mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-18 17:45:09 +08:00
Compare commits
186 Commits
ci_attn
...
ciflow/tru
| Author | SHA1 | Date | |
|---|---|---|---|
| a4aa741d88 | |||
| 2f92952af4 | |||
| 8d44a39e0a | |||
| c96f4288fc | |||
| 1d7b1616c0 | |||
| 14cfb9fb10 | |||
| 567dcdba75 | |||
| 77acc66df9 | |||
| 95d1df7d4e | |||
| 094e529c64 | |||
| a4c7bf7e8d | |||
| 22ccd44d73 | |||
| 39ebab1dd9 | |||
| 4c152a71ad | |||
| 35f12801b7 | |||
| a44daec0a9 | |||
| 1b43d6cd4e | |||
| 2b69673bbf | |||
| 2f74916e36 | |||
| 2b5eabc74b | |||
| 9ff95f6835 | |||
| 6fdb974f4a | |||
| 661d1653aa | |||
| 53809f9640 | |||
| 93ddd38ecd | |||
| 5804408f1b | |||
| 99117c1238 | |||
| b9bccec3bc | |||
| ca3aaef66e | |||
| f2e6f94081 | |||
| aa504d4d2a | |||
| d8ce6f8df9 | |||
| 4322354770 | |||
| 363385ad3e | |||
| e2e10753d7 | |||
| 5d99a795f5 | |||
| 2245d7d3b9 | |||
| 98b94b90dd | |||
| 5cdbda140c | |||
| 0ec53beaeb | |||
| 79fc0a9141 | |||
| d01a7b0241 | |||
| deabb3e36d | |||
| 79d2397b6b | |||
| 6ef3a62c36 | |||
| 530e782239 | |||
| c66a6c432e | |||
| 3d7a8b7e61 | |||
| de0d69b2c4 | |||
| bc60b86066 | |||
| d7782ddde7 | |||
| fb04e9ad03 | |||
| cfe799b4aa | |||
| b7f52773e6 | |||
| f6b54d8899 | |||
| da91bf5262 | |||
| 1c1638297e | |||
| ee0b5b4b1c | |||
| fcfb213c5a | |||
| 08042bbb9c | |||
| e20ca3bc2e | |||
| 4ed26f7382 | |||
| 4c79305b87 | |||
| f4b8c4f907 | |||
| d629b7a459 | |||
| 0922ba5f42 | |||
| c87295c044 | |||
| 7aa210d215 | |||
| 5a368b8010 | |||
| 602102be50 | |||
| 200156e385 | |||
| a2daf3fc86 | |||
| 52b45c16de | |||
| 2ef85bed5a | |||
| d99c6bcf69 | |||
| 8378abda84 | |||
| 5b42a5d9a6 | |||
| caca3f2eec | |||
| fbb59a83dc | |||
| a1b4e31536 | |||
| 9e2bf129e1 | |||
| c429b1fc5c | |||
| 1176b2b0b7 | |||
| dd37a1a434 | |||
| a74adcf80e | |||
| 5eac46a011 | |||
| 989fa5b102 | |||
| db282e751d | |||
| 7f1accf93e | |||
| f71a414ac3 | |||
| bd04dc7750 | |||
| e0fff31ae3 | |||
| 7ede33b8e3 | |||
| 065176cd97 | |||
| 02ee7dd7d3 | |||
| 99fdca8f4d | |||
| 9d1a74cb0c | |||
| 3b90bf36f9 | |||
| 40e6f090d9 | |||
| bfddfde50c | |||
| b6570615f8 | |||
| 226850cc66 | |||
| f8a2ce3b9a | |||
| e2c6834584 | |||
| 0e7235ed73 | |||
| 3522e0ce74 | |||
| 50bf1f0b81 | |||
| c78e64622e | |||
| 5623628894 | |||
| 2aba180114 | |||
| 45b2c3d312 | |||
| 5b1e112cf9 | |||
| 5e6ac5c6e1 | |||
| 79317dc7a7 | |||
| 96a4c4b3d1 | |||
| 05bcfcc5d1 | |||
| 8cf0bdde45 | |||
| 813e5eae9b | |||
| 2ef236e3e3 | |||
| 532389fe9e | |||
| 08de54f1ea | |||
| 0cd0bd7217 | |||
| fe33d7cadf | |||
| a9542426d0 | |||
| f79cdc89db | |||
| 3d063519bf | |||
| 0b3bdb0d89 | |||
| 8f00ec31ca | |||
| 21f32e4af3 | |||
| 940979a229 | |||
| 4fc688625a | |||
| 23f4f323ea | |||
| 9ac3fc0d0a | |||
| 38806f381a | |||
| cfb3a6b3da | |||
| d8384e296e | |||
| d273422582 | |||
| fadb62f592 | |||
| e5eb89e111 | |||
| b5e0e6932a | |||
| 6ea779188c | |||
| 460c7e196c | |||
| 7aac506cdc | |||
| 374ee9e867 | |||
| 698aa0f3e5 | |||
| d3ca4a3a4f | |||
| c940b1fbbc | |||
| 4de24bcc56 | |||
| f2d0a472ef | |||
| 9ae0ecec7d | |||
| ce4f31f662 | |||
| 2c846bb614 | |||
| 8c86ccfbc9 | |||
| 8f96e7bc1d | |||
| 782fc3c72b | |||
| 1a67403fc6 | |||
| 3d801a4c01 | |||
| 2034ca99ae | |||
| 480b4ff882 | |||
| f570e589da | |||
| f9851af59b | |||
| eeebf9f664 | |||
| d9a50bf9a8 | |||
| 2984331c87 | |||
| 9b68682df2 | |||
| 8f5f89c9a0 | |||
| 8919f69362 | |||
| 19c867873a | |||
| e3dadb1d36 | |||
| c9b09a31e8 | |||
| 35571fe94b | |||
| 485f2b607a | |||
| 0c5d5c7e9a | |||
| 5f98a0363a | |||
| 2d739001d3 | |||
| 273babeec3 | |||
| a76dd6b7c6 | |||
| 2fa18d1545 | |||
| 537167aa1e | |||
| 0dac408f43 | |||
| 158e72427b | |||
| 0184ef291d | |||
| 2ca428c721 | |||
| 1311385f9d | |||
| 5f0a5b8f87 | |||
| 74e85c6944 |
@ -1,19 +0,0 @@
|
||||
# Aarch64 (ARM/Graviton) Support Scripts
|
||||
Scripts for building aarch64 PyTorch PIP Wheels. These scripts build the following wheels:
|
||||
* torch
|
||||
* torchvision
|
||||
* torchaudio
|
||||
* torchtext
|
||||
* torchdata
|
||||
## Aarch64_ci_build.sh
|
||||
This script is design to support CD operations within PyPi manylinux aarch64 container, and be executed in the container. It prepares the container and then executes __aarch64_wheel_ci_build.py__ to build the wheels. The script "assumes" the PyTorch repo is located at: ```/pytorch``` and will put the wheels into ```/artifacts```.
|
||||
### Usage
|
||||
```DESIRED_PYTHON=<PythonVersion> aarch64_ci_build.sh```
|
||||
|
||||
__NOTE:__ CI build is currently __EXPERMINTAL__
|
||||
|
||||
## Build_aarch64_wheel.py
|
||||
This app allows a person to build using AWS EC3 resources and requires AWS-CLI and Boto3 with AWS credentials to support building EC2 instances for the wheel builds. Can be used in a codebuild CD or from a local system.
|
||||
|
||||
### Usage
|
||||
```build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch <RCtag>```
|
||||
@ -1,53 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
|
||||
|
||||
# Set CUDA architecture lists to match x86 build_cuda.sh
|
||||
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
|
||||
fi
|
||||
|
||||
# Compress the fatbin with -compress-mode=size for CUDA 13
|
||||
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
|
||||
export TORCH_NVCC_FLAGS="-compress-mode=size"
|
||||
# Bundle ptxas into the cu13 wheel, see https://github.com/pytorch/pytorch/issues/163801
|
||||
export BUILD_BUNDLE_PTXAS=1
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
|
||||
source $SCRIPTPATH/aarch64_ci_setup.sh
|
||||
|
||||
###############################################################################
|
||||
# Run aarch64 builder python
|
||||
###############################################################################
|
||||
cd /
|
||||
# adding safe directory for git as the permissions will be
|
||||
# on the mounted pytorch repo
|
||||
git config --global --add safe.directory /pytorch
|
||||
pip install -r /pytorch/requirements.txt
|
||||
pip install auditwheel==6.2.0 wheel
|
||||
if [ "$DESIRED_CUDA" = "cpu" ]; then
|
||||
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
|
||||
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
|
||||
else
|
||||
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
|
||||
export USE_SYSTEM_NCCL=1
|
||||
|
||||
# Check if we should use NVIDIA libs from PyPI (similar to x86 build_cuda.sh logic)
|
||||
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
|
||||
echo "Bundling CUDA libraries with wheel for aarch64."
|
||||
else
|
||||
echo "Using nvidia libs from pypi for aarch64."
|
||||
echo "Updated PYTORCH_EXTRA_INSTALL_REQUIREMENTS for aarch64: $PYTORCH_EXTRA_INSTALL_REQUIREMENTS"
|
||||
export USE_NVIDIA_PYPI_LIBS=1
|
||||
fi
|
||||
|
||||
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
|
||||
fi
|
||||
@ -1,21 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
# This script is used to prepare the Docker container for aarch64_ci_wheel_build.py python script
|
||||
# By creating symlinks from desired /opt/python to /usr/local/bin/
|
||||
|
||||
NUMPY_VERSION=2.0.2
|
||||
if [[ "$DESIRED_PYTHON" == "3.13" || "$DESIRED_PYTHON" == "3.13t" ]]; then
|
||||
NUMPY_VERSION=2.1.2
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||
source $SCRIPTPATH/../manywheel/set_desired_python.sh
|
||||
|
||||
pip install -q numpy==${NUMPY_VERSION} pyyaml==6.0.2 scons==4.7.0 ninja==1.11.1 patchelf==0.17.2
|
||||
|
||||
for tool in python python3 pip pip3 ninja scons patchelf; do
|
||||
ln -sf ${DESIRED_PYTHON_BIN_DIR}/${tool} /usr/local/bin;
|
||||
done
|
||||
|
||||
python --version
|
||||
@ -1,333 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# encoding: UTF-8
|
||||
|
||||
import os
|
||||
import shutil
|
||||
from subprocess import check_call, check_output
|
||||
|
||||
|
||||
def list_dir(path: str) -> list[str]:
|
||||
"""'
|
||||
Helper for getting paths for Python
|
||||
"""
|
||||
return check_output(["ls", "-1", path]).decode().split("\n")
|
||||
|
||||
|
||||
def replace_tag(filename) -> None:
|
||||
with open(filename) as f:
|
||||
lines = f.readlines()
|
||||
for i, line in enumerate(lines):
|
||||
if line.startswith("Tag:"):
|
||||
lines[i] = line.replace("-linux_", "-manylinux_2_28_")
|
||||
print(f"Updated tag from {line} to {lines[i]}")
|
||||
break
|
||||
|
||||
with open(filename, "w") as f:
|
||||
f.writelines(lines)
|
||||
|
||||
|
||||
def patch_library_rpath(
|
||||
folder: str,
|
||||
lib_name: str,
|
||||
use_nvidia_pypi_libs: bool = False,
|
||||
desired_cuda: str = "",
|
||||
) -> None:
|
||||
"""Apply patchelf to set RPATH for a library in torch/lib"""
|
||||
lib_path = f"{folder}/tmp/torch/lib/{lib_name}"
|
||||
|
||||
if use_nvidia_pypi_libs:
|
||||
# For PyPI NVIDIA libraries, construct CUDA RPATH
|
||||
cuda_rpaths = [
|
||||
"$ORIGIN/../../nvidia/cudnn/lib",
|
||||
"$ORIGIN/../../nvidia/nvshmem/lib",
|
||||
"$ORIGIN/../../nvidia/nccl/lib",
|
||||
"$ORIGIN/../../nvidia/cusparselt/lib",
|
||||
]
|
||||
|
||||
if "130" in desired_cuda:
|
||||
cuda_rpaths.append("$ORIGIN/../../nvidia/cu13/lib")
|
||||
else:
|
||||
cuda_rpaths.extend(
|
||||
[
|
||||
"$ORIGIN/../../nvidia/cublas/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_cupti/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_nvrtc/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_runtime/lib",
|
||||
"$ORIGIN/../../nvidia/cufft/lib",
|
||||
"$ORIGIN/../../nvidia/curand/lib",
|
||||
"$ORIGIN/../../nvidia/cusolver/lib",
|
||||
"$ORIGIN/../../nvidia/cusparse/lib",
|
||||
"$ORIGIN/../../nvidia/nvtx/lib",
|
||||
"$ORIGIN/../../nvidia/cufile/lib",
|
||||
]
|
||||
)
|
||||
|
||||
# Add $ORIGIN for local torch libs
|
||||
rpath = ":".join(cuda_rpaths) + ":$ORIGIN"
|
||||
else:
|
||||
# For bundled libraries, just use $ORIGIN
|
||||
rpath = "$ORIGIN"
|
||||
|
||||
if os.path.exists(lib_path):
|
||||
os.system(
|
||||
f"cd {folder}/tmp/torch/lib/; "
|
||||
f"patchelf --set-rpath '{rpath}' --force-rpath {lib_name}"
|
||||
)
|
||||
|
||||
|
||||
def copy_and_patch_library(
|
||||
src_path: str,
|
||||
folder: str,
|
||||
use_nvidia_pypi_libs: bool = False,
|
||||
desired_cuda: str = "",
|
||||
) -> None:
|
||||
"""Copy a library to torch/lib and patch its RPATH"""
|
||||
if os.path.exists(src_path):
|
||||
lib_name = os.path.basename(src_path)
|
||||
shutil.copy2(src_path, f"{folder}/tmp/torch/lib/{lib_name}")
|
||||
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
|
||||
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
|
||||
"""
|
||||
Package the cuda wheel libraries
|
||||
"""
|
||||
folder = os.path.dirname(wheel_path)
|
||||
os.mkdir(f"{folder}/tmp")
|
||||
os.system(f"unzip {wheel_path} -d {folder}/tmp")
|
||||
# Delete original wheel since it will be repackaged
|
||||
os.system(f"rm {wheel_path}")
|
||||
|
||||
# Check if we should use PyPI NVIDIA libraries or bundle system libraries
|
||||
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
|
||||
|
||||
if use_nvidia_pypi_libs:
|
||||
print("Using nvidia libs from pypi - skipping CUDA library bundling")
|
||||
# For PyPI approach, we don't bundle CUDA libraries - they come from PyPI packages
|
||||
# We only need to bundle non-NVIDIA libraries
|
||||
minimal_libs_to_copy = [
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
]
|
||||
|
||||
# Copy minimal libraries to unzipped_folder/torch/lib
|
||||
for lib_path in minimal_libs_to_copy:
|
||||
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
# Patch torch libraries used for searching libraries
|
||||
torch_libs_to_patch = [
|
||||
"libtorch.so",
|
||||
"libtorch_cpu.so",
|
||||
"libtorch_cuda.so",
|
||||
"libtorch_cuda_linalg.so",
|
||||
"libtorch_global_deps.so",
|
||||
"libtorch_python.so",
|
||||
"libtorch_nvshmem.so",
|
||||
"libc10.so",
|
||||
"libc10_cuda.so",
|
||||
"libcaffe2_nvrtc.so",
|
||||
"libshm.so",
|
||||
]
|
||||
for lib_name in torch_libs_to_patch:
|
||||
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
|
||||
else:
|
||||
print("Bundling CUDA libraries with wheel")
|
||||
# Original logic for bundling system CUDA libraries
|
||||
# Common libraries for all CUDA versions
|
||||
common_libs = [
|
||||
# Non-NVIDIA system libraries
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
# Common CUDA libraries (same for all versions)
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0",
|
||||
"/usr/local/cuda/lib64/libcurand.so.10",
|
||||
"/usr/local/cuda/lib64/libnccl.so.2",
|
||||
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
|
||||
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
|
||||
"/usr/local/cuda/lib64/libcufile.so.0",
|
||||
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
|
||||
"/usr/local/cuda/lib64/libcusparse.so.12",
|
||||
]
|
||||
|
||||
# CUDA version-specific libraries
|
||||
if "13" in desired_cuda:
|
||||
minor_version = desired_cuda[-1]
|
||||
version_specific_libs = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
|
||||
"/usr/local/cuda/lib64/libcublas.so.13",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.13",
|
||||
"/usr/local/cuda/lib64/libcudart.so.13",
|
||||
"/usr/local/cuda/lib64/libcufft.so.12",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.12",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.13",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.13",
|
||||
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.{minor_version}",
|
||||
]
|
||||
elif "12" in desired_cuda:
|
||||
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
|
||||
minor_version = desired_cuda[-1]
|
||||
version_specific_libs = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
|
||||
"/usr/local/cuda/lib64/libcublas.so.12",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12",
|
||||
"/usr/local/cuda/lib64/libcudart.so.12",
|
||||
"/usr/local/cuda/lib64/libcufft.so.11",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.11",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.12",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12",
|
||||
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
|
||||
]
|
||||
else:
|
||||
raise ValueError(f"Unsupported CUDA version: {desired_cuda}.")
|
||||
|
||||
# Combine all libraries
|
||||
libs_to_copy = common_libs + version_specific_libs
|
||||
|
||||
# Copy libraries to unzipped_folder/torch/lib
|
||||
for lib_path in libs_to_copy:
|
||||
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
# Make sure the wheel is tagged with manylinux_2_28
|
||||
for f in os.scandir(f"{folder}/tmp/"):
|
||||
if f.is_dir() and f.name.endswith(".dist-info"):
|
||||
replace_tag(f"{f.path}/WHEEL")
|
||||
break
|
||||
|
||||
os.system(f"wheel pack {folder}/tmp/ -d {folder}")
|
||||
os.system(f"rm -rf {folder}/tmp/")
|
||||
|
||||
|
||||
def complete_wheel(folder: str) -> str:
|
||||
"""
|
||||
Complete wheel build and put in artifact location
|
||||
"""
|
||||
wheel_name = list_dir(f"/{folder}/dist")[0]
|
||||
|
||||
# Please note for cuda we don't run auditwheel since we use custom script to package
|
||||
# the cuda dependencies to the wheel file using update_wheel() method.
|
||||
# However we need to make sure filename reflects the correct Manylinux platform.
|
||||
if "pytorch" in folder and not enable_cuda:
|
||||
print("Repairing Wheel with AuditWheel")
|
||||
check_call(["auditwheel", "repair", f"dist/{wheel_name}"], cwd=folder)
|
||||
repaired_wheel_name = list_dir(f"/{folder}/wheelhouse")[0]
|
||||
|
||||
print(f"Moving {repaired_wheel_name} wheel to /{folder}/dist")
|
||||
os.rename(
|
||||
f"/{folder}/wheelhouse/{repaired_wheel_name}",
|
||||
f"/{folder}/dist/{repaired_wheel_name}",
|
||||
)
|
||||
else:
|
||||
repaired_wheel_name = list_dir(f"/{folder}/dist")[0]
|
||||
|
||||
print(f"Copying {repaired_wheel_name} to artifacts")
|
||||
shutil.copy2(
|
||||
f"/{folder}/dist/{repaired_wheel_name}", f"/artifacts/{repaired_wheel_name}"
|
||||
)
|
||||
|
||||
return repaired_wheel_name
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""
|
||||
Parse inline arguments
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
|
||||
parser = ArgumentParser("AARCH64 wheels python CD")
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
parser.add_argument("--build-only", action="store_true")
|
||||
parser.add_argument("--test-only", type=str)
|
||||
parser.add_argument("--enable-mkldnn", action="store_true")
|
||||
parser.add_argument("--enable-cuda", action="store_true")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Entry Point
|
||||
"""
|
||||
args = parse_arguments()
|
||||
enable_mkldnn = args.enable_mkldnn
|
||||
enable_cuda = args.enable_cuda
|
||||
branch = check_output(
|
||||
["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd="/pytorch"
|
||||
).decode()
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_vars = ""
|
||||
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
|
||||
if enable_cuda:
|
||||
build_vars += "MAX_JOBS=5 "
|
||||
|
||||
# Handle PyPI NVIDIA libraries vs bundled libraries
|
||||
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
|
||||
if use_nvidia_pypi_libs:
|
||||
print("Configuring build for PyPI NVIDIA libraries")
|
||||
# Configure for dynamic linking (matching x86 logic)
|
||||
build_vars += "ATEN_STATIC_CUDA=0 USE_CUDA_STATIC_LINK=0 USE_CUPTI_SO=1 "
|
||||
else:
|
||||
print("Configuring build for bundled NVIDIA libraries")
|
||||
# Keep existing static linking approach - already configured above
|
||||
|
||||
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
|
||||
desired_cuda = os.getenv("DESIRED_CUDA")
|
||||
if override_package_version is not None:
|
||||
version = override_package_version
|
||||
build_vars += (
|
||||
f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version} PYTORCH_BUILD_NUMBER=1 "
|
||||
)
|
||||
elif branch in ["nightly", "main"]:
|
||||
build_date = (
|
||||
check_output(["git", "log", "--pretty=format:%cs", "-1"], cwd="/pytorch")
|
||||
.decode()
|
||||
.replace("-", "")
|
||||
)
|
||||
version = (
|
||||
check_output(["cat", "version.txt"], cwd="/pytorch").decode().strip()[:-2]
|
||||
)
|
||||
if enable_cuda:
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date}+{desired_cuda} PYTORCH_BUILD_NUMBER=1 "
|
||||
else:
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1 "
|
||||
elif branch.startswith(("v1.", "v2.")):
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
|
||||
|
||||
if enable_mkldnn:
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += "USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
|
||||
build_vars += "ACL_ROOT_DIR=/acl "
|
||||
if enable_cuda:
|
||||
build_vars += "BLAS=NVPL "
|
||||
else:
|
||||
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/opt/OpenBLAS "
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
|
||||
os.system(f"cd /pytorch; {build_vars} python3 -m build --wheel --no-isolation")
|
||||
if enable_cuda:
|
||||
print("Updating Cuda Dependency")
|
||||
filename = os.listdir("/pytorch/dist/")
|
||||
wheel_path = f"/pytorch/dist/{filename[0]}"
|
||||
package_cuda_wheel(wheel_path, desired_cuda)
|
||||
pytorch_wheel_name = complete_wheel("/pytorch/")
|
||||
print(f"Build Complete. Created {pytorch_wheel_name}..")
|
||||
@ -1,999 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# This script is for building AARCH64 wheels using AWS EC2 instances.
|
||||
# To generate binaries for the release follow these steps:
|
||||
# 1. Update mappings for each of the Domain Libraries by adding new row to a table like this:
|
||||
# "v1.11.0": ("0.11.0", "rc1"),
|
||||
# 2. Run script with following arguments for each of the supported python versions and required tag, for example:
|
||||
# build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch v1.11.0-rc3
|
||||
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from typing import Optional, Union
|
||||
|
||||
import boto3
|
||||
|
||||
|
||||
# AMI images for us-east-1, change the following based on your ~/.aws/config
|
||||
os_amis = {
|
||||
"ubuntu20_04": "ami-052eac90edaa9d08f", # login_name: ubuntu
|
||||
"ubuntu22_04": "ami-0c6c29c5125214c77", # login_name: ubuntu
|
||||
"redhat8": "ami-0698b90665a2ddcf1", # login_name: ec2-user
|
||||
}
|
||||
|
||||
ubuntu20_04_ami = os_amis["ubuntu20_04"]
|
||||
|
||||
|
||||
def compute_keyfile_path(key_name: Optional[str] = None) -> tuple[str, str]:
|
||||
if key_name is None:
|
||||
key_name = os.getenv("AWS_KEY_NAME")
|
||||
if key_name is None:
|
||||
return os.getenv("SSH_KEY_PATH", ""), ""
|
||||
|
||||
homedir_path = os.path.expanduser("~")
|
||||
default_path = os.path.join(homedir_path, ".ssh", f"{key_name}.pem")
|
||||
return os.getenv("SSH_KEY_PATH", default_path), key_name
|
||||
|
||||
|
||||
ec2 = boto3.resource("ec2")
|
||||
|
||||
|
||||
def ec2_get_instances(filter_name, filter_value):
|
||||
return ec2.instances.filter(
|
||||
Filters=[{"Name": filter_name, "Values": [filter_value]}]
|
||||
)
|
||||
|
||||
|
||||
def ec2_instances_of_type(instance_type="t4g.2xlarge"):
|
||||
return ec2_get_instances("instance-type", instance_type)
|
||||
|
||||
|
||||
def ec2_instances_by_id(instance_id):
|
||||
rc = list(ec2_get_instances("instance-id", instance_id))
|
||||
return rc[0] if len(rc) > 0 else None
|
||||
|
||||
|
||||
def start_instance(
|
||||
key_name, ami=ubuntu20_04_ami, instance_type="t4g.2xlarge", ebs_size: int = 50
|
||||
):
|
||||
inst = ec2.create_instances(
|
||||
ImageId=ami,
|
||||
InstanceType=instance_type,
|
||||
SecurityGroups=["ssh-allworld"],
|
||||
KeyName=key_name,
|
||||
MinCount=1,
|
||||
MaxCount=1,
|
||||
BlockDeviceMappings=[
|
||||
{
|
||||
"DeviceName": "/dev/sda1",
|
||||
"Ebs": {
|
||||
"DeleteOnTermination": True,
|
||||
"VolumeSize": ebs_size,
|
||||
"VolumeType": "standard",
|
||||
},
|
||||
}
|
||||
],
|
||||
)[0]
|
||||
print(f"Create instance {inst.id}")
|
||||
inst.wait_until_running()
|
||||
running_inst = ec2_instances_by_id(inst.id)
|
||||
print(f"Instance started at {running_inst.public_dns_name}")
|
||||
return running_inst
|
||||
|
||||
|
||||
class RemoteHost:
|
||||
addr: str
|
||||
keyfile_path: str
|
||||
login_name: str
|
||||
container_id: Optional[str] = None
|
||||
ami: Optional[str] = None
|
||||
|
||||
def __init__(self, addr: str, keyfile_path: str, login_name: str = "ubuntu"):
|
||||
self.addr = addr
|
||||
self.keyfile_path = keyfile_path
|
||||
self.login_name = login_name
|
||||
|
||||
def _gen_ssh_prefix(self) -> list[str]:
|
||||
return [
|
||||
"ssh",
|
||||
"-o",
|
||||
"StrictHostKeyChecking=no",
|
||||
"-i",
|
||||
self.keyfile_path,
|
||||
f"{self.login_name}@{self.addr}",
|
||||
"--",
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _split_cmd(args: Union[str, list[str]]) -> list[str]:
|
||||
return args.split() if isinstance(args, str) else args
|
||||
|
||||
def run_ssh_cmd(self, args: Union[str, list[str]]) -> None:
|
||||
subprocess.check_call(self._gen_ssh_prefix() + self._split_cmd(args))
|
||||
|
||||
def check_ssh_output(self, args: Union[str, list[str]]) -> str:
|
||||
return subprocess.check_output(
|
||||
self._gen_ssh_prefix() + self._split_cmd(args)
|
||||
).decode("utf-8")
|
||||
|
||||
def scp_upload_file(self, local_file: str, remote_file: str) -> None:
|
||||
subprocess.check_call(
|
||||
[
|
||||
"scp",
|
||||
"-i",
|
||||
self.keyfile_path,
|
||||
local_file,
|
||||
f"{self.login_name}@{self.addr}:{remote_file}",
|
||||
]
|
||||
)
|
||||
|
||||
def scp_download_file(
|
||||
self, remote_file: str, local_file: Optional[str] = None
|
||||
) -> None:
|
||||
if local_file is None:
|
||||
local_file = "."
|
||||
subprocess.check_call(
|
||||
[
|
||||
"scp",
|
||||
"-i",
|
||||
self.keyfile_path,
|
||||
f"{self.login_name}@{self.addr}:{remote_file}",
|
||||
local_file,
|
||||
]
|
||||
)
|
||||
|
||||
def start_docker(self, image="quay.io/pypa/manylinux2014_aarch64:latest") -> None:
|
||||
self.run_ssh_cmd("sudo apt-get install -y docker.io")
|
||||
self.run_ssh_cmd(f"sudo usermod -a -G docker {self.login_name}")
|
||||
self.run_ssh_cmd("sudo service docker start")
|
||||
self.run_ssh_cmd(f"docker pull {image}")
|
||||
self.container_id = self.check_ssh_output(
|
||||
f"docker run -t -d -w /root {image}"
|
||||
).strip()
|
||||
|
||||
def using_docker(self) -> bool:
|
||||
return self.container_id is not None
|
||||
|
||||
def run_cmd(self, args: Union[str, list[str]]) -> None:
|
||||
if not self.using_docker():
|
||||
return self.run_ssh_cmd(args)
|
||||
assert self.container_id is not None
|
||||
docker_cmd = self._gen_ssh_prefix() + [
|
||||
"docker",
|
||||
"exec",
|
||||
"-i",
|
||||
self.container_id,
|
||||
"bash",
|
||||
]
|
||||
p = subprocess.Popen(docker_cmd, stdin=subprocess.PIPE)
|
||||
p.communicate(
|
||||
input=" ".join(["source .bashrc && "] + self._split_cmd(args)).encode(
|
||||
"utf-8"
|
||||
)
|
||||
)
|
||||
rc = p.wait()
|
||||
if rc != 0:
|
||||
raise subprocess.CalledProcessError(rc, docker_cmd)
|
||||
|
||||
def check_output(self, args: Union[str, list[str]]) -> str:
|
||||
if not self.using_docker():
|
||||
return self.check_ssh_output(args)
|
||||
assert self.container_id is not None
|
||||
docker_cmd = self._gen_ssh_prefix() + [
|
||||
"docker",
|
||||
"exec",
|
||||
"-i",
|
||||
self.container_id,
|
||||
"bash",
|
||||
]
|
||||
p = subprocess.Popen(docker_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
|
||||
(out, err) = p.communicate(
|
||||
input=" ".join(["source .bashrc && "] + self._split_cmd(args)).encode(
|
||||
"utf-8"
|
||||
)
|
||||
)
|
||||
rc = p.wait()
|
||||
if rc != 0:
|
||||
raise subprocess.CalledProcessError(rc, docker_cmd, output=out, stderr=err)
|
||||
return out.decode("utf-8")
|
||||
|
||||
def upload_file(self, local_file: str, remote_file: str) -> None:
|
||||
if not self.using_docker():
|
||||
return self.scp_upload_file(local_file, remote_file)
|
||||
tmp_file = os.path.join("/tmp", os.path.basename(local_file))
|
||||
self.scp_upload_file(local_file, tmp_file)
|
||||
self.run_ssh_cmd(
|
||||
["docker", "cp", tmp_file, f"{self.container_id}:/root/{remote_file}"]
|
||||
)
|
||||
self.run_ssh_cmd(["rm", tmp_file])
|
||||
|
||||
def download_file(self, remote_file: str, local_file: Optional[str] = None) -> None:
|
||||
if not self.using_docker():
|
||||
return self.scp_download_file(remote_file, local_file)
|
||||
tmp_file = os.path.join("/tmp", os.path.basename(remote_file))
|
||||
self.run_ssh_cmd(
|
||||
["docker", "cp", f"{self.container_id}:/root/{remote_file}", tmp_file]
|
||||
)
|
||||
self.scp_download_file(tmp_file, local_file)
|
||||
self.run_ssh_cmd(["rm", tmp_file])
|
||||
|
||||
def download_wheel(
|
||||
self, remote_file: str, local_file: Optional[str] = None
|
||||
) -> None:
|
||||
if self.using_docker() and local_file is None:
|
||||
basename = os.path.basename(remote_file)
|
||||
local_file = basename.replace(
|
||||
"-linux_aarch64.whl", "-manylinux2014_aarch64.whl"
|
||||
)
|
||||
self.download_file(remote_file, local_file)
|
||||
|
||||
def list_dir(self, path: str) -> list[str]:
|
||||
return self.check_output(["ls", "-1", path]).split("\n")
|
||||
|
||||
|
||||
def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
|
||||
import socket
|
||||
|
||||
for i in range(attempt_cnt):
|
||||
try:
|
||||
with socket.create_connection((addr, port), timeout=timeout):
|
||||
return
|
||||
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
|
||||
if i == attempt_cnt - 1:
|
||||
raise
|
||||
time.sleep(timeout)
|
||||
|
||||
|
||||
def update_apt_repo(host: RemoteHost) -> None:
|
||||
time.sleep(5)
|
||||
host.run_cmd("sudo systemctl stop apt-daily.service || true")
|
||||
host.run_cmd("sudo systemctl stop unattended-upgrades.service || true")
|
||||
host.run_cmd(
|
||||
"while systemctl is-active --quiet apt-daily.service; do sleep 1; done"
|
||||
)
|
||||
host.run_cmd(
|
||||
"while systemctl is-active --quiet unattended-upgrades.service; do sleep 1; done"
|
||||
)
|
||||
host.run_cmd("sudo apt-get update")
|
||||
time.sleep(3)
|
||||
host.run_cmd("sudo apt-get update")
|
||||
|
||||
|
||||
def install_condaforge(
|
||||
host: RemoteHost, suffix: str = "latest/download/Miniforge3-Linux-aarch64.sh"
|
||||
) -> None:
|
||||
print("Install conda-forge")
|
||||
host.run_cmd(f"curl -OL https://github.com/conda-forge/miniforge/releases/{suffix}")
|
||||
host.run_cmd(f"sh -f {os.path.basename(suffix)} -b")
|
||||
host.run_cmd(f"rm -f {os.path.basename(suffix)}")
|
||||
if host.using_docker():
|
||||
host.run_cmd("echo 'PATH=$HOME/miniforge3/bin:$PATH'>>.bashrc")
|
||||
else:
|
||||
host.run_cmd(
|
||||
[
|
||||
"sed",
|
||||
"-i",
|
||||
"'/^# If not running interactively.*/i PATH=$HOME/miniforge3/bin:$PATH'",
|
||||
".bashrc",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def install_condaforge_python(host: RemoteHost, python_version="3.8") -> None:
|
||||
if python_version == "3.6":
|
||||
# Python-3.6 EOLed and not compatible with conda-4.11
|
||||
install_condaforge(
|
||||
host, suffix="download/4.10.3-10/Miniforge3-4.10.3-10-Linux-aarch64.sh"
|
||||
)
|
||||
host.run_cmd(f"conda install -y python={python_version} numpy pyyaml")
|
||||
else:
|
||||
install_condaforge(
|
||||
host, suffix="download/4.11.0-4/Miniforge3-4.11.0-4-Linux-aarch64.sh"
|
||||
)
|
||||
# Pytorch-1.10 or older are not compatible with setuptools=59.6 or newer
|
||||
host.run_cmd(
|
||||
f"conda install -y python={python_version} numpy pyyaml setuptools>=59.5.0"
|
||||
)
|
||||
|
||||
|
||||
def embed_libgomp(host: RemoteHost, use_conda, wheel_name) -> None:
|
||||
host.run_cmd("pip3 install auditwheel")
|
||||
host.run_cmd(
|
||||
"conda install -y patchelf" if use_conda else "sudo apt-get install -y patchelf"
|
||||
)
|
||||
from tempfile import NamedTemporaryFile
|
||||
|
||||
with NamedTemporaryFile() as tmp:
|
||||
tmp.write(embed_library_script.encode("utf-8"))
|
||||
tmp.flush()
|
||||
host.upload_file(tmp.name, "embed_library.py")
|
||||
|
||||
print("Embedding libgomp into wheel")
|
||||
if host.using_docker():
|
||||
host.run_cmd(f"python3 embed_library.py {wheel_name} --update-tag")
|
||||
else:
|
||||
host.run_cmd(f"python3 embed_library.py {wheel_name}")
|
||||
|
||||
|
||||
def checkout_repo(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
url: str,
|
||||
git_clone_flags: str,
|
||||
mapping: dict[str, tuple[str, str]],
|
||||
) -> Optional[str]:
|
||||
for prefix in mapping:
|
||||
if not branch.startswith(prefix):
|
||||
continue
|
||||
tag = f"v{mapping[prefix][0]}-{mapping[prefix][1]}"
|
||||
host.run_cmd(f"git clone {url} -b {tag} {git_clone_flags}")
|
||||
return mapping[prefix][0]
|
||||
|
||||
host.run_cmd(f"git clone {url} -b {branch} {git_clone_flags}")
|
||||
return None
|
||||
|
||||
|
||||
def build_torchvision(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str,
|
||||
run_smoke_tests: bool = True,
|
||||
) -> str:
|
||||
print("Checking out TorchVision repo")
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/vision",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.7.1": ("0.8.2", "rc2"),
|
||||
"v1.8.0": ("0.9.0", "rc3"),
|
||||
"v1.8.1": ("0.9.1", "rc1"),
|
||||
"v1.9.0": ("0.10.0", "rc1"),
|
||||
"v1.10.0": ("0.11.1", "rc1"),
|
||||
"v1.10.1": ("0.11.2", "rc1"),
|
||||
"v1.10.2": ("0.11.3", "rc1"),
|
||||
"v1.11.0": ("0.12.0", "rc1"),
|
||||
"v1.12.0": ("0.13.0", "rc4"),
|
||||
"v1.12.1": ("0.13.1", "rc6"),
|
||||
"v1.13.0": ("0.14.0", "rc4"),
|
||||
"v1.13.1": ("0.14.1", "rc2"),
|
||||
"v2.0.0": ("0.15.1", "rc2"),
|
||||
"v2.0.1": ("0.15.2", "rc2"),
|
||||
},
|
||||
)
|
||||
print("Building TorchVision wheel")
|
||||
|
||||
# Please note libnpg and jpeg are required to build image.so extension
|
||||
if use_conda:
|
||||
host.run_cmd("conda install -y libpng jpeg")
|
||||
# Remove .so files to force static linking
|
||||
host.run_cmd(
|
||||
"rm miniforge3/lib/libpng.so miniforge3/lib/libpng16.so miniforge3/lib/libjpeg.so"
|
||||
)
|
||||
# And patch setup.py to include libz dependency for libpng
|
||||
host.run_cmd(
|
||||
[
|
||||
'sed -i -e \'s/image_link_flags\\.append("png")/image_link_flags += ["png", "z"]/\' vision/setup.py'
|
||||
]
|
||||
)
|
||||
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = host.check_output(
|
||||
["if [ -f vision/version.txt ]; then cat vision/version.txt; fi"]
|
||||
).strip()
|
||||
if len(version) == 0:
|
||||
# In older revisions, version was embedded in setup.py
|
||||
version = (
|
||||
host.check_output(["grep", '"version = \'"', "vision/setup.py"])
|
||||
.strip()
|
||||
.split("'")[1][:-2]
|
||||
)
|
||||
build_date = (
|
||||
host.check_output("cd vision && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd vision && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
vision_wheel_name = host.list_dir("vision/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("vision", "dist", vision_wheel_name))
|
||||
|
||||
print("Copying TorchVision wheel")
|
||||
host.download_wheel(os.path.join("vision", "dist", vision_wheel_name))
|
||||
if run_smoke_tests:
|
||||
host.run_cmd(
|
||||
f"pip3 install {os.path.join('vision', 'dist', vision_wheel_name)}"
|
||||
)
|
||||
host.run_cmd("python3 vision/test/smoke_test.py")
|
||||
print("Delete vision checkout")
|
||||
host.run_cmd("rm -rf vision")
|
||||
|
||||
return vision_wheel_name
|
||||
|
||||
|
||||
def build_torchdata(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> str:
|
||||
print("Checking out TorchData repo")
|
||||
git_clone_flags += " --recurse-submodules"
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/data",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.13.1": ("0.5.1", ""),
|
||||
"v2.0.0": ("0.6.0", "rc5"),
|
||||
"v2.0.1": ("0.6.1", "rc1"),
|
||||
},
|
||||
)
|
||||
print("Building TorchData wheel")
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = host.check_output(
|
||||
["if [ -f data/version.txt ]; then cat data/version.txt; fi"]
|
||||
).strip()
|
||||
build_date = (
|
||||
host.check_output("cd data && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd data && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
wheel_name = host.list_dir("data/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("data", "dist", wheel_name))
|
||||
|
||||
print("Copying TorchData wheel")
|
||||
host.download_wheel(os.path.join("data", "dist", wheel_name))
|
||||
|
||||
return wheel_name
|
||||
|
||||
|
||||
def build_torchtext(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> str:
|
||||
print("Checking out TorchText repo")
|
||||
git_clone_flags += " --recurse-submodules"
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/text",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.9.0": ("0.10.0", "rc1"),
|
||||
"v1.10.0": ("0.11.0", "rc2"),
|
||||
"v1.10.1": ("0.11.1", "rc1"),
|
||||
"v1.10.2": ("0.11.2", "rc1"),
|
||||
"v1.11.0": ("0.12.0", "rc1"),
|
||||
"v1.12.0": ("0.13.0", "rc2"),
|
||||
"v1.12.1": ("0.13.1", "rc5"),
|
||||
"v1.13.0": ("0.14.0", "rc3"),
|
||||
"v1.13.1": ("0.14.1", "rc1"),
|
||||
"v2.0.0": ("0.15.1", "rc2"),
|
||||
"v2.0.1": ("0.15.2", "rc2"),
|
||||
},
|
||||
)
|
||||
print("Building TorchText wheel")
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = host.check_output(
|
||||
["if [ -f text/version.txt ]; then cat text/version.txt; fi"]
|
||||
).strip()
|
||||
build_date = (
|
||||
host.check_output("cd text && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd text && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
wheel_name = host.list_dir("text/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("text", "dist", wheel_name))
|
||||
|
||||
print("Copying TorchText wheel")
|
||||
host.download_wheel(os.path.join("text", "dist", wheel_name))
|
||||
|
||||
return wheel_name
|
||||
|
||||
|
||||
def build_torchaudio(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> str:
|
||||
print("Checking out TorchAudio repo")
|
||||
git_clone_flags += " --recurse-submodules"
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/audio",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.9.0": ("0.9.0", "rc2"),
|
||||
"v1.10.0": ("0.10.0", "rc5"),
|
||||
"v1.10.1": ("0.10.1", "rc1"),
|
||||
"v1.10.2": ("0.10.2", "rc1"),
|
||||
"v1.11.0": ("0.11.0", "rc1"),
|
||||
"v1.12.0": ("0.12.0", "rc3"),
|
||||
"v1.12.1": ("0.12.1", "rc5"),
|
||||
"v1.13.0": ("0.13.0", "rc4"),
|
||||
"v1.13.1": ("0.13.1", "rc2"),
|
||||
"v2.0.0": ("2.0.1", "rc3"),
|
||||
"v2.0.1": ("2.0.2", "rc2"),
|
||||
},
|
||||
)
|
||||
print("Building TorchAudio wheel")
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = (
|
||||
host.check_output(["grep", '"version = \'"', "audio/setup.py"])
|
||||
.strip()
|
||||
.split("'")[1][:-2]
|
||||
)
|
||||
build_date = (
|
||||
host.check_output("cd audio && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(
|
||||
f"cd audio && export FFMPEG_ROOT=$(pwd)/third_party/ffmpeg && export USE_FFMPEG=1 \
|
||||
&& ./packaging/ffmpeg/build.sh \
|
||||
&& {build_vars} python3 -m build --wheel --no-isolation"
|
||||
)
|
||||
|
||||
wheel_name = host.list_dir("audio/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("audio", "dist", wheel_name))
|
||||
|
||||
print("Copying TorchAudio wheel")
|
||||
host.download_wheel(os.path.join("audio", "dist", wheel_name))
|
||||
|
||||
return wheel_name
|
||||
|
||||
|
||||
def configure_system(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
compiler: str = "gcc-8",
|
||||
use_conda: bool = True,
|
||||
python_version: str = "3.8",
|
||||
) -> None:
|
||||
if use_conda:
|
||||
install_condaforge_python(host, python_version)
|
||||
|
||||
print("Configuring the system")
|
||||
if not host.using_docker():
|
||||
update_apt_repo(host)
|
||||
host.run_cmd("sudo apt-get install -y ninja-build g++ git cmake gfortran unzip")
|
||||
else:
|
||||
host.run_cmd("yum install -y sudo")
|
||||
host.run_cmd("conda install -y ninja scons")
|
||||
|
||||
if not use_conda:
|
||||
host.run_cmd(
|
||||
"sudo apt-get install -y python3-dev python3-yaml python3-setuptools python3-wheel python3-pip"
|
||||
)
|
||||
host.run_cmd("pip3 install dataclasses typing-extensions")
|
||||
if not use_conda:
|
||||
print("Installing Cython + numpy from PyPy")
|
||||
host.run_cmd("sudo pip3 install Cython")
|
||||
host.run_cmd("sudo pip3 install numpy")
|
||||
|
||||
|
||||
def build_domains(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> tuple[str, str, str, str]:
|
||||
vision_wheel_name = build_torchvision(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
audio_wheel_name = build_torchaudio(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
data_wheel_name = build_torchdata(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
text_wheel_name = build_torchtext(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
return (vision_wheel_name, audio_wheel_name, data_wheel_name, text_wheel_name)
|
||||
|
||||
|
||||
def start_build(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
compiler: str = "gcc-8",
|
||||
use_conda: bool = True,
|
||||
python_version: str = "3.8",
|
||||
pytorch_only: bool = False,
|
||||
pytorch_build_number: Optional[str] = None,
|
||||
shallow_clone: bool = True,
|
||||
enable_mkldnn: bool = False,
|
||||
) -> tuple[str, str, str, str, str]:
|
||||
git_clone_flags = " --depth 1 --shallow-submodules" if shallow_clone else ""
|
||||
if host.using_docker() and not use_conda:
|
||||
print("Auto-selecting conda option for docker images")
|
||||
use_conda = True
|
||||
if not host.using_docker():
|
||||
print("Disable mkldnn for host builds")
|
||||
enable_mkldnn = False
|
||||
|
||||
configure_system(
|
||||
host, compiler=compiler, use_conda=use_conda, python_version=python_version
|
||||
)
|
||||
|
||||
if host.using_docker():
|
||||
print("Move libgfortant.a into a standard location")
|
||||
# HACK: pypa gforntran.a is compiled without PIC, which leads to the following error
|
||||
# libgfortran.a(error.o)(.text._gfortrani_st_printf+0x34): unresolvable R_AARCH64_ADR_PREL_PG_HI21 relocation against symbol `__stack_chk_guard@@GLIBC_2.17' # noqa: E501, B950
|
||||
# Workaround by copying gfortran library from the host
|
||||
host.run_ssh_cmd("sudo apt-get install -y gfortran-8")
|
||||
host.run_cmd("mkdir -p /usr/lib/gcc/aarch64-linux-gnu/8")
|
||||
host.run_ssh_cmd(
|
||||
[
|
||||
"docker",
|
||||
"cp",
|
||||
"/usr/lib/gcc/aarch64-linux-gnu/8/libgfortran.a",
|
||||
f"{host.container_id}:/opt/rh/devtoolset-10/root/usr/lib/gcc/aarch64-redhat-linux/10/",
|
||||
]
|
||||
)
|
||||
|
||||
print("Checking out PyTorch repo")
|
||||
host.run_cmd(
|
||||
f"git clone --recurse-submodules -b {branch} https://github.com/pytorch/pytorch {git_clone_flags}"
|
||||
)
|
||||
|
||||
host.run_cmd("pytorch/.ci/docker/common/install_openblas.sh")
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_opts = ""
|
||||
if pytorch_build_number is not None:
|
||||
build_opts += f" -C--build-option=--build-number={pytorch_build_number}"
|
||||
# Breakpad build fails on aarch64
|
||||
build_vars = "USE_BREAKPAD=0 "
|
||||
if branch == "nightly":
|
||||
build_date = (
|
||||
host.check_output("cd pytorch && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
version = host.check_output("cat pytorch/version.txt").strip()[:-2]
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1"
|
||||
if branch.startswith(("v1.", "v2.")):
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
if enable_mkldnn:
|
||||
host.run_cmd("pytorch/.ci/docker/common/install_acl.sh")
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += " USE_MKLDNN=ON USE_MKLDNN_ACL=ON"
|
||||
build_vars += " BLAS=OpenBLAS"
|
||||
build_vars += " OpenBLAS_HOME=/opt/OpenBLAS"
|
||||
build_vars += " ACL_ROOT_DIR=/acl"
|
||||
host.run_cmd(
|
||||
f"cd $HOME/pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
|
||||
)
|
||||
print("Repair the wheel")
|
||||
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
|
||||
ld_library_path = "/acl/build:$HOME/pytorch/build/lib"
|
||||
host.run_cmd(
|
||||
f"export LD_LIBRARY_PATH={ld_library_path} && auditwheel repair $HOME/pytorch/dist/{pytorch_wheel_name}"
|
||||
)
|
||||
print("replace the original wheel with the repaired one")
|
||||
pytorch_repaired_wheel_name = host.list_dir("wheelhouse")[0]
|
||||
host.run_cmd(
|
||||
f"cp $HOME/wheelhouse/{pytorch_repaired_wheel_name} $HOME/pytorch/dist/{pytorch_wheel_name}"
|
||||
)
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
host.run_cmd(
|
||||
f"cd pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
|
||||
)
|
||||
|
||||
print("Deleting build folder")
|
||||
host.run_cmd("cd pytorch && rm -rf build")
|
||||
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("pytorch", "dist", pytorch_wheel_name))
|
||||
print("Copying the wheel")
|
||||
host.download_wheel(os.path.join("pytorch", "dist", pytorch_wheel_name))
|
||||
|
||||
print("Installing PyTorch wheel")
|
||||
host.run_cmd(f"pip3 install pytorch/dist/{pytorch_wheel_name}")
|
||||
|
||||
if pytorch_only:
|
||||
return (pytorch_wheel_name, None, None, None, None)
|
||||
domain_wheels = build_domains(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
|
||||
return (pytorch_wheel_name, *domain_wheels)
|
||||
|
||||
|
||||
embed_library_script = """
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from auditwheel.patcher import Patchelf
|
||||
from auditwheel.wheeltools import InWheelCtx
|
||||
from auditwheel.elfutils import elf_file_filter
|
||||
from auditwheel.repair import copylib
|
||||
from auditwheel.lddtree import lddtree
|
||||
from subprocess import check_call
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
|
||||
def replace_tag(filename):
|
||||
with open(filename, 'r') as f:
|
||||
lines = f.read().split("\\n")
|
||||
for i,line in enumerate(lines):
|
||||
if not line.startswith("Tag: "):
|
||||
continue
|
||||
lines[i] = line.replace("-linux_", "-manylinux2014_")
|
||||
print(f'Updated tag from {line} to {lines[i]}')
|
||||
|
||||
with open(filename, 'w') as f:
|
||||
f.write("\\n".join(lines))
|
||||
|
||||
|
||||
class AlignedPatchelf(Patchelf):
|
||||
def set_soname(self, file_name: str, new_soname: str) -> None:
|
||||
check_call(['patchelf', '--page-size', '65536', '--set-soname', new_soname, file_name])
|
||||
|
||||
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
|
||||
check_call(['patchelf', '--page-size', '65536', '--replace-needed', soname, new_soname, file_name])
|
||||
|
||||
|
||||
def embed_library(whl_path, lib_soname, update_tag=False):
|
||||
patcher = AlignedPatchelf()
|
||||
out_dir = TemporaryDirectory()
|
||||
whl_name = os.path.basename(whl_path)
|
||||
tmp_whl_name = os.path.join(out_dir.name, whl_name)
|
||||
with InWheelCtx(whl_path) as ctx:
|
||||
torchlib_path = os.path.join(ctx._tmpdir.name, 'torch', 'lib')
|
||||
ctx.out_wheel=tmp_whl_name
|
||||
new_lib_path, new_lib_soname = None, None
|
||||
for filename, elf in elf_file_filter(ctx.iter_files()):
|
||||
if not filename.startswith('torch/lib'):
|
||||
continue
|
||||
libtree = lddtree(filename)
|
||||
if lib_soname not in libtree['needed']:
|
||||
continue
|
||||
lib_path = libtree['libs'][lib_soname]['path']
|
||||
if lib_path is None:
|
||||
print(f"Can't embed {lib_soname} as it could not be found")
|
||||
break
|
||||
if lib_path.startswith(torchlib_path):
|
||||
continue
|
||||
|
||||
if new_lib_path is None:
|
||||
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
|
||||
patcher.replace_needed(filename, lib_soname, new_lib_soname)
|
||||
print(f'Replacing {lib_soname} with {new_lib_soname} for {filename}')
|
||||
if update_tag:
|
||||
# Add manylinux2014 tag
|
||||
for filename in ctx.iter_files():
|
||||
if os.path.basename(filename) != 'WHEEL':
|
||||
continue
|
||||
replace_tag(filename)
|
||||
shutil.move(tmp_whl_name, whl_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
embed_library(sys.argv[1], 'libgomp.so.1', len(sys.argv) > 2 and sys.argv[2] == '--update-tag')
|
||||
"""
|
||||
|
||||
|
||||
def run_tests(host: RemoteHost, whl: str, branch="main") -> None:
|
||||
print("Configuring the system")
|
||||
update_apt_repo(host)
|
||||
host.run_cmd("sudo apt-get install -y python3-pip git")
|
||||
host.run_cmd("sudo pip3 install Cython")
|
||||
host.run_cmd("sudo pip3 install numpy")
|
||||
host.upload_file(whl, ".")
