mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-19 18:14:54 +08:00
Compare commits
24 Commits
ciflow/b20
...
optimizer_
| Author | SHA1 | Date | |
|---|---|---|---|
| 9dfb3d234a | |||
| abfc59b1e3 | |||
| 074dffa1cc | |||
| d91269e8ce | |||
| e2b53baaa4 | |||
| f077ecab92 | |||
| 57f36c9dc6 | |||
| ee5610fa91 | |||
| d0e7d2e093 | |||
| 5605fce2c8 | |||
| 2f023bf7b9 | |||
| 9760a633ba | |||
| 2e907f48cf | |||
| 4c127f1a65 | |||
| 3beb3786fc | |||
| d2ccb5bc5e | |||
| 8cb8b6cbbd | |||
| 2b92b31bd6 | |||
| db1551bafa | |||
| 73921060d9 | |||
| 01f94d4096 | |||
| 35dae27a66 | |||
| 9ff1922397 | |||
| 5df0e49801 |
@ -188,7 +188,7 @@ case "$tag" in
|
||||
fi
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
ROCM_VERSION=7.0
|
||||
ROCM_VERSION=7.1
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
KATEX=yes
|
||||
|
||||
@ -60,14 +60,16 @@ EOF
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated rocm-llvm-dev
|
||||
fi
|
||||
|
||||
# precompiled miopen kernels added in ROCm 3.5, renamed in ROCm 5.5
|
||||
# search for all unversioned packages
|
||||
# if search fails it will abort this script; use true to avoid case where search fails
|
||||
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
|
||||
if [[ "x${MIOPENHIPGFX}" = x ]]; then
|
||||
echo "miopen-hip-gfx package not available" && exit 1
|
||||
else
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
|
||||
if [[ $(ver $ROCM_VERSION) -lt $(ver 7.1) ]]; then
|
||||
# precompiled miopen kernels added in ROCm 3.5, renamed in ROCm 5.5, removed in ROCm 7.1
|
||||
# search for all unversioned packages
|
||||
# if search fails it will abort this script; use true to avoid case where search fails
|
||||
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
|
||||
if [[ "x${MIOPENHIPGFX}" = x ]]; then
|
||||
echo "miopen-hip-gfx package not available" && exit 1
|
||||
else
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
|
||||
fi
|
||||
fi
|
||||
|
||||
# ROCm 6.0 had a regression where journal_mode was enabled on the kdb files resulting in permission errors at runtime
|
||||
|
||||
@ -12,8 +12,8 @@ function do_install() {
|
||||
|
||||
rocm_version_nodot=${rocm_version//./}
|
||||
|
||||
# post merge of https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
|
||||
# https://github.com/icl-utk-edu/magma/pull/65
|
||||
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
|
||||
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
|
||||
|
||||
rocm_dir="/opt/rocm"
|
||||
|
||||
@ -1250,6 +1250,97 @@ test_custom_script_ops() {
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_libtorch_agnostic_targetting() {
|
||||
echo "Testing libtorch_agnostic runs correctly on TORCH_TARGET_VERSION"
|
||||
|
||||
REPO_DIR=$(pwd)
|
||||
WHEEL_DIR="${REPO_DIR}/test/cpp_extensions/.wheels"
|
||||
|
||||
# Build wheel with current PyTorch (this has TORCH_TARGET_VERSION 2_9_0)
|
||||
echo "Building 2.9 extension wheel with current PyTorch..."
|
||||
pushd test/cpp_extensions/libtorch_agnostic_2_9_extension
|
||||
time python setup.py bdist_wheel
|
||||
|
||||
# Save the wheel
|
||||
mkdir -p "$WHEEL_DIR"
|
||||
cp dist/*.whl "$WHEEL_DIR/"
|
||||
WHEEL_FILE=$(find "$WHEEL_DIR" -maxdepth 1 -name "*.whl" -type f | head -1)
|
||||
echo "Built wheel: $(basename "$WHEEL_FILE")"
|
||||
popd
|
||||
|
||||
# Create venv and install PyTorch 2.9
|
||||
python -m venv venv_pytorch_2_9
|
||||
# shellcheck disable=SC1091
|
||||
. venv_pytorch_2_9/bin/activate
|
||||
|
||||
# Clear PYTHONPATH to avoid using the development PyTorch
|
||||
echo "Clearing PYTHONPATH to use only venv packages..."
|
||||
unset PYTHONPATH
|
||||
|
||||
# Upgrade pip to latest version
|
||||
echo "Upgrading pip to latest version..."
|
||||
pip install --upgrade pip
|
||||
pip --version
|
||||
|
||||
echo "Installing PyTorch 2.9..."
|
||||
|
||||
# Install from release channel only
|
||||
PYTORCH_VERSION="2.9.0"
|
||||
|
||||
# Extract CUDA version from BUILD_ENVIRONMENT (e.g., "cuda12.1" -> "cu121")
|
||||
if [[ "$BUILD_ENVIRONMENT" =~ cuda([0-9]+)\.([0-9]+) ]]; then
|
||||
CUDA_MAJOR="${BASH_REMATCH[1]}"
|
||||
CUDA_MINOR="${BASH_REMATCH[2]}"
|
||||
CUDA_VERSION="cu${CUDA_MAJOR}${CUDA_MINOR}"
|
||||
echo " Detected CUDA ${CUDA_MAJOR}.${CUDA_MINOR} from BUILD_ENVIRONMENT, using ${CUDA_VERSION}"
|
||||
else
|
||||
# Default to CPU build
|
||||
CUDA_VERSION="cpu"
|
||||
echo " No CUDA detected in BUILD_ENVIRONMENT, using CPU build"
|
||||
fi
|
||||
|
||||
if pip install torch=="${PYTORCH_VERSION}" --index-url https://download.pytorch.org/whl/${CUDA_VERSION}/; then
|
||||
echo "Installed PyTorch ${PYTORCH_VERSION} from release channel (${CUDA_VERSION})"
|
||||
else
|
||||
echo " FAILED to install PyTorch 2.9.0 from release channel"
|
||||
echo " URL: https://download.pytorch.org/whl/${CUDA_VERSION}/"
|
||||
deactivate
|
||||
rm -rf venv_pytorch_2_9
|
||||
return 1
|
||||
fi
|
||||
|
||||
INSTALLED_VERSION=$(python -c "import torch; print(torch.__version__)" 2>/dev/null || echo "unknown")
|
||||
echo " Installed version: $INSTALLED_VERSION"
|
||||
|
||||
# Install test dependencies
|
||||
echo "Installing test dependencies..."
|
||||
pip install expecttest numpy unittest-xml-reporting
|
||||
|
||||
# Install the pre-built wheel
|
||||
echo ""
|
||||
echo "Installing pre-built 2.9 extension wheel (built with PyTorch 2.10)..."
|
||||
pip install "$WHEEL_FILE"
|
||||
echo "Installed $(basename "$WHEEL_FILE") into PyTorch 2.9 environment"
|
||||
|
||||
# Run tests with PyTorch 2.9 runtime (2.10 tests will be skipped automatically)
|
||||
echo ""
|
||||
echo "Running tests with PyTorch 2.9 runtime (using wheel built on PyTorch 2.10)..."
|
||||
if time python test/cpp_extensions/test_libtorch_agnostic.py -v; then
|
||||
echo ""
|
||||
echo " Wheel built with current torch and TORCH_TARGET_VERSION 2_9_0 works with PyTorch 2.9 runtime!"
|
||||
else
|
||||
echo "targeting test failed"
|
||||
deactivate
|
||||
rm -rf venv_pytorch_2_9 "$WHEEL_DIR"
|
||||
return 1
|
||||
fi
|
||||
|
||||
deactivate
|
||||
rm -rf venv_pytorch_2_9 "$WHEEL_DIR"
|
||||
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_jit_hooks() {
|
||||
echo "Testing jit hooks in cpp"
|
||||
HOOK_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/jit-hook-build"
|
||||
@ -1677,7 +1768,7 @@ test_operator_microbenchmark() {
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/operator_benchmark
|
||||
|
||||
for OP_BENCHMARK_TESTS in matmul mm addmm bmm conv; do
|
||||
for OP_BENCHMARK_TESTS in optimizer; do
|
||||
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
|
||||
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
|
||||
--benchmark-name "PyTorch operator microbenchmark" --use-compile
|
||||
@ -1722,6 +1813,8 @@ elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" == 'default' ]];
|
||||
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
|
||||
test_forward_backward_compatibility
|
||||
# Do NOT add tests after bc check tests, see its comment.
|
||||
elif [[ "${TEST_CONFIG}" == *libtorch_agnostic_targetting* ]]; then
|
||||
test_libtorch_agnostic_targetting
|
||||
elif [[ "${TEST_CONFIG}" == *xla* ]]; then
|
||||
install_torchvision
|
||||
build_xla
|
||||
|
||||
7
.github/labeler.yml
vendored
7
.github/labeler.yml
vendored
@ -91,13 +91,6 @@
|
||||
"ciflow/trunk":
|
||||
- .ci/docker/ci_commit_pins/triton.txt
|
||||
|
||||
"oncall: distributed":
|
||||
- torch/csrc/distributed/**
|
||||
- torch/distributed/**
|
||||
- torch/nn/parallel/**
|
||||
- test/distributed/**
|
||||
- torch/testing/_internal/distributed/**
|
||||
|
||||
"release notes: distributed (checkpoint)":
|
||||
- torch/distributed/checkpoint/**
|
||||
- test/distributed/checkpoint/**
|
||||
|
||||
1
.github/workflows/pull.yml
vendored
1
.github/workflows/pull.yml
vendored
@ -70,6 +70,7 @@ jobs:
|
||||
{ config: "distributed", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "distributed", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
{ config: "numpy_2_x", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "libtorch_agnostic_targetting", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
1
.github/workflows/trunk.yml
vendored
1
.github/workflows/trunk.yml
vendored
@ -83,6 +83,7 @@ jobs:
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.12xlarge.nvidia.gpu" },
|
||||
{ config: "pr_time_benchmarks", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
|
||||
{ config: "libtorch_agnostic_targetting", shard: 1, num_shards: 1, runner: "linux.g4dn.metal.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
@ -144,7 +144,7 @@ inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
|
||||
}
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
|
||||
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
|
||||
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ')';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ namespace indexing {
|
||||
const EllipsisIndexType Ellipsis = EllipsisIndexType();
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const Slice& slice) {
|
||||
stream << slice.start() << ":" << slice.stop() << ":" << slice.step();
|
||||
stream << slice.start() << ':' << slice.stop() << ':' << slice.step();
|
||||
return stream;
|
||||
}
|
||||
|
||||
@ -31,12 +31,12 @@ std::ostream& operator<<(std::ostream& stream, const TensorIndex& tensor_index)
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const std::vector<TensorIndex>& tensor_indices) {
|
||||
stream << "(";
|
||||
stream << '(';
|
||||
for (const auto i : c10::irange(tensor_indices.size())) {
|
||||
stream << tensor_indices[i];
|
||||
if (i < tensor_indices.size() - 1) stream << ", ";
|
||||
}
|
||||
stream << ")";
|
||||
stream << ')';
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -113,7 +113,7 @@ void TensorNames::checkUnique(const char* op_name) const {
|
||||
std::ostream& operator<<(std::ostream& out, const TensorName& tensorname) {
|
||||
out << tensorname.name_ << " (index ";
|
||||
out << tensorname.origin_idx_ << " of ";
|
||||
out << tensorname.origin_ << ")";
|
||||
out << tensorname.origin_ << ')';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -13,9 +13,9 @@ std::ostream& operator<<(std::ostream & out, const TensorGeometryArg& t) {
|
||||
if (t.pos == 0) {
|
||||
// 0 is distinguished; it usually indicates 'self' or the return
|
||||
// tensor
|
||||
out << "'" << t.name << "'";
|
||||
out << '\'' << t.name << '\'';
|
||||
} else {
|
||||
out << "argument #" << t.pos << " '" << t.name << "'";
|
||||
out << "argument #" << t.pos << " '" << t.name << '\'';
|
||||
}
|
||||
return out;
|
||||
}
|
||||
@ -154,7 +154,7 @@ void checkSameGPU(CheckedFrom c, const TensorArg& t1, const TensorArg& t2) {
|
||||
oss << "Tensor for " << t2 << " is on CPU, ";
|
||||
}
|
||||
oss << "but expected " << ((!t1->is_cpu() && !t2->is_cpu()) ? "them" : "it")
|
||||
<< " to be on GPU (while checking arguments for " << c << ")";
|
||||
<< " to be on GPU (while checking arguments for " << c << ')';
|
||||
TORCH_CHECK(false, oss.str());
|
||||
}
|
||||
TORCH_CHECK(
|
||||
@ -199,7 +199,7 @@ void checkScalarTypes(CheckedFrom c, const TensorArg& t,
|
||||
i++;
|
||||
}
|
||||
oss << "; but got " << t->toString()
|
||||
<< " instead (while checking arguments for " << c << ")";
|
||||
<< " instead (while checking arguments for " << c << ')';
|
||||
TORCH_CHECK(false, oss.str());
|
||||
}
|
||||
}
|
||||
|
||||
@ -43,8 +43,8 @@ std::string get_mkldnn_version() {
|
||||
// https://github.com/intel/ideep/issues/29
|
||||
{
|
||||
const dnnl_version_t* ver = dnnl_version();
|
||||
ss << "Intel(R) MKL-DNN v" << ver->major << "." << ver->minor << "." << ver->patch
|
||||
<< " (Git Hash " << ver->hash << ")";
|
||||
ss << "Intel(R) MKL-DNN v" << ver->major << '.' << ver->minor << '.' << ver->patch
|
||||
<< " (Git Hash " << ver->hash << ')';
|
||||
}
|
||||
#else
|
||||
ss << "MKLDNN not found";
|
||||
@ -81,7 +81,7 @@ std::string get_openmp_version() {
|
||||
break;
|
||||
}
|
||||
if (ver_str) {
|
||||
ss << " (a.k.a. OpenMP " << ver_str << ")";
|
||||
ss << " (a.k.a. OpenMP " << ver_str << ')';
|
||||
}
|
||||
}
|
||||
#else
|
||||
@ -135,38 +135,38 @@ std::string show_config() {
|
||||
|
||||
#if defined(__GNUC__)
|
||||
{
|
||||
ss << " - GCC " << __GNUC__ << "." << __GNUC_MINOR__ << "\n";
|
||||
ss << " - GCC " << __GNUC__ << '.' << __GNUC_MINOR__ << '\n';
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
{
|
||||
ss << " - C++ Version: " << __cplusplus << "\n";
|
||||
ss << " - C++ Version: " << __cplusplus << '\n';
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__clang_major__)
|
||||
{
|
||||
ss << " - clang " << __clang_major__ << "." << __clang_minor__ << "." << __clang_patchlevel__ << "\n";
|
||||
ss << " - clang " << __clang_major__ << '.' << __clang_minor__ << '.' << __clang_patchlevel__ << '\n';
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
{
|
||||
ss << " - MSVC " << _MSC_FULL_VER << "\n";
|
||||
ss << " - MSVC " << _MSC_FULL_VER << '\n';
|
||||
}
|
||||
#endif
|
||||
|
||||
#if AT_MKL_ENABLED()
|
||||
ss << " - " << get_mkl_version() << "\n";
|
||||
ss << " - " << get_mkl_version() << '\n';
|
||||
#endif
|
||||
|
||||
#if AT_MKLDNN_ENABLED()
|
||||
ss << " - " << get_mkldnn_version() << "\n";
|
||||
ss << " - " << get_mkldnn_version() << '\n';
|
||||
#endif
|
||||
|
||||
#ifdef _OPENMP
|
||||
ss << " - " << get_openmp_version() << "\n";
|
||||
ss << " - " << get_openmp_version() << '\n';
|
||||
#endif
|
||||
|
||||
#if AT_BUILD_WITH_LAPACK()
|
||||
@ -183,7 +183,7 @@ std::string show_config() {
|
||||
ss << " - Cross compiling on MacOSX\n";
|
||||
#endif
|
||||
|
||||
ss << " - "<< used_cpu_capability() << "\n";
|
||||
ss << " - "<< used_cpu_capability() << '\n';
|
||||
|
||||
if (hasCUDA()) {
|
||||
ss << detail::getCUDAHooks().showConfig();
|
||||
@ -200,10 +200,10 @@ std::string show_config() {
|
||||
ss << " - Build settings: ";
|
||||
for (const auto& pair : caffe2::GetBuildOptions()) {
|
||||
if (!pair.second.empty()) {
|
||||
ss << pair.first << "=" << pair.second << ", ";
|
||||
ss << pair.first << '=' << pair.second << ", ";
|
||||
}
|
||||
}
|
||||
ss << "\n";
|
||||
ss << '\n';
|
||||
|
||||
// TODO: do HIP
|
||||
// TODO: do XLA
|
||||
|
||||
@ -209,7 +209,7 @@ struct CodeTemplate {
|
||||
// to indent correctly in the context.
