(stack_exp[0]),
|
||||
to<Tensor>(stack_neg[0]),
|
||||
to<bool>(stack_is_leaf[0]));
|
||||
torch::stable::detail::to<Tensor>(stack_exp[0]),
|
||||
torch::stable::detail::to<Tensor>(stack_neg[0]),
|
||||
torch::stable::detail::to<bool>(stack_is_leaf[0]));
|
||||
}
|
||||
|
||||
void boxed_exp_neg_is_leaf(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto tuple = exp_neg_is_leaf(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<Tensor>(stack[2]));
|
||||
stack[0] = from(std::get<0>(tuple));
|
||||
stack[1] = from(std::get<1>(tuple));
|
||||
stack[2] = from(std::get<2>(tuple));
|
||||
auto tuple = exp_neg_is_leaf(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<Tensor>(stack[2]));
|
||||
stack[0] = torch::stable::detail::from(std::get<0>(tuple));
|
||||
stack[1] = torch::stable::detail::from(std::get<1>(tuple));
|
||||
stack[2] = torch::stable::detail::from(std::get<2>(tuple));
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -193,15 +193,15 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
|
||||
|
||||
Tensor neg_exp(Tensor t) {
|
||||
StableIValue stack[1];
|
||||
stack[0] = from(t);
|
||||
stack[0] = torch::stable::detail::from(t);
|
||||
aoti_torch_call_dispatcher("aten::exp", "", stack);
|
||||
aoti_torch_call_dispatcher("aten::neg", "", stack);
|
||||
return to<Tensor>(stack[0]);
|
||||
return torch::stable::detail::to<Tensor>(stack[0]);
|
||||
}
|
||||
|
||||
void boxed_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor res = neg_exp(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
Tensor res = neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -214,10 +214,10 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
|
||||
|
||||
Tensor divide_neg_exp(Tensor t) {
|
||||
StableIValue stack_neg[1];
|
||||
stack_neg[0] = from(t);
|
||||
stack_neg[0] = torch::stable::detail::from(t);
|
||||
|
||||
StableIValue stack_exp[1];
|
||||
stack_exp[0] = from(t);
|
||||
stack_exp[0] = torch::stable::detail::from(t);
|
||||
aoti_torch_call_dispatcher("aten::exp", "", stack_exp);
|
||||
aoti_torch_call_dispatcher("aten::neg", "", stack_neg);
|
||||
|
||||
@ -225,12 +225,12 @@ Tensor divide_neg_exp(Tensor t) {
|
||||
stack_div[0] = stack_neg[0];
|
||||
stack_div[1] = stack_exp[0];
|
||||
aoti_torch_call_dispatcher("aten::divide", "Tensor", stack_div);
|
||||
return to<Tensor>(stack_div[0]);
|
||||
return torch::stable::detail::to<Tensor>(stack_div[0]);
|
||||
}
|
||||
|
||||
void boxed_divide_neg_exp(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor res = divide_neg_exp(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
Tensor res = divide_neg_exp(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -246,8 +246,8 @@ bool is_contiguous(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_is_contiguous(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
bool res = is_contiguous(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
bool res = is_contiguous(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -263,9 +263,9 @@ Tensor my_transpose(Tensor t, int64_t dim0, int64_t dim1) {
|
||||
}
|
||||
|
||||
void boxed_my_transpose(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_transpose(to<Tensor>(stack[0]), to<int64_t>(stack[1]), to<int64_t>(stack[2]));
|
||||
auto res = my_transpose(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<int64_t>(stack[1]), torch::stable::detail::to<int64_t>(stack[2]));
|
||||
|
||||
stack[0] = from(res);
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_empty_like(Tensor t) {
|
||||
@ -273,8 +273,8 @@ Tensor my_empty_like(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_empty_like(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_empty_like(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_empty_like(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
bool my_is_cpu(Tensor t) {
|
||||
@ -283,8 +283,8 @@ bool my_is_cpu(Tensor t) {
|
||||
|
||||
|
||||
void boxed_my_is_cpu(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_is_cpu(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_is_cpu(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor fill_infinity(Tensor t) {
|
||||
@ -296,8 +296,8 @@ void boxed_fill_infinity(
|
||||
StableIValue* stack,
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
auto res = fill_infinity(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = fill_infinity(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_pad(Tensor t) {
|
||||
@ -310,8 +310,8 @@ void boxed_my_pad(
|
||||
StableIValue* stack,
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
auto res = my_pad(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_pad(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_narrow(Tensor t, int64_t dim, int64_t start, int64_t length) {
|
||||
@ -323,11 +323,11 @@ void boxed_my_narrow(
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
auto res = my_narrow(
|
||||
to<Tensor>(stack[0]),
|
||||
to<int64_t>(stack[1]),
|
||||
to<int64_t>(stack[2]),
|
||||
to<int64_t>(stack[3]));
|
||||
stack[0] = from(res);
|
||||
torch::stable::detail::to<Tensor>(stack[0]),
|
||||
torch::stable::detail::to<int64_t>(stack[1]),
|
||||
torch::stable::detail::to<int64_t>(stack[2]),
|
||||
torch::stable::detail::to<int64_t>(stack[3]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_new_empty_dtype_variant(Tensor t) {
|
||||
@ -342,8 +342,8 @@ Tensor my_new_empty_dtype_variant(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_my_new_empty_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_new_empty_dtype_variant(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_new_empty_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_new_zeros_dtype_variant(Tensor t) {
|
||||
@ -352,8 +352,8 @@ Tensor my_new_zeros_dtype_variant(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_my_new_zeros_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_new_zeros_dtype_variant(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_new_zeros_dtype_variant(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
|
||||
@ -361,8 +361,8 @@ Tensor my_copy_(Tensor dst, Tensor src, bool non_blocking) {
|
||||
}
|
||||
|
||||
void boxed_my_copy_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor tensor_res = my_copy_(to<Tensor>(stack[0]), to<Tensor>(stack[1]), to<bool>(stack[2]));
|
||||
stack[0] = from(tensor_res);
|
||||
Tensor tensor_res = my_copy_(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]), torch::stable::detail::to<bool>(stack[2]));
|
||||
stack[0] = torch::stable::detail::from(tensor_res);
|
||||
}
|
||||
|
||||
Tensor my_clone(Tensor t) {
|
||||
@ -370,8 +370,8 @@ Tensor my_clone(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_my_clone(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
Tensor tensor_res = my_clone(to<Tensor>(stack[0]));
|
||||
stack[0] = from(tensor_res);
|
||||
Tensor tensor_res = my_clone(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(tensor_res);
|
||||
}
|
||||
|
||||
|
||||
@ -408,8 +408,8 @@ Tensor my_zero_(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_my_zero_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_zero_(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_zero_(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_amax(Tensor t) {
|
||||
@ -417,8 +417,8 @@ Tensor my_amax(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_my_amax(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_amax(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_amax(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
Tensor my_amax_vec(Tensor t) {
|
||||
@ -426,8 +426,8 @@ Tensor my_amax_vec(Tensor t) {
|
||||
}
|
||||
|
||||
void boxed_my_amax_vec(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = my_amax_vec(to<Tensor>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
auto res = my_amax_vec(torch::stable::detail::to<Tensor>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -464,8 +464,8 @@ void boxed_test_default_constructor(
|
||||
StableIValue* stack,
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
bool res = test_default_constructor(to<bool>(stack[0]));
|
||||
stack[0] = from(res);
|
||||
bool res = test_default_constructor(torch::stable::detail::to<bool>(stack[0]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -478,6 +478,56 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
|
||||
m.impl("my_amax_vec", &boxed_my_amax_vec);
|
||||
}
|
||||
|
||||
std::vector<Tensor> my__foreach_mul(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
|
||||
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
|
||||
aoti_torch_call_dispatcher("aten::_foreach_mul", "List", stack.data());
|
||||
return torch::stable::detail::to<std::vector<Tensor>>(stack[0]);
|
||||
}
|
||||
|
||||
void boxed_my__foreach_mul(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
// Why is the following NOT torch::stable::detail::to<HeaderOnlyArrayRef<Tensor>>(stack[0])? Because calling `to`
|
||||
// on a StableIValue means that the result is owning its underlying data now! HeaderOnlyArrayRef
|
||||
// is not owning, so it cannot safely steward the result of the torch::stable::detail::to<>.
|
||||
auto res = my__foreach_mul(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
void my__foreach_mul_(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
|
||||
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
|
||||
aoti_torch_call_dispatcher("aten::_foreach_mul_", "List", stack.data());
|
||||
}
|
||||
|
||||
void boxed_my__foreach_mul_(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
my__foreach_mul_(torch::stable::detail::to<std::vector<Tensor>>(stack[0]), torch::stable::detail::to<std::vector<Tensor>>(stack[1]));
|
||||
}
|
||||
|
||||
std::vector<Tensor> make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) {
|
||||
// This function tests that my__foreach_mul can take in std::initializer_lists
|
||||
// in addition to std::vectors.