|
||||
host.run_cmd(f"sudo pip3 install {whl}")
|
||||
host.run_cmd("python3 -c 'import torch;print(torch.rand((3,3))'")
|
||||
host.run_cmd(f"git clone -b {branch} https://github.com/pytorch/pytorch")
|
||||
host.run_cmd("cd pytorch/test; python3 test_torch.py -v")
|
||||
|
||||
|
||||
def get_instance_name(instance) -> Optional[str]:
|
||||
if instance.tags is None:
|
||||
return None
|
||||
for tag in instance.tags:
|
||||
if tag["Key"] == "Name":
|
||||
return tag["Value"]
|
||||
return None
|
||||
|
||||
|
||||
def list_instances(instance_type: str) -> None:
|
||||
print(f"All instances of type {instance_type}")
|
||||
for instance in ec2_instances_of_type(instance_type):
|
||||
ifaces = instance.network_interfaces
|
||||
az = ifaces[0].subnet.availability_zone if len(ifaces) > 0 else None
|
||||
print(
|
||||
f"{instance.id} {get_instance_name(instance)} {instance.public_dns_name} {instance.state['Name']} {az}"
|
||||
)
|
||||
|
||||
|
||||
def terminate_instances(instance_type: str) -> None:
|
||||
print(f"Terminating all instances of type {instance_type}")
|
||||
instances = list(ec2_instances_of_type(instance_type))
|
||||
for instance in instances:
|
||||
print(f"Terminating {instance.id}")
|
||||
instance.terminate()
|
||||
print("Waiting for termination to complete")
|
||||
for instance in instances:
|
||||
instance.wait_until_terminated()
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
from argparse import ArgumentParser
|
||||
|
||||
parser = ArgumentParser("Build and test AARCH64 wheels using EC2")
|
||||
parser.add_argument("--key-name", type=str)
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
parser.add_argument("--build-only", action="store_true")
|
||||
parser.add_argument("--test-only", type=str)
|
||||
group = parser.add_mutually_exclusive_group()
|
||||
group.add_argument("--os", type=str, choices=list(os_amis.keys()))
|
||||
group.add_argument("--ami", type=str)
|
||||
parser.add_argument(
|
||||
"--python-version",
|
||||
type=str,
|
||||
choices=[f"3.{d}" for d in range(6, 12)],
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument("--alloc-instance", action="store_true")
|
||||
parser.add_argument("--list-instances", action="store_true")
|
||||
parser.add_argument("--pytorch-only", action="store_true")
|
||||
parser.add_argument("--keep-running", action="store_true")
|
||||
parser.add_argument("--terminate-instances", action="store_true")
|
||||
parser.add_argument("--instance-type", type=str, default="t4g.2xlarge")
|
||||
parser.add_argument("--ebs-size", type=int, default=50)
|
||||
parser.add_argument("--branch", type=str, default="main")
|
||||
parser.add_argument("--use-docker", action="store_true")
|
||||
parser.add_argument(
|
||||
"--compiler",
|
||||
type=str,
|
||||
choices=["gcc-7", "gcc-8", "gcc-9", "clang"],
|
||||
default="gcc-8",
|
||||
)
|
||||
parser.add_argument("--use-torch-from-pypi", action="store_true")
|
||||
parser.add_argument("--pytorch-build-number", type=str, default=None)
|
||||
parser.add_argument("--disable-mkldnn", action="store_true")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
ami = (
|
||||
args.ami
|
||||
if args.ami is not None
|
||||
else os_amis[args.os]
|
||||
if args.os is not None
|
||||
else ubuntu20_04_ami
|
||||
)
|
||||
keyfile_path, key_name = compute_keyfile_path(args.key_name)
|
||||
|
||||
if args.list_instances:
|
||||
list_instances(args.instance_type)
|
||||
sys.exit(0)
|
||||
|
||||
if args.terminate_instances:
|
||||
terminate_instances(args.instance_type)
|
||||
sys.exit(0)
|
||||
|
||||
if len(key_name) == 0:
|
||||
raise RuntimeError("""
|
||||
Cannot start build without key_name, please specify
|
||||
--key-name argument or AWS_KEY_NAME environment variable.""")
|
||||
if len(keyfile_path) == 0 or not os.path.exists(keyfile_path):
|
||||
raise RuntimeError(f"""
|
||||
Cannot find keyfile with name: [{key_name}] in path: [{keyfile_path}], please
|
||||
check `~/.ssh/` folder or manually set SSH_KEY_PATH environment variable.""")
|
||||
|
||||
# Starting the instance
|
||||
inst = start_instance(
|
||||
key_name, ami=ami, instance_type=args.instance_type, ebs_size=args.ebs_size
|
||||
)
|
||||
instance_name = f"{args.key_name}-{args.os}"
|
||||
if args.python_version is not None:
|
||||
instance_name += f"-py{args.python_version}"
|
||||
inst.create_tags(
|
||||
DryRun=False,
|
||||
Tags=[
|
||||
{
|
||||
"Key": "Name",
|
||||
"Value": instance_name,
|
||||
}
|
||||
],
|
||||
)
|
||||
addr = inst.public_dns_name
|
||||
wait_for_connection(addr, 22)
|
||||
host = RemoteHost(addr, keyfile_path)
|
||||
host.ami = ami
|
||||
if args.use_docker:
|
||||
update_apt_repo(host)
|
||||
host.start_docker()
|
||||
|
||||
if args.test_only:
|
||||
run_tests(host, args.test_only)
|
||||
sys.exit(0)
|
||||
|
||||
if args.alloc_instance:
|
||||
if args.python_version is None:
|
||||
sys.exit(0)
|
||||
install_condaforge_python(host, args.python_version)
|
||||
sys.exit(0)
|
||||
|
||||
python_version = args.python_version if args.python_version is not None else "3.10"
|
||||
|
||||
if args.use_torch_from_pypi:
|
||||
configure_system(host, compiler=args.compiler, python_version=python_version)
|
||||
print("Installing PyTorch wheel")
|
||||
host.run_cmd("pip3 install torch")
|
||||
build_domains(
|
||||
host, branch=args.branch, git_clone_flags=" --depth 1 --shallow-submodules"
|
||||
)
|
||||
else:
|
||||
start_build(
|
||||
host,
|
||||
branch=args.branch,
|
||||
compiler=args.compiler,
|
||||
python_version=python_version,
|
||||
pytorch_only=args.pytorch_only,
|
||||
pytorch_build_number=args.pytorch_build_number,
|
||||
enable_mkldnn=not args.disable_mkldnn,
|
||||
)
|
||||
if not args.keep_running:
|
||||
print(f"Waiting for instance {inst.id} to terminate")
|
||||
inst.terminate()
|
||||
inst.wait_until_terminated()
|
||||
@ -1,87 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from subprocess import check_call
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from auditwheel.elfutils import elf_file_filter
|
||||
from auditwheel.lddtree import lddtree
|
||||
from auditwheel.patcher import Patchelf
|
||||
from auditwheel.repair import copylib
|
||||
from auditwheel.wheeltools import InWheelCtx
|
||||
|
||||
|
||||
def replace_tag(filename):
|
||||
with open(filename) as f:
|
||||
lines = f.read().split("\\n")
|
||||
for i, line in enumerate(lines):
|
||||
if not line.startswith("Tag: "):
|
||||
continue
|
||||
lines[i] = line.replace("-linux_", "-manylinux2014_")
|
||||
print(f"Updated tag from {line} to {lines[i]}")
|
||||
|
||||
with open(filename, "w") as f:
|
||||
f.write("\\n".join(lines))
|
||||
|
||||
|
||||
class AlignedPatchelf(Patchelf):
|
||||
def set_soname(self, file_name: str, new_soname: str) -> None:
|
||||
check_call(
|
||||
["patchelf", "--page-size", "65536", "--set-soname", new_soname, file_name]
|
||||
)
|
||||
|
||||
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
|
||||
check_call(
|
||||
[
|
||||
"patchelf",
|
||||
"--page-size",
|
||||
"65536",
|
||||
"--replace-needed",
|
||||
soname,
|
||||
new_soname,
|
||||
file_name,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def embed_library(whl_path, lib_soname, update_tag=False):
|
||||
patcher = AlignedPatchelf()
|
||||
out_dir = TemporaryDirectory()
|
||||
whl_name = os.path.basename(whl_path)
|
||||
tmp_whl_name = os.path.join(out_dir.name, whl_name)
|
||||
with InWheelCtx(whl_path) as ctx:
|
||||
torchlib_path = os.path.join(ctx._tmpdir.name, "torch", "lib")
|
||||
ctx.out_wheel = tmp_whl_name
|
||||
new_lib_path, new_lib_soname = None, None
|
||||
for filename, _ in elf_file_filter(ctx.iter_files()):
|
||||
if not filename.startswith("torch/lib"):
|
||||
continue
|
||||
libtree = lddtree(filename)
|
||||
if lib_soname not in libtree["needed"]:
|
||||
continue
|
||||
lib_path = libtree["libs"][lib_soname]["path"]
|
||||
if lib_path is None:
|
||||
print(f"Can't embed {lib_soname} as it could not be found")
|
||||
break
|
||||
if lib_path.startswith(torchlib_path):
|
||||
continue
|
||||
|
||||
if new_lib_path is None:
|
||||
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
|
||||
patcher.replace_needed(filename, lib_soname, new_lib_soname)
|
||||
print(f"Replacing {lib_soname} with {new_lib_soname} for {filename}")
|
||||
if update_tag:
|
||||
# Add manylinux2014 tag
|
||||
for filename in ctx.iter_files():
|
||||
if os.path.basename(filename) != "WHEEL":
|
||||
continue
|
||||
replace_tag(filename)
|
||||
shutil.move(tmp_whl_name, whl_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
embed_library(
|
||||
sys.argv[1], "libgomp.so.1", len(sys.argv) > 2 and sys.argv[2] == "--update-tag"
|
||||
)
|
||||
@ -4,14 +4,17 @@ set -ex
|
||||
|
||||
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
# Source the common build script for architecture-specific configurations (MKLDNN, ACL, etc.)
|
||||
source "${SCRIPTPATH}/../pytorch/build.sh" || true
|
||||
|
||||
case "${GPU_ARCH_TYPE:-BLANK}" in
|
||||
cuda)
|
||||
cuda | cuda-aarch64)
|
||||
bash "${SCRIPTPATH}/build_cuda.sh"
|
||||
;;
|
||||
rocm)
|
||||
bash "${SCRIPTPATH}/build_rocm.sh"
|
||||
;;
|
||||
cpu | cpu-cxx11-abi | cpu-s390x)
|
||||
cpu | cpu-cxx11-abi | cpu-aarch64 | cpu-s390x)
|
||||
bash "${SCRIPTPATH}/build_cpu.sh"
|
||||
;;
|
||||
xpu)
|
||||
|
||||
@ -18,12 +18,31 @@ retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
# Detect architecture first
|
||||
ARCH=$(uname -m)
|
||||
echo "Detected architecture: $ARCH"
|
||||
|
||||
PLATFORM=""
|
||||
# TODO move this into the Docker images
|
||||
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
|
||||
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
retry yum install -q -y zip openssl
|
||||
PLATFORM="manylinux_2_28_x86_64"
|
||||
# Set platform based on architecture
|
||||
case $ARCH in
|
||||
x86_64)
|
||||
PLATFORM="manylinux_2_28_x86_64"
|
||||
;;
|
||||
aarch64)
|
||||
PLATFORM="manylinux_2_28_aarch64"
|
||||
;;
|
||||
s390x)
|
||||
PLATFORM="manylinux_2_28_s390x"
|
||||
;;
|
||||
*)
|
||||
echo "Unsupported architecture: $ARCH"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
|
||||
retry dnf install -q -y zip openssl
|
||||
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
@ -38,6 +57,8 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Platform set to: $PLATFORM"
|
||||
|
||||
# We use the package name to test the package by passing this to 'pip install'
|
||||
# This is the env variable that setup.py uses to name the package. Note that
|
||||
# pip 'normalizes' the name first by changing all - to _
|
||||
@ -299,8 +320,8 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
|
||||
# ROCm workaround for roctracer dlopens
|
||||
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
patchedpath=$(fname_without_so_number $destpath)
|
||||
# Keep the so number for XPU dependencies and libgomp.so.1 to avoid twice load
|
||||
elif [[ "$DESIRED_CUDA" == *"xpu"* || "$filename" == "libgomp.so.1" ]]; then
|
||||
# Keep the so number for XPU dependencies, libgomp.so.1, ACL libraries, and NVPL libraries to avoid twice load
|
||||
elif [[ "$DESIRED_CUDA" == *"xpu"* || "$filename" == "libgomp.so.1" || "$filename" == libarm_compute* || "$filename" == libnvpl* || "$filename" == "libgfortran.so.5" ]]; then
|
||||
patchedpath=$destpath
|
||||
else
|
||||
patchedpath=$(fname_with_sha256 $destpath)
|
||||
@ -346,9 +367,22 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
|
||||
done
|
||||
|
||||
# create Manylinux 2_28 tag this needs to happen before regenerate the RECORD
|
||||
if [[ $PLATFORM == "manylinux_2_28_x86_64" && $GPU_ARCH_TYPE != "cpu-s390x" && $GPU_ARCH_TYPE != "xpu" ]]; then
|
||||
# Support all architectures (x86_64, aarch64, s390x)
|
||||
if [[ "$IS_MANYLINUX2_28" == "1" && $GPU_ARCH_TYPE != "xpu" ]]; then
|
||||
wheel_file=$(echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/WHEEL/g')
|
||||
sed -i -e s#linux_x86_64#"${PLATFORM}"# $wheel_file;
|
||||
echo "Updating wheel tag for $ARCH architecture"
|
||||
# Replace linux_* with manylinux_2_28_* based on architecture
|
||||
case $ARCH in
|
||||
x86_64)
|
||||
sed -i -e 's#linux_x86_64#manylinux_2_28_x86_64#g' $wheel_file
|
||||
;;
|
||||
aarch64)
|
||||
sed -i -e 's#linux_aarch64#manylinux_2_28_aarch64#g' $wheel_file
|
||||
;;
|
||||
s390x)
|
||||
sed -i -e 's#linux_s390x#manylinux_2_28_s390x#g' $wheel_file
|
||||
;;
|
||||
esac
|
||||
fi
|
||||
|
||||
# regenerate the RECORD file with new hashes
|
||||
|
||||
@ -15,6 +15,10 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=()
|
||||
fi
|
||||
|
||||
# Detect architecture
|
||||
ARCH=$(uname -m)
|
||||
echo "Building CPU wheel for architecture: $ARCH"
|
||||
|
||||
WHEELHOUSE_DIR="wheelhousecpu"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_housecpu"
|
||||
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
|
||||
@ -34,8 +38,10 @@ elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
|
||||
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
if [[ "$(uname -m)" == "s390x" ]]; then
|
||||
if [[ "$ARCH" == "s390x" ]]; then
|
||||
LIBGOMP_PATH="/usr/lib/s390x-linux-gnu/libgomp.so.1"
|
||||
elif [[ "$ARCH" == "aarch64" ]]; then
|
||||
LIBGOMP_PATH="/usr/lib/aarch64-linux-gnu/libgomp.so.1"
|
||||
else
|
||||
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
|
||||
fi
|
||||
@ -49,6 +55,34 @@ DEPS_SONAME=(
|
||||
"libgomp.so.1"
|
||||
)
|
||||
|
||||
# Add ARM-specific library dependencies for CPU builds
|
||||
if [[ "$ARCH" == "aarch64" ]]; then
|
||||
echo "Adding ARM-specific CPU library dependencies"
|
||||
|
||||
# ARM Compute Library (if available)
|
||||
if [[ -d "/acl/build" ]]; then
|
||||
echo "Adding ARM Compute Library for CPU"
|
||||
DEPS_LIST+=(
|
||||
"/acl/build/libarm_compute.so"
|
||||
"/acl/build/libarm_compute_graph.so"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libarm_compute.so"
|
||||
"libarm_compute_graph.so"
|
||||
)
|
||||
fi
|
||||
|
||||
# ARM system libraries
|
||||
DEPS_LIST+=(
|
||||
"/usr/lib64/libgfortran.so.5"
|
||||
"/opt/OpenBLAS/lib/libopenblas.so.0"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libgfortran.so.5"
|
||||
"libopenblas.so.0"
|
||||
)
|
||||
fi
|
||||
|
||||
rm -rf /usr/local/cuda*
|
||||
|
||||
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
|
||||
|
||||
@ -29,6 +29,10 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=()
|
||||
fi
|
||||
|
||||
# Detect architecture
|
||||
ARCH=$(uname -m)
|
||||
echo "Building for architecture: $ARCH"
|
||||
|
||||
# Determine CUDA version and architectures to build for
|
||||
#
|
||||
# NOTE: We should first check `DESIRED_CUDA` when determining `CUDA_VERSION`,
|
||||
@ -53,34 +57,60 @@ fi
|
||||
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
|
||||
|
||||
# Function to remove architectures from a list
|
||||
remove_archs() {
|
||||
local result="$1"
|
||||
shift
|
||||
for arch in "$@"; do
|
||||
result="${result//${arch};/}"
|
||||
done
|
||||
echo "$result"
|
||||
}
|
||||
|
||||
# Function to filter CUDA architectures for aarch64
|
||||
# aarch64 ARM GPUs only support certain compute capabilities
|
||||
# Keep: 8.0 (A100), 9.0+ (Hopper, Grace Hopper, newer)
|
||||
# Remove: < 8.0 (no ARM GPUs), 8.6 (x86_64 RTX 3090/A6000 only)
|
||||
filter_aarch64_archs() {
|
||||
local arch_list="$1"
|
||||
# Explicitly remove architectures not needed on aarch64
|
||||
arch_list=$(remove_archs "$arch_list" "5.0" "6.0" "7.0" "7.5" "8.6")
|
||||
echo "$arch_list"
|
||||
}
|
||||
|
||||
# Base: Common architectures across all modern CUDA versions
|
||||
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0"
|
||||
|
||||
case ${CUDA_VERSION} in
|
||||
#removing sm_50-sm_60 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
|
||||
#however we would like to keep sm_70 architecture see: https://github.com/pytorch/pytorch/issues/157517
|
||||
12.8)
|
||||
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0"
|
||||
;;
|
||||
12.9)
|
||||
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX"
|
||||
# WAR to resolve the ld error in libtorch build with CUDA 12.9
|
||||
12.6) TORCH_CUDA_ARCH_LIST="5.0;6.0;${TORCH_CUDA_ARCH_LIST}" ;; # Only 12.6 includes Legacy Maxwell/Pascal that will be removed in future releases
|
||||
12.8) TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};10.0;12.0" ;; # +Hopper/Blackwell support
|
||||
12.9) TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};10.0;12.0+PTX" # +Hopper/Blackwell support + PTX for forward compatibility
|
||||
if [[ "$PACKAGE_TYPE" == "libtorch" ]]; then
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST//7.0;/}" # Remove 7.0 to resolve the ld error
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST//8.6;/}" # Remove 8.6 for libtorch
|
||||
fi
|
||||
;;
|
||||
13.0)
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX"
|
||||
;;
|
||||
12.6)
|
||||
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
|
||||
;;
|
||||
*)
|
||||
echo "unknown cuda version $CUDA_VERSION"
|
||||
exit 1
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;$([[ "$ARCH" == "aarch64" ]] && echo "11.0;" || echo "")12.0+PTX"
|
||||
export TORCH_NVCC_FLAGS="-compress-mode=size"
|
||||
export BUILD_BUNDLE_PTXAS=1
|
||||
;;
|
||||
*) echo "unknown cuda version $CUDA_VERSION"; exit 1 ;;
|
||||
esac
|
||||
|
||||
# Filter for aarch64: Remove < 8.0 and 8.6
|
||||
[[ "$ARCH" == "aarch64" ]] && TORCH_CUDA_ARCH_LIST=$(filter_aarch64_archs "$TORCH_CUDA_ARCH_LIST")
|
||||
|
||||
echo "TORCH_CUDA_ARCH_LIST set to: $TORCH_CUDA_ARCH_LIST"
|
||||
export TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
|
||||
echo "${TORCH_CUDA_ARCH_LIST}"
|
||||
|
||||
# Disable MAGMA for aarch64 as pre-built libraries are x86-64 only
|
||||
if [[ "$ARCH" == "aarch64" ]]; then
|
||||
echo "Disabling MAGMA for aarch64 architecture"
|
||||
export USE_MAGMA=0
|
||||
fi
|
||||
|
||||
# Package directories
|
||||
WHEELHOUSE_DIR="wheelhouse$cuda_version_nodot"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_house$cuda_version_nodot"
|
||||
@ -244,6 +274,51 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Add ARM-specific library dependencies
|
||||
if [[ "$ARCH" == "aarch64" ]]; then
|
||||
echo "Adding ARM-specific library dependencies"
|
||||
|
||||
# ARM Compute Library (if available)
|
||||
if [[ -d "/acl/build" ]]; then
|
||||
echo "Adding ARM Compute Library"
|
||||
DEPS_LIST+=(
|
||||
"/acl/build/libarm_compute.so"
|
||||
"/acl/build/libarm_compute_graph.so"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libarm_compute.so"
|
||||
"libarm_compute_graph.so"
|
||||
)
|
||||
fi
|
||||
|
||||
# ARM system libraries
|
||||
DEPS_LIST+=(
|
||||
"/lib64/libgomp.so.1"
|
||||
"/usr/lib64/libgfortran.so.5"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libgomp.so.1"
|
||||
"libgfortran.so.5"
|
||||
)
|
||||
|
||||
# NVPL libraries (ARM optimized BLAS/LAPACK)
|
||||
if [[ -d "/usr/local/lib" && -f "/usr/local/lib/libnvpl_blas_lp64_gomp.so.0" ]]; then
|
||||
echo "Adding NVPL libraries for ARM"
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0"
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0"
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0"
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libnvpl_lapack_lp64_gomp.so.0"
|
||||
"libnvpl_blas_lp64_gomp.so.0"
|
||||
"libnvpl_lapack_core.so.0"
|
||||
"libnvpl_blas_core.so.0"
|
||||
)
|
||||
fi
|
||||
fi
|
||||
|
||||
# run_tests.sh requires DESIRED_CUDA to know what tests to exclude
|
||||
export DESIRED_CUDA="$cuda_version_nodot"
|
||||
|
||||
@ -251,9 +326,11 @@ export DESIRED_CUDA="$cuda_version_nodot"
|
||||
rm -rf /usr/local/cuda || true
|
||||
ln -s "/usr/local/cuda-${CUDA_VERSION}" /usr/local/cuda
|
||||
|
||||
# Switch `/usr/local/magma` to the desired CUDA version
|
||||
rm -rf /usr/local/magma || true
|
||||
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
|
||||
# Switch `/usr/local/magma` to the desired CUDA version (skip for aarch64)
|
||||
if [[ "$ARCH" != "aarch64" ]]; then
|
||||
rm -rf /usr/local/magma || true
|
||||
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
|
||||
fi
|
||||
|
||||
export CUDA_VERSION=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev) # 10.0.130
|
||||
export CUDA_VERSION_SHORT=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev | cut -f1,2 -d".") # 10.0
|
||||
|
||||
@ -86,10 +86,20 @@ else
|
||||
fi
|
||||
fi
|
||||
|
||||
# Enable MKLDNN with ARM Compute Library for ARM builds
|
||||
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
|
||||
export USE_MKLDNN=1
|
||||
|
||||
# ACL is required for aarch64 builds
|
||||
if [[ ! -d "/acl" ]]; then
|
||||
echo "ERROR: ARM Compute Library not found at /acl"
|
||||
echo "ACL is required for aarch64 builds. Check Docker image setup."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export USE_MKLDNN_ACL=1
|
||||
export ACL_ROOT_DIR=/acl
|
||||
echo "ARM Compute Library enabled for MKLDNN: ACL_ROOT_DIR=/acl"
|
||||
fi
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *riscv64* ]]; then
|
||||
|
||||
@ -100,337 +100,6 @@ def check_lib_statically_linked_libstdc_cxx_abi_symbols(lib: str) -> None:
|
||||
)
|
||||
|
||||
|
||||
def _compile_and_extract_symbols(
|
||||
cpp_content: str, compile_flags: list[str], exclude_list: list[str] | None = None
|
||||
) -> list[str]:
|
||||
"""
|
||||
Helper to compile a C++ file and extract all symbols.
|
||||
|
||||
Args:
|
||||
cpp_content: C++ source code to compile
|
||||
compile_flags: Compilation flags
|
||||
exclude_list: List of symbol names to exclude. Defaults to ["main"].
|
||||
|
||||
Returns:
|
||||
List of all symbols found in the object file (excluding those in exclude_list).
|
||||
"""
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
if exclude_list is None:
|
||||
exclude_list = ["main"]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
tmppath = Path(tmpdir)
|
||||
cpp_file = tmppath / "test.cpp"
|
||||
obj_file = tmppath / "test.o"
|
||||
|
||||
cpp_file.write_text(cpp_content)
|
||||
|
||||
result = subprocess.run(
|
||||
compile_flags + [str(cpp_file), "-o", str(obj_file)],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=60,
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(f"Compilation failed: {result.stderr}")
|
||||
|
||||
symbols = get_symbols(str(obj_file))
|
||||
|
||||
# Return all symbol names, excluding those in the exclude list
|
||||
return [name for _addr, _stype, name in symbols if name not in exclude_list]
|
||||
|
||||
|
||||
def check_stable_only_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test TORCH_STABLE_ONLY and TORCH_TARGET_VERSION by compiling test code and comparing symbol counts.
|
||||
|
||||
This approach tests:
|
||||
1. WITHOUT macros -> many torch symbols exposed
|
||||
2. WITH TORCH_STABLE_ONLY -> zero torch symbols (all hidden)
|
||||
3. WITH TORCH_TARGET_VERSION -> zero torch symbols (all hidden)
|
||||
4. WITH both macros -> zero torch symbols (all hidden)
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
test_cpp_content = """
|
||||
// Main torch C++ API headers
|
||||
#include <torch/torch.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
// ATen tensor library
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
// Core c10 headers (commonly used)
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/core/DeviceType.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/core/TensorOptions.h>
|
||||
#include <c10/util/Optional.h>
|
||||
|
||||
int main() { return 0; }
|
||||
"""
|
||||
|
||||
base_compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c", # Compile only, don't link
|
||||
]
|
||||
|
||||
# Compile WITHOUT any macros
|
||||
symbols_without = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=base_compile_flags,
|
||||
)
|
||||
|
||||
# We expect constexpr symbols, inline functions used by other headers etc.
|
||||
# to produce symbols
|
||||
num_symbols_without = len(symbols_without)
|
||||
print(f"Found {num_symbols_without} symbols without any macros defined")
|
||||
assert num_symbols_without != 0, (
|
||||
"Expected a non-zero number of symbols without any macros"
|
||||
)
|
||||
|
||||
# Compile WITH TORCH_STABLE_ONLY (expect 0 symbols)
|
||||
compile_flags_with_stable_only = base_compile_flags + ["-DTORCH_STABLE_ONLY"]
|
||||
|
||||
symbols_with_stable_only = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=compile_flags_with_stable_only,
|
||||
)
|
||||
|
||||
num_symbols_with_stable_only = len(symbols_with_stable_only)
|
||||
assert num_symbols_with_stable_only == 0, (
|
||||
f"Expected no symbols with TORCH_STABLE_ONLY macro, but found {num_symbols_with_stable_only}"
|
||||
)
|
||||
|
||||
# Compile WITH TORCH_TARGET_VERSION (expect 0 symbols)
|
||||
compile_flags_with_target_version = base_compile_flags + [
|
||||
"-DTORCH_TARGET_VERSION=1"
|
||||
]
|
||||
|
||||
symbols_with_target_version = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=compile_flags_with_target_version,
|
||||
)
|
||||
|
||||
num_symbols_with_target_version = len(symbols_with_target_version)
|
||||
assert num_symbols_with_target_version == 0, (
|
||||
f"Expected no symbols with TORCH_TARGET_VERSION macro, but found {num_symbols_with_target_version}"
|
||||
)
|
||||
|
||||
# Compile WITH both macros (expect 0 symbols)
|
||||
compile_flags_with_both = base_compile_flags + [
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
"-DTORCH_TARGET_VERSION=1",
|
||||
]
|
||||
|
||||
symbols_with_both = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=compile_flags_with_both,
|
||||
)
|
||||
|
||||
num_symbols_with_both = len(symbols_with_both)
|
||||
assert num_symbols_with_both == 0, (
|
||||
f"Expected no symbols with both macros, but found {num_symbols_with_both}"
|
||||
)
|
||||
|
||||
|
||||
def check_stable_api_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that stable API headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
The torch/csrc/stable/c/shim.h header is tested in check_stable_c_shim_symbols
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
stable_dir = include_dir / "torch" / "csrc" / "stable"
|
||||
assert stable_dir.exists(), f"Expected {stable_dir} to be present"
|
||||
|
||||
stable_headers = list(stable_dir.rglob("*.h"))
|
||||
if not stable_headers:
|
||||
raise RuntimeError("Could not find any stable headers")
|
||||
|
||||
includes = []
|
||||
for header in stable_headers:
|
||||
rel_path = header.relative_to(include_dir)
|
||||
includes.append(f"#include <{rel_path.as_posix()}>")
|
||||
|
||||
includes_str = "\n".join(includes)
|
||||
test_stable_content = f"""
|
||||
{includes_str}
|
||||
int main() {{ return 0; }}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_stable = _compile_and_extract_symbols(
|
||||
cpp_content=test_stable_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_stable = len(symbols_stable)
|
||||
print(f"Found {num_symbols_stable} symbols in torch/csrc/stable")
|
||||
assert num_symbols_stable > 0, (
|
||||
f"Expected stable headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_stable} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_headeronly_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that header-only utility headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
# Find all headers in torch/headeronly
|
||||
headeronly_dir = include_dir / "torch" / "headeronly"
|
||||
assert headeronly_dir.exists(), f"Expected {headeronly_dir} to be present"
|
||||
headeronly_headers = list(headeronly_dir.rglob("*.h"))
|
||||
if not headeronly_headers:
|
||||
raise RuntimeError("Could not find any headeronly headers")
|
||||
|
||||
# Filter out platform-specific headers that may not compile everywhere
|
||||
platform_specific_keywords = [
|
||||
"cpu/vec",
|
||||
]
|
||||
|
||||
filtered_headers = []
|
||||
for header in headeronly_headers:
|
||||
rel_path = header.relative_to(include_dir).as_posix()
|
||||
if not any(
|
||||
keyword in rel_path.lower() for keyword in platform_specific_keywords
|
||||
):
|
||||
filtered_headers.append(header)
|
||||
|
||||
includes = []
|
||||
for header in filtered_headers:
|
||||
rel_path = header.relative_to(include_dir)
|
||||
includes.append(f"#include <{rel_path.as_posix()}>")
|
||||
|
||||
includes_str = "\n".join(includes)
|
||||
test_headeronly_content = f"""
|
||||
{includes_str}
|
||||
int main() {{ return 0; }}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_headeronly = _compile_and_extract_symbols(
|
||||
cpp_content=test_headeronly_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_headeronly = len(symbols_headeronly)
|
||||
print(f"Found {num_symbols_headeronly} symbols in torch/headeronly")
|
||||
assert num_symbols_headeronly > 0, (
|
||||
f"Expected headeronly headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_headeronly} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_aoti_shim_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that AOTI shim headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
# There are no constexpr symbols etc., so we need to actually use functions
|
||||
# so that some symbols are found.
|
||||
test_shim_content = """
|
||||
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
||||
int main() {
|
||||
int32_t (*fp1)() = &aoti_torch_device_type_cpu;
|
||||
int32_t (*fp2)() = &aoti_torch_dtype_float32;
|
||||
(void)fp1; (void)fp2;
|
||||
return 0;
|
||||
}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_shim = _compile_and_extract_symbols(
|
||||
cpp_content=test_shim_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_shim = len(symbols_shim)
|
||||
assert num_symbols_shim > 0, (
|
||||
f"Expected shim headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_shim} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_stable_c_shim_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that stable C shim headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
# Check if the stable C shim exists
|
||||
stable_shim = include_dir / "torch" / "csrc" / "stable" / "c" / "shim.h"
|
||||
if not stable_shim.exists():
|
||||
raise RuntimeError("Could not find stable c shim")
|
||||
|
||||
# There are no constexpr symbols etc., so we need to actually use functions
|
||||
# so that some symbols are found.
|
||||
test_stable_shim_content = """
|
||||
#include <torch/csrc/stable/c/shim.h>
|
||||
int main() {
|
||||
// Reference stable C API functions to create undefined symbols
|
||||
AOTITorchError (*fp1)(const char*, uint32_t*, int32_t*) = &torch_parse_device_string;
|
||||
AOTITorchError (*fp2)(uint32_t*) = &torch_get_num_threads;
|
||||
(void)fp1; (void)fp2;
|
||||
return 0;
|
||||
}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_stable_shim = _compile_and_extract_symbols(
|
||||
cpp_content=test_stable_shim_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_stable_shim = len(symbols_stable_shim)
|
||||
assert num_symbols_stable_shim > 0, (
|
||||
f"Expected stable C shim headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_stable_shim} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_lib_symbols_for_abi_correctness(lib: str) -> None:
|
||||
print(f"lib: {lib}")
|
||||
cxx11_symbols = grep_symbols(lib, LIBTORCH_CXX11_PATTERNS)
|
||||
@ -460,13 +129,6 @@ def main() -> None:
|
||||
check_lib_symbols_for_abi_correctness(libtorch_cpu_path)
|
||||
check_lib_statically_linked_libstdc_cxx_abi_symbols(libtorch_cpu_path)
|
||||
|
||||
# Check symbols when TORCH_STABLE_ONLY is defined
|
||||
check_stable_only_symbols(install_root)
|
||||
check_stable_api_symbols(install_root)
|
||||
check_headeronly_symbols(install_root)
|
||||
check_aoti_shim_symbols(install_root)
|
||||
check_stable_c_shim_symbols(install_root)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@ -353,6 +353,17 @@ def test_linalg(device="cpu") -> None:
|
||||
torch.linalg.svd(A)
|
||||
|
||||
|
||||
def test_sdpa(device="cpu", dtype=torch.float16) -> None:
|
||||
"""Regression test for https://github.com/pytorch/pytorch/issues/167602
|
||||
Without nvrtc_builtins on CuDNN-9.13 on CUDA-13 fails with ` No valid execution plans built.`
|
||||
"""
|
||||
print(f"Testing SDPA on {device} using type {dtype}")
|
||||
k, q, v = torch.rand(3, 1, 16, 77, 64, dtype=dtype, device=device).unbind(0)
|
||||
attn = torch.rand(1, 1, 77, 77, dtype=dtype, device=device)
|
||||
rc = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn)
|
||||
assert rc.isnan().any().item() is False
|
||||
|
||||
|
||||
def smoke_test_compile(device: str = "cpu") -> None:
|
||||
supported_dtypes = [torch.float16, torch.float32, torch.float64]
|
||||
|
||||
@ -489,10 +500,12 @@ def main() -> None:
|
||||
smoke_test_conv2d()
|
||||
test_linalg()
|
||||
test_numpy()
|
||||
test_sdpa()
|
||||
|
||||
if is_cuda_system:
|
||||
test_linalg("cuda")
|
||||
test_cuda_gds_errors_captured()
|
||||
test_sdpa("cuda")
|
||||
|
||||
if options.package == "all":
|
||||
smoke_test_modules()
|
||||
|
||||
@ -389,6 +389,13 @@ test_lazy_tensor_meta_reference_disabled() {
|
||||
export -n TORCH_DISABLE_FUNCTIONALIZATION_META_REFERENCE
|
||||
}
|
||||
|
||||
test_dynamo_core() {
|
||||
time python test/run_test.py \
|
||||
--include-dynamo-core-tests \
|
||||
--verbose \
|
||||
--upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_dynamo_wrapped_shard() {
|
||||
if [[ -z "$NUM_TEST_SHARDS" ]]; then
|
||||
@ -1680,6 +1687,22 @@ test_operator_microbenchmark() {
|
||||
done
|
||||
}
|
||||
|
||||
test_attention_microbenchmark() {
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
TEST_DIR=$(pwd)
|
||||
|
||||
# Install attention-gym dependency
|
||||
echo "Installing attention-gym..."
