Compare commits

..

1 Commits

Author SHA1 Message Date
9cc8e3c438 Add graph breaks 2024-06-21 15:19:34 -07:00
2149 changed files with 39631 additions and 65009 deletions

View File

@ -1,5 +1,5 @@
0.6b
manylinux_2_17
rocm6.1
7f07e8a1cb1f99627eb6d77f5c0e9295c775f3c7
77c29fa3f3b614e187d7213d745e989a92708cee2bc6020419ab49019af399d1
rocm6
04b5df8c8123f90cba3ede7e971e6fbc6040d506
3db6ecbc915893ff967abd6e1b43bd5f54949868873be60dc802086c3863e648

View File

@ -1 +1 @@
c572f9e509b5ec5d56f4d218271e36269bba244f
172574a6be5910a4609e4ed1bef2b6b8475ddb3d

View File

@ -1 +1 @@
21eae954efa5bf584da70324b640288c3ee7aede
01cbe5045a6898c9a925f01435c8277b2fe6afcc

View File

@ -1 +1 @@
1b2f15840e0d70eec50d84c7a0575cb835524def
aac14a3b93f11d781d1d5ebc5400b15ae8df5185

View File

@ -1 +1 @@
dedb7bdf339a3546896d4820366ca562c586bfa0
45fff310c891f5a92d55445adf8cc9d29df5841e

View File

@ -9,7 +9,7 @@ TARBALL='aotriton.tar.bz2'
read -d "\n" VER MANYLINUX ROCMBASE PINNED_COMMIT SHA256 < aotriton_version.txt || true
ARCH=$(uname -m)
AOTRITON_INSTALL_PREFIX="$1"
AOTRITON_URL="https://github.com/ROCm/aotriton/releases/download/${VER}/aotriton-${VER}-${MANYLINUX}_${ARCH}-${ROCMBASE}-shared.tar.bz2"
AOTRITON_URL="https://github.com/ROCm/aotriton/releases/download/${VER}/aotriton-${VER}-${MANYLINUX}_${ARCH}-${ROCMBASE}.tar.bz2"
cd "${AOTRITON_INSTALL_PREFIX}"
# Must use -L to follow redirects

View File

@ -85,7 +85,7 @@ fi
else
CONDA_COMMON_DEPS="astunparse pyyaml mkl=2021.4.0 mkl-include=2021.4.0 setuptools"
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.12" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.13" ]; then
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.12" ]; then
conda_install numpy=1.26.0 ${CONDA_COMMON_DEPS}
else
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS}

View File

@ -306,7 +306,7 @@ pywavelets==1.5.0 ; python_version >= "3.12"
#Pinned versions: 1.4.1
#test that import:
lxml==5.0.0
lxml==5.0.0.
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries

View File

@ -230,10 +230,6 @@ if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
if [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
export CMAKE_BUILD_TYPE=RelWithAssert
fi
# Do not change workspace permissions for ROCm CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then

View File

@ -222,8 +222,6 @@ function checkout_install_torchbench() {
# to install and test other models
python install.py --continue_on_fail
fi
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}

View File

@ -18,9 +18,8 @@ time python test/run_test.py --verbose -i distributed/test_c10d_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_nccl
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
time python test/run_test.py --verbose -i distributed/test_cuda_p2p
time python test/run_test.py --verbose -i distributed/test_store
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
# FSDP tests

View File

@ -249,7 +249,9 @@ fi
# This tests that the debug asserts are working correctly.
if [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
echo "We are in debug mode: $BUILD_ENVIRONMENT. Expect the python assertion to fail"
(cd test && ! get_exit_code python -c "import torch; torch._C._crash_if_debug_asserts_fail(424242)")
# TODO: Enable the check after we setup the build to run debug asserts without having
# to do a full (and slow) debug build
# (cd test && ! get_exit_code python -c "import torch; torch._C._crash_if_debug_asserts_fail(424242)")
elif [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
# Noop when debug is disabled. Skip bazel jobs because torch isn't available there yet.
echo "We are not in debug mode: $BUILD_ENVIRONMENT. Expect the assertion to pass"
@ -262,6 +264,18 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
# temp workarounds for https://github.com/pytorch/pytorch/issues/126692, remove when fixed
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
pushd test
CUDA_VERSION=$(python -c "import torch; print(torch.version.cuda)")
if [ "$CUDA_VERSION" == "12.4" ]; then
ISCUDA124="cu124"
else
ISCUDA124=""
fi
popd
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -336,31 +350,17 @@ test_inductor_distributed() {
assert_git_not_dirty
}
test_inductor_shard() {
if [[ -z "$NUM_TEST_SHARDS" ]]; then
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
exit 1
fi
test_inductor() {
python tools/dynamo/verify_dynamo.py
python test/run_test.py --inductor \
--include test_modules test_ops test_ops_gradients test_torch \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor --include test_modules test_ops test_ops_gradients test_torch --verbose
# Do not add --inductor for the following inductor unit tests, otherwise we will fail because of nested dynamo state
python test/run_test.py \
--include inductor/test_torchinductor inductor/test_torchinductor_opinfo inductor/test_aot_inductor \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
}
python test/run_test.py --include inductor/test_torchinductor inductor/test_torchinductor_opinfo inductor/test_aot_inductor --verbose
test_inductor_aoti() {
# docker build uses bdist_wheel which does not work with test_aot_inductor
# TODO: need a faster way to build
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference
fi
}
@ -379,7 +379,7 @@ test_inductor_cpp_wrapper_abi_compatible() {
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_timm_training.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_timm_training.csv"
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
@ -404,7 +404,7 @@ if [[ "${TEST_CONFIG}" == *dynamic* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--dynamic-shapes --dynamic-batch-only)
fi
if [[ "${TEST_CONFIG}" == *cpu_inductor* || "${TEST_CONFIG}" == *cpu_aot_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device cpu)
else
DYNAMO_BENCHMARK_FLAGS+=(--device cuda)
@ -529,10 +529,9 @@ test_single_dynamo_benchmark() {
test_perf_for_dashboard "$suite" \
"${DYNAMO_BENCHMARK_FLAGS[@]}" "$@" "${partition_flags[@]}"
else
if [[ "${TEST_CONFIG}" == *aot_inductor* && "${TEST_CONFIG}" != *cpu_aot_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
# Test AOTInductor with the ABI-compatible mode on CI
# This can be removed once the ABI-compatible mode becomes default.
# For CPU device, we perfer non ABI-compatible mode on CI when testing AOTInductor.
export TORCHINDUCTOR_ABI_COMPATIBLE=1
fi
python "benchmarks/dynamo/$suite.py" \
@ -542,10 +541,10 @@ test_single_dynamo_benchmark() {
--output "$TEST_REPORTS_DIR/${name}_${suite}.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${TEST_CONFIG}_${name}.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/${TEST_CONFIG}_${name}.csv"
python benchmarks/dynamo/check_graph_breaks.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${TEST_CONFIG}_${name}.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/${TEST_CONFIG}_${name}.csv"
fi
}
@ -573,15 +572,11 @@ test_dynamo_benchmark() {
elif [[ "${TEST_CONFIG}" == *perf* ]]; then
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
else
if [[ "${TEST_CONFIG}" == *cpu_inductor* || "${TEST_CONFIG}" == *cpu_aot_inductor* ]]; then
local dt="float32"
if [[ "${TEST_CONFIG}" == *amp* ]]; then
dt="amp"
fi
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *freezing* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --"$dt" --freezing "$@"
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 --freezing "$@"
else
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --"$dt" "$@"
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 "$@"
fi
elif [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --bfloat16 "$@"
@ -605,7 +600,7 @@ test_inductor_torchbench_smoketest_perf() {
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_torchbench_inference.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_torchbench_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
@ -620,8 +615,13 @@ test_inductor_torchbench_smoketest_perf() {
# https://github.com/pytorch/pytorch/actions/runs/7158691360/job/19491437314,
# and thus we lower its threshold to reduce flakiness. If this continues to be a problem,
# we switch to use some other model.
# lowering threshold from 4.9 to 4.7 for cu124. Will bump it up after cuda 12.4.0->12.4.1 update
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_inference_smoketest.csv" -t 4.7
# Use 4.7 for cuda 12.4, change back to 4.9 after fixing https://github.com/pytorch/pytorch/issues/126692
if [ "$CUDA_VERSION" == "12.4" ]; then
THRESHOLD=4.7
else
THRESHOLD=4.9
fi
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_inference_smoketest.csv" -t $THRESHOLD
# Check memory compression ratio for a few models
for test in hf_Albert timm_vision_transformer; do
@ -640,7 +640,7 @@ test_inductor_torchbench_smoketest_perf() {
--only $test --output "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_huggingface_training.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_huggingface_training.csv"
done
}
@ -1266,14 +1266,13 @@ elif [[ "${TEST_CONFIG}" == *timm* ]]; then
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_inductor* || "${TEST_CONFIG}" == *cpu_aot_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
fi
install_torchtext
install_torchvision
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install git+https://github.com/pytorch/ao.git
id=$((SHARD_NUMBER-1))
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
@ -1292,7 +1291,7 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
checkout_install_torchbench
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu_inductor* && "${TEST_CONFIG}" != *cpu_aot_inductor* ]]; then
if [[ "${TEST_CONFIG}" != *cpu_inductor* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
@ -1300,19 +1299,17 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper_abi_compatible* ]]; then
install_torchvision
test_inductor_cpp_wrapper_abi_compatible
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
elif [[ "${TEST_CONFIG}" == *inductor* && "${SHARD_NUMBER}" == 1 ]]; then
install_torchvision
test_inductor_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then
test_inductor_aoti
test_inductor_distributed
fi
elif [[ "${TEST_CONFIG}" == *dynamo* ]]; then
test_inductor
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *dynamo* && "${SHARD_NUMBER}" == 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
install_torchvision
test_dynamo_shard 1
test_aten
elif [[ "${TEST_CONFIG}" == *dynamo* && $SHARD_NUMBER -gt 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
install_torchvision
test_dynamo_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then
test_aten
fi
elif [[ "${BUILD_ENVIRONMENT}" == *rocm* && -n "$TESTS_TO_INCLUDE" ]]; then
install_torchvision
test_python_shard "$SHARD_NUMBER"