|
||||
Tensor t1_1 = my_clone(t1);
|
||||
Tensor t1_2 = my_clone(t1);
|
||||
Tensor t2_1 = my_clone(t2);
|
||||
Tensor t2_2 = my_clone(t2);
|
||||
return my__foreach_mul({t1_1, t2_1}, {t1_2, t2_2});
|
||||
}
|
||||
|
||||
void boxed_make_tensor_clones_and_call_foreach(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
auto res = make_tensor_clones_and_call_foreach(torch::stable::detail::to<Tensor>(stack[0]), torch::stable::detail::to<Tensor>(stack[1]));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
m.def("my__foreach_mul(Tensor[] self, Tensor[] other) -> Tensor[]");
|
||||
m.def("my__foreach_mul_(Tensor(a!)[] self, Tensor[] other) -> ()");
|
||||
m.def("make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) -> Tensor[]");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
|
||||
m.impl("my__foreach_mul", &boxed_my__foreach_mul);
|
||||
m.impl("my__foreach_mul_", &boxed_my__foreach_mul_);
|
||||
m.impl("make_tensor_clones_and_call_foreach", &boxed_make_tensor_clones_and_call_foreach);
|
||||
}
|
||||
|
||||
// Test functions for torch::stable::accelerator APIs
|
||||
|
||||
#ifdef LAE_USE_CUDA
|
||||
@ -500,8 +550,8 @@ void boxed_test_device_guard(
|
||||
StableIValue* stack,
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
int res = test_device_guard(static_cast<int64_t>(to<int64_t>(stack[0])));
|
||||
stack[0] = from(res);
|
||||
int res = test_device_guard(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
int64_t test_device_guard_set_index() {
|
||||
@ -520,7 +570,7 @@ void boxed_test_device_guard_set_index(
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
int64_t res = test_device_guard_set_index();
|
||||
stack[0] = from(res);
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
int64_t test_stream(int32_t device_index) {
|
||||
@ -536,8 +586,8 @@ void boxed_test_stream(
|
||||
StableIValue* stack,
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
int64_t res = test_stream(static_cast<int64_t>(to<int64_t>(stack[0])));
|
||||
stack[0] = from(res);
|
||||
int64_t res = test_stream(static_cast<int64_t>(torch::stable::detail::to<int64_t>(stack[0])));
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
int64_t test_get_current_device_index() {
|
||||
@ -549,7 +599,7 @@ void boxed_test_get_current_device_index(
|
||||
uint64_t num_args,
|
||||
uint64_t num_outputs) {
|
||||
int64_t res = test_get_current_device_index();
|
||||
stack[0] = from(res);
|
||||
stack[0] = torch::stable::detail::from(res);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic, m) {
|
||||
@ -565,4 +615,5 @@ STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CompositeExplicitAutograd, m) {
|
||||
m.impl("test_stream", &boxed_test_stream);
|
||||
m.impl("test_get_current_device_index", &boxed_test_get_current_device_index);
|
||||
}
|
||||
|
||||
#endif // LAE_USE_CUDA
|
||||
|
||||
@ -333,3 +333,45 @@ def my_new_zeros_dtype_variant(t) -> Tensor:
|
||||
Returns: New zeros tensor
|
||||
"""
|
||||
return torch.ops.libtorch_agnostic.my_new_zeros_dtype_variant.default(t)
|
||||
|
||||
|
||||
def my__foreach_mul_(tensors, others) -> ():
|
||||
"""
|
||||
Updates tensors to be the result of pointwise multiplying with others.
|
||||
|
||||
Args:
|
||||
tensors: list of tensors
|
||||
others: list of tensors (with the same corresponding shapes as tensors)
|
||||
|
||||
Returns: nothing, tensors is updated in place.
|
||||
"""
|
||||
torch.ops.libtorch_agnostic.my__foreach_mul_.default(tensors, others)
|
||||
|
||||
|
||||
def my__foreach_mul(tensors, others) -> list[Tensor]:
|
||||
"""
|
||||
Returns a list of tensors that are the results of pointwise multiplying
|
||||
tensors and others.
|
||||
|
||||
Args:
|
||||
tensors: list of tensors
|
||||
others: list of tensors (with the same corresponding shapes as tensors)
|
||||
|
||||
Returns: list of multiplied tensors
|
||||
"""
|
||||
return torch.ops.libtorch_agnostic.my__foreach_mul.default(tensors, others)
|
||||
|
||||
|
||||
def make_tensor_clones_and_call_foreach(t1, t2) -> list[Tensor]:
|
||||
"""
|
||||
Returns a list of 2 tensors corresponding to the square of the inputs.
|
||||
|
||||
Args:
|
||||
t1: Tensor
|
||||
t2: Tensor
|
||||
|
||||
Returns: list of [t1^2, t2^2]
|
||||
"""
|
||||
return torch.ops.libtorch_agnostic.make_tensor_clones_and_call_foreach.default(
|
||||
t1, t2
|
||||
)
|
||||
|
||||
@ -367,6 +367,57 @@ if not IS_WINDOWS:
|
||||
self.assertNotEqual(result.data_ptr(), expected.data_ptr())
|
||||
self.assertEqual(result.stride(), expected.stride())
|
||||
|
||||
def test_my__foreach_mul_(self, device):
|
||||
import libtorch_agnostic
|
||||
|
||||
N = 5
|
||||
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
|
||||
tensors_c = [t.clone() for t in tensors]
|
||||
others = [torch.rand(32, 16, device=device) for _ in range(N)]
|
||||
|
||||
libtorch_agnostic.ops.my__foreach_mul_(tensors, others)
|
||||
expected_values = torch._foreach_mul(tensors_c, others)
|
||||
|
||||
for tensor_t, expected_t in zip(tensors, expected_values):
|
||||
self.assertEqual(tensor_t, expected_t)
|
||||
|
||||
def test_my__foreach_mul(self, device):
|
||||
import libtorch_agnostic
|
||||
|
||||
N = 5
|
||||
tensors = [torch.rand(32, 16, device=device) for _ in range(N)]
|
||||
others = [torch.rand(32, 16, device=device) for _ in range(N)]
|
||||
|
||||
result = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
|
||||
expected = torch._foreach_mul(tensors, others)
|
||||
|
||||
for result_t, expected_t in zip(result, expected):
|
||||
self.assertEqual(result_t, expected_t)
|
||||
|
||||
def _make_cuda_tensors(prior_mem):
|
||||
cuda_res = libtorch_agnostic.ops.my__foreach_mul(tensors, others)
|
||||
self.assertGreater(torch.cuda.memory_allocated(device), prior_mem)
|
||||
|
||||
expected = torch._foreach_mul(tensors, others)
|
||||
for result_t, expected_t in zip(cuda_res, expected):
|
||||
self.assertEqual(result_t, expected_t)
|
||||
|
||||
if tensors[0].is_cuda:
|
||||
init_mem = torch.cuda.memory_allocated(device)
|
||||
for _ in range(3):
|
||||
_make_cuda_tensors(init_mem)
|
||||
curr_mem = torch.cuda.memory_allocated(device)
|
||||
self.assertEqual(curr_mem, init_mem)
|
||||
|
||||
def test_make_tensor_clones_and_call_foreach(self, device):
|
||||
import libtorch_agnostic
|
||||
|
||||
t1 = torch.rand(2, 5, device=device)
|
||||
t2 = torch.rand(3, 4, device=device)
|
||||
result = libtorch_agnostic.ops.make_tensor_clones_and_call_foreach(t1, t2)
|
||||
self.assertEqual(result[0], t1 * t1)
|
||||
self.assertEqual(result[1], t2 * t2)
|
||||
|
||||
instantiate_device_type_tests(TestLibtorchAgnostic, globals(), except_for=None)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
# Owner(s): ["module: unknown"]
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
from backend import get_custom_backend_library_path, Model, to_custom_backend
|
||||
@ -41,14 +40,11 @@ class TestCustomBackend(TestCase):
|
||||
self.test_execute()
|
||||
|
||||
# Save and load.
|
||||
f = tempfile.NamedTemporaryFile(delete=False)
|
||||
try:
|
||||
with tempfile.NamedTemporaryFile() as f:
|
||||
f.close()
|
||||
torch.jit.save(self.model, f.name)
|
||||
loaded = torch.jit.load(f.name)
|
||||
finally:
|
||||
os.unlink(f.name)
|
||||
self.model = loaded
|
||||
self.model = loaded
|
||||
|
||||
# Test execution again.
|
||||
self.test_execute()
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
# Owner(s): ["module: unknown"]
|
||||
|
||||
import os.path
|
||||
import sys
|
||||
import tempfile
|
||||
import unittest
|
||||
@ -144,16 +143,13 @@ def forward(self, arg0_1):