|
||||
python -m pip install git+https://github.com/meta-pytorch/attention-gym.git@main
|
||||
pip show triton
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/transformer
|
||||
|
||||
$TASKSET python score_mod.py --config configs/config_basic.yaml \
|
||||
--output-json-for-dashboard "${TEST_REPORTS_DIR}/attention_microbenchmark.json"
|
||||
}
|
||||
|
||||
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
|
||||
(cd test && python -c "import torch; print(torch.__config__.show())")
|
||||
(cd test && python -c "import torch; print(torch.__config__.parallel_info())")
|
||||
@ -1737,6 +1760,8 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
|
||||
fi
|
||||
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
|
||||
test_operator_microbenchmark
|
||||
elif [[ "${TEST_CONFIG}" == *attention_microbenchmark* ]]; then
|
||||
test_attention_microbenchmark
|
||||
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
|
||||
test_inductor_distributed
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
|
||||
@ -1796,6 +1821,8 @@ elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
|
||||
test_inductor_shard "${SHARD_NUMBER}"
|
||||
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
|
||||
test_einops
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo_core* ]]; then
|
||||
test_dynamo_core
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
|
||||
install_torchvision
|
||||
test_dynamo_wrapped_shard "${SHARD_NUMBER}"
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
07b6cbde121417a70e4dc871adb6d27030e0ce3f
|
||||
ee1a1350eb37804b94334768f328144f058f14e9
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
acccf86477759b2d3500f1ae1be065f7b1e409ec
|
||||
2d82dc5caa336d179d9b46ac4a0fb8c43d84c5cc
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a
|
||||
94631807d22c09723dd006f7be5beb649d5f88d0
|
||||
|
||||
1
.github/pytorch-probot.yml
vendored
1
.github/pytorch-probot.yml
vendored
@ -7,6 +7,7 @@ ciflow_push_tags:
|
||||
- ciflow/binaries
|
||||
- ciflow/binaries_libtorch
|
||||
- ciflow/binaries_wheel
|
||||
- ciflow/dynamo
|
||||
- ciflow/h100
|
||||
- ciflow/h100-cutlass-backend
|
||||
- ciflow/h100-distributed
|
||||
|
||||
2
.github/scripts/generate_pytorch_version.py
vendored
2
.github/scripts/generate_pytorch_version.py
vendored
@ -50,7 +50,7 @@ def get_tag() -> str:
|
||||
|
||||
def get_base_version() -> str:
|
||||
root = get_pytorch_root()
|
||||
dirty_version = open(root / "version.txt").read().strip()
|
||||
dirty_version = Path(root / "version.txt").read_text().strip()
|
||||
# Strips trailing a0 from version.txt, not too sure why it's there in the
|
||||
# first place
|
||||
return re.sub(LEGACY_BASE_VERSION_SUFFIX_PATTERN, "", dirty_version)
|
||||
|
||||
7
.github/workflows/_binary-build-linux.yml
vendored
7
.github/workflows/_binary-build-linux.yml
vendored
@ -260,11 +260,8 @@ jobs:
|
||||
"${DOCKER_IMAGE}"
|
||||
)
|
||||
docker exec -t -w "${PYTORCH_ROOT}" "${container_name}" bash -c "bash .circleci/scripts/binary_populate_env.sh"
|
||||
if [[ ${BUILD_ENVIRONMENT} == *"aarch64"* ]]; then
|
||||
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/aarch64_linux/aarch64_ci_build.sh"
|
||||
else
|
||||
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
|
||||
fi
|
||||
# Unified build script for all architectures (x86_64, aarch64, s390x)
|
||||
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
|
||||
|
||||
- name: Chown artifacts
|
||||
if: ${{ steps.filter.outputs.is-test-matrix-empty == 'False' && inputs.build_environment != 'linux-s390x-binary-manywheel' }}
|
||||
|
||||
2
.github/workflows/_linux-test.yml
vendored
2
.github/workflows/_linux-test.yml
vendored
@ -326,7 +326,7 @@ jobs:
|
||||
SCCACHE_BUCKET: ${{ !contains(matrix.runner, 'b200') && 'ossci-compiler-cache-circleci-v2' || '' }}
|
||||
SCCACHE_REGION: ${{ !contains(matrix.runner, 'b200') && 'us-east-1' || '' }}
|
||||
SHM_SIZE: ${{ contains(inputs.build-environment, 'cuda') && '2g' || '1g' }}
|
||||
DOCKER_IMAGE: ${{ inputs.docker-image }}
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
|
||||
XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla
|
||||
PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: ${{ matrix.mem_leak_check && '1' || '0' }}
|
||||
|
||||
73
.github/workflows/attention_op_microbenchmark.yml
vendored
Normal file
73
.github/workflows/attention_op_microbenchmark.yml
vendored
Normal file
@ -0,0 +1,73 @@
|
||||
name: attention_op_microbenchmark
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/op-benchmark/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
# Run at 06:00 UTC everyday
|
||||
- cron: 0 7 * * *
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
attn-microbenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '8.0 9.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "attention_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
|
||||
{ config: "attention_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.h100" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
attn-microbenchmark-test:
|
||||
name: attn-microbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: attn-microbenchmark-build
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
|
||||
docker-image: ${{ needs.attn-microbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.attn-microbenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
# B200 runner
|
||||
opmicrobenchmark-build-b200:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build-b200
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '10.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opmicrobenchmark-test-b200:
|
||||
name: opmicrobenchmark-test-b200
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: opmicrobenchmark-build-b200
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
|
||||
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
secrets: inherit
|
||||
70
.github/workflows/dynamo-unittest.yml
vendored
Normal file
70
.github/workflows/dynamo-unittest.yml
vendored
Normal file
@ -0,0 +1,70 @@
|
||||
# Workflow: Dynamo Unit Test
|
||||
# runs unit tests for dynamo.
|
||||
name: dynamo-unittest
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/dynamo/*
|
||||
workflow_call:
|
||||
schedule:
|
||||
- cron: 29 8 * * * # about 1:29am PDT
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
opt_out_experiments: lf
|
||||
|
||||
dynamo-build:
|
||||
name: dynamo-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.11', '3.12']
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_core", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
dynamo-test:
|
||||
name: dynamo-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: [get-label-type, dynamo-build]
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.11', '3.12']
|
||||
with:
|
||||
build-environment: linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
docker-image: ci-image:pytorch-linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_core", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
330
.spin/cmds.py
Normal file
330
.spin/cmds.py
Normal file
@ -0,0 +1,330 @@
|
||||
import hashlib
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
import spin
|
||||
|
||||
|
||||
def file_digest(file, algorithm: str):
|
||||
try:
|
||||
return hashlib.file_digest(file, algorithm)
|
||||
except AttributeError:
|
||||
pass # Fallback to manual implementation below
|
||||
hash = hashlib.new(algorithm)
|
||||
while chunk := file.read(8192):
|
||||
hash.update(chunk)
|
||||
return hash
|
||||
|
||||
|
||||
def _hash_file(file):
|
||||
with open(file, "rb") as f:
|
||||
hash = file_digest(f, "sha256")
|
||||
return hash.hexdigest()
|
||||
|
||||
|
||||
def _hash_files(files):
|
||||
hashes = {file: _hash_file(file) for file in files}
|
||||
return hashes
|
||||
|
||||
|
||||
def _read_hashes(hash_file: Path):
|
||||
if not hash_file.exists():
|
||||
return {}
|
||||
with hash_file.open("r") as f:
|
||||
lines = f.readlines()
|
||||
hashes = {}
|
||||
for line in lines:
|
||||
hash = line[:64]
|
||||
file = line[66:].strip()
|
||||
hashes[file] = hash
|
||||
return hashes
|
||||
|
||||
|
||||
def _updated_hashes(hash_file, files_to_hash):
|
||||
old_hashes = _read_hashes(hash_file)
|
||||
new_hashes = _hash_files(files_to_hash)
|
||||
if new_hashes != old_hashes:
|
||||
return new_hashes
|
||||
return None
|
||||
|
||||
|
||||
@click.command()
|
||||
def regenerate_version():
|
||||
"""Regenerate version.py."""
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"tools.generate_torch_version",
|
||||
"--is-debug=false",
|
||||
]
|
||||
spin.util.run(cmd)
|
||||
|
||||
|
||||
TYPE_STUBS = [
|
||||
(
|
||||
"Pytorch type stubs",
|
||||
Path(".lintbin/.pytorch-type-stubs.sha256"),
|
||||
[
|
||||
"aten/src/ATen/native/native_functions.yaml",
|
||||
"aten/src/ATen/native/tags.yaml",
|
||||
"tools/autograd/deprecated.yaml",
|
||||
],
|
||||
[
|
||||
sys.executable,
|
||||
"-m",
|
||||
"tools.pyi.gen_pyi",
|
||||
"--native-functions-path",
|
||||
"aten/src/ATen/native/native_functions.yaml",
|
||||
"--tags-path",
|
||||
"aten/src/ATen/native/tags.yaml",
|
||||
"--deprecated-functions-path",
|
||||
"tools/autograd/deprecated.yaml",
|
||||
],
|
||||
),
|
||||
(
|
||||
"Datapipes type stubs",
|
||||
None,
|
||||
[],
|
||||
[
|
||||
sys.executable,
|
||||
"torch/utils/data/datapipes/gen_pyi.py",
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@click.command()
|
||||
def regenerate_type_stubs():
|
||||
"""Regenerate type stubs."""
|
||||
for name, hash_file, files_to_hash, cmd in TYPE_STUBS:
|
||||
if hash_file:
|
||||
if hashes := _updated_hashes(hash_file, files_to_hash):
|
||||
click.echo(
|
||||
f"Changes detected in type stub files for {name}. Regenerating..."
|
||||
)
|
||||
spin.util.run(cmd)
|
||||
hash_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
with hash_file.open("w") as f:
|
||||
for file, hash in hashes.items():
|
||||
f.write(f"{hash} {file}\n")
|
||||
click.echo("Type stubs and hashes updated.")
|
||||
else:
|
||||
click.echo(f"No changes detected in type stub files for {name}.")
|
||||
else:
|
||||
click.echo(f"No hash file for {name}. Regenerating...")
|
||||
spin.util.run(cmd)
|
||||
click.echo("Type stubs regenerated.")
|
||||
|
||||
|
||||
@click.command()
|
||||
def regenerate_clangtidy_files():
|
||||
"""Regenerate clang-tidy files."""
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"tools.linter.clang_tidy.generate_build_files",
|
||||
]
|
||||
spin.util.run(cmd)
|
||||
|
||||
|
||||
#: These linters are expected to need less than 3s cpu time total
|
||||
VERY_FAST_LINTERS = {
|
||||
"ATEN_CPU_GPU_AGNOSTIC",
|
||||
"BAZEL_LINTER",
|
||||
"C10_NODISCARD",
|
||||
"C10_UNUSED",
|
||||
"CALL_ONCE",
|
||||
"CMAKE_MINIMUM_REQUIRED",
|
||||
"CONTEXT_DECORATOR",
|
||||
"COPYRIGHT",
|
||||
"CUBINCLUDE",
|
||||
"DEPLOY_DETECTION",
|
||||
"ERROR_PRONE_ISINSTANCE",
|
||||
"EXEC",
|
||||
"HEADER_ONLY_LINTER",
|
||||
"IMPORT_LINTER",
|
||||
"INCLUDE",
|
||||
"LINTRUNNER_VERSION",
|
||||
"MERGE_CONFLICTLESS_CSV",
|
||||
"META_NO_CREATE_UNBACKED",
|
||||
"NEWLINE",
|
||||
"NOQA",
|
||||
"NO_WORKFLOWS_ON_FORK",
|
||||
"ONCE_FLAG",
|
||||
"PYBIND11_INCLUDE",
|
||||
"PYBIND11_SPECIALIZATION",
|
||||
"PYPIDEP",
|
||||
"PYPROJECT",
|
||||
"RAWCUDA",
|
||||
"RAWCUDADEVICE",
|
||||
"ROOT_LOGGING",
|
||||
"TABS",
|
||||
"TESTOWNERS",
|
||||
"TYPEIGNORE",
|
||||
"TYPENOSKIP",
|
||||
"WORKFLOWSYNC",
|
||||
}
|
||||
|
||||
|
||||
#: These linters are expected to take a few seconds, but less than 10s cpu time total
|
||||
FAST_LINTERS = {
|
||||
"CMAKE",
|
||||
"DOCSTRING_LINTER",
|
||||
"GHA",
|
||||
"NATIVEFUNCTIONS",
|
||||
"RUFF",
|
||||
"SET_LINTER",
|
||||
"SHELLCHECK",
|
||||
"SPACES",
|
||||
}
|
||||
|
||||
|
||||
#: These linters are expected to take more than 10s cpu time total;
|
||||
#: some need more than 1 hour.
|
||||
SLOW_LINTERS = {
|
||||
"ACTIONLINT",
|
||||
"CLANGFORMAT",
|
||||
"CLANGTIDY",
|
||||
"CODESPELL",
|
||||
"FLAKE8",
|
||||
"GB_REGISTRY",
|
||||
"PYFMT",
|
||||
"PYREFLY",
|
||||
"TEST_DEVICE_BIAS",
|
||||
"TEST_HAS_MAIN",
|
||||
}
|
||||
|
||||
|
||||
ALL_LINTERS = VERY_FAST_LINTERS | FAST_LINTERS | SLOW_LINTERS
|
||||
|
||||
|
||||
LINTRUNNER_CACHE_INFO = (
|
||||
Path(".lintbin/.lintrunner.sha256"),
|
||||
[
|
||||
"requirements.txt",
|
||||
"pyproject.toml",
|
||||
".lintrunner.toml",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
LINTRUNNER_BASE_CMD = [
|
||||
"uvx",
|
||||
"--python",
|
||||
"3.10",
|
||||
"lintrunner@0.12.7",
|
||||
]
|
||||
|
||||
|
||||
@click.command()
|
||||
def setup_lint():
|
||||
"""Set up lintrunner with current CI version."""
|
||||
cmd = LINTRUNNER_BASE_CMD + ["init"]
|
||||
subprocess.run(cmd, check=True, capture_output=True, text=True)
|
||||
|
||||
|
||||
def _check_linters():
|
||||
cmd = LINTRUNNER_BASE_CMD + ["list"]
|
||||
ret = spin.util.run(cmd, output=False, stderr=subprocess.PIPE)
|
||||
linters = {l.strip() for l in ret.stdout.decode().strip().split("\n")[1:]}
|
||||
unknown_linters = linters - ALL_LINTERS
|
||||
missing_linters = ALL_LINTERS - linters
|
||||
if unknown_linters:
|
||||
click.secho(
|
||||
f"Unknown linters found; please add them to the correct category "
|
||||
f"in .spin/cmds.py: {', '.join(unknown_linters)}",
|
||||
fg="yellow",
|
||||
)
|
||||
if missing_linters:
|
||||
click.secho(
|
||||
f"Missing linters found; please update the corresponding category "
|
||||
f"in .spin/cmds.py: {', '.join(missing_linters)}",
|
||||
fg="yellow",
|
||||
)
|
||||
return unknown_linters, missing_linters
|
||||
|
||||
|
||||
@spin.util.extend_command(
|
||||
setup_lint,
|
||||
doc=f"""
|
||||
If configuration has changed, update lintrunner.
|
||||
|
||||
Compares the stored old hashes of configuration files with new ones and
|
||||
performs setup via setup-lint if the hashes have changed.
|
||||
Hashes are stored in {LINTRUNNER_CACHE_INFO[0]}; the following files are
|
||||
considered: {", ".join(LINTRUNNER_CACHE_INFO[1])}.
|
||||
""",
|
||||
)
|
||||
@click.pass_context
|
||||
def lazy_setup_lint(ctx, parent_callback, **kwargs):
|
||||
if hashes := _updated_hashes(*LINTRUNNER_CACHE_INFO):
|
||||
click.echo(
|
||||
"Changes detected in lint configuration files. Setting up linting tools..."
|
||||
)
|
||||
parent_callback(**kwargs)
|
||||
hash_file = LINTRUNNER_CACHE_INFO[0]
|
||||
hash_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
with hash_file.open("w") as f:
|
||||
for file, hash in hashes.items():
|
||||
f.write(f"{hash} {file}\n")
|
||||
click.echo("Linting tools set up and hashes updated.")
|
||||
else:
|
||||
click.echo("No changes detected in lint configuration files. Skipping setup.")
|
||||
click.echo("Regenerating version...")
|
||||
ctx.invoke(regenerate_version)
|
||||
click.echo("Regenerating type stubs...")
|
||||
ctx.invoke(regenerate_type_stubs)
|
||||
click.echo("Done.")
|
||||
_check_linters()
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("-a", "--apply-patches", is_flag=True)
|
||||
@click.pass_context
|
||||
def lint(ctx, apply_patches, **kwargs):
|
||||
"""Lint all files."""
|
||||
ctx.invoke(lazy_setup_lint)
|
||||
all_files_linters = VERY_FAST_LINTERS | FAST_LINTERS
|
||||
changed_files_linters = SLOW_LINTERS
|
||||
cmd = LINTRUNNER_BASE_CMD
|
||||
if apply_patches:
|
||||
cmd += ["--apply-patches"]
|
||||
all_files_cmd = cmd + [
|
||||
"--take",
|
||||
",".join(all_files_linters),
|
||||
"--all-files",
|
||||
]
|
||||
spin.util.run(all_files_cmd)
|
||||
changed_files_cmd = cmd + [
|
||||
"--take",
|
||||
",".join(changed_files_linters),
|
||||
]
|
||||
spin.util.run(changed_files_cmd)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.pass_context
|
||||
def fixlint(ctx, **kwargs):
|
||||
"""Autofix all files."""
|
||||
ctx.invoke(lint, apply_patches=True)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("-a", "--apply-patches", is_flag=True)
|
||||
@click.pass_context
|
||||
def quicklint(ctx, apply_patches, **kwargs):
|
||||
"""Lint changed files."""
|
||||
ctx.invoke(lazy_setup_lint)
|
||||
cmd = LINTRUNNER_BASE_CMD
|
||||
if apply_patches:
|
||||
cmd += ["--apply-patches"]
|
||||
spin.util.run(cmd)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.pass_context
|
||||
def quickfix(ctx, **kwargs):
|
||||
"""Autofix changed files."""
|
||||
ctx.invoke(quicklint, apply_patches=True)
|
||||
@ -94,6 +94,11 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
|
||||
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
|
||||
}
|
||||
|
||||
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
|
||||
c10::DeviceIndex device_index) {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
|
||||
}
|
||||
} // namespace at::accelerator
|
||||
|
||||
namespace at {
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <torch/headeronly/core/TensorAccessor.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/ArrayRef.h>
|
||||
#include <c10/util/Deprecated.h>
|
||||
@ -11,252 +12,37 @@
|
||||
|
||||
namespace at {
|
||||
|
||||
// The PtrTraits argument to the TensorAccessor/GenericPackedTensorAccessor
|
||||
// is used to enable the __restrict__ keyword/modifier for the data
|
||||
// passed to cuda.
|
||||
template <typename T>
|
||||
struct DefaultPtrTraits {
|
||||
typedef T* PtrType;
|
||||
};
|
||||
|
||||
using torch::headeronly::DefaultPtrTraits;
|
||||
#if defined(__CUDACC__) || defined(__HIPCC__)
|
||||
template <typename T>
|
||||
struct RestrictPtrTraits {
|
||||
typedef T* __restrict__ PtrType;
|
||||
};
|
||||
using torch::headeronly::RestrictPtrTraits;
|
||||
#endif
|
||||
|
||||
// TensorAccessorBase and TensorAccessor are used for both CPU and CUDA tensors.
|
||||
// For CUDA tensors it is used in device code (only). This means that we restrict ourselves
|
||||
// to functions and types available there (e.g. IntArrayRef isn't).
|
||||
|
||||
// The PtrTraits argument is only relevant to cuda to support `__restrict__` pointers.
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class TensorAccessorBase {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
using TensorAccessorBase = torch::headeronly::detail::TensorAccessorBase<c10::IntArrayRef, T, N, PtrTraits, index_t>;
|
||||
|
||||
C10_HOST_DEVICE TensorAccessorBase(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: data_(data_), sizes_(sizes_), strides_(strides_) {}
|
||||
C10_HOST IntArrayRef sizes() const {
|
||||
return IntArrayRef(sizes_,N);
|
||||
}
|
||||
C10_HOST IntArrayRef strides() const {
|
||||
return IntArrayRef(strides_,N);
|
||||
}
|
||||
C10_HOST_DEVICE index_t stride(index_t i) const {
|
||||
return strides_[i];
|
||||
}
|
||||
C10_HOST_DEVICE index_t size(index_t i) const {
|
||||
return sizes_[i];
|
||||
}
|
||||
C10_HOST_DEVICE PtrType data() {
|
||||
return data_;
|
||||
}
|
||||
C10_HOST_DEVICE const PtrType data() const {
|
||||
return data_;
|
||||
}
|
||||
protected:
|
||||
PtrType data_;
|
||||
const index_t* sizes_;
|
||||
const index_t* strides_;
|
||||
};
|
||||
|
||||
// The `TensorAccessor` is typically instantiated for CPU `Tensor`s using
|
||||
// `Tensor.accessor<T, N>()`.
|
||||
// For CUDA `Tensor`s, `GenericPackedTensorAccessor` is used on the host and only
|
||||
// indexing on the device uses `TensorAccessor`s.
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class TensorAccessor : public TensorAccessorBase<T,N,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
using TensorAccessor = torch::headeronly::detail::TensorAccessor<c10::IntArrayRef, T, N, PtrTraits, index_t>;
|
||||
|
||||
C10_HOST_DEVICE TensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: TensorAccessorBase<T, N, PtrTraits, index_t>(data_,sizes_,strides_) {}
|
||||
namespace detail {
|
||||
|
||||
C10_HOST_DEVICE TensorAccessor<T, N - 1, PtrTraits, index_t> operator[](index_t i) {
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i,this->sizes_+1,this->strides_+1);
|
||||
}
|
||||
|
||||
C10_HOST_DEVICE const TensorAccessor<T, N-1, PtrTraits, index_t> operator[](index_t i) const {
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i,this->sizes_+1,this->strides_+1);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T, template <typename U> class PtrTraits, typename index_t>
|
||||
class TensorAccessor<T,1,PtrTraits,index_t> : public TensorAccessorBase<T,1,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
|
||||
C10_HOST_DEVICE TensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: TensorAccessorBase<T, 1, PtrTraits, index_t>(data_,sizes_,strides_) {}
|
||||
C10_HOST_DEVICE T & operator[](index_t i) {
|
||||
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
|
||||
return this->data_[this->strides_[0]*i];
|
||||
}
|
||||
C10_HOST_DEVICE const T & operator[](index_t i) const {
|
||||
return this->data_[this->strides_[0]*i];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// GenericPackedTensorAccessorBase and GenericPackedTensorAccessor are used on for CUDA `Tensor`s on the host
|
||||
// and as
|
||||
// In contrast to `TensorAccessor`s, they copy the strides and sizes on instantiation (on the host)
|
||||
// in order to transfer them on the device when calling kernels.
|
||||
// On the device, indexing of multidimensional tensors gives to `TensorAccessor`s.
|
||||
// Use RestrictPtrTraits as PtrTraits if you want the tensor's data pointer to be marked as __restrict__.
|
||||
// Instantiation from data, sizes, strides is only needed on the host and std::copy isn't available
|
||||
// on the device, so those functions are host only.
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class GenericPackedTensorAccessorBase {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
C10_HOST GenericPackedTensorAccessorBase(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: data_(data_) {
|
||||
std::copy(sizes_, sizes_ + N, std::begin(this->sizes_));
|
||||
std::copy(strides_, strides_ + N, std::begin(this->strides_));
|
||||
}
|
||||
|
||||
// if index_t is not int64_t, we want to have an int64_t constructor
|
||||
template <typename source_index_t, class = std::enable_if_t<std::is_same_v<source_index_t, int64_t>>>
|
||||
C10_HOST GenericPackedTensorAccessorBase(
|
||||
PtrType data_,
|
||||
const source_index_t* sizes_,
|
||||
const source_index_t* strides_)
|
||||
: data_(data_) {
|
||||
for (const auto i : c10::irange(N)) {
|
||||
this->sizes_[i] = sizes_[i];
|
||||
this->strides_[i] = strides_[i];
|
||||
}
|
||||
}
|
||||
|
||||
C10_HOST_DEVICE index_t stride(index_t i) const {
|
||||
return strides_[i];
|
||||
}
|
||||
C10_HOST_DEVICE index_t size(index_t i) const {
|
||||
return sizes_[i];
|
||||
}
|
||||
C10_HOST_DEVICE PtrType data() {
|
||||
return data_;
|
||||
}
|
||||
C10_HOST_DEVICE const PtrType data() const {
|
||||
return data_;
|
||||
}
|
||||
protected:
|
||||
PtrType data_;
|
||||
// NOLINTNEXTLINE(*c-arrays*)
|
||||
index_t sizes_[N];
|
||||
// NOLINTNEXTLINE(*c-arrays*)
|
||||
index_t strides_[N];
|
||||
C10_HOST void bounds_check_(index_t i) const {
|
||||
TORCH_CHECK_INDEX(
|
||||
template <size_t N, typename index_t>
|
||||
struct IndexBoundsCheck {
|
||||
IndexBoundsCheck(index_t i) {
|
||||
TORCH_CHECK_INDEX(
|
||||
0 <= i && i < index_t{N},
|
||||
"Index ",
|
||||
i,
|
||||
" is not within bounds of a tensor of dimension ",
|
||||
N);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class GenericPackedTensorAccessor : public GenericPackedTensorAccessorBase<T,N,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, N, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
// if index_t is not int64_t, we want to have an int64_t constructor
|
||||
template <typename source_index_t, class = std::enable_if_t<std::is_same_v<source_index_t, int64_t>>>
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const source_index_t* sizes_,
|
||||
const source_index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, N, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
C10_DEVICE TensorAccessor<T, N - 1, PtrTraits, index_t> operator[](index_t i) {
|
||||
index_t* new_sizes = this->sizes_ + 1;
|
||||
index_t* new_strides = this->strides_ + 1;
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i, new_sizes, new_strides);
|
||||
}
|
||||
|
||||
C10_DEVICE const TensorAccessor<T, N - 1, PtrTraits, index_t> operator[](index_t i) const {
|
||||
const index_t* new_sizes = this->sizes_ + 1;
|
||||
const index_t* new_strides = this->strides_ + 1;
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i, new_sizes, new_strides);
|
||||
}
|
||||
|
||||
/// Returns a PackedTensorAccessor of the same dimension after transposing the
|
||||
/// two dimensions given. Does not actually move elements; transposition is
|
||||
/// made by permuting the size/stride arrays. If the dimensions are not valid,
|
||||
/// asserts.
|
||||
C10_HOST GenericPackedTensorAccessor<T, N, PtrTraits, index_t> transpose(
|
||||
index_t dim1,
|
||||
index_t dim2) const {
|
||||
this->bounds_check_(dim1);
|
||||
this->bounds_check_(dim2);
|
||||
GenericPackedTensorAccessor<T, N, PtrTraits, index_t> result(
|
||||
this->data_, this->sizes_, this->strides_);
|
||||
std::swap(result.strides_[dim1], result.strides_[dim2]);
|
||||
std::swap(result.sizes_[dim1], result.sizes_[dim2]);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T, template <typename U> class PtrTraits, typename index_t>
|
||||
class GenericPackedTensorAccessor<T,1,PtrTraits,index_t> : public GenericPackedTensorAccessorBase<T,1,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, 1, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
// if index_t is not int64_t, we want to have an int64_t constructor
|
||||
template <typename source_index_t, class = std::enable_if_t<std::is_same_v<source_index_t, int64_t>>>
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const source_index_t* sizes_,
|
||||
const source_index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, 1, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
C10_DEVICE T & operator[](index_t i) {
|
||||
return this->data_[this->strides_[0] * i];
|
||||
}
|
||||
C10_DEVICE const T& operator[](index_t i) const {
|
||||
return this->data_[this->strides_[0]*i];
|
||||
}
|
||||
|
||||
// Same as in the general N-dimensional case, but note that in the
|
||||
// 1-dimensional case the returned PackedTensorAccessor will always be an
|
||||
// identical copy of the original
|
||||
C10_HOST GenericPackedTensorAccessor<T, 1, PtrTraits, index_t> transpose(
|
||||
index_t dim1,
|
||||
index_t dim2) const {
|
||||
this->bounds_check_(dim1);
|
||||
this->bounds_check_(dim2);
|
||||
return GenericPackedTensorAccessor<T, 1, PtrTraits, index_t>(
|
||||
this->data_, this->sizes_, this->strides_);
|
||||
}
|
||||
};
|
||||
using GenericPackedTensorAccessorBase = torch::headeronly::detail::GenericPackedTensorAccessorBase<detail::IndexBoundsCheck<N, index_t>, T, N, PtrTraits, index_t>;
|
||||
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
using GenericPackedTensorAccessor = torch::headeronly::detail::GenericPackedTensorAccessor<TensorAccessor<T, N-1, PtrTraits, index_t>, detail::IndexBoundsCheck<N, index_t>, T, N, PtrTraits, index_t>;
|
||||
|
||||
// Can't put this directly into the macro function args because of commas
|
||||
#define AT_X GenericPackedTensorAccessor<T, N, PtrTraits, index_t>
|
||||
|
||||
@ -245,6 +245,9 @@ class TORCH_API TensorBase {
|
||||
size_t weak_use_count() const noexcept {
|
||||
return impl_.weak_use_count();
|
||||
}
|
||||
bool is_uniquely_owned() const noexcept {
|
||||
return impl_.is_uniquely_owned();
|
||||
}
|
||||
|
||||
std::string toString() const;
|
||||
|
||||
|
||||
@ -223,6 +223,62 @@ CONVERT_FROM_BF16_TEMPLATE(double)
|
||||
CONVERT_FROM_BF16_TEMPLATE(float16_t)
|
||||
#endif
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
|
||||
// clang-[17, 20] crashes when autovectorizing static cast to bf16
|
||||
// Below is a workaround to have some vectorization
|
||||
// Works decently well for smaller int types
|
||||
template <typename from_type>
|
||||
inline void convertToBf16Impl(
|
||||
const from_type* __restrict src,
|
||||
c10::BFloat16* __restrict dst,
|
||||
uint64_t n) {
|
||||
bfloat16_t* dstPtr = reinterpret_cast<bfloat16_t*>(dst);
|
||||
uint64_t loopBound = n - (n % 16);
|
||||
uint64_t i = 0;
|
||||
for (; i < loopBound; i += 16) {
|
||||
float32x4_t a, b, c, d;
|
||||
a[0] = static_cast<float>(src[i]);
|
||||
a[1] = static_cast<float>(src[i + 1]);
|
||||
a[2] = static_cast<float>(src[i + 2]);
|
||||
a[3] = static_cast<float>(src[i + 3]);
|
||||
b[0] = static_cast<float>(src[i + 4]);
|
||||
b[1] = static_cast<float>(src[i + 5]);
|
||||
b[2] = static_cast<float>(src[i + 6]);
|
||||
b[3] = static_cast<float>(src[i + 7]);
|
||||
c[0] = static_cast<float>(src[i + 8]);
|
||||
c[1] = static_cast<float>(src[i + 9]);
|
||||
c[2] = static_cast<float>(src[i + 10]);
|
||||
c[3] = static_cast<float>(src[i + 11]);
|
||||
d[0] = static_cast<float>(src[i + 12]);
|
||||
d[1] = static_cast<float>(src[i + 13]);
|
||||
d[2] = static_cast<float>(src[i + 14]);
|
||||
d[3] = static_cast<float>(src[i + 15]);
|
||||
|
||||
vst1q_bf16(dstPtr + i, vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(a), b));
|
||||
vst1q_bf16(dstPtr + i + 8, vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(c), d));
|
||||
}
|
||||
|
||||
#pragma clang loop vectorize(disable) interleave(disable) unroll(disable)
|
||||
for (; i < n; i++) {
|
||||
float a = static_cast<float>(src[i]);
|
||||
dstPtr[i] = vcvth_bf16_f32(a);
|
||||
}
|
||||
}
|
||||
|
||||
#define CONVERT_TO_BF16_TEMPLATE(from_type) \
|
||||
template <> \
|
||||
inline void convert(const from_type* src, c10::BFloat16* dst, int64_t n) { \
|
||||
return convertToBf16Impl<from_type>(src, dst, n); \
|
||||
}
|
||||
|
||||
CONVERT_TO_BF16_TEMPLATE(uint8_t)
|
||||
CONVERT_TO_BF16_TEMPLATE(int8_t)
|
||||
CONVERT_TO_BF16_TEMPLATE(int16_t)
|
||||
CONVERT_TO_BF16_TEMPLATE(int32_t)
|
||||
|
||||
#endif
|
||||
|
||||
inline void convertBoolToBfloat16Impl(
|
||||
const bool* __restrict src,
|
||||
c10::BFloat16* __restrict dst,
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <shared_mutex>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cusparse.h>
|
||||
@ -88,8 +89,13 @@ TORCH_CUDA_CPP_API cublasHandle_t getCurrentCUDABlasHandle();
|
||||
TORCH_CUDA_CPP_API cublasLtHandle_t getCurrentCUDABlasLtHandle();
|
||||
|
||||
TORCH_CUDA_CPP_API void clearCublasWorkspaces();
|
||||
TORCH_CUDA_CPP_API std::map<std::tuple<void *, void *>, at::DataPtr>& cublas_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API std::map<std::tuple<void *, void *>, at::DataPtr>& cublaslt_handle_stream_to_workspace();
|
||||
struct WorkspaceMapWithMutex {
|
||||
std::map<std::tuple<void*, void*>, at::DataPtr> map;
|
||||
std::shared_mutex mutex;
|
||||
};
|
||||
|
||||
TORCH_CUDA_CPP_API WorkspaceMapWithMutex& cublas_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API WorkspaceMapWithMutex& cublaslt_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API size_t getChosenWorkspaceSize();
|
||||
TORCH_CUDA_CPP_API size_t getCUDABlasLtWorkspaceSize();
|
||||
TORCH_CUDA_CPP_API void* getCUDABlasLtWorkspace();
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#include <ATen/cuda/CUDAGeneratorImpl.h>
|
||||
#include <ATen/cuda/CUDAGraph.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <ATen/cuda/MemPool.h>
|
||||
#include <ATen/Functions.h>
|
||||
#include <c10/cuda/CUDAFunctions.h>
|
||||
|
||||
@ -13,7 +14,7 @@ static bool _cuda_graphs_debug = false;
|
||||
MempoolId_t graph_pool_handle() {
|
||||
// Sets just the second value, to distinguish it from MempoolId_ts created from
|
||||
// cudaStreamGetCaptureInfo id_s in capture_begin.
|
||||
return c10::cuda::MemPool::graph_pool_handle();
|
||||
return at::cuda::MemPool::graph_pool_handle();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -90,7 +91,7 @@ void CUDAGraph::capture_begin(MempoolId_t pool/*=0*/, cudaStreamCaptureMode capt
|
||||
} else {
|
||||
// User did not ask us to share a mempool. Create graph pool handle using is_user_created=false.
|
||||
// Sets just the first value, to distinguish it from MempoolId_ts created by graph_pool_handle().
|
||||
mempool_id_ = c10::cuda::MemPool::graph_pool_handle(false);
|
||||
mempool_id_ = at::cuda::MemPool::graph_pool_handle(false);
|
||||
TORCH_INTERNAL_ASSERT(mempool_id_.first > 0);
|
||||
}
|
||||
|
||||
@ -174,17 +175,24 @@ void CUDAGraph::instantiate() {
|
||||
// Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people,
|
||||
// who prefer not to report error message through these arguments moving forward
|
||||
// (they prefer return value, or errors on api calls internal to the capture)
|
||||
#if (defined(CUDA_VERSION) && CUDA_VERSION >= 12000)
|
||||
AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, 0));
|
||||
// ROCM appears to fail with HIP error: invalid argument
|
||||
#if (defined(CUDA_VERSION) && CUDA_VERSION >= 12000) && !defined(USE_ROCM)
|
||||
AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, cudaGraphInstantiateFlagUseNodePriority));
|
||||
#else
|
||||
AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, NULL, NULL, 0));
|
||||
#endif
|
||||
//Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory.
|
||||
//It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch.
|
||||
} else {
|
||||
#if !defined(USE_ROCM)
|
||||
AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
|
||||
graph_,
|
||||
cudaGraphInstantiateFlagAutoFreeOnLaunch | cudaGraphInstantiateFlagUseNodePriority));
|
||||
#else
|
||||
AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
|
||||
graph_,
|
||||
cudaGraphInstantiateFlagAutoFreeOnLaunch));
|
||||
#endif
|
||||
}
|
||||
has_graph_exec_ = true;
|
||||
}
|
||||
|
||||
@ -99,7 +99,7 @@ void destroyCublasHandle(cublasHandle_t handle) {
|
||||
// - Comments of @soumith copied from cuDNN handle pool implementation
|
||||
#ifdef NO_CUDNN_DESTROY_HANDLE
|
||||
#else
|
||||
cublasDestroy(handle);
|
||||
cublasDestroy(handle);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -107,19 +107,27 @@ using CuBlasPoolType = DeviceThreadHandlePool<cublasHandle_t, createCublasHandle
|
||||
|
||||
} // namespace
|
||||
|
||||
std::map<std::tuple<void *, void *>, at::DataPtr>& cublas_handle_stream_to_workspace() {
|
||||
static auto& instance = *new std::map<std::tuple<void *, void *>, at::DataPtr>;
|
||||
WorkspaceMapWithMutex& cublas_handle_stream_to_workspace() {
|
||||
static auto& instance = *new WorkspaceMapWithMutex;
|
||||
return instance;
|
||||
}
|
||||
|
||||
std::map<std::tuple<void *, void *>, at::DataPtr>& cublaslt_handle_stream_to_workspace() {
|
||||
static auto& instance = *new std::map<std::tuple<void *, void *>, at::DataPtr>;
|
||||
WorkspaceMapWithMutex& cublaslt_handle_stream_to_workspace() {
|
||||
static auto& instance = *new WorkspaceMapWithMutex;
|
||||
return instance;
|
||||
}
|
||||
|
||||
void clearCublasWorkspaces() {
|
||||
cublas_handle_stream_to_workspace().clear();
|
||||
cublaslt_handle_stream_to_workspace().clear();
|
||||
{
|
||||
auto& workspace = cublas_handle_stream_to_workspace();
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
workspace.map.clear();
|
||||
}
|
||||
{
|
||||
auto& workspace = cublaslt_handle_stream_to_workspace();
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
workspace.map.clear();
|
||||
}
|
||||
}
|
||||
|
||||
size_t parseChosenWorkspaceSize() {
|
||||
@ -233,6 +241,38 @@ at::DataPtr getNewCUDABlasLtWorkspace() {
|
||||
return c10::cuda::CUDACachingAllocator::get()->allocate(getCUDABlasLtWorkspaceSize());
|
||||
}
|
||||
|
||||
void setWorkspaceForHandle(cublasHandle_t handle, c10::cuda::CUDAStream stream) {
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
|
||||
auto& workspace = cublas_handle_stream_to_workspace();
|
||||
|
||||
size_t workspace_size = getChosenWorkspaceSize();
|
||||
|
||||
// Fast path: check if workspace already exists
|
||||
{
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
if (workspace_it != workspace.map.end()) {
|
||||
TORCH_CUDABLAS_CHECK(cublasSetWorkspace(
|
||||
handle, workspace_it->second.get(), workspace_size));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Slow path: allocate workspace outside the lock
|
||||
auto new_workspace = getNewWorkspace();
|
||||
|
||||
// Insert with lock (double-check in case another thread inserted while we
|
||||
// were allocating)
|
||||
{
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.try_emplace(key, std::move(new_workspace)).first;
|
||||
TORCH_CUDABLAS_CHECK(
|
||||
cublasSetWorkspace(handle, workspace_it->second.get(), workspace_size));
|
||||
}
|
||||
}
|
||||
|
||||
void* getCUDABlasLtWorkspace() {
|
||||
#ifndef USE_ROCM
|
||||
static bool unified = c10::utils::check_env(TORCH_CUBLASLT_UNIFIED_WORKSPACE) == true;
|
||||
@ -241,8 +281,10 @@ void* getCUDABlasLtWorkspace() {
|
||||
auto stream = c10::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = at::cuda::cublas_handle_stream_to_workspace().find(key);
|
||||
TORCH_INTERNAL_ASSERT(workspace_it != at::cuda::cublas_handle_stream_to_workspace().end());
|
||||
auto& workspace = at::cuda::cublas_handle_stream_to_workspace();
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
TORCH_INTERNAL_ASSERT(workspace_it != workspace.map.end());
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
#endif
|
||||
@ -250,11 +292,29 @@ void* getCUDABlasLtWorkspace() {
|
||||
auto stream = c10::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = cublaslt_handle_stream_to_workspace().find(key);
|
||||
if (workspace_it == cublaslt_handle_stream_to_workspace().end()) {
|
||||
workspace_it = cublaslt_handle_stream_to_workspace().insert(workspace_it, {key, getNewCUDABlasLtWorkspace()});
|
||||
|
||||
auto& workspace = cublaslt_handle_stream_to_workspace();
|
||||
|
||||
// Fast path: check if workspace already exists
|
||||
{
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
if (workspace_it != workspace.map.end()) {
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
}
|
||||
|
||||
// Slow path: allocate workspace outside the lock
|
||||
auto new_workspace = getNewCUDABlasLtWorkspace();
|
||||
|
||||
// Insert with lock (double-check in case another thread inserted while we
|
||||
// were allocating)
|
||||
{
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it =
|
||||
workspace.map.try_emplace(key, std::move(new_workspace)).first;
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
|
||||
cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
@ -298,13 +358,8 @@ cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
// will allocate memory dynamically (even if they're cheap) outside
|
||||
// PyTorch's CUDA caching allocator. It's possible that CCA used up
|
||||
// all the memory and cublas's cudaMallocAsync will return OOM
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = cublas_handle_stream_to_workspace().find(key);
|
||||
if (workspace_it == cublas_handle_stream_to_workspace().end()) {
|
||||
workspace_it = cublas_handle_stream_to_workspace().insert(workspace_it, {key, getNewWorkspace()});
|
||||
}
|
||||
TORCH_CUDABLAS_CHECK(cublasSetWorkspace(handle, workspace_it->second.get(), getChosenWorkspaceSize()));
|
||||
setWorkspaceForHandle(handle, stream);
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
// On CUDA >= 11, and architecture >= Ampere, cuBLAS can use TF32 to speedup
|
||||
// FP32 data type calculations based on the value of the allow_tf32 flag.