View File

@ -97,16 +97,8 @@ if [[ "$PACKAGE_TYPE" == conda ]]; then
)
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
if [[ "\$BUILD_ENVIRONMENT" != *s390x* ]]; then
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pkg_no_python="$(ls -1 /final_pkgs/torch_no_python* | sort |tail -1)"
pkg_torch="$(ls -1 /final_pkgs/torch-* | sort |tail -1)"
# todo: after folder is populated use the pypi_pkg channel instead
pip install "\$pkg_no_python" "\$pkg_torch" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}_pypi_pkg"
retry pip install -q numpy protobuf typing-extensions
else
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
fi
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
else
pip install "\$pkg"
retry pip install -q numpy protobuf typing-extensions
@ -118,12 +110,6 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
cd /tmp/libtorch
fi
if [[ "$GPU_ARCH_TYPE" == xpu ]]; then
# Workaround for __mkl_tmp_MOD unbound variable issue, refer https://github.com/pytorch/pytorch/issues/130543
set +u
source /opt/intel/oneapi/pytorch-gpu-dev-0.5/oneapi-vars.sh
fi
# Test the package
/builder/check_binary.sh

View File

@ -100,18 +100,30 @@ if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_B
fi
fi
# Set triton via PYTORCH_EXTRA_INSTALL_REQUIREMENTS for triton xpu package
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*xpu.* && $(uname) == "Linux" ]]; then
TRITON_REQUIREMENT="pytorch-triton-xpu==${TRITON_VERSION}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-10 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton-xpu.txt)
TRITON_REQUIREMENT="pytorch-triton-xpu==${TRITON_VERSION}+${TRITON_SHORTHASH}"
fi
if [[ -z "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${TRITON_REQUIREMENT}"
else
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS} | ${TRITON_REQUIREMENT}"
JAVA_HOME=
BUILD_JNI=OFF
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES=()
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI path
POSSIBLE_JAVA_HOMES+=("$PWD/pytorch/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/pytorch/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
break
fi
done
if [ -z "$JAVA_HOME" ]; then
echo "Did not find jni.h"
fi
fi
cat >"$envfile" <<EOL
@ -124,7 +136,6 @@ export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
export USE_SPLIT_BUILD="${USE_SPLIT_BUILD:-}"
if [[ "${OSTYPE}" == "msys" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then
@ -148,6 +159,8 @@ export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
export ANACONDA_USER='pytorch'
export USE_FBGEMM=1
export JAVA_HOME=$JAVA_HOME
export BUILD_JNI=$BUILD_JNI
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
export DOCKER_IMAGE="$DOCKER_IMAGE"

View File

@ -25,15 +25,6 @@ if [[ "${DRY_RUN}" = "disabled" ]]; then
AWS_S3_CP="aws s3 cp"
fi
if [[ "${USE_SPLIT_BUILD:-false}" == "true" ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_pypi_pkg"
fi
# this is special build with all dependencies packaged
if [[ ${BUILD_NAME} == *-full* ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_full"
fi
# Sleep 2 minutes between retries for conda upload
retry () {
"$@" || (sleep 5m && "$@") || (sleep 5m && "$@") || (sleep 5m && "$@") || (sleep 5m && "$@")

View File

@ -40,7 +40,3 @@ e6ec0efaf87703c5f889cfc20b29be455885d58d
a53cda1ddc15336dc1ff0ce1eff2a49cdc5f882e
# 2024-01-02 clangformat: fused adam #116583
9dc68d1aa9e554d09344a10fff69f7b50b2d23a0
# 2024-06-28 enable UFMT in `torch/storage.py`
d80939e5e9337e8078f11489afefec59fd42f93b
# 2024-06-28 enable UFMT in `torch.utils.data`
7cf0b90e49689d45be91aa539fdf54cf2ea8a9a3

View File

@ -47,5 +47,3 @@ self-hosted-runner:
- macos-latest-xlarge
- macos-13-xlarge
- macos-14-xlarge
# Organization-wide Intel hosted XPU runners
- linux.idc.xpu

View File

@ -26,7 +26,6 @@ runs:
-e PYTORCH_FINAL_PACKAGE_DIR \
-e PYTORCH_ROOT \
-e SKIP_ALL_TESTS \
-e USE_SPLIT_BUILD \
--tty \
--detach \
-v "${GITHUB_WORKSPACE}/pytorch:/pytorch" \
@ -36,8 +35,7 @@ runs:
"${DOCKER_IMAGE}"
)
echo "CONTAINER_NAME=${container_name}" >> "$GITHUB_ENV"
if [[ "${GPU_ARCH_TYPE}" != "rocm" && "${BUILD_ENVIRONMENT}" != "linux-aarch64-binary-manywheel" && "${BUILD_ENVIRONMENT}" != "linux-s390x-binary-manywheel" && "${GPU_ARCH_TYPE}" != "xpu" ]]; then
if [[ "${GPU_ARCH_TYPE}" != "rocm" && "${BUILD_ENVIRONMENT}" != "linux-aarch64-binary-manywheel" && "${BUILD_ENVIRONMENT}" != "linux-s390x-binary-manywheel" ]]; then
# Propagate download.pytorch.org IP to container. This is only needed on Linux non aarch64 runner
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" bash -c "/bin/cat >> /etc/hosts"
fi
@ -48,9 +46,10 @@ runs:
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash -x /run.sh"
- name: Cleanup docker
if: always() && (env.BUILD_ENVIRONMENT == 'linux-s390x-binary-manywheel' || env.GPU_ARCH_TYPE == 'xpu')
if: always() && env.BUILD_ENVIRONMENT == 'linux-s390x-binary-manywheel'
shell: bash
run: |
# on s390x or xpu stop the container for clean worker stop
# on s390x stop the container for clean worker stop
# ignore expansion of "docker ps -q" since it could be empty
# shellcheck disable=SC2046
docker stop "${{ env.CONTAINER_NAME }}" || true
docker stop $(docker ps -q) || true

View File

@ -1 +1 @@
69b2a0adc2ec03ab99990d7e8be3d4510438c148
b829e936f7cc61b48149f5f957a451a38bf2a178

View File

@ -286,7 +286,6 @@
- test/cpp/dist_autograd/**
- test/cpp/rpc/**
approved_by:
- wconstab
- mrshenli
- pritamdamania87
- zhaojuanmao
@ -313,25 +312,6 @@
- Lint
- pull
- name: DCP
patterns:
- torch/distributed/checkpoint/**
approved_by:
- LucasLLC
- fegin
- wz337
- saumishr
- daulet-askarov
- pradeepdfb
- kirtiteja
- mhorowitz
- saiteja64
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: IDEEP
patterns:
- third_party/ideep
@ -395,21 +375,13 @@
- name: CPU inductor
patterns:
- torch/_inductor/mkldnn_ir.py
- torch/_inductor/mkldnn_lowerings.py
- torch/_inductor/fx_passes/mkldnn_fusion.py
- torch/_inductor/fx_passes/quantization.py
- torch/_inductor/codegen/cpp_prefix.h
- torch/_inductor/codegen/cpp.py
- torch/_inductor/codegen/cpp_utils.py
- torch/_inductor/codegen/cpp_micro_gemm.py
- torch/_inductor/codegen/cpp_template_kernel.py
- torch/_inductor/codegen/cpp_template.py
- torch/_inductor/codegen/cpp_gemm_template.py
- test/inductor/test_mkldnn_pattern_matcher.py
- test/inductor/test_cpu_repro.py
- test/inductor/test_cpu_repo.py
- test/inductor/test_cpu_cpp_wrapper.py
- test/inductor/test_cpu_select_algorithm.py
- aten/src/ATen/cpu/**
- aten/src/ATen/native/quantized/cpu/**
- test/quantization/core/test_quantized_op.py

View File

@ -93,8 +93,6 @@ done
# Copy Include Files
cp -r $ROCM_HOME/include/hip $TRITON_ROCM_DIR/include
cp -r $ROCM_HOME/include/roctracer $TRITON_ROCM_DIR/include
cp -r $ROCM_HOME/include/hsa $TRITON_ROCM_DIR/include
# Copy linker
mkdir -p $TRITON_ROCM_DIR/llvm/bin

View File

@ -11,12 +11,8 @@ SCRIPT_DIR = Path(__file__).parent
REPO_DIR = SCRIPT_DIR.parent.parent
def read_triton_pin(device: str = "cuda") -> str:
triton_file = "triton.txt"
if device == "rocm":
triton_file = "triton-rocm.txt"
elif device == "xpu":
triton_file = "triton-xpu.txt"
def read_triton_pin(rocm_hash: bool = False) -> str:
triton_file = "triton.txt" if not rocm_hash else "triton-rocm.txt"
with open(REPO_DIR / ".ci" / "docker" / "ci_commit_pins" / triton_file) as f:
return f.read().strip()
@ -53,7 +49,7 @@ def build_triton(
version: str,
commit_hash: str,
build_conda: bool = False,
device: str = "cuda",
build_rocm: bool = False,
py_version: Optional[str] = None,
release: bool = False,
) -> Path:
@ -73,14 +69,11 @@ def build_triton(
triton_basedir = Path(tmpdir) / "triton"
triton_pythondir = triton_basedir / "python"
triton_repo = "https://github.com/openai/triton"
if device == "rocm":
if build_rocm:
triton_pkg_name = "pytorch-triton-rocm"
elif device == "xpu":
triton_pkg_name = "pytorch-triton-xpu"
triton_repo = "https://github.com/intel/intel-xpu-backend-for-triton"
else:
triton_pkg_name = "pytorch-triton"
check_call(["git", "clone", triton_repo, "triton"], cwd=tmpdir)
check_call(["git", "clone", triton_repo], cwd=tmpdir)
if release:
ver, rev, patch = version.split(".")
check_call(
@ -147,7 +140,7 @@ def build_triton(
expected_version=None,
)
if device == "rocm":
if build_rocm:
check_call(
[f"{SCRIPT_DIR}/amd/package_triton_wheel.sh"],
cwd=triton_basedir,
@ -162,7 +155,7 @@ def build_triton(
whl_path = next(iter((triton_pythondir / "dist").glob("*.whl")))
shutil.copy(whl_path, Path.cwd())
if device == "rocm":
if build_rocm:
check_call(
[f"{SCRIPT_DIR}/amd/patch_triton_wheel.sh", Path.cwd()],
cwd=triton_basedir,
@ -177,19 +170,17 @@ def main() -> None:
parser = ArgumentParser("Build Triton binaries")
parser.add_argument("--release", action="store_true")
parser.add_argument("--build-conda", action="store_true")
parser.add_argument(
"--device", type=str, default="cuda", choices=["cuda", "rocm", "xpu"]
)
parser.add_argument("--build-rocm", action="store_true")
parser.add_argument("--py-version", type=str)
parser.add_argument("--commit-hash", type=str)
parser.add_argument("--triton-version", type=str, default=read_triton_version())
args = parser.parse_args()
build_triton(
device=args.device,
build_rocm=args.build_rocm,
commit_hash=args.commit_hash
if args.commit_hash
else read_triton_pin(args.device),
else read_triton_pin(args.build_rocm),
version=args.triton_version,
build_conda=args.build_conda,
py_version=args.py_version,

Binary file not shown.