|
||||
void emitIndent(std::ostream& out, size_t indent) const {
|
||||
for ([[maybe_unused]] const auto i : c10::irange(indent)) {
|
||||
out << " ";
|
||||
out << ' ';
|
||||
}
|
||||
}
|
||||
void emitStringWithIndents(
|
||||
|
||||
@ -10,7 +10,7 @@ std::ostream& operator<<(std::ostream& out, const Dimname& dimname) {
|
||||
if (dimname.type() == NameType::WILDCARD) {
|
||||
out << "None";
|
||||
} else {
|
||||
out << "'" << dimname.symbol().toUnqualString() << "'";
|
||||
out << '\'' << dimname.symbol().toUnqualString() << '\'';
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
namespace at {
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const Range& range) {
|
||||
out << "Range[" << range.begin << ", " << range.end << "]";
|
||||
out << "Range[" << range.begin << ", " << range.end << ']';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -71,7 +71,7 @@ void TensorBase::enforce_invariants() {
|
||||
|
||||
void TensorBase::print() const {
|
||||
if (defined()) {
|
||||
std::cerr << "[" << toString() << " " << sizes() << "]" << '\n';
|
||||
std::cerr << '[' << toString() << ' ' << sizes() << ']' << '\n';
|
||||
} else {
|
||||
std::cerr << "[UndefinedTensor]" << '\n';
|
||||
}
|
||||
|
||||
@ -9,8 +9,8 @@ APIVitals VitalsAPI;
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, TorchVital const& tv) {
|
||||
for (const auto& m : tv.attrs) {
|
||||
os << "[TORCH_VITAL] " << tv.name << "." << m.first << "\t\t "
|
||||
<< m.second.value << "\n";
|
||||
os << "[TORCH_VITAL] " << tv.name << '.' << m.first << "\t\t "
|
||||
<< m.second.value << '\n';
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -100,18 +100,18 @@ inline bool operator==(const AliasInfo& lhs, const AliasInfo& rhs) {
|
||||
|
||||
// this does match the way things are represented in the schema
|
||||
inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
|
||||
out << "(";
|
||||
out << '(';
|
||||
bool first = true;
|
||||
for (const auto& set : aliasInfo.beforeSets()) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
out << "|";
|
||||
out << '|';
|
||||
}
|
||||
out << set.toUnqualString();
|
||||
}
|
||||
if (aliasInfo.isWrite()) {
|
||||
out << "!";
|
||||
out << '!';
|
||||
}
|
||||
if (aliasInfo.beforeSets() != aliasInfo.afterSets()) {
|
||||
out << " -> ";
|
||||
@ -120,12 +120,12 @@ inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
out << "|";
|
||||
out << '|';
|
||||
}
|
||||
out << set.toUnqualString();
|
||||
}
|
||||
}
|
||||
out << ")";
|
||||
out << ')';
|
||||
return out;
|
||||
}
|
||||
} // namespace c10
|
||||
|
||||
@ -198,7 +198,7 @@ inline void swap(Blob& lhs, Blob& rhs) noexcept {
|
||||
}
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, const Blob& v) {
|
||||
return out << "Blob[" << v.TypeName() << "]";
|
||||
return out << "Blob[" << v.TypeName() << ']';
|
||||
}
|
||||
|
||||
} // namespace caffe2
|
||||
|
||||
@ -456,8 +456,8 @@ bool ClassType::isSubtypeOfExt(const Type& rhs, std::ostream* why_not) const {
|
||||
*why_not << "Method on class '" << repr_str()
|
||||
<< "' (1) is not compatible with interface '"
|
||||
<< rhs.repr_str() << "' (2)\n"
|
||||
<< " (1) " << self_method->getSchema() << "\n"
|
||||
<< " (2) " << schema << "\n";
|
||||
<< " (1) " << self_method->getSchema() << '\n'
|
||||
<< " (2) " << schema << '\n';
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -100,7 +100,7 @@ struct TORCH_API ClassType : public NamedType {
|
||||
std::string repr_str() const override {
|
||||
std::stringstream ss;
|
||||
ss << str()
|
||||
<< " (of Python compilation unit at: " << compilation_unit().get() << ")";
|
||||
<< " (of Python compilation unit at: " << compilation_unit().get() << ')';
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -58,12 +58,12 @@ std::string DispatchKeyExtractor::dumpState() const {
|
||||
std::ostringstream oss;
|
||||
for (const auto i : c10::irange(c10::utils::bitset::NUM_BITS())) {
|
||||
if (dispatch_arg_indices_reverse_.get(i)) {
|
||||
oss << "1";
|
||||
oss << '1';
|
||||
} else {
|
||||
oss << "0";
|
||||
oss << '0';
|
||||
}
|
||||
}
|
||||
oss << " " << nonFallthroughKeys_ << "\n";
|
||||
oss << ' ' << nonFallthroughKeys_ << '\n';
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -69,8 +69,8 @@ private:
|
||||
|
||||
void _print_dispatch_trace(const std::string& label, const std::string& op_name, const DispatchKeySet& dispatchKeySet) {
|
||||
auto nesting_value = dispatch_trace_nesting_value();
|
||||
for (int64_t i = 0; i < nesting_value; ++i) std::cerr << " ";
|
||||
std::cerr << label << " op=[" << op_name << "], key=[" << toString(dispatchKeySet.highestPriorityTypeId()) << "]" << std::endl;
|
||||
for (int64_t i = 0; i < nesting_value; ++i) std::cerr << ' ';
|
||||
std::cerr << label << " op=[" << op_name << "], key=[" << toString(dispatchKeySet.highestPriorityTypeId()) << ']' << std::endl;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
|
||||
@ -570,7 +570,7 @@ void OperatorEntry::checkInvariants() const {
|
||||
|
||||
std::string OperatorEntry::listAllDispatchKeys() const {
|
||||
std::ostringstream str;
|
||||
str << "[";
|
||||
str << '[';
|
||||
|
||||
bool has_kernels = false;
|
||||
for (auto k : allDispatchKeysInFullSet()) {
|
||||
@ -584,7 +584,7 @@ std::string OperatorEntry::listAllDispatchKeys() const {
|
||||
str << k;
|
||||
has_kernels = true;
|
||||
}
|
||||
str << "]";
|
||||
str << ']';
|
||||
return str.str();
|
||||
}
|
||||
|
||||
@ -683,12 +683,12 @@ void OperatorEntry::setReportErrorCallback_(std::unique_ptr<c10::SafePyObject> c
|
||||
// This WON'T report backend fallbacks.
|
||||
std::string OperatorEntry::dumpState() const {
|
||||
std::ostringstream oss;
|
||||
oss << "name: " << name_ << "\n";
|
||||
oss << "name: " << name_ << '\n';
|
||||
if (schema_) {
|
||||
oss << "schema: " << schema_->schema << "\n";
|
||||
oss << "debug: " << schema_->debug << "\n";
|
||||
oss << "schema: " << schema_->schema << '\n';
|
||||
oss << "debug: " << schema_->debug << '\n';
|
||||
oss << "alias analysis kind: " << toString(schema_->schema.aliasAnalysis())
|
||||
<< (schema_->schema.isDefaultAliasAnalysisKind() ? " (default)" : "") << "\n";
|
||||
<< (schema_->schema.isDefaultAliasAnalysisKind() ? " (default)" : "") << '\n';
|
||||
} else {
|
||||
oss << "schema: (none)\n";
|
||||
}
|
||||
|
||||
@ -7,7 +7,7 @@
|
||||
namespace c10 {
|
||||
|
||||
void FunctionSchema::dump() const {
|
||||
std::cout << *this << "\n";
|
||||
std::cout << *this << '\n';
|
||||
}
|
||||
|
||||
const std::vector<Argument>& FunctionSchema::getCorrectList(SchemaArgType type) const {
|
||||
@ -210,9 +210,9 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
|
||||
out << schema.name();
|
||||
if (!schema.overload_name().empty()) {
|
||||
out << "." << schema.overload_name();
|
||||
out << '.' << schema.overload_name();
|
||||
}
|
||||
out << "(";
|
||||
out << '(';
|
||||
|
||||
bool seen_kwarg_only = false;
|
||||
for (const auto i : c10::irange(schema.arguments().size())) {
|
||||
@ -273,7 +273,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
}
|
||||
|
||||
if (need_paren) {
|
||||
out << "(";
|
||||
out << '(';
|
||||
}
|
||||
for (const auto i : c10::irange(returns.size())) {
|
||||
if (i > 0) {
|
||||
@ -288,7 +288,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
out << "...";
|
||||
}
|
||||
if (need_paren) {
|
||||
out << ")";
|
||||
out << ')';
|
||||
}
|
||||
return out;
|
||||
}
|
||||
@ -471,7 +471,7 @@ bool FunctionSchema::isForwardCompatibleWith(
|
||||
if (!arguments().at(i).isForwardCompatibleWith(old.arguments().at(i))) {
|
||||
if (why_not) {
|
||||
why_not
|
||||
<< "'" << arguments().at(i).name() << "'"
|
||||
<< '\'' << arguments().at(i).name() << '\''
|
||||
<< " is not forward compatible with the older version of the schema";
|
||||
}
|
||||
return false;
|
||||
@ -511,7 +511,7 @@ bool FunctionSchema::isForwardCompatibleWith(
|
||||
.isForwardCompatibleWith(old.arguments().at(i))) {
|
||||
if (why_not) {
|
||||
why_not << "Out argument '"
|
||||
<< "'" << arguments().at(i).name()
|
||||
<< '\'' << arguments().at(i).name()
|
||||
<< " is not FC with the older version of the schema";
|
||||
}
|
||||
return false;
|
||||
|
||||
@ -571,7 +571,7 @@ inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
|
||||
if (arg.N()) {
|
||||
N = std::to_string(*arg.N());
|
||||
}
|
||||
out << "[" << N << "]";
|
||||
out << '[' << N << ']';
|
||||
} else {
|
||||
out << unopt_type->str();
|
||||
}
|
||||
@ -582,15 +582,15 @@ inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
|
||||
}
|
||||
|
||||
if (is_opt) {
|
||||
out << "?";
|
||||
out << '?';
|
||||
}
|
||||
|
||||
if (!arg.name().empty()) {
|
||||
out << " " << arg.name();
|
||||
out << ' ' << arg.name();
|
||||
}
|
||||
|
||||
if (arg.default_value()) {
|
||||
out << "=";
|
||||
out << '=';
|
||||
if ((type->kind() == c10::TypeKind::StringType ||
|
||||
unopt_type->kind() == c10::TypeKind::StringType) &&
|
||||
arg.default_value().value().isString()) {
|
||||
|
||||
@ -66,7 +66,7 @@ bool operator==(const ivalue::Tuple& lhs, const ivalue::Tuple& rhs) {
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const ivalue::EnumHolder& v) {
|
||||
out << v.qualifiedClassName() << "." << v.name();
|
||||
out << v.qualifiedClassName() << '.' << v.name();
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -526,7 +526,7 @@ std::ostream& printMaybeAnnotatedList(
|
||||
!elementTypeCanBeInferredFromMembers(list_elem_type)) {
|
||||
out << "annotate(" << the_list.type<c10::Type>()->annotation_str() << ", ";
|
||||
printList(out, the_list.toListRef(), "[", "]", formatter);
|
||||
out << ")";
|
||||
out << ')';
|
||||
return out;
|
||||
} else {
|
||||
return printList(out, the_list.toListRef(), "[", "]", formatter);
|
||||
@ -538,7 +538,7 @@ std::ostream& printDict(
|
||||
std::ostream& out,
|
||||
const Dict& v,
|
||||
const IValueFormatter& formatter) {
|
||||
out << "{";
|
||||
out << '{';
|
||||
|
||||
bool first = true;
|
||||
for (const auto& pair : v) {
|
||||
@ -552,7 +552,7 @@ std::ostream& printDict(
|
||||
first = false;
|
||||
}
|
||||
|
||||
out << "}";
|
||||
out << '}';
|
||||
return out;
|
||||
}
|
||||
}
|
||||
@ -565,8 +565,8 @@ static std::ostream& printMaybeAnnotatedDict(
|
||||
auto value_type = the_dict.type()->castRaw<DictType>()->getValueType();
|
||||
if (the_dict.toGenericDict().empty() ||
|
||||
!elementTypeCanBeInferredFromMembers(value_type)) {
|
||||
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ",";
|
||||
printDict(out, the_dict.toGenericDict(), formatter) << ")";
|
||||
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ',';
|
||||
printDict(out, the_dict.toGenericDict(), formatter) << ')';
|
||||
} else {
|
||||
return printDict(out, the_dict.toGenericDict(), formatter);
|
||||
}
|
||||
@ -577,7 +577,7 @@ static std::ostream& printComplex(std::ostream & out, const IValue & v) {
|
||||
c10::complex<double> d = v.toComplexDouble();
|
||||
IValue real(d.real()), imag(std::abs(d.imag()));
|
||||
auto sign = d.imag() >= 0 ? '+' : '-';
|
||||
return out << real << sign << imag << "j";
|
||||
return out << real << sign << imag << 'j';
|
||||
}
|
||||
|
||||
std::ostream& IValue::repr(
|
||||
@ -605,9 +605,9 @@ std::ostream& IValue::repr(
|
||||
if (static_cast<double>(i) == d) {
|
||||
// -0.0 (signed zero) needs to be parsed as -0.
|
||||
if (i == 0 && std::signbit(d)) {
|
||||
return out << "-" << i << ".";
|
||||
return out << '-' << i << '.';
|
||||
}
|
||||
return out << i << ".";
|
||||
return out << i << '.';
|
||||
}
|
||||
}
|
||||
auto orig_prec = out.precision();
|
||||
@ -643,20 +643,20 @@ std::ostream& IValue::repr(
|
||||
device_stream << v.toDevice();
|
||||
out << "torch.device(";
|
||||
c10::printQuotedString(out, device_stream.str());
|
||||
return out << ")";
|
||||
return out << ')';
|
||||
}
|
||||
case IValue::Tag::Generator: {
|
||||
auto generator = v.toGenerator();
|
||||
out << "torch.Generator(device=";
|
||||
c10::printQuotedString(out, generator.device().str());
|
||||
out << ", seed=" << generator.current_seed() << ")";
|
||||
out << ", seed=" << generator.current_seed() << ')';
|
||||
return out;
|
||||
}
|
||||
case IValue::Tag::GenericDict:
|
||||
return printMaybeAnnotatedDict(out, v, formatter);
|
||||
case IValue::Tag::Enum: {
|
||||
auto enum_holder = v.toEnumHolder();
|
||||
return out << enum_holder->qualifiedClassName() << "." <<
|
||||
return out << enum_holder->qualifiedClassName() << '.' <<
|
||||
enum_holder->name();
|
||||
}
|
||||
case IValue::Tag::Object: {
|
||||
@ -801,7 +801,7 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
if (c == FP_NORMAL || c == FP_ZERO) {
|
||||
int64_t i = static_cast<int64_t>(d);
|
||||
if (static_cast<double>(i) == d) {
|
||||
return out << i << ".";
|
||||
return out << i << '.';
|
||||
}
|
||||
}
|
||||
auto orig_prec = out.precision();
|
||||
@ -852,7 +852,7 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
return printDict(out, v.toGenericDict(), formatter);
|
||||
case IValue::Tag::PyObject: {
|
||||
auto py_obj = v.toPyObject();
|
||||
return out << "<PyObject at" << py_obj << ">";
|
||||
return out << "<PyObject at" << py_obj << '>';
|
||||
}
|
||||
case IValue::Tag::Generator:
|
||||
return out << "Generator";
|
||||
@ -862,22 +862,22 @@ std::ostream& operator<<(std::ostream & out, const IValue & v) {
|
||||
// TODO we should attempt to call __str__ if the object defines it.