|
||||
|
||||
69
aten/src/ATen/cuda/MemPool.cpp
Normal file
69
aten/src/ATen/cuda/MemPool.cpp
Normal file
@ -0,0 +1,69 @@
|
||||
#include <ATen/core/CachingHostAllocator.h>
|
||||
#include <ATen/cuda/MemPool.h>
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
// uid_ is incremented when a user creates a MemPool,
|
||||
// for example: using graph_pool_handle() or c10::cuda::MemPool().
|
||||
//
|
||||
// uuid_ is incremented when CUDAGraph creates a MemPool
|
||||
// as a result of a user not providing a pool.
|
||||
//
|
||||
// MempoolId_t of {0, 0} is used to denote when no MemPool has been
|
||||
// passed to a function, either by user or CUDAGraphs. For example,
|
||||
// default value of MempoolId_t for capture_begin function is {0, 0}.
|
||||
// That's why uid_ and uuid_ start at 1.
|
||||
std::atomic<CaptureId_t> MemPool::uid_{1};
|
||||
std::atomic<CaptureId_t> MemPool::uuid_{1};
|
||||
|
||||
MemPool::MemPool(
|
||||
CUDACachingAllocator::CUDAAllocator* allocator,
|
||||
bool is_user_created,
|
||||
bool use_on_oom)
|
||||
: allocator_(allocator), is_user_created_(is_user_created) {
|
||||
if (is_user_created_) {
|
||||
id_ = {0, uid_++};
|
||||
} else {
|
||||
id_ = {uuid_++, 0};
|
||||
}
|
||||
device_ = c10::cuda::current_device();
|
||||
CUDACachingAllocator::createOrIncrefPool(device_, id_, allocator);
|
||||
if (use_on_oom) {
|
||||
CUDACachingAllocator::setUseOnOOM(device_, id_);
|
||||
}
|
||||
}
|
||||
|
||||
MemPool::~MemPool() {
|
||||
// TORCH_INTERNAL_ASSERT(use_count() == 1);
|
||||
// We used to assert that TORCH_INTERNAL_ASSERT(use_count() == 1);
|
||||
// However, this assertion is not true if a memory pool is shared
|
||||
// with a cuda graph. That CUDAGraph will increase the use count
|
||||
// until it is reset.
|
||||
CUDACachingAllocator::releasePool(device_, id_);
|
||||
c10::cuda::CUDACachingAllocator::emptyCache(id_);
|
||||
}
|
||||
|
||||
MempoolId_t MemPool::id() {
|
||||
return id_;
|
||||
}
|
||||
|
||||
CUDACachingAllocator::CUDAAllocator* MemPool::allocator() {
|
||||
return allocator_;
|
||||
}
|
||||
|
||||
int MemPool::use_count() {
|
||||
return CUDACachingAllocator::getPoolUseCount(device_, id_);
|
||||
}
|
||||
|
||||
c10::DeviceIndex MemPool::device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
MempoolId_t MemPool::graph_pool_handle(bool is_user_created) {
|
||||
if (is_user_created) {
|
||||
return {0, uid_++};
|
||||
}
|
||||
return {uuid_++, 0};
|
||||
}
|
||||
|
||||
} // namespace at::cuda
|
||||
44
aten/src/ATen/cuda/MemPool.h
Normal file
44
aten/src/ATen/cuda/MemPool.h
Normal file
@ -0,0 +1,44 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/Allocator.h>
|
||||
#include <c10/cuda/CUDACachingAllocator.h>
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
// Keep BC only
|
||||
using c10::CaptureId_t;
|
||||
using c10::MempoolId_t;
|
||||
|
||||
// MemPool represents a pool of memory in a caching allocator. Currently,
|
||||
// it's just the ID of the pool object maintained in the CUDACachingAllocator.
|
||||
//
|
||||
// An allocator pointer can be passed to the MemPool to define how the
|
||||
// allocations should be done in the pool. For example: using a different
|
||||
// system allocator such as ncclMemAlloc.
|
||||
struct TORCH_CUDA_CPP_API MemPool {
|
||||
MemPool(
|
||||
c10::cuda::CUDACachingAllocator::CUDAAllocator* allocator = nullptr,
|
||||
bool is_user_created = true,
|
||||
bool use_on_oom = false);
|
||||
MemPool(const MemPool&) = delete;
|
||||
MemPool(MemPool&&) = default;
|
||||
MemPool& operator=(const MemPool&) = delete;
|
||||
MemPool& operator=(MemPool&&) = default;
|
||||
~MemPool();
|
||||
|
||||
MempoolId_t id();
|
||||
c10::cuda::CUDACachingAllocator::CUDAAllocator* allocator();
|
||||
int use_count();
|
||||
c10::DeviceIndex device();
|
||||
static MempoolId_t graph_pool_handle(bool is_user_created = true);
|
||||
|
||||
private:
|
||||
static std::atomic<CaptureId_t> uid_;
|
||||
static std::atomic<CaptureId_t> uuid_;
|
||||
c10::cuda::CUDACachingAllocator::CUDAAllocator* allocator_;
|
||||
bool is_user_created_;
|
||||
MempoolId_t id_;
|
||||
c10::DeviceIndex device_;
|
||||
};
|
||||
|
||||
} // namespace at::cuda
|
||||
@ -3541,9 +3541,9 @@ Tensor _dyn_quant_matmul_4bit_cpu(
|
||||
const int64_t out_features) {
|
||||
auto M = inp.size(0);
|
||||
TORCH_CHECK(
|
||||
inp.dtype() == kFloat,
|
||||
inp.dtype() == kFloat || (inp.dtype() == kBFloat16 && block_size == in_features),
|
||||
__func__,
|
||||
" : expect input to be 32-bit float tensor.");
|
||||
" : expect input to be float32 or bfloat16 tensor.");
|
||||
TORCH_CHECK(
|
||||
block_size == in_features ||
|
||||
(!(block_size % 32) && !(in_features % block_size)),
|
||||
|
||||
@ -1087,7 +1087,8 @@ TORCH_IMPL_FUNC(index_copy_out)
|
||||
result.copy_(self);
|
||||
|
||||
// See Note [Enabling Deterministic Operations]
|
||||
if (result.is_cuda() && globalContext().deterministicAlgorithms()) {
|
||||
if ((result.is_cuda() || result.is_xpu()) &&
|
||||
globalContext().deterministicAlgorithms()) {
|
||||
torch::List<std::optional<Tensor>> indices;
|
||||
indices.resize(dim + 1);
|
||||
indices.set(dim, index);
|
||||
|
||||
@ -904,19 +904,11 @@ Tensor mvlgamma(const Tensor& self, int64_t p) {
|
||||
return args.lgamma_().sum(-1).add_(p2_sub_p * std::log(c10::pi<double>) * QUARTER);
|
||||
}
|
||||
|
||||
// since mvlgamma_ has different signature from its
|
||||
// out and functional variant, we explicitly
|
||||
// define it (instead of using structured kernel).
|
||||
Tensor& mvlgamma_(Tensor& self, int64_t p) {
|
||||
mvlgamma_check(self, p);
|
||||
Tensor args = native::arange(
|
||||
-p *HALF + HALF,
|
||||
HALF,
|
||||
HALF,
|
||||
optTypeMetaToScalarType(self.options().dtype_opt()),
|
||||
self.options().layout_opt(),
|
||||
self.options().device_opt(),
|
||||
self.options().pinned_memory_opt());
|
||||
args = args.add(self.unsqueeze(-1));
|
||||
const auto p2_sub_p = static_cast<double>(p * (p - 1));
|
||||
return self.copy_(args.lgamma_().sum(-1).add_(p2_sub_p * std::log(c10::pi<double>) * QUARTER));
|
||||
return at::mvlgamma_out(self, self, p);
|
||||
}
|
||||
|
||||
Tensor& mvlgamma_out(const Tensor& self, int64_t p, Tensor& result) {
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
#include <ATen/cpu/vec/vec.h>
|
||||
#include <ATen/native/cpu/int_mm_kernel.h>
|
||||
#include <ATen/native/cpu/utils.h>
|
||||
#include <cmath>
|
||||
#include <c10/util/Unroll.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
@ -793,6 +794,139 @@ bool can_use_kleidiai(
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ref_dyn_quant_matmul_4bit_channelwise_kernel_bf16(
|
||||
size_t m,
|
||||
size_t n,
|
||||
size_t k,
|
||||
const uint16_t* lhs_bf16,
|
||||
const uint8_t* rhs_qs4cx,
|
||||
const float* rhs_scales,
|
||||
uint16_t* dst_bf16,
|
||||
float scalar_min,
|
||||
float scalar_max,
|
||||
const float* bias) {
|
||||
// Roundup lambda for internal stride calculations
|
||||
auto roundup = [](size_t a, size_t b) { return ((a + b - 1) / b) * b; };
|
||||
|
||||
// Cast bfloat16 to float32 inline
|
||||
auto cast_bf16_to_f32 = [](uint16_t bf16_val) {
|
||||
uint32_t tmp = static_cast<uint32_t>(bf16_val) << 16;
|
||||
float f;
|
||||
std::memcpy(&f, &tmp, sizeof(f));
|
||||
return f;
|
||||
};
|
||||
|
||||
// Cast float32 to bfloat16 inline
|
||||
auto cast_f32_to_bf16 = [](float f) {
|
||||
uint32_t bits;
|
||||
std::memcpy(&bits, &f, sizeof(bits));
|
||||
return static_cast<uint16_t>(bits >> 16);
|
||||
};
|
||||
|
||||
// Quantization pack lambda (channelwise QA8DX)
|
||||
auto quant_pack_8bit_channelwise =
|
||||
[&](size_t M, size_t K, const uint16_t* src_bf16, int8_t* dst_qa8dx) {
|
||||
constexpr int8_t kI8Min = std::numeric_limits<std::int8_t>::lowest();
|
||||
constexpr int8_t kI8Max = std::numeric_limits<std::int8_t>::max();
|
||||
|
||||
const size_t dst_stride =
|
||||
K * sizeof(int8_t) + sizeof(float) + sizeof(int32_t);
|
||||
for (size_t i = 0; i < M; ++i) {
|
||||
const uint16_t* row_ptr = src_bf16 + i * K;
|
||||
// find min/max
|
||||
float mn = FLT_MAX, mx = -FLT_MAX;
|
||||
for (size_t j = 0; j < K; ++j) {
|
||||
float v = cast_bf16_to_f32(row_ptr[j]);
|
||||
mn = std::min(mn, v);
|
||||
mx = std::max(mx, v);
|
||||
}
|
||||
float rmin = std::min(0.0f, mn);
|
||||
float rmax = std::max(0.0f, mx);
|
||||
constexpr float qmin = static_cast<float>(kI8Min);
|
||||
constexpr float qmax = static_cast<float>(kI8Max);
|
||||
float scale = (rmin == rmax) ? 1.f : (qmax - qmin) / (rmax - rmin);
|
||||
float recip = scale ? 1.0f / scale : 0.0f;
|
||||
int32_t zp;
|
||||
float des_min = rmin * scale;
|
||||
float des_max = rmax * scale;
|
||||
float err_min = qmin + des_min;
|
||||
float err_max = qmax + des_max;
|
||||
float zp_f =
|
||||
(err_min + err_max) > 0 ? qmin - des_min : qmax - des_max;
|
||||
zp_f = std::clamp(zp_f, qmin, qmax);
|
||||
zp = std::lrintf(zp_f);
|
||||
int8_t* out_ptr = dst_qa8dx + i * dst_stride;
|
||||
// store header
|
||||
*reinterpret_cast<float*>(out_ptr) = recip;
|
||||
*reinterpret_cast<int32_t*>(out_ptr + sizeof(float)) = -zp;
|
||||
out_ptr += sizeof(float) + sizeof(int32_t);
|
||||
// quantize
|
||||
for (size_t j = 0; j < K; ++j) {
|
||||
float v = cast_bf16_to_f32(row_ptr[j]);
|
||||
int32_t q = static_cast<int32_t>(std::round(v * scale)) + zp;
|
||||
q = std::clamp(
|
||||
q, static_cast<int32_t>(kI8Min), static_cast<int32_t>(kI8Max));
|
||||
*out_ptr++ = static_cast<int8_t>(q);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// MatMul lambda (MXN x MXK -> MNXK BF16)
|
||||
auto matmul_kernel = [&](size_t M,
|
||||
size_t N,
|
||||
size_t K,
|
||||
const int8_t* lhs,
|
||||
const uint8_t* rhs,
|
||||
const float* scales,
|
||||
uint16_t* dst,
|
||||
float lo,
|
||||
float hi) {
|
||||
const size_t lhs_stride =
|
||||
K * sizeof(int8_t) + sizeof(float) + sizeof(int32_t);
|
||||
const size_t rhs_stride = roundup(K, 2) / 2;
|
||||
for (size_t i = 0; i < M; ++i) {
|
||||
const int8_t* lhs_row = lhs + i * lhs_stride;
|
||||
for (size_t j = 0; j < N; ++j) {
|
||||
int32_t acc = 0;
|
||||
const int8_t* lptr = lhs_row;
|
||||
const uint8_t* rptr = rhs + j * rhs_stride;
|
||||
float lhs_scale = *reinterpret_cast<const float*>(lptr);
|
||||
int32_t lhs_off =
|
||||
*reinterpret_cast<const int32_t*>(lptr + sizeof(float));
|
||||
lptr += sizeof(float) + sizeof(int32_t);
|
||||
for (size_t t = 0; t < K; ++t) {
|
||||
int32_t lv = static_cast<int32_t>(lptr[t]);
|
||||
uint8_t bv = rptr[t / 2];
|
||||
int32_t rv = ((t & 1) == 0) ? (static_cast<int32_t>(bv & 0xF) - 8)
|
||||
: (static_cast<int32_t>(bv >> 4) - 8);
|
||||
acc += lv * rv + lhs_off * rv;
|
||||
}
|
||||
float res = static_cast<float>(acc) * scales[j] * lhs_scale;
|
||||
if (bias) {
|
||||
res += bias[j];
|
||||
}
|
||||
res = std::clamp(res, lo, hi);
|
||||
*dst++ = cast_f32_to_bf16(res);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// allocate and run
|
||||
std::unique_ptr<int8_t[]> packed(
|
||||
new int8_t[m * (k * sizeof(int8_t) + sizeof(float) + sizeof(int32_t))]);
|
||||
quant_pack_8bit_channelwise(m, k, lhs_bf16, packed.get());
|
||||
matmul_kernel(
|
||||
m,
|
||||
n,
|
||||
k,
|
||||
packed.get(),
|
||||
rhs_qs4cx,
|
||||
rhs_scales,
|
||||
dst_bf16,
|
||||
scalar_min,
|
||||
scalar_max);
|
||||
}
|
||||
|
||||
/**
|
||||
* The Int4 quantized weights must be represented as a uint8 tensor
|
||||
* For matrix multiplication with a weight shape of (N x K)
|
||||
@ -819,21 +953,21 @@ void dyn_quant_pack_4bit_weight_kernel(
|
||||
#if AT_KLEIDIAI_ENABLED()
|
||||
if (can_use_kleidiai(scales_zeros, K, block_size)) {
|
||||
const int64_t weight_packed_size =
|
||||
kleidiai::kai_pack_rhs_int4_size(N, K, block_size);
|
||||
kleidiai::kai_pack_rhs_int4_size(N, K, block_size, weights.scalar_type());
|
||||
packed_weights.resize_({weight_packed_size});
|
||||
kleidiai::kai_pack_int4_rhs(
|
||||
packed_weights, weights, scales_zeros, bias, N, K, block_size);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
TORCH_CHECK(
|
||||
bias.has_value() == 0,
|
||||
__func__,
|
||||
" : Bias is unsupported in reference implementation");
|
||||
packed_weights = packed_weights.to(kFloat);
|
||||
auto weight_reshaped = weights.view({-1}).to(kFloat);
|
||||
auto scales_zeros_reshaped = scales_zeros.view({-1}).to(kFloat);
|
||||
auto res = at::cat({weight_reshaped, scales_zeros_reshaped}, 0);
|
||||
auto weight_reshaped = weights.reshape({-1}).to(kFloat);
|
||||
auto scales_zeros_reshaped = scales_zeros.reshape({-1}).to(kFloat);
|
||||
std::vector<at::Tensor> tensors_to_cat = {weight_reshaped, scales_zeros_reshaped};
|
||||
if (bias.has_value()) {
|
||||
tensors_to_cat.push_back(bias.value().view({-1}).to(kFloat));
|
||||
}
|
||||
auto res = at::cat(tensors_to_cat, 0);
|
||||
packed_weights.resize_(res.sizes()).copy_(res);
|
||||
}
|
||||
}
|
||||
@ -847,7 +981,8 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
const float* rhs_scales_f32,
|
||||
float* dst_f32,
|
||||
float scalar_min,
|
||||
float scalar_max) {
|
||||
float scalar_max,
|
||||
const float* bias) {
|
||||
const size_t input_size_8bit = m * (k + sizeof(int32_t) + sizeof(float));
|
||||
|
||||
auto lhs_qa8dx_buffer = std::make_unique<uint8_t[]>(input_size_8bit);
|
||||
@ -857,6 +992,9 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
// required format for matmul
|
||||
auto input_quant_pack_8bit_channelwise =
|
||||
[&](size_t m, size_t k, const float* lhs_f32, int8_t* lhs_qa8dx) {
|
||||
constexpr int8_t kI8Min = std::numeric_limits<std::int8_t>::lowest();
|
||||
constexpr int8_t kI8Max = std::numeric_limits<std::int8_t>::max();
|
||||
|
||||
const size_t dst_stride =
|
||||
(k * sizeof(int8_t) + sizeof(float) + sizeof(int32_t));
|
||||
|
||||
@ -877,8 +1015,8 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
}
|
||||
|
||||
// Maximum/minimum int8 values
|
||||
const float qmin = (float)INT8_MIN;
|
||||
const float qmax = (float)INT8_MAX;
|
||||
constexpr float qmin = static_cast<float>(kI8Min);
|
||||
constexpr float qmax = static_cast<float>(kI8Max);
|
||||
|
||||
const float rmin0 = std::min(0.0f, min0);
|
||||
const float rmax0 = std::max(0.0f, max0);
|
||||
@ -904,7 +1042,7 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
zero_point0 = std::min(zero_point0, qmax);
|
||||
|
||||
// Round to nearest integer
|
||||
const int32_t nudged_zero_point0 = lrintf(zero_point0);
|
||||
const int32_t nudged_zero_point0 = std::lrintf(zero_point0);
|
||||
|
||||
int8_t* dst_ptr = lhs_qa8dx + m_idx * dst_stride;
|
||||
|
||||
@ -922,8 +1060,8 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
int32_t v0_s32 = (int32_t)(std::round(src0_0 * scale0));
|
||||
|
||||
v0_s32 = v0_s32 + nudged_zero_point0;
|
||||
v0_s32 = std::max(v0_s32, static_cast<int32_t>(INT8_MIN));
|
||||
v0_s32 = std::min(v0_s32, static_cast<int32_t>(INT8_MAX));
|
||||
v0_s32 = std::max(v0_s32, static_cast<int32_t>(kI8Min));
|
||||
v0_s32 = std::min(v0_s32, static_cast<int32_t>(kI8Max));
|
||||
dst_ptr[0] = (int8_t)v0_s32;
|
||||
dst_ptr += sizeof(int8_t);
|
||||
}
|
||||
@ -987,6 +1125,10 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
|
||||
main_acc = main_acc * lhs_scale;
|
||||
|
||||
if (bias) {
|
||||
main_acc += bias[n_idx];
|
||||
}
|
||||
|
||||
// Clamp (min-max) operation
|
||||
main_acc = std::max(main_acc, scalar_min);
|
||||
main_acc = std::min(main_acc, scalar_max);
|
||||
@ -1007,12 +1149,16 @@ void ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
const float* rhs_scales_fp32,
|
||||
float* dst_f32,
|
||||
float scalar_min,
|
||||
float scalar_max) {
|
||||
float scalar_max,
|
||||
const float* bias) {
|
||||
// Lambda for LHS quantization
|
||||
auto lhs_quant_pack = [&](size_t m,
|
||||
size_t k,
|
||||
const float* lhs_f32,
|
||||
int8_t* lhs_qa8dx) {
|
||||
constexpr int8_t kI8Min = std::numeric_limits<std::int8_t>::lowest();
|
||||
constexpr int8_t kI8Max = std::numeric_limits<std::int8_t>::max();
|
||||
|
||||
const size_t dst_stride =
|
||||
(k * sizeof(int8_t) + sizeof(float) + sizeof(int32_t));
|
||||
|
||||
@ -1028,8 +1174,8 @@ void ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
min0 = std::min(src0_0, min0);
|
||||
}
|
||||
|
||||
const float qmin = (float)INT8_MIN;
|
||||
const float qmax = (float)INT8_MAX;
|
||||
constexpr float qmin = static_cast<float>(kI8Min);
|
||||
constexpr float qmax = static_cast<float>(kI8Max);
|
||||
|
||||
const float rmin0 = std::min(0.0f, min0);
|
||||
const float rmax0 = std::max(0.0f, max0);
|
||||
@ -1046,7 +1192,7 @@ void ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
|
||||
zero_point0 = std::max(zero_point0, qmin);
|
||||
zero_point0 = std::min(zero_point0, qmax);
|
||||
const int32_t nudged_zero_point0 = lrintf(zero_point0);
|
||||
const int32_t nudged_zero_point0 = std::lrintf(zero_point0);
|
||||
|
||||
int8_t* dst_ptr = lhs_qa8dx + row_idx * dst_stride;
|
||||
|
||||
@ -1059,9 +1205,8 @@ void ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
const float src0_0 = src_ptr[k_idx];
|
||||
int32_t v0_s32 = (int32_t)(std::round(src0_0 * scale0));
|
||||
v0_s32 = std::max(
|
||||
std::min(
|
||||
v0_s32 + nudged_zero_point0, static_cast<int32_t>(INT8_MAX)),
|
||||
static_cast<int32_t>(INT8_MIN));
|
||||
std::min(v0_s32 + nudged_zero_point0, static_cast<int32_t>(kI8Max)),
|
||||
static_cast<int32_t>(kI8Min));
|
||||
dst_ptr[0] = (int8_t)v0_s32;
|
||||
dst_ptr += sizeof(int8_t);
|
||||
}
|
||||
@ -1118,6 +1263,11 @@ void ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
}
|
||||
|
||||
main_acc = main_acc * lhs_scale;
|
||||
|
||||
if (bias) {
|
||||
main_acc += bias[col_idx];
|
||||
}
|
||||
|
||||
main_acc = std::max(main_acc, scalar_min);
|
||||
main_acc = std::min(main_acc, scalar_max);
|
||||
|
||||
@ -1128,28 +1278,27 @@ void ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
}
|
||||
|
||||
/**
|
||||
* Dynamic Input Quant 4 bit weights matmul execution flow
|
||||
(INT4 Weights + FP scales + FP32 Bias)
|
||||
FP32 Input Packed Buffer
|
||||
| |
|
||||
Quantize Cast
|
||||
to INT8 to INT8
|
||||
| |
|
||||
v v
|
||||
INT8 Input INT8 Weights
|
||||
\ /
|
||||
\ /
|
||||
\ /
|
||||
INT8 Matrix Multiplication
|
||||
|
|
||||
v
|
||||
FP32 Dequantized and Accumulate in FP32
|
||||
|
|
||||
v
|
||||
FP32 Final Output
|
||||
|
||||
* The Groupwise kernel requires BFloat16 Scales and Channelwise kernel requires
|
||||
* Float32 Scales. If not provided, we will use fallback implementation.
|
||||
* Dynamic INT4 weight-only MatMul with per-row input quantization.
|
||||
*
|
||||
* Execution Flow:
|
||||
*
|
||||
* (INT4 Weights + FP Scales [+ optional Bias])
|
||||
*
|
||||
* Input (FP32 or BF16) Packed Weight Buffer
|
||||
* | |
|
||||
* Row-wise Quantization (INT8) |
|
||||
* | |
|
||||
* INT8 Input Activation INT4 Quantized Weights + Scales
|
||||
* \ /
|
||||
* \ /
|
||||
* Quantized Matrix Multiply
|
||||
* |
|
||||
* Output Tensor (BF16 or FP32)
|
||||
*
|
||||
* Notes:
|
||||
* - Groupwise kernels expect BF16 scales
|
||||
* - Channelwise kernels expect FP32 scales
|
||||
* - Bias is currently unsupported in fallback path
|
||||
*/
|
||||
void dyn_quant_matmul_4bit_kernel(
|
||||
const Tensor& output,
|
||||
@ -1161,65 +1310,75 @@ void dyn_quant_matmul_4bit_kernel(
|
||||
const int64_t block_size) {
|
||||
#if AT_KLEIDIAI_ENABLED()
|
||||
const int64_t weight_packed_size =
|
||||
kleidiai::kai_pack_rhs_int4_size(N, K, block_size);
|
||||
kleidiai::kai_pack_rhs_int4_size(N, K, block_size, inp.scalar_type());
|
||||
if (weight_packed_size == packed_weights.numel()) {
|
||||
// KleidiAI interface internally handles the Channelwise and groupwise
|
||||
// distinction
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm(
|
||||
output, inp, packed_weights, M, N, K, block_size);
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm(output, inp, packed_weights, M, N, K, block_size);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
float* lhs_f32 = reinterpret_cast<float*>(inp.data_ptr());
|
||||
const auto weights_size = N * K / 2;
|
||||
// The weights needs to be in uint8_t data type after quantization
|
||||
auto extracted_weights =
|
||||
(packed_weights.narrow(0, 0, weights_size)).to(kByte);
|
||||
auto float32_scales =
|
||||
(packed_weights.narrow(
|
||||
0, weights_size, packed_weights.size(0) - weights_size))
|
||||
.to(kFloat);
|
||||
uint8_t* rhs_4bit =
|
||||
reinterpret_cast<uint8_t*>(extracted_weights.data_ptr());
|
||||
float* rhs_scales_f32 = reinterpret_cast<float*>(float32_scales.data_ptr());
|
||||
float* dst_f32 = reinterpret_cast<float*>(output.data_ptr());
|
||||
if (block_size == K) {
|
||||
ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
lhs_f32,
|
||||
rhs_4bit,
|
||||
rhs_scales_f32,
|
||||
dst_f32,
|
||||
-FLT_MAX,
|
||||
FLT_MAX);
|
||||
} else if (!(block_size % 32) && !(K % block_size)) {
|
||||
ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
block_size,
|
||||
lhs_f32,
|
||||
rhs_4bit,
|
||||
rhs_scales_f32,
|
||||
dst_f32,
|
||||
-FLT_MAX,
|
||||
FLT_MAX);
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
block_size == K || (!(block_size % 32) && !(K % block_size)),
|
||||
__func__,
|
||||
": Group size should be multiple 32 or in_features [",
|
||||
K,
|
||||
"]. Provided ",
|
||||
block_size);
|
||||
{
|
||||
void* input = inp.data_ptr();
|
||||
void* dst = output.data_ptr();
|
||||
|
||||
// Extract weights, sclaes and biases form from packed tensor
|
||||
const int weights_elements = N * K / 2;
|
||||
const int scale_elements = N * (K / block_size);
|
||||
TORCH_CHECK(packed_weights.numel() >= (weights_elements + scale_elements), "Invalid packed weight tensor size");
|
||||
|
||||
auto extracted_weights = packed_weights.narrow(0, 0, weights_elements).to(kByte);
|
||||
auto extracted_scales_and_bias = packed_weights.narrow(0, weights_elements, packed_weights.size(0) - weights_elements).to(kFloat);
|
||||
auto float32_scales = extracted_scales_and_bias.narrow(0, 0, scale_elements);
|
||||
|
||||
int bias_elements = packed_weights.numel() - (weights_elements + scale_elements);
|
||||
float* weight_scales = float32_scales.data_ptr<float>();
|
||||
|
||||
void* bias_data = nullptr;
|
||||
if (bias_elements) {
|
||||
auto float32_bias = extracted_scales_and_bias.narrow(0, scale_elements, bias_elements);
|
||||
TORCH_CHECK(float32_bias.size(0) == N, "Expected bias length to match output dimension");
|
||||
bias_data = float32_bias.data_ptr();
|
||||
|
||||
}
|
||||
// 2 elements of 4 bit weights are packed into 1 uint8 packet
|
||||
uint8_t* weights_4bit = reinterpret_cast<uint8_t*>(extracted_weights.data_ptr());
|
||||
|
||||
// Dispatch to reference kernels
|
||||
if (inp.scalar_type() == at::kBFloat16) {
|
||||
// BF16 input, BF16 output
|
||||
constexpr float BF16_MAX = 3.38953139e+38f;
|
||||
constexpr float BF16_MIN = -BF16_MAX;
|
||||
if (block_size == K) {
|
||||
ref_dyn_quant_matmul_4bit_channelwise_kernel_bf16(
|
||||
M, N, K,
|
||||
(uint16_t*)input, weights_4bit, weight_scales,
|
||||
(uint16_t*)dst, BF16_MIN, BF16_MAX, (float*)bias_data);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported block size for BF16 fallback");
|
||||
}
|
||||
} else if (inp.scalar_type() == at::kFloat) {
|
||||
// FP32 input, FP32 output
|
||||
if (block_size == K) {
|
||||
ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
M, N, K,
|
||||
(float*)input, weights_4bit, weight_scales,
|
||||
(float*)dst, -FLT_MAX, FLT_MAX, (float*)bias_data);
|
||||
} else if (!(block_size % 32) && !(K % block_size)) {
|
||||
ref_dyn_quant_matmul_4bit_groupwise_kernel(
|
||||
M, N, K, block_size,
|
||||
(float*)input, weights_4bit, weight_scales,
|
||||
(float*)dst, -FLT_MAX, FLT_MAX, (float*)bias_data);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported block size for FP32 fallback");
|
||||
}
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported input/output dtype combination for int4mm kernel");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
}
|
||||
ALSO_REGISTER_AVX512_DISPATCH(weight_to_int4pack_stub, &weight_to_int4pack_kernel)
|
||||
ALSO_REGISTER_AVX512_DISPATCH(int4pack_mm_stub, &int4pack_mm_kernel)
|
||||
REGISTER_DISPATCH(dyn_quant_pack_4bit_weight_stub, &dyn_quant_pack_4bit_weight_kernel)
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/native/CompositeRandomAccessorCommon.h>
|
||||
#include <thrust/swap.h>
|
||||
#include <thrust/tuple.h>
|
||||
|
||||
namespace at { namespace native {
|
||||
|
||||
@ -75,30 +75,52 @@ static inline bool can_use_int32_nhwc(
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline bool can_use_int32_nchw(
|
||||
int64_t nbatch, int64_t channels,
|
||||
int64_t height, int64_t width,
|
||||
int64_t pooled_height, int64_t pooled_width) {
|
||||
int64_t hw = height * width;
|
||||
return can_use_int32_nhwc(
|
||||
nbatch, channels, height, width,
|
||||
pooled_height, pooled_width,
|
||||
channels * hw, // in_stride_n
|
||||
hw, // in_stride_c
|
||||
width, // in_stride_h
|
||||
1 // in_stride_w
|
||||
);
|
||||
}
|
||||
|
||||
// kernels borrowed from Caffe
|
||||
template <typename scalar_t>
|
||||
__global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom_data,
|
||||
const int64_t channels, const int64_t height,
|
||||
const int64_t width, const int pooled_height, const int pooled_width,
|
||||
const int kernel_h, const int kernel_w, const int stride_h,
|
||||
const int stride_w, const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w, scalar_t* top_data,
|
||||
template <typename scalar_t, typename index_t>
|
||||
__global__ void max_pool_forward_nchw(
|
||||
const index_t nthreads,
|
||||
const scalar_t* bottom_data,
|
||||
const int64_t channels,
|
||||
const int64_t height,
|
||||
const int64_t width,
|
||||
const int pooled_height,
|
||||
const int pooled_width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
scalar_t* top_data,
|
||||
int64_t* top_mask) {
|
||||
CUDA_KERNEL_LOOP(index, nthreads) {
|
||||
int pw = index % pooled_width;
|
||||
int ph = (index / pooled_width) % pooled_height;
|
||||
int c = (index / pooled_width / pooled_height) % channels;
|
||||
int n = index / pooled_width / pooled_height / channels;
|
||||
int hstart = ph * stride_h - pad_h;
|
||||
int wstart = pw * stride_w - pad_w;
|
||||
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
|
||||
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
|
||||
CUDA_KERNEL_LOOP_TYPE(index, nthreads, index_t) {
|
||||
index_t pw = index % pooled_width;
|
||||
index_t ph = (index / pooled_width) % pooled_height;
|
||||
index_t c = (index / pooled_width / pooled_height) % channels;
|
||||
index_t n = index / pooled_width / pooled_height / channels;
|
||||
index_t hstart = ph * stride_h - pad_h;
|
||||
index_t wstart = pw * stride_w - pad_w;
|
||||
index_t hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
|
||||
index_t wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
|
||||
while(hstart < 0)
|
||||
hstart += dilation_h;
|
||||
while(wstart < 0)
|
||||
wstart += dilation_w;
|
||||
scalar_t maxval = at::numeric_limits<scalar_t>::lower_bound(); // -Infinity
|
||||
int maxidx = hstart * width + wstart;
|
||||
index_t maxidx = hstart * width + wstart;
|
||||
const scalar_t* btm_data = bottom_data + (n * channels + c) * height * width;
|
||||
for (int h = hstart; h < hend; h += dilation_h) {
|
||||
for (int w = wstart; w < wend; w += dilation_w) {
|
||||
@ -251,32 +273,39 @@ __global__ void max_pool_forward_nhwc(
|
||||
|
||||
static constexpr int BLOCK_THREADS = 256;
|
||||
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
template <typename scalar_t, typename accscalar_t, typename index_t>
|
||||
#if defined (USE_ROCM)
|
||||
C10_LAUNCH_BOUNDS_2(BLOCK_THREADS, 4)
|
||||
#else
|
||||
C10_LAUNCH_BOUNDS_2(BLOCK_THREADS, 8)
|
||||
#endif
|
||||
__global__ void max_pool_backward_nchw(const scalar_t* top_diff,
|
||||
const int64_t* top_mask, const int num, const int64_t channels,
|
||||
const int64_t height, const int64_t width, const int pooled_height,
|
||||
const int pooled_width, const int kernel_h, const int kernel_w,
|
||||
const int stride_h, const int stride_w, const int pad_h, const int pad_w,
|
||||
__global__ void max_pool_backward_nchw(
|
||||
const scalar_t* top_diff,
|
||||
const int64_t* top_mask,
|
||||
const index_t num,
|
||||
const index_t channels,
|
||||
const index_t height,
|
||||
const index_t width,
|
||||
const index_t pooled_height,
|
||||
const index_t pooled_width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
scalar_t* bottom_diff) {
|
||||
CUDA_KERNEL_LOOP(index, height*width) {
|
||||
int h = index / width;
|
||||
int w = index - h * width;
|
||||
int phstart = p_start(h, pad_h, kernel_h, dilation_h, stride_h);
|
||||
int phend = p_end(h, pad_h, pooled_height, stride_h);
|
||||
int pwstart = p_start(w, pad_w, kernel_w, dilation_w, stride_w);
|
||||
int pwend = p_end(w, pad_w, pooled_width, stride_w);
|
||||
for (int n = blockIdx.y; n < num; n += gridDim.y) {
|
||||
for (int c = blockIdx.z; c < channels; c+= gridDim.z) {
|
||||
CUDA_KERNEL_LOOP_TYPE(index, height*width, index_t) {
|
||||
index_t h = index / width;
|
||||
index_t w = index - h * width;
|
||||
index_t phstart = p_start(h, pad_h, kernel_h, dilation_h, stride_h);
|
||||
index_t phend = p_end(h, pad_h, pooled_height, stride_h);
|
||||
index_t pwstart = p_start(w, pad_w, kernel_w, dilation_w, stride_w);
|
||||
index_t pwend = p_end(w, pad_w, pooled_width, stride_w);
|
||||
for (index_t n = blockIdx.y; n < num; n += gridDim.y) {
|
||||
for (index_t c = blockIdx.z; c < channels; c += gridDim.z) {
|
||||
accscalar_t gradient = accscalar_t(0);
|
||||
int offset = (n * channels + c) * pooled_height * pooled_width;
|
||||
for (int ph = phstart; ph < phend; ++ph) {
|
||||
for (int pw = pwstart; pw < pwend; ++pw) {
|
||||
index_t offset = (n * channels + c) * pooled_height * pooled_width;
|
||||
for (index_t ph = phstart; ph < phend; ++ph) {
|
||||
for (index_t pw = pwstart; pw < pwend; ++pw) {
|
||||
if (top_mask[ph * pooled_width + pw + offset] == h * width + w) {
|
||||
gradient += static_cast<accscalar_t>(top_diff[ph * pooled_width + pw + offset]);
|
||||
}
|
||||
@ -469,8 +498,6 @@ const Tensor& indices) {
|
||||
const int64_t in_stride_h = input.stride(-2);
|
||||
const int64_t in_stride_w = input.stride(-1);
|
||||
|
||||
const int count = safe_downcast<int, int64_t>(output.numel());
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
|
||||
"max_pool2d_with_indices_out_cuda_frame",
|
||||
[&] {
|
||||
@ -553,14 +580,42 @@ const Tensor& indices) {
|
||||
break;
|
||||
}
|
||||
case MemoryFormat::Contiguous: {
|
||||
const int num_threads = std::min(at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
|
||||
BLOCK_THREADS);
|
||||
max_pool_forward_nchw<scalar_t>
|
||||
<<<ceil_div(count, num_threads), num_threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
count, input_data,
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
output_data, indices_data);
|
||||
const int threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
|
||||
BLOCK_THREADS);
|
||||
const int64_t nthreads = output.numel();
|
||||
bool use_int32 = can_use_int32_nchw(
|
||||
nbatch, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth);
|
||||
const int maxGridX = at::cuda::getCurrentDeviceProperties()->maxGridSize[0];
|
||||
const int blocks = static_cast<int>(std::min<int64_t>(
|
||||
ceil_div(nthreads, static_cast<int64_t>(threads)),
|
||||
static_cast<int64_t>(maxGridX)));
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
if (use_int32) {
|
||||
max_pool_forward_nchw<scalar_t, int32_t>
|
||||
<<<blocks, threads, 0, stream>>>(
|
||||
static_cast<int32_t>(nthreads),
|
||||
input_data,
|
||||
static_cast<int32_t>(nInputPlane),
|
||||
static_cast<int32_t>(inputHeight),
|
||||
static_cast<int32_t>(inputWidth),
|
||||
static_cast<int32_t>(outputHeight),
|
||||
static_cast<int32_t>(outputWidth),
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
output_data, indices_data);
|
||||
} else {
|
||||
max_pool_forward_nchw<scalar_t, int64_t>
|
||||
<<<blocks, threads, 0, stream>>>(
|
||||
nthreads,
|
||||
input_data,
|
||||
nInputPlane,
|
||||
inputHeight,
|
||||
inputWidth,
|
||||
outputHeight,
|
||||
outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
output_data, indices_data);
|
||||
}
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
break;
|
||||
}
|
||||
@ -633,8 +688,6 @@ const Tensor& gradInput) {
|
||||
|
||||
gradInput.zero_();
|
||||
|
||||
int64_t count = input.numel();
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
|
||||
"max_pool2d_with_indices_out_cuda_frame",
|
||||
[&] {
|
||||
@ -692,25 +745,45 @@ const Tensor& gradInput) {
|
||||
break;
|
||||
}
|
||||
case MemoryFormat::Contiguous: {
|
||||
int imgcount = inputWidth * inputHeight;
|
||||
dim3 grid;
|
||||
const int blocks = (imgcount + BLOCK_THREADS - 1) / BLOCK_THREADS;
|
||||
grid.x = blocks;
|
||||
grid.y = nbatch;
|
||||
uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
|
||||
if (maxGridY < grid.y) grid.y = maxGridY;
|
||||
grid.z = nInputPlane;
|
||||
uint64_t maxGridZ = at::cuda::getCurrentDeviceProperties()->maxGridSize[2];
|
||||
if (maxGridZ < grid.z) grid.z = maxGridZ;
|
||||
|
||||
max_pool_backward_nchw<scalar_t, accscalar_t>
|
||||
<<<grid, BLOCK_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
gradOutput_data,
|
||||
indices_data,
|
||||
nbatch,
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
gradInput_data);
|
||||
const int threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
|
||||
BLOCK_THREADS);
|
||||
const int imgcount = inputWidth * inputHeight;
|
||||
const int maxGridX = at::cuda::getCurrentDeviceProperties()->maxGridSize[0];
|
||||
const int maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
|
||||
const int maxGridZ = at::cuda::getCurrentDeviceProperties()->maxGridSize[2];
|
||||
const int blocks_x = std::min(ceil_div(imgcount, threads), maxGridX);
|
||||
dim3 grid(blocks_x, static_cast<unsigned>(std::min<int64_t>(nbatch, maxGridY)), static_cast<unsigned>(std::min<int64_t>(nInputPlane, maxGridZ)));
|
||||
bool use_int32 = can_use_int32_nchw(
|
||||
nbatch, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth);
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
if (use_int32) {
|
||||
max_pool_backward_nchw<scalar_t, accscalar_t, int32_t>
|
||||
<<<grid, threads, 0, stream>>>(
|
||||
gradOutput_data,
|
||||
indices_data,
|
||||
static_cast<int32_t>(nbatch),
|
||||
static_cast<int32_t>(nInputPlane),
|
||||
static_cast<int32_t>(inputHeight),
|
||||
static_cast<int32_t>(inputWidth),
|
||||
static_cast<int32_t>(outputHeight),
|
||||
static_cast<int32_t>(outputWidth),
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
gradInput_data);
|
||||
} else {
|
||||
max_pool_backward_nchw<scalar_t, accscalar_t, int64_t>
|
||||
<<<grid, threads, 0, stream>>>(
|
||||
gradOutput_data,
|
||||
indices_data,
|
||||
nbatch,
|
||||
nInputPlane,
|
||||
inputHeight,
|
||||
inputWidth,
|
||||
outputHeight,
|
||||
outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
gradInput_data);
|
||||
}
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
break;
|
||||
}
|
||||
|
||||
@ -78,9 +78,18 @@ __global__ void EmbeddingBag_updateOutputKernel_max(
|
||||
scalar_t weightFeatMax = 0;
|
||||
int64_t bag_size_ = 0;
|
||||
int64_t maxWord = -1;
|
||||
|
||||
// Separate validation loop reduces register pressure in the main loop below.