View File

@ -8,7 +8,6 @@ architectures:
* CPU
* Latest CUDA
* Latest ROCM
* Latest XPU
"""
import os
@ -25,7 +24,6 @@ CUDA_ARCHES_CUDNN_VERSION = {"11.8": "9", "12.1": "9", "12.4": "9"}
ROCM_ARCHES = ["6.0", "6.1"]
XPU_ARCHES = ["xpu"]
CPU_CXX11_ABI_ARCH = ["cpu-cxx11-abi"]
@ -50,7 +48,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-curand-cu11==10.3.0.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu11==11.4.1.48; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu11==11.7.5.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu11==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu11==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu11==11.8.86; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"12.1": (
@ -63,7 +61,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"12.4": (
@ -76,7 +74,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-curand-cu12==10.3.5.119; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.6.0.99; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.3.0.142; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
@ -134,8 +132,6 @@ def arch_type(arch_version: str) -> str:
return "cuda"
elif arch_version in ROCM_ARCHES:
return "rocm"
elif arch_version in XPU_ARCHES:
return "xpu"
elif arch_version in CPU_CXX11_ABI_ARCH:
return "cpu-cxx11-abi"
elif arch_version in CPU_AARCH64_ARCH:
@ -160,7 +156,6 @@ WHEEL_CONTAINER_IMAGES = {
gpu_arch: f"pytorch/manylinux-builder:rocm{gpu_arch}-{DEFAULT_TAG}"
for gpu_arch in ROCM_ARCHES
},
"xpu": f"pytorch/manylinux2_28-builder:xpu-{DEFAULT_TAG}",
"cpu": f"pytorch/manylinux-builder:cpu-{DEFAULT_TAG}",
"cpu-cxx11-abi": f"pytorch/manylinuxcxx11-abi-builder:cpu-cxx11-abi-{DEFAULT_TAG}",
"cpu-aarch64": f"pytorch/manylinuxaarch64-builder:cpu-aarch64-{DEFAULT_TAG}",
@ -226,7 +221,6 @@ def translate_desired_cuda(gpu_arch_type: str, gpu_arch_version: str) -> str:
"cuda": f"cu{gpu_arch_version.replace('.', '')}",
"cuda-aarch64": "cu124",
"rocm": f"rocm{gpu_arch_version}",
"xpu": "xpu",
}.get(gpu_arch_type, gpu_arch_version)
@ -331,13 +325,13 @@ def generate_wheels_matrix(
package_type = "manywheel"
if python_versions is None:
python_versions = FULL_PYTHON_VERSIONS + ["3.13"]
python_versions = FULL_PYTHON_VERSIONS
if arches is None:
# Define default compute archivectures
arches = ["cpu"]
if os == "linux":
arches += CPU_CXX11_ABI_ARCH + CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
arches += CPU_CXX11_ABI_ARCH + CUDA_ARCHES + ROCM_ARCHES
elif os == "windows":
arches += CUDA_ARCHES
elif os == "linux-aarch64":
@ -360,16 +354,9 @@ def generate_wheels_matrix(
or arch_version == "cpu-aarch64"
or arch_version == "cpu-s390x"
or arch_version == "cuda-aarch64"
or arch_version == "xpu"
else arch_version
)
# TODO: Enable python 3.13 on rocm, xpu, aarch64, windows
if (
gpu_arch_type in ["rocm", "xpu"] or os != "linux"
) and python_version == "3.13":
continue
# 12.1 linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
if (
arch_version in ["12.4", "12.1", "11.8"]
@ -399,49 +386,6 @@ def generate_wheels_matrix(
),
}
)
if arch_version != "cuda-aarch64":
ret.append(
{
"python_version": python_version,
"gpu_arch_type": gpu_arch_type,
"gpu_arch_version": gpu_arch_version,
"desired_cuda": translate_desired_cuda(
gpu_arch_type, gpu_arch_version
),
"use_split_build": "True",
"devtoolset": "",
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
"package_type": package_type,
"pytorch_extra_install_requirements": (
PYTORCH_EXTRA_INSTALL_REQUIREMENTS[arch_version] # fmt: skip
if os != "linux-aarch64"
else ""
),
"build_name": f"{package_type}-py{python_version}-{gpu_arch_type}{gpu_arch_version}-split".replace( # noqa: B950
".", "_"
),
}
)
# Special build building to use on Colab. PyThon 3.10 for 12.1 CUDA
if python_version == "3.10" and arch_version == "12.1":
ret.append(
{
"python_version": python_version,
"gpu_arch_type": gpu_arch_type,
"gpu_arch_version": gpu_arch_version,
"desired_cuda": translate_desired_cuda(
gpu_arch_type, gpu_arch_version
),
"use_split_build": "False",
"devtoolset": "",
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
"package_type": package_type,
"pytorch_extra_install_requirements": "",
"build_name": f"{package_type}-py{python_version}-{gpu_arch_type}{gpu_arch_version}-full".replace( # noqa: B950
".", "_"
),
}
)
else:
ret.append(
{
@ -452,9 +396,7 @@ def generate_wheels_matrix(
gpu_arch_type, gpu_arch_version
),
"devtoolset": (
"cxx11-abi"
if arch_version in ["cpu-cxx11-abi", "xpu"]
else ""
"cxx11-abi" if arch_version == "cpu-cxx11-abi" else ""
),
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
"package_type": package_type,

103
.github/scripts/get_workflow_type.py vendored Normal file
View File

@ -0,0 +1,103 @@
import json
from argparse import ArgumentParser
from typing import Any, Tuple
from github import Auth, Github
from github.Issue import Issue
WORKFLOW_LABEL_META = "" # use meta runners
WORKFLOW_LABEL_LF = "lf." # use runners from the linux foundation
LABEL_TYPE_KEY = "label_type"
MESSAGE_KEY = "message"
MESSAGE = "" # Debug message to return to the caller
def parse_args() -> Any:
parser = ArgumentParser("Get dynamic rollout settings")
parser.add_argument("--github-token", type=str, required=True, help="GitHub token")
parser.add_argument(
"--github-repo",
type=str,
required=False,
default="pytorch/test-infra",
help="GitHub repo to get the issue",
)
parser.add_argument(
"--github-issue", type=int, required=True, help="GitHub issue umber"
)
parser.add_argument(
"--github-user", type=str, required=True, help="GitHub username"
)
parser.add_argument(
"--github-branch", type=str, required=True, help="Current GitHub branch"
)
return parser.parse_args()
def get_gh_client(github_token: str) -> Github:
auth = Auth.Token(github_token)
return Github(auth=auth)
def get_issue(gh: Github, repo: str, issue_num: int) -> Issue:
repo = gh.get_repo(repo)
return repo.get_issue(number=issue_num)
def is_exception_branch(branch: str) -> bool:
return branch.split("/")[0] in {"main", "nightly", "release", "landchecks"}
def get_workflow_type(issue: Issue, username: str) -> Tuple[str, str]:
try:
user_list = issue.get_comments()[0].body.split()
if user_list[0] == "!":
MESSAGE = "LF Workflows are disabled for everyone. Using meta runners."
return WORKFLOW_LABEL_META, MESSAGE
elif user_list[0] == "*":
MESSAGE = "LF Workflows are enabled for everyone. Using LF runners."
return WORKFLOW_LABEL_LF, MESSAGE
elif username in user_list:
MESSAGE = f"LF Workflows are enabled for {username}. Using LF runners."
return WORKFLOW_LABEL_LF, MESSAGE
else:
MESSAGE = f"LF Workflows are disabled for {username}. Using meta runners."
return WORKFLOW_LABEL_META, MESSAGE
except Exception as e:
MESSAGE = f"Failed to get determine workflow type. Falling back to meta runners. Exception: {e}"
return WORKFLOW_LABEL_META, MESSAGE
def main() -> None:
args = parse_args()
if is_exception_branch(args.github_branch):
output = {
LABEL_TYPE_KEY: WORKFLOW_LABEL_META,
MESSAGE_KEY: f"Exception branch: '{args.github_branch}', using meta runners",
}
else:
try:
gh = get_gh_client(args.github_token)
# The default issue we use - https://github.com/pytorch/test-infra/issues/5132
issue = get_issue(gh, args.github_repo, args.github_issue)
label_type, message = get_workflow_type(issue, args.github_user)
output = {
LABEL_TYPE_KEY: label_type,
MESSAGE_KEY: message,
}
except Exception as e:
output = {
LABEL_TYPE_KEY: WORKFLOW_LABEL_META,
MESSAGE_KEY: f"Failed to get issue. Falling back to meta runners. Exception: {e}",
}
json_output = json.dumps(output)
print(json_output)
if __name__ == "__main__":
main()

Binary file not shown.