|
||||
auto obj = v.toObject();
|
||||
// print this out the way python would do it
|
||||
return out << "<" << obj->name() << " object at " << obj.get() << ">";
|
||||
return out << '<' << obj->name() << " object at " << obj.get() << '>';
|
||||
}
|
||||
case IValue::Tag::Enum: {
|
||||
auto enum_holder = v.toEnumHolder();
|
||||
return out << "Enum<" << enum_holder->unqualifiedClassName() << "." <<
|
||||
enum_holder->name() << ">";
|
||||
return out << "Enum<" << enum_holder->unqualifiedClassName() << '.' <<
|
||||
enum_holder->name() << '>';
|
||||
}
|
||||
|
||||
}
|
||||
return out << "<Invalid IValue tag=" << std::to_string(static_cast<uint32_t>(v.tag)) << ">";
|
||||
return out << "<Invalid IValue tag=" << std::to_string(static_cast<uint32_t>(v.tag)) << '>';
|
||||
}
|
||||
|
||||
#undef TORCH_FORALL_TAGS
|
||||
|
||||
void IValue::dump() const {
|
||||
std::cout << *this << "\n";
|
||||
std::cout << *this << '\n';
|
||||
}
|
||||
|
||||
std::shared_ptr<ClassType> ivalue::Object::type() const {
|
||||
@ -1050,7 +1050,7 @@ c10::intrusive_ptr<ivalue::Object> ivalue::Object::deepcopy(
|
||||
std::stringstream err;
|
||||
err << "Cannot serialize custom bound C++ class";
|
||||
if (auto qualname = type()->name()) {
|
||||
err << " " << qualname->qualifiedName();
|
||||
err << ' ' << qualname->qualifiedName();
|
||||
}
|
||||
err << ". Please define serialization methods via def_pickle() for "
|
||||
"this class.";
|
||||
|
||||
@ -211,7 +211,7 @@ struct TORCH_API OptionalType : public UnionType {
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << getElementType()->str() << "?";
|
||||
ss << getElementType()->str() << '?';
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -240,7 +240,7 @@ struct TORCH_API OptionalType : public UnionType {
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "Optional[" << getElementType()->annotation_str(printer) << "]";
|
||||
ss << "Optional[" << getElementType()->annotation_str(printer) << ']';
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -906,7 +906,7 @@ struct TORCH_API ListType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "List[" << getElementType()->annotation_str(printer) << "]";
|
||||
ss << "List[" << getElementType()->annotation_str(printer) << ']';
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -946,7 +946,7 @@ struct TORCH_API DictType : public SharedType {
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "Dict(" << getKeyType()->str() << ", " << getValueType()->str()
|
||||
<< ")";
|
||||
<< ')';
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -1018,7 +1018,7 @@ struct TORCH_API FutureType
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "Future(" << getElementType()->str() << ")";
|
||||
ss << "Future(" << getElementType()->str() << ')';
|
||||
return ss.str();
|
||||
}
|
||||
TypePtr createWithContained(
|
||||
@ -1041,7 +1041,7 @@ struct TORCH_API FutureType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "Future[" << getElementType()->annotation_str(printer) << "]";
|
||||
ss << "Future[" << getElementType()->annotation_str(printer) << ']';
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -1060,7 +1060,7 @@ struct TORCH_API AwaitType
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "Await(" << getElementType()->str() << ")";
|
||||
ss << "Await(" << getElementType()->str() << ')';
|
||||
return ss.str();
|
||||
}
|
||||
TypePtr createWithContained(
|
||||
@ -1083,7 +1083,7 @@ struct TORCH_API AwaitType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "Await[" << getElementType()->annotation_str(printer) << "]";
|
||||
ss << "Await[" << getElementType()->annotation_str(printer) << ']';
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
@ -1102,7 +1102,7 @@ struct TORCH_API RRefType
|
||||
|
||||
std::string str() const override {
|
||||
std::stringstream ss;
|
||||
ss << "RRef(" << getElementType()->str() << ")";
|
||||
ss << "RRef(" << getElementType()->str() << ')';
|
||||
return ss.str();
|
||||
}
|
||||
TypePtr createWithContained(
|
||||
@ -1115,7 +1115,7 @@ struct TORCH_API RRefType
|
||||
|
||||
std::string annotation_str_impl(const TypePrinter& printer = nullptr) const override {
|
||||
std::stringstream ss;
|
||||
ss << "RRef[" << getElementType()->annotation_str(printer) << "]";
|
||||
ss << "RRef[" << getElementType()->annotation_str(printer) << ']';
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
||||
@ -11,7 +11,7 @@ std::string toString(const OperatorName& opName) {
|
||||
std::ostream& operator<<(std::ostream& os, const OperatorName& opName) {
|
||||
os << opName.name;
|
||||
if (!opName.overload_name.empty()) {
|
||||
os << "." << opName.overload_name;
|
||||
os << '.' << opName.overload_name;
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -65,7 +65,7 @@ VaryingShape<T> VaryingShape<T>::merge(const VaryingShape<T>& other) const {
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& out, const VaryingShape<T>& vs) {
|
||||
out << "(";
|
||||
out << '(';
|
||||
if (!vs.size()) {
|
||||
out << "*)";
|
||||
return out;
|
||||
@ -79,10 +79,10 @@ std::ostream& operator<<(std::ostream& out, const VaryingShape<T>& vs) {
|
||||
if (v.has_value()) {
|
||||
out << v.value();
|
||||
} else {
|
||||
out << "*";
|
||||
out << '*';
|
||||
}
|
||||
}
|
||||
out << ")";
|
||||
out << ')';
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -105,7 +105,7 @@ std::ostream& operator<<(
|
||||
}
|
||||
auto sizes_opt = ss.sizes();
|
||||
|
||||
os << "(";
|
||||
os << '(';
|
||||
for (size_t i = 0; i < rank_opt.value(); i++) {
|
||||
if (i > 0) {
|
||||
os << ", ";
|
||||
@ -113,10 +113,10 @@ std::ostream& operator<<(
|
||||
if(sizes_opt.has_value() && sizes_opt.value()[i].is_static()) {
|
||||
os << sizes_opt.value()[i];
|
||||
} else {
|
||||
os << "*";
|
||||
os << '*';
|
||||
}
|
||||
}
|
||||
os << ")";
|
||||
os << ')';
|
||||
|
||||
return os;
|
||||
}
|
||||
@ -131,17 +131,17 @@ std::ostream& operator<<(std::ostream& os, const ShapeSymbol& s) {
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const Stride& s) {
|
||||
os << "{";
|
||||
os << '{';
|
||||
if (s.stride_index_.has_value()) {
|
||||
os << *s.stride_index_;
|
||||
} else {
|
||||
os << "*";
|
||||
os << '*';
|
||||
}
|
||||
os << ":";
|
||||
os << ':';
|
||||
if (s.stride_.has_value()) {
|
||||
os << *s.stride_;
|
||||
} else {
|
||||
os << "*";
|
||||
os << '*';
|
||||
}
|
||||
os << '}';
|
||||
return os;
|
||||
|
||||
@ -67,7 +67,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
bool has_valid_strides_info = ndim > 0 &&
|
||||
value->strides().isComplete() && value->strides().size() == ndim;
|
||||
|
||||
out << "(";
|
||||
out << '(';
|
||||
size_t i = 0;
|
||||
bool symbolic = type_verbosity() == TypeVerbosity::Symbolic;
|
||||
for (i = 0; i < *ndim; ++i) {
|
||||
@ -79,7 +79,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
} else if (symbolic) {
|
||||
out << value->symbolic_sizes().at(i);
|
||||
} else {
|
||||
out << "*";
|
||||
out << '*';
|
||||
}
|
||||
}
|
||||
if (has_valid_strides_info &&
|
||||
@ -91,7 +91,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
}
|
||||
out << value->strides()[i].value();
|
||||
}
|
||||
out << "]";
|
||||
out << ']';
|
||||
}
|
||||
if (type_verbosity() >= TypeVerbosity::Full) {
|
||||
if (value->requiresGrad()) {
|
||||
@ -107,12 +107,12 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << "device=" << *value->device();
|
||||
}
|
||||
}
|
||||
out << ")";
|
||||
out << ')';
|
||||
} else {
|
||||
if (type_verbosity() >= TypeVerbosity::Full) {
|
||||
size_t i = 0;
|
||||
if (value->requiresGrad()) {
|
||||
out << "("
|
||||
out << '('
|
||||
<< "requires_grad=" << *value->requiresGrad();
|
||||
i++;
|
||||
}
|
||||
@ -120,7 +120,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << ((i++ > 0) ? ", " : "(") << "device=" << *value->device();
|
||||
}
|
||||
if (i > 0) {
|
||||
out << ")";
|
||||
out << ')';
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -133,18 +133,18 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << *prim << "[]";
|
||||
} else if (t.kind() == TypeKind::OptionalType) {
|
||||
auto prim = t.castRaw<OptionalType>()->getElementType();
|
||||
out << *prim << "?";
|
||||
out << *prim << '?';
|
||||
} else if(t.kind() == TypeKind::FutureType) {
|
||||
auto elem = t.castRaw<FutureType>()->getElementType();
|
||||
out << "Future[" << *elem << "]";
|
||||
out << "Future[" << *elem << ']';
|
||||
} else if(t.kind() == TypeKind::RRefType) {
|
||||
auto elem = t.castRaw<RRefType>()->getElementType();
|
||||
out << "RRef[" << *elem << "]";
|
||||
out << "RRef[" << *elem << ']';
|
||||
} else if(auto tup = t.cast<TupleType>()) {
|
||||
if (tup->schema()) {
|
||||
out << "NamedTuple";
|
||||
}
|
||||
out << "(";
|
||||
out << '(';
|
||||
for(size_t i = 0; i < tup->elements().size(); ++i) {
|
||||
if(i > 0)
|
||||
out << ", ";
|
||||
@ -160,7 +160,7 @@ std::ostream& operator<<(std::ostream & out, const Type & t) {
|
||||
out << *(tup->elements()[i]);
|
||||
}
|
||||
}
|
||||
out << ")";
|
||||
out << ')';
|
||||
} else if (t.kind() == TypeKind::FunctionType) {
|
||||
out << "Function";
|
||||
} else {
|
||||
@ -475,7 +475,7 @@ std::optional<TypePtr> unifyTypeList(
|
||||
why_not << "Could not unify type list since element " << i << " of type "
|
||||
<< elements.at(i)->repr_str()
|
||||
<< " did not match the types before it ("
|
||||
<< ret_type->repr_str() << ")";
|
||||
<< ret_type->repr_str() << ')';
|
||||
return std::nullopt;
|
||||
}
|
||||
ret_type = *maybe_unified;
|
||||
@ -907,13 +907,13 @@ std::string TupleType::str() const {
|
||||
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
|
||||
ss << name()->qualifiedName();
|
||||
} else {
|
||||
ss << "(";
|
||||
ss << '(';
|
||||
for(size_t i = 0; i < elements().size(); ++i) {
|
||||
if(i > 0)
|
||||
ss << ", ";
|
||||
ss << elements()[i]->str();
|
||||
}
|
||||
ss << ")";
|
||||
ss << ')';
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
@ -1003,8 +1003,8 @@ bool InterfaceType::isSubTypeImpl(
|
||||
*why_not << "Method on interface '" << lhs.repr_str()
|
||||
<< "' (1) is not compatible with interface '"
|
||||
<< rhs.repr_str() << "' (2)\n"
|
||||
<< " (1) " << *self_schema << "\n"
|
||||
<< " (2) " << schema << "\n";
|
||||
<< " (1) " << *self_schema << '\n'
|
||||
<< " (2) " << schema << '\n';
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
@ -1078,7 +1078,7 @@ SymbolicShape SymbolicShape::merge(const SymbolicShape& other) const {
|
||||
}
|
||||
|
||||
void SymbolicShape::dump() const {
|
||||
std::cout << *this << "\n";
|
||||
std::cout << *this << '\n';
|
||||
}
|
||||
|
||||
bool EnumType::isSubtypeOfExt(const Type& rhs, std::ostream* why_not) const {
|
||||
|
||||
@ -205,9 +205,9 @@ UnionType::UnionType(std::vector<TypePtr> reference, TypeKind kind) : SharedType
|
||||
for (const auto i : c10::irange(reference.size())) {
|
||||
msg << reference[i]->repr_str();
|
||||
if (i > 0) {
|
||||
msg << ",";
|
||||
msg << ',';
|
||||
}
|
||||
msg << " ";
|
||||
msg << ' ';
|
||||
}
|
||||
msg << "} has the single type " << types_[0]->repr_str()
|
||||
<< ". Use the common supertype instead of creating a Union"
|
||||
|
||||
@ -80,7 +80,7 @@ std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
stream << ']';
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -55,7 +55,7 @@ std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
stream << ']';
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -411,16 +411,16 @@ std::string CUDAHooks::showConfig() const {
|
||||
// HIP_VERSION value format was changed after ROCm v4.2 to include the patch number
|
||||
if(v < 500) {
|
||||
// If major=xx, minor=yy then format -> xxyy
|
||||
oss << (v / 100) << "." << (v % 10);
|
||||
oss << (v / 100) << '.' << (v % 10);
|
||||
}
|
||||
else {
|
||||
// If major=xx, minor=yy & patch=zzzzz then format -> xxyyzzzzz
|
||||
oss << (v / 10000000) << "." << (v / 100000 % 100) << "." << (v % 100000);
|
||||
oss << (v / 10000000) << '.' << (v / 100000 % 100) << '.' << (v % 100000);
|
||||
}
|
||||
#else
|
||||
oss << (v / 1000) << "." << (v / 10 % 100);
|
||||
oss << (v / 1000) << '.' << (v / 10 % 100);
|
||||
if (v % 10 != 0) {
|
||||
oss << "." << (v % 10);
|
||||
oss << '.' << (v % 10);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
@ -431,16 +431,16 @@ std::string CUDAHooks::showConfig() const {
|
||||
oss << " - HIP Runtime ";
|
||||
#endif
|
||||
printCudaStyleVersion(runtimeVersion);
|
||||
oss << "\n";
|
||||
oss << '\n';
|
||||
|
||||
// TODO: Make HIPIFY understand CUDART_VERSION macro
|
||||
#if !defined(USE_ROCM)
|
||||
if (runtimeVersion != CUDART_VERSION) {
|
||||
oss << " - Built with CUDA Runtime ";
|
||||
printCudaStyleVersion(CUDART_VERSION);
|
||||
oss << "\n";
|
||||
oss << '\n';
|
||||
}
|
||||
oss << " - NVCC architecture flags: " << NVCC_FLAGS_EXTRA << "\n";
|
||||
oss << " - NVCC architecture flags: " << NVCC_FLAGS_EXTRA << '\n';
|
||||
#endif
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
@ -448,9 +448,9 @@ std::string CUDAHooks::showConfig() const {
|
||||
|
||||
|
||||
auto printCudnnStyleVersion = [&](size_t v) {
|
||||
oss << (v / 1000) << "." << (v / 100 % 10);
|
||||
oss << (v / 1000) << '.' << (v / 100 % 10);
|
||||
if (v % 100 != 0) {
|
||||
oss << "." << (v % 100);
|
||||