|
||||
// No early exit (break) on invalid input as benchmarking shows it degrades performance.
|
||||
bool has_invalid_index = false;
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
index_t input_idx = input[emb];
|
||||
has_invalid_index = has_invalid_index || (input_idx < 0 || input_idx >= numRows);
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(!has_invalid_index && "Invalid input index in EmbeddingBag: index out of range [0, numRows)");
|
||||
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
bool pad = (input[emb] == padding_idx);
|
||||
CUDA_KERNEL_ASSERT(input[emb] < numRows);
|
||||
const int64_t weightRow = input[emb] * weight_stride0;
|
||||
scalar_t weightValue = weightFeat[weightRow];
|
||||
if (bag_size_ == 0 || weightValue > weightFeatMax) {
|
||||
@ -129,10 +138,19 @@ __global__ void EmbeddingBag_updateOutputKernel_sum_mean(
|
||||
CUDA_KERNEL_ASSERT(end >= begin);
|
||||
accscalar_t weightFeatSum = 0;
|
||||
int64_t bag_size_ = 0;
|
||||
|
||||
// Separate validation loop reduces register pressure in the main loop below.
|
||||
// No early exit (break) on invalid input as benchmarking shows it degrades performance.
|
||||
bool has_invalid_index = false;
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
index_t input_idx = input[emb];
|
||||
has_invalid_index = has_invalid_index || (input_idx < 0 || input_idx >= numRows);
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(!has_invalid_index && "Invalid input index in EmbeddingBag: index out of range [0, numRows)");
|
||||
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
index_t input_idx = input[emb];
|
||||
bool pad = (input_idx == padding_idx);
|
||||
CUDA_KERNEL_ASSERT(0 <= input_idx && input_idx < numRows);
|
||||
const int64_t weightRow = input_idx * weight_stride0;
|
||||
scalar_t weightValue = weightFeat[weightRow];
|
||||
weightValue = pad ? static_cast<scalar_t>(0) : weightValue;
|
||||
|
||||
@ -78,9 +78,9 @@ _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const SwizzleType& swizzle_a,
|
||||
const SwizzleType swizzle_a,
|
||||
const Tensor& scale_b,
|
||||
const SwizzleType& swizzle_b,
|
||||
const SwizzleType swizzle_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
Tensor& out) {
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
|
||||
@ -5,69 +5,11 @@
|
||||
#include <cuda_bf16.h>
|
||||
#endif
|
||||
|
||||
// ROCm 6.3 is planned to have these functions, but until then here they are.
|
||||
#if defined(USE_ROCM)
|
||||
#include <device_functions.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
|
||||
__device__ inline __hip_bfloat162 preview_unsafeAtomicAdd(__hip_bfloat162* address, __hip_bfloat162 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2bf16)
|
||||
typedef unsigned short __attribute__((ext_vector_type(2))) vec_short2;
|
||||
static_assert(sizeof(vec_short2) == sizeof(__hip_bfloat162_raw));
|
||||
union {
|
||||
__hip_bfloat162_raw bf162_raw;
|
||||
vec_short2 vs2;
|
||||
} u{static_cast<__hip_bfloat162_raw>(value)};
|
||||
u.vs2 = __builtin_amdgcn_flat_atomic_fadd_v2bf16((vec_short2*)address, u.vs2);
|
||||
return static_cast<__hip_bfloat162>(u.bf162_raw);
|
||||
#else
|
||||
static_assert(sizeof(unsigned int) == sizeof(__hip_bfloat162_raw));
|
||||
union u_hold {
|
||||
__hip_bfloat162_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
|
||||
__device__ inline __half2 preview_unsafeAtomicAdd(__half2* address, __half2 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2f16)
|
||||
// The api expects an ext_vector_type of half
|
||||
typedef _Float16 __attribute__((ext_vector_type(2))) vec_fp162;
|
||||
static_assert(sizeof(vec_fp162) == sizeof(__half2_raw));
|
||||
union {
|
||||
__half2_raw h2r;
|
||||
vec_fp162 fp16;
|
||||
} u {static_cast<__half2_raw>(value)};
|
||||
u.fp16 = __builtin_amdgcn_flat_atomic_fadd_v2f16((vec_fp162*)address, u.fp16);
|
||||
return static_cast<__half2>(u.h2r);
|
||||
#else
|
||||
static_assert(sizeof(__half2_raw) == sizeof(unsigned int));
|
||||
union u_hold {
|
||||
__half2_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
#define ATOMICADD preview_unsafeAtomicAdd
|
||||
#define ATOMICADD unsafeAtomicAdd
|
||||
#define NATIVE_ZERO_BF16 __float2bfloat16(0.0f)
|
||||
#else
|
||||
#define ATOMICADD atomicAdd
|
||||
|
||||
@ -740,7 +740,12 @@ _scaled_rowwise_rowwise(
|
||||
TORCH_CHECK_VALUE(scale_a.numel() == mat_a.size(0) && scale_a.scalar_type() == kFloat, "scale_a must have ", mat_a.size(0), " Float elements, got ", scale_a.numel())
|
||||
TORCH_CHECK_VALUE(scale_b.numel() == mat_b.size(1) && scale_b.scalar_type() == kFloat, "scale_b must have ", mat_b.size(1), " Float elements, got ", scale_b.numel())
|
||||
|
||||
TORCH_CHECK_VALUE(scale_a.stride(1) == 1, "expected scale_a.stride(1) to be 1, but got ", scale_a.stride(1));
|
||||
// if we have a scale of shape [256, 1] (say), then stride can be [1, 0] - handle this case
|
||||
TORCH_CHECK_VALUE(
|
||||
scale_a.stride(1) == 1 ||
|
||||
scale_a.size(1) == 1,
|
||||
"expected scale_a.stride(1) to be 1, but got ", scale_a.stride(1)
|
||||
);
|
||||
TORCH_CHECK_VALUE(scale_b.stride(1) == 1, "expected scale_b.stride(1) to be 1, but got ", scale_b.stride(1));
|
||||
|
||||
auto scaling_choice_a = ScalingType::RowWise;
|
||||
@ -1096,6 +1101,19 @@ _scaled_mxfp8_mxfp8(
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
}
|
||||
|
||||
void
|
||||
_check_mxfp4_support() {
|
||||
#ifndef USE_ROCM
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
// Only on B200 GPUs
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
// B200 = 10.0, B300 = 10.3
|
||||
dprops->major == 10,
|
||||
"MXFP4 scaling only supported in CUDA for B200/B300"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
Tensor&
|
||||
_scaled_mxfp4_mxfp4(
|
||||
@ -1108,6 +1126,7 @@ _scaled_mxfp4_mxfp4(
|
||||
#if defined(_WIN32) || (!defined(USE_ROCM) && !defined(USE_FBGEMM_GENAI))
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "MXFP4 scaling supported on ROCM and CUDA+FBGEMM_GENAI only");
|
||||
#else
|
||||
_check_mxfp4_support();
|
||||
// Restrictions:
|
||||
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
|
||||
TORCH_CHECK_VALUE(mat_a.scalar_type() == at::kFloat4_e2m1fn_x2 && mat_b.scalar_type() == at::kFloat4_e2m1fn_x2, "mat_a and mat_b must be fp4 types, got: ",
|
||||
|
||||
@ -267,15 +267,15 @@ void scan_dim_with_indices(const TensorBase& self, const TensorBase& values, con
|
||||
* outer dimensions, which contains several "inner rows").
|
||||
* Each thread processes a single inner row at a time.
|
||||
*/
|
||||
template<typename scalar_t, class BinaryOp>
|
||||
template<typename scalar_t, typename index_t, class BinaryOp>
|
||||
__global__ void tensor_kernel_scan_outer_dim(scalar_t *tgt_, const scalar_t *src_,
|
||||
const uint32_t num_orows, const uint32_t num_irows, const uint32_t row_size,
|
||||
const scalar_t init, BinaryOp binary_op)
|
||||
{
|
||||
for (uint32_t orow = blockIdx.x; orow < num_orows; orow += gridDim.x) {
|
||||
for (uint32_t irow = blockIdx.y * blockDim.x + threadIdx.x; irow < num_irows; irow += gridDim.y * blockDim.x) {
|
||||
const scalar_t *src = src_ + orow * row_size * num_irows + irow;
|
||||
scalar_t *tgt = tgt_ + orow * row_size * num_irows + irow;
|
||||
const scalar_t *src = src_ + static_cast<index_t>(orow) * row_size * num_irows + irow;
|
||||
scalar_t *tgt = tgt_ + (index_t) orow * row_size * num_irows + irow;
|
||||
scalar_t acc = init;
|
||||
|
||||
for (uint32_t col = 0; col < row_size; ++col) {
|
||||
@ -409,10 +409,15 @@ __host__ void scan_outer_dim(const TensorBase& self, const TensorBase& result,
|
||||
check_fits_in_unsigned(num_irows, "num_irows");
|
||||
check_fits_in_unsigned(num_orows, "num_orows");
|
||||
check_fits_in_unsigned(row_size, "row_size");
|
||||
|
||||
tensor_kernel_scan_outer_dim<scalar_t><<<grid, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
if (static_cast<size_t>(num_irows) * num_orows * row_size <= UINT_MAX) {
|
||||
tensor_kernel_scan_outer_dim<scalar_t, uint32_t><<<grid, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
result.mutable_data_ptr<scalar_t>(), self.const_data_ptr<scalar_t>(),
|
||||
num_orows, num_irows, row_size, init, binary_op);
|
||||
} else {
|
||||
tensor_kernel_scan_outer_dim<scalar_t, size_t><<<grid, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
result.mutable_data_ptr<scalar_t>(), self.const_data_ptr<scalar_t>(),
|
||||
num_orows, num_irows, row_size, init, binary_op);
|
||||
}
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
}
|
||||
|
||||
|
||||
@ -21,18 +21,27 @@ void kai_pack_int4_rhs(
|
||||
const int64_t n,
|
||||
const int64_t k,
|
||||
const int64_t bl) {
|
||||
// Prefer Channelwise kernel over Groupwise kernel for conflicting cases
|
||||
if (bl == k) {
|
||||
// Channelwise
|
||||
auto kernel_packet = kai_select_channelwise_matmul_ukernel(
|
||||
kai_kernel_id::
|
||||
matmul_clamp_f32_qai8dxp1x8_qsi4cxp8x8_1x8x32_neon_dotprod);
|
||||
auto& params = kernel_packet.rhs_pack_params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
|
||||
kai_pack_rhs_channelwise_int4<kai_matmul_ukernel_f32_qa8dxp_qs4cxp>(
|
||||
kernel_packet, weight_packed, weight, scales, bias, n, k);
|
||||
if (weight.scalar_type() == at::kBFloat16) {
|
||||
auto kernel_packet = kai_select_bf16_channelwise_matmul_ukernel(
|
||||
kai_kernel_id::
|
||||
matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod);
|
||||
auto& params = kernel_packet.rhs_pack_params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
kai_pack_rhs_channelwise_int4<kai_matmul_ukernel_bf16_qa8dxp_qs4cxp>(
|
||||
kernel_packet, weight_packed, weight, scales, bias, n, k);
|
||||
} else {
|
||||
auto kernel_packet = kai_select_channelwise_matmul_ukernel(
|
||||
kai_kernel_id::
|
||||
matmul_clamp_f32_qai8dxp1x8_qsi4cxp8x8_1x8x32_neon_dotprod);
|
||||
auto& params = kernel_packet.rhs_pack_params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
kai_pack_rhs_channelwise_int4<kai_matmul_ukernel_f32_qa8dxp_qs4cxp>(
|
||||
kernel_packet, weight_packed, weight, scales, bias, n, k);
|
||||
}
|
||||
} else if (!(bl % 32) && !(k % bl)) {
|
||||
// Groupwise
|
||||
auto kernel_packet = kai_select_groupwise_matmul_ukernel(
|
||||
@ -63,19 +72,29 @@ void kai_pack_int4_rhs(
|
||||
size_t kai_pack_rhs_int4_size(
|
||||
const int64_t n,
|
||||
const int64_t k,
|
||||
const int64_t bl) {
|
||||
const int64_t bl,
|
||||
at::ScalarType tensor_dtype) {
|
||||
size_t packed_size = n * k;
|
||||
// Prefer Channelwise kernel over Groupwise kernel for conflicting cases
|
||||
if (bl == k) {
|
||||
// Channelwise
|
||||
auto kernel_packet = kai_select_channelwise_matmul_ukernel(
|
||||
kai_kernel_id::
|
||||
matmul_clamp_f32_qai8dxp1x8_qsi4cxp8x8_1x8x32_neon_dotprod);
|
||||
const auto& ukernel = kernel_packet.ukernel;
|
||||
const size_t nr = ukernel.get_nr();
|
||||
const size_t kr = ukernel.get_kr();
|
||||
const size_t sr = ukernel.get_sr();
|
||||
packed_size = kernel_packet.kai_get_rhs_packed_size(n, k, nr, kr, sr);
|
||||
if (tensor_dtype == at::kBFloat16) {
|
||||
auto kernel_packet = kai_select_bf16_channelwise_matmul_ukernel(
|
||||
kai_kernel_id::
|
||||
matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod);
|
||||
const auto& ukernel = kernel_packet.ukernel;
|
||||
const size_t nr = ukernel.get_nr();
|
||||
const size_t kr = ukernel.get_kr();
|
||||
const size_t sr = ukernel.get_sr();
|
||||
packed_size = kernel_packet.kai_get_rhs_packed_size(n, k, nr, kr, sr);
|
||||
} else {
|
||||
auto kernel_packet = kai_select_channelwise_matmul_ukernel(
|
||||
kai_kernel_id::
|
||||
matmul_clamp_f32_qai8dxp1x8_qsi4cxp8x8_1x8x32_neon_dotprod);
|
||||
const auto& ukernel = kernel_packet.ukernel;
|
||||
const size_t nr = ukernel.get_nr();
|
||||
const size_t kr = ukernel.get_kr();
|
||||
const size_t sr = ukernel.get_sr();
|
||||
packed_size = kernel_packet.kai_get_rhs_packed_size(n, k, nr, kr, sr);
|
||||
}
|
||||
} else if (!(bl % 32) && !(k % bl)) {
|
||||
// Groupwise
|
||||
auto kernel_packet = kai_select_groupwise_matmul_ukernel(
|
||||
@ -148,8 +167,7 @@ static void kai_quant_pack_lhs_int4_mm_groupwise(
|
||||
const auto lhs_src_ptr = lhs_native_mtx_f32 + thread_id * src_stride;
|
||||
const int64_t m_idx = thread_id * vec_per_thread;
|
||||
auto lhs_packed_ptr = lhs_packed_base +
|
||||
kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32(
|
||||
m_idx, k, mr, kr, sr);
|
||||
kernel_packet.kai_get_lhs_quant_pack_offset(m_idx, k, mr, kr, sr);
|
||||
const int64_t vec_num = (thread_id == num_threads - 1)
|
||||
? (m - vec_per_thread * thread_id)
|
||||
: vec_per_thread;
|
||||
@ -259,8 +277,7 @@ static void kai_quant_pack_lhs_int4_mm_channelwise(
|
||||
const auto lhs_src_ptr = lhs_native_mtx_f32 + thread_id * src_stride;
|
||||
const int64_t m_idx = thread_id * vec_per_thread;
|
||||
auto lhs_packed_ptr = lhs_packed_base +
|
||||
kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32(
|
||||
m_idx, k, mr, kr, sr);
|
||||
kernel_packet.kai_get_lhs_quant_pack_offset(m_idx, k, mr, kr, sr);
|
||||
const int64_t vec_num = (thread_id == num_threads - 1)
|
||||
? (m - vec_per_thread * thread_id)
|
||||
: vec_per_thread;
|
||||
@ -320,19 +337,144 @@ static void kai_quant_pack_lhs_int4_mm_channelwise(
|
||||
});
|
||||
}
|
||||
|
||||
void kai_quant_pack_lhs_int4_mm(
|
||||
static void kai_quant_pack_lhs_int4_mm_bf16_channelwise(
|
||||
const Tensor& output,
|
||||
const Tensor& input,
|
||||
const Tensor& weight,
|
||||
const int64_t m,
|
||||
const int64_t n,
|
||||
const int64_t k) {
|
||||
// Kernel IDs for GEMM and GEMV
|
||||
constexpr kai_kernel_id gemm_id =
|
||||
kai_kernel_id::matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm;
|
||||
constexpr kai_kernel_id gemv_id =
|
||||
kai_kernel_id::matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod;
|
||||
|
||||
// Get total threads and select kernel
|
||||
const int64_t total_threads = at::get_num_threads();
|
||||
auto kernel_packet = kai_select_bf16_channelwise_matmul_ukernel(gemv_id);
|
||||
if (cpuinfo_has_arm_i8mm() && m > 1) {
|
||||
kernel_packet = kai_select_bf16_channelwise_matmul_ukernel(gemm_id);
|
||||
}
|
||||
|
||||
// Thread blocking parameters
|
||||
const int64_t n_step = kernel_packet.ukernel.get_n_step();
|
||||
const size_t mr = kernel_packet.ukernel.get_mr();
|
||||
const size_t kr = kernel_packet.ukernel.get_kr();
|
||||
const size_t sr = kernel_packet.ukernel.get_sr();
|
||||
|
||||
const size_t lhs_packed_size =
|
||||
kernel_packet.kai_get_lhs_packed_size(m, k, mr, kr, sr);
|
||||
auto lhs_packed = std::make_unique<uint8_t[]>(lhs_packed_size);
|
||||
uint8_t* dst_act_mtx_bf16 = reinterpret_cast<uint8_t*>(output.data_ptr());
|
||||
const uint8_t* lhs_native_mtx_bf16 =
|
||||
reinterpret_cast<const uint8_t*>(input.data_ptr());
|
||||
const uint8_t* rhs_packed_mtx_qs4cx =
|
||||
reinterpret_cast<const uint8_t*>(weight.data_ptr());
|
||||
uint8_t* lhs_packed_base = lhs_packed.get();
|
||||
|
||||
constexpr int32_t element_size = sizeof(uint16_t);
|
||||
const size_t lhs_stride = k * element_size;
|
||||
const size_t dst_stride = n * element_size;
|
||||
|
||||
// LHS quantization packing
|
||||
int64_t vec_per_thread = get_vec_per_thread(m, total_threads, mr);
|
||||
int64_t num_threads = (m + vec_per_thread - 1) / vec_per_thread;
|
||||
const size_t src_stride = vec_per_thread * lhs_stride;
|
||||
|
||||
auto lhs_quant_pack = [=, &kernel_packet](int64_t thread_id) {
|
||||
const auto lhs_src_ptr = lhs_native_mtx_bf16 + thread_id * src_stride;
|
||||
const int64_t m_idx = thread_id * vec_per_thread;
|
||||
auto lhs_packed_ptr = lhs_packed_base +
|
||||
kernel_packet.kai_get_lhs_quant_pack_offset(m_idx, k, mr, kr, sr);
|
||||
const int64_t vec_num = (thread_id == num_threads - 1)
|
||||
? (m - vec_per_thread * thread_id)
|
||||
: vec_per_thread;
|
||||
|
||||
kernel_packet.kai_run_lhs_quant_pack(
|
||||
vec_num,
|
||||
k,
|
||||
mr,
|
||||
kr,
|
||||
sr,
|
||||
0,
|
||||
(const uint16_t*)lhs_src_ptr,
|
||||
lhs_stride,
|
||||
lhs_packed_ptr);
|
||||
};
|
||||
|
||||
at::parallel_for(
|
||||
0, num_threads, /*grain_size=*/1, [&](int64_t begin, int64_t end) {
|
||||
for (int64_t thread_id = begin; thread_id < end; ++thread_id) {
|
||||
lhs_quant_pack(thread_id);
|
||||
}
|
||||
});
|
||||
|
||||
// Matrix multiplication
|
||||
vec_per_thread = get_vec_per_thread(n, total_threads, n_step);
|
||||
num_threads = (n + vec_per_thread - 1) / vec_per_thread;
|
||||
|
||||
auto mm = [=, &kernel_packet](int64_t thread_id) {
|
||||
const auto rhs_packed_ptr = rhs_packed_mtx_qs4cx +
|
||||
kernel_packet.ukernel.get_rhs_packed_offset(
|
||||
thread_id * vec_per_thread, k);
|
||||
auto dst_ptr = dst_act_mtx_bf16 +
|
||||
kernel_packet.ukernel.get_dst_offset(
|
||||
0, thread_id * vec_per_thread, dst_stride);
|
||||
const int64_t vec_num = (thread_id == num_threads - 1)
|
||||
? (n - vec_per_thread * thread_id)
|
||||
: vec_per_thread;
|
||||
|
||||
kernel_packet.ukernel.run_matmul(
|
||||
m,
|
||||
vec_num,
|
||||
k,
|
||||
lhs_packed_base,
|
||||
rhs_packed_ptr,
|
||||
(uint16_t*)dst_ptr,
|
||||
dst_stride,
|
||||
element_size, // dst_stride_col
|
||||
-FLT_MAX,
|
||||
FLT_MAX);
|
||||
};
|
||||
|
||||
at::parallel_for(
|
||||
0, num_threads, /*grain_size=*/1, [&](int64_t begin, int64_t end) {
|
||||
for (int64_t thread_id = begin; thread_id < end; ++thread_id) {
|
||||
mm(thread_id);
|
||||
}
|
||||
});
|
||||
}
|
||||
void kai_quant_pack_lhs_int4_mm(
|
||||
const at::Tensor& output,
|
||||
const at::Tensor& input,
|
||||
const at::Tensor& weight,
|
||||
const int64_t m,
|
||||
const int64_t n,
|
||||
const int64_t k,
|
||||
const int64_t bl) {
|
||||
// Prefer Channelwise kernel over Groupwise kernel for conflicting cases
|
||||
if (bl == k) {
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm_channelwise(
|
||||
output, input, weight, m, n, k);
|
||||
} else if (!(bl % 32) && !(k % bl)) {
|
||||
const auto input_dtype = input.dtype();
|
||||
|
||||
if (input_dtype == at::kBFloat16) {
|
||||
if (cpuinfo_has_arm_bf16()) {
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm_bf16_channelwise(
|
||||
output, input, weight, m, n, k);
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"BF16 Unsupported: CPU does not support BF16. Please use a CPU with BF16 support.");
|
||||
}
|
||||
} else if (input_dtype == at::kFloat) {
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm_channelwise(
|
||||
output, input, weight, m, n, k);
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"Unsupported input data type: Only Bfloat16 and Float inputs are supported.");
|
||||
}
|
||||
} else if ((bl % 32 == 0) && (k % bl == 0)) {
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm_groupwise(
|
||||
output, input, weight, m, n, k, bl);
|
||||
}
|
||||
|
||||
@ -25,7 +25,8 @@ void kai_pack_int4_rhs(
|
||||
size_t kai_pack_rhs_int4_size(
|
||||
const int64_t n,
|
||||
const int64_t k,
|
||||
const int64_t bl);
|
||||
const int64_t bl,
|
||||
at::ScalarType tensor_dtype = at::kFloat);
|
||||
|
||||
/**
|
||||
* @brief Run 2 operations ( Input quantize and pack -> 4 bit Matmul )
|
||||
|
||||
@ -36,7 +36,8 @@ void kai_pack_rhs_groupwise_int4(
|
||||
AT_ERROR("kai_pack_rhs_channelwise_int4: Scales data pointer is null");
|
||||
}
|
||||
|
||||
float* bias_ptr = bias.has_value() ? bias.value().data_ptr<float>() : NULL;
|
||||
float* bias_ptr =
|
||||
bias.has_value() ? bias.value().to(kFloat).data_ptr<float>() : NULL;
|
||||
auto& params = kernel.rhs_pack_params;
|
||||
|
||||
kernel.kai_run_rhs_pack(
|
||||
@ -73,7 +74,8 @@ void kai_pack_rhs_channelwise_int4(
|
||||
auto weight_packed_data =
|
||||
reinterpret_cast<uint8_t*>(weight_packed.data_ptr());
|
||||
const auto weight_data = weight.data_ptr<uint8_t>();
|
||||
const auto scales_data = scales.data_ptr<float>();
|
||||
|
||||
const auto scales_data = scales.to(kFloat).data_ptr<float>();
|
||||
|
||||
if (weight_data == nullptr) {
|
||||
AT_ERROR("kai_pack_rhs_channelwise_int4: Weight data pointer is null");
|
||||
@ -83,7 +85,8 @@ void kai_pack_rhs_channelwise_int4(
|
||||
AT_ERROR("kai_pack_rhs_channelwise_int4: Scales data pointer is null");
|
||||
}
|
||||
|
||||
float* bias_ptr = bias.has_value() ? bias.value().data_ptr<float>() : NULL;
|
||||
float* bias_ptr =
|
||||
bias.has_value() ? bias.value().to(kFloat).data_ptr<float>() : NULL;
|
||||
auto& params = kernel.rhs_pack_params;
|
||||
|
||||
kernel.kai_run_rhs_pack(
|
||||
|
||||
@ -68,5 +68,39 @@ kai_matmul_ukernel_f32_qa8dxp_qs4cxp kai_select_channelwise_matmul_ukernel(
|
||||
const kai_kernel_id id) {
|
||||
return channelwise_8bit_4bit_kernels.at(id);
|
||||
}
|
||||
|
||||
// Kernel Mapping - BF16 Channelwise
|
||||
std::unordered_map<kai_kernel_id, kai_matmul_ukernel_bf16_qa8dxp_qs4cxp>
|
||||
bf16_channelwise_8bit_4bit_kernels = {
|
||||
{kai_kernel_id::
|
||||
matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
{{kai_get_m_step_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_n_step_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_mr_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_nr_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_kr_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_sr_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_lhs_packed_offset_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_rhs_packed_offset_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_dst_offset_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_get_dst_size_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod,
|
||||
kai_run_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod}}},
|
||||
{kai_kernel_id::matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
{{kai_get_m_step_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_n_step_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_mr_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_nr_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_kr_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_sr_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_lhs_packed_offset_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_rhs_packed_offset_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_dst_offset_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_get_dst_size_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm,
|
||||
kai_run_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm}}}};
|
||||
|
||||
kai_matmul_ukernel_bf16_qa8dxp_qs4cxp kai_select_bf16_channelwise_matmul_ukernel(
|
||||
const kai_kernel_id id) {
|
||||
return bf16_channelwise_8bit_4bit_kernels.at(id);
|
||||
}
|
||||
} // namespace at::native::kleidiai
|
||||
#endif
|
||||
|
||||
@ -10,21 +10,32 @@
|
||||
#include <kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi4cxp/kai_matmul_clamp_f32_qai8dxp1x8_qsi4cxp8x8_1x8x32_neon_dotprod.h>
|
||||
#include <kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi4cxp/kai_matmul_clamp_f32_qai8dxp4x8_qsi4cxp8x8_8x8x32_neon_i8mm.h>
|
||||
#include <kai/ukernels/matmul/matmul_clamp_f32_qai8dxp_qsi4cxp/kai_matmul_clamp_f32_qai8dxp_qsi4cxp_interface.h>
|
||||
#include <kai/ukernels/matmul/matmul_clamp_bf16_qai8dxp_qsi4cxp/kai_matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod.h>
|
||||
#include <kai/ukernels/matmul/matmul_clamp_bf16_qai8dxp_qsi4cxp/kai_matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm.h>
|
||||
#include <kai/ukernels/matmul/matmul_clamp_bf16_qai8dxp_qsi4cxp/kai_matmul_clamp_bf16_qai8dxp_qsi4cxp_interface.h>
|
||||
#include <kai/ukernels/matmul/pack/kai_lhs_quant_pack_qai8dxp_f32.h>
|
||||
#include <kai/ukernels/matmul/pack/kai_lhs_quant_pack_qai8dxp_bf16_neon.h>
|
||||
#include <kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32p_qsu4c32s1s0.h>
|
||||
#include <kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4cxp_qs4cxs1s0.h>
|
||||
|
||||
namespace at::native::kleidiai {
|
||||
|
||||
enum class kai_kernel_id {
|
||||
// FP32 inputs, 4-bit weights, FP32 output
|
||||
matmul_clamp_f32_qai8dxp1x8_qsi4c32p8x8_1x8x32_neon_dotprod =
|
||||
0, // Groupwise 4 bit GEMV
|
||||
0, // Groupwise 4-bit GEMV (per-group scales, NEON DOTPROD)
|
||||
matmul_clamp_f32_qai8dxp4x8_qsi4c32p4x8_4x8x32_neon_i8mm =
|
||||
1, // Groupwise 4 bit GEMM
|
||||
1, // Groupwise 4-bit GEMM (per-group scales, NEON I8MM)
|
||||
matmul_clamp_f32_qai8dxp1x8_qsi4cxp8x8_1x8x32_neon_dotprod =
|
||||
2, // Channelwise 4 bit GEMV
|
||||
2, // Channelwise 4-bit GEMV (per-channel scales, NEON DOTPROD)
|
||||
matmul_clamp_f32_qai8dxp4x8_qsi4cxp8x8_8x8x32_neon_i8mm =
|
||||
3 // Channelwise 4 bit GEMM
|
||||
3, // Channelwise 4-bit GEMM (per-channel scales, NEON I8MM)
|
||||
|
||||
// BF16 inputs, 4-bit weights, BF16 output
|
||||
matmul_clamp_bf16_qai8dxp1x8_qsi4cxp8x8_1x8_neon_dotprod =
|
||||
4, // Channelwise 4-bit GEMV with BF16 input/output
|
||||
matmul_clamp_bf16_qai8dxp4x8_qsi4cxp8x8_8x8_neon_i8mm =
|
||||
5 // Channelwise 4-bit GEMM with BF16 input/output
|
||||
};
|
||||
|
||||
// Channelwise Kernel mapping
|
||||
@ -66,6 +77,9 @@ struct kai_matmul_ukernel_f32_qa8dxp_qs4cxp {
|
||||
void* rhs_packed,
|
||||
size_t extra_bytes,
|
||||
const struct kai_rhs_pack_nxk_qsi4cxp_qs4cxs1s0_params* params);
|
||||
size_t(*kai_get_lhs_quant_pack_offset)(
|
||||
size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr
|
||||
);
|
||||
|
||||
kai_matmul_ukernel_f32_qa8dxp_qs4cxp(
|
||||
const kai_matmul_clamp_f32_qai8dxp_qsi4cxp_ukernel& kernel)
|
||||
@ -75,12 +89,71 @@ struct kai_matmul_ukernel_f32_qa8dxp_qs4cxp {
|
||||
kai_get_rhs_packed_size(
|
||||
&kai_get_rhs_packed_size_rhs_pack_nxk_qsi4cxp_qs4cxs1s0),
|
||||
kai_run_lhs_quant_pack(&kai_run_lhs_quant_pack_qai8dxp_f32),
|
||||
kai_run_rhs_pack(&kai_run_rhs_pack_nxk_qsi4cxp_qs4cxs1s0) {}
|
||||
kai_run_rhs_pack(&kai_run_rhs_pack_nxk_qsi4cxp_qs4cxs1s0),
|
||||
kai_get_lhs_quant_pack_offset(&kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32){}
|
||||
};
|
||||
|
||||
struct kai_matmul_ukernel_f32_qa8dxp_qs4cxp
|
||||
kai_select_channelwise_matmul_ukernel(const kai_kernel_id id);
|
||||
|
||||
// bf16 Channelwise Kernel mapping
|
||||
struct kai_matmul_ukernel_bf16_qa8dxp_qs4cxp {
|
||||
struct kai_matmul_clamp_bf16_qai8dxp_qsi4cxp_ukernel ukernel;
|
||||
struct kai_rhs_pack_nxk_qsi4cxp_qs4cxs1s0_params rhs_pack_params;
|
||||
size_t (*kai_get_lhs_packed_size)(
|
||||
size_t m,
|
||||
size_t k,
|
||||
size_t mr,
|
||||
size_t kr,
|
||||
size_t sr);
|
||||
size_t (*kai_get_rhs_packed_size)(
|
||||
size_t n,
|
||||
size_t k,
|
||||
size_t nr,
|
||||
size_t kr,
|
||||
size_t sr);
|
||||
void (*kai_run_lhs_quant_pack)(
|
||||
size_t m,
|
||||
size_t k,
|
||||
size_t mr,
|
||||
size_t kr,
|
||||
size_t sr,
|
||||
size_t m_idx_start,
|
||||
const void* lhs,
|
||||
size_t lhs_stride,
|
||||
void* lhs_packed);
|
||||
void (*kai_run_rhs_pack)(
|
||||
size_t num_groups,
|
||||
size_t n,
|
||||
size_t k,
|
||||
size_t nr,
|
||||
size_t kr,
|
||||
size_t sr,
|
||||
const uint8_t* rhs,
|
||||
const float* bias,
|
||||
const float* scale,
|
||||
void* rhs_packed,
|
||||
size_t extra_bytes,
|
||||
const struct kai_rhs_pack_nxk_qsi4cxp_qs4cxs1s0_params* params);
|
||||
size_t(*kai_get_lhs_quant_pack_offset)(
|
||||
size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr
|
||||
);
|
||||
|
||||
kai_matmul_ukernel_bf16_qa8dxp_qs4cxp(
|
||||
const kai_matmul_clamp_bf16_qai8dxp_qsi4cxp_ukernel& kernel)
|
||||
: ukernel(kernel),
|
||||
kai_get_lhs_packed_size(
|
||||
&kai_get_lhs_packed_size_lhs_quant_pack_qai8dxp_bf16_neon),
|
||||
kai_get_rhs_packed_size(
|
||||
&kai_get_rhs_packed_size_rhs_pack_nxk_qsi4cxp_qs4cxs1s0),
|
||||
kai_run_lhs_quant_pack(&kai_run_lhs_quant_pack_qai8dxp_bf16_neon),
|
||||
kai_run_rhs_pack(&kai_run_rhs_pack_nxk_qsi4cxp_qs4cxs1s0),
|
||||
kai_get_lhs_quant_pack_offset(&kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_bf16_neon){}
|
||||
};
|
||||
|
||||
struct kai_matmul_ukernel_bf16_qa8dxp_qs4cxp
|
||||
kai_select_bf16_channelwise_matmul_ukernel(const kai_kernel_id id);
|
||||
|
||||
// Groupwise Kernel mapping
|
||||
struct kai_matmul_ukernel_f32_qa8dxp_qs4c32p {
|
||||
struct kai_matmul_clamp_f32_qai8dxp_qsi4c32p_ukernel ukernel;
|
||||
@ -125,6 +198,9 @@ struct kai_matmul_ukernel_f32_qa8dxp_qs4c32p {
|
||||
void* rhs_packed,
|
||||
size_t extra_bytes,
|
||||
const struct kai_rhs_pack_nxk_qsi4c32p_qsu4c32s1s0_params* params);
|
||||
size_t(*kai_get_lhs_quant_pack_offset)(
|
||||
size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr
|
||||
);
|
||||
|
||||
kai_matmul_ukernel_f32_qa8dxp_qs4c32p(
|
||||
const kai_matmul_clamp_f32_qai8dxp_qsi4c32p_ukernel& kernel)
|
||||
@ -134,7 +210,8 @@ struct kai_matmul_ukernel_f32_qa8dxp_qs4c32p {
|
||||
kai_get_rhs_packed_size(
|
||||
&kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32p_qsu4c32s1s0),
|
||||
kai_run_lhs_quant_pack(&kai_run_lhs_quant_pack_qai8dxp_f32),
|
||||
kai_run_rhs_pack(&kai_run_rhs_pack_nxk_qsi4c32p_qsu4c32s1s0) {}
|
||||
kai_run_rhs_pack(&kai_run_rhs_pack_nxk_qsi4c32p_qsu4c32s1s0),
|
||||
kai_get_lhs_quant_pack_offset(&kai_get_lhs_packed_offset_lhs_quant_pack_qai8dxp_f32) {}
|
||||
};
|
||||
|
||||
struct kai_matmul_ukernel_f32_qa8dxp_qs4c32p kai_select_groupwise_matmul_ukernel(
|
||||
|
||||
@ -337,10 +337,6 @@ Tensor _convolution_out(
|
||||
TORCH_CHECK(
|
||||
3 == ndim || 4 == ndim || 5 == ndim,
|
||||
"convolution only supports 3D, 4D, 5D tensor");
|
||||
// get computation format for Conv/TransposedConv
|
||||
bool is_channels_last_suggested =
|
||||
use_channels_last_for_conv(input_r, weight_r);
|
||||
|
||||
Tensor input = input_r, weight = weight_r;
|
||||
// PyTorch does not support ChannelsLast1D case,
|
||||
// thus we need the transformation here
|
||||
@ -348,13 +344,8 @@ Tensor _convolution_out(
|
||||
input = view4d(input_r);
|
||||
weight = view4d(weight_r);
|
||||
}
|
||||
// ensure the input/weight/bias/output are congituous in desired format
|
||||
at::MemoryFormat mfmt = is_channels_last_suggested
|
||||
? get_cl_tag_by_ndim(input.ndimension())
|
||||
: at::MemoryFormat::Contiguous;
|
||||
auto bias = bias_r.defined() ? bias_r.contiguous() : bias_r;
|
||||
input = input.contiguous(mfmt);
|
||||
weight = weight.contiguous(mfmt);
|
||||
// get computation format for Conv/TransposedConv
|
||||
bool is_channels_last_suggested = use_channels_last_for_conv(input, weight);
|
||||
|
||||
auto k = weight.ndimension();
|
||||
if (k == input.ndimension() + 1) {
|
||||
@ -388,6 +379,14 @@ Tensor _convolution_out(
|
||||
expand_param_if_needed(output_padding_, "output_padding", dim);
|
||||
params.groups = groups_;
|
||||
}
|
||||
|
||||
// ensure the input/weight/bias/output are congituous in desired format
|
||||
at::MemoryFormat mfmt = is_channels_last_suggested
|
||||
? get_cl_tag_by_ndim(input.ndimension())
|
||||
: at::MemoryFormat::Contiguous;
|
||||
auto bias = bias_r.defined() ? bias_r.contiguous() : bias_r;
|
||||
input = input.contiguous(mfmt);
|
||||
weight = weight.contiguous(mfmt);
|
||||
check_shape_forward(input, weight, bias, params, true);
|
||||
|
||||
Tensor output;
|
||||
@ -514,18 +513,9 @@ Tensor convolution_overrideable(
|
||||
at::borrow_from_optional_tensor(bias_r_opt);
|
||||
const Tensor& bias_r = *bias_r_maybe_owned;
|
||||
|
||||
auto k = weight_r.ndimension();
|
||||
at::MemoryFormat backend_memory_format = at::MemoryFormat::Contiguous;
|
||||
if (xpu_conv_use_channels_last(input_r, weight_r)) {
|
||||
backend_memory_format = (k == 5) ? at::MemoryFormat::ChannelsLast3d
|
||||
: at::MemoryFormat::ChannelsLast;
|
||||
}
|
||||
Tensor input_c = input_r.contiguous(backend_memory_format);
|
||||
Tensor weight_c = weight_r.contiguous(backend_memory_format);
|
||||
|
||||
return _convolution(
|
||||
input_c,
|
||||
weight_c,
|
||||
input_r,
|
||||
weight_r,
|
||||
bias_r,
|
||||
stride_,
|
||||
padding_,
|
||||
|
||||
342
aten/src/ATen/native/mkldnn/xpu/ScaledBlas.cpp
Normal file
342
aten/src/ATen/native/mkldnn/xpu/ScaledBlas.cpp
Normal file
@ -0,0 +1,342 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/BlasBackend.h>
|
||||
#include <ATen/WrapDimUtilsMulti.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/oneDNN.h>
|
||||
#include <ATen/native/xpu/Blas.h>
|
||||
#include <torch/library.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace {
|
||||
/*
|
||||
* Scaling Type Determination:
|
||||
* ---------------------------
|
||||
* Conditions and corresponding Scaling Types:
|
||||
*
|
||||
* - If scale tensor is `Float8_e8m0fnu` or `Float8_e4m3fn`:
|
||||
* - Returns BlockWise (with additional size checks).
|
||||
*
|
||||
* - Else if scale.numel() == 1:
|
||||
* - Returns TensorWise.
|
||||
*
|
||||
* - Else if scale.dim() == 2 && scale.size(0) == outer_dim && scale.size(1) ==
|
||||
* 1:
|
||||
* - Returns RowWise.
|
||||
*
|
||||
* - Otherwise:
|
||||
* - Returns Error.
|
||||
*/
|
||||
|
||||
bool is_tensorwise_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
return at::isFloat8Type(t.scalar_type()) &&
|
||||
scale.scalar_type() == at::kFloat && scale.numel() == 1;
|
||||
}
|
||||
|
||||
bool is_rowwise_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
return (
|
||||
at::isFloat8Type(t.scalar_type()) && scale.scalar_type() == at::kFloat &&
|
||||
scale.dim() == 2 && scale.size(0) == t.size(0) && scale.size(1) == 1 &&
|
||||
scale.is_contiguous());
|
||||
}
|
||||
|
||||
bool is_desired_scaling(
|
||||
const at::Tensor& t,
|
||||
const at::Tensor& scale,
|
||||
ScalingType desired_scaling) {
|
||||
auto result = desired_scaling == ScalingType::TensorWise
|
||||
? is_tensorwise_scaling(t, scale)
|
||||
: is_rowwise_scaling(t, scale);
|
||||
return result;
|
||||
}
|
||||
|
||||
std::pair<ScalingType, ScalingType> get_joint_scaling(
|
||||
std::initializer_list<std::pair<ScalingType, ScalingType>> options,
|
||||
const at::Tensor& a,
|
||||
const at::Tensor& b,
|
||||
const at::Tensor& scale_a,
|
||||
const at::Tensor& scale_b) {
|
||||
for (auto [lhs, rhs] : options) {
|
||||
if (is_desired_scaling(a, scale_a, lhs) &&
|
||||
is_desired_scaling(b.t(), scale_b.t(), rhs)) {
|
||||
return {lhs, rhs};
|
||||
}
|
||||
}
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"Invalid scaling configuration.\n"
|
||||
"- For TensorWise scaling, a and b should be float8, scales should be float and singletons.\n"
|
||||
"- For RowWise scaling, a and b should be float8, scales should be float, scale_a should be (",
|
||||
a.size(0),
|
||||
", 1) and scale_b should be (1, ",
|
||||
b.size(1),
|
||||
"), and both should be contiguous.\n"
|
||||
"Got a.dtype()=",
|
||||
a.scalar_type(),
|
||||
", scale_a.dtype()=",
|
||||
scale_a.scalar_type(),
|
||||
", scale_a.size()=",
|
||||
scale_a.sizes(),
|
||||
", scale_a.stride()=",
|
||||
scale_a.strides(),
|
||||
", ",
|
||||
"b.dtype()=",
|
||||
b.scalar_type(),
|
||||
", scale_b.dtype()=",
|
||||
scale_b.scalar_type(),
|
||||
", scale_b.size()=",
|
||||
scale_b.sizes(),
|
||||
" and scale_b.stride()=",
|
||||
scale_b.strides());
|
||||
}
|
||||
|
||||
Tensor& _scaled_gemm(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const ScalingType scaling_choice_a,
|
||||
const ScalingType scaling_choice_b,
|
||||
const std::optional<Tensor>& bias,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out,
|
||||
const std::optional<Tensor>& alpha = std::nullopt) {
|
||||
// TODO: scale_result and alpha is not defined or used!