View File

@ -1,210 +0,0 @@
# flake8: noqa: G004
import logging
import os
from argparse import ArgumentParser
from logging import LogRecord
from typing import Any, Iterable
from github import Auth, Github
from github.Issue import Issue
WORKFLOW_LABEL_META = "" # use meta runners
WORKFLOW_LABEL_LF = "lf." # use runners from the linux foundation
GITHUB_OUTPUT = os.getenv("GITHUB_OUTPUT", "")
GH_OUTPUT_KEY_LABEL_TYPE = "label-type"
class ColorFormatter(logging.Formatter):
"""Color codes the log messages based on the log level"""
COLORS = {
"WARNING": "\033[33m", # Yellow
"ERROR": "\033[31m", # Red
"CRITICAL": "\033[31m", # Red
"INFO": "\033[0m", # Reset
"DEBUG": "\033[0m", # Reset
}
def format(self, record: LogRecord) -> str:
log_color = self.COLORS.get(record.levelname, "\033[0m") # Default to reset
record.msg = f"{log_color}{record.msg}\033[0m"
return super().format(record)
handler = logging.StreamHandler()
handler.setFormatter(ColorFormatter(fmt="%(levelname)-8s: %(message)s"))
log = logging.getLogger(os.path.basename(__file__))
log.addHandler(handler)
log.setLevel(logging.INFO)
def set_github_output(key: str, value: str) -> None:
"""
Defines outputs of the github action that invokes this script
"""
if not GITHUB_OUTPUT:
# See https://github.blog/changelog/2022-10-11-github-actions-deprecating-save-state-and-set-output-commands/ for deprecation notice
log.warning(
"No env var found for GITHUB_OUTPUT, you must be running this code locally. Falling back to the deprecated print method."
)
print(f"::set-output name={key}::{value}")
return
with open(GITHUB_OUTPUT, "a") as f:
log.info(f"Setting output: {key}='{value}'")
f.write(f"{key}={value}\n")
def parse_args() -> Any:
parser = ArgumentParser("Get dynamic rollout settings")
parser.add_argument("--github-token", type=str, required=True, help="GitHub token")
parser.add_argument(
"--github-issue-repo",
type=str,
required=False,
default="pytorch/test-infra",
help="GitHub repo to get the issue",
)
parser.add_argument(
"--github-repo",
type=str,
required=True,
help="GitHub repo where CI is running",
)
parser.add_argument(
"--github-issue", type=int, required=True, help="GitHub issue number"
)
parser.add_argument(
"--github-actor", type=str, required=True, help="GitHub triggering_actor"
)
parser.add_argument(
"--github-issue-owner", type=str, required=True, help="GitHub issue owner"
)
parser.add_argument(
"--github-branch", type=str, required=True, help="Current GitHub branch or tag"
)
parser.add_argument(
"--github-ref-type",
type=str,
required=True,
help="Current GitHub ref type, branch or tag",
)
return parser.parse_args()
def get_gh_client(github_token: str) -> Github:
auth = Auth.Token(github_token)
return Github(auth=auth)
def get_issue(gh: Github, repo: str, issue_num: int) -> Issue:
repo = gh.get_repo(repo)
return repo.get_issue(number=issue_num)
def get_potential_pr_author(
gh: Github, repo: str, username: str, ref_type: str, ref_name: str
) -> str:
# If the trigger was a new tag added by a bot, this is a ciflow case
# Fetch the actual username from the original PR. The PR number is
# embedded in the tag name: ciflow/<name>/<pr-number>
if username == "pytorch-bot[bot]" and ref_type == "tag":
split_tag = ref_name.split("/")
if (
len(split_tag) == 3
and split_tag[0] == "ciflow"
and split_tag[2].isnumeric()
):
pr_number = split_tag[2]
try:
repository = gh.get_repo(repo)
pull = repository.get_pull(number=int(pr_number))
except Exception as e:
raise Exception( # noqa: TRY002
f"issue with pull request {pr_number} from repo {repository}"
) from e
return pull.user.login
# In all other cases, return the original input username
return username
def is_exception_branch(branch: str) -> bool:
return branch.split("/")[0] in {"main", "nightly", "release", "landchecks"}
def get_workflow_type(issue: Issue, workflow_requestors: Iterable[str]) -> str:
try:
first_comment = issue.get_comments()[0].body.strip("\n\t ")
if first_comment[0] == "!":
log.info("LF Workflows are disabled for everyone. Using meta runners.")
return WORKFLOW_LABEL_META
elif first_comment[0] == "*":
log.info("LF Workflows are enabled for everyone. Using LF runners.")
return WORKFLOW_LABEL_LF
else:
all_opted_in_users = {
usr_raw.strip("\n\t@ ") for usr_raw in first_comment.split()
}
opted_in_requestors = {
usr for usr in workflow_requestors if usr in all_opted_in_users
}
if opted_in_requestors:
log.info(
f"LF Workflows are enabled for {', '.join(opted_in_requestors)}. Using LF runners."
)
return WORKFLOW_LABEL_LF
else:
log.info(
f"LF Workflows are disabled for {', '.join(workflow_requestors)}. Using meta runners."
)
return WORKFLOW_LABEL_META
except Exception as e:
log.error(
f"Failed to get determine workflow type. Falling back to meta runners. Exception: {e}"
)
return WORKFLOW_LABEL_META
def main() -> None:
args = parse_args()
if args.github_ref_type == "branch" and is_exception_branch(args.github_branch):
log.info(f"Exception branch: '{args.github_branch}', using meta runners")
label_type = WORKFLOW_LABEL_META
else:
try:
gh = get_gh_client(args.github_token)
# The default issue we use - https://github.com/pytorch/test-infra/issues/5132
issue = get_issue(gh, args.github_issue_repo, args.github_issue)
username = get_potential_pr_author(
gh,
args.github_repo,
args.github_actor,
args.github_ref_type,
args.github_branch,
)
label_type = get_workflow_type(
issue,
(
args.github_issue_owner,
username,
),
)
except Exception as e:
log.error(
f"Failed to get issue. Falling back to meta runners. Exception: {e}"
)
label_type = WORKFLOW_LABEL_META
set_github_output(GH_OUTPUT_KEY_LABEL_TYPE, label_type)
if __name__ == "__main__":
main()

View File

@ -2,7 +2,7 @@
set -eoux pipefail
SYNC_BRANCH=pytorch-stable-prototype
SYNC_BRANCH=fbcode/pytorch-stable-prototype
git config user.email "fake@example.com"
git config user.name "PyTorch Stable Bot"
@ -11,9 +11,7 @@ git fetch origin main
git fetch origin "$SYNC_BRANCH"
git checkout "$SYNC_BRANCH"
# Using a hardcoded SHA here is a massive speedup as we can skip the entire history of the pytorch GitHub repo.
# This specific SHA was chosen as it was before the "branch point" of the stable branch
for SHA in $(git log ba3b05fdf37ddbc3c301294d6a560a816335e717..origin/main --pretty="%h" --reverse -- torch/distributed torch/csrc/distributed test/distributed test/cpp/c10d benchmarks/distributed)
for SHA in $(git log 4333e122d4b74cdf84351ed2907045c6a767b4cd..origin/main --pretty="%h" --reverse -- torch/distributed torch/csrc/distributed test/distributed test/cpp/c10d benchmarks/distributed)
do
# `git merge-base --is-ancestor` exits with code 0 if the given SHA is an ancestor, and non-0 otherwise
if git merge-base --is-ancestor $SHA HEAD || [[ $(git log --grep="(cherry picked from commit $SHA") ]]
@ -22,12 +20,7 @@ do
continue
fi
echo "Copying $SHA"
git cherry-pick -x "$SHA" -X theirs
git reset --soft HEAD~1
git add torch/distributed torch/csrc/distributed test/distributed test/cpp/c10d benchmarks/distributed
git checkout .
git commit --reuse-message=HEAD@{1}
git clean -f
git cherry-pick -x "$SHA"
done
if [[ "${WITH_PUSH}" == true ]]; then

View File

@ -41,7 +41,7 @@ def main() -> None:
)
options = parser.parse_args()
tagged_images: Dict[str, bool] = {}
tagged_images: Dict[str, bool] = dict()
platform_images = [
generate_binary_build_matrix.WHEEL_CONTAINER_IMAGES,
generate_binary_build_matrix.LIBTORCH_CONTAINER_IMAGES,

View File

@ -7,7 +7,6 @@ cd llm-target-determinator
pip install -q -r requirements.txt
cd ../codellama
pip install -e .
pip install numpy==1.26.0
# Run indexer
cd ../llm-target-determinator

View File

@ -397,7 +397,6 @@ class TestTryMerge(TestCase):
# self.assertGreater(len(pr.get_checkrun_conclusions()), 3)
self.assertGreater(pr.get_commit_count(), 60)
@skip("GitHub doesn't keep this data anymore")
def test_gql_retrieve_checksuites(self, *args: Any) -> None:
"Fetch comments and conclusions for PR with 60 commits"
pr = GitHubPR("pytorch", "pytorch", 94787)
@ -895,24 +894,6 @@ class TestBypassFailures(TestCase):
self.assertTrue(len(ignorable["FLAKY"]) == 1)
self.assertTrue(len(ignorable["BROKEN_TRUNK"]) == 0)
def test_ignore_failures_older_run_same_workflow(self, *args: Any) -> None:
pr = GitHubPR("pytorch", "pytorch", 129013)
checks = pr.get_checkrun_conclusions()
checks = get_classifications(
pr.pr_num,
pr.project,
checks,
[],
)
pending, failed, ignorable = categorize_checks(
checks,
list(checks.keys()),
)
self.assertTrue(len(pending) == 0)
self.assertTrue(len(failed) == 0)
self.assertTrue(len(ignorable["FLAKY"]) == 2)
self.assertTrue(len(ignorable["UNSTABLE"]) == 13)
@mock.patch("trymerge.read_merge_rules", side_effect=xla_merge_rules)
def test_dont_ignore_flaky_failures(self, *args: Any) -> None:
"""
@ -1041,7 +1022,7 @@ class TestGitHubPRGhstackDependencies(TestCase):
)
@skip(
reason="This test is run against a mutable PR that has changed, so it no longer works. The test should be changed"
reason="This test is run against a mutalbe PR that has changed, so it no longer works. The test should be changed"
)
@mock.patch("trymerge.read_merge_rules")
@mock.patch("trymerge.GitRepo")