oss << '.' << (v % 100);
|
||||
}
|
||||
};
|
||||
|
||||
@ -461,22 +461,22 @@ std::string CUDAHooks::showConfig() const {
|
||||
if (cudnnCudartVersion != CUDART_VERSION) {
|
||||
oss << " (built against CUDA ";
|
||||
printCudaStyleVersion(cudnnCudartVersion);
|
||||
oss << ")";
|
||||
oss << ')';
|
||||
}
|
||||
oss << "\n";
|
||||
oss << '\n';
|
||||
if (cudnnVersion != CUDNN_VERSION) {
|
||||
oss << " - Built with CuDNN ";
|
||||
printCudnnStyleVersion(CUDNN_VERSION);
|
||||
oss << "\n";
|
||||
oss << '\n';
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// TODO: Check if miopen has the functions above and unify
|
||||
oss << " - MIOpen " << MIOPEN_VERSION_MAJOR << "." << MIOPEN_VERSION_MINOR << "." << MIOPEN_VERSION_PATCH << "\n";
|
||||
oss << " - MIOpen " << MIOPEN_VERSION_MAJOR << '.' << MIOPEN_VERSION_MINOR << '.' << MIOPEN_VERSION_PATCH << '\n';
|
||||
#endif
|
||||
|
||||
#if AT_MAGMA_ENABLED()
|
||||
oss << " - Magma " << MAGMA_VERSION_MAJOR << "." << MAGMA_VERSION_MINOR << "." << MAGMA_VERSION_MICRO << "\n";
|
||||
oss << " - Magma " << MAGMA_VERSION_MAJOR << '.' << MAGMA_VERSION_MINOR << '.' << MAGMA_VERSION_MICRO << '\n';
|
||||
#endif
|
||||
|
||||
return oss.str();
|
||||
|
||||
@ -42,7 +42,7 @@ static inline void launch_jitted_vectorized_kernel_dynamic(
|
||||
|
||||
// The cache key includes all the parameters to generate_code + vec_size + dev_idx
|
||||
std::stringstream ss;
|
||||
ss << nInputs << "_" << nOutputs << f;
|
||||
ss << nInputs << '_' << nOutputs << f;
|
||||
ss << f_inputs_type_str << compute_type_str << result_type_str;
|
||||
ss << static_cast<int>(at::cuda::jit::BinaryFuncVariant::NoScalar);
|
||||
ss << extra_args_types;
|
||||
@ -144,7 +144,7 @@ static inline void launch_jitted_unrolled_kernel_dynamic(
|
||||
|
||||
// The cache key includes all the parameters to generate_code + dev_idx
|
||||
std::stringstream ss;
|
||||
ss << nInputs << "_" << nOutputs << f;
|
||||
ss << nInputs << '_' << nOutputs << f;
|
||||
ss << f_inputs_type_str << compute_type_str << result_type_str;
|
||||
ss << contiguous << dynamic_casting;
|
||||
ss << static_cast<int>(at::cuda::jit::BinaryFuncVariant::NoScalar);
|
||||
|
||||
@ -52,10 +52,10 @@ TuningContext* getTuningContext() {
|
||||
std::ostream& operator<<(std::ostream& stream, const ResultEntry& entry) {
|
||||
static const bool blaslog = c10::utils::get_env("PYTORCH_TUNABLEOP_BLAS_LOG") == "1";
|
||||
if (!blaslog) {
|
||||
return stream << entry.key_ << "," << entry.time_;
|
||||
return stream << entry.key_ << ',' << entry.time_;
|
||||
}
|
||||
else {
|
||||
return stream << entry.key_ << "," << entry.time_ << ",BLAS_PARAMS: " << entry.blas_sig_;
|
||||
return stream << entry.key_ << ',' << entry.time_ << ",BLAS_PARAMS: " << entry.blas_sig_;
|
||||
}
|
||||
}
|
||||
|
||||
@ -156,10 +156,10 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std
|
||||
if (isNew) {
|
||||
static const bool blaslog = c10::utils::get_env("PYTORCH_TUNABLEOP_BLAS_LOG") == "1";
|
||||
if (!blaslog) {
|
||||
untuned_file << op_signature << "," << params_signature << std::endl;
|
||||
untuned_file << op_signature << ',' << params_signature << std::endl;
|
||||
}
|
||||
else {
|
||||
untuned_file << op_signature << "," << params_signature << ",BLAS_PARAMS: " << blas_signature << std::endl;
|
||||
untuned_file << op_signature << ',' << params_signature << ",BLAS_PARAMS: " << blas_signature << std::endl;
|
||||
}
|
||||
TUNABLE_LOG3("Untuned,", op_signature, ",", params_signature);
|
||||
}
|
||||
@ -201,7 +201,7 @@ void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const
|
||||
|
||||
if(!file_exists || file_empty) {
|
||||
for(const auto& [key, val] : validators) {
|
||||
(*realtime_out_) << "Validator," << key << "," << val << std::endl;
|
||||
(*realtime_out_) << "Validator," << key << ',' << val << std::endl;
|
||||
realtime_out_->flush();
|
||||
}
|
||||
validators_written_ = true;
|
||||
@ -219,7 +219,7 @@ void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std
|
||||
return;
|
||||
}
|
||||
|
||||
(*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl;
|
||||
(*realtime_out_) << op_sig << ',' << param_sig << ',' << result << std::endl;
|
||||
realtime_out_->flush(); //ensure immediate write to disk
|
||||
|
||||
TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result);
|
||||
|
||||
@ -93,31 +93,31 @@ std::string cudnnTypeToString(cudnnDataType_t dtype) {
|
||||
return "CUDNN_DATA_UINT8x4";
|
||||
default:
|
||||
std::ostringstream oss;
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ")";
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ')';
|
||||
return oss.str();
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << '\n';
|
||||
int nbDims = 0;
|
||||
int dimA[CUDNN_DIM_MAX];
|
||||
int strideA[CUDNN_DIM_MAX];
|
||||
cudnnDataType_t dtype{};
|
||||
cudnnGetTensorNdDescriptor(d.desc(), CUDNN_DIM_MAX, &dtype, &nbDims, dimA, strideA);
|
||||
out << " type = " << cudnnTypeToString(dtype) << "\n";
|
||||
out << " nbDims = " << nbDims << "\n";
|
||||
out << " type = " << cudnnTypeToString(dtype) << '\n';
|
||||
out << " nbDims = " << nbDims << '\n';
|
||||
// Read out only nbDims of the arrays!
|
||||
out << " dimA = ";
|
||||
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << "\n";
|
||||
out << '\n';
|
||||
out << " strideA = ";
|
||||
for (auto i : ArrayRef<int>{strideA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << "\n";
|
||||
out << '\n';
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -168,27 +168,27 @@ std::string cudnnMemoryFormatToString(cudnnTensorFormat_t tformat) {
|
||||
return "CUDNN_TENSOR_NHWC";
|
||||
default:
|
||||
std::ostringstream oss;
|
||||
oss << "(unknown cudnn tensor format " << static_cast<int>(tformat) << ")";
|
||||
oss << "(unknown cudnn tensor format " << static_cast<int>(tformat) << ')';
|
||||
return oss.str();
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, const FilterDescriptor& d) {
|
||||
out << "FilterDescriptor " << static_cast<void*>(d.desc()) << "\n";
|
||||
out << "FilterDescriptor " << static_cast<void*>(d.desc()) << '\n';
|
||||
int nbDims = 0;
|
||||
int dimA[CUDNN_DIM_MAX];
|
||||
cudnnDataType_t dtype{};
|
||||
cudnnTensorFormat_t tformat{};
|
||||
cudnnGetFilterNdDescriptor(d.desc(), CUDNN_DIM_MAX, &dtype, &tformat, &nbDims, dimA);
|
||||
out << " type = " << cudnnTypeToString(dtype) << "\n";
|
||||
out << " tensor_format = " << cudnnMemoryFormatToString(tformat) << "\n";
|
||||
out << " nbDims = " << nbDims << "\n";
|
||||
out << " type = " << cudnnTypeToString(dtype) << '\n';
|
||||
out << " tensor_format = " << cudnnMemoryFormatToString(tformat) << '\n';
|
||||
out << " nbDims = " << nbDims << '\n';
|
||||
// Read out only nbDims of the arrays!
|
||||
out << " dimA = ";
|
||||
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << "\n";
|
||||
out << '\n';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -346,15 +346,15 @@ void foreachTensorInplaceWithFlag(std::vector<IValue>& args, int64_t begin, int6
|
||||
}
|
||||
|
||||
std::ostream& operator<< (std::ostream& os, const DynamicLayer& layer) {
|
||||
os << layer.layerId() << ":" << layer.key();
|
||||
os << layer.layerId() << ':' << layer.key();
|
||||
return os;
|
||||
}
|
||||
std::ostream& operator<< (std::ostream& os, const std::vector<DynamicLayer>& dls) {
|
||||
os << "DynamicLayerStack[ ";
|
||||
for (const auto& layer : dls) {
|
||||
os << layer << " ";
|
||||
os << layer << ' ';
|
||||
}
|
||||
os << "]";
|
||||
os << ']';
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ void dumpTensor(std::ostream& ss, const Tensor& tensor) {
|
||||
if (batched) {
|
||||
ss << "Batched[lvl=" << batched->level() << " dim=" << batched->bdim() << ", ";
|
||||
dumpTensor(ss, batched->value());
|
||||
ss << "]";
|
||||
ss << ']';
|
||||
return;
|
||||
}
|
||||
ss << "Tensor" << tensor.sizes();
|
||||
@ -36,7 +36,7 @@ void dumpTensor(std::ostream& ss, const Tensor& tensor) {
|
||||
ss << "dead, ";
|
||||
}
|
||||
dumpTensor(ss, wrapped->value());
|
||||
ss << "]";
|
||||
ss << ']';
|
||||
}
|
||||
|
||||
void TensorWrapper::refreshMetadata() {
|
||||
|
||||
@ -73,32 +73,32 @@ std::string miopenTypeToString(miopenDataType_t dtype) {
|
||||
return "miopenBFloat16";
|
||||
default:
|
||||
std::ostringstream oss;
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ")";
|
||||
oss << "(unknown data-type " << static_cast<int>(dtype) << ')';
|
||||
return oss.str();
|
||||
}
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d) {
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << "\n";
|
||||
out << "TensorDescriptor " << static_cast<void*>(d.desc()) << '\n';
|
||||
int nbDims = 0;
|
||||
int dimA[MIOPEN_DIM_MAX];
|
||||
int strideA[MIOPEN_DIM_MAX];
|
||||
miopenDataType_t dtype;
|
||||
miopenGetTensorDescriptorSize(d.desc(), &nbDims);
|
||||
miopenGetTensorDescriptor(d.desc(), &dtype, dimA, strideA);
|
||||
out << " type = " << miopenTypeToString(dtype) << "\n";
|
||||
out << " nbDims = " << nbDims << "\n";
|
||||
out << " type = " << miopenTypeToString(dtype) << '\n';
|
||||
out << " nbDims = " << nbDims << '\n';
|
||||
// Read out only nbDims of the arrays!
|
||||
out << " dimA = ";
|
||||
for (auto i : ArrayRef<int>{dimA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << "\n";
|
||||
out << '\n';
|
||||
out << " strideA = ";
|
||||
for (auto i : ArrayRef<int>{strideA, static_cast<size_t>(nbDims)}) {
|
||||
out << i << ", ";
|
||||
}
|
||||
out << "\n";
|
||||
out << '\n';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -91,7 +91,7 @@ struct OperationInfo : BaseInfo {
|
||||
std::stringstream kernelStr;
|
||||
kernelStr << kernelName;
|
||||
for (const Tensor& tensor : tensors) {
|
||||
kernelStr << ":" << BaseInfo::buildTensorString(tensor, includeBufferId);
|
||||
kernelStr << ':' << BaseInfo::buildTensorString(tensor, includeBufferId);
|
||||
}
|
||||
return kernelStr.str();
|
||||
}
|
||||
|
||||
@ -39,9 +39,9 @@ std::string BaseInfo::buildTensorString(const Tensor& tensor, bool includeBuffer
|
||||
// see comments for INCLUDE_BUFFER_ID
|
||||
if (includeBufferId && deviceType == at::kMPS) {
|
||||
id<MTLBuffer> buffer = __builtin_bit_cast(id<MTLBuffer>, tensor.storage().data());
|
||||
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer)) << ":" << buffer.retainCount << ")";
|
||||
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer)) << ':' << buffer.retainCount << ')';
|
||||
}
|
||||
tensorStr << ":" << tensor.scalar_type() << tensor.sizes();
|
||||
tensorStr << ':' << tensor.scalar_type() << tensor.sizes();
|
||||
return tensorStr.str();
|
||||
} else {
|
||||
return "undefined";
|
||||
|
||||
@ -167,7 +167,7 @@ static void check_args(CheckedFrom c, IntArrayRef args, size_t expected_size, co
|
||||
std::stringstream ss;
|
||||
ss << arg_name << " should be greater than zero but got (";
|
||||
std::copy(args.begin(), args.end() - 1, std::ostream_iterator<int>(ss,", "));
|
||||
ss << args.back() << ")" << " (while checking arguments for " << c << ")";
|
||||
ss << args.back() << ")" << " (while checking arguments for " << c << ')';
|
||||
TORCH_CHECK(false, ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
@ -639,7 +639,7 @@ static std::ostream& operator<<(std::ostream & out, const ConvParams<T>& params)
|
||||
<< " deterministic = " << params.deterministic
|
||||
<< " cudnn_enabled = " << params.cudnn_enabled
|
||||
<< " allow_tf32 = " << params.allow_tf32
|
||||
<< "}";
|
||||
<< '}';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -847,7 +847,7 @@ Tensor stft(const Tensor& self, const int64_t n_fft, const std::optional<int64_t
|
||||
<< ", hop_length=" << hop_length << ", win_length=" << win_length \
|
||||
<< ", window="; \
|
||||
if (window.defined()) { \
|
||||
SS << window.toString() << "{" << window.sizes() << "}"; \
|
||||
SS << window.toString() << '{' << window.sizes() << '}'; \
|
||||
} else { \
|
||||
SS << "None"; \
|
||||
} \
|
||||
@ -1046,7 +1046,7 @@ Tensor istft(const Tensor& self, const int64_t n_fft, const std::optional<int64_
|
||||
<< ", hop_length=" << hop_length << ", win_length=" << win_length \
|
||||
<< ", window="; \
|
||||
if (window.defined()) { \
|
||||
SS << window.toString() << "{" << window.sizes() << "}"; \
|
||||
SS << window.toString() << '{' << window.sizes() << '}'; \
|
||||
} else { \
|
||||
SS << "None"; \
|
||||
} \
|
||||
|
||||
@ -523,7 +523,7 @@ Tensor _functional_assert_async_msg_cpu(
|
||||
}
|
||||
|
||||
void _print(std::string_view s) {
|
||||
std::cout << s << "\n";
|
||||
std::cout << s << '\n';
|
||||
}
|
||||
|
||||
// Sorting-based algorithm for isin(); used when the number of test elements is
|
||||
|
||||
@ -607,6 +607,8 @@ _scaled_grouped_mm_cuda_v2(
|
||||
// scale shape checks
|
||||
_check_scales_blocked(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
|
||||
_check_scales_blocked(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */);
|
||||
// swizze checks
|
||||
TORCH_CHECK_VALUE(swizzle_a_enum.size() == 1 && swizzle_b_enum.size() == 1, "Expected single swizzle argument");
|
||||
return _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
mat_a,
|
||||
mat_b,
|
||||
|
||||
@ -5,11 +5,69 @@
|
||||
#include <cuda_bf16.h>
|
||||
#endif
|
||||
|
||||
// ROCm 6.3 is planned to have these functions, but until then here they are.