|
||||
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
|
||||
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
|
||||
# close the file after creation and try to remove it manually.
|
||||
file = tempfile.NamedTemporaryFile(delete=False)
|
||||
try:
|
||||
with tempfile.NamedTemporaryFile() as file:
|
||||
file.close()
|
||||
model.save(file.name)
|
||||
loaded = torch.jit.load(file.name)
|
||||
finally:
|
||||
os.unlink(file.name)
|
||||
|
||||
output = loaded.forward(torch.ones(5))
|
||||
self.assertTrue(output.allclose(torch.ones(5) + 1))
|
||||
output = loaded.forward(torch.ones(5))
|
||||
self.assertTrue(output.allclose(torch.ones(5) + 1))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# Owner(s): ["module: fsdp"]
|
||||
import functools
|
||||
import os
|
||||
import unittest.mock
|
||||
import unittest
|
||||
|
||||
import torch.distributed as dist
|
||||
from torch._dynamo.test_case import run_tests
|
||||
@ -37,9 +37,9 @@ import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.distributed.fsdp import fully_shard
|
||||
logger = logging.getLogger("torch.distributed._composable.fsdp")
|
||||
logger = logging.getLogger("torch.distributed.fsdp.fully_shard")
|
||||
logger.setLevel(logging.DEBUG)
|
||||
device = {device_type.type}
|
||||
device = '{device_type.type}'
|
||||
torch.manual_seed(0)
|
||||
model = nn.Sequential(*[nn.Linear(4, 4, device=device, bias=False) for _ in range(2)])
|
||||
for layer in model:
|
||||
|
||||
@ -76,7 +76,7 @@ class ReplicateTest(MultiProcessTestCase):
|
||||
store=dist.FileStore(self.file_name, self.world_size),
|
||||
)
|
||||
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_replicate_transformer(self):
|
||||
"""
|
||||
This tests that replicate works on a transformer model with fully_shard and replicate layers
|
||||
@ -126,7 +126,7 @@ class ReplicateTest(MultiProcessTestCase):
|
||||
for parameter in layer.parameters():
|
||||
self.assertEqual(parameter.placements, (Shard(dim=0),))
|
||||
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_replicate_transformer_managed_modules(self):
|
||||
"""
|
||||
This tests that replicate managed modules works properly. In this test we use a Transformer Module with 3 layers,
|
||||
@ -178,7 +178,7 @@ class ReplicateTest(MultiProcessTestCase):
|
||||
replicate_model = replicate(replicate_model)
|
||||
self.assertEqual(len(_get_managed_modules((replicate_model,))), 21)
|
||||
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_replicate_tp_device_mesh(self):
|
||||
"""
|
||||
This tests that a user can pass in a device mesh to replicate a module
|
||||
@ -206,7 +206,7 @@ class ReplicateTest(MultiProcessTestCase):
|
||||
self.assertEqual(parameter.device_mesh.shape, (2,))
|
||||
self.assertEqual(parameter.placements, (Replicate(),))
|
||||
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_train_replicate_fsdp(self):
|
||||
"""
|
||||
Tests that replicate_model has the same behavior as original model when training
|
||||
@ -253,7 +253,7 @@ class ReplicateTest(MultiProcessTestCase):
|
||||
self.assertEqual(replicate_loss, loss)
|
||||
check_sharded_parity(self, model, replicate_model)
|
||||
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_train_parity_2d_mlp(self):
|
||||
"""
|
||||
Verifies when a device mesh is passed in, the model has the same behavior as the original model when training
|
||||
|
||||
@ -80,7 +80,7 @@ class TestSACILP(TestCase):
|
||||
# postprocessing due to the fact that for ModTracker, the post backward hook
|
||||
# is not being called for modules whose inputs don't require gradients
|
||||
# TODO: fix this in ModTracker and ensure it does not lead to any perf regression
|
||||
if _ModState.POST_BW not in mod_stats.snapshots.keys():
|
||||
if _ModState.POST_BW not in mod_stats.snapshots:
|
||||
mod_stats.snapshots.setdefault(_ModState.POST_BW, []).append(
|
||||
copy.deepcopy(last_snapshot)
|
||||
)
|
||||
|
||||
@ -16,7 +16,7 @@ from torch.distributed.argparse_util import check_env, env
|
||||
class ArgParseUtilTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
# remove any lingering environment variables
|
||||
for e in os.environ.keys():
|
||||
for e in os.environ.keys(): # noqa: SIM118
|
||||
if e.startswith("PET_"):
|
||||
del os.environ[e]
|
||||
|
||||
|
||||
@ -207,7 +207,7 @@ class TestDefaultStager(TestCase):
|
||||
for i, result in enumerate(staged_results):
|
||||
self.assertIsInstance(result, dict)
|
||||
# Verify the result contains the expected keys
|
||||
for key in state_dicts[i].keys():
|
||||
for key in state_dicts[i]:
|
||||
self.assertIn(key, result)
|
||||
|
||||
stager.close()
|
||||
|
||||
@ -299,7 +299,7 @@ class TestDTensorReshardMeshChange(DTensorTestBase):
|
||||
|
||||
@with_comms
|
||||
@with_temp_dir
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_dtensor_checkpoint_with_uneven_shards(self) -> None:
|
||||
"""
|
||||
Saving a dtensor with uneven shards.
|
||||
@ -436,6 +436,7 @@ class TestCheckpointableReshard(DTensorTestBase):
|
||||
|
||||
@with_comms
|
||||
@with_temp_dir
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_uneven_reshard_with_checkpointable_api(self) -> None:
|
||||
"""
|
||||
Saves a 1d distributed tensor that has shards with uneven sizes using Checkpointable API.
|
||||
@ -498,6 +499,7 @@ class TestCheckpointableReshard(DTensorTestBase):
|
||||
|
||||
@with_comms
|
||||
@with_temp_dir
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_uneven_reshard_with_dtensor_shards_wrapper_api(self) -> None:
|
||||
"""
|
||||
Saves a 1d distributed tensor that has shards with uneven sizes using Checkpointable API.
|
||||
|
||||
@ -60,7 +60,7 @@ class TestSingleRankSaveLoad(TestCase):
|
||||
self.assertEqual(
|
||||
sorted(state_dict_to_save.keys()), sorted(state_dict_loaded.keys())
|
||||
)
|
||||
for key in state_dict_to_save.keys():
|
||||
for key in state_dict_to_save:
|
||||
self.assertTrue(
|
||||
torch.equal(state_dict_to_save[key], state_dict_loaded[key])
|
||||
)
|
||||
@ -89,7 +89,7 @@ class TestSingleRankSaveLoad(TestCase):
|
||||
self.assertEqual(
|
||||
sorted(state_dict_to_save.keys()), sorted(state_dict_to_load.keys())
|
||||
)
|
||||
for key in state_dict_to_save.keys():
|
||||
for key in state_dict_to_save:
|
||||
self.assertTrue(
|
||||
torch.equal(state_dict_to_save[key], state_dict_to_load[key])
|
||||
)
|
||||
@ -116,7 +116,7 @@ class TestSingleRankSaveLoad(TestCase):
|
||||
self.assertEqual(
|
||||
sorted(state_dict_to_save.keys()), sorted(state_dict_loaded.keys())
|
||||
)
|
||||
for key in state_dict_to_save.keys():
|
||||
for key in state_dict_to_save:
|
||||
self.assertTrue(
|
||||
torch.equal(state_dict_to_save[key], state_dict_loaded[key])
|
||||
)
|
||||
@ -156,7 +156,7 @@ class TestSingleRankSaveLoad(TestCase):
|
||||
self.assertEqual(
|
||||
sorted(state_dict_to_save.keys()), sorted(state_dict_to_load.keys())
|
||||
)
|
||||
for key in state_dict_to_save.keys():
|
||||
for key in state_dict_to_save:
|
||||
self.assertTrue(
|
||||
torch.equal(state_dict_to_save[key], state_dict_to_load[key])
|
||||
)
|
||||
|
||||
@ -18,6 +18,7 @@ from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans
|
||||
from torch.distributed.checkpoint.api import CheckpointException
|
||||
from torch.distributed.checkpoint.default_planner import (
|
||||
_create_default_local_metadata,
|
||||
_validate_global_plan,
|
||||
create_default_global_save_plan,
|
||||
create_default_local_load_plan,
|
||||
create_default_local_save_plan,
|
||||
@ -28,6 +29,7 @@ from torch.distributed.checkpoint.filesystem import CURRENT_DCP_VERSION
|
||||
from torch.distributed.checkpoint.metadata import (
|
||||
BytesStorageMetadata,
|
||||
ChunkStorageMetadata,
|
||||
Metadata,
|
||||
MetadataIndex,
|
||||
TensorProperties,
|
||||
TensorStorageMetadata,
|
||||
@ -560,6 +562,32 @@ class TestPlannerHelpers(TestCase):
|
||||
self.assertTrue(_compare_save_plans(plan2, plan2))
|
||||
|
||||
|
||||
class TestValidateGlobalPlan(TestCase):
|
||||
def _make_metadata(self, chunks, size):
|
||||
storage = TensorStorageMetadata(
|
||||
properties=TensorProperties(dtype=torch.float32),
|
||||
size=torch.Size(size),
|
||||
chunks=chunks,
|
||||
)
|
||||
return Metadata(state_dict_metadata={"param": storage})
|
||||
|
||||
def test_non_overlapping_chunks(self):
|
||||
chunks = [
|
||||
ChunkStorageMetadata(offsets=torch.Size([i]), sizes=torch.Size([1]))
|
||||
for i in range(4)
|
||||
]
|
||||
metadata = self._make_metadata(chunks, [4])
|
||||
self.assertTrue(_validate_global_plan([SavePlan([])], metadata))
|
||||
|
||||
def test_detect_overlapping_chunks(self):
|
||||
chunks = [
|
||||
ChunkStorageMetadata(offsets=torch.Size([0]), sizes=torch.Size([2])),
|
||||
ChunkStorageMetadata(offsets=torch.Size([1]), sizes=torch.Size([2])),
|
||||
]
|
||||
metadata = self._make_metadata(chunks, [4])
|
||||
self.assertFalse(_validate_global_plan([SavePlan([])], metadata))
|
||||
|
||||
|
||||
class TestLoadPlanner(TestCase):
|
||||
@with_temp_dir
|
||||
def test_strict(self):
|
||||
|
||||
@ -769,7 +769,7 @@ class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
|
||||
model_state_dict3 = copy.deepcopy(model_state_dict3)
|
||||
self.assertEqual(len(model_state_dict2), 2)
|
||||
self.assertEqual(len(model_state_dict3), 2)
|
||||
for key in model_state_dict3.keys():
|
||||
for key in model_state_dict3:
|
||||
full_fqn = f"l.{key}"
|
||||
value1 = model_state_dict1[full_fqn]
|
||||
value2 = model_state_dict2[full_fqn]
|
||||
@ -886,7 +886,7 @@ class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
|
||||
self.assertEqual(cpu_model_value, meta_model_value)
|
||||
|
||||
@with_comms
|
||||
@skip_if_lt_x_gpu(2)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_setting_meta_device_model_broadcasting_and_memory(self) -> None:
|
||||
# This test verifies that we can set model state dict by a meta device model
|
||||
# With the correlated changes in state_dict, meta device model should be accepted
|
||||
|
||||
@ -479,6 +479,7 @@ class TestFSDPMiscMultiProcess(FSDPTest):
|
||||
for (n, p), (n_prev, p_prev) in zip(
|
||||
fsdp_overlap.named_parameters(), fsdp_overlap_prev_params
|
||||
):
|
||||
self.assertEqual(n, n_prev)
|
||||
self.assertNotEqual(
|
||||
p,
|
||||
p_prev,
|
||||
|
||||
@ -587,9 +587,7 @@ class TestFSDPStateDict(FSDPTest):
|
||||
model, cpu_offload.offload_params, fp16
|
||||
)
|
||||
|
||||
ignore_keys = [
|
||||
k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k
|
||||
]
|
||||
ignore_keys = [k for k in fsdp_state_dict if NON_ROOT_FSDP_PREFIX in k]
|
||||
|
||||
self._validate_state_dict_contents(
|
||||
model,
|
||||
@ -910,7 +908,7 @@ class TestFSDPStateDict(FSDPTest):
|
||||
with sd_mgr:
|
||||
fsdp_state_dict = model.state_dict()
|
||||
|
||||
ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]
|
||||
ignore_keys = [k for k in fsdp_state_dict if NON_ROOT_FSDP_PREFIX in k]
|
||||
self._validate_state_dict_contents(
|
||||
model,
|
||||
fsdp_state_dict,
|
||||
@ -959,9 +957,7 @@ class TestFSDPStateDict(FSDPTest):