View File

@ -81,10 +81,9 @@ JobNameToStateDict = Dict[str, JobCheckState]
class WorkflowCheckState:
def __init__(self, name: str, url: str, run_id: int, status: Optional[str]):
def __init__(self, name: str, url: str, status: Optional[str]):
self.name: str = name
self.url: str = url
self.run_id: int = run_id
self.status: Optional[str] = status
self.jobs: JobNameToStateDict = {}
@ -123,7 +122,6 @@ fragment PRCheckSuites on CheckSuiteConnection {
workflowRun {
workflow {
name
databaseId
}
databaseId
url
@ -514,7 +512,7 @@ def add_workflow_conclusions(
workflows: Dict[str, WorkflowCheckState] = {}
# for the jobs that don't have a workflow
no_workflow_obj: WorkflowCheckState = WorkflowCheckState("", "", 0, None)
no_workflow_obj: WorkflowCheckState = WorkflowCheckState("", "", None)
def add_conclusions(edges: Any) -> None:
for edge_idx, edge in enumerate(edges):
@ -525,30 +523,18 @@ def add_workflow_conclusions(
workflow_obj: WorkflowCheckState = no_workflow_obj
if workflow_run is not None:
# This is the usual workflow run ID we see on GitHub
workflow_run_id = workflow_run["databaseId"]
# While this is the metadata name and ID of the workflow itself
workflow_name = workflow_run["workflow"]["name"]
workflow_id = workflow_run["workflow"]["databaseId"]
workflow_conclusion = node["conclusion"]
# Do not override existing status with cancelled
if workflow_conclusion == "CANCELLED" and workflow_name in workflows:
continue
# Only keep the latest workflow run for each workflow, heuristically,
# it's the run with largest run ID
if (
workflow_id not in workflows
or workflows[workflow_id].run_id < workflow_run_id
):
workflows[workflow_id] = WorkflowCheckState(
if workflow_name not in workflows:
workflows[workflow_name] = WorkflowCheckState(
name=workflow_name,
status=workflow_conclusion,
url=workflow_run["url"],
run_id=workflow_run_id,
)
workflow_obj = workflows[workflow_id]
workflow_obj = workflows[workflow_name]
while checkruns is not None:
for checkrun_node in checkruns["nodes"]:
@ -586,12 +572,12 @@ def add_workflow_conclusions(
# the jobs in but don't put the workflow in. We care more about the jobs in
# the workflow that ran than the container workflow.
res: JobNameToStateDict = {}
for workflow in workflows.values():
for workflow_name, workflow in workflows.items():
if len(workflow.jobs) > 0:
for job_name, job in workflow.jobs.items():
res[job_name] = job
else:
res[workflow.name] = JobCheckState(
res[workflow_name] = JobCheckState(
workflow.name,
workflow.url,
workflow.status,
@ -1177,6 +1163,7 @@ class GitHubPR:
# Finally, upload the record to Rockset. The list of pending and failed
# checks are at the time of the merge
save_merge_record(
collection=ROCKSET_MERGES_COLLECTION,
comment_id=comment_id,
pr_num=self.pr_num,
owner=self.org,
@ -1192,8 +1179,10 @@ class GitHubPR:
merge_base_sha=self.get_merge_base(),
merge_commit_sha=merge_commit_sha,
is_failed=False,
dry_run=dry_run,
skip_mandatory_checks=skip_mandatory_checks,
ignore_current=bool(ignore_current_checks),
workspace=ROCKSET_MERGES_WORKSPACE,
)
else:
print("Missing comment ID or PR number, couldn't upload to Rockset")
@ -1500,6 +1489,7 @@ def checks_to_markdown_bullets(
@retries_decorator()
def save_merge_record(
collection: str,
comment_id: int,
pr_num: int,
owner: str,
@ -1515,44 +1505,59 @@ def save_merge_record(
merge_base_sha: str,
merge_commit_sha: str = "",
is_failed: bool = False,
dry_run: bool = False,
skip_mandatory_checks: bool = False,
ignore_current: bool = False,
error: str = "",
workspace: str = "commons",
) -> None:
"""
This saves the merge records as a json, which can later be uploaded to s3
This saves the merge records into Rockset, so we can query them (for fun and profit)
"""
if dry_run:
# Decide not to save the record to Rockset if dry-run is set to not pollute
# the collection
return
# Prepare the record to be written into Rockset
data = [
{
"comment_id": comment_id,
"pr_num": pr_num,
"owner": owner,
"project": project,
"author": author,
"pending_checks": pending_checks,
"failed_checks": failed_checks,
"ignore_current_checks": ignore_current_checks,
"broken_trunk_checks": broken_trunk_checks,
"flaky_checks": flaky_checks,
"unstable_checks": unstable_checks,
"last_commit_sha": last_commit_sha,
"merge_base_sha": merge_base_sha,
"merge_commit_sha": merge_commit_sha,
"is_failed": is_failed,
"skip_mandatory_checks": skip_mandatory_checks,
"ignore_current": ignore_current,
"error": error,
# This is a unique identifier for the record for deduping purposes
# in rockset. Any unique string would work
"_id": f"{project}-{pr_num}-{comment_id}-{os.environ.get('GITHUB_RUN_ID')}",
}
]
repo_root = Path(__file__).resolve().parent.parent.parent
try:
import rockset # type: ignore[import]
with open(repo_root / "merge_record.json", "w") as f:
json.dump(data, f)
# Prepare the record to be written into Rockset
data = [
{
"comment_id": comment_id,
"pr_num": pr_num,
"owner": owner,
"project": project,
"author": author,
"pending_checks": pending_checks,
"failed_checks": failed_checks,
"ignore_current_checks": ignore_current_checks,
"broken_trunk_checks": broken_trunk_checks,
"flaky_checks": flaky_checks,
"unstable_checks": unstable_checks,
"last_commit_sha": last_commit_sha,
"merge_base_sha": merge_base_sha,
"merge_commit_sha": merge_commit_sha,
"is_failed": is_failed,
"skip_mandatory_checks": skip_mandatory_checks,
"ignore_current": ignore_current,
"error": error,
}
]
client = rockset.RocksetClient(
host="api.usw2a1.rockset.com", api_key=os.environ["ROCKSET_API_KEY"]
)
client.Documents.add_documents(
collection=collection,
data=data,
workspace=workspace,
)
except ModuleNotFoundError:
print("Rockset is missing, no record will be saved")
return
@retries_decorator(rc=[])
@ -2369,6 +2374,7 @@ def main() -> None:
# list of pending and failed checks here, but they are not really
# needed at the moment
save_merge_record(
collection=ROCKSET_MERGES_COLLECTION,
comment_id=args.comment_id,
pr_num=args.pr_num,
owner=org,
@ -2383,9 +2389,11 @@ def main() -> None:
last_commit_sha=pr.last_commit().get("oid", ""),
merge_base_sha=pr.get_merge_base(),
is_failed=True,
dry_run=args.dry_run,
skip_mandatory_checks=args.force,
ignore_current=args.ignore_current,
error=str(e),
workspace=ROCKSET_MERGES_WORKSPACE,
)
else:
print("Missing comment ID or PR number, couldn't upload to Rockset")

View File

@ -81,7 +81,7 @@ jobs:
!{{ config["build_name"] }}-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs: !{{ config["build_name"] }}-build
{%- if config["gpu_arch_type"] not in ["rocm", "xpu"] %}
{%- if config["gpu_arch_type"] != "rocm" %}
uses: ./.github/workflows/_binary-test-linux.yml
with:!{{ upload.binary_env_as_input(config) }}
build_name: !{{ config["build_name"] }}
@ -101,40 +101,6 @@ jobs:
{%- endif %}
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
{%- elif config["gpu_arch_type"] == "xpu" %}
runs-on: linux.idc.xpu
timeout-minutes: !{{ common.timeout_minutes }}
!{{ upload.binary_env(config) }}
permissions:
id-token: write
contents: read
steps:
- name: Setup XPU
uses: ./.github/actions/setup-xpu
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@v1.7.0
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v2
- uses: !{{ common.download_artifact_action }}
name: Download Build Artifacts
with:
name: !{{ config["build_name"] }}
path: "${{ runner.temp }}/artifacts/"
!{{ common.checkout(deep_clone=False, directory="pytorch") }}
!{{ common.checkout(deep_clone=False, directory="builder", repository=common.builder_repo, branch=common.builder_branch) }}
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: !{{ config["container_image"] }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
- name: Teardown XPU
uses: ./.github/actions/teardown-xpu
{%- else %}
runs-on: linux.rocm.gpu
timeout-minutes: !{{ common.timeout_minutes }}

View File

@ -30,9 +30,6 @@
{%- if config["devtoolset"] %}
DESIRED_DEVTOOLSET: !{{ config["devtoolset"] }}
{%- endif %}
{%- if config.use_split_build is defined %}
use_split_build: !{{ config["use_split_build"] }}
{%- endif %}
{%- endif %}
{%- if config["package_type"] == "libtorch" %}
{%- if config["libtorch_config"] %}
@ -47,7 +44,6 @@
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.8"
{%- endif %}
{%- else %}
DESIRED_PYTHON: "!{{ config["python_version"] }}"
{%- endif %}