|
||||
#if defined(USE_ROCM)
|
||||
#include <device_functions.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
#define ATOMICADD unsafeAtomicAdd
|
||||
|
||||
__device__ inline __hip_bfloat162 preview_unsafeAtomicAdd(__hip_bfloat162* address, __hip_bfloat162 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2bf16)
|
||||
typedef unsigned short __attribute__((ext_vector_type(2))) vec_short2;
|
||||
static_assert(sizeof(vec_short2) == sizeof(__hip_bfloat162_raw));
|
||||
union {
|
||||
__hip_bfloat162_raw bf162_raw;
|
||||
vec_short2 vs2;
|
||||
} u{static_cast<__hip_bfloat162_raw>(value)};
|
||||
u.vs2 = __builtin_amdgcn_flat_atomic_fadd_v2bf16((vec_short2*)address, u.vs2);
|
||||
return static_cast<__hip_bfloat162>(u.bf162_raw);
|
||||
#else
|
||||
static_assert(sizeof(unsigned int) == sizeof(__hip_bfloat162_raw));
|
||||
union u_hold {
|
||||
__hip_bfloat162_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
|
||||
__device__ inline __half2 preview_unsafeAtomicAdd(__half2* address, __half2 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2f16)
|
||||
// The api expects an ext_vector_type of half
|
||||
typedef _Float16 __attribute__((ext_vector_type(2))) vec_fp162;
|
||||
static_assert(sizeof(vec_fp162) == sizeof(__half2_raw));
|
||||
union {
|
||||
__half2_raw h2r;
|
||||
vec_fp162 fp16;
|
||||
} u {static_cast<__half2_raw>(value)};
|
||||
u.fp16 = __builtin_amdgcn_flat_atomic_fadd_v2f16((vec_fp162*)address, u.fp16);
|
||||
return static_cast<__half2>(u.h2r);
|
||||
#else
|
||||
static_assert(sizeof(__half2_raw) == sizeof(unsigned int));
|
||||
union u_hold {
|
||||
__half2_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
#define ATOMICADD preview_unsafeAtomicAdd
|
||||
#define NATIVE_ZERO_BF16 __float2bfloat16(0.0f)
|
||||
#else
|
||||
#define ATOMICADD atomicAdd
|
||||
|
||||
@ -11,7 +11,7 @@ static inline std::ostream& operator<<(std::ostream& out, dim3 dim) {
|
||||
if (dim.y == 1 && dim.z == 1) {
|
||||
out << dim.x;
|
||||
} else {
|
||||
out << "[" << dim.x << "," << dim.y << "," << dim.z << "]";
|
||||
out << '[' << dim.x << ',' << dim.y << ',' << dim.z << ']';
|
||||
}
|
||||
return out;
|
||||
}
|
||||
@ -27,7 +27,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
|
||||
out << "input_mult=[";
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (i != 0) {
|
||||
out << ",";
|
||||
out << ',';
|
||||
}
|
||||
out << config.input_mult[i];
|
||||
}
|
||||
@ -35,7 +35,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
|
||||
out << "output_mult=[";
|
||||
for (int i = 0; i < 2; i++) {
|
||||
if (i != 0) {
|
||||
out << ",";
|
||||
out << ',';
|
||||
}
|
||||
out << config.output_mult[i];
|
||||
}
|
||||
@ -49,7 +49,7 @@ std::ostream& operator<<(std::ostream& out, const ReduceConfig& config) {
|
||||
out << "block=" << config.block() << ", ";
|
||||
out << "grid=" << config.grid() << ", ";
|
||||
out << "global_memory_size=" << config.global_memory_size();
|
||||
out << ")";
|
||||
out << ')';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -364,9 +364,9 @@ void f8f8bf16_grouped_gemm_impl_sm90(
|
||||
// reinterpret_cast<ProblemShape::UnderlyingProblemShape*>(
|
||||
// stride_output_h + group_count);
|
||||
|
||||
// std::cout << "PTRS " << mat_a.data_ptr() << " " << mat_b.data_ptr() << "
|
||||
// std::cout << "PTRS " << mat_a.data_ptr() << ' ' << mat_b.data_ptr() << "
|
||||
// "
|
||||
// << out.data_ptr() << " " << scale_a.data_ptr() << " "
|
||||
// << out.data_ptr() << ' ' << scale_a.data_ptr() << ' '
|
||||
// << scale_b.data_ptr() << "\n";
|
||||
// for (int i = 0; i < group_count; i++) {
|
||||
// std::cout << "A " << (void*)inputA_ptrs_h[i] << "\n";
|
||||
|
||||
@ -1057,14 +1057,14 @@ std::string generate_code(
|
||||
// TODO these arrays are potentially of the different types, use function
|
||||
// traits to determine the types
|
||||
declare_load_arrays << f_inputs_type << " arg" << std::to_string(i)
|
||||
<< "[" << std::to_string(thread_work_size) << "];\n";
|
||||
<< '[' << std::to_string(thread_work_size) << "];\n";
|
||||
}
|
||||
env.s("declare_load_arrays", declare_load_arrays.str());
|
||||
|
||||
std::stringstream declare_store_arrays;
|
||||
for (int i = 0; i < nOutputs; i++) {
|
||||
declare_store_arrays << result_type << " out" << std::to_string(i)
|
||||
<< "[" << std::to_string(thread_work_size) << "];\n";
|
||||
<< '[' << std::to_string(thread_work_size) << "];\n";
|
||||
}
|
||||
env.s("declare_store_arrays", declare_store_arrays.str());
|
||||
|
||||
@ -1217,7 +1217,7 @@ std::string generate_code(
|
||||
for (const auto i : c10::irange(nInputs)){
|
||||
auto i_string = std::to_string(i);
|
||||
vector_inputs << "auto * input" << i_string <<
|
||||
" = reinterpret_cast<const scalar_t*>(data[" << i_string << "+" << nOutputs << "])" <<
|
||||
" = reinterpret_cast<const scalar_t*>(data[" << i_string << '+' << nOutputs << "])" <<
|
||||
" + block_work_size * idx;\n";
|
||||
}
|
||||
env.s("vector_inputs", vector_inputs.str());
|
||||
@ -1543,17 +1543,17 @@ NvrtcFunction jit_pwise_function(
|
||||
|
||||
// Constructs file path by appending constructed cubin name to cache path
|
||||
std::stringstream ss;
|
||||
ss << *cache_dir << "/";
|
||||
ss << *cache_dir << '/';
|
||||
ss << kernel_name;
|
||||
#ifdef USE_ROCM
|
||||
ss << "_arch" << prop->gcnArchName;
|
||||
#else
|
||||
ss << "_arch" << cuda_major << "." << cuda_minor;
|
||||
ss << "_arch" << cuda_major << '.' << cuda_minor;
|
||||
#endif
|
||||
ss << "_nvrtc" << nvrtc_major << "." << nvrtc_minor;
|
||||
ss << "_nvrtc" << nvrtc_major << '.' << nvrtc_minor;
|
||||
ss << (compile_to_sass ? "_sass" : "_ptx");
|
||||
ss << "_" << code.length();
|
||||
ss << "_" << hash_code;
|
||||
ss << '_' << code.length();
|
||||
ss << '_' << hash_code;
|
||||
file_path = ss.str();
|
||||
|
||||
std::ifstream readin{file_path, std::ios::in | std::ifstream::binary};
|
||||
|
||||
@ -82,15 +82,15 @@ namespace native {
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const ConvolutionParams& params) {
|
||||
out << "ConvolutionParams \n"
|
||||
<< " memory_format = " << params.memory_format << "\n"
|
||||
<< " data_type = " << cudnnTypeToString(params.dataType) << "\n"
|
||||
<< " padding = " << ArrayRef<int>{params.padding} << "\n"
|
||||
<< " stride = " << ArrayRef<int>{params.stride} << "\n"
|
||||
<< " dilation = " << ArrayRef<int>{params.dilation} << "\n"
|
||||
<< " groups = " << params.groups << "\n"
|
||||
<< " memory_format = " << params.memory_format << '\n'
|
||||
<< " data_type = " << cudnnTypeToString(params.dataType) << '\n'
|
||||
<< " padding = " << ArrayRef<int>{params.padding} << '\n'
|
||||
<< " stride = " << ArrayRef<int>{params.stride} << '\n'
|
||||
<< " dilation = " << ArrayRef<int>{params.dilation} << '\n'
|
||||
<< " groups = " << params.groups << '\n'
|
||||
<< " deterministic = " << (params.deterministic ? "true" : "false")
|
||||
<< "\n"
|
||||
<< " allow_tf32 = " << (params.allow_tf32 ? "true" : "false") << "\n";
|
||||
<< '\n'
|
||||
<< " allow_tf32 = " << (params.allow_tf32 ? "true" : "false") << '\n';
|
||||
|
||||
return out;
|
||||
}
|
||||
@ -173,16 +173,16 @@ std::string repro_from_args(const ConvolutionParams& params) {
|
||||
at::globalContext().float32Precision(
|
||||
at::Float32Backend::CUDA, at::Float32Op::MATMUL) ==
|
||||
at::Float32Precision::TF32)
|
||||
<< "\n";
|
||||
<< '\n';
|
||||
ss << "torch.backends.cudnn.benchmark = "
|
||||
<< pybool(at::globalContext().benchmarkCuDNN()) << "\n";
|
||||
<< pybool(at::globalContext().benchmarkCuDNN()) << '\n';
|
||||
ss << "torch.backends.cudnn.deterministic = " << pybool(params.deterministic)
|
||||
<< "\n";
|
||||
<< '\n';
|
||||
ss << "torch.backends.cudnn.allow_tf32 = " << pybool(params.allow_tf32)
|
||||
<< "\n";
|
||||
<< '\n';
|
||||
ss << "data = torch.randn(" << ArrayRef<int>(params.input_size, dim)
|
||||
<< ", dtype=" << full_dtype << ", ";
|
||||
ss << "device='cuda', requires_grad=True)" << to_channels_last << "\n";
|
||||
ss << "device='cuda', requires_grad=True)" << to_channels_last << '\n';
|
||||
ss << "net = torch.nn.Conv" << dim - 2 << "d(" << in_channels << ", "
|
||||
<< out_channels << ", ";
|
||||
ss << "kernel_size=" << ArrayRef<int>(¶ms.weight_size[2], dim - 2)
|
||||
@ -192,7 +192,7 @@ std::string repro_from_args(const ConvolutionParams& params) {
|
||||
ss << "dilation=" << ArrayRef<int>(params.dilation, dim - 2) << ", ";
|
||||
ss << "groups=" << params.groups << ")\n";
|
||||
ss << "net = net.cuda()." << partial_dtype << "()" << to_channels_last
|
||||
<< "\n";
|
||||
<< '\n';
|
||||
ss << "out = net(data)\n";
|
||||
ss << "out.backward(torch.randn_like(out))\n";
|
||||
ss << "torch.cuda.synchronize()\n\n";
|
||||
|
||||
@ -93,11 +93,10 @@ std::ostream& operator<<(std::ostream& out, const ConvolutionArgs& args) {
|
||||
<< "input: " << args.idesc // already has a trailing newline
|
||||
<< "output: " << args.odesc // already has a trailing newline
|
||||
<< "weight: " << args.wdesc // already has a trailing newline
|
||||
<< "Pointer addresses: "
|
||||
<< "\n"
|
||||
<< " input: " << args.input.const_data_ptr() << "\n"
|
||||
<< " output: " << args.output.const_data_ptr() << "\n"
|
||||
<< " weight: " << args.weight.const_data_ptr() << "\n";
|
||||
<< "Pointer addresses: " << '\n'
|
||||
<< " input: " << args.input.const_data_ptr() << '\n'
|
||||
<< " output: " << args.output.const_data_ptr() << '\n'
|
||||
<< " weight: " << args.weight.const_data_ptr() << '\n';
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -115,7 +115,7 @@ std::ostream& operator<<(
|
||||
std::copy(
|
||||
strides.begin(), strides.end() - 1, std::ostream_iterator<int>(oss, ","));
|
||||
oss << sizes.back();
|
||||
output << oss.str() << "}";
|
||||
output << oss.str() << '}';
|
||||
return output;
|
||||
}
|
||||
|
||||
|
||||
@ -53,7 +53,7 @@ std::ostream& operator<<(std::ostream& out, const ConvParams& params) {
|
||||
<< " transposed = " << params.transposed
|
||||
<< " output_padding = " << IntArrayRef{params.output_padding}
|
||||
<< " groups = " << params.groups << " benchmark = " << params.benchmark
|
||||
<< " deterministic = " << params.deterministic << "}";
|
||||
<< " deterministic = " << params.deterministic << '}';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -301,12 +301,12 @@ class AvgPoolMicrokernelTester {
|
||||
ASSERT_NEAR(
|
||||
float(int32_t(y[i * yStride() + k])), yFP[i * kc() + k], 0.5001f)
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
ASSERT_EQ(
|
||||
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
}
|
||||
}
|
||||
@ -396,12 +396,12 @@ class AvgPoolMicrokernelTester {
|
||||
ASSERT_NEAR(
|
||||
float(int32_t(y[i * yStride() + k])), yFP[i * kc() + k], 0.5001f)
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
ASSERT_EQ(
|
||||
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< "), kc = " << kc() << ", acc = " << yAcc[i * kc() + k];
|
||||
}
|
||||
}
|
||||
|
||||
@ -232,7 +232,7 @@ class MaxPoolMicrokernelTester {
|
||||
ASSERT_EQ(
|
||||
uint32_t(yRef[i * kc() + k]), uint32_t(y[i * yStride() + k]))
|
||||
<< "at pixel " << i << ", channel " << k << ", n = " << n()
|
||||
<< ", ks = " << kh() << "x" << kw() << " (" << ks()
|
||||
<< ", ks = " << kh() << 'x' << kw() << " (" << ks()
|
||||
<< "), kc = " << kc();
|
||||
}
|
||||
}
|
||||
|
||||
@ -17,7 +17,7 @@ inline std::vector<T> _expand_param_if_needed(
|
||||
std::ostringstream ss;
|
||||
ss << "expected " << param_name << " to be a single integer value or a "
|
||||
<< "list of " << expected_dim << " values to match the convolution "
|
||||
<< "dimensions, but got " << param_name << "=" << list_param;
|
||||
<< "dimensions, but got " << param_name << '=' << list_param;
|
||||
TORCH_CHECK(false, ss.str());
|
||||
} else {
|
||||
return list_param.vec();
|
||||
|
||||
@ -358,9 +358,9 @@ std::string Adapter::stringize() const {
|
||||
std::string device_type = get_device_type_str(properties.deviceType);
|
||||
VkPhysicalDeviceLimits limits = properties.limits;
|
||||
|
||||
ss << "{" << std::endl;
|
||||
ss << '{' << std::endl;
|
||||
ss << " Physical Device Info {" << std::endl;
|
||||
ss << " apiVersion: " << v_major << "." << v_minor << std::endl;
|
||||
ss << " apiVersion: " << v_major << '.' << v_minor << std::endl;
|
||||
ss << " driverversion: " << properties.driverVersion << std::endl;
|
||||
ss << " deviceType: " << device_type << std::endl;
|
||||
ss << " deviceName: " << properties.deviceName << std::endl;
|
||||
@ -371,7 +371,7 @@ std::string Adapter::stringize() const {
|
||||
|
||||
#define PRINT_LIMIT_PROP_VEC3(name) \
|
||||
ss << " " << std::left << std::setw(36) << #name << limits.name[0] \
|
||||
<< "," << limits.name[1] << "," << limits.name[2] << std::endl;
|
||||
<< ',' << limits.name[1] << ',' << limits.name[2] << std::endl;
|
||||
|
||||
ss << " Physical Device Limits {" << std::endl;
|
||||
PRINT_LIMIT_PROP(maxImageDimension1D);
|
||||
@ -425,7 +425,7 @@ std::string Adapter::stringize() const {
|
||||
;
|
||||
}
|
||||
ss << " ]" << std::endl;
|
||||
ss << "}";
|
||||
ss << '}';
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
@ -33,7 +33,7 @@ std::ostream& operator<<(std::ostream& out, const VkResult result) {
|
||||
VK_RESULT_CASE(VK_ERROR_FORMAT_NOT_SUPPORTED)
|
||||
VK_RESULT_CASE(VK_ERROR_FRAGMENTED_POOL)
|
||||
default:
|
||||
out << "VK_ERROR_UNKNOWN (VkResult " << result << ")";
|
||||
out << "VK_ERROR_UNKNOWN (VkResult " << result << ')';
|
||||
break;
|
||||
}
|
||||
return out;
|
||||
@ -46,7 +46,7 @@ std::ostream& operator<<(std::ostream& out, const VkResult result) {
|
||||
//
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const SourceLocation& loc) {
|
||||
out << loc.function << " at " << loc.file << ":" << loc.line;
|
||||
out << loc.function << " at " << loc.file << ':' << loc.line;
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -66,7 +66,7 @@ Error::Error(SourceLocation source_location, const char* cond, std::string msg)
|
||||
: msg_(std::move(msg)), source_location_{source_location} {
|
||||
std::ostringstream oss;
|
||||
oss << "Exception raised from " << source_location_ << ": ";
|
||||
oss << "(" << cond << ") is false! ";
|
||||
oss << '(' << cond << ") is false! ";
|
||||
oss << msg_;
|
||||
what_ = oss.str();
|
||||
}
|
||||
|
||||
@ -173,8 +173,8 @@ void QueryPool::extract_results() {
|
||||
|
||||
static std::string stringize(const VkExtent3D& extents) {
|
||||
std::stringstream ss;
|
||||
ss << "{" << extents.width << ", " << extents.height << ", " << extents.depth
|
||||
<< "}";
|
||||
ss << '{' << extents.width << ", " << extents.height << ", " << extents.depth
|
||||
<< '}';
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
@ -149,7 +149,7 @@ VKAPI_ATTR VkBool32 VKAPI_CALL debug_report_callback_fn(
|
||||
(void)flags;
|
||||
|
||||
std::stringstream stream;
|
||||
stream << layer_prefix << " " << message_code << " " << message << std::endl;
|
||||
stream << layer_prefix << ' ' << message_code << ' ' << message << std::endl;
|
||||
const std::string log = stream.str();
|
||||
|
||||
std::cout << log;
|
||||
|
||||
@ -253,7 +253,7 @@ using vec4 = vec<4u>;
|
||||
|
||||
// uvec3 is the type representing tensor extents. Useful for debugging.