|
||||
std::optional<Tensor> scaled_result = std::nullopt;
|
||||
at::native::onednn::scaled_matmul(
|
||||
mat1,
|
||||
mat2,
|
||||
out,
|
||||
scale_a,
|
||||
scale_b,
|
||||
scaling_choice_a,
|
||||
scaling_choice_b,
|
||||
bias,
|
||||
scaled_result,
|
||||
use_fast_accum);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Computes matrix multiply + bias while applying scaling to input and output
|
||||
// matrices Scales are only applicable when matrices are of Float8 type and
|
||||
// assumed to be equal to 1.0 by default. If output matrix type is 16 or 32-bit
|
||||
// type, scale_result is not applied. Known limitations:
|
||||
// - Only works if mat1 is row-major and mat2 is column-major
|
||||
// - Only works if matrices sizes are divisible by 32
|
||||
// - If 1-dimensional tensors are used then scale_a should be size =
|
||||
// mat1.size(0)
|
||||
// and scale_b should have size = to mat2.size(1)
|
||||
// Arguments:
|
||||
// - `mat1`: the first operand of the matrix multiply, can be type
|
||||
// `torch.float8_e4m3fn` or `torch.float8_e5m2`
|
||||
// - `mat2`: the second operand of the matrix multiply, can be type
|
||||
// `torch.float8_e4m3fn` or `torch.float8_e5m2`
|
||||
// - `bias`: the bias, can be type `torch.float16` or `torch.bfloat16`
|
||||
// - `out_dtype`: the output dtype, can either be a float8 or a higher
|
||||
// precision floating point type
|
||||
// - `scale_a`: a tensor with the inverse scale of `mat1`, whose
|
||||
// shape/strides/dtype depend on the scaling scheme
|
||||
// - `scale_b`: a tensor with the inverse scale of `mat2`, whose
|
||||
// shape/strides/dtype depend on the scaling scheme
|
||||
// - `scale_result`: a scalar tensor with the scale of the output, only
|
||||
// utilized if the output is a float8 type
|
||||
// - `use_fast_accum`: Not applicable for XPU. For now, it should always be
|
||||
// false.
|
||||
// - `out`: a reference to the output tensor
|
||||
|
||||
Tensor& _scaled_mm_out_xpu(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
std::optional<c10::ScalarType> out_dtype,
|
||||
bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
// Note: fast_accum is not supported in XPU for now.
|
||||
TORCH_CHECK(!use_fast_accum, "fast_accum is not supported in XPU for now.");
|
||||
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix");
|
||||
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] == mat2.sizes()[0],
|
||||
"mat1 and mat2 shapes cannot be multiplied (",
|
||||
mat1.sizes()[0],
|
||||
"x",
|
||||
mat1.sizes()[1],
|
||||
" and ",
|
||||
mat2.sizes()[0],
|
||||
"x",
|
||||
mat2.sizes()[1],
|
||||
")");
|
||||
|
||||
// Check what type of scaling we are doing based on inputs. This list is
|
||||
// sorted by decreasing priority.
|
||||
|
||||
// List of supported datatypes for XPU with oneDNN:
|
||||
// https://uxlfoundation.github.io/oneDNN/dev_guide_matmul.html#data-types
|
||||
auto [scaling_choice_a, scaling_choice_b] = get_joint_scaling(
|
||||
{
|
||||
std::make_pair(ScalingType::TensorWise, ScalingType::TensorWise),
|
||||
std::make_pair(ScalingType::RowWise, ScalingType::RowWise),
|
||||
},
|
||||
mat1,
|
||||
mat2,
|
||||
scale_a,
|
||||
scale_b);
|
||||
TORCH_CHECK(
|
||||
!scale_result ||
|
||||
(scale_result->numel() == 1 && scale_result->scalar_type() == kFloat),
|
||||
"scale_result must be a float scalar");
|
||||
TORCH_CHECK(
|
||||
!bias || bias->numel() == mat2.sizes()[1],
|
||||
"Bias must be size ",
|
||||
mat2.sizes()[1],
|
||||
" but got ",
|
||||
bias->numel());
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] % 16 == 0,
|
||||
"Expected trailing dimension of mat1 to be divisible by 16 ",
|
||||
"but got mat1 shape: (",
|
||||
mat1.sizes()[0],
|
||||
"x",
|
||||
mat1.sizes()[1],
|
||||
").");
|
||||
TORCH_CHECK(
|
||||
mat2.sizes()[0] % 16 == 0 && mat2.sizes()[1] % 16 == 0,
|
||||
"mat2 shape (",
|
||||
mat2.sizes()[0],
|
||||
"x",
|
||||
mat2.sizes()[1],
|
||||
") must be divisible by 16");
|
||||
// Check types
|
||||
TORCH_CHECK(
|
||||
!out_dtype || *out_dtype == out.scalar_type(),
|
||||
"out_dtype must match output matrix type");
|
||||
TORCH_CHECK(
|
||||
at::isFloat8Type(mat1.scalar_type()),
|
||||
"Expected mat1 to be Float8 matrix got ",
|
||||
mat1.scalar_type());
|
||||
TORCH_CHECK(
|
||||
at::isFloat8Type(mat2.scalar_type()),
|
||||
"Expected mat2 to be Float8 matrix got ",
|
||||
mat2.scalar_type());
|
||||
// TODO: oneDNN Currently only supports e4m3 with group scales on BMG. Not
|
||||
// support 2D scales, only 1D. Needs to add more checks there.
|
||||
|
||||
if (bias) {
|
||||
TORCH_CHECK(
|
||||
bias->scalar_type() == kFloat ||
|
||||
bias->scalar_type() == c10::ScalarType::BFloat16 ||
|
||||
bias->scalar_type() == c10::ScalarType::Half,
|
||||
"Bias must be Float32 or BFloat16 or Half, but got ",
|
||||
bias->scalar_type());
|
||||
}
|
||||
|
||||
{
|
||||
auto bias_ = bias.value_or(Tensor());
|
||||
auto scale_result_ = scale_result.value_or(Tensor());
|
||||
|
||||
// NOLINTNEXTLINE(*c-array*)
|
||||
TensorArg targs[]{
|
||||
{out, "out", 0},
|
||||
{mat1, "mat1", 1},
|
||||
{mat2, "mat2", 2},
|
||||
{bias_, "bias", 3},
|
||||
{scale_a, "scale_a", 4},
|
||||
{scale_b, "scale_b", 5},
|
||||
{scale_result_, "scale_result", 6}};
|
||||
checkAllSameGPU(__func__, targs);
|
||||
}
|
||||
|
||||
// Validation checks have passed lets resize the output to actual size
|
||||
IntArrayRef mat1_sizes = mat1.sizes();
|
||||
IntArrayRef mat2_sizes = mat2.sizes();
|
||||
at::native::resize_output(out, {mat1_sizes[0], mat2_sizes[1]});
|
||||
|
||||
// If any of M, K, N is 0 - return early (the tensorwise/rowwise float8 gemm
|
||||
// kernels do not support this case).
|
||||
if (mat1_sizes[0] == 0 || mat1_sizes[1] == 0 || mat2_sizes[1] == 0) {
|
||||
// `out` was created with `at::empty`. In the case where we are multiplying
|
||||
// MxK by KxN and K is the zero dim, we need to initialize here to properly
|
||||
// return a tensor of zeros.
|
||||
if (mat1_sizes[1] == 0) {
|
||||
out.zero_();
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// TODO: Scale_result is not supported by now!!
|
||||
return _scaled_gemm(
|
||||
mat1,
|
||||
mat2,
|
||||
scale_a,
|
||||
scale_b,
|
||||
scaling_choice_a,
|
||||
scaling_choice_b,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
|
||||
Tensor _scaled_mm_xpu(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
std::optional<c10::ScalarType> out_dtype,
|
||||
bool use_fast_accum) {
|
||||
const auto out_dtype_ = out_dtype.value_or(mat_a.scalar_type());
|
||||
Tensor out = at::empty({0}, mat_a.options().dtype(out_dtype_));
|
||||
return _scaled_mm_out_xpu(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
bias,
|
||||
scale_result,
|
||||
out_dtype,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
@ -1,3 +1,4 @@
|
||||
#include <ATen/BlasBackend.h>
|
||||
#include <ATen/Tensor.h>
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
@ -8,7 +9,6 @@
|
||||
#include <oneapi/dnnl/dnnl.hpp>
|
||||
|
||||
namespace at::native::onednn {
|
||||
|
||||
at::Tensor broadcast_bias2D(
|
||||
at::Tensor& dst,
|
||||
at::Tensor& bias,
|
||||
@ -328,4 +328,236 @@ void quantized_matmul(
|
||||
result.copy_(dst);
|
||||
}
|
||||
|
||||
// Describes how to configure oneDNN scales for a given role/ScalingType
|
||||
struct ScaleSpec {
|
||||
// specifies the way scale values will be applied to an ARG tensor.
|
||||
int mask;
|
||||
// specifies how scales are grouped along dimensions where
|
||||
// multiple scale factors are used.
|
||||
dnnl::memory::dims groups;
|
||||
// specifies data type for scale factors.
|
||||
dnnl::memory::data_type dtype;
|
||||
|
||||
// Helper to compute expected number of elements for scale tensors
|
||||
// arg_type: "src" for SRC (groups pattern {1, X}),
|
||||
// "wei" for WEIGHTS (groups pattern {X, 1})
|
||||
int64_t expected_numel(
|
||||
int64_t outer_dim,
|
||||
int64_t inner_dim,
|
||||
const std::string& arg_type) const {
|
||||
if (groups == dnnl::memory::dims{1, 1})
|
||||
return 1; // tensorwise scaling
|
||||
|
||||
TORCH_CHECK(
|
||||
arg_type == "src" || arg_type == "wei",
|
||||
"Expected arg_type to be 'src' or 'wei', but got '",
|
||||
arg_type,
|
||||
"'");
|
||||
|
||||
// For rowwise: SRC groups={1, K}, WEI groups={K, 1}
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
(groups == dnnl::memory::dims{1, inner_dim} ||
|
||||
groups == dnnl::memory::dims{inner_dim, 1}),
|
||||
"The groups must be either {1, inner_dim} or {inner_dim, 1}. But got ",
|
||||
groups,
|
||||
".");
|
||||
return outer_dim;
|
||||
}
|
||||
|
||||
// Normalize an incoming scale tensor to contiguous storage and appropriate
|
||||
// dtype/view
|
||||
at::Tensor normalize(const at::Tensor& scale) const {
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
dtype == dnnl::memory::data_type::f32,
|
||||
"tensor scale currently must be f32, but got scale dtype: ",
|
||||
scale.scalar_type());
|
||||
return scale.to(at::kFloat).contiguous();
|
||||
}
|
||||
};
|
||||
|
||||
// This function defines how to set scales mask and groups according to:
|
||||
// https://github.com/uxlfoundation/oneDNN/blob/main/tests/benchdnn/doc/knobs_attr.md#--attr-scales
|
||||
// The returned value will be used in
|
||||
// `set_scales(arg, mask, groups, data_type)`.
|
||||
inline ScaleSpec make_scale_spec(
|
||||
at::blas::ScalingType scaling_type,
|
||||
int64_t M,
|
||||
int64_t K,
|
||||
int64_t N,
|
||||
const std::string& arg_type) {
|
||||
TORCH_CHECK(
|
||||
arg_type == "src" || arg_type == "wei",
|
||||
"Expected arg_type to be 'src' or 'wei', but got '",
|
||||
arg_type,
|
||||
"'");
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
(scaling_type == at::blas::ScalingType::TensorWise ||
|
||||
scaling_type == at::blas::ScalingType::RowWise),
|
||||
"Currently only support scaling_type for TensorWise or RowWise");
|
||||
int64_t dim = K; // Currently only K is used for grouping
|
||||
bool is_src = (arg_type == "src");
|
||||
if (scaling_type == at::blas::ScalingType::TensorWise) {
|
||||
// Scale tensorwise. The same as `--attr-scales=common`.
|
||||
// mask=0 : scale whole tensor
|
||||
// groups={1, 1}: indicates that there is only one group for scaling
|
||||
return {0, {1, 1}, dnnl::memory::data_type::f32};
|
||||
} else {
|
||||
// (scaling_type == at::blas::ScalingType::RowWise)
|
||||
// Scale RowWise. The same as `--attr-scales=per_dim_01`.
|
||||
// mask={(1 << 0) | (1 << 1)}: Scale on both dim0 and dim1
|
||||
// SRC: groups={1, K}, WEIGHTS: groups={K, 1}
|
||||
return {
|
||||
(1 << 0) | (1 << 1),
|
||||
is_src ? dnnl::memory::dims{1, dim} : dnnl::memory::dims{dim, 1},
|
||||
dnnl::memory::data_type::f32};
|
||||
}
|
||||
}
|
||||
|
||||
sycl::event scaled_matmul(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
Tensor& result,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
at::blas::ScalingType scaling_choice_a,
|
||||
at::blas::ScalingType scaling_choice_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
bool use_fast_accum) {
|
||||
auto& engine = GpuEngineManager::Instance().get_engine();
|
||||
auto& stream = GpuStreamManager::Instance().get_stream();
|
||||
|
||||
// This function will do steps with following steps
|
||||
// 1. create memory descriptor
|
||||
// 2. call write_to_dnnl_memory() to actually write memory
|
||||
// 3. execute
|
||||
|
||||
const int64_t M = mat1.size(0);
|
||||
const int64_t K = mat1.size(1);
|
||||
const int64_t N = mat2.size(1);
|
||||
|
||||
// 1.1 Create memory descriptor
|
||||
dnnl::memory::desc src_md = get_onednn_md(mat1);
|
||||
dnnl::memory::desc weights_md = get_onednn_md(mat2);
|
||||
dnnl::memory::desc dst_md = get_onednn_md(result);
|
||||
|
||||
// scale_a and scale_b has already be checked in `is_desired_scaling()` call.
|
||||
// So we could directly get their memory desc and set later.
|
||||
dnnl::memory::desc scale_a_md = get_onednn_md(scale_a);
|
||||
dnnl::memory::desc scale_b_md = get_onednn_md(scale_b);
|
||||
|
||||
dnnl::memory::desc bias_md;
|
||||
bool with_bias = bias.has_value();
|
||||
at::Tensor possible_reshaped_bias = bias.value_or(at::Tensor());
|
||||
if (with_bias) {
|
||||
if (possible_reshaped_bias.dim() == 1) {
|
||||
possible_reshaped_bias =
|
||||
possible_reshaped_bias.reshape({1, possible_reshaped_bias.size(0)});
|
||||
bias_md = get_onednn_md(possible_reshaped_bias);
|
||||
} else {
|
||||
bias_md = get_onednn_md(possible_reshaped_bias);
|
||||
}
|
||||
}
|
||||
|
||||
// 1.2 Create primitive descriptor and set scales mask
|
||||
const ScaleSpec src_spec = make_scale_spec(scaling_choice_a, M, K, N, "src");
|
||||
const ScaleSpec wei_spec = make_scale_spec(scaling_choice_b, M, K, N, "wei");
|
||||
|
||||
dnnl::primitive_attr op_attr = dnnl::primitive_attr();
|
||||
|
||||
#if ONEDNN_SUPPORT_DETERMINISTIC
|
||||
if (at::globalContext().deterministicAlgorithms() ||
|
||||
at::globalContext().deterministicMkldnn())
|
||||
op_attr.set_deterministic(true);
|
||||
#endif
|
||||
|
||||
std::vector<int64_t> default_groups;
|
||||
op_attr.set_scales(
|
||||
DNNL_ARG_SRC, src_spec.mask, src_spec.groups, src_spec.dtype);
|
||||
op_attr.set_scales(
|
||||
DNNL_ARG_WEIGHTS, wei_spec.mask, wei_spec.groups, wei_spec.dtype);
|
||||
// scale_result tensor currently only supports scalar(TensorWise Scaling).
|
||||
bool with_dst_scale = scale_result && scale_result->defined();
|
||||
if (with_dst_scale) {
|
||||
op_attr.set_scales(DNNL_ARG_DST, 0, {1}, dnnl::memory::data_type::f32);
|
||||
}
|
||||
|
||||
op_attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
|
||||
|
||||
// 1.3 Create the matmul primitive descriptor
|
||||
dnnl::matmul::primitive_desc matmul_pd = with_bias
|
||||
? dnnl::matmul::primitive_desc(
|
||||
engine, src_md, weights_md, bias_md, dst_md, op_attr)
|
||||
: dnnl::matmul::primitive_desc(
|
||||
engine, src_md, weights_md, dst_md, op_attr);
|
||||
|
||||
// 1.4 (Possible) Additional Checks
|
||||
// TODO: In case there are memory desc does not align with the actual tensor,
|
||||
// we might need to reorder weights similar to CPU's reorder_if_differ_in()
|
||||
// call. For example, weights not the same as matmul_pd.weights_desc(),
|
||||
|
||||
// 2. Prepare memory
|
||||
|
||||
// Create memory
|
||||
auto src_usr_m = make_onednn_memory(src_md, engine, mat1.data_ptr());
|
||||
auto weights_usr_m = make_onednn_memory(weights_md, engine, mat2.data_ptr());
|
||||
auto dst_usr_m = make_onednn_memory(dst_md, engine, result.data_ptr());
|
||||
dnnl::memory b_usr_m;
|
||||
if (with_bias) {
|
||||
b_usr_m =
|
||||
make_onednn_memory(bias_md, engine, possible_reshaped_bias.data_ptr());
|
||||
}
|
||||
|
||||
// Prepare runtime scale memories (flat 1-D views) using the specs
|
||||
auto make_scale_mem_from_spec = [&](const ScaleSpec& spec,
|
||||
int64_t expected_numel,
|
||||
const at::Tensor& scale_tensor) {
|
||||
at::Tensor prepared = spec.normalize(scale_tensor);
|
||||
TORCH_CHECK(
|
||||
prepared.numel() == expected_numel,
|
||||
"Scale buffer length mismatch. Expected ",
|
||||
expected_numel,
|
||||
", got ",
|
||||
prepared.numel());
|
||||
dnnl::memory::desc scale_md(
|
||||
{prepared.numel()}, spec.dtype, dnnl::memory::format_tag::x);
|
||||
return make_onednn_memory(scale_md, engine, prepared.data_ptr());
|
||||
};
|
||||
|
||||
auto scratchpad =
|
||||
make_onednn_memory(matmul_pd.scratchpad_desc(), engine, nullptr);
|
||||
|
||||
// 3. Setup Args for exec
|
||||
std::unordered_map<int, dnnl::memory> args;
|
||||
args.insert({DNNL_ARG_SRC, src_usr_m});
|
||||
args.insert({DNNL_ARG_WEIGHTS, weights_usr_m});
|
||||
args.insert({DNNL_ARG_DST, dst_usr_m});
|
||||
args.insert({DNNL_ARG_SCRATCHPAD, scratchpad});
|
||||
if (with_bias) {
|
||||
args.insert({DNNL_ARG_BIAS, b_usr_m});
|
||||
}
|
||||
|
||||
// Attach runtime scales using specs
|
||||
auto src_sc_mem = make_scale_mem_from_spec(
|
||||
src_spec, src_spec.expected_numel(M, K, "src"), scale_a);
|
||||
auto wei_sc_mem = make_scale_mem_from_spec(
|
||||
wei_spec, wei_spec.expected_numel(N, K, "wei"), scale_b);
|
||||
args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, src_sc_mem});
|
||||
args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, wei_sc_mem});
|
||||
if (with_dst_scale) {
|
||||
// Bind single f32 scalar as DST scale
|
||||
at::Tensor dst_scale_f32 = scale_result->to(at::kFloat).contiguous();
|
||||
dnnl::memory::desc dst_sc_md(
|
||||
{1}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x);
|
||||
auto dst_sc_mem =
|
||||
make_onednn_memory(dst_sc_md, engine, dst_scale_f32.data_ptr());
|
||||
args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, dst_sc_mem});
|
||||
}
|
||||
|
||||
dnnl::matmul matmul_p = dnnl::matmul(matmul_pd);
|
||||
sycl::event matmul_fwd_event =
|
||||
dnnl::sycl_interop::execute(matmul_p, stream, args);
|
||||
return matmul_fwd_event;
|
||||
}
|
||||
|
||||
} // namespace at::native::onednn
|
||||
|
||||
@ -78,6 +78,10 @@ dnnl::memory::data_type get_onednn_dtype(
|
||||
return dnnl::memory::data_type::f32;
|
||||
case at::ScalarType::BFloat16:
|
||||
return dnnl::memory::data_type::bf16;
|
||||
case at::ScalarType::Float8_e4m3fn:
|
||||
return dnnl::memory::data_type::f8_e4m3;
|
||||
case at::ScalarType::Float8_e5m2:
|
||||
return dnnl::memory::data_type::f8_e5m2;
|
||||
default:
|
||||
if (!allow_undef) {
|
||||
TORCH_CHECK(
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/BlasBackend.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/Attr.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/Utils.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/oneDNNContext.h>
|
||||
@ -202,4 +203,16 @@ void sdpa_backward(
|
||||
Tensor& grad_query,
|
||||
Tensor& grad_key,
|
||||
Tensor& grad_value);
|
||||
|
||||
sycl::event scaled_matmul(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
Tensor& result,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
at::blas::ScalingType scaling_choice_a,
|
||||
at::blas::ScalingType scaling_choice_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
bool use_fast_accum);
|
||||
} // namespace at::native::onednn
|
||||
|
||||
@ -82,6 +82,7 @@ NSArray<NSNumber*>* getTensorAxes(const TensorBase& t);
|
||||
NSArray<NSNumber*>* getTensorAxes(const IntArrayRef& sizes, at::OptionalIntArrayRef dim);
|
||||
std::string getMPSShapeString(MPSShape* shape);
|
||||
std::string getTensorsStringKey(const TensorList& tensors, bool short_dtype = true, bool exclude_shape = false);
|
||||
std::string to_hex_key(float);
|
||||
std::string getArrayRefString(const IntArrayRef s);
|
||||
// use has_storage() on the returned tensor to determine if src actually is a view
|
||||
Tensor gatherViewTensor(const Tensor& src, Tensor& dst);
|
||||
|
||||
@ -301,6 +301,10 @@ std::string getArrayRefString(const IntArrayRef s) {
|
||||
return fmt::to_string(fmt::join(s, ","));
|
||||
}
|
||||
|
||||
std::string to_hex_key(float f) {
|
||||
return fmt::format("{:a}", f);
|
||||
}
|
||||
|
||||
std::string getTensorsStringKey(const TensorList& tensors, bool short_dtype, bool exclude_shape) {
|
||||
fmt::basic_memory_buffer<char, 100> buffer;
|
||||
auto buf_iterator = std::back_inserter(buffer);
|
||||
|
||||
@ -40,7 +40,7 @@ inline c10::metal::opmath_t<T> matmul_inner(
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
for (uint k = 0; k < TILE_DIM; k++) {
|
||||
sum += A_tile[tid.y][k] * B_tile[k][tid.x];
|
||||
sum += c10::metal::mul(A_tile[tid.y][k], B_tile[k][tid.x]);
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
@ -96,7 +96,9 @@ kernel void addmm(
|
||||
auto bias =
|
||||
biasData[thread_id.y * strides[3].x + thread_id.x * strides[3].y];
|
||||
outputData[thread_id.y * strides[2].x + thread_id.x * strides[2].y] =
|
||||
static_cast<T>(alpha_beta[0] * sum + alpha_beta[1] * bias);
|
||||
static_cast<T>(
|
||||
c10::metal::mul(alpha_beta[0], sum) +
|
||||
c10::metal::mul(alpha_beta[1], bias));
|
||||
}
|
||||
}
|
||||
|
||||
@ -832,6 +834,10 @@ INSTANTIATE_MM_OPS(float);
|
||||
INSTANTIATE_MM_OPS(half);
|
||||
INSTANTIATE_MM_OPS(bfloat);
|
||||
|
||||
// Complex MM
|
||||
INSTANTIATE_MM_OPS(float2);
|
||||
INSTANTIATE_MM_OPS(half2);
|
||||
|
||||
// Integral MM
|
||||
INSTANTIATE_MM_OPS(long);
|
||||
INSTANTIATE_MM_OPS(int);
|
||||
|
||||
@ -121,7 +121,7 @@ Tensor& do_metal_addmm(const Tensor& self,
|
||||
const Scalar& alpha,
|
||||
const Scalar& beta,
|
||||
const Tensor& bias) {
|
||||
if (beta.toDouble() == 0 && alpha.toDouble() == 1) {
|
||||
if (beta.isFloatingPoint() && alpha.isFloatingPoint() && beta.toDouble() == 0 && alpha.toDouble() == 1) {
|
||||
return do_metal_mm(self, other, output);
|
||||
}
|
||||
auto stream = getCurrentMPSStream();
|
||||
@ -147,13 +147,15 @@ Tensor& do_metal_addmm(const Tensor& self,
|
||||
std::array<int64_t, 2> i64;
|
||||
std::array<int32_t, 2> i32;
|
||||
std::array<float, 2> f32;
|
||||
} alpha_beta;
|
||||
std::array<c10::complex<float>, 2> c64;
|
||||
} alpha_beta{};
|
||||
if (output.scalar_type() == kLong) {
|
||||
alpha_beta.i64 = {alpha.toLong(), beta.toLong()};
|
||||
} else if (c10::isIntegralType(output.scalar_type(), true)) {
|
||||
alpha_beta.i32 = {alpha.toInt(), beta.toInt()};
|
||||
} else if (c10::isComplexType(output.scalar_type())) {
|
||||
alpha_beta.c64 = {alpha.toComplexFloat(), beta.toComplexFloat()};
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT(c10::isFloatingType(output.scalar_type()));
|
||||
alpha_beta.f32 = {alpha.toFloat(), beta.toFloat()};
|
||||
}
|
||||
constexpr uint32_t TILE_DIM = 16; // fastest performance from tests on multiple macs
|
||||
@ -190,10 +192,16 @@ std::tuple<MPSGraphTensor*, MPSGraphTensor*, MPSGraphTensor*> do_mm(MPSGraph* gr
|
||||
bool use_metal_mm(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
static bool always_use_metal = c10::utils::has_env("PYTORCH_MPS_PREFER_METAL");
|
||||
constexpr auto max_stride_size = 32768;
|
||||
constexpr auto max_complex_inner_size = 2048;
|
||||
static bool is_macos_14_4_or_newer = is_macos_13_or_newer(MacOSVersion::MACOS_VER_14_4_PLUS);
|
||||
if (always_use_metal || c10::isIntegralType(self.scalar_type(), true)) {
|
||||
return true;
|
||||
}
|
||||
// multiplicationWithPrimaryTensor: returns incorrect results if inner size exceeds 2048
|
||||
// See https://github.com/pytorch/pytorch/issues/167727#issuecomment-3529308548
|
||||
if (c10::isComplexType(self.scalar_type()) && self.size(1) > max_complex_inner_size) {
|
||||
return true;
|
||||
}
|
||||
return !is_macos_14_4_or_newer &&
|
||||
(self.stride(0) > max_stride_size || self.stride(1) > max_stride_size || self.size(0) > max_stride_size ||
|
||||
self.size(1) > max_stride_size || other.stride(0) > max_stride_size || other.stride(1) > max_stride_size ||
|
||||
|
||||
@ -91,25 +91,30 @@ static auto& lib = mps::MetalShaderLibrary::getBundledLibrary();
|
||||
#include <ATen/native/mps/Repeat_metallib.h>
|
||||
#endif
|
||||
|
||||
template <typename index_t>
|
||||
void computeRepeatIndices(const index_t* repeat_ptr,
|
||||
const int64_t* cumsum_ptr,
|
||||
index_t* result_ptr,
|
||||
int64_t size,
|
||||
int64_t result_size) {
|
||||
id<MTLBuffer> repeatBuffer = reinterpret_cast<id<MTLBuffer>>(repeat_ptr);
|
||||
id<MTLBuffer> cumsumBuffer = reinterpret_cast<id<MTLBuffer>>(cumsum_ptr);
|
||||
id<MTLBuffer> resultBuffer = reinterpret_cast<id<MTLBuffer>>(result_ptr);
|
||||
TORCH_CHECK(repeatBuffer && cumsumBuffer && resultBuffer);
|
||||
|
||||
Tensor repeat_interleave_mps(const Tensor& repeat, std::optional<int64_t> output_size) {
|
||||
TORCH_CHECK(repeat.dim() == 1, "repeat_interleave only accept 1D vector as repeat");
|
||||
std::string scalar_type;
|
||||
if constexpr (std::is_same_v<index_t, int32_t>) {
|
||||
if (repeat.scalar_type() == kInt) {
|
||||
scalar_type = "int32_t";
|
||||
} else if constexpr (std::is_same_v<index_t, int64_t>) {
|
||||
} else if (repeat.scalar_type() == kLong) {
|
||||
scalar_type = "int64_t";
|
||||
} else {
|
||||
TORCH_CHECK(false, "repeat_interleave: unsupported indexing data type");
|
||||
TORCH_CHECK(false, "repeats has to be Long or Int tensor");
|
||||
}
|
||||
if (repeat.size(0) == 0) {
|
||||
return at::empty_like(repeat, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
}
|
||||
Tensor repeat_ = repeat.contiguous();
|
||||
Tensor cumsum = repeat.cumsum(0);
|
||||
int64_t total = 0;
|
||||
if (output_size.has_value()) {
|
||||
total = output_size.value();
|
||||
} else {
|
||||
total = cumsum[-1].item<int64_t>();
|
||||
TORCH_CHECK((repeat >= 0).all().item<uint8_t>(), "repeats can not be negative");
|
||||
}
|
||||
|
||||
auto result = at::empty({total}, repeat.options());
|
||||
|
||||
MPSStream* mpsStream = getCurrentMPSStream();
|
||||
dispatch_sync(mpsStream->queue(), ^() {
|
||||
@ -121,20 +126,13 @@ void computeRepeatIndices(const index_t* repeat_ptr,
|
||||
getMPSProfiler().beginProfileKernel(pipelineState, "repeat_interleave:" + scalar_type, false);
|
||||
|
||||
[computeEncoder setComputePipelineState:pipelineState];
|
||||
mps::mtl_setArgs(computeEncoder, repeatBuffer, cumsumBuffer, resultBuffer, size);
|
||||
mps::mtl_dispatch1DJob(computeEncoder, pipelineState, size);
|
||||
mps::mtl_setArgs(computeEncoder, repeat_, cumsum, result, repeat.size(0));
|
||||
mps::mtl_dispatch1DJob(computeEncoder, pipelineState, repeat.size(0));
|
||||
|
||||
getMPSProfiler().endProfileKernel(pipelineState);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Tensor repeat_interleave_mps(const Tensor& repeat, std::optional<int64_t> output_size) {
|
||||
Tensor output;
|
||||
AT_DISPATCH_INDEX_TYPES(repeat.scalar_type(), "repeat_interleave_mps", [&]() {
|
||||
output = repeat_interleave_common<index_t, computeRepeatIndices<index_t>>(repeat, output_size);
|
||||
});
|
||||
return output;
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
|
||||
@ -5,6 +5,7 @@
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <ATen/native/TensorCompare.h>
|
||||
#include <ATen/native/mps/OperationUtils.h>
|
||||
#include <algorithm>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -89,13 +90,21 @@ static void check_min_max_dims(const OptionalTensorRef clamp_opt, const Tensor&
|
||||
auto clamp_shape = clamp_opt->sizes();
|
||||
auto input_shape = input_t.sizes();
|
||||
|
||||
TORCH_CHECK(num_clamp_dims <= num_input_dims,
|
||||
op_name + ": clamp tensor number of dims must not be greater than that of input tensor")
|
||||
if (num_clamp_dims > num_input_dims) {
|
||||
auto leading_dims = num_clamp_dims - num_input_dims;
|
||||
for (int64_t i = 0; i < leading_dims; ++i) {
|
||||
TORCH_CHECK(clamp_shape[i] == 1,
|
||||
op_name + ": clamp tensor leading shape must be 1 to broadcast with input tensor");
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_clamp_dims; i++)
|
||||
auto clamp_idx = num_clamp_dims - 1;
|
||||
auto input_idx = num_input_dims - 1;
|
||||
auto common_dims = std::min(num_clamp_dims, num_input_dims);
|
||||
for (int64_t i = 0; i < common_dims; ++i)
|
||||
// One of the indices is allowed to be 1; will be handled by broadcast
|
||||
TORCH_CHECK(clamp_shape[num_clamp_dims - 1 - i] == input_shape[num_input_dims - 1 - i] ||
|
||||
clamp_shape[num_clamp_dims - 1 - i] == 1 || input_shape[num_input_dims - 1 - i] == 1,
|
||||
TORCH_CHECK(clamp_shape[clamp_idx - i] == input_shape[input_idx - i] || clamp_shape[clamp_idx - i] == 1 ||
|
||||
input_shape[input_idx - i] == 1,
|
||||
op_name + ": clamp tensor trailing shape must match input tensor")
|
||||
}
|
||||
}
|
||||
@ -136,9 +145,6 @@ static void clamp_tensor_out_mps(const Tensor& input_t,
|
||||
|
||||
auto result_type = output_t.scalar_type();
|
||||
|
||||
IntArrayRef new_min_shape;
|
||||
IntArrayRef new_max_shape;
|
||||
|
||||
auto num_min_dims = min_opt->dim();
|
||||
auto num_max_dims = max_opt->dim();
|
||||
auto num_input_dims = input_t.dim();
|
||||
@ -146,24 +152,32 @@ static void clamp_tensor_out_mps(const Tensor& input_t,
|
||||
std::vector<int64_t> new_min_arr(num_input_dims);
|
||||
std::vector<int64_t> new_max_arr(num_input_dims);
|
||||
|
||||
if (has_min && num_min_dims < num_input_dims) {
|
||||
fill_new_shape(num_input_dims, num_min_dims, new_min_arr.data(), min_opt->sizes());
|
||||
new_min_shape = IntArrayRef(new_min_arr);
|
||||
}
|
||||
|
||||
if (has_max && num_max_dims < num_input_dims) {
|
||||
fill_new_shape(num_input_dims, num_max_dims, new_max_arr.data(), max_opt->sizes());
|
||||
new_max_shape = IntArrayRef(new_max_arr);
|
||||
}
|
||||
|
||||
Tensor min_opt_tensor;
|
||||
Tensor max_opt_tensor;
|
||||
|
||||
auto reshape_clamp_tensor = [&](const OptionalTensorRef clamp_tensor_ref,
|
||||
int64_t num_clamp_dims,
|
||||
std::vector<int64_t>& new_shape_storage) -> Tensor {
|
||||
IntArrayRef clamp_shape = clamp_tensor_ref->sizes();
|
||||
bool requires_view = false;
|
||||
|
||||
if (num_clamp_dims > num_input_dims) {
|
||||
clamp_shape = clamp_shape.slice(num_clamp_dims - num_input_dims);
|
||||
requires_view = true;
|
||||
} else if (num_clamp_dims < num_input_dims) {
|
||||
fill_new_shape(num_input_dims, num_clamp_dims, new_shape_storage.data(), clamp_shape);
|
||||
clamp_shape = IntArrayRef(new_shape_storage);
|
||||
requires_view = true;
|
||||
}
|
||||
|
||||
return requires_view ? (*clamp_tensor_ref).view(clamp_shape) : *clamp_tensor_ref;
|
||||
};
|
||||
|
||||
if (has_min) {
|
||||
min_opt_tensor = (num_min_dims < num_input_dims) ? (*min_opt).view(new_min_shape) : *min_opt;
|
||||
min_opt_tensor = reshape_clamp_tensor(min_opt, num_min_dims, new_min_arr);
|
||||
}
|
||||
if (has_max) {
|
||||
max_opt_tensor = (num_max_dims < num_input_dims) ? (*max_opt).view(new_max_shape) : *max_opt;
|
||||
max_opt_tensor = reshape_clamp_tensor(max_opt, num_max_dims, new_max_arr);
|
||||
}
|
||||
|
||||
@autoreleasepool {
|
||||
@ -244,8 +258,8 @@ static void clamp_scalar_out_mps(const Tensor& input_t,
|
||||
|
||||
@autoreleasepool {
|
||||
// the optional min/max refs could affect how we build the cached graph
|
||||
std::string key = op_name + (has_min ? ("_min:" + std::to_string(min_scalar)) : "") +
|
||||
(has_max ? ("_max:" + std::to_string(max_scalar)) : "") + "_scalar:" + getTensorsStringKey({input_t});
|
||||
std::string key = op_name + (has_min ? ("_min:" + to_hex_key(min_scalar)) : "") +
|
||||
(has_max ? ("_max:" + to_hex_key(max_scalar)) : "") + "_scalar:" + getTensorsStringKey({input_t});
|
||||
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
|
||||
if (has_min)
|
||||
newCachedGraph->minTensor = [mpsGraph constantWithScalar:min_scalar
|
||||
|
||||
@ -4389,7 +4389,7 @@
|
||||
variants: function, method
|
||||
dispatch:
|
||||
CompositeExplicitAutograd: mv
|
||||
SparseCPU, SparseCUDA: mv_sparse
|
||||
SparseCPU, SparseCUDA, SparseMPS: mv_sparse
|
||||
|
||||
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
||||
dispatch:
|
||||
@ -7518,7 +7518,7 @@
|
||||
- func: _sparse_mask_projection(Tensor self, Tensor mask, bool accumulate_matches=False) -> Tensor
|
||||
variants: method
|
||||
dispatch:
|
||||
SparseCPU, SparseCUDA: sparse_mask_projection
|
||||
SparseCPU, SparseCUDA, SparseMPS: sparse_mask_projection
|
||||
autogen: _sparse_mask_projection.out
|
||||
|
||||
- func: _to_cpu(Tensor[] tensors) -> Tensor[]
|
||||
|
||||
@ -30,10 +30,12 @@
|
||||
|
||||
#include <thrust/binary_search.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/distance.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
#include <thrust/scan.h>
|
||||
#include <thrust/sequence.h>
|
||||
#include <thrust/sort.h>
|
||||
#include <thrust/system/cuda/execution_policy.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cusparse.h>
|
||||
|
||||
@ -445,6 +445,33 @@ static SparseTensor& mul_out_dense_sparse_mps(
|
||||
return out;
|
||||
}
|
||||
|
||||
static std::tuple<Tensor, Tensor, int64_t> mps_intersect_binary_search(
|
||||
const Tensor& A_keys,
|
||||
const Tensor& B_keys,
|
||||
int64_t lenA,
|
||||
int64_t lenB,
|
||||
bool boolean_flag) {
|
||||
|
||||
auto stream = getCurrentMPSStream();
|
||||
auto outA_idx = at::empty({lenA}, A_keys.options().dtype(at::kLong));
|
||||
auto outB_idx = at::empty({lenA}, A_keys.options().dtype(at::kLong));
|
||||
auto counter = at::zeros({1}, A_keys.options().dtype(at::kInt));
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), boolean_flag);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const auto match_count = static_cast<int64_t>(counter.item<int32_t>());
|
||||
return std::make_tuple(std::move(outA_idx), std::move(outB_idx), match_count);
|
||||
}
|
||||
|
||||
|
||||
SparseTensor& mul_out_sparse_mps(const Tensor& t_, const Tensor& src_, SparseTensor& r_) {
|
||||
TORCH_CHECK(r_.is_mps(), "mul: expected 'out' to be MPS, but got ", r_.device());
|
||||
@ -523,22 +550,10 @@ SparseTensor& mul_out_sparse_mps(const Tensor& t_, const Tensor& src_, SparseTen
|
||||
auto A_keys = A_is_lhs ? lhs_keys : rhs_keys;
|
||||
auto B_keys = A_is_lhs ? rhs_keys : lhs_keys;
|
||||
|
||||
auto outA_idx = at::empty({lenA}, at::device(device).dtype(kLong));
|
||||
auto outB_idx = at::empty({lenA}, at::device(device).dtype(kLong));
|
||||
auto counter = at::zeros({1}, at::device(device).dtype(kInt));
|
||||
auto [outA_idx, outB_idx, M_int64] = mps_intersect_binary_search(
|
||||
A_keys, B_keys, lenA, lenB, A_is_lhs);
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), A_is_lhs);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const uint32_t M = counter.item<int32_t>(); // number of structural matches
|
||||
const auto M = static_cast<uint32_t>(M_int64); // number of structural matches
|
||||
|
||||
r_.resize_as_(lhs);
|
||||
|
||||
@ -762,6 +777,14 @@ SparseTensor& add_out_sparse_mps(const SparseTensor& self,
|
||||
|
||||
using OptTensor = std::optional<Tensor>;
|
||||
|
||||
static Tensor create_sparse_output_values(
|
||||
const Tensor& template_values,
|
||||
int64_t output_nnz,
|
||||
ScalarType dtype) {
|
||||
auto out_val_sizes = template_values.sizes().vec();
|
||||
out_val_sizes[0] = output_nnz;
|
||||
return at::zeros(out_val_sizes, template_values.options().dtype(dtype));
|
||||
}
|
||||
|
||||
static void sparse_mask_apply_out_mps_kernel(
|
||||
Tensor& result,
|
||||
@ -783,9 +806,9 @@ static void sparse_mask_apply_out_mps_kernel(
|
||||
auto src = src_in.coalesce();
|
||||
auto mask = coalesce_mask ? mask_in.coalesce() : mask_in;
|
||||
|
||||
const int64_t src_nnz = src._nnz();
|
||||
const int64_t mask_nnz = mask._nnz();
|
||||
const int64_t sd = src.sparse_dim();
|
||||
const auto src_nnz = src._nnz();
|
||||
const auto mask_nnz = mask._nnz();
|
||||
const auto sd = src.sparse_dim();
|
||||
result.sparse_resize_(mask.sizes(), mask.sparse_dim(), mask.dense_dim());
|
||||
|
||||
auto commonDtype = at::result_type(src, mask);
|
||||
@ -814,53 +837,27 @@ static void sparse_mask_apply_out_mps_kernel(
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_indices = mask._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype).contiguous();
|
||||
auto out_values = create_sparse_output_values(src_values, mask_nnz, commonDtype);
|
||||
|
||||
if (src_nnz == 0) {
|
||||
auto out_indices = mask._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype);
|
||||
auto out_val_sizes = src_values.sizes().vec();
|
||||
out_val_sizes[0] = mask_nnz;
|
||||
auto out_values = at::zeros(out_val_sizes, src_values.options());
|
||||
alias_into_sparse(result, out_indices, out_values);
|
||||
alias_into_sparse(result, mask_indices, out_values);
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_indices = mask._indices().contiguous();
|
||||
auto src_indices = src._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype).contiguous();
|
||||
auto mask_keys = flatten_indices(mask._indices().contiguous(), mask.sizes().slice(0, sd)).contiguous();
|
||||
auto src_keys = flatten_indices(src._indices().contiguous(), src.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
auto mask_keys = flatten_indices(mask_indices, mask.sizes().slice(0, sd)).contiguous();
|
||||
auto src_keys = flatten_indices(src_indices, src.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
const bool A_is_src = (src_nnz <= mask_nnz);
|
||||
const int64_t lenA = A_is_src ? src_nnz : mask_nnz;
|
||||
const int64_t lenB = A_is_src ? mask_nnz : src_nnz;
|
||||
const auto A_is_src = (src_nnz <= mask_nnz);
|
||||
const auto lenA = A_is_src ? src_nnz : mask_nnz;
|
||||
const auto lenB = A_is_src ? mask_nnz : src_nnz;
|
||||
auto A_keys = A_is_src ? src_keys : mask_keys;
|
||||
auto B_keys = A_is_src ? mask_keys : src_keys;
|
||||
|
||||
const auto device = result.device();
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
auto outA_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
|
||||
auto outB_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
|
||||
auto counter = at::zeros({1}, at::device(device).dtype(at::kInt));
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), A_is_src);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const int64_t M = static_cast<int64_t>(counter.item<int32_t>());
|
||||
|
||||
auto out_val_sizes = src_values.sizes().vec();
|
||||
out_val_sizes[0] = mask_nnz;
|
||||
auto out_values = at::zeros(out_val_sizes, src_values.options());
|
||||
auto [outA_idx, outB_idx, M] = mps_intersect_binary_search(
|
||||
A_keys, B_keys, lenA, lenB, A_is_src);
|
||||
|
||||
if (M > 0) {
|
||||
auto src_match = outA_idx.narrow(0, 0, M);
|
||||
@ -878,6 +875,70 @@ static void sparse_mask_apply_out_mps_kernel(
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
}
|
||||
|
||||
static void sparse_mask_projection_out_mps_kernel(
|
||||
Tensor& result,
|
||||
const Tensor& lhs,
|
||||
const Tensor& rhs,
|
||||
const OptTensor& /*x_hash_opt*/,
|
||||
bool accumulate_matches) {
|
||||
|
||||
TORCH_CHECK(lhs.is_sparse() && rhs.is_sparse(), "sparse_mask_projection: expected sparse COO");
|
||||
TORCH_CHECK(lhs.is_mps() && rhs.is_mps(), "sparse_mask_projection: expected MPS tensors");
|
||||
TORCH_CHECK(lhs.sparse_dim() == rhs.sparse_dim(), "sparse_dim mismatch");
|
||||
|
||||
auto lhs_c = lhs.coalesce();
|
||||
auto rhs_c = rhs.coalesce();
|
||||
|
||||
const auto sd = lhs_c.sparse_dim();
|
||||
const auto lhs_nnz = lhs_c._nnz();
|
||||
const auto rhs_nnz = rhs_c._nnz();
|
||||
|
||||
auto commonDtype = at::result_type(lhs_c, rhs_c);
|
||||
TORCH_CHECK(canCast(commonDtype, result.scalar_type()),
|
||||
"Can't convert ", commonDtype, " to output ", result.scalar_type());
|
||||
|
||||
result.sparse_resize_(lhs.sizes(), lhs.sparse_dim(), lhs.dense_dim());
|
||||
|
||||
auto lhs_indices = lhs_c._indices().contiguous();
|
||||
auto rhs_values = rhs_c._values().to(commonDtype).contiguous();
|
||||
auto out_values = create_sparse_output_values(rhs_values, lhs_nnz, commonDtype);
|
||||
|
||||
if (lhs_nnz > 0 && rhs_nnz > 0) {
|
||||
auto lhs_keys = flatten_indices(lhs_indices, lhs_c.sizes().slice(0, sd)).contiguous();
|
||||
auto rhs_keys = flatten_indices(rhs_c._indices().contiguous(), rhs_c.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
const auto A_is_lhs = (lhs_nnz <= rhs_nnz);
|
||||
const auto lenA = A_is_lhs ? lhs_nnz : rhs_nnz;
|
||||
const auto lenB = A_is_lhs ? rhs_nnz : lhs_nnz;
|
||||
auto A_keys = A_is_lhs ? lhs_keys : rhs_keys;
|
||||
auto B_keys = A_is_lhs ? rhs_keys : lhs_keys;
|
||||
|
||||
auto [outA_idx, outB_idx, M] = mps_intersect_binary_search(
|
||||
A_keys, B_keys, lenA, lenB, A_is_lhs);
|
||||
|
||||
if (M > 0) {
|
||||
auto idx_in_A = outA_idx.narrow(0, 0, M);
|
||||
auto idx_in_B = outB_idx.narrow(0, 0, M);
|
||||
auto idx_in_lhs = A_is_lhs ? idx_in_A : idx_in_B;
|
||||
auto idx_in_rhs = A_is_lhs ? idx_in_B : idx_in_A;
|
||||
|
||||
const auto view_cols = rhs_values.numel() / std::max<int64_t>(rhs_nnz, 1);
|
||||
auto rhs_rows = rhs_values.index_select(0, idx_in_rhs).contiguous();
|
||||
auto rhs_rows_2d = rhs_rows.view({M, view_cols});
|
||||
auto out_2d = out_values.view({lhs_nnz, view_cols});
|
||||
|
||||
if (accumulate_matches) {
|
||||
out_2d.index_add_(0, idx_in_lhs, rhs_rows_2d);
|
||||
} else {
|
||||
out_2d.index_copy_(0, idx_in_lhs, rhs_rows_2d);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
alias_into_sparse(result, lhs._indices(), out_values);
|
||||
result._coalesced_(lhs.is_coalesced());
|
||||
}
|
||||
|
||||
static void sparse_mask_intersection_out_mps_kernel(
|
||||
Tensor& result,
|
||||
const Tensor& lhs,
|
||||
@ -1002,4 +1063,5 @@ Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
|
||||
}
|
||||
|
||||
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
|
||||
REGISTER_MPS_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_mps_kernel);
|
||||
} // namespace at::native
|
||||
@ -61,6 +61,7 @@ list(APPEND ATen_CUDA_TEST_SRCS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_complex_math_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_complex_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_cub_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_cublas_handle_pool_test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_device_test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_distributions_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_dlconvertor_test.cpp
|
||||
|
||||
77
aten/src/ATen/test/cuda_cublas_handle_pool_test.cpp
Normal file
77
aten/src/ATen/test/cuda_cublas_handle_pool_test.cpp
Normal file
@ -0,0 +1,77 @@
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDACachingAllocator.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// Test concurrent access to getCurrentCUDABlasHandle and getCUDABlasLtWorkspace
|
||||
// to verify that the data race fix is working correctly
|
||||
|
||||
TEST(CUDABlasHandlePoolTest, ConcurrentGetAndClearWorkspaces) {
|
||||
if (!at::cuda::is_available()) {
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int num_accessor_threads = 15;
|
||||
constexpr int num_clear_threads = 5;
|
||||
constexpr int iterations_per_thread = 50;
|
||||
|
||||
std::atomic<bool> stop{false};
|
||||
std::atomic<int> error_count{0};
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(num_accessor_threads + num_clear_threads);
|
||||
|
||||
// Launch accessor threads
|
||||
for (int i = 0; i < num_accessor_threads; ++i) {
|
||||
threads.emplace_back([&stop, &error_count]() {
|
||||
try {
|
||||
at::cuda::CUDAGuard device_guard(0);
|
||||
|
||||
while (!stop.load(std::memory_order_relaxed)) {
|
||||
const auto handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
const auto workspace = at::cuda::getCUDABlasLtWorkspace();
|
||||
|
||||
if (handle == nullptr || workspace == nullptr) {
|
||||
error_count++;
|
||||
}
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
error_count++;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Launch threads that clear workspaces
|
||||
for (int i = 0; i < num_clear_threads; ++i) {
|
||||
threads.emplace_back([&error_count]() {
|
||||
try {
|
||||
for (int j = 0; j < iterations_per_thread; ++j) {
|
||||
at::cuda::clearCublasWorkspaces();
|
||||
std::this_thread::yield();
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
error_count++;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Let them run for a bit
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
stop.store(true, std::memory_order_relaxed);
|
||||
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
EXPECT_EQ(error_count.load(), 0);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
c10::cuda::CUDACachingAllocator::init(1);
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
||||
@ -10,6 +10,13 @@
|
||||
...