View File

@ -27,11 +27,6 @@ on:
type: string
description: |
A JSON description of what configs to run later on.
runner:
required: false
type: string
default: "linux.large"
description: Runner type
env:
GIT_DEFAULT_BRANCH: ${{ github.event.repository.default_branch }}
@ -39,7 +34,7 @@ env:
jobs:
filter:
if: github.repository_owner == 'pytorch'
runs-on: ${{ inputs.runner }}
runs-on: [self-hosted, linux.large]
outputs:
test-matrix: ${{ steps.filter.outputs.test-matrix }}
is-test-matrix-empty: ${{ steps.filter.outputs.is-test-matrix-empty }}

View File

@ -21,13 +21,6 @@ on:
default: 210
type: number
description: timeout for the job
use_split_build:
description: |
[Experimental] Build a libtorch only wheel and build pytorch such that
are built from the libtorch wheel.
required: false
type: boolean
default: false
ALPINE_IMAGE:
required: false
type: string
@ -117,7 +110,6 @@ jobs:
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
USE_SPLIT_BUILD: ${{ inputs.use_split_build }}
steps:
- name: Make the env permanent during this workflow (but not the secrets)
shell: bash
@ -145,7 +137,6 @@ jobs:
echo "PR_NUMBER=${{ env.PR_NUMBER }}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
echo "SHA1=${{ env.SHA1 }}"
echo "USE_SPLIT_BUILD=${{ env.use_split_build }}"
} >> "${GITHUB_ENV} }}"
- name: List the env
@ -255,7 +246,6 @@ jobs:
-e PYTORCH_ROOT \
-e SKIP_ALL_TESTS \
-e PYTORCH_EXTRA_INSTALL_REQUIREMENTS \
-e USE_SPLIT_BUILD \
--tty \
--detach \
-v "${GITHUB_WORKSPACE}/pytorch:/pytorch" \

View File

@ -63,13 +63,6 @@ on:
required: true
type: string
description: Hardware to run this job on. Valid values are linux.4xlarge, linux.4xlarge.nvidia.gpu, linux.arm64.2xlarge, and linux.rocm.gpu
use_split_build:
description: |
[Experimental] Build a libtorch only wheel and build pytorch such that
are built from the libtorch wheel.
required: false
type: boolean
default: false
secrets:
github-token:
required: true
@ -104,7 +97,6 @@ jobs:
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
USE_SPLIT_BUILD: ${{ inputs.use_split_build }}
steps:
- name: Make the env permanent during this workflow (but not the secrets)
shell: bash
@ -132,7 +124,6 @@ jobs:
echo "PR_NUMBER=${{ env.PR_NUMBER }}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
echo "SHA1=${{ env.SHA1 }}"
echo "USE_SPLIT_BUILD=${{ env.USE_SPLIT_BUILD }}"
} >> "${GITHUB_ENV} }}"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"

View File

@ -55,13 +55,6 @@ on:
required: false
type: string
description: Desired python version
use_split_build:
description: |
[Experimental] Build a libtorch only wheel and build pytorch such that
are built from the libtorch wheel.
required: false
type: boolean
default: false
secrets:
github-token:
required: true
@ -100,7 +93,6 @@ jobs:
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
USE_SPLIT_BUILD: ${{ inputs.use_split_build }}
steps:
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main

105
.github/workflows/_linux-build-rg.yml vendored Normal file
View File

@ -0,0 +1,105 @@
name: linux-build-rg
on:
workflow_call:
inputs:
build-environment:
required: true
type: string
description: Top-level label for what's being built/tested.
docker-image-name:
required: true
type: string
description: Name of the base docker image to build with.
build-generates-artifacts:
required: false
type: boolean
default: true
description: If set, upload generated build artifacts.
build-with-debug:
required: false
type: boolean
default: false
description: If set, build in debug mode.
sync-tag:
required: false
type: string
default: ""
description: |
If this is set, our linter will use this to make sure that every other
job with the same `sync-tag` is identical.
cuda-arch-list:
required: false
type: string
default: "5.2"
description: |
List of CUDA architectures CI build should target.
runner-group:
required: false
type: string
default: "arc-lf-linux.2xlarge"
description: Runner group to select group type
test-matrix:
required: false
type: string
description: |
An option JSON description of what test configs to run later on. This
is moved here from the Linux test workflow so that we can apply filter
logic using test-config labels earlier and skip unnecessary builds
s3-bucket:
description: S3 bucket to download artifact
required: false
type: string
default: "gha-artifacts"
aws-role-to-assume:
description: role to assume for downloading artifacts
required: false
type: string
default: ""
secrets:
HUGGING_FACE_HUB_TOKEN:
required: false
description: |
HF Auth token to avoid rate limits when downloading models or datasets from hub
outputs:
docker-image:
value: ${{ jobs.build.outputs.docker-image }}
description: The docker image containing the built PyTorch.
test-matrix:
value: ${{ jobs.build.outputs.test-matrix }}
description: An optional JSON description of what test configs to run later on.
jobs:
build:
# Don't run on forked repos
if: github.repository_owner == 'pytorch'
runs-on:
group: ${{ inputs.runner-group }}
timeout-minutes: 240
outputs:
docker-image: ${{ steps.linux-build.outputs.docker-image }}
test-matrix: ${{ steps.linux-build.outputs.test-matrix }}
steps:
# [pytorch repo ref]
# Use a pytorch/pytorch reference instead of a reference to the local
# checkout because when we run this action we don't *have* a local
# checkout. In other cases you should prefer a local checkout.
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
- name: Linux Build
id: linux-build
uses: ./.github/actions/linux-build
with:
build-environment: ${{ inputs.build-environment }}
docker-image-name: ${{ inputs.docker-image-name }}
build-generates-artifacts: ${{ inputs.build-generates-artifacts }}
build-with-debug: ${{ inputs.build-with-debug }}
sync-tag: ${{ inputs.sync-tag }}
cuda-arch-list: ${{ inputs.cuda-arch-list }}
test-matrix: ${{ inputs.test-matrix }}
s3-bucket: ${{ inputs.s3-bucket }}
aws-role-to-assume: ${{ inputs.aws-role-to-assume }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}

View File

@ -39,7 +39,7 @@ on:
type: string
default: "linux.2xlarge"
description: |
Label of the runner this job should run on.
List of CUDA architectures CI build should target.
test-matrix:
required: false
type: string
@ -228,7 +228,7 @@ jobs:
- name: Store PyTorch Build Artifacts on S3
uses: seemethere/upload-artifact-s3@v5
if: inputs.build-generates-artifacts && steps.build.outcome != 'skipped' && inputs.use_split_build != 'true'
if: inputs.build-generates-artifacts && steps.build.outcome != 'skipped'
with:
name: ${{ inputs.build-environment }}
retention-days: 14
@ -236,16 +236,6 @@ jobs:
path: artifacts.zip
s3-bucket: ${{ inputs.s3-bucket }}
- name: Store PyTorch Build Artifacts on S3
uses: seemethere/upload-artifact-s3@v5
if: inputs.build-generates-artifacts && steps.build.outcome != 'skipped' && inputs.use_split_build == 'true'
with:
name: ${{ inputs.build-environment }}-experimental-split-build
retention-days: 14
if-no-files-found: error
path: artifacts.zip
s3-bucket: ${{ inputs.s3-bucket }}
- name: Upload sccache stats
if: steps.build.outcome != 'skipped'
uses: seemethere/upload-artifact-s3@v5

85
.github/workflows/_linux-test-label.yml vendored Normal file
View File

@ -0,0 +1,85 @@
name: linux-test-rg
on:
workflow_call:
inputs:
build-environment:
required: true
type: string
description: Top-level label for what's being built/tested.
test-matrix:
required: true
type: string
description: JSON description of what test configs to run.
docker-image:
required: true
type: string
description: Docker image to run in.
sync-tag:
required: false
type: string
default: ""
description: |
If this is set, our linter will use this to make sure that every other
job with the same `sync-tag` is identical.
timeout-minutes:
required: false
type: number
default: 240
description: |
Set the maximum (in minutes) how long the workflow should take to finish
use-gha:
required: false
type: string
default: ""
description: If set to any value, upload to GHA. Otherwise upload to S3.
dashboard-tag:
required: false
type: string
default: ""
s3-bucket:
description: S3 bucket to download artifact
required: false
type: string
default: "gha-artifacts"
aws-role-to-assume:
description: role to assume for downloading artifacts
required: false
type: string
default: ""
secrets:
HUGGING_FACE_HUB_TOKEN:
required: false
description: |
HF Auth token to avoid rate limits when downloading models or datasets from hub
env:
GIT_DEFAULT_BRANCH: ${{ github.event.repository.default_branch }}
jobs:
test:
# Don't run on forked repos or empty test matrix
if: github.repository_owner == 'pytorch' && toJSON(fromJSON(inputs.test-matrix).include) != '[]'
strategy:
matrix: ${{ fromJSON(inputs.test-matrix) }}
fail-fast: false
runs-on: ${{ matrix.runner }}
timeout-minutes: ${{ matrix.mem_leak_check == 'mem_leak_check' && 600 || inputs.timeout-minutes }}
steps:
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
- name: Linux Test
id: linux-test
uses: ./.github/actions/linux-test
with:
build-environment: ${{ inputs.build-environment }}
test-matrix: ${{ inputs.test-matrix }}
docker-image: ${{ inputs.docker-image }}
sync-tag: ${{ inputs.sync-tag }}
use-gha: ${{ inputs.use-gha }}
dashboard-tag: ${{ inputs.dashboard-tag }}
s3-bucket: ${{ inputs.s3-bucket }}
aws-role-to-assume: ${{ inputs.aws-role-to-assume }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