|
||||
# Full name of linear_skip param tensors in SkipModel, as would be
|
||||
# stored in checkpoint.
|
||||
linear_skip_tensor_names = [
|
||||
k
|
||||
for k in dict(module.named_parameters()).keys()
|
||||
if LINEAR_SKIP in k
|
||||
k for k in dict(module.named_parameters()) if LINEAR_SKIP in k
|
||||
]
|
||||
# skip SkipModule
|
||||
linear_skip = getattr(module, LINEAR_SKIP)
|
||||
|
||||
@ -137,7 +137,7 @@ class ElasticLaunchTest(unittest.TestCase):
|
||||
self.test_dir = tempfile.mkdtemp()
|
||||
|
||||
# remove any lingering environment variables.
|
||||
for env in os.environ.keys():
|
||||
for env in os.environ.keys(): # noqa: SIM118
|
||||
if env.startswith("PET_"):
|
||||
del os.environ[env]
|
||||
|
||||
|
||||
@ -69,7 +69,7 @@ class ElasticLaunchTest(TestCase):
|
||||
self.test_dir = tempfile.mkdtemp()
|
||||
|
||||
# remove any lingering environment variables
|
||||
for env in os.environ.keys():
|
||||
for env in os.environ.keys(): # noqa: SIM118
|
||||
if env.startswith("PET_"):
|
||||
del os.environ[env]
|
||||
|
||||
|
||||
@ -39,6 +39,7 @@ from torch.nn.modules.loss import MSELoss
|
||||
from torch.testing._internal.common_distributed import (
|
||||
MultiProcContinuousTest,
|
||||
requires_accelerator_dist_backend,
|
||||
skip_if_lt_x_gpu,
|
||||
)
|
||||
from torch.testing._internal.common_utils import (
|
||||
check_leaked_tensors,
|
||||
@ -231,6 +232,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [_ScheduleForwardOnly])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_forward_only(self, ScheduleClass):
|
||||
mod, mod_ref, x, _, _ = setup_models_and_data(self.config)
|
||||
x_clone = x.clone()
|
||||
@ -274,6 +276,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
ScheduleInterleavedZeroBubble,
|
||||
],
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_eval_inference_mode(self, ScheduleClass):
|
||||
num_microbatches = 4
|
||||
if ScheduleClass in [
|
||||
@ -351,6 +354,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
ScheduleInterleavedZeroBubble,
|
||||
],
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_return_output(self, ScheduleClass):
|
||||
num_microbatches = 4
|
||||
if ScheduleClass in [
|
||||
@ -406,6 +410,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_multi_iter(self, ScheduleClass):
|
||||
mod, _, x, target, loss_fn = setup_models_and_data(self.config)
|
||||
chunks = 4
|
||||
@ -429,6 +434,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_kwargs_with_tracer(self, ScheduleClass):
|
||||
mod = ModelWithKwargs(d_hid, splits=self.world_size)
|
||||
mod.to(self.device)
|
||||
@ -481,6 +487,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_grad_with_tracer(self, ScheduleClass):
|
||||
mod, ref_mod, x, target, loss_fn = setup_models_and_data(self.config)
|
||||
|
||||
@ -523,6 +530,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleGPipe, Schedule1F1B])
|
||||
@parametrize("shape_inference", [True, False])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_grad_with_manual(self, ScheduleClass, shape_inference):
|
||||
mod, ref_mod, x, target, loss_fn = setup_models_and_data(self.config)
|
||||
|
||||
@ -586,6 +594,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
ScheduleInterleavedZeroBubble,
|
||||
],
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_grad_with_manual_interleaved(self, ScheduleClass):
|
||||
stages_per_rank = 2
|
||||
n_stages = stages_per_rank * self.world_size
|
||||
@ -650,6 +659,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleInterleavedZeroBubble])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_schedule_with_weight_update_mlp_e2e(self, ScheduleClass):
|
||||
stages_per_rank = 2
|
||||
n_stages = stages_per_rank * self.world_size
|
||||
@ -736,6 +746,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
"schedule_class",
|
||||
[ScheduleZBVZeroBubble, ScheduleDualPipeV],
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_v_shape_schedules(self, schedule_class):
|
||||
n_stages = 8
|
||||
rank_stages = {0: [0, 7], 1: [1, 6], 2: [2, 5], 3: [3, 4]}
|
||||
@ -780,6 +791,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
@skip_but_pass_in_sandcastle_if(
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_custom_function_callback(self):
|
||||
"""Test the custom function callback functionality with _PipelineScheduleRuntime."""
|
||||
n_stages = 8
|
||||
@ -979,6 +991,7 @@ class ScheduleTest(MultiProcContinuousTest):
|
||||
"ScheduleClass",
|
||||
[ScheduleInterleavedZeroBubble, ScheduleInterleaved1F1B],
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_zero_bubble_with_model_kwargs(self, ScheduleClass):
|
||||
stages_per_rank = 2
|
||||
n_stages = stages_per_rank * self.world_size
|
||||
@ -1072,6 +1085,7 @@ class CustomSchedulesTest(MultiProcContinuousTest):
|
||||
"schedule_class",
|
||||
[ScheduleVShaped, ScheduleUnbalanced],
|
||||
)
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_non_symmetric_stage_ids(self, schedule_class):
|
||||
n_stages = schedule_class.n_stages
|
||||
rank_stages = schedule_class.rank_stages
|
||||
@ -1121,6 +1135,7 @@ class CustomSchedulesTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleWithReorderedB])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_pipeline_schedule_runtime_custom_sched(self, ScheduleClass):
|
||||
n_stages = 2
|
||||
stages_per_rank = 1
|
||||
@ -1181,6 +1196,7 @@ class CustomSchedulesTest(MultiProcContinuousTest):
|
||||
not TEST_MULTIACCELERATOR, f"{backend} test requires 2+ GPUs"
|
||||
)
|
||||
@parametrize("ScheduleClass", [ScheduleWithW])
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_schedule_with_native_zero_bubble(self, ScheduleClass):
|
||||
n_stages = ScheduleClass.n_stages
|
||||
num_microbatches = ScheduleClass.num_microbatches
|
||||
|
||||
@ -204,14 +204,16 @@ class DistConvolutionOpsTest(DTensorTestBase):
|
||||
self.assertTrue(b_dt.grad is not None)
|
||||
self.assertTrue(x_dt.grad is None)
|
||||
|
||||
def _run_single_arg_fwd(self, model, arg) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
def _run_single_arg_fwd(
|
||||
self, model, arg, placements=None
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Given model and arg, runs fwd model local and distbuted given device_mesh"""
|
||||
device_mesh = self.build_device_mesh()
|
||||
model_copy = copy.deepcopy(model).to(device=self.device_type)
|
||||
dist_model = distribute_module(model, device_mesh, _conv_fn)
|
||||
arg_dt = DTensor.from_local(arg, device_mesh, [Replicate()])
|
||||
arg_dt = DTensor.from_local(arg, device_mesh, placements)
|
||||
out_dt = dist_model(arg_dt.to(device=self.device_type))
|
||||
out = model_copy(arg)
|
||||
out = model_copy(arg_dt.full_tensor())
|
||||
return (out_dt.full_tensor(), out)
|
||||
|
||||
@with_comms
|
||||
@ -219,22 +221,20 @@ class DistConvolutionOpsTest(DTensorTestBase):
|
||||
model = nn.Conv1d(64, 64, 3, padding=1)
|
||||
x = torch.randn(1, 64, 8, device=self.device_type)
|
||||
out_dt, out = self._run_single_arg_fwd(model, x)
|
||||
self.assertEqual(out_dt.shape, out.shape)
|
||||
self.assertEqual(out_dt, out)
|
||||
|
||||
@with_comms
|
||||
def test_conv3d(self):
|
||||
model = nn.Conv3d(64, 64, 3, padding=1)
|
||||
x = torch.randn(1, 64, 8, 8, 8, device=self.device_type)
|
||||
out_dt, out = self._run_single_arg_fwd(model, x)
|
||||
self.assertEqual(out_dt.shape, out.shape)
|
||||
out_dt, out = self._run_single_arg_fwd(model, x, [Shard(0)])
|
||||
self.assertEqual(out_dt, out)
|
||||
|
||||
|
||||
DistConvolutionOpsTestWithLocalTensor = create_local_tensor_test_class(
|
||||
DistConvolutionOpsTest,
|
||||
# Send / recv ops are not supported
|
||||
skipped_tests=[
|
||||
"test_conv1d",
|
||||
"test_conv3d",
|
||||
"test_conv_backward_none_grad_inp",
|
||||
"test_depthwise_convolution",
|
||||
"test_downsampling_convolution",
|
||||
|
||||
@ -464,6 +464,25 @@ def forward(self, b_parametrizations_buffer_original0, x):
|
||||
run(g, 64, 8)
|
||||
self.assertEqual(cnt.frame_count, 2)
|
||||
|
||||
def test_dtensor_requires_grad_recompile(self):
|
||||
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
|
||||