|
||||
inline std::ostream& operator<<(std::ostream& os, const uvec3& v) {
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ")";
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ')';
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
@ -246,7 +246,7 @@ void TestToCFloat() {
|
||||
void TestToString() {
|
||||
Tensor b = ones({3, 7}) * .0000001f;
|
||||
std::stringstream s;
|
||||
s << b << "\n";
|
||||
s << b << '\n';
|
||||
std::string expect = "1e-07 *";
|
||||
ASSERT_EQ_RESOLVED(s.str().substr(0, expect.size()), expect);
|
||||
}
|
||||
|
||||
@ -33,7 +33,7 @@ struct Foo {
|
||||
static void apply(Tensor a, Tensor b) {
|
||||
scalar_type s = 1;
|
||||
std::stringstream ss;
|
||||
ss << "hello, dispatch: " << a.toString() << s << "\n";
|
||||
ss << "hello, dispatch: " << a.toString() << s << '\n';
|
||||
auto data = (scalar_type*)a.data_ptr();
|
||||
(void)data;
|
||||
}
|
||||
@ -73,8 +73,8 @@ TEST(TestScalar, TestScalar) {
|
||||
Scalar bar = 3.0;
|
||||
Half h = bar.toHalf();
|
||||
Scalar h2 = h;
|
||||
cout << "H2: " << h2.toDouble() << " " << what.toFloat() << " "
|
||||
<< bar.toDouble() << " " << what.isIntegral(false) << "\n";
|
||||
cout << "H2: " << h2.toDouble() << ' ' << what.toFloat() << ' '
|
||||
<< bar.toDouble() << ' ' << what.isIntegral(false) << '\n';
|
||||
auto gen = at::detail::getDefaultCPUGenerator();
|
||||
{
|
||||
// See Note [Acquire lock when using random generators]
|
||||
@ -84,7 +84,7 @@ TEST(TestScalar, TestScalar) {
|
||||
}
|
||||
if (at::hasCUDA()) {
|
||||
auto t2 = zeros({4, 4}, at::kCUDA);
|
||||
cout << &t2 << "\n";
|
||||
cout << &t2 << '\n';
|
||||
}
|
||||
auto t = ones({4, 4});
|
||||
|
||||
@ -129,7 +129,7 @@ TEST(TestScalar, TestScalar) {
|
||||
std::stringstream ss;
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
|
||||
ASSERT_NO_THROW(
|
||||
ss << "hello, dispatch" << x.toString() << s << "\n");
|
||||
ss << "hello, dispatch" << x.toString() << s << '\n');
|
||||
auto data = (scalar_t*)x.data_ptr();
|
||||
(void)data;
|
||||
});
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
int main() {
|
||||
std::cout << at::ones({3,4}, at::CPU(at::kFloat)) << "\n";
|
||||
std::cout << at::ones({3,4}, at::CPU(at::kFloat)) << '\n';
|
||||
}
|
||||
|
||||
@ -1828,9 +1828,9 @@ namespace {
|
||||
#endif
|
||||
|
||||
EXPECT_EQ(u16, c10::detail::fp16_ieee_from_fp32_value(f32s[i]))
|
||||
<< "Test failed for float to uint16 " << f32s[i] << "\n";
|
||||
<< "Test failed for float to uint16 " << f32s[i] << '\n';
|
||||
EXPECT_EQ(x, c10::detail::fp16_ieee_to_fp32_value(u16))
|
||||
<< "Test failed for uint16 to float " << u16 << "\n";
|
||||
<< "Test failed for uint16 to float " << u16 << '\n';
|
||||
}
|
||||
}
|
||||
TEST(FP8E4M3Test, FP8E4M3ConversionFloat) {
|
||||
@ -1848,10 +1848,10 @@ namespace {
|
||||
EXPECT_TRUE(std::isnan(f32));
|
||||
} else {
|
||||
EXPECT_EQ(f32, c10::detail::fp8e4m3fn_to_fp32_value(input))
|
||||
<< "Test failed for u8 to float " << input << "\n";
|
||||
<< "Test failed for u8 to float " << input << '\n';
|
||||
}
|
||||
EXPECT_EQ(u8, c10::detail::fp8e4m3fn_from_fp32_value(f32))
|
||||
<< "Test failed for float to u8 " << f32 << "\n";
|
||||
<< "Test failed for float to u8 " << f32 << '\n';
|
||||
}
|
||||
}
|
||||
TEST(FP8E4M3Test, FP8E4M3BinaryAdd) {
|
||||
@ -2015,10 +2015,10 @@ namespace {
|
||||
EXPECT_TRUE(std::isnan(f32));
|
||||
} else {
|
||||
EXPECT_EQ(f32, c10::detail::fp8e5m2_to_fp32_value(input))
|
||||
<< "Test failed for u8 to float " << input << "\n";
|
||||
<< "Test failed for u8 to float " << input << '\n';
|
||||
}
|
||||
EXPECT_EQ(u8, c10::detail::fp8e5m2_from_fp32_value(f32))
|
||||
<< "Test failed for float to u8 " << f32 << "\n";
|
||||
<< "Test failed for float to u8 " << f32 << '\n';
|
||||
}
|
||||
}
|
||||
TEST(FP8E5M2Test, FP8E5M2BinaryAdd) {
|
||||
|
||||
@ -19,7 +19,7 @@ TEST(Vitals, Basic) {
|
||||
c10::utils::set_env("TORCH_VITAL", "1");
|
||||
TORCH_VITAL_DEFINE(Testing);
|
||||
TORCH_VITAL(Testing, Attribute0) << 1;
|
||||
TORCH_VITAL(Testing, Attribute1) << "1";
|
||||
TORCH_VITAL(Testing, Attribute1) << '1';
|
||||
TORCH_VITAL(Testing, Attribute2) << 1.0f;
|
||||
TORCH_VITAL(Testing, Attribute3) << 1.0;
|
||||
auto t = at::ones({1, 1});
|
||||
|
||||
@ -129,14 +129,14 @@ void showRtol(const at::Tensor& a, const at::Tensor& b) {
|
||||
std::cout << "Max Diff allowed: " << maxDiff << std::endl;
|
||||
if (diff.sizes().size() == 2) {
|
||||
for (const auto y : c10::irange(diff.sizes()[0])) {
|
||||
std::cout << y << ":";
|
||||
std::cout << y << ':';
|
||||
for (const auto x : c10::irange(diff.sizes()[1])) {
|
||||
float diff_xy = diff[y][x].item<float>();
|
||||
if (diff_xy > maxDiff) {
|
||||
std::cout << std::setw(5) << x;
|
||||
}
|
||||
else {
|
||||
std::cout << std::setw(5) << " ";
|
||||
std::cout << std::setw(5) << ' ';
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
@ -3276,7 +3276,7 @@ TEST_F(VulkanAPITest, masked_fill_invalidinputs_exceptions) {
|
||||
|
||||
void print_shape(const std::vector<int64_t>& shape) {
|
||||
for (const auto& num : shape) {
|
||||
std::cout << num << " ";
|
||||
std::cout << num << ' ';
|
||||
}
|
||||
}
|
||||
|
||||
@ -3367,7 +3367,7 @@ void test_masked_fill_scalar(
|
||||
print_shape(tmp_curr_input_shape);
|
||||
std::cout << "], and mask of shape [";
|
||||
print_shape(tmp_curr_mask_shape);
|
||||
std::cout << "]" << std::endl;
|
||||
std::cout << ']' << std::endl;
|
||||
}
|
||||
|
||||
ASSERT_TRUE(check);
|
||||
@ -4542,9 +4542,9 @@ void test_softmax(const at::IntArrayRef shape, bool log_softmax = false) {
|
||||
if (!check) {
|
||||
std::cout << "Softmax test failed on axis " << dim << "for tensor dims {";
|
||||
for (uint32_t place = 0; place < shape.size() - 1; place++) {
|
||||
std::cout << shape[place] << " ";
|
||||
std::cout << shape[place] << ' ';
|
||||
}
|
||||
std::cout << shape.back() << "}" << std::endl;
|
||||
std::cout << shape.back() << '}' << std::endl;
|
||||
showRtol(out_cpu, out_vulkan.cpu());
|
||||
}
|
||||
ASSERT_TRUE(check);
|
||||
|
||||
@ -95,7 +95,7 @@ void showRtol(
|
||||
std::cout << "Max Diff found is: " << diff.max().item<double>() << std::endl;
|
||||
if (diff.sizes().size() == 2) {
|
||||
for (const auto y : c10::irange(diff.sizes()[0])) {
|
||||
std::cout << y << ":";
|
||||
std::cout << y << ':';
|
||||
for (const auto x : c10::irange(diff.sizes()[1])) {
|
||||
double diff_xy = diff[y][x].item<double>();
|
||||
if (diff_xy > maxDiff) {
|
||||
@ -109,7 +109,7 @@ void showRtol(
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cout << std::setw(5) << " ";
|
||||
std::cout << std::setw(5) << ' ';
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
@ -148,19 +148,19 @@ using at::native::vulkan::api::utils::ivec4;
|
||||
using at::native::vulkan::api::utils::vec4;
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const vec4& v) {
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ")";
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ')';
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const ivec3& v) {
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ")";
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ')';
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const ivec4& v) {
|
||||
os << "(" << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ")";
|
||||
os << '(' << v.data[0u] << ", " << v.data[1u] << ", " << v.data[2u] << ", "
|
||||
<< v.data[3u] << ')';
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -3379,51 +3379,51 @@ bool _test_quantized_linear(
|
||||
showRtol(out_cpu_dequant, out_vk_to_cpu_dequant);
|
||||
}
|
||||
if (xpos != -1 && ypos != -1) {
|
||||
std::cout << "\nFailure caused on row/col: " << ypos << "/" << xpos
|
||||
<< "\n";
|
||||
std::cout << "\nFailure caused on row/col: " << ypos << '/' << xpos
|
||||
<< '\n';
|
||||
std::cout << "Input tensor scale: " << scale << " zerop: " << zero_point
|
||||
<< "\n";
|
||||
std::cout << "Input tensor row " << ypos << "\n";
|
||||
<< '\n';
|
||||
std::cout << "Input tensor row " << ypos << '\n';
|
||||
for (int i = 0; i < input_cpu.sizes()[1]; i++) {
|
||||
std::cout << input_cpu[ypos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << "\n";
|
||||
std::cout << '\n';
|
||||
|
||||
std::cout << "Weight tensor scale: " << w_scale
|
||||
<< " zerop: " << w_zero_point << "\n";
|
||||
std::cout << "Weight tensor col " << xpos << "\n";
|
||||
<< " zerop: " << w_zero_point << '\n';
|
||||
std::cout << "Weight tensor col " << xpos << '\n';
|
||||
for (int i = 0; i < weight.sizes()[1]; i++) {
|
||||
std::cout << weight[xpos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << "\n";
|
||||
std::cout << '\n';
|
||||
|
||||
std::cout << "Input tensor quantized row " << ypos << " with dtype "
|
||||
<< (input_quant_dtype_int8 ? "QInt8" : "QUInt8") << "\n";
|
||||
<< (input_quant_dtype_int8 ? "QInt8" : "QUInt8") << '\n';
|
||||
for (int i = 0; i < input_cpu.sizes()[1]; i++) {
|
||||
std::cout << input_cpu_quantized[ypos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << "\n";
|
||||
std::cout << '\n';
|
||||
|
||||
std::cout << "Weight tensor quantized col " << xpos << " with dtype "
|
||||
<< (weight_quant_dtype_int8 ? "QInt8" : "QUInt8") << "\n";
|
||||
<< (weight_quant_dtype_int8 ? "QInt8" : "QUInt8") << '\n';
|
||||
for (int i = 0; i < weight.sizes()[1]; i++) {
|
||||
std::cout << weight_cpu_quantized[xpos][i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << "\n";
|
||||
std::cout << '\n';
|
||||
|
||||
std::cout << "bias tensor\n";
|
||||
for (int i = 0; i < bias.sizes()[0]; i++) {
|
||||
std::cout << bias[i].item<double>() << ", ";
|
||||
}
|
||||
std::cout << "\n";
|
||||
std::cout << '\n';
|
||||
|
||||
std::cout << "out_scale: " << out_scale
|
||||
<< " out_zero_point: " << out_zero_point << "\n";
|
||||
<< " out_zero_point: " << out_zero_point << '\n';
|
||||
|
||||
std::cout << "cpu unmatched output: "
|
||||
<< out_cpu_dequant[ypos][xpos].item<double>() << "\n";
|
||||
<< out_cpu_dequant[ypos][xpos].item<double>() << '\n';
|
||||
std::cout << "vk unmatched output: "
|
||||
<< out_vk_to_cpu_dequant[ypos][xpos].item<double>() << "\n";
|
||||
<< out_vk_to_cpu_dequant[ypos][xpos].item<double>() << '\n';
|
||||
}
|
||||
}
|
||||
return check;
|
||||
|
||||
@ -266,7 +266,11 @@ class BenchmarkRunner:
|
||||
print(
|
||||
f"{mode} Execution Time (us) : {results['reported_run_time_us'][0]:.3f}"
|
||||
)
|
||||
print(f"Peak Memory (KB) : {results['peak_memory']}\n")
|
||||
print(f"Peak Memory (KB) : {results['peak_memory']}")
|
||||
# Calculate and print memory bandwidth if operator provides memory traffic
|
||||
if results.get('memory_bandwidth_gb_s') is not None:
|
||||
print(f"Memory Bandwidth (GB/s) : {results['memory_bandwidth_gb_s']:.2f}")
|
||||
print()
|
||||
|
||||
def _perf_result_to_dict(self, results, test_case):
|
||||
"""This function is the parallel of _print_perf_result, which instead of
|
||||
@ -711,6 +715,15 @@ class BenchmarkRunner:
|
||||
result_dict = dict()
|
||||
result_dict["reported_run_time_us"] = [r[0] for r in results]
|
||||
result_dict["peak_memory"] = results[0][1]
|
||||
|
||||
# Calculate memory bandwidth if operator provides memory traffic
|
||||
memory_traffic_bytes = test_case.op_bench.get_memory_traffic_bytes()
|
||||
if memory_traffic_bytes is not None:
|
||||
execution_time_s = result_dict["reported_run_time_us"][0] / 1e6
|
||||
result_dict["memory_bandwidth_gb_s"] = memory_traffic_bytes / execution_time_s / 1e9
|
||||
else:
|
||||
result_dict["memory_bandwidth_gb_s"] = None
|
||||
|
||||
self._print_perf_result(results=result_dict, test_case=test_case)
|
||||
|
||||
# output results to csv
|
||||
|
||||
@ -118,6 +118,54 @@ class TorchBenchmarkBase(torch.nn.Module):
|
||||
name = (self.module_name() + "_" + "_".join(test_name_str)).replace(" ", "")
|
||||
return name
|
||||
|
||||
def get_memory_traffic_bytes(self):
|
||||
"""Return the number of bytes read/written by this operator.