86
.github/workflows/_linux-test-rg.yml vendored Normal file
View File

@ -0,0 +1,86 @@
name: linux-test-label
on:
workflow_call:
inputs:
build-environment:
required: true
type: string
description: Top-level label for what's being built/tested.
test-matrix:
required: true
type: string
description: JSON description of what test configs to run.
docker-image:
required: true
type: string
description: Docker image to run in.
sync-tag:
required: false
type: string
default: ""
description: |
If this is set, our linter will use this to make sure that every other
job with the same `sync-tag` is identical.
timeout-minutes:
required: false
type: number
default: 240
description: |
Set the maximum (in minutes) how long the workflow should take to finish
use-gha:
required: false
type: string
default: ""
description: If set to any value, upload to GHA. Otherwise upload to S3.
dashboard-tag:
required: false
type: string
default: ""
s3-bucket:
description: S3 bucket to download artifact
required: false
type: string
default: "gha-artifacts"
aws-role-to-assume:
description: role to assume for downloading artifacts
required: false
type: string
default: ""
secrets:
HUGGING_FACE_HUB_TOKEN:
required: false
description: |
HF Auth token to avoid rate limits when downloading models or datasets from hub
env:
GIT_DEFAULT_BRANCH: ${{ github.event.repository.default_branch }}
jobs:
test:
# Don't run on forked repos or empty test matrix
if: github.repository_owner == 'pytorch' && toJSON(fromJSON(inputs.test-matrix).include) != '[]'
strategy:
matrix: ${{ fromJSON(inputs.test-matrix) }}
fail-fast: false
runs-on:
group: ${{ matrix.runner }}
timeout-minutes: ${{ matrix.mem_leak_check == 'mem_leak_check' && 600 || inputs.timeout-minutes }}
steps:
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
- name: Linux Test
id: linux-test
uses: ./.github/actions/linux-test
with:
build-environment: ${{ inputs.build-environment }}
test-matrix: ${{ inputs.test-matrix }}
docker-image: ${{ inputs.docker-image }}
sync-tag: ${{ inputs.sync-tag }}
use-gha: ${{ inputs.use-gha }}
dashboard-tag: ${{ inputs.dashboard-tag }}
s3-bucket: ${{ inputs.s3-bucket }}
aws-role-to-assume: ${{ inputs.aws-role-to-assume }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

View File

@ -3,23 +3,14 @@ name: Check whether the workflow owner can use ARC runners
on:
workflow_call:
inputs:
triggering_actor:
user_name:
required: true
type: string
description: The triggering_actor for the workflow. Use github.triggering_actor
issue_owner:
required: true
type: string
description: The owner of the issue. Use github.event.pull_request.user.login || github.event.issue.user.login
description: The name of the workflow owner.
curr_branch:
required: true
type: string
description: Current branch or tag.
curr_ref_type:
required: false
type: string
default: branch
description: The value of "github.ref_type", "branch" or "tag"
description: Current branch.
issue_number:
required: false
type: string
@ -35,240 +26,19 @@ on:
jobs:
runner-determinator:
runs-on: ubuntu-latest
runs-on: linux.4xlarge
outputs:
label-type: ${{ steps.set-condition.outputs.label-type }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
ISSUE_NUMBER: ${{ inputs.issue_number }}
TRIGGERING_ACTOR: ${{ inputs.triggering_actor }}
ISSUE_OWNER: ${{ inputs.issue_owner }}
USERNAME: ${{ inputs.user_name }}
steps:
# - name: Checkout PyTorch
# uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
# with:
# fetch-depth: 1
# submodules: true
# TODO: Remove the hardcoded step below
# Hardcoding below is temporary for testing ALI runners
# This file below should match the script found in .github/scripts/runner_determinator.py
- name: Hardcode runner-determinator script
run: |
cat <<EOF > runner_determinator.py
# flake8: noqa: G004
import logging
import os
from argparse import ArgumentParser
from logging import LogRecord
from typing import Any, Iterable
from github import Auth, Github
from github.Issue import Issue
WORKFLOW_LABEL_META = "" # use meta runners
WORKFLOW_LABEL_LF = "lf." # use runners from the linux foundation
GITHUB_OUTPUT = os.getenv("GITHUB_OUTPUT", "")
GH_OUTPUT_KEY_LABEL_TYPE = "label-type"
class ColorFormatter(logging.Formatter):
"""Color codes the log messages based on the log level"""
COLORS = {
"WARNING": "\033[33m", # Yellow
"ERROR": "\033[31m", # Red
"CRITICAL": "\033[31m", # Red
"INFO": "\033[0m", # Reset
"DEBUG": "\033[0m", # Reset
}
def format(self, record: LogRecord) -> str:
log_color = self.COLORS.get(record.levelname, "\033[0m") # Default to reset
record.msg = f"{log_color}{record.msg}\033[0m"
return super().format(record)
handler = logging.StreamHandler()
handler.setFormatter(ColorFormatter(fmt="%(levelname)-8s: %(message)s"))
log = logging.getLogger(os.path.basename(__file__))
log.addHandler(handler)
log.setLevel(logging.INFO)
def set_github_output(key: str, value: str) -> None:
"""
Defines outputs of the github action that invokes this script
"""
if not GITHUB_OUTPUT:
# See https://github.blog/changelog/2022-10-11-github-actions-deprecating-save-state-and-set-output-commands/ for deprecation notice
log.warning(
"No env var found for GITHUB_OUTPUT, you must be running this code locally. Falling back to the deprecated print method."
)
print(f"::set-output name={key}::{value}")
return
with open(GITHUB_OUTPUT, "a") as f:
log.info(f"Setting output: {key}='{value}'")
f.write(f"{key}={value}\n")
def parse_args() -> Any:
parser = ArgumentParser("Get dynamic rollout settings")
parser.add_argument("--github-token", type=str, required=True, help="GitHub token")
parser.add_argument(
"--github-issue-repo",
type=str,
required=False,
default="pytorch/test-infra",
help="GitHub repo to get the issue",
)
parser.add_argument(
"--github-repo",
type=str,
required=True,
help="GitHub repo where CI is running",
)
parser.add_argument(
"--github-issue", type=int, required=True, help="GitHub issue number"
)
parser.add_argument(
"--github-actor", type=str, required=True, help="GitHub triggering_actor"
)
parser.add_argument(
"--github-issue-owner", type=str, required=True, help="GitHub issue owner"
)
parser.add_argument(
"--github-branch", type=str, required=True, help="Current GitHub branch or tag"
)
parser.add_argument(
"--github-ref-type",
type=str,
required=True,
help="Current GitHub ref type, branch or tag",
)
return parser.parse_args()
def get_gh_client(github_token: str) -> Github:
auth = Auth.Token(github_token)
return Github(auth=auth)
def get_issue(gh: Github, repo: str, issue_num: int) -> Issue:
repo = gh.get_repo(repo)
return repo.get_issue(number=issue_num)
def get_potential_pr_author(
gh: Github, repo: str, username: str, ref_type: str, ref_name: str
) -> str:
# If the trigger was a new tag added by a bot, this is a ciflow case
# Fetch the actual username from the original PR. The PR number is
# embedded in the tag name: ciflow/<name>/<pr-number>
if username == "pytorch-bot[bot]" and ref_type == "tag":
split_tag = ref_name.split("/")
if (
len(split_tag) == 3
and split_tag[0] == "ciflow"
and split_tag[2].isnumeric()
):
pr_number = split_tag[2]
try:
repository = gh.get_repo(repo)
pull = repository.get_pull(number=int(pr_number))
except Exception as e:
raise Exception( # noqa: TRY002
f"issue with pull request {pr_number} from repo {repository}"
) from e
return pull.user.login
# In all other cases, return the original input username
return username
def is_exception_branch(branch: str) -> bool:
return branch.split("/")[0] in {"main", "nightly", "release", "landchecks"}
def get_workflow_type(issue: Issue, workflow_requestors: Iterable[str]) -> str:
try:
first_comment = issue.get_comments()[0].body.strip("\n\t ")
if first_comment[0] == "!":
log.info("LF Workflows are disabled for everyone. Using meta runners.")
return WORKFLOW_LABEL_META
elif first_comment[0] == "*":
log.info("LF Workflows are enabled for everyone. Using LF runners.")
return WORKFLOW_LABEL_LF
else:
all_opted_in_users = {
usr_raw.strip("\n\t@ ") for usr_raw in first_comment.split()
}
opted_in_requestors = {
usr for usr in workflow_requestors if usr in all_opted_in_users
}
if opted_in_requestors:
log.info(
f"LF Workflows are enabled for {', '.join(opted_in_requestors)}. Using LF runners."
)
return WORKFLOW_LABEL_LF
else:
log.info(
f"LF Workflows are disabled for {', '.join(workflow_requestors)}. Using meta runners."
)
return WORKFLOW_LABEL_META
except Exception as e:
log.error(
f"Failed to get determine workflow type. Falling back to meta runners. Exception: {e}"
)
return WORKFLOW_LABEL_META
def main() -> None:
args = parse_args()
if args.github_ref_type == "branch" and is_exception_branch(args.github_branch):
log.info(f"Exception branch: '{args.github_branch}', using meta runners")
label_type = WORKFLOW_LABEL_META
else:
try:
gh = get_gh_client(args.github_token)
# The default issue we use - https://github.com/pytorch/test-infra/issues/5132
issue = get_issue(gh, args.github_issue_repo, args.github_issue)
username = get_potential_pr_author(
gh,
args.github_repo,
args.github_actor,
args.github_ref_type,
args.github_branch,
)
label_type = get_workflow_type(
issue,
(
args.github_issue_owner,
username,
),
)
except Exception as e:
log.error(
f"Failed to get issue. Falling back to meta runners. Exception: {e}"
)
label_type = WORKFLOW_LABEL_META
set_github_output(GH_OUTPUT_KEY_LABEL_TYPE, label_type)
if __name__ == "__main__":
main()
EOF
cat runner_determinator.py
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
with:
fetch-depth: 1
submodules: true
- name: Install dependencies
run: python3 -m pip install urllib3==1.26.18 PyGithub==2.3.0
@ -277,14 +47,15 @@ jobs:
id: set-condition
run: |
curr_branch="${{ inputs.curr_branch }}"
curr_ref_type="${{ inputs.curr_ref_type }}"
echo "Current branch is '$curr_branch'"
python3 runner_determinator.py \
output="$(python3 .github/scripts/get_workflow_type.py \
--github-token "$GITHUB_TOKEN" \
--github-issue "$ISSUE_NUMBER" \
--github-branch "$curr_branch" \
--github-actor "$TRIGGERING_ACTOR" \
--github-issue-owner "$ISSUE_OWNER" \
--github-ref-type "$curr_ref_type" \
--github-repo "$GITHUB_REPOSITORY"
--github-user "$USERNAME")"
echo "Output: '${output}'"
LABEL_TYPE=$(echo "${output}" | jq -r '.label_type')
echo "label-type=$LABEL_TYPE" >> "$GITHUB_OUTPUT"