|
||||
}
|
||||
|
||||
{
|
||||
ignore_empty_generic_uninitialised_conditional_jump
|
||||
Memcheck:Cond
|
||||
fun:_ZN2at6detail13empty_genericEN3c108ArrayRefIlEEPNS1_9AllocatorENS1_14DispatchKeySetENS1_10ScalarTypeESt8optionalINS1_12MemoryFormatEE
|
||||
...
|
||||
}
|
||||
|
||||
{
|
||||
Cond_cuda
|
||||
Memcheck:Cond
|
||||
|
||||
62
benchmarks/dynamo/pr_time_benchmarks/benchmarks/dtensor.py
Normal file
62
benchmarks/dynamo/pr_time_benchmarks/benchmarks/dtensor.py
Normal file
@ -0,0 +1,62 @@
|
||||
import sys
|
||||
|
||||
from benchmark_base import BenchmarkBase
|
||||
|
||||
import torch
|
||||
from torch.distributed._tensor import DTensor, Replicate
|
||||
from torch.testing._internal.distributed.fake_pg import FakeStore
|
||||
|
||||
|
||||
class BenchmarkDTensorDispatch(BenchmarkBase):
|
||||
def __init__(self, operator, world_size) -> None:
|
||||
super().__init__(
|
||||
category=f"dtensor_dispatch_{operator}",
|
||||
device="cuda",
|
||||
)
|
||||
self.world_size = world_size
|
||||
|
||||
def name(self) -> str:
|
||||
prefix = f"{self.category()}"
|
||||
return prefix
|
||||
|
||||
def description(self) -> str:
|
||||
return f"DTensor dispatch time for {self.category()}"
|
||||
|
||||
def _prepare_once(self) -> None:
|
||||
self.mesh = torch.distributed.device_mesh.init_device_mesh(
|
||||
"cuda", (self.world_size,), mesh_dim_names=("dp",)
|
||||
)
|
||||
self.a = DTensor.from_local(
|
||||
torch.ones(10, 10, device=self.device()), self.mesh, [Replicate()]
|
||||
)
|
||||
self.b = DTensor.from_local(
|
||||
torch.ones(10, 10, device=self.device()), self.mesh, [Replicate()]
|
||||
)
|
||||
|
||||
def _prepare(self) -> None:
|
||||
pass
|
||||
|
||||
|
||||
class BenchmarkDetach(BenchmarkDTensorDispatch):
|
||||
def __init__(self, world_size) -> None:
|
||||
super().__init__(operator="detach", world_size=world_size)
|
||||
|
||||
def _work(self) -> None:
|
||||
self.a.detach()
|
||||
|
||||
|
||||
def main():
|
||||
world_size = 256
|
||||
fake_store = FakeStore()
|
||||
torch.distributed.init_process_group(
|
||||
"fake", store=fake_store, rank=0, world_size=world_size
|
||||
)
|
||||
result_path = sys.argv[1]
|
||||
BenchmarkDetach(world_size).enable_instruction_count().collect_all().append_results(
|
||||
result_path
|
||||
)
|
||||
torch.distributed.destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -189,6 +189,10 @@ skip:
|
||||
- hf_Whisper
|
||||
- hf_distil_whisper
|
||||
- timm_vision_transformer_large
|
||||
# https://github.com/pytorch/pytorch/issues/167895
|
||||
- stable_diffusion
|
||||
- stable_diffusion_text_encoder
|
||||
- stable_diffusion_unet
|
||||
|
||||
device:
|
||||
cpu:
|
||||
|
||||
@ -125,6 +125,17 @@ AttentionType = Literal[
|
||||
]
|
||||
DtypeString = Literal["bfloat16", "float16", "float32"]
|
||||
SpeedupType = Literal["fwd", "bwd"]
|
||||
# Operator Name mapping
|
||||
backend_to_operator_name = {
|
||||
"math": "math attention kernel",
|
||||
"efficient": "efficient attention kernel",
|
||||
"cudnn": "cudnn attention kernel",
|
||||
"fav2": "flash attention 2 kernel",
|
||||
"fav3": "flash attention 3 kernel",
|
||||
"fakv": "flash attention kv cache kernel",
|
||||
"og-eager": "eager attention kernel",
|
||||
"flex": "flex attention kernel",
|
||||
}
|
||||
|
||||
|
||||
def benchmark_torch_function_in_microseconds(func: Callable, *args, **kwargs) -> float:
|
||||
@ -1265,12 +1276,14 @@ def _output_json_for_dashboard(
|
||||
model: ModelInfo
|
||||
metric: MetricInfo
|
||||
|
||||
operator_name = backend_to_operator_name.get(backend, backend)
|
||||
|
||||
# Benchmark extra info
|
||||
benchmark_extra_info = {
|
||||
"input_config": input_config,
|
||||
"device": device,
|
||||
"arch": device_arch,
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
"attn_type": config.attn_type,
|
||||
"shape": str(config.shape),
|
||||
"max_autotune": config.max_autotune,
|
||||
@ -1288,7 +1301,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
"attn_type": config.attn_type,
|
||||
},
|
||||
),
|
||||
@ -1315,7 +1328,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
@ -1341,7 +1354,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
@ -1371,7 +1384,7 @@ def _output_json_for_dashboard(
|
||||
type="attention-benchmark",
|
||||
origins=["pytorch"],
|
||||
extra_info={
|
||||
"operator_name": backend,
|
||||
"operator_name": operator_name,
|
||||
},
|
||||
),
|
||||
metric=MetricInfo(
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
# These load paths point to different files in internal and OSS environment
|
||||
|
||||
load("@bazel_skylib//lib:paths.bzl", "paths")
|
||||
load("//tools/build_defs:cell_defs.bzl", "get_fbsource_cell")
|
||||
load("//tools/build_defs:fb_native_wrapper.bzl", "fb_native")
|
||||
load("//tools/build_defs:fb_xplat_cxx_library.bzl", "fb_xplat_cxx_library")
|
||||
load("//tools/build_defs:fb_xplat_genrule.bzl", "fb_xplat_genrule")
|
||||
@ -590,6 +591,9 @@ def pt_operator_query_codegen(
|
||||
pt_allow_forced_schema_registration = True,
|
||||
compatible_with = [],
|
||||
apple_sdks = None):
|
||||
if get_fbsource_cell() == "fbcode":
|
||||
return
|
||||
|
||||
oplist_dir_name = name + "_pt_oplist"
|
||||
|
||||
# @lint-ignore BUCKLINT
|
||||
@ -865,6 +869,9 @@ def define_buck_targets(
|
||||
pt_xplat_cxx_library = fb_xplat_cxx_library,
|
||||
c2_fbandroid_xplat_compiler_flags = [],
|
||||
labels = []):
|
||||
if get_fbsource_cell() == "fbcode":
|
||||
return
|
||||
|
||||
# @lint-ignore BUCKLINT
|
||||
fb_native.filegroup(
|
||||
name = "metal_build_srcs",
|
||||
|
||||
@ -19,6 +19,17 @@
|
||||
|
||||
namespace c10 {
|
||||
|
||||
using CaptureId_t = unsigned long long;
|
||||
// first is set if the instance is created by CUDAGraph::capture_begin.
|
||||
// second is set if the instance is created by at::cuda::graph_pool_handle.
|
||||
using MempoolId_t = std::pair<CaptureId_t, CaptureId_t>;
|
||||
|
||||
struct MempoolIdHash {
|
||||
std::size_t operator()(const MempoolId_t& mempool_id) const noexcept {
|
||||
return mempool_id.first != 0 ? mempool_id.first : mempool_id.second;
|
||||
}
|
||||
};
|
||||
|
||||
// A DataPtr is a unique pointer (with an attached deleter and some
|
||||
// context for the deleter) to some memory, which also records what
|
||||
// device is for its data.
|
||||
|
||||
@ -96,6 +96,13 @@ struct C10_API DeviceAllocator : public c10::Allocator {
|
||||
|
||||
// Resets peak memory usage statistics for the specified device
|
||||
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
|
||||
|
||||
// Return the free memory size and total memory size in bytes for the
|
||||
// specified device.
|
||||
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false, "getMemoryInfo is not implemented for this allocator yet.");
|
||||
}
|
||||
};
|
||||
|
||||
// This function is used to get the DeviceAllocator for a specific device type
|
||||
|
||||
@ -44,7 +44,7 @@ struct C10_API SafePyObject {
|
||||
(*other.pyinterpreter_)->incref(other.data_);
|
||||
}
|
||||
if (data_ != nullptr) {
|
||||
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
||||
(*pyinterpreter_)->decref(data_);
|
||||
}
|
||||
data_ = other.data_;
|
||||
pyinterpreter_ = other.pyinterpreter_;
|
||||
@ -53,7 +53,7 @@ struct C10_API SafePyObject {
|
||||
|
||||
~SafePyObject() {
|
||||
if (data_ != nullptr) {
|
||||
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
||||
(*pyinterpreter_)->decref(data_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -34,20 +34,6 @@ namespace c10 {
|
||||
// See [dtype Macros note] in torch/headeronly/core/ScalarType.h
|
||||
// regarding macros.
|
||||
|
||||
template <typename T>
|
||||
struct CppTypeToScalarType;
|
||||
|
||||
#define SPECIALIZE_CppTypeToScalarType(cpp_type, scalar_type) \
|
||||
template <> \
|
||||
struct CppTypeToScalarType<cpp_type> \
|
||||
: std:: \
|
||||
integral_constant<c10::ScalarType, c10::ScalarType::scalar_type> { \
|
||||
};
|
||||
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
|
||||
|
||||
#undef SPECIALIZE_CppTypeToScalarType
|
||||
|
||||
#define DEFINE_CONSTANT(_, name) \
|
||||
constexpr ScalarType k##name = ScalarType::name;
|
||||
|
||||
|
||||
@ -48,6 +48,30 @@ void warnDeprecatedDataPtr() {
|
||||
TORCH_CHECK(false, "Cannot access data pointer of Storage that is invalid.");
|
||||
}
|
||||
|
||||
void StorageImpl::incref_pyobject() const {
|
||||
// Because intrusive_ptr incref uses relaxed memory order, we need to
|
||||
// do an acquire fence to ensure that the kHasPyObject bit was
|
||||
// observed before the load of the PyObject* below.
|
||||
// NB: This is a no-op on x86/x86-64
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
|
||||
}
|
||||
|
||||
void StorageImpl::decref_pyobject() const {
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
|
||||
}
|
||||
|
||||
bool StorageImpl::try_incref_pyobject() const {
|
||||
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
|
||||
if (C10_UNLIKELY(!interp)) {
|
||||
return false;
|
||||
}
|
||||
return (*interp)->try_incref(pyobj_slot_);
|
||||
}
|
||||
|
||||
void SetStorageImplCreate(DeviceType t, StorageImplCreateHelper fptr) {
|
||||
// Allowlist verification.
|
||||
// Only if the devicetype is in the allowlist,
|
||||
|
||||
@ -105,6 +105,12 @@ struct C10_API StorageImpl : public c10::intrusive_ptr_target {
|
||||
data_ptr_.clear();
|
||||
}
|
||||
|
||||
void incref_pyobject() const override final;
|
||||
|
||||
void decref_pyobject() const override final;
|
||||
|
||||
bool try_incref_pyobject() const override final;
|
||||
|
||||
size_t nbytes() const {
|
||||
// OK to do this instead of maybe_as_int as nbytes is guaranteed positive
|
||||
TORCH_CHECK(!size_bytes_is_heap_allocated_);
|
||||
@ -370,4 +376,18 @@ C10_API c10::intrusive_ptr<c10::StorageImpl> make_storage_impl(
|
||||
bool resizable,
|
||||
std::optional<at::Device> device_opt);
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <class T>
|
||||
struct TargetTraits<
|
||||
T,
|
||||
std::enable_if_t<
|
||||
std::is_base_of_v<c10::StorageImpl, std::remove_cv_t<T>>>> {
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
} // namespace c10
|
||||
|
||||
@ -277,7 +277,6 @@ void TensorImpl::release_resources() {
|
||||
if (storage_) {
|
||||
storage_ = {};
|
||||
}
|
||||
pyobj_slot_.maybe_destroy_pyobj();
|
||||
}
|
||||
|
||||
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
|
||||
@ -989,6 +988,30 @@ void TensorImpl::empty_tensor_restride_symint(MemoryFormat memory_format) {
|
||||
}
|
||||
}
|
||||
|
||||
void TensorImpl::incref_pyobject() const {
|
||||
// Because intrusive_ptr incref uses relaxed memory order, we need to
|
||||
// do an acquire fence to ensure that the kHasPyObject bit was
|
||||
// observed before the load of the PyObject* below.
|
||||
// NB: This is a no-op on x86/x86-64
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
|
||||
}
|
||||
|
||||
void TensorImpl::decref_pyobject() const {
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
|
||||
}
|
||||
|
||||
bool TensorImpl::try_incref_pyobject() const {
|
||||
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
|
||||
if (C10_UNLIKELY(!interp)) {
|
||||
return false;
|
||||
}
|
||||
return (*interp)->try_incref(pyobj_slot_);
|
||||
}
|
||||
|
||||
namespace impl {
|
||||
|
||||
namespace {
|
||||
|
||||
@ -2178,6 +2178,12 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
|
||||
return &pyobj_slot_;
|
||||
}
|
||||
|
||||
void incref_pyobject() const override final;
|
||||
|
||||
void decref_pyobject() const override final;
|
||||
|
||||
bool try_incref_pyobject() const override final;
|
||||
|
||||
private:
|
||||
// See NOTE [std::optional operator usage in CUDA]
|
||||
// We probably don't want to expose this publicly until
|
||||
@ -3079,6 +3085,19 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
|
||||
friend class C10_TensorImpl_Size_Check_Dummy_Class;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <class T>
|
||||
struct TargetTraits<
|
||||
T,
|
||||
std::enable_if_t<std::is_base_of_v<c10::TensorImpl, std::remove_cv_t<T>>>> {
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// Note [TensorImpl size constraints]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// Changed the size of TensorImpl? If the size went down, good for
|
||||
|
||||
@ -11,8 +11,11 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
|
||||
|
||||
void incref(PyObject* pyobj) const override {} // do nothing
|
||||
|
||||
void decref(PyObject* pyobj, bool has_pyobj_slot) const override {
|
||||
} // do nothing
|
||||
void decref(PyObject* pyobj) const override {} // do nothing
|
||||
|
||||
bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
#define PANIC(m) \
|
||||
TORCH_INTERNAL_ASSERT( \
|
||||
@ -20,6 +23,10 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
|
||||
"attempted to call " #m \
|
||||
" on a Tensor with nontrivial PyObject after corresponding interpreter died")
|
||||
|
||||
size_t refcnt(PyObject* pyobj) const override {
|
||||
PANIC(refcnt);
|
||||
}
|
||||
|
||||
c10::intrusive_ptr<TensorImpl> detach(const TensorImpl* self) const override {
|
||||
PANIC(detach);
|
||||
}
|
||||
|
||||
@ -18,6 +18,9 @@ namespace c10 {
|
||||
struct IValue;
|
||||
class OperatorHandle;
|
||||
struct TensorImpl;
|
||||
namespace impl {
|
||||
struct PyObjectSlot;
|
||||
} // namespace impl
|
||||
} // namespace c10
|
||||
|
||||
namespace torch::jit {
|
||||
@ -126,9 +129,12 @@ struct C10_API PyInterpreterVTable {
|
||||
|
||||
// Run Py_INCREF on a PyObject.
|
||||
virtual void incref(PyObject* pyobj) const = 0;
|
||||
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call
|
||||
// See NOTE [PyInterpreter::decref takes a `has_pyobj_slot` arg]
|
||||
virtual void decref(PyObject* pyobj, bool has_pyobj_slot) const = 0;
|
||||
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call.
|
||||
virtual void decref(PyObject* pyobj) const = 0;
|
||||
// Run PyUnstable_TryIncRef on a PyObject if it's not NULL.
|
||||
virtual bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const = 0;
|
||||
// Run Py_REFCNT on a PyObject.
|
||||
virtual size_t refcnt(PyObject* pyobj) const = 0;
|
||||
|
||||
// Perform a detach by deferring to the __torch_dispatch__ implementation of
|
||||
// detach, which will also arrange for the PyObject to get copied in this
|
||||
|
||||
@ -1,56 +0,0 @@
|
||||
#include <c10/core/impl/PyObjectSlot.h>
|
||||
|
||||
namespace c10::impl {
|
||||
|
||||
PyObjectSlot::PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
|
||||
|
||||
PyObjectSlot::~PyObjectSlot() {
|
||||
maybe_destroy_pyobj();
|
||||
}
|
||||
|
||||
void PyObjectSlot::maybe_destroy_pyobj() {
|
||||
if (owns_pyobj()) {
|
||||
TORCH_INTERNAL_ASSERT(pyobj_interpreter_ != nullptr);
|
||||
TORCH_INTERNAL_ASSERT(pyobj_ != nullptr);
|
||||
(*pyobj_interpreter_.load(std::memory_order_acquire))
|
||||
->decref(_unchecked_untagged_pyobj(), /*has_pyobj_slot*/ true);
|
||||
// NB: this destructor can only be entered when there are no
|
||||
// references to this C++ object (obviously), NOR any references
|
||||
// to the PyObject (if there are references to the PyObject,
|
||||
// then the PyObject holds an owning reference to the tensor).
|
||||
// So it is OK to clear pyobj_ here as it is impossible for it to
|
||||
// be used again (modulo weak reference races)
|
||||
pyobj_ = nullptr; // for safety
|
||||
}
|
||||
}
|
||||
|
||||
PyInterpreter* PyObjectSlot::pyobj_interpreter() {
|
||||
return pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
PyObject* PyObjectSlot::_unchecked_untagged_pyobj() const {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
return reinterpret_cast<PyObject*>(
|
||||
reinterpret_cast<uintptr_t>(pyobj_) & ~0x1ULL);
|
||||
}
|
||||
|
||||
PyInterpreter& PyObjectSlot::load_pyobj_interpreter() const {
|
||||
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
if (interpreter) {
|
||||
return *interpreter;
|
||||
}
|
||||
TORCH_CHECK(false, "cannot access PyObject for Tensor - no interpreter set");
|
||||
}
|
||||
|
||||
bool PyObjectSlot::owns_pyobj() {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
return reinterpret_cast<uintptr_t>(pyobj_) & 1;
|
||||
}
|
||||
|
||||
void PyObjectSlot::set_owns_pyobj(bool b) {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
pyobj_ = reinterpret_cast<PyObject*>(
|
||||
reinterpret_cast<uintptr_t>(_unchecked_untagged_pyobj()) | b);
|
||||
}
|
||||
|
||||
} // namespace c10::impl
|
||||
@ -8,117 +8,58 @@
|
||||
|
||||
#include <atomic>
|
||||
|
||||
namespace torch::utils {
|
||||
class PyObjectPreservation;
|
||||
}
|
||||
|
||||
namespace c10::impl {
|
||||
|
||||
struct C10_API PyObjectSlot {
|
||||
public:
|
||||
PyObjectSlot();
|
||||
|
||||
~PyObjectSlot();
|
||||
|
||||
void maybe_destroy_pyobj();
|
||||
|
||||
// Associate the TensorImpl with the specified PyObject, and, if necessary,
|
||||
// also tag the interpreter.
|
||||
//
|
||||
// NB: This lives in a header so that we can inline away the switch on status
|
||||
//
|
||||
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
|
||||
// PyObject if necessary!
|
||||
void init_pyobj(PyObject* pyobj) {
|
||||
pyobj_interpreter_.store(
|
||||
getGlobalPyInterpreter(), std::memory_order_relaxed);
|
||||
pyobj_ = pyobj;
|
||||
}
|
||||
PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
|
||||
|
||||
// Query the PyObject interpreter. This may return null if there is no
|
||||
// interpreter. This is racy!
|
||||
PyInterpreter* pyobj_interpreter();
|
||||
|
||||
PyObject* _unchecked_untagged_pyobj() const;
|
||||
|
||||
// Test the interpreter tag. If tagged for the current interpreter, return
|
||||
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
|
||||
// returns a nullopt. If it is definitely invalid, raises an error.
|
||||
//
|
||||
// If `ignore_hermetic_tls` is false and this function is called from a
|
||||
// hermetic context (ie, `HermeticPyObjectTLS::get_state()` is true), then
|
||||
// nullopt is returned. If `ignore_hermetic_tls` is true, then the hermetic
|
||||
// context is ignored, allowing you to check the interpreter tag of a
|
||||
// nonhermetic PyObject from within a hermetic context. This is necessary
|
||||
// because there are some cases where the deallocator function of a
|
||||
// nonhermetic PyObject is called from within a hermetic context, so it must
|
||||
// be properly treated as a nonhermetic PyObject.
|
||||
//
|
||||
// NB: this lives in header so that we can avoid actually creating the
|
||||
// std::optional
|
||||
|
||||
// @todo alban: I'm not too sure what's going on here, we can probably delete
|
||||
// it but it's worthwhile making sure
|
||||
std::optional<PyObject*> check_pyobj(bool ignore_hermetic_tls = false) const {
|
||||
impl::PyInterpreter* interpreter =
|
||||
pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
if (interpreter == nullptr) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
if (!ignore_hermetic_tls && c10::impl::HermeticPyObjectTLS::get_state()) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
return _unchecked_untagged_pyobj();
|
||||
}
|
||||
// interpreter.
|
||||
PyInterpreter* pyobj_interpreter() const {
|
||||
return pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
PyInterpreter& load_pyobj_interpreter() const;
|
||||
PyInterpreter& load_pyobj_interpreter() const {
|
||||
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
interpreter, "cannot access PyObject for Tensor - no interpreter set");
|
||||
return *interpreter;
|
||||
}
|
||||
|
||||
bool owns_pyobj();
|
||||
PyObject* load_pyobj() const {
|
||||
return pyobj_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
void set_owns_pyobj(bool b);
|
||||
void store_pyobj(PyObject* obj) {
|
||||
pyobj_.store(obj, std::memory_order_release);
|
||||
}
|
||||
|
||||
bool has_unique_reference() const {
|
||||
PyObject* pyobj = load_pyobj();
|
||||
return pyobj != nullptr && load_pyobj_interpreter()->refcnt(pyobj) == 1;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
pyobj_.store(nullptr, std::memory_order_relaxed);
|
||||
pyobj_interpreter_.store(nullptr, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
private:
|
||||
// This field contains the interpreter tag for this object. See
|
||||
// Note [Python interpreter tag] for general context
|
||||
//
|
||||
// Note [Memory ordering on Python interpreter tag]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// What memory_order do we need when accessing this atomic? We don't
|
||||
// need a single total modification order (as provided by
|
||||
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
|
||||
// transition from -1 to some positive integer and never changes afterwards.
|
||||
// Because there is only one modification, it trivially already has a total
|
||||
// modification order (e.g., we don't need fences or locked instructions on
|
||||
// x86)
|
||||
//
|
||||
// In fact, one could make a reasonable argument that relaxed reads are OK,
|
||||
// due to the presence of external locking (GIL) to ensure that interactions
|
||||
// with other data structures are still correctly synchronized, so that
|
||||
// we fall in the "Single-Location Data Structures" case as described in
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
|
||||
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
|
||||
// as I get the same assembly in both cases. So I just use the more
|
||||
// conservative acquire (which will impede compiler optimizations but I don't
|
||||
// care)
|
||||
// This is now always the global interpreter if the PyObject is set.
|
||||
// Maybe we can remove this field some day...
|
||||
std::atomic<PyInterpreter*> pyobj_interpreter_;
|
||||
|
||||
// This field contains a reference to a PyObject representing this Tensor.
|
||||
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
|
||||
// PyObject for it and set this field. This field does not have to be
|
||||
// protected by an atomic as it is only allowed to be accessed when you hold
|
||||
// the GIL, or during destruction of the tensor.
|
||||
//
|
||||
// When a PyObject dies, you are obligated to clear this field
|
||||
// (otherwise, you will try to use-after-free the pyobj); this currently
|
||||
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
|
||||
//
|
||||
// NB: Ordinarily, this should not be a strong reference, as if the
|
||||
// PyObject owns the Tensor, this would create a reference cycle.
|
||||
// However, sometimes this ownership flips. To track who owns
|
||||
// who, this has a single pointer tag indicating whether or not the
|
||||
// C++ object owns the PyObject (the common case, zero, means PyObject
|
||||
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
|
||||
// or check_pyobj for checked access. See references to PyObject
|
||||
// resurrection in torch/csrc/autograd/python_variable.cpp
|
||||
PyObject* pyobj_;
|
||||
// The PyObject representing this Tensor or nullptr. Ownership is managed
|
||||
// by intrusive_ptr. By the time the PyObjectSlot is destroyed, this
|
||||
// reference is already dead.
|
||||
std::atomic<PyObject*> pyobj_;
|
||||
|
||||
friend class torch::utils::PyObjectPreservation;
|
||||
};
|
||||
|
||||
} // namespace c10::impl
|
||||
|
||||
@ -1012,12 +1012,6 @@ PrivatePoolState::PrivatePoolState(
|
||||
}
|
||||
}
|
||||
|
||||
struct MempoolIdHash {
|
||||
std::size_t operator()(const MempoolId_t& mempool_id) const noexcept {
|
||||
return mempool_id.first != 0 ? mempool_id.first : mempool_id.second;
|
||||
}
|
||||
};
|
||||
|
||||
cudaError_t allocPrimitive(void** ptr, size_t size, AllocParams& p) {
|
||||
if (p.pool->owner_PrivatePool && p.pool->owner_PrivatePool->allocator()) {
|
||||
*ptr = p.pool->owner_PrivatePool->allocator()->raw_alloc(size);
|
||||
@ -4510,66 +4504,3 @@ std::atomic<CUDAAllocator*> allocator;
|
||||
static BackendStaticInitializer backend_static_initializer;
|
||||
} // namespace cuda::CUDACachingAllocator
|
||||
} // namespace c10
|
||||
|
||||
namespace c10::cuda {
|
||||
|
||||
// uid_ is incremented when a user creates a MemPool,
|
||||
// for example: using graph_pool_handle() or c10::cuda::MemPool().
|
||||
//
|
||||
// uuid_ is incremented when CUDAGraph creates a MemPool
|
||||
// as a result of a user not providing a pool.
|
||||
//
|
||||
// MempoolId_t of {0, 0} is used to denote when no MemPool has been
|
||||
// passed to a function, either by user or CUDAGraphs. For example,
|
||||
// default value of MempoolId_t for capture_begin function is {0, 0}.
|
||||
// That's why uid_ and uuid_ start at 1.
|
||||
std::atomic<CaptureId_t> MemPool::uid_{1};
|
||||
std::atomic<CaptureId_t> MemPool::uuid_{1};
|
||||
|
||||
MemPool::MemPool(
|
||||
CUDACachingAllocator::CUDAAllocator* allocator,
|
||||
bool is_user_created,
|
||||
bool use_on_oom)
|
||||
: allocator_(allocator), is_user_created_(is_user_created) {
|
||||
if (is_user_created_) {
|
||||
id_ = {0, uid_++};
|
||||
} else {
|
||||
id_ = {uuid_++, 0};
|
||||
}
|
||||
device_ = c10::cuda::current_device();
|
||||
CUDACachingAllocator::createOrIncrefPool(device_, id_, allocator);
|
||||
if (use_on_oom) {
|
||||
CUDACachingAllocator::setUseOnOOM(device_, id_);
|
||||
}
|
||||
}
|
||||
|
||||
MemPool::~MemPool() {
|
||||
TORCH_INTERNAL_ASSERT(use_count() == 1);
|
||||
CUDACachingAllocator::releasePool(device_, id_);
|
||||
c10::cuda::CUDACachingAllocator::emptyCache(id_);
|
||||
}
|
||||
|
||||
MempoolId_t MemPool::id() {
|
||||
return id_;
|
||||
}
|
||||
|
||||
CUDACachingAllocator::CUDAAllocator* MemPool::allocator() {
|
||||
return allocator_;
|
||||
}
|
||||
|
||||
int MemPool::use_count() {
|
||||
return CUDACachingAllocator::getPoolUseCount(device_, id_);
|
||||
}
|
||||
|
||||
c10::DeviceIndex MemPool::device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
MempoolId_t MemPool::graph_pool_handle(bool is_user_created) {
|
||||
if (is_user_created) {
|
||||
return {0, uid_++};
|
||||
}
|
||||
return {uuid_++, 0};
|
||||
}
|
||||
|
||||
} // namespace c10::cuda
|
||||
|
||||
@ -345,6 +345,13 @@ class CUDAAllocator : public DeviceAllocator {
|
||||
c10::DeviceIndex device,
|
||||
std::shared_ptr<AllocatorState> pps) = 0;
|
||||
virtual std::string name() = 0;
|
||||
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
|
||||
c10::DeviceGuard device_guard({at::kCUDA, device});
|
||||
size_t free = 0;
|
||||
size_t total = 0;
|
||||
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
|
||||
return {free, total};
|
||||
}
|
||||
};
|
||||
|
||||
// Allocator object, statically initialized
|
||||
@ -555,41 +562,7 @@ inline std::string getUserMetadata() {
|
||||
} // namespace c10::cuda::CUDACachingAllocator
|
||||
|
||||
namespace c10::cuda {
|
||||
|
||||
// Keep BC only
|
||||
using c10::CaptureId_t;
|
||||
using c10::MempoolId_t;
|
||||
|
||||
// MemPool represents a pool of memory in a caching allocator. Currently,
|
||||
// it's just the ID of the pool object maintained in the CUDACachingAllocator.
|
||||
//
|
||||
// An allocator pointer can be passed to the MemPool to define how the
|
||||
// allocations should be done in the pool. For example: using a different
|
||||
// system allocator such as ncclMemAlloc.
|
||||
struct C10_CUDA_API MemPool {
|
||||
MemPool(
|
||||
CUDACachingAllocator::CUDAAllocator* allocator = nullptr,
|
||||
bool is_user_created = true,
|
||||
bool use_on_oom = false);
|
||||
MemPool(const MemPool&) = delete;
|
||||
MemPool(MemPool&&) = default;
|
||||
MemPool& operator=(const MemPool&) = delete;
|
||||
MemPool& operator=(MemPool&&) = default;
|
||||
~MemPool();
|
||||
|
||||
MempoolId_t id();
|
||||
CUDACachingAllocator::CUDAAllocator* allocator();
|
||||
int use_count();
|
||||
c10::DeviceIndex device();
|
||||
static MempoolId_t graph_pool_handle(bool is_user_created = true);
|
||||
|
||||
private:
|
||||
static std::atomic<CaptureId_t> uid_;
|
||||
static std::atomic<CaptureId_t> uuid_;
|
||||
CUDACachingAllocator::CUDAAllocator* allocator_;
|
||||
bool is_user_created_;
|
||||
MempoolId_t id_;
|
||||
c10::DeviceIndex device_;
|
||||
};
|
||||
|
||||
} // namespace c10::cuda
|
||||
|
||||
@ -295,11 +295,19 @@ DeviceAssertionsData* CUDAKernelLaunchRegistry::
|
||||
C10_CUDA_CHECK_WO_DSA(
|
||||
cudaMallocManaged(&uvm_assertions_ptr, sizeof(DeviceAssertionsData)));
|
||||
|
||||
#if CUDART_VERSION >= 13000
|
||||
cudaMemLocation cpuDevice;
|
||||
cpuDevice.type = cudaMemLocationTypeDevice;
|
||||
cpuDevice.id = cudaCpuDeviceId;
|
||||
#else
|
||||
const auto cpuDevice = cudaCpuDeviceId;
|
||||
#endif
|
||||
|
||||
C10_CUDA_CHECK_WO_DSA(cudaMemAdvise(
|
||||
uvm_assertions_ptr,
|
||||
sizeof(DeviceAssertionsData),
|
||||
cudaMemAdviseSetPreferredLocation,
|
||||
cudaCpuDeviceId));
|
||||
cpuDevice));
|
||||
|
||||
// GPU will establish direct mapping of data in CPU memory, no page faults
|
||||
// will be generated
|
||||
@ -307,7 +315,7 @@ DeviceAssertionsData* CUDAKernelLaunchRegistry::
|
||||
uvm_assertions_ptr,
|
||||
sizeof(DeviceAssertionsData),
|
||||
cudaMemAdviseSetAccessedBy,
|
||||
cudaCpuDeviceId));
|
||||
cpuDevice));
|
||||
|
||||
// Initialize the memory from the CPU; otherwise, pages may have to be created
|
||||
// on demand. We think that UVM documentation indicates that first access may
|
||||
|
||||
@ -50,7 +50,13 @@ namespace c10 {
|
||||
/// However, you should prefer to use ArrayRef when possible, because its use
|
||||
/// of TORCH_CHECK will lead to better user-facing error messages.
|
||||
template <typename T>
|
||||
class ArrayRef final : public HeaderOnlyArrayRef<T> {
|
||||
// ArrayRef cannot be derived from. Normally, we would use `final`
|
||||
// specifier to force this constraint at compile time. However, Intel
|
||||
// compiler does not recognize ArrayRef as a class template (which is
|
||||
// required in the definition of at::TensorAccessor, for instance)
|
||||
// when `final` specifier is used. So, we cannot define ArrayRef as
|
||||
// final because of the Intel compiler issue.
|
||||
class ArrayRef : public HeaderOnlyArrayRef<T> {
|
||||
public:
|
||||
/// @name Constructors, all inherited from HeaderOnlyArrayRef except for
|
||||
/// SmallVector. As inherited constructors won't work with class template
|
||||
|
||||
@ -379,7 +379,11 @@ C10_API std::string GetExceptionString(const std::exception& e);
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
#ifdef STRIP_ERROR_MESSAGES
|
||||
#define TORCH_RETHROW(e, ...) throw
|
||||
#define TORCH_RETHROW(e, ...) \
|
||||
do { \
|
||||
(void)e; /* Suppress unused variable warning */ \
|
||||
throw; \
|
||||
} while (false)
|
||||
#else
|
||||
#define TORCH_RETHROW(e, ...) \
|
||||
do { \
|
||||
|
||||
@ -12,6 +12,10 @@ template <typename, typename...>
|
||||
class class_;
|
||||
}
|
||||
|
||||
namespace torch::utils {
|
||||
class PyObjectPreservation;
|
||||
}
|
||||
|
||||
namespace c10 {
|
||||
class intrusive_ptr_target;
|
||||
namespace raw {
|
||||
@ -33,6 +37,8 @@ constexpr uint64_t kImpracticallyHugeWeakReferenceCount =
|
||||
constexpr uint64_t kReferenceCountOne = 1;
|
||||
constexpr uint64_t kWeakReferenceCountOne = (kReferenceCountOne << 32);
|
||||
constexpr uint64_t kUniqueRef = (kReferenceCountOne | kWeakReferenceCountOne);
|
||||
// Indicates whether the object has a PyObject wrapper.
|
||||
constexpr uint64_t kHasPyObject = (uint64_t(1) << 63);
|
||||
|
||||
template <class TTarget>
|
||||
struct intrusive_target_default_null_type final {
|
||||
@ -55,7 +61,11 @@ inline uint32_t refcount(uint64_t combined_refcount) {
|
||||
}
|
||||
|
||||
inline uint32_t weakcount(uint64_t combined_refcount) {
|
||||
return static_cast<uint32_t>(combined_refcount >> 32);
|
||||
return static_cast<uint32_t>((combined_refcount & ~kHasPyObject) >> 32);
|
||||
}
|
||||
|
||||
inline bool has_pyobject(uint64_t combined_refcount) {
|
||||
return (combined_refcount & kHasPyObject) != 0;
|
||||
}
|
||||
|
||||
// The only requirement for refcount increment is that it happens-before
|
||||
@ -66,12 +76,6 @@ inline uint64_t atomic_combined_refcount_increment(
|
||||
return combined_refcount.fetch_add(inc, std::memory_order_relaxed) + inc;
|
||||
}
|
||||
|
||||
inline uint32_t atomic_refcount_increment(
|
||||
std::atomic<uint64_t>& combined_refcount) {
|
||||
return detail::refcount(atomic_combined_refcount_increment(
|
||||
combined_refcount, kReferenceCountOne));
|
||||
}
|
||||
|
||||
inline uint32_t atomic_weakcount_increment(
|
||||
std::atomic<uint64_t>& combined_refcount) {
|
||||
return detail::weakcount(atomic_combined_refcount_increment(
|
||||
@ -99,6 +103,11 @@ inline uint32_t atomic_weakcount_decrement(
|
||||
combined_refcount, kWeakReferenceCountOne));
|
||||
}
|
||||
|
||||
template <class T, class = void>
|
||||
struct TargetTraits {
|
||||
static constexpr bool can_have_pyobject = false;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
/**
|
||||
@ -155,6 +164,23 @@ class C10_API intrusive_ptr_target {
|
||||
// we can atomically operate on both at the same time for performance
|
||||
// and defined behaviors.
|
||||
//
|
||||
// Note [PyObject preservation for Tensor and Storages]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// intrusive_ptr has special support for preserving PyObject wrappers
|
||||
// for TensorImpl and StorageImpl. The most significant bit (kHasPyObject) of
|
||||
// the combined_refcount_ is used to indicate whether the object has a
|
||||
// PyObject wrapper.
|
||||
//
|
||||
// - The PyObject, if it exists, holds a strong reference to the
|
||||
// intrusive_ptr_target.
|
||||
//
|
||||
// - When the refcount goes from 1 to 2, we incref the PyObject.
|
||||
//
|
||||
// - When the refcount goes from 2 to 1, we decref the PyObject.
|
||||
//
|
||||
// In other words, the intrusive_ptr keeps the PyObject alive as long as there
|
||||
// are other C++ references to the intrusive_ptr_target.
|
||||
|
||||
mutable std::atomic<uint64_t> combined_refcount_;
|
||||
static_assert(sizeof(std::atomic<uint64_t>) == 8);
|
||||
static_assert(alignof(std::atomic<uint64_t>) == 8);
|
||||
@ -172,6 +198,8 @@ class C10_API intrusive_ptr_target {
|
||||
template <typename T>
|
||||
friend struct ExclusivelyOwnedTensorTraits;
|
||||
|
||||
friend class torch::utils::PyObjectPreservation;
|
||||
|
||||
protected:
|
||||
// protected destructor. We never want to destruct intrusive_ptr_target*
|
||||
// directly.
|
||||
@ -255,6 +283,16 @@ class C10_API intrusive_ptr_target {
|
||||
*/
|
||||
virtual void release_resources() {}
|
||||
|
||||
/**
|
||||
* These two methods are called when the refcount transitions between one
|
||||
* and two and the object has a PyObject wrapper.
|
||||
*/
|
||||
virtual void incref_pyobject() const {}
|
||||
virtual void decref_pyobject() const {}
|
||||
virtual bool try_incref_pyobject() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
uint32_t refcount(std::memory_order order = std::memory_order_relaxed) const {
|
||||
return detail::refcount(combined_refcount_.load(order));
|
||||
}
|
||||
@ -265,6 +303,19 @@ class C10_API intrusive_ptr_target {
|
||||
}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <>
|
||||
struct TargetTraits<c10::intrusive_ptr_target> {
|
||||
// A generic intrusive_ptr<intrusive_ptr_target> may actually be a TensorImpl
|
||||
// or StorageImpl, so we have to allow for PyObject support.