|
||||
|
||||
Override this method in subclasses to enable memory bandwidth calculation.
|
||||
The framework will use this value along with execution time to compute
|
||||
and report memory bandwidth in GB/s.
|
||||
|
||||
This provides automatic calculation for matmul-like operations by
|
||||
inferring dimensions from input tensor shapes:
|
||||
- 2D inputs: (M, N) @ (N, K) → matmul, mm
|
||||
- 3D inputs: (B, M, N) @ (B, N, K) → bmm, baddbmm
|
||||
|
||||
For custom memory patterns, override this method.
|
||||
|
||||
Returns:
|
||||
int or None: Total bytes transferred (reads + writes), or None if not applicable
|
||||
"""
|
||||
if not hasattr(self, 'inputs') or not self.inputs:
|
||||
return None
|
||||
|
||||
input_tensors = [v for v in self.inputs.values() if isinstance(v, torch.Tensor)]
|
||||
if len(input_tensors) < 2:
|
||||
return None
|
||||
|
||||
input_a, input_b = input_tensors[0], input_tensors[1]
|
||||
|
||||
if input_a.dim() != input_b.dim() or input_a.dim() not in (2, 3):
|
||||
return None
|
||||
|
||||
bytes_per_element = input_a.element_size()
|
||||
|
||||
if input_a.dim() == 3:
|
||||
B_a, M, N_a = input_a.shape
|
||||
B_b, N_b, K = input_b.shape
|
||||
if B_a != B_b or N_a != N_b:
|
||||
return None
|
||||
B = B_a
|
||||
else:
|
||||
M, N_a = input_a.shape
|
||||
N_b, K = input_b.shape
|
||||
if N_a != N_b:
|
||||
return None
|
||||
B = 1
|
||||
|
||||
N = N_a
|
||||
total_elements = B * (M * N + N * K + M * K)
|
||||
return total_elements * bytes_per_element
|
||||
|
||||
|
||||
class PyTorchOperatorTestCase:
|
||||
"""This class includes all the information needed to benchmark an operator.
|
||||
|
||||
79
benchmarks/operator_benchmark/pt/optimizer_test.py
Normal file
79
benchmarks/operator_benchmark/pt/optimizer_test.py
Normal file
@ -0,0 +1,79 @@
|
||||
import operator_benchmark as op_bench
|
||||
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
|
||||
|
||||
"""Microbenchmarks for optimizer operators."""
|
||||
|
||||
|
||||
optimizer_list = op_bench.op_list(
|
||||
attr_names=["op_name", "op_func"],
|
||||
attrs=[
|
||||
["adamw", optim.AdamW],
|
||||
["adam", optim.Adam],
|
||||
["sgd", optim.SGD],
|
||||
["rmsprop", optim.RMSprop],
|
||||
["adagrad", optim.Adagrad],
|
||||
],
|
||||
)
|
||||
|
||||
optimizer_configs_long = op_bench.cross_product_configs(
|
||||
num_params=[1, 10, 100],
|
||||
param_size=[100000, 1000000, 10000000],
|
||||
device=["cuda"],
|
||||
tags=["long"],
|
||||
)
|
||||
|
||||
|
||||
class OptimizerBenchmark(op_bench.TorchBenchmarkBase):
|
||||
def init(self, op_func, device, shape=None, num_params=None, param_size=None):
|
||||
if shape is not None:
|
||||
num_params = num_params if num_params is not None else 1
|
||||
self.params = [
|
||||
torch.randn(shape, device=device, requires_grad=True)
|
||||
for _ in range(num_params)
|
||||
]
|
||||
for param in self.params:
|
||||
param.grad = torch.randn(shape, device=device)
|
||||
else:
|
||||
self.params = [
|
||||
torch.randn(param_size, device=device, requires_grad=True)
|
||||
for _ in range(num_params)
|
||||
]
|
||||
for param in self.params:
|
||||
param.grad = torch.randn_like(param)
|
||||
|
||||
kwargs = {"momentum": 0.9} if op_func == optim.SGD else {}
|
||||
self.optimizer = op_func(self.params, lr=0.001, **kwargs)
|
||||
|
||||
# Memory traffic calculation for bandwidth
|
||||
self.total_elements = sum(p.numel() for p in self.params)
|
||||
self.bytes_per_element = self.params[0].element_size()
|
||||
# SGD w/ momentum: read(param, grad, momentum) + write(param, momentum) = 5x
|
||||
# Adam/AdamW: read(param, grad, exp_avg, exp_avg_sq) + write(param, exp_avg, exp_avg_sq) = 7x
|
||||
# Adagrad/RMSprop: read(param, grad, state) + write(param, state) = 5x
|
||||
if op_func in (optim.Adam, optim.AdamW):
|
||||
self.memory_multiplier = 7
|
||||
else:
|
||||
self.memory_multiplier = 5
|
||||
|
||||
self.inputs = {"dummy": self.params[0]}
|
||||
|
||||
def forward(self, dummy):
|
||||
self.optimizer.step()
|
||||
for param in self.params:
|
||||
param.grad = torch.randn_like(param)
|
||||
return self.params[0]
|
||||
|
||||
def get_memory_traffic_bytes(self):
|
||||
return self.total_elements * self.bytes_per_element * self.memory_multiplier
|
||||
|
||||
|
||||
op_bench.generate_pt_tests_from_op_list(
|
||||
optimizer_list, optimizer_configs_long, OptimizerBenchmark
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
op_bench.benchmark_runner.main()
|
||||
@ -176,7 +176,7 @@ std::ostream& operator<<(std::ostream& os, DispatchKeySet ts) {
|
||||
os << k;
|
||||
first = false;
|
||||
}
|
||||
os << ")";
|
||||
os << ')';
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
@ -33,7 +33,7 @@ std::ostream& operator<<(std::ostream& stream, const TensorOptions& options) {
|
||||
} else {
|
||||
stream << "(nullopt)";
|
||||
}
|
||||
stream << ")";
|
||||
stream << ')';
|
||||
|
||||
return stream;
|
||||
}
|
||||
|
||||
@ -136,7 +136,7 @@ std::string c10_retrieve_device_side_assertion_info() {
|
||||
// Something failed, let's talk about that
|
||||
oss << failures_found
|
||||
<< " CUDA device-side assertion failures were found on GPU #"
|
||||
<< device_num << "!" << std::endl;
|
||||
<< device_num << '!' << std::endl;
|
||||
if (assertion_data_for_device.assertion_count >
|
||||
C10_CUDA_DSA_ASSERTION_COUNT) {
|
||||
oss << "But at least " << assertion_data_for_device.assertion_count
|
||||
@ -151,17 +151,17 @@ std::string c10_retrieve_device_side_assertion_info() {
|
||||
oss << "Assertion failure " << i << std::endl;
|
||||
oss << " GPU assertion failure message = " << self.assertion_msg
|
||||
<< std::endl;
|
||||
oss << " File containing assertion = " << self.filename << ":"
|
||||
oss << " File containing assertion = " << self.filename << ':'
|
||||
<< self.line_number << std::endl;
|
||||
oss << " Device function containing assertion = " << self.function_name
|
||||
<< std::endl;
|
||||
oss << " Thread ID that failed assertion = [" << self.thread_id[0] << ","
|
||||
<< self.thread_id[1] << "," << self.thread_id[2] << "]" << std::endl;
|
||||
oss << " Block ID that failed assertion = [" << self.block_id[0] << ","
|
||||
<< self.block_id[1] << "," << self.block_id[2] << "]" << std::endl;
|
||||
oss << " Thread ID that failed assertion = [" << self.thread_id[0] << ','
|
||||
<< self.thread_id[1] << ',' << self.thread_id[2] << ']' << std::endl;
|
||||
oss << " Block ID that failed assertion = [" << self.block_id[0] << ','
|
||||
<< self.block_id[1] << ',' << self.block_id[2] << ']' << std::endl;
|
||||
if (launch_info.generation_number == self.caller) {
|
||||
oss << " File containing kernel launch = "
|
||||
<< launch_info.launch_filename << ":" << launch_info.launch_linenum
|
||||
<< launch_info.launch_filename << ':' << launch_info.launch_linenum
|
||||
<< std::endl;
|
||||
oss << " Function containing kernel launch = "
|
||||
<< launch_info.launch_function << std::endl;
|
||||
@ -175,7 +175,7 @@ std::string c10_retrieve_device_side_assertion_info() {
|
||||
if (launch_registry.gather_launch_stacktrace) {
|
||||
oss << "Launch stacktracing disabled." << std::endl;
|
||||
} else {
|
||||
oss << "\n" << launch_info.launch_stacktrace << std::endl;
|
||||
oss << '\n' << launch_info.launch_stacktrace << std::endl;
|
||||
}
|
||||
} else {
|
||||
oss << " CPU launch site info: Unavailable, the circular queue wrapped around. Increase `CUDAKernelLaunchRegistry::max_size`."
|
||||
|
||||
@ -20,6 +20,22 @@
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define C10_CUDA_DRIVER_CHECK_GOTO(EXPR, NEXT) \
|
||||
do { \
|
||||
CUresult __err = EXPR; \
|
||||
if (__err != CUDA_SUCCESS) { \
|
||||
const char* err_str; \
|
||||
CUresult get_error_str_err [[maybe_unused]] = \
|
||||
c10::cuda::DriverAPI::get()->cuGetErrorString_(__err, &err_str); \
|
||||
if (get_error_str_err != CUDA_SUCCESS) { \
|
||||
TORCH_WARN("CUDA driver error: unknown error"); \
|
||||
} else { \
|
||||
TORCH_WARN("CUDA driver error: ", err_str); \
|
||||
} \
|
||||
goto NEXT; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// The integer in the second column specifies the requested CUDA Driver API
|
||||
// version. The dynamic loader will accept a driver with a newer version, but it
|
||||
// ensures that the requested symbol exists in *at least* the specified version
|
||||
|
||||
@ -435,7 +435,7 @@ TEST(DispatchKeySet, TestFunctionalityDispatchKeyToString) {
|
||||
if (i > 0) {
|
||||
ASSERT_TRUE(res.find("Unknown") == std::string::npos)
|
||||
<< i << " (before is " << toString(static_cast<DispatchKey>(i - 1))
|
||||
<< ")";
|
||||
<< ')';
|
||||
} else {
|
||||
ASSERT_TRUE(res.find("Unknown") == std::string::npos) << i;
|
||||
}
|
||||
|
||||
@ -96,10 +96,10 @@ TEST(HalfConversionTest, TestPorableConversion) {
|
||||
for (auto x : inputs) {
|
||||
auto target = c10::detail::fp16_ieee_to_fp32_value(x);
|
||||
EXPECT_EQ(halfbits2float(x), target)
|
||||
<< "Test failed for uint16 to float " << x << "\n";
|
||||
<< "Test failed for uint16 to float " << x << '\n';
|
||||
EXPECT_EQ(
|
||||
float2halfbits(target), c10::detail::fp16_ieee_from_fp32_value(target))
|
||||
<< "Test failed for float to uint16" << target << "\n";
|
||||
<< "Test failed for float to uint16" << target << '\n';
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -98,7 +98,7 @@ struct Noncopyable {
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const Noncopyable& nc) {
|
||||
out << "Noncopyable(" << nc.x << ")";
|
||||
out << "Noncopyable(" << nc.x << ')';
|
||||
return out;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
@ -204,13 +204,13 @@ ArrayRef(const std::initializer_list<T>&) -> ArrayRef<T>;
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& out, ArrayRef<T> list) {
|
||||
int i = 0;
|
||||
out << "[";
|
||||
out << '[';
|
||||
for (const auto& e : list) {
|
||||
if (i++ > 0)
|
||||
out << ", ";
|
||||
out << e;
|
||||
}
|
||||
out << "]";
|
||||
out << ']';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -106,8 +106,8 @@ class GetBacktraceImpl {
|
||||
/*length*/ &length,
|
||||
/*status*/ &status);
|
||||
|
||||
os << " frame #" << idx++ << "\t"
|
||||
<< ((demangled != NULL && status == 0) ? demangled : symbol) << "["
|
||||
os << " frame #" << idx++ << '\t'
|
||||
<< ((demangled != NULL && status == 0) ? demangled : symbol) << '['
|
||||
<< addr << "]\t" << std::endl;
|
||||
}
|
||||
free(demangled);
|
||||
@ -274,7 +274,7 @@ class GetBacktraceImpl {
|
||||
} else {
|
||||
// In the edge-case where we couldn't parse the frame string, we can
|
||||
// just use it directly (it may have a different format).
|
||||
stream << symbols[frame_number] << "\n";
|
||||
stream << symbols[frame_number] << '\n';
|
||||
}
|
||||
}
|
||||
|
||||
@ -413,8 +413,8 @@ class GetBacktraceImpl {
|
||||
<< back_trace_[i_frame] << std::dec;
|
||||
if (with_symbol) {
|
||||
stream << std::setfill('0') << std::setw(16) << std::uppercase
|
||||
<< std::hex << p_symbol->Address << std::dec << " " << module
|
||||
<< "!" << p_symbol->Name;
|
||||
<< std::hex << p_symbol->Address << std::dec << ' ' << module
|
||||
<< '!' << p_symbol->Name;
|
||||
} else {
|
||||
stream << " <unknown symbol address> " << module << "!<unknown symbol>";
|
||||
}
|
||||
@ -424,7 +424,7 @@ class GetBacktraceImpl {
|
||||
} else {
|
||||
stream << "<unknown file> @ <unknown line number>";
|
||||
}
|
||||
stream << "]" << std::endl;
|
||||
stream << ']' << std::endl;
|
||||
}
|
||||
|
||||
return stream.str();
|
||||
|
||||
@ -44,7 +44,7 @@ std::string Error::compute_what(bool include_backtrace) const {
|
||||
|
||||
if (context_.size() == 1) {
|
||||
// Fold error and context in one line
|
||||
oss << " (" << context_[0] << ")";
|
||||
oss << " (" << context_[0] << ')';
|
||||
} else {
|
||||
for (const auto& c : context_) {
|
||||
oss << "\n " << c;
|
||||
@ -52,7 +52,7 @@ std::string Error::compute_what(bool include_backtrace) const {
|
||||
}
|
||||
|
||||
if (include_backtrace && backtrace_) {
|
||||
oss << "\n" << backtrace_->get();
|
||||
oss << '\n' << backtrace_->get();
|
||||
}
|
||||
|
||||
return oss.str();
|
||||
@ -247,7 +247,7 @@ void WarningHandler::process(const Warning& warning) {
|
||||
LOG_AT_FILE_LINE(
|
||||
WARNING, warning.source_location().file, warning.source_location().line)
|
||||
<< "Warning: " << warning.msg() << " (function "
|
||||
<< warning.source_location().function << ")";
|
||||
<< warning.source_location().function << ')';
|
||||
}
|
||||
|
||||
std::string GetExceptionString(const std::exception& e) {
|
||||
|
||||
@ -473,12 +473,12 @@ MessageLogger::MessageLogger(
|
||||
if (GLOBAL_RANK != -1) {
|
||||
stream_ << "[rank" << GLOBAL_RANK << "]:";
|
||||
}
|
||||
stream_ << "[" << CAFFE2_SEVERITY_PREFIX[std::min(4, GLOG_FATAL - severity_)]
|
||||
stream_ << '[' << CAFFE2_SEVERITY_PREFIX[std::min(4, GLOG_FATAL - severity_)]
|
||||
<< (timeinfo->tm_mon + 1) * 100 + timeinfo->tm_mday
|
||||
<< std::setfill('0') << " " << std::setw(2) << timeinfo->tm_hour
|
||||
<< ":" << std::setw(2) << timeinfo->tm_min << ":" << std::setw(2)
|
||||
<< timeinfo->tm_sec << "." << std::setw(9) << ns << " "
|
||||
<< c10::detail::StripBasename(std::string(file)) << ":" << line
|
||||
<< std::setfill('0') << ' ' << std::setw(2) << timeinfo->tm_hour
|
||||
<< ':' << std::setw(2) << timeinfo->tm_min << ':' << std::setw(2)
|
||||
<< timeinfo->tm_sec << '.' << std::setw(9) << ns << ' '
|
||||
<< c10::detail::StripBasename(std::string(file)) << ':' << line
|
||||
<< "] ";
|
||||
}
|
||||
|
||||
@ -488,7 +488,7 @@ MessageLogger::~MessageLogger() noexcept(false) {
|
||||
// Nothing needs to be logged.