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
||||
|
||||
@torch.compile(backend=cnt, fullgraph=True)
|
||||
def f(x):
|
||||
y = x * x
|
||||
return y.to_local()
|
||||
|
||||
full_x = torch.randn(8, 8, requires_grad=False)
|
||||
x = distribute_tensor(full_x, mesh, [Shard(0)])
|
||||
f(x)
|
||||
|
||||
full_x = torch.randn(8, 8, requires_grad=True)
|
||||
x = distribute_tensor(full_x, mesh, [Shard(0)])
|
||||
f(x)
|
||||
|
||||
self.assertEqual(cnt.frame_count, 2)
|
||||
|
||||
def test_dtensor_attribute_access_on_intermediate(self):
|
||||
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
||||
|
||||
|
||||
@ -535,6 +535,19 @@ class DTensorExportTest(TestCase):
|
||||
|
||||
self.assertEqual(fn(z), gm(z)[0])
|
||||
|
||||
def test_dtensor_data_dependent_index(self):
|
||||
device_mesh = init_device_mesh(self.device_type, mesh_shape=(self.world_size,))
|
||||
|
||||
class Foo(torch.nn.Module):
|
||||
def forward(self, x, y):
|
||||
return x[y]
|
||||
|
||||
x = torch.randn(10)
|
||||
y = torch.randint(1, (10,)).bool()
|
||||
x_dt = distribute_tensor(x, device_mesh, placements=[Replicate()])
|
||||
y_dt = distribute_tensor(y, device_mesh, placements=[Replicate()])
|
||||
_dynamo_graph_capture_for_export(Foo())(x_dt, y_dt)
|
||||
|
||||
|
||||
instantiate_parametrized_tests(DTensorExportTest)
|
||||
|
||||
|
||||
@ -26,6 +26,7 @@ from torch.distributed.tensor.parallel import (
|
||||
RowwiseParallel,
|
||||
SequenceParallel,
|
||||
)
|
||||
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
|
||||
from torch.testing._internal.common_utils import run_tests
|
||||
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
||||
create_local_tensor_test_class,
|
||||
@ -764,6 +765,7 @@ class DistMathOpsTest(DTensorTestBase):
|
||||
self.assertEqual(grad1_norm.device_mesh, mesh_y)
|
||||
|
||||
@with_comms
|
||||
@skip_if_lt_x_gpu(4)
|
||||
def test_foreach_add_different_mesh(self):
|
||||
mesh_shape = (2, self.world_size // 2)
|
||||
mesh_2d = init_device_mesh(
|
||||
|
||||
@ -577,7 +577,7 @@ class DistTensorReplicateStrategyRegistrationTest(DTensorTestBase):
|
||||
self.assertEqual(
|
||||
comm_mode.get_comm_counts(),
|
||||
{
|
||||
torch.ops.c10d_functional.all_gather_into_tensor: 4,
|
||||
torch.ops.c10d_functional.all_gather_into_tensor: self.world_size,
|
||||
},
|
||||
)
|
||||
expected_cost = [
|
||||
|
||||
@ -2,7 +2,6 @@
|
||||
# Owner(s): ["oncall: distributed"]
|
||||
|
||||
import contextlib
|
||||
import copy
|
||||
import itertools
|
||||
import unittest
|
||||
|
||||
@ -22,9 +21,8 @@ from torch.distributed.tensor import (
|
||||
)
|
||||
from torch.distributed.tensor._collective_utils import shard_dim_alltoall
|
||||
from torch.distributed.tensor._dtensor_spec import ShardOrderEntry
|
||||
from torch.distributed.tensor._redistribute import redistribute_local_tensor
|
||||
from torch.distributed.tensor.debug import CommDebugMode
|
||||
from torch.distributed.tensor.placement_types import _StridedShard
|
||||
from torch.distributed.tensor.placement_types import _StridedShard, MaskPartial
|
||||
from torch.testing._internal.common_utils import (
|
||||
instantiate_parametrized_tests,
|
||||
parametrize,
|
||||
@ -35,7 +33,11 @@ from torch.testing._internal.common_utils import (
|
||||
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
||||
create_local_tensor_test_class,
|
||||
DTensorTestBase,
|
||||
generate_shard_orders,
|
||||
make_full_tensor,
|
||||
map_local_tensor_for_rank,
|
||||
patched_distribute_tensor as _distribute_tensor,
|
||||
redistribute,
|
||||
with_comms,
|
||||
)
|
||||
from torch.utils._debug_mode import DebugMode
|
||||
@ -785,88 +787,6 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
else:
|
||||
return ""
|
||||
|
||||
# TODO(zpcore): remove once the native redistribute supports shard_order arg
|
||||
def redistribute(
|
||||
self,
|
||||
dtensor_input,
|
||||
device_mesh,
|
||||
placements,
|
||||
shard_order,
|
||||
use_graph_based_transform=True,
|
||||
):
|
||||
"""
|
||||
wrapper function to support shard_order for redistribution
|
||||
This is a simpler version of Redistribute, only considers the forward.
|
||||
"""
|
||||
if placements is None:
|
||||
placements = self._shard_order_to_placement(shard_order, device_mesh)
|
||||
placements = tuple(placements)
|
||||
old_spec = dtensor_input._spec
|
||||
new_spec = copy.deepcopy(old_spec)
|
||||
new_spec.placements = placements
|
||||
if shard_order is not None:
|
||||
new_spec.shard_order = shard_order
|
||||
else:
|
||||
new_spec.shard_order = ()
|
||||
if old_spec == new_spec:
|
||||
return dtensor_input
|
||||
dtensor_input = DTensor.from_local(
|
||||
redistribute_local_tensor(
|
||||
dtensor_input.to_local(),
|
||||
old_spec,
|
||||
new_spec,
|
||||
use_graph_based_transform=use_graph_based_transform,
|
||||
),
|
||||
device_mesh,
|
||||
)
|
||||
dtensor_input._spec = copy.deepcopy(new_spec)
|
||||
return dtensor_input # returns DTensor
|
||||
|
||||
# TODO(zpcore): remove once the native distribute_tensor supports
|
||||
# shard_order arg
|
||||
def distribute_tensor(
|
||||
self,
|
||||
input_tensor,
|
||||
device_mesh,
|
||||
placements,
|
||||
shard_order,
|
||||
use_graph_based_transform=True,
|
||||
):
|
||||
"""wrapper function to support shard_order for tensor distribution"""
|
||||
if placements is None:
|
||||
placements = self._shard_order_to_placement(shard_order, device_mesh)
|
||||
placements = tuple(placements)
|
||||
tensor_dt = distribute_tensor(input_tensor, device_mesh, placements)
|
||||
# fix the shard order
|
||||
return self.redistribute(
|
||||
tensor_dt, device_mesh, placements, shard_order, use_graph_based_transform
|
||||
)
|
||||
|
||||
# TODO(zpcore): remove once the native redistribute supports shard_order arg
|
||||
def full_tensor(self, dtensor_input):
|
||||
"""wrapper function to support DTensor.full_tensor"""
|
||||
return self.redistribute(
|
||||
dtensor_input, dtensor_input.device_mesh, placements=None, shard_order=()
|
||||
).to_local()
|
||||
|
||||
def _shard_order_to_placement(self, shard_order, mesh):
|
||||
"""convert shard_order to placement with only Replicate() and Shard()"""
|
||||
placements = [Replicate() for _ in range(mesh.ndim)]
|
||||
if shard_order is not None:
|
||||
for entry in shard_order:
|
||||
tensor_dim = entry.tensor_dim
|
||||
mesh_dims = entry.mesh_dims
|
||||
for mesh_dim in mesh_dims:
|
||||
placements[mesh_dim] = Shard(tensor_dim)
|
||||
return tuple(placements)
|
||||
|
||||
def _convert_shard_order_dict_to_ShardOrder(self, shard_order):
|
||||
"""Convert shard_order dict to ShardOrder"""
|
||||
return tuple(
|
||||
ShardOrderEntry(tensor_dim=tensor_dim, mesh_dims=tuple(mesh_dims))
|
||||
for tensor_dim, mesh_dims in shard_order.items()
|
||||
)
|
||||
|
||||
@with_comms
|
||||
def test_ordered_redistribute(self):
|
||||
"""Test ordered redistribution with various sharding syntaxes"""
|
||||
@ -927,13 +847,11 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
for idx, ((src_placement, src_order), (dst_placement, dst_order)) in enumerate(
|
||||
sharding_src_dst_pairs_with_expected_trace
|
||||
):
|
||||
sharded_dt = self.distribute_tensor(
|
||||
sharded_dt = _distribute_tensor(
|
||||
input_data.clone(), mesh, src_placement, shard_order=src_order
|
||||
)
|
||||
with DebugMode(record_torchfunction=False) as debug_mode:
|
||||
sharded_dt = self.redistribute(
|
||||
sharded_dt, mesh, dst_placement, dst_order
|
||||
)
|
||||
sharded_dt = redistribute(sharded_dt, mesh, dst_placement, dst_order)
|
||||
trace_str = self._extract_redistribute_trace_from_debug_mode(
|
||||
debug_mode.debug_string()
|
||||
)
|
||||
@ -957,49 +875,11 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
trace_str,
|
||||
"""S(0)[0]S(0)[1]R->S(0)S(1)R->RS(1)R->RS(1)S(0)""",
|
||||
)
|
||||
expected_dt = self.distribute_tensor(
|
||||
expected_dt = _distribute_tensor(
|
||||
input_data.clone(), mesh, dst_placement, shard_order=dst_order
|
||||
)
|
||||
self.assertEqual(sharded_dt.to_local(), expected_dt.to_local())
|
||||
|
||||
def generate_shard_orders(self, mesh, tensor_rank):