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template <class TTarget, class NullType>
|
||||
class weak_intrusive_ptr;
|
||||
|
||||
@ -314,18 +365,34 @@ class intrusive_ptr final {
|
||||
|
||||
void retain_() {
|
||||
if (target_ != NullType::singleton()) {
|
||||
uint32_t new_refcount =
|
||||
detail::atomic_refcount_increment(target_->combined_refcount_);
|
||||
uint64_t combined = detail::atomic_combined_refcount_increment(
|
||||
target_->combined_refcount_, detail::kReferenceCountOne);
|
||||
uint32_t new_refcount = detail::refcount(combined);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
new_refcount != 1,
|
||||
"intrusive_ptr: Cannot increase refcount after it reached zero.");
|
||||
|
||||
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
// If the refcount transitioned from 1 to 2, we need to incref the
|
||||
// PyObject. In other words, we need to ensure that the PyObject stays
|
||||
// alive now that we have a C++ reference to this object in addition to
|
||||
// the PyObject itself.
|
||||
if (C10_UNLIKELY(
|
||||
detail::has_pyobject(combined) &&
|
||||
detail::refcount(combined) == 2)) {
|
||||
target_->incref_pyobject();
|
||||
}
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
!detail::has_pyobject(combined),
|
||||
"TargetTraits indicates that type cannot have PyObject, but refcount has PyObject bit set.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset_() noexcept {
|
||||
if (target_ != NullType::singleton()) {
|
||||
if (target_->combined_refcount_.load(std::memory_order_acquire) ==
|
||||
detail::kUniqueRef) {
|
||||
if (is_uniquely_owned()) {
|
||||
// Both counts are 1, so there are no weak references and
|
||||
// we are releasing the last strong reference. No other
|
||||
// threads can observe the effects of this target_ deletion
|
||||
@ -337,9 +404,10 @@ class intrusive_ptr final {
|
||||
|
||||
auto combined_refcount = detail::atomic_combined_refcount_decrement(
|
||||
target_->combined_refcount_, detail::kReferenceCountOne);
|
||||
if (detail::refcount(combined_refcount) == 0) {
|
||||
bool should_delete =
|
||||
(combined_refcount == detail::kWeakReferenceCountOne);
|
||||
uint32_t new_refcount = detail::refcount(combined_refcount);
|
||||
bool has_pyobject = detail::has_pyobject(combined_refcount);
|
||||
if (new_refcount == 0) {
|
||||
bool should_delete = detail::weakcount(combined_refcount) == 1;
|
||||
// See comment above about weakcount. As long as refcount>0,
|
||||
// weakcount is one larger than the actual number of weak references.
|
||||
// So we need to decrement it here.
|
||||
@ -356,6 +424,18 @@ class intrusive_ptr final {
|
||||
if (should_delete) {
|
||||
delete target_;
|
||||
}
|
||||
} else if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
// If the refcount transitioned from 2 to 1, we need to decref the
|
||||
// PyObject. In other words, we don't want to keep the PyObject alive if
|
||||
// there are no C++ references to this object other than the PyObject
|
||||
// itself.
|
||||
if (C10_UNLIKELY(has_pyobject && new_refcount == 1)) {
|
||||
target_->decref_pyobject();
|
||||
}
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
!has_pyobject,
|
||||
"TargetTraits indicates that type cannot have PyObject, but refcount has PyObject bit set.");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -522,6 +602,16 @@ class intrusive_ptr final {
|
||||
return use_count() == 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Stronger than unique() in that it must not have any weakrefs as well.
|
||||
*/
|
||||
bool is_uniquely_owned() const noexcept {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(target_ != NullType::singleton());
|
||||
uint64_t combined =
|
||||
target_->combined_refcount_.load(std::memory_order_acquire);
|
||||
return (combined & ~detail::kHasPyObject) == detail::kUniqueRef;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an owning (!) pointer to the underlying object and makes the
|
||||
* intrusive_ptr instance invalid. That means the refcount is not decreased.
|
||||
@ -932,6 +1022,7 @@ class weak_intrusive_ptr final {
|
||||
if (target_ == NullType::singleton()) {
|
||||
return intrusive_ptr<TTarget, NullType>();
|
||||
} else {
|
||||
bool increfed = false;
|
||||
auto combined_refcount =
|
||||
target_->combined_refcount_.load(std::memory_order_relaxed);
|
||||
do {
|
||||
@ -940,12 +1031,31 @@ class weak_intrusive_ptr final {
|
||||
// Return nullptr.
|
||||
return intrusive_ptr<TTarget, NullType>();
|
||||
}
|
||||
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
if (detail::has_pyobject(combined_refcount) &&
|
||||
detail::refcount(combined_refcount) == 1 && !increfed) {
|
||||
// Object has a python wrapper with no other C++ references.
|
||||
// We need to to incref the Python object before we acquire a
|
||||
// strong reference to the C++ object to avoid a situation
|
||||
// where the Python object is deallocated concurrently.
|
||||
if (!target_->try_incref_pyobject()) {
|
||||
return intrusive_ptr<TTarget, NullType>();
|
||||
}
|
||||
increfed = true;
|
||||
}
|
||||
}
|
||||
} while (!target_->combined_refcount_.compare_exchange_weak(
|
||||
combined_refcount,
|
||||
combined_refcount + detail::kReferenceCountOne,
|
||||
std::memory_order_acquire,
|
||||
std::memory_order_relaxed));
|
||||
|
||||
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
if (increfed && detail::refcount(combined_refcount) != 1) {
|
||||
target_->decref_pyobject();
|
||||
}
|
||||
}
|
||||
|
||||
return intrusive_ptr<TTarget, NullType>(
|
||||
target_, raw::DontIncreaseRefcount{});
|
||||
}
|
||||
@ -1060,7 +1170,18 @@ namespace intrusive_ptr {
|
||||
// NullType::singleton to this function
|
||||
inline void incref(intrusive_ptr_target* self) {
|
||||
if (self) {
|
||||
detail::atomic_refcount_increment(self->combined_refcount_);
|
||||
uint64_t combined = detail::atomic_combined_refcount_increment(
|
||||
self->combined_refcount_, detail::kReferenceCountOne);
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
if (C10_UNLIKELY(
|
||||
detail::has_pyobject(combined) &&
|
||||
detail::refcount(combined) == 2)) {
|
||||
self->incref_pyobject();
|
||||
}
|
||||
#else
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!detail::has_pyobject(combined));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -15,6 +15,8 @@ using namespace c10::CachingDeviceAllocator;
|
||||
// newly allocated memory with 512-byte alignment.
|
||||
constexpr size_t kDeviceAlignment = 512;
|
||||
|
||||
class XPUAllocator;
|
||||
|
||||
namespace {
|
||||
using stream_set = ska::flat_hash_set<xpu::XPUStream>;
|
||||
|
||||
@ -23,14 +25,19 @@ typedef bool (*Comparison)(const Block*, const Block*);
|
||||
bool BlockComparatorSize(const Block* a, const Block* b);
|
||||
bool BlockComparatorAddress(const Block* a, const Block* b);
|
||||
|
||||
struct PrivatePool;
|
||||
|
||||
struct BlockPool {
|
||||
BlockPool(bool small)
|
||||
BlockPool(bool small, PrivatePool* private_pool = nullptr)
|
||||
: blocks(BlockComparatorSize),
|
||||
unmapped(BlockComparatorAddress),
|
||||
is_small(small) {}
|
||||
is_small(small),
|
||||
owner_PrivatePool(private_pool) {}
|
||||
|
||||
std::set<Block*, Comparison> blocks;
|
||||
std::set<Block*, Comparison> unmapped;
|
||||
const bool is_small;
|
||||
PrivatePool* owner_PrivatePool;
|
||||
};
|
||||
|
||||
struct ExpandableSegment;
|
||||
@ -349,6 +356,43 @@ struct AllocParams {
|
||||
StatTypes stat_types = {};
|
||||
};
|
||||
|
||||
// Internal implementation that manages actual memory blocks.
|
||||
// high level MemPool interface wraps PrivatePool via MempoolId.
|
||||
struct PrivatePool {
|
||||
PrivatePool(MempoolId_t id, XPUAllocator* allocator = nullptr)
|
||||
: id(std::move(id)),
|
||||
allocator_(allocator),
|
||||
large_blocks(/*small=*/false, this),
|
||||
small_blocks(/*small=*/true, this) {}
|
||||
PrivatePool(const PrivatePool&) = delete;
|
||||
PrivatePool(PrivatePool&&) = delete;
|
||||
PrivatePool& operator=(const PrivatePool&) = delete;
|
||||
PrivatePool& operator=(PrivatePool&&) = delete;
|
||||
~PrivatePool() = default;
|
||||
|
||||
// default Mempool when no Mempool is specified
|
||||
MempoolId_t id{0, 0};
|
||||
// Number of live graphs using this pool
|
||||
int use_count{1};
|
||||
// Number of unfreed allocations made for this pool. When use_count and
|
||||
// allocation_count drop to zero, we can delete this PrivatePool from
|
||||
// graph_pools.
|
||||
int allocation_count{0};
|
||||
XPUAllocator* allocator_;
|
||||
BlockPool large_blocks;
|
||||
BlockPool small_blocks;
|
||||
|
||||
public:
|
||||
XPUAllocator* allocator() {
|
||||
return allocator_;
|
||||
}
|
||||
};
|
||||
struct MempoolIdHash {
|
||||
std::size_t operator()(const MempoolId_t& mempool_id) const noexcept {
|
||||
return mempool_id.first != 0 ? mempool_id.first : mempool_id.second;
|
||||
}
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
class DeviceCachingAllocator {
|
||||
@ -365,6 +409,13 @@ class DeviceCachingAllocator {
|
||||
bool set_fraction = false;
|
||||
std::vector<ExpandableSegment*> expandable_segments;
|
||||
std::vector<c10::DeviceIndex> devices_with_peer_access; // reserved
|
||||
std::vector<std::pair<MempoolId_t, std::function<bool(sycl::queue*)>>>
|
||||
captures_underway;
|
||||
ska::flat_hash_map<MempoolId_t, std::unique_ptr<PrivatePool>, MempoolIdHash>
|
||||
graph_pools;
|
||||
// Pools no longer referenced by any graph.
|
||||
ska::flat_hash_map<MempoolId_t, PrivatePool*, MempoolIdHash>
|
||||
graph_pools_freeable;
|
||||
|
||||
size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool) {
|
||||
if (!src || src->allocated || src->event_count > 0 ||
|
||||
@ -463,7 +514,22 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
BlockPool& get_pool(size_t size) {
|
||||
BlockPool& get_pool(size_t size, sycl::queue* queue) {
|
||||
if (C10_UNLIKELY(!captures_underway.empty())) {
|
||||
for (auto& entry : captures_underway) {
|
||||
// lookup for mempool id matching current capture graph
|
||||
if (entry.second(queue)) {
|
||||
auto it1 = graph_pools.find(entry.first);
|
||||
// lookup mempool
|
||||
TORCH_INTERNAL_ASSERT(it1 != graph_pools.end());
|
||||
if (size <= kSmallSize) {
|
||||
return it1->second->small_blocks;
|
||||
} else {
|
||||
return it1->second->large_blocks;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (size < kSmallSize) {
|
||||
return small_blocks;
|
||||
} else {
|
||||
@ -669,6 +735,10 @@ class DeviceCachingAllocator {
|
||||
if (!ptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (p.pool->owner_PrivatePool) {
|
||||
p.pool->owner_PrivatePool->allocation_count++;
|
||||
}
|
||||
p.block = new Block(device, p.queue(), size, p.pool, ptr);
|
||||
for_each_selected_stat_type(p.stat_types, [&](size_t stat_type) {
|
||||
stats.reserved_bytes[stat_type].increase(size);
|
||||
@ -677,11 +747,14 @@ class DeviceCachingAllocator {
|
||||
return true;
|
||||
}
|
||||
|
||||
void synchronize_and_free_events() {
|
||||
void synchronize_and_free_events(PrivatePool* pool = nullptr) {
|
||||
for (auto& xe : xpu_events) {
|
||||
for (auto& e : xe.second) {
|
||||
auto event = e.first;
|
||||
auto* block = e.second;
|
||||
if (pool && block->pool->owner_PrivatePool != pool) {
|
||||
continue;
|
||||
}
|
||||
event.wait();
|
||||
block->event_count--;
|
||||
if (block->event_count == 0) {
|
||||
@ -785,6 +858,13 @@ class DeviceCachingAllocator {
|
||||
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
||||
stats.reserved_bytes[stat_type].decrease(unmapped.size);
|
||||
});
|
||||
|
||||
if (block->pool->owner_PrivatePool) {
|
||||
// The Freed block belonged to a XPU graph's PrivatePool.
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
block->pool->owner_PrivatePool->allocation_count > 0);
|
||||
block->pool->owner_PrivatePool->allocation_count--;
|
||||
}
|
||||
}
|
||||
|
||||
void release_blocks(BlockPool& pool) {
|
||||
@ -812,13 +892,41 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
bool release_cached_blocks() {
|
||||
synchronize_and_free_events();
|
||||
// See Note [Safe to Free Blocks on BlockPool]
|
||||
c10::xpu::syncStreamsOnDevice(device_index);
|
||||
bool release_cached_blocks(MempoolId_t mempool_id) {
|
||||
if (mempool_id.first == 0 && mempool_id.second == 0 &&
|
||||
captures_underway.empty()) {
|
||||
synchronize_and_free_events();
|
||||
// See Note [Safe to Free Blocks on BlockPool]
|
||||
c10::xpu::syncStreamsOnDevice(device_index);
|
||||
|
||||
release_blocks(large_blocks);
|
||||
release_blocks(small_blocks);
|
||||
release_blocks(large_blocks);
|
||||
release_blocks(small_blocks);
|
||||
}
|
||||
|
||||
for (auto it = graph_pools_freeable.begin();
|
||||
it != graph_pools_freeable.end();) {
|
||||
if (mempool_id.first != 0 || mempool_id.second != 0) {
|
||||
if (it->first == mempool_id) {
|
||||
// If there is an active mempool, we sync only the events
|
||||
// associated with the pool
|
||||
synchronize_and_free_events(it->second);
|
||||
} else {
|
||||
// otherwise we move on
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
TORCH_INTERNAL_ASSERT(it->second->use_count == 0);
|
||||
release_blocks(it->second->small_blocks);
|
||||
release_blocks(it->second->large_blocks);
|
||||
if (it->second->allocation_count == 0) {
|
||||
auto erase_count = graph_pools.erase(it->first);
|
||||
TORCH_INTERNAL_ASSERT(erase_count == 1);
|
||||
it = graph_pools_freeable.erase(it);
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -903,6 +1011,30 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
void create_or_incref_pool(
|
||||
MempoolId_t mempool_id,
|
||||
XPUAllocator* allocator = nullptr) {
|
||||
auto it = graph_pools.find(mempool_id);
|
||||
if (it == graph_pools.end()) {
|
||||
// mempool_id does not reference an existing pool.
|
||||
// Make a new pool for XPU graph capture or memory pool usage.
|
||||
graph_pools.emplace(
|
||||
mempool_id, std::make_unique<PrivatePool>(mempool_id, allocator));
|
||||
} else {
|
||||
// mempool_id references an existing pool, which the current XPU graph
|
||||
// capture will share.
|
||||
TORCH_INTERNAL_ASSERT(it->second->use_count > 0);
|
||||
TORCH_INTERNAL_ASSERT(allocator == nullptr);
|
||||
it->second->use_count++;
|
||||
}
|
||||
}
|
||||
|
||||
PrivatePool* get_private_pool(MempoolId_t mempool_id) {
|
||||
auto it = graph_pools.find(mempool_id);
|
||||
TORCH_INTERNAL_ASSERT(it != graph_pools.end());
|
||||
return it->second.get();
|
||||
}
|
||||
|
||||
public:
|
||||
DeviceCachingAllocator(DeviceIndex device_index)
|
||||
: large_blocks(/* small */ false),
|
||||
@ -911,9 +1043,11 @@ class DeviceCachingAllocator {
|
||||
|
||||
Block* malloc(DeviceIndex device, size_t orig_size, sycl::queue& queue) {
|
||||
std::scoped_lock<std::recursive_mutex> lock(mutex);
|
||||
process_events();
|
||||
if (C10_LIKELY(captures_underway.empty())) {
|
||||
process_events();
|
||||
}
|
||||
size_t size = round_size(orig_size);
|
||||
auto& pool = get_pool(size);
|
||||
auto& pool = get_pool(size, &queue);
|
||||
const size_t alloc_size = get_allocation_size(size);
|
||||
AllocParams params(device, size, &queue, &pool, alloc_size);
|
||||
params.stat_types = get_stat_types_for_pool(pool);
|
||||
@ -923,18 +1057,17 @@ class DeviceCachingAllocator {
|
||||
// Can't reuse an existing block, try to get a new one.
|
||||
if (!block_found) {
|
||||
block_found = alloc_block(params, false) ||
|
||||
(release_cached_blocks() && alloc_block(params, true));
|
||||
(release_cached_blocks({0, 0}) && alloc_block(params, true));
|
||||
}
|
||||
if (!block_found) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device);
|
||||
auto device_total = device_prop.global_mem_size;
|
||||
const auto& raw_device = c10::xpu::get_raw_device(device);
|
||||
const auto device_total =
|
||||
raw_device.get_info<sycl::info::device::global_mem_size>();
|
||||
// Estimate the available device memory when the SYCL runtime does not
|
||||
// support the corresponding aspect (ext_intel_free_memory).
|
||||
size_t device_free = device_prop.global_mem_size -
|
||||
size_t device_free = device_total -
|
||||
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
|
||||
.current;
|
||||
auto& raw_device = c10::xpu::get_raw_device(device);
|
||||
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
|
||||
// affected devices.
|
||||
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
|
||||
@ -1017,9 +1150,9 @@ class DeviceCachingAllocator {
|
||||
block->stream_uses.insert(stream);
|
||||
}
|
||||
|
||||
void emptyCache() {
|
||||
void emptyCache(MempoolId_t mempool_id) {
|
||||
std::scoped_lock<std::recursive_mutex> lock(mutex);
|
||||
release_cached_blocks();
|
||||
release_cached_blocks(mempool_id);
|
||||
}
|
||||
|
||||
DeviceStats getStats() {
|
||||
@ -1052,21 +1185,37 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> getMemoryInfo() {
|
||||
const auto& device = c10::xpu::get_raw_device(device_index);
|
||||
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
|
||||
TORCH_CHECK(
|
||||
device.has(sycl::aspect::ext_intel_free_memory),
|
||||
"The device (",
|
||||
device.get_info<sycl::info::device::name>(),
|
||||
") doesn't support querying the available free memory. ",
|
||||
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
|
||||
"to help us prioritize its implementation.");
|
||||
const size_t free =
|
||||
device.get_info<sycl::ext::intel::info::device::free_memory>();
|
||||
return {free, total};
|
||||
}
|
||||
|
||||
double getMemoryFraction() {
|
||||
if (!set_fraction) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
const auto device_total =
|
||||
xpu::get_raw_device(device_index)
|
||||
.get_info<sycl::info::device::global_mem_size>();
|
||||
return static_cast<double>(allowed_memory_maximum) /
|
||||
static_cast<double>(device_prop.global_mem_size);
|
||||
static_cast<double>(device_total);
|
||||
}
|
||||
|
||||
void setMemoryFraction(double fraction) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
auto device_total = device_prop.global_mem_size;
|
||||
const auto device_total =
|
||||
xpu::get_raw_device(device_index)
|
||||
.get_info<sycl::info::device::global_mem_size>();
|
||||
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
|
||||
set_fraction = true;
|
||||
}
|
||||
@ -1157,9 +1306,9 @@ class XPUAllocator : public DeviceAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
void emptyCache(MempoolId_t mempool_id [[maybe_unused]] = {0, 0}) override {
|
||||
void emptyCache(MempoolId_t mempool_id) override {
|
||||
for (auto& da : device_allocators) {
|
||||
da->emptyCache();
|
||||
da->emptyCache(mempool_id);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1240,6 +1389,11 @@ class XPUAllocator : public DeviceAllocator {
|
||||
c10::xpu::get_raw_device(dev_to_access));
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryInfo();
|
||||
}
|
||||
|
||||
double getMemoryFraction(DeviceIndex device) {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryFraction();
|
||||
@ -1270,8 +1424,8 @@ void init(DeviceIndex device_count) {
|
||||
return allocator.init(device_count);
|
||||
}
|
||||
|
||||
void emptyCache() {
|
||||
return allocator.emptyCache();
|
||||
void emptyCache(MempoolId_t mempool_id) {
|
||||
return allocator.emptyCache(mempool_id);
|
||||
}
|
||||
|
||||
void resetPeakStats(DeviceIndex device) {
|
||||
|
||||
@ -10,7 +10,7 @@ C10_XPU_API Allocator* get();
|
||||
|
||||
C10_XPU_API void init(DeviceIndex device_count);
|
||||
|
||||
C10_XPU_API void emptyCache();
|
||||
C10_XPU_API void emptyCache(MempoolId_t mempool_id = {0, 0});
|
||||
|
||||
C10_XPU_API void resetPeakStats(DeviceIndex device);
|
||||
|
||||
|
||||
@ -1643,8 +1643,6 @@ if(USE_CUDA)
|
||||
target_link_libraries(torch_cuda PUBLIC c10_cuda)
|
||||
if(TARGET torch::nvtx3)
|
||||
target_link_libraries(torch_cuda PRIVATE torch::nvtx3)
|
||||
else()
|
||||
target_link_libraries(torch_cuda PUBLIC torch::nvtoolsext)
|
||||
endif()
|
||||
|
||||
target_include_directories(
|
||||
@ -1741,9 +1739,6 @@ if(BUILD_SHARED_LIBS)
|
||||
if(USE_CUDA)
|
||||
target_link_libraries(torch_global_deps ${Caffe2_PUBLIC_CUDA_DEPENDENCY_LIBS})
|
||||
target_link_libraries(torch_global_deps torch::cudart)
|
||||
if(TARGET torch::nvtoolsext)
|
||||
target_link_libraries(torch_global_deps torch::nvtoolsext)
|
||||
endif()
|
||||
endif()
|
||||
install(TARGETS torch_global_deps DESTINATION "${TORCH_INSTALL_LIB_DIR}")
|
||||
endif()
|
||||
|
||||
@ -734,7 +734,7 @@ void PyTorchStreamWriter::setup(const string& file_name) {
|
||||
file_name,
|
||||
std::ofstream::out | std::ofstream::trunc | std::ofstream::binary
|
||||
);
|
||||
} catch (const std::ios_base::failure& e) {
|
||||
} catch (const std::ios_base::failure&) {
|
||||
#ifdef _WIN32
|
||||
// Windows have verbose error code, we prefer to use it than std errno.
|
||||
uint32_t error_code = GetLastError();
|
||||
@ -773,8 +773,20 @@ void PyTorchStreamWriter::writeRecord(
|
||||
bool compress) {
|
||||
AT_ASSERT(!finalized_);
|
||||
AT_ASSERT(!archive_name_plus_slash_.empty());
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
files_written_.count(name) == 0, "Tried to serialize file twice: ", name);
|
||||
if (files_written_.count(name) > 0) {
|
||||
// Allow multiple writes for triton binaries
|
||||
bool is_triton_extension =
|
||||
c10::ends_with(name, ".so") ||
|
||||
c10::ends_with(name, ".cubin") ||
|
||||
c10::ends_with(name, ".hsaco");
|
||||
|
||||
if (is_triton_extension) {
|
||||
LOG(WARNING) << "File '" << name << "' is being serialized multiple times";
|
||||
return;
|
||||
}
|
||||
|
||||
TORCH_INTERNAL_ASSERT(false, "Tried to serialize file twice: ", name);
|
||||
}
|
||||
if (name == kSerializationIdRecordName && serialization_id_.empty()) {
|
||||
// In case of copying records from another file, skip writing a different
|
||||
// serialization_id than the one computed in this writer.
|
||||
|
||||
@ -968,11 +968,8 @@ find_package_handle_standard_args(nvtx3 DEFAULT_MSG nvtx3_dir)
|
||||
if(nvtx3_FOUND)
|
||||
add_library(torch::nvtx3 INTERFACE IMPORTED)
|
||||
target_include_directories(torch::nvtx3 INTERFACE "${nvtx3_dir}")
|
||||
target_compile_definitions(torch::nvtx3 INTERFACE TORCH_CUDA_USE_NVTX3)
|
||||
else()
|
||||
message(WARNING "Cannot find NVTX3, find old NVTX instead")
|
||||
add_library(torch::nvtoolsext INTERFACE IMPORTED)
|
||||
set_property(TARGET torch::nvtoolsext PROPERTY INTERFACE_LINK_LIBRARIES CUDA::nvToolsExt)
|
||||
message(FATAL_ERROR "Cannot find NVTX3!")
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# This will define the following variables:
|
||||
# SYCL_FOUND : True if the system has the SYCL library.
|
||||
# SYCL_INCLUDE_DIR : Include directories needed to use SYCL.
|
||||
# SYCL_LIBRARY_DIR :The path to the SYCL library.
|
||||
# SYCL_LIBRARY_DIR : The path to the SYCL library.
|
||||
# SYCL_LIBRARY : SYCL library fullname.
|
||||
# SYCL_COMPILER_VERSION : SYCL compiler version.
|
||||
|
||||
|
||||
@ -132,9 +132,6 @@ if(@USE_CUDA@)
|
||||
else()
|
||||
set(TORCH_CUDA_LIBRARIES ${CUDA_NVRTC_LIB})
|
||||
endif()
|
||||
if(TARGET torch::nvtoolsext)
|
||||
list(APPEND TORCH_CUDA_LIBRARIES torch::nvtoolsext)
|
||||
endif()
|
||||
|
||||
if(@BUILD_SHARED_LIBS@)
|
||||
find_library(C10_CUDA_LIBRARY c10_cuda PATHS "${TORCH_INSTALL_PREFIX}/lib")
|
||||
|
||||
@ -10,7 +10,7 @@ API. This API can roughly be divided into five parts:
|
||||
- **TorchScript**: An interface to the TorchScript JIT compiler and interpreter.
|
||||
- **C++ Extensions**: A means of extending the Python API with custom C++ and CUDA routines.
|
||||
|
||||
Combining, these building blocks form a research and
|
||||
Combined, these building blocks form a research and
|
||||
production ready C++ library for tensor computation and dynamic neural
|
||||
networks with strong emphasis on GPU acceleration as well as fast CPU
|
||||
performance. It is currently in use at Facebook in research and
|
||||
@ -76,7 +76,7 @@ C++ Frontend
|
||||
------------
|
||||
|
||||
The PyTorch C++ frontend provides a high level, pure C++ modeling interface for
|
||||
neural network and general ML(Machine Learning) research and production use cases,
|
||||
neural networks and general ML (Machine Learning) research and production use cases,
|
||||
largely following the Python API in design and provided functionality. The C++
|
||||
frontend includes the following:
|
||||
|
||||
|
||||
@ -40,6 +40,7 @@
|
||||
:nosignatures:
|
||||
|
||||
empty_cache
|
||||
get_memory_info
|
||||
max_memory_allocated
|
||||
max_memory_reserved
|
||||
memory_allocated
|
||||
|
||||
113
docs/source/accelerator/device.md
Normal file
113
docs/source/accelerator/device.md
Normal file
@ -0,0 +1,113 @@
|
||||
# Device Management
|
||||
|
||||
## Background
|
||||
|
||||
Device management handles basic operations like querying how many devices are available and switching between them. Accelerator backends need to wrap their device runtime's APIs and expose them to PyTorch.
|
||||
|
||||
The OpenReg implementation ([`OpenRegFunctions.h/cpp`][OpenReg Device Management]) shows how to wrap a third-party runtime. These functions are used throughout the backend - by streams, events, generators, and Python bindings.
|
||||
|
||||
## Design
|
||||
|
||||
Accelerator vendors need to implement these core functions:
|
||||
|
||||
| Function Name | Description | Application Scenarios |
|
||||
| ------------------------- | ---------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- |
|
||||
| `device_count()` | Query the total number of available devices in the system | - Application initialization<br>- Multi-device workload distribution<br>- Validating device indices before use |
|
||||
| `current_device()` | Get the currently active device for the calling thread | - Debugging and logging<br>- Determining tensor placement<br>- Guard implementations |
|
||||
| `set_device()` | Change the active device for subsequent operations | - Switching context between devices<br>- Initializing specific device resources<br>- Multi-GPU training loops |
|
||||
| `exchange_device()` | Atomically swap device and return the previous device | - Implementing device guards<br>- Temporarily switching device context<br>- RAII-based device management |
|
||||
| `maybe_exchange_device()` | Conditionally exchange device only if the index is valid (-1 OK) | - Safe device switching with optional indices<br>- Guard implementations with nullable device values |
|
||||
|
||||
These functions are building blocks for more complex features like streams, events, and memory management. Make sure to validate inputs and handle errors properly.
|
||||
|
||||
## Implementation
|
||||
|
||||
This section shows how to implement device management using `set_device` as an example. The implementation requires:
|
||||
1. C++ wrappers around the device runtime
|
||||
2. Python bindings to expose the C++ functions
|
||||
3. User-friendly Python APIs
|
||||
|
||||
### C++ Side
|
||||
|
||||
Wrap the device runtime's API and add error handling. The `SetDevice` function shows this pattern:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegFunctions.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG SetDevice FUNCTION
|
||||
:end-before: LITERALINCLUDE END: OPENREG SetDevice FUNCTION
|
||||
:linenos:
|
||||
```
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegFunctions.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG set_device FUNCTION
|
||||
:end-before: LITERALINCLUDE END: OPENREG set_device FUNCTION
|
||||
:linenos:
|
||||
```
|
||||
|
||||
### Binding
|
||||
|
||||
Expose the C++ functions to Python using pybind11:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/csrc/Module.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: MODULE SET DEVICE HELPER
|
||||
:end-before: LITERALINCLUDE END: MODULE SET DEVICE HELPER
|
||||
:linenos:
|
||||
```
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/csrc/Module.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG MODULE METHODS
|
||||
:end-before: LITERALINCLUDE END: OPENREG MODULE METHODS
|
||||
:linenos:
|
||||
:emphasize-lines: 5
|
||||
```
|
||||
|
||||
### Python Side
|
||||
|
||||
Wrap the C++ bindings with user-friendly Python functions:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/openreg/__init__.py
|
||||
:language: python
|
||||
:start-after: LITERALINCLUDE START: PYTHON SET DEVICE FUNCTION
|
||||
:end-before: LITERALINCLUDE END: PYTHON SET DEVICE FUNCTION
|
||||
:linenos:
|
||||
```
|
||||
|
||||
Here's the complete mapping from C++ to Python:
|
||||
|
||||
| C++ Binding Function | C++ Binding API (pybind11) | Python User API | Description |
|
||||
| -------------------- | ---------------------------------------- | -------------------------------- | -------------------------------------------- |
|
||||
| `_getDeviceCount` | `torch_openreg._C._get_device_count()` | `torch.openreg.device_count()` | Returns the total number of devices |
|
||||
| `_getDevice` | `torch_openreg._C._get_device()` | `torch.openreg.current_device()` | Returns the current active device index |
|
||||
| `_setDevice` | `torch_openreg._C._set_device(idx)` | `torch.openreg.set_device(idx)` | Sets the active device |
|
||||
| `_exchangeDevice` | `torch_openreg._C._exchange_device(idx)` | N/A (internal use only) | Atomically swaps device and returns previous |
|
||||
|
||||
## Guard
|
||||
|
||||
Device guards provide automatic device switching with exception safety. They're similar to lock guards in C++ - they switch device on construction and restore it on destruction.
|
||||
|
||||
Implement `DeviceGuardImplInterface` to integrate with PyTorch's guard system:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegGuard.h
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG DEVICE MGMT GUARD IMPL EXAMPLE
|
||||
:end-before: LITERALINCLUDE END: OPENREG DEVICE MGMT GUARD IMPL EXAMPLE
|
||||
:linenos:
|
||||
```
|
||||
|
||||
**What needs to be implemented:**
|
||||
|
||||
1. **exchangeDevice()**: Switch to a new device and return the old one (used by guard constructors)
|
||||
2. **getDevice()**: Get the current device
|
||||
3. **setDevice()**: Set the active device
|
||||
4. **Type checking**: Validate that device type matches the backend
|
||||
|
||||
This makes the guard available to PyTorch for the `PrivateUse1` device type. Users can then use standard PyTorch device guards with the custom backend.
|
||||
|
||||
[OpenReg Device Management]: https://github.com/pytorch/pytorch/blob/main/test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegFunctions.cpp "OpenReg Device Management"
|
||||
164
docs/source/accelerator/hooks.md
Normal file
164
docs/source/accelerator/hooks.md
Normal file
@ -0,0 +1,164 @@
|
||||
# Accelerator Hooks
|
||||
|
||||
## Background
|
||||
|
||||
OpenReg hooks provide a mechanism for integrating custom accelerator devices into PyTorch's runtime system. OpenReg (Open Registration) is PyTorch's extensibility framework that allows accelerator vendors to register custom device backends without modifying PyTorch core code.
|
||||
|
||||
## Design
|
||||
|
||||
The following tables list all hooks that accelerator vendors need to implement when integrating a new device backend. These hooks are categorized into two priority levels:
|
||||
|
||||
- **High Priority Hooks**: Core APIs that PyTorch runtime directly depends on. Accelerator vendors are recommended to implement all high priority hooks to ensure full PyTorch compatibility and enable basic device functionality.
|
||||
|
||||
- **Low Priority Hooks**: Device management and utility APIs that PyTorch does not directly depend on. These hooks enhance user experience and multi-device support but are *optional*. Accelerator vendors can choose to implement them based on their specific requirements and use cases.
|
||||
|
||||
### High Priority Hooks
|
||||
|
||||
| Hook Method | Description | Application Scenario |
|
||||
| ---------------------------------- | --------------------------------------------------------- | -------------------------------------------------------------------------------- |
|
||||
| `init()` | Initializes the accelerator runtime and device contexts | Set up necessary state when PyTorch first accesses the device |
|
||||
| `hasPrimaryContext(DeviceIndex)` | Checks if a primary context exists for the device | Determine whether device initialization has occurred |
|
||||
| `getDefaultGenerator(DeviceIndex)` | Returns the default random number generator for a device | Access the device's primary RNG for reproducible random operations |
|
||||
| `getNewGenerator(DeviceIndex)` | Creates a new independent random number generator | Create isolated RNG instances for parallel operations |
|
||||
| `getDeviceFromPtr(void*)` | Determines which device a memory pointer belongs to | Identify the accelerator device associated with a memory allocation |
|
||||
| `getPinnedMemoryAllocator()` | Returns an allocator for pinned (page-locked) host memory | Allocate host memory that can be efficiently transferred to/from the accelerator |
|
||||
| `isPinnedPtr(void*)` | Checks if a pointer points to pinned memory | Validate memory types before performing operations |
|
||||
|
||||
### Low Priority Hooks
|
||||
|
||||
| Hook Method | Description | Application Scenario |
|
||||
| ---------------------------------- | ---------------------------------------------------------------------------- | -------------------------------------------------------------------- |
|
||||
| `isBuilt()` | Returns whether the accelerator backend is built/compiled into the extension | Check whether the accelerator library is available at compile time |
|
||||
| `isAvailable()` | Returns whether the accelerator hardware is available at runtime | Verify whether accelerator devices can be detected and initialized |
|
||||
| `deviceCount()` | Returns the number of available accelerator devices | Enumerate all available accelerator devices for device selection |
|
||||
| `setCurrentDevice(DeviceIndex)` | Sets the active device for the current thread | Switch the current thread's context to a specific accelerator device |
|
||||
| `getCurrentDevice()` | Returns the currently active device index | Query which accelerator device is active in the current thread |
|
||||
| `exchangeDevice(DeviceIndex)` | Atomically exchanges the current device and returns the previous one | Temporarily switch devices and restore the previous device afterward |
|
||||
| `maybeExchangeDevice(DeviceIndex)` | Conditionally exchanges device only if the index is valid | Safely attempt device switching with validation |
|
||||
|
||||
## Implementation
|
||||
|
||||
We can just take `getDefaultGenerator` as an implementation example:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegHooks.h
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG HOOK EXAMPLES
|
||||
:end-before: LITERALINCLUDE END: OPENREG HOOK EXAMPLES
|
||||
:linenos:
|
||||
```
|
||||
|
||||
In this implementation:
|
||||
|
||||
1. **Override the base interface**: The `getDefaultGenerator` method overrides the virtual method from `at::PrivateUse1HooksInterface`.
|
||||
|
||||
2. **Delegate to device-specific implementation**: It calls `getDefaultOpenRegGenerator(device_index)`, which manages a per-device generator instance.
|
||||
|
||||
3. **Return device-specific generator**: The returned `at::Generator` wraps an `OpenRegGeneratorImpl` that implements device-specific random number generation.
|
||||
|
||||
This pattern applies to all hooks: override the interface method, validate inputs, delegate to your device-specific API, and return results in PyTorch's expected format.
|
||||
|
||||
## Integration Example
|
||||
|
||||
The following sections demonstrate how PyTorch integrates with accelerator hooks when accessing the default random number generator. The example traces the complete flow from user-facing Python code down to the device-specific implementation.
|
||||
|
||||
### Layer 1: User Code
|
||||
|
||||
User code initiates the operation by calling `manual_seed` to set the random seed for reproducible results:
|
||||
|
||||
```python
|
||||
import torch
|
||||
torch.openreg.manual_seed(42)
|
||||
```
|
||||
|
||||
### Layer 2: Extension Python API
|
||||
|
||||
The Python API layer handles device management and calls into the C++ extension (defined in [`torch_openreg/openreg/random.py`][random.py]):
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/openreg/random.py
|
||||
:language: python
|
||||
:start-after: LITERALINCLUDE START: OPENREG MANUAL SEED
|
||||
:end-before: LITERALINCLUDE END: OPENREG MANUAL SEED
|
||||
:linenos:
|
||||
```
|
||||
|
||||
The `manual_seed` function gets the current device index and calls `torch_openreg._C._get_default_generator(idx)` to obtain the device-specific generator, then sets the seed on it.
|
||||
|
||||
### Layer 3: Python/C++ Bridge
|
||||
|
||||
The C++ extension exposes `_getDefaultGenerator` to Python, which bridges to PyTorch's core runtime:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/csrc/Module.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG GET DEFAULT GENERATOR
|
||||
:end-before: LITERALINCLUDE END: OPENREG GET DEFAULT GENERATOR
|
||||
:linenos:
|
||||
:emphasize-lines: 10-11
|
||||
```
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/csrc/Module.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG MODULE METHODS
|
||||
:end-before: LITERALINCLUDE END: OPENREG MODULE METHODS
|
||||
:linenos:
|
||||
:emphasize-lines: 3
|
||||
```
|
||||
|
||||
This function unpacks the device index from Python, creates a `PrivateUse1` device object, and calls `at::globalContext().defaultGenerator()`. PyTorch's context then dispatches to the registered hooks.
|
||||
|
||||
### Layer 4: PyTorch Core Context
|
||||
|
||||
PyTorch's Context class dispatches to the appropriate accelerator hooks ([`aten/src/ATen/Context.h`][Context.h]):
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../aten/src/ATen/Context.h
|
||||
:language: c++
|
||||
:lines: 60-103
|
||||
:linenos:
|
||||
:emphasize-lines: 8-9, 24-25
|
||||
```
|
||||
|
||||
This layered architecture enables PyTorch to remain device-agnostic while delegating hardware-specific operations to accelerator implementations. The hooks are registered once at module load time:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegHooks.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG HOOK REGISTER
|
||||
:end-before: LITERALINCLUDE END: OPENREG HOOK REGISTER
|
||||
:linenos:
|
||||
:emphasize-lines: 4
|
||||
```
|
||||
|
||||
### Layer 5: Accelerator Hooks
|
||||
|
||||
The hooks interface provides the abstraction that PyTorch uses to delegate to device-specific implementations:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegHooks.h
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG HOOK EXAMPLES
|
||||
:end-before: LITERALINCLUDE END: OPENREG HOOK EXAMPLES
|
||||
:linenos:
|
||||
```
|
||||
|
||||
The `getDefaultGenerator` hook method overrides the base interface and delegates to `getDefaultOpenRegGenerator`, which manages the actual generator instances.
|
||||
|
||||
### Layer 6: Device-Specific Implementation
|
||||
|
||||
The device-specific implementation manages per-device generator instances:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegGenerator.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG GET DEFAULT GENERATOR IMPL
|
||||
:end-before: LITERALINCLUDE END: OPENREG GET DEFAULT GENERATOR IMPL
|
||||
:linenos:
|
||||
```
|
||||
|
||||
This function maintains a static vector of generators (one per device), initializes them on first access, validates the device index, and returns the appropriate generator instance.
|
||||
|
||||
[random.py]: https://github.com/pytorch/pytorch/tree/main/test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/openreg/random.py#L48-L53 "random.py"
|
||||
[Context.h]: https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/Context.h#L61-L102 "Context.h"
|
||||
@ -42,6 +42,8 @@ Next, we will delve into each chapter of this guide. Each chapter focuses on a k
|
||||
:glob:
|
||||
:maxdepth: 1
|
||||
|
||||
device
|
||||
hooks
|
||||
autoload
|
||||
operators
|
||||
amp
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user