|
||||
return;
|
||||
}
|
||||
stream_ << "\n";
|
||||
stream_ << '\n';
|
||||
#ifdef ANDROID
|
||||
static const int android_log_levels[] = {
|
||||
ANDROID_LOG_FATAL, // LOG_FATAL
|
||||
|
||||
@ -1412,13 +1412,13 @@ inline size_t capacity_in_bytes(const SmallVector<T, N>& X) {
|
||||
template <typename T, unsigned N>
|
||||
std::ostream& operator<<(std::ostream& out, const SmallVector<T, N>& list) {
|
||||
int i = 0;
|
||||
out << "[";
|
||||
out << '[';
|
||||
for (auto e : list) {
|
||||
if (i++ > 0)
|
||||
out << ", ";
|
||||
out << e;
|
||||
}
|
||||
out << "]";
|
||||
out << ']';
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -79,7 +79,7 @@ std::ostream& _str(std::ostream& ss, const std::wstring& wString) {
|
||||
} // namespace detail
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, const SourceLocation& loc) {
|
||||
out << loc.function << " at " << loc.file << ":" << loc.line;
|
||||
out << loc.function << " at " << loc.file << ':' << loc.line;
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
@ -170,7 +170,7 @@ inline bool isPrint(char s) {
|
||||
}
|
||||
|
||||
inline void printQuotedString(std::ostream& stmt, const std::string_view str) {
|
||||
stmt << "\"";
|
||||
stmt << '"';
|
||||
for (auto s : str) {
|
||||
switch (s) {
|
||||
case '\\':
|
||||
@ -224,7 +224,7 @@ inline void printQuotedString(std::ostream& stmt, const std::string_view str) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
stmt << "\"";
|
||||
stmt << '"';
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
||||
@ -223,7 +223,7 @@ void FatalSignalHandler::fatalSignalHandler(int signum) {
|
||||
// a single thread that wouldn't receive the SIGUSR2
|
||||
if (std::cv_status::timeout == writingCond.wait_for(ul, 2s)) {
|
||||
if (!signalReceived) {
|
||||
std::cerr << "signal lost waiting for stacktrace " << pid << ":"
|
||||
std::cerr << "signal lost waiting for stacktrace " << pid << ':'
|
||||
<< tid << '\n';
|
||||
break;
|
||||
}
|
||||
|
||||
@ -877,7 +877,7 @@ std::ostream& operator<<(
|
||||
std::ostream& stream,
|
||||
const SparseBitVector<ElementSize>& vec) {
|
||||
bool first = true;
|
||||
stream << "{";
|
||||
stream << '{';
|
||||
for (auto el : vec) {
|
||||
if (first) {
|
||||
first = false;
|
||||
@ -886,7 +886,7 @@ std::ostream& operator<<(
|
||||
}
|
||||
stream << el;
|
||||
}
|
||||
stream << "}";
|
||||
stream << '}';
|
||||
return stream;
|
||||
}
|
||||
|
||||
|
||||
@ -118,6 +118,12 @@ if(INTERN_BUILD_ATEN_OPS)
|
||||
list(APPEND _file_compile_flags "-gencode;arch=compute_120a,code=sm_120a")
|
||||
endif()
|
||||
endif()
|
||||
# We will need to gate against CUDA version, sm_121a was introduced in CUDA 12.9
|
||||
if("${_arch}" STREQUAL "121a" AND CUDA_VERSION VERSION_GREATER_EQUAL 12.9)
|
||||
if(_existing_arch_flags MATCHES ".*compute_120.*")
|
||||
list(APPEND _file_compile_flags "-gencode;arch=compute_121a,code=sm_121a")
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
list(JOIN _file_compile_flags " " _file_compile_flags)
|
||||
|
||||
@ -126,7 +132,7 @@ if(INTERN_BUILD_ATEN_OPS)
|
||||
|
||||
_BUILD_FOR_ADDITIONAL_ARCHS(
|
||||
"${CMAKE_CURRENT_LIST_DIR}/../aten/src/ATen/native/cuda/RowwiseScaledMM.cu"
|
||||
"89;90a;100a;103a;120a")
|
||||
"89;90a;100a;103a;120a;121a")
|
||||
_BUILD_FOR_ADDITIONAL_ARCHS(
|
||||
"${CMAKE_CURRENT_LIST_DIR}/../aten/src/ATen/native/cuda/ScaledGroupMM.cu"
|
||||
"90a")
|
||||
|
||||
3
cmake/External/aotriton.cmake
vendored
3
cmake/External/aotriton.cmake
vendored
@ -15,12 +15,14 @@ if(NOT __AOTRITON_INCLUDED)
|
||||
"manylinux_2_28" # rocm6.3
|
||||
"manylinux_2_28" # rocm6.4
|
||||
"manylinux_2_28" # rocm7.0
|
||||
"manylinux_2_28" # rocm7.1
|
||||
)
|
||||
set(__AOTRITON_ROCM_LIST
|
||||
"rocm6.2"
|
||||
"rocm6.3"
|
||||
"rocm6.4"
|
||||
"rocm7.0"
|
||||
"rocm7.1"
|
||||
)
|
||||
set(__AOTRITON_CI_COMMIT "972223c501ffc22068bb035ac5d64cf54318d895")
|
||||
set(__AOTRITON_SHA256_LIST
|
||||
@ -28,6 +30,7 @@ if(NOT __AOTRITON_INCLUDED)
|
||||
"72a153549ea20707331e8a1f1e3d1b8de2913f9d5af2b900c56235d578b57efe" # rocm6.3
|
||||
"c7f319dd7448cbbbab81889dd8a37d47dbc25ebcbd89760f09e6a0904e556393" # rocm6.4
|
||||
"a2a974e0ad929a5e5827c0f896c59bda4872459cbaf8dd8e0a00407f404491cf" # rocm7.0
|
||||
"d4eb24c9f1a0cfedb35f9292efb41d16589cf5a4b98c3c0940181bbefc49d722" # rocm7.1
|
||||
)
|
||||
set(__AOTRITON_IMAGE_LIST
|
||||
"amd-gfx90a"
|
||||
|
||||
@ -0,0 +1,20 @@
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
uint64_t get_any_data_ptr(Tensor t, bool mutable_) {
|
||||
if (mutable_) {
|
||||
return reinterpret_cast<uint64_t>(t.mutable_data_ptr());
|
||||
} else {
|
||||
return reinterpret_cast<uint64_t>(t.const_data_ptr());
|
||||
}
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic_2_10, m) {
|
||||
m.def("get_any_data_ptr(Tensor t, bool mutable_) -> int");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic_2_10, CompositeExplicitAutograd, m) {
|
||||
m.impl("get_any_data_ptr", TORCH_BOX(&get_any_data_ptr));
|
||||
}
|
||||
@ -0,0 +1,34 @@
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
#include <torch/headeronly/core/ScalarType.h>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
uint64_t get_template_any_data_ptr(Tensor t, torch::headeronly::ScalarType dtype, bool mutable_) {
|
||||
#define DEFINE_CASE(T, name) \
|
||||
case torch::headeronly::ScalarType::name: { \
|
||||
if (mutable_) { \
|
||||
return reinterpret_cast<uint64_t>(t.mutable_data_ptr<T>()); \
|
||||
} else { \
|
||||
return reinterpret_cast<uint64_t>(t.const_data_ptr<T>()); \
|
||||
} \
|
||||
}
|
||||
switch (dtype) {
|
||||
// per aten/src/ATen/templates/TensorMethods.cpp:
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_CASE)
|
||||
DEFINE_CASE(uint16_t, UInt16)
|
||||
DEFINE_CASE(uint32_t, UInt32)
|
||||
DEFINE_CASE(uint64_t, UInt64)
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
#undef DEFINE_CASE
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic_2_10, m) {
|
||||
m.def("get_template_any_data_ptr(Tensor t, ScalarType dtype, bool mutable_) -> int");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic_2_10, CompositeExplicitAutograd, m) {
|
||||
m.impl("get_template_any_data_ptr", TORCH_BOX(&get_template_any_data_ptr));
|
||||
}
|
||||
@ -0,0 +1,41 @@
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/ops.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
// Declare my__foreach_mul (defined in my__foreach_mul.cpp)
|
||||
extern std::vector<Tensor> my__foreach_mul(
|
||||
torch::headeronly::HeaderOnlyArrayRef<Tensor> self,
|
||||
torch::headeronly::HeaderOnlyArrayRef<Tensor> other);
|
||||
|
||||
// Helper function for cloning
|
||||
Tensor my_clone(Tensor t) {
|
||||
return clone(t);
|
||||
}
|
||||
|
||||
std::vector<Tensor> make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) {
|
||||
// This function tests that my__foreach_mul can take in std::initializer_lists
|
||||
// in addition to std::vectors.
|
||||
Tensor t1_1 = my_clone(t1);
|
||||
Tensor t1_2 = my_clone(t1);
|
||||
Tensor t2_1 = my_clone(t2);
|
||||
Tensor t2_2 = my_clone(t2);
|
||||
return my__foreach_mul({t1_1, t2_1}, {t1_2, t2_2});
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic_2_10, m) {
|
||||
m.def(
|
||||
"make_tensor_clones_and_call_foreach(Tensor t1, Tensor t2) -> Tensor[]");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(
|
||||
libtorch_agnostic_2_10,
|
||||
CompositeExplicitAutograd,
|
||||
m) {
|
||||
m.impl(
|
||||
"make_tensor_clones_and_call_foreach",
|
||||
TORCH_BOX(&make_tensor_clones_and_call_foreach));
|
||||
}
|
||||
@ -0,0 +1,40 @@
|
||||
// This is duplicated from the libtorch_agnostic_2_9_extension
|
||||
// as a negative test for test_version_compatibility.py
|
||||
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
#include <torch/csrc/stable/ops.h>
|
||||
#include <torch/headeronly/util/Exception.h>
|
||||
#include <torch/headeronly/core/ScalarType.h>
|
||||
#include <torch/headeronly/core/Dispatch_v2.h>
|
||||
#include <torch/headeronly/core/TensorAccessor.h>
|
||||
|
||||
#include "tensor_accessor_kernel.h"
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
Tensor mv_tensor_accessor_cpu(Tensor m, Tensor v) {
|
||||
STD_TORCH_CHECK(m.dim() == 2, "m must be 2D");
|
||||
STD_TORCH_CHECK(v.dim() == 1, "v must be 1D");
|
||||
STD_TORCH_CHECK(m.size(1) == v.size(0), "m.shape[1] == v.shape[0] must hold");
|
||||
STD_TORCH_CHECK(m.scalar_type() == v.scalar_type(), "m and v must have the same dtype");
|
||||
STD_TORCH_CHECK(m.device() == v.device(), "m and v must be on the same device");
|
||||
Tensor res = new_empty(m, {m.size(0)});
|
||||
THO_DISPATCH_V2(m.scalar_type(), "mv_tensor_accessor_cpu",
|
||||
AT_WRAP(([&]() {
|
||||
auto resa = Accessor_cpu<scalar_t, 1>(reinterpret_cast<scalar_t*>(res.data_ptr()), res.sizes().data(), res.strides().data());
|
||||
auto ma = Accessor_cpu<scalar_t, 2>(reinterpret_cast<scalar_t*>(m.data_ptr()), m.sizes().data(), m.strides().data());
|
||||
auto va = Accessor_cpu<scalar_t, 1>(reinterpret_cast<scalar_t*>(v.data_ptr()), v.sizes().data(), v.strides().data());
|
||||
mv_tensor_accessor_kernel<Accessor_cpu, scalar_t>(resa, ma, va);
|
||||
})),
|
||||
AT_FLOATING_TYPES);
|
||||
return res;
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic_2_10, m) {
|
||||
m.def("mv_tensor_accessor_cpu(Tensor res, Tensor m, Tensor v) -> Tensor");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic_2_10, CompositeExplicitAutograd, m) {
|
||||
m.impl("mv_tensor_accessor_cpu", TORCH_BOX(&mv_tensor_accessor_cpu));
|
||||
}
|
||||
@ -0,0 +1,47 @@
|
||||
// This is duplicated from the libtorch_agnostic_2_9_extension
|
||||
// as a negative test for test_version_compatibility.py
|
||||
|
||||
#include "tensor_accessor_kernel.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/ops.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
Tensor mv_tensor_accessor_cuda(Tensor m, Tensor v) {
|
||||
STD_TORCH_CHECK(m.dim() == 2, "m must be 2D");
|
||||
STD_TORCH_CHECK(v.dim() == 1, "v must be 1D");
|
||||
STD_TORCH_CHECK(m.size(1) == v.size(0), "m.shape[1] == v.shape[0] must hold");
|
||||
STD_TORCH_CHECK(
|
||||
m.scalar_type() == v.scalar_type(), "m and v must have the same dtype");
|
||||
STD_TORCH_CHECK(
|
||||
m.device() == v.device(), "m and v must be on the same device");
|
||||
Tensor res = new_empty(m, {m.size(0)});
|
||||
THO_DISPATCH_V2(
|
||||
m.scalar_type(),
|
||||
"mv_tensor_accessor_cuda",
|
||||
AT_WRAP(([&]() {
|
||||
auto resa = Accessor_cuda<scalar_t, 1>(
|
||||
reinterpret_cast<scalar_t*>(res.data_ptr()),
|
||||
res.sizes().data(),
|
||||
res.strides().data());
|
||||
auto ma = Accessor_cuda<scalar_t, 2>(
|
||||
reinterpret_cast<scalar_t*>(m.data_ptr()),
|
||||
m.sizes().data(),
|
||||
m.strides().data());
|
||||
auto va = Accessor_cuda<scalar_t, 1>(
|
||||
reinterpret_cast<scalar_t*>(v.data_ptr()),
|
||||
v.sizes().data(),
|
||||
v.strides().data());
|
||||
mv_tensor_accessor_kernel<Accessor_cuda, scalar_t>
|
||||
<<<1, 1, 0, 0>>>(resa, ma, va);
|
||||
})),
|
||||
AT_FLOATING_TYPES);
|
||||
return res;
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic_2_10, CUDA, m) {
|
||||
m.impl("mv_tensor_accessor", TORCH_BOX(&mv_tensor_accessor_cuda));
|
||||
}
|
||||
@ -0,0 +1,20 @@
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
||||
#include <vector>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
std::vector<Tensor> my__foreach_mul(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
|
||||
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
|
||||
aoti_torch_call_dispatcher("aten::_foreach_mul", "List", stack.data());
|
||||
return torch::stable::detail::to<std::vector<Tensor>>(stack[0]);
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic_2_10, m) {
|
||||
m.def("my__foreach_mul(Tensor[] self, Tensor[] other) -> Tensor[]");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic_2_10, CompositeExplicitAutograd, m) {
|
||||
m.impl("my__foreach_mul", TORCH_BOX(&my__foreach_mul));
|
||||
}
|
||||
@ -0,0 +1,19 @@
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
#include <torch/csrc/stable/stableivalue_conversions.h>
|
||||
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
void my__foreach_mul_(torch::headeronly::HeaderOnlyArrayRef<Tensor> self, torch::headeronly::HeaderOnlyArrayRef<Tensor> other) {
|
||||
std::array<StableIValue, 2> stack = {torch::stable::detail::from(self), torch::stable::detail::from(other)};
|
||||
aoti_torch_call_dispatcher("aten::_foreach_mul_", "List", stack.data());
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_FRAGMENT(libtorch_agnostic_2_10, m) {
|
||||
m.def("my__foreach_mul_(Tensor(a!)[] self, Tensor[] other) -> ()");
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic_2_10, CompositeExplicitAutograd, m) {
|
||||
m.impl("my__foreach_mul_", TORCH_BOX(&my__foreach_mul_));
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user