|
||||
# Generate all possible sharding placement of tensor with rank
|
||||
# `tensor_rank` over mesh.
|
||||
def _split_list(lst: list, N: int):
|
||||
def compositions(n, k):
|
||||
if k == 1:
|
||||
yield [n]
|
||||
else:
|
||||
for i in range(1, n - k + 2):
|
||||
for tail in compositions(n - i, k - 1):
|
||||
yield [i] + tail
|
||||
|
||||
length = len(lst)
|
||||
for comp in compositions(length, N):
|
||||
result = []
|
||||
start = 0
|
||||
for size in comp:
|
||||
result.append(lst[start : start + size])
|
||||
start += size
|
||||
yield result
|
||||
|
||||
all_mesh = list(range(mesh.ndim))
|
||||
all_device_order = list(itertools.permutations(all_mesh))
|
||||
for device_order in all_device_order:
|
||||
# split on device orders, and assign each device order segment to a tensor dim
|
||||
for num_split in range(1, mesh.ndim + 1):
|
||||
for splitted_list in _split_list(list(range(mesh.ndim)), num_split):
|
||||
for tensor_dims in itertools.combinations(
|
||||
range(tensor_rank), len(splitted_list)
|
||||
):
|
||||
shard_order = {}
|
||||
assert len(tensor_dims) == len(splitted_list)
|
||||
for tensor_dim, mesh_dims in zip(tensor_dims, splitted_list):
|
||||
shard_order[tensor_dim] = device_order[
|
||||
mesh_dims[0] : mesh_dims[-1] + 1
|
||||
]
|
||||
yield self._convert_shard_order_dict_to_ShardOrder(shard_order)
|
||||
|
||||
@with_comms
|
||||
def test_generate_shard_orders(self):
|
||||
"""Check if `generate_shard_orders` generates unique sharding combinations"""
|
||||
@ -1012,7 +892,7 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
]
|
||||
for test_input in test_inputs:
|
||||
all_combinations = []
|
||||
for shard_order in self.generate_shard_orders(
|
||||
for shard_order in generate_shard_orders(
|
||||
test_input["mesh"], test_input["tensor_rank"]
|
||||
):
|
||||
all_combinations.append(shard_order) # noqa: PERF402
|
||||
@ -1062,12 +942,12 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
input_data = torch.randn(tensor_shape, device=self.device_type)
|
||||
tensor_rank = input_data.ndim
|
||||
with maybe_disable_local_tensor_mode():
|
||||
shard_orders = self.generate_shard_orders(mesh, tensor_rank)
|
||||
shard_orders = generate_shard_orders(mesh, tensor_rank)
|
||||
for shard_order in shard_orders:
|
||||
sharded_dt = self.distribute_tensor(
|
||||
sharded_dt = _distribute_tensor(
|
||||
input_data.clone(), mesh, placements=None, shard_order=shard_order
|
||||
)
|
||||
self.assertEqual(self.full_tensor(sharded_dt), input_data)
|
||||
self.assertEqual(make_full_tensor(sharded_dt), input_data)
|
||||
|
||||
# 2. Verify the correctness of redistribution from DTensor to DTensor.
|
||||
# This test repeatedly redistributes a DTensor to various ordered
|
||||
@ -1078,20 +958,20 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
tensor_rank = input_data.ndim
|
||||
prev_sharded_dt = None
|
||||
with maybe_disable_local_tensor_mode():
|
||||
shard_orders = self.generate_shard_orders(mesh, tensor_rank)
|
||||
shard_orders = generate_shard_orders(mesh, tensor_rank)
|
||||
for shard_order in shard_orders:
|
||||
if prev_sharded_dt is None:
|
||||
prev_sharded_dt = self.distribute_tensor(
|
||||
prev_sharded_dt = _distribute_tensor(
|
||||
input_data.clone(),
|
||||
mesh,
|
||||
placements=None,
|
||||
shard_order=shard_order,
|
||||
)
|
||||
else:
|
||||
sharded_dt = self.redistribute(
|
||||
sharded_dt = redistribute(
|
||||
prev_sharded_dt, mesh, placements=None, shard_order=shard_order
|
||||
)
|
||||
self.assertEqual(self.full_tensor(sharded_dt), input_data)
|
||||
self.assertEqual(make_full_tensor(sharded_dt), input_data)
|
||||
prev_sharded_dt = sharded_dt
|
||||
|
||||
@with_comms
|
||||
@ -1136,13 +1016,13 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
local_tensor = torch.randn(shape, device=self.device_type)
|
||||
full_tensor = DTensor.from_local(local_tensor, mesh, placements)
|
||||
with maybe_disable_local_tensor_mode():
|
||||
shard_orders = self.generate_shard_orders(mesh, len(shape))
|
||||
shard_orders = generate_shard_orders(mesh, len(shape))
|
||||
for shard_order in shard_orders:
|
||||
sharded_dt = self.redistribute(
|
||||
sharded_dt = redistribute(
|
||||
full_tensor, mesh, placements=None, shard_order=shard_order
|
||||
)
|
||||
self.assertEqual(
|
||||
self.full_tensor(sharded_dt), self.full_tensor(full_tensor)
|
||||
make_full_tensor(sharded_dt), make_full_tensor(full_tensor)
|
||||
)
|
||||
|
||||
@unittest.skip(
|
||||
@ -1152,24 +1032,20 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
@with_comms
|
||||
def test_ordered_redistribute_for_special_placement(self):
|
||||
"""Test ordered redistribution with special placement"""
|
||||
from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
|
||||
|
||||
torch.manual_seed(21)
|
||||
mesh = init_device_mesh(self.device_type, (8,))
|
||||
input_data = torch.randn((8, 8), device=self.device_type)
|
||||
src_placement = [Shard(1)]
|
||||
tgt_placement = [
|
||||
(_MaskPartial(offset_shape=torch.Size([10, 20]), offset_dim=0),)
|
||||
(MaskPartial(offset_shape=torch.Size([10, 20]), offset_dim=0),)
|
||||
]
|
||||
sharded_dt = self.distribute_tensor(
|
||||
sharded_dt = _distribute_tensor(
|
||||
input_data.clone(),
|
||||
mesh,
|
||||
src_placement,
|
||||
shard_order=(ShardOrderEntry(tensor_dim=1, mesh_dims=(0,)),),
|
||||
)
|
||||
sharded_dt = self.redistribute(
|
||||
sharded_dt, mesh, tgt_placement, shard_order=None
|
||||
)
|
||||
sharded_dt = redistribute(sharded_dt, mesh, tgt_placement, shard_order=None)
|
||||
|
||||
@with_comms
|
||||
def test_shard_order_same_data_as_strided_shard(self):
|
||||
@ -1179,7 +1055,7 @@ class DistributeWithDeviceOrderTest(DTensorTestBase):
|
||||
strided_placement = [_StridedShard(-2, split_factor=2), Shard(-2)]
|
||||
x_strided_dt = distribute_tensor(x, device_mesh, strided_placement)
|
||||
# specify right-to-left order use ordered shard
|
||||
x_ordered_dt = self.distribute_tensor(
|
||||
x_ordered_dt = _distribute_tensor(
|
||||
x,
|
||||
device_mesh,
|
||||
placements=[Shard(0), Shard(0)],
|
||||
|
||||
@ -34,6 +34,10 @@ from torch.distributed.tensor.placement_types import (
|
||||
from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
||||
DTensorTestBase,
|
||||
generate_shard_orders,
|
||||
LocalDTensorTestBase,
|
||||
patched_distribute_tensor as _distribute_tensor,
|
||||
shard_order_to_placement,
|
||||
with_comms,
|
||||
)
|
||||
|
||||
@ -774,6 +778,63 @@ class TestStridedSharding(DTensorTestBase):
|
||||
self.assertEqual(dtensor.full_tensor(), tensor)
|
||||
|
||||
|
||||
class Test_StridedShard_with_shard_order(LocalDTensorTestBase):
|
||||
@property
|
||||
def world_size(self) -> int:
|
||||
return 32
|
||||
|
||||
@with_comms
|
||||
def test_StridedShard_to_shard_order(self):
|
||||
with LocalTensorMode(ranks=self.world_size):
|
||||
mesh = DeviceMesh("cpu", torch.arange(self.world_size).view(2, 2, 2, 2, 2))
|
||||
shard_iter = generate_shard_orders(mesh, 3)
|
||||
# It takes ~4.8h to complete total 2520 shard order combinations here
|
||||
# using LocalTensor. So we only randomly pick 25 shard orders to test.
|
||||
all_shard_order = list(shard_iter)
|
||||
import random
|
||||
|
||||
random.seed(42)
|
||||
shard_order_choices = random.sample(
|
||||
all_shard_order, min(25, len(all_shard_order))
|
||||
)
|
||||
|
||||
x = torch.randn(32, 32, 32)
|
||||
for shard_order in shard_order_choices:
|
||||
a = _distribute_tensor(x, mesh, None, shard_order)
|
||||
|
||||
placement_without_stridedshard = shard_order_to_placement(
|
||||
shard_order, mesh
|
||||
)
|
||||
placements_with_stridedshard = (
|
||||
DTensorSpec._convert_shard_order_to_StridedShard(
|
||||
shard_order, placement_without_stridedshard, mesh
|
||||
)
|
||||
)
|
||||
b = distribute_tensor(x, mesh, placements_with_stridedshard)
|
||||
shard_order_from_stridedshard = (
|
||||
DTensorSpec._maybe_convert_StridedShard_to_shard_order(
|
||||
placements_with_stridedshard, mesh
|
||||
)
|
||||
)
|
||||
self.assertEqual(shard_order, shard_order_from_stridedshard)
|
||||
self.assertEqual(a.to_local(), b.to_local())
|
||||
|
||||
@with_comms
|
||||
def test_StridedShard_not_convertible_to_shard_order(self):
|
||||
with LocalTensorMode(ranks=self.world_size):
|
||||
mesh = DeviceMesh("cpu", torch.arange(self.world_size).view(4, 8))
|
||||
unconvertible_placements_list = [
|
||||
[_StridedShard(0, split_factor=2), _StridedShard(1, split_factor=2)],
|
||||
[_StridedShard(0, split_factor=2), Shard(1)],
|
||||
[_StridedShard(1, split_factor=16), Shard(1)],
|
||||
]
|
||||
for placements in unconvertible_placements_list:
|
||||
shard_order = DTensorSpec._maybe_convert_StridedShard_to_shard_order(
|
||||
tuple(placements), mesh
|
||||
)
|
||||
self.assertIsNone(shard_order)
|
||||
|
||||
|
||||
class Test2DStridedLocalShard(DTensorTestBase):
|
||||
@property
|
||||
def world_size(self):
|
||||
|
||||
@ -54,6 +54,7 @@ def apply_reordering_and_get_graph(graph, out_li) -> None:
|
||||
"max_compute_pre_fetch",
|
||||
"custom_runtime_estimation",
|
||||
"insert_overlap_deps",
|
||||
"collective_estimator",
|
||||
)
|
||||
for key in config_keys:
|
||||
if (val := getattr(dist_opts, key)) is not None:
|
||||
@ -943,6 +944,50 @@ class TestComputeCommReorderingBucketing(TestComputeCommReorderingMultiProc):
|
||||
correct = func(inputs_a, inputs_b, ranks=ranks)
|
||||
self.assertTrue(same(out, correct))
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
def test_collective_benchmarking_with_real_pg(self):
|
||||
"""Test collective benchmarking with real process group (falls back on fake)."""
|
||||
|
||||
def func(a):
|
||||
# Test all three collective types with 8x8 (power of 2 size = 256 elements = 1024 bytes for fp32)
|
||||
ar = _functional_collectives.all_reduce(a, "sum", "0")
|
||||
ag = _functional_collectives.all_gather_tensor(
|
||||
a, 0, list(range(self.world_size))
|
||||
)
|
||||
rs = _functional_collectives.reduce_scatter_tensor(a, "sum", 0, "0")
|
||||
|
||||
b = torch.matmul(a, a)
|
||||
c = torch.matmul(ar, b)
|
||||
return c.sum() + ag.sum() + rs.sum()
|
||||
|
||||
patches = {
|
||||
**get_patches(),
|
||||
"aten_distributed_optimizations.collective_estimator": "benchmark",
|
||||
"aten_distributed_optimizations.custom_runtime_estimation": None, # Remove custom estimation so benchmarking happens
|
||||
}
|
||||
|
||||
with _dynamo_dist_per_rank_init(
|
||||
self.rank,
|
||||
self.world_size,
|
||||
self.backend(device_type),
|
||||
fake_pg=not at_least_x_gpu(2),
|
||||
):
|
||||
inputs = torch.ones(8, 8, dtype=torch.float, device=device_type) + self.rank
|
||||
|
||||
with torch._inductor.config.patch(patches):
|
||||
compiled = torch.compile(func)
|
||||
out, aten_graph_str = run_and_get_aten_graph(compiled, inputs)
|
||||
|
||||
# Verify all three collective types are present
|
||||
FileCheck().check("all_reduce").check("all_gather").check(
|
||||
"reduce_scatter"
|
||||
).run(aten_graph_str)
|
||||
|
||||
# Test passes if compilation succeeded with benchmarking enabled
|
||||
# Cache verification is tricky due to multiprocess test setup
|
||||
correct = func(inputs)
|
||||
self.assertTrue(same(out, correct))
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
@torch._inductor.config.patch(get_bucket_patches())
|
||||
def test_multidtype_bucketing(self):
|
||||
|
||||
@ -485,7 +485,7 @@ elif TEST_XPU:
|
||||
def exit_if_lt_x_accelerators(x):
|
||||
if torch.accelerator.is_available():
|
||||
if torch.accelerator.device_count() < x:
|
||||
sys.exit(TEST_SKIPS[f"multi-accelerator-{x}"].exit_code)
|
||||
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
|
||||
|
||||
|
||||
def with_comms(func=None):
|
||||
|
||||
@ -1,4 +1,6 @@
|
||||
# Owner(s): ["module: dynamo"]
|
||||
# flake8: noqa: B950
|
||||
# flake8: noqa: E731
|
||||
import contextlib
|
||||
import copy
|
||||
import functools
|
||||
@ -15,7 +17,11 @@ import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from functorch.compile import min_cut_rematerialization_partition
|
||||
from torch._dynamo.backends.common import aot_autograd
|
||||
from torch._dynamo.testing import CompileCounterWithBackend
|
||||
from torch._dynamo.testing import (
|
||||
AotEagerAndRecordGraphs,
|
||||
CompileCounterWithBackend,
|
||||
normalize_gm,
|
||||
)
|
||||
from torch._higher_order_ops.wrap import tag_activation_checkpoint
|
||||
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
||||
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfHpu
|
||||
@ -1649,6 +1655,43 @@ Non-primal fwd outputs from model w/o backward hook: {mod_no_hook_fwd_outputs_no
|
||||
|
||||
self.assertEqual(opt_fn(x), fn(x))
|
||||
|
||||
def test_return_same_element_twice(self):
|
||||
def gn(x):
|
||||
y = torch.sin(x)
|
||||
return y, y
|
||||
|
||||
def fn(x):
|
||||
return torch.utils.checkpoint.checkpoint(gn, x, use_reentrant=True)
|
||||
|
||||
x = torch.randn(4, 4, requires_grad=True)
|
||||
ref = fn(x)
|
||||
|
||||
backend = AotEagerAndRecordGraphs()
|
||||
opt_fn = torch.compile(fn, backend=backend, fullgraph=True)
|
||||
res = opt_fn(x)
|
||||
self.assertEqual(ref[0], res[0])
|
||||
self.assertEqual(ref[1], res[1])
|
||||
|
||||
self.assertExpectedInline(
|
||||
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
|
||||
"""\
|
||||
class GraphModule(torch.nn.Module):
|
||||
def forward(self, L_x_: "f32[4, 4]"):
|
||||
l_x_ = L_x_
|
||||
|
||||
wrap_body_0 = self.wrap_body_0
|
||||
tag_activation_checkpoint = torch.ops.higher_order.tag_activation_checkpoint(wrap_body_0, l_x_, use_reentrant = True); wrap_body_0 = l_x_ = None
|
||||
getitem: "f32[4, 4]" = tag_activation_checkpoint[0]
|
||||
getitem_1: "f32[4, 4]" = tag_activation_checkpoint[1]; tag_activation_checkpoint = None
|
||||
return (getitem, getitem_1)
|
||||
|
||||
class wrap_body_0(torch.nn.Module):
|
||||
def forward(self, l_x_: "f32[4, 4]"):
|
||||
y: "f32[4, 4]" = torch.sin(l_x_); l_x_ = None
|
||||
return (y, y)
|
||||
""",
|
||||
)
|
||||
|
||||
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
|
||||
def test_nonlocal_mutation(self):
|
||||
counter = 0
|
||||
@ -1672,6 +1715,114 @@ Non-primal fwd outputs from model w/o backward hook: {mod_no_hook_fwd_outputs_no
|
||||
# The mutation is not reapplied in the backward because the flag was on.
|
||||
self.assertEqual(counter, 1)
|
||||
|
||||
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
|
||||
def test_nonlocal_list_mutation(self):
|
||||
def gn(x, z):
|
||||
out = x.sin()
|
||||
z.append(out)
|
||||
return torch.cos(torch.sin(torch.matmul(x, x) @ x)), out
|
||||
|
||||
def fn(x):
|
||||
z = []
|
||||
|
||||
out1, out2 = torch.utils.checkpoint.checkpoint(
|
||||
gn,
|
||||
x,
|
||||
z,
|
||||
use_reentrant=False,
|
||||
)
|
||||
|
||||
return out1, z[0]
|
||||
|
||||
x = torch.randn(4, 4, requires_grad=True)
|
||||
ref = fn(x)
|
||||
|
||||
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
||||
res = opt_fn(x)
|
||||
self.assertEqual(ref[0], res[0])
|
||||
self.assertEqual(ref[1], res[1])
|
||||
|
||||
@torch._dynamo.config.patch(skip_fwd_side_effects_in_bwd_under_checkpoint=True)
|
||||
def test_nonlocal_list_mutation_hidden(self):
|
||||
def gn(x, z):
|
||||
o = torch.matmul(x, x) @ x
|
||||
out = x.sin()
|
||||
z.append(out)
|
||||
return torch.cos(torch.sin(o)), torch.sin(x)
|
||||
|
||||
def fn(x):
|
||||
z = []
|
||||
|
||||
outs = torch.utils.checkpoint.checkpoint(
|
||||
gn,
|
||||
x,
|
||||
z,
|
||||
use_reentrant=False,
|
||||
)
|
||||
out1 = outs[0]
|
||||
# Check that the extra output pytree handling is done properly
|
||||
out2 = outs[-1]
|
||||
|
||||
return out1 + out2, z[0]
|
||||
|
||||
x = torch.randn(4, 4, requires_grad=True)
|
||||
ref = fn(x)
|
||||
|
||||
backend = AotEagerAndRecordGraphs()
|
||||
opt_fn = torch.compile(fn, backend=backend, fullgraph=True)
|
||||
res = opt_fn(x)
|
||||
self.assertEqual(ref[0], res[0])
|
||||
self.assertEqual(ref[1], res[1])
|
||||
|
||||
self.assertExpectedInline(
|
||||
normalize_gm(backend.graphs[0].print_readable(print_output=False)),
|
||||
"""\
|
||||
class GraphModule(torch.nn.Module):
|
||||
def forward(self, L_x_: "f32[4, 4]"):
|
||||
l_x_ = L_x_
|
||||
|
||||
wrap_body_0 = self.wrap_body_0
|
||||
tag_activation_checkpoint = torch.ops.higher_order.tag_activation_checkpoint(wrap_body_0, l_x_, use_reentrant = False); wrap_body_0 = l_x_ = None
|
||||
out1: "f32[4, 4]" = tag_activation_checkpoint[0]
|
||||
out2: "f32[4, 4]" = tag_activation_checkpoint[1]
|
||||
getitem_4: "f32[4, 4]" = tag_activation_checkpoint[4]; tag_activation_checkpoint = None
|
||||
|
||||
add: "f32[4, 4]" = out1 + out2; out1 = out2 = None
|
||||
return (add, getitem_4)
|
||||
|
||||
class wrap_body_0(torch.nn.Module):
|
||||
def forward(self, l_x_: "f32[4, 4]"):
|
||||
matmul: "f32[4, 4]" = torch.matmul(l_x_, l_x_)
|
||||
o: "f32[4, 4]" = matmul @ l_x_
|
||||
|
||||
out: "f32[4, 4]" = l_x_.sin()
|
||||
|
||||
sin_1: "f32[4, 4]" = torch.sin(o)
|
||||
child: "f32[4, 4]" = torch.cos(sin_1)
|
||||
child_1: "f32[4, 4]" = torch.sin(l_x_); l_x_ = None
|
||||
return (child, child_1, matmul, o, out, sin_1)
|
||||
""",
|
||||
)
|
||||
|
||||
self.assertExpectedInline(
|
||||
normalize_gm(backend.fw_graphs[0].print_readable(print_output=False)),
|
||||
"""\
|
||||
class GraphModule(torch.nn.Module):
|
||||
def forward(self, primals_1: "f32[4, 4]"):
|
||||
mm: "f32[4, 4]" = torch.ops.aten.mm.default(primals_1, primals_1)
|
||||
mm_1: "f32[4, 4]" = torch.ops.aten.mm.default(mm, primals_1); mm = None
|
||||
|
||||
sin: "f32[4, 4]" = torch.ops.aten.sin.default(primals_1)
|
||||
|
||||
sin_1: "f32[4, 4]" = torch.ops.aten.sin.default(mm_1); mm_1 = None
|
||||
cos: "f32[4, 4]" = torch.ops.aten.cos.default(sin_1); sin_1 = None
|
||||
sin_2: "f32[4, 4]" = torch.ops.aten.sin.default(primals_1)
|
||||
|
||||
add: "f32[4, 4]" = torch.ops.aten.add.Tensor(cos, sin_2); cos = sin_2 = None
|
||||
return (add, sin, primals_1)
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
devices = ["cuda", "hpu"]
|
||||
instantiate_device_type_tests(
|
||||
|
||||
@ -408,6 +408,9 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
self.assertEqual(ref0, res0)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_reconstruct(self):
|
||||
def fn(x):
|
||||
e = torch.cuda.Event()
|
||||
@ -425,6 +428,9 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
self.assertEqual(cnts.op_count, 3)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_across_graph_break(self):
|
||||
def fn(x):
|
||||
e = torch.cuda.Event()
|
||||
@ -446,9 +452,12 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
res = opt_fn(x)
|
||||
self.assertEqual(ref[0], res[0])
|
||||
self.assertEqual(cnts.frame_count, 2)
|
||||
self.assertEqual(cnts.op_count, 9)
|
||||
self.assertEqual(cnts.op_count, 10)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_created_outside_of_graph(self):
|
||||
user_stream = torch.cuda.Stream()
|
||||
event = torch.cuda.Event()
|
||||
@ -478,9 +487,12 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
res = run_iters(func, compile=True)
|
||||
self.assertEqual(ref, res)
|
||||
self.assertEqual(cnts.frame_count, 1)
|
||||
self.assertEqual(cnts.op_count, 3)
|
||||
self.assertEqual(cnts.op_count, 4)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_method_create_stream_outside_of_compile(self):
|
||||
def fn(x, cur_stream, new_stream):
|
||||
x = torch.mul(x, 1)
|
||||
|
||||
@ -2109,6 +2109,89 @@ Detected recompile when torch.compile stance is 'fail_on_recompile'. filename: '
|
||||
with self.assertRaises(Unsupported):
|
||||
outer_f2(inp)
|
||||
|
||||
def test_disable_recursive_flags(self):
|
||||
class SimpleLinear(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.layer0 = torch.nn.Linear(4, 4)
|
||||
|
||||
def forward(self, inp):
|
||||
return self.layer0(torch.sigmoid(inp))
|
||||
|
||||
class SimpleModel(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.layer0 = SimpleLinear()
|
||||
self.layer1 = torch.nn.Linear(4, 4)
|
||||
|
||||
def forward(self, inp):
|
||||
z = self.layer0(torch.sin(inp))
|
||||
return self.layer1(z)
|
||||
|
||||
for recursive_flag in [True, False]:
|
||||
model = SimpleModel()
|
||||
other_model = SimpleModel()
|
||||
|
||||
model.forward = torch._dynamo.disable(
|
||||
model.forward,
|
||||
recursive=recursive_flag,
|
||||
)
|
||||
self.assertEqual(
|
||||
torch._dynamo.is_dynamo_disable_recursive(model.forward),
|
||||
recursive_flag,
|
||||
)
|
||||
|
||||
other_model = torch._dynamo.disable(other_model, recursive=recursive_flag)
|
||||
self.assertEqual(
|
||||
torch._dynamo.is_dynamo_disable_recursive(
|
||||
other_model.forward
|
||||
if isinstance(other_model, torch.nn.Module)
|
||||
else other_model
|
||||
),
|
||||
recursive_flag,
|
||||
)
|
||||
|
||||
# check the model is compilable
|
||||
torch.compile(model)
|
||||
torch.compile(other_model)
|
||||
|
||||
def test_dynamo_disable_annotations(self):
|
||||
class SimpleModel(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.register_buffer("buffer", torch.rand(2, 2))
|
||||
|
||||
@torch._dynamo.disable()
|
||||
def f1(self, x) -> torch.Tensor:
|
||||
return x + self.buffer + 1
|
||||
|
||||
@torch._dynamo.disable()
|
||||
def f2(self, x) -> torch.Tensor:
|
||||
return x + self.buffer + 2
|
||||
|
||||
def forward(self, x) -> torch.Tensor:
|
||||
return self.f1(x) + self.f2(x)
|
||||
|
||||
model = SimpleModel()
|
||||
inp = torch.rand(2, 2)
|
||||
with torch.fx.traceback.preserve_node_meta():
|
||||
exported_model = torch.export.export(model, (inp,))
|
||||
graph = exported_model.graph_module.graph
|
||||
found_f1 = False
|
||||
found_f2 = False
|
||||
for node in graph.nodes:
|
||||
if "custom" in node.meta:
|
||||
if "_torchdynamo_disable_method" in node.meta["custom"]:
|
||||
if node.meta["custom"]["_torchdynamo_disable_method"] == "f1":
|
||||
found_f1 = True
|
||||
elif node.meta["custom"]["_torchdynamo_disable_method"] == "f2":
|
||||
found_f2 = True
|
||||
self.assertTrue(found_f1)
|
||||
self.assertTrue(found_f2)
|
||||
model.forward = torch._dynamo.disable(model.forward, recursive=False)
|
||||
with self.assertRaises(RuntimeError):
|
||||
exported_model = torch.export.export(model, (inp,))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from torch._dynamo.test_case import run_tests
|
||||
|
||||
@ -422,34 +422,41 @@ from user code:
|
||||
import optree
|
||||
|
||||
@torch.compile(backend="eager")
|
||||
def fn(x):
|
||||
d = {"a": 1}
|
||||
optree.tree_flatten_with_path(d)
|
||||
return torch.sin(x)
|
||||
|
||||
def post_munge(s):
|
||||
s = re.sub(
|
||||
r"optree\.\S*\.flatten_with_path",
|
||||
"optree.<path>.flatten_with_path",
|
||||
s,
|
||||
)
|
||||
return re.sub(
|
||||
r"qualname: \S*flatten_with_path",
|
||||
"qualname: <path>.flatten_with_path",
|
||||
s,
|
||||
def fn1(x):
|
||||
tree = {"a": x, "b": (x - 1, 2 * x)}
|
||||
sin, cos = optree.tree_transpose_map(
|
||||
lambda t: (torch.sin(t), torch.cos(t)),
|
||||
tree,
|
||||
)
|
||||
return sin, cos
|
||||
|
||||
fn(torch.randn(4))
|
||||
self.assertEqual(len(counters["graph_break"]), 1)
|
||||
fn1(torch.randn(4))
|
||||
self.assertEqual(len(counters["graph_break"]), 0)
|
||||
|
||||
@torch.compile(backend="eager")
|
||||
def fn2(x):
|
||||
spec = optree.treespec_deque([])
|
||||
return spec, x
|
||||
|
||||
fn2(torch.randn(4))
|
||||
self.assertGreaterEqual(len(counters["graph_break"]), 1)
|
||||
first_graph_break = next(iter(counters["graph_break"].keys()))
|
||||
|
||||
def post_munge(string):
|
||||
return re.sub(
|
||||
r"(optree\.|qualname: )\S*(\.make_from_collection)",
|
||||
r"\1<path>\2",
|
||||
string,
|
||||
)
|
||||
|
||||
self.assertExpectedInline(
|
||||
post_munge(first_graph_break),
|
||||
"""\
|
||||
Attempted to call function marked as skipped
|
||||
Explanation: Dynamo cannot trace optree C/C++ function optree.<path>.flatten_with_path.
|
||||
Explanation: Dynamo cannot trace optree C/C++ function optree.<path>.make_from_collection.
|
||||
Hint: Consider using torch.utils._pytree - https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py
|
||||
|
||||
Developer debug context: module: optree._C, qualname: <path>.flatten_with_path, skip reason: <missing reason>
|
||||
Developer debug context: module: optree._C, qualname: <path>.make_from_collection, skip reason: <missing reason>
|
||||
|
||||
For more details about this graph break, please visit: https://meta-pytorch.github.io/compile-graph-break-site/gb/gb0007.html""",
|
||||
)
|
||||
@ -1043,7 +1050,7 @@ Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especiall
|
||||
msg = re.sub(r"line (\d+)", "line N", msg)
|
||||
msg = re.sub(
|
||||
r"""(?s)Traceback \(most recent call last\):.*
|
||||
File "exc.py", line N, in unimplemented_v2
|
||||
File "exc.py", line N, in unimplemented
|
||||
raise Unsupported\(msg\)""",
|
||||
"<Internal traceback>\n",
|
||||
msg,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user