View File

@ -30,12 +30,6 @@ on:
An option JSON description of what test configs to run later on. This
is moved here from the Linux test workflow so that we can apply filter
logic using test-config labels earlier and skip unnecessary builds
runner:
required: false
type: string
default: "windows.4xlarge.nonephemeral"
description: |
Label of the runner this job should run on.
outputs:
test-matrix:
@ -49,7 +43,7 @@ jobs:
build:
# Don't run on forked repos.
if: github.repository_owner == 'pytorch'
runs-on: ${{ inputs.runner }}
runs-on: [self-hosted, windows.4xlarge.nonephemeral]
timeout-minutes: 240
outputs:
test-matrix: ${{ steps.filter.outputs.test-matrix }}

View File

@ -14,7 +14,6 @@ on:
- .github/ci_commit_pins/triton.txt
- .ci/docker/ci_commit_pins/triton.txt
- .ci/docker/ci_commit_pins/triton-rocm.txt
- .ci/docker/ci_commit_pins/triton-xpu.txt
pull_request:
paths:
- .github/workflows/build-triton-wheel.yml
@ -22,7 +21,6 @@ on:
- .github/ci_commit_pins/triton.txt
- .ci/docker/ci_commit_pins/triton.txt
- .ci/docker/ci_commit_pins/triton-rocm.txt
- .ci/docker/ci_commit_pins/triton-xpu.txt
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
@ -36,7 +34,7 @@ jobs:
fail-fast: false
matrix:
py_vers: [ "3.8", "3.9", "3.10", "3.11", "3.12" ]
device: ["cuda", "rocm", "xpu"]
device: ["cuda", "rocm"]
include:
- device: "rocm"
rocm_version: "6.1"
@ -104,6 +102,11 @@ jobs:
;;
esac
BUILD_ROCM=""
if [[ "$BUILD_DEVICE" == "rocm" ]]; then
BUILD_ROCM="--build-rocm"
fi
RELEASE=""
if [[ "${IS_RELEASE_TAG}" == true ]]; then
RELEASE="--release"
@ -111,13 +114,7 @@ jobs:
docker exec -t "${container_name}" yum install -y zlib-devel zip
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" -m pip install -U setuptools==67.4.0
# Triton xpu build use GCC11
if [[ "${BUILD_DEVICE}" == xpu ]]; then
docker exec -t "${container_name}" yum install -y devtoolset-11-gcc-c++
docker exec -t "${container_name}" bash -c "source /opt/rh/devtoolset-11/enable && ${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE"
else
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE"
fi
docker exec -t "${container_name}" "${PYTHON_EXECUTABLE}" /pytorch/.github/scripts/build_triton_wheel.py $BUILD_ROCM $RELEASE
docker exec -t "${container_name}" chown -R 1000.1000 /artifacts
- uses: actions/upload-artifact@v3

View File

@ -5,11 +5,6 @@ on:
branches:
- main
- release/*
tags:
# Final Release tags look like: v1.11.0
- v[0-9]+.[0-9]+.[0-9]+
# Release candidate tags look like: v1.11.0-rc1
- v[0-9]+.[0-9]+.[0-9]+-rc[0-9]+
release:
types: [published]
pull_request:
@ -23,8 +18,6 @@ jobs:
# https://github.com/softprops/action-gh-release?tab=readme-ov-file#permissions
permissions:
contents: write
outputs:
pt_release_name: ${{ steps.release_name.outputs.pt_release_name }}
steps:
- uses: malfet/checkout@silent-checkout
with:
@ -56,44 +49,11 @@ jobs:
# Create archive
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
- name: Upload source distribution for release
- name: Upload source distribution
if: ${{ github.event_name == 'release' }}
uses: softprops/action-gh-release@v1
with:
files: ${{env.PT_RELEASE_FILE}}
- name: Upload source distribution to GHA artifacts for release tags
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
uses: actions/upload-artifact@v2
with:
name: ${{ env.PT_RELEASE_FILE }}
path: ${{ env.PT_RELEASE_FILE }}
- name: Set output
id: release_name
run: echo "::set-output name=pt_release_name::${{ env.PT_RELEASE_NAME }}.tar.gz"
upload_source_code_to_s3:
if: ${{ github.repository == 'pytorch/pytorch' && github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
runs-on: linux.2xlarge
environment: sourcecode-upload
name: Upload source code to S3 for release tags
permissions:
id-token: write
needs: release
steps:
- uses: actions/download-artifact@v2
with:
name: ${{ needs.release.outputs.pt_release_name }}
- name: Configure AWS credentials(PyTorch account)
uses: aws-actions/configure-aws-credentials@v3
with:
role-to-assume: arn:aws:iam::749337293305:role/gha_pytorch_source_code_upload_role
aws-region: us-east-1
- uses: seemethere/upload-artifact-s3@v5
with:
s3-bucket: pytorch
s3-prefix: source_code/test
if-no-files-found: warn
path: ${{ needs.release.outputs.pt_release_name }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name }}

View File

@ -54,7 +54,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_8-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cpu-aarch64-test: # Testing
@ -162,7 +162,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_9-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cpu-aarch64-test: # Testing
@ -270,7 +270,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cpu-aarch64-test: # Testing
@ -378,7 +378,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cpu-aarch64-test: # Testing
@ -486,7 +486,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cpu-aarch64-test: # Testing

View File

@ -48,7 +48,7 @@ jobs:
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda11_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu11==11.8.87; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu11==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu11==11.11.3.6; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu11==10.9.0.58; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu11==10.3.0.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu11==11.4.1.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu11==11.7.5.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu11==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu11==11.8.86; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu11==11.8.87; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu11==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu11==11.11.3.6; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu11==10.9.0.58; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu11==10.3.0.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu11==11.4.1.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu11==11.7.5.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu11==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu11==11.8.86; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda11_8-test: # Testing
@ -72,48 +72,6 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda11_8-split-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
with:
PYTORCH_ROOT: /pytorch
BUILDER_ROOT: /builder
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu118
GPU_ARCH_VERSION: 11.8
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: pytorch/manylinux-builder:cuda11.8-main
use_split_build: True
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda11_8-split
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu11==11.8.89; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu11==11.8.87; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu11==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu11==11.11.3.6; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu11==10.9.0.58; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu11==10.3.0.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu11==11.4.1.48; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu11==11.7.5.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu11==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu11==11.8.86; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda11_8-split-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs: manywheel-py3_8-cuda11_8-split-build
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
BUILDER_ROOT: /builder
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu118
GPU_ARCH_VERSION: 11.8
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: pytorch/manylinux-builder:cuda11.8-main
use_split_build: True
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda11_8-split
build_environment: linux-binary-manywheel
runs_on: linux.4xlarge.nvidia.gpu
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_1-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -130,7 +88,7 @@ jobs:
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda12_1
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_1-test: # Testing
@ -154,48 +112,6 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_1-split-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
with:
PYTORCH_ROOT: /pytorch
BUILDER_ROOT: /builder
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu121
GPU_ARCH_VERSION: 12.1
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: pytorch/manylinux-builder:cuda12.1-main
use_split_build: True
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda12_1-split
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_1-split-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs: manywheel-py3_8-cuda12_1-split-build
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
BUILDER_ROOT: /builder
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu121
GPU_ARCH_VERSION: 12.1
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: pytorch/manylinux-builder:cuda12.1-main
use_split_build: True
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda12_1-split
build_environment: linux-binary-manywheel
runs_on: linux.4xlarge.nvidia.gpu
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_4-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -212,7 +128,7 @@ jobs:
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda12_4
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.4.2.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.2.0.44; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.5.119; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.6.0.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.3.0.142; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.4.2.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.2.0.44; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.5.119; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.6.0.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.3.0.142; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_4-test: # Testing
@ -235,45 +151,3 @@ jobs:
runs_on: linux.4xlarge.nvidia.gpu
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_4-split-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
with:
PYTORCH_ROOT: /pytorch
BUILDER_ROOT: /builder
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu124
GPU_ARCH_VERSION: 12.4
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: pytorch/manylinux-builder:cuda12.4-main
use_split_build: True
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda12_4-split
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.4.2.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.2.0.44; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.5.119; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.6.0.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.3.0.142; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cuda12_4-split-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs: manywheel-py3_8-cuda12_4-split-build
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
BUILDER_ROOT: /builder
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu124
GPU_ARCH_VERSION: 12.4
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: pytorch/manylinux-builder:cuda12.4-main
use_split_build: True
DESIRED_PYTHON: "3.8"
build_name: manywheel-py3_8-cuda12_4-split
build_environment: linux-binary-manywheel
runs_on: linux.4xlarge.nvidia.gpu
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

File diff suppressed because it is too large Load Diff

View File

@ -54,7 +54,7 @@ jobs:
ALPINE_IMAGE: "docker.io/s390x/alpine"
build_name: manywheel-py3_8-cpu-s390x
build_environment: linux-s390x-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_8-cpu-s390x-test: # Testing
@ -117,7 +117,7 @@ jobs:
ALPINE_IMAGE: "docker.io/s390x/alpine"
build_name: manywheel-py3_9-cpu-s390x
build_environment: linux-s390x-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cpu-s390x-test: # Testing
@ -180,7 +180,7 @@ jobs:
ALPINE_IMAGE: "docker.io/s390x/alpine"
build_name: manywheel-py3_10-cpu-s390x
build_environment: linux-s390x-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cpu-s390x-test: # Testing
@ -243,7 +243,7 @@ jobs:
ALPINE_IMAGE: "docker.io/s390x/alpine"
build_name: manywheel-py3_11-cpu-s390x
build_environment: linux-s390x-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cpu-s390x-test: # Testing
@ -306,7 +306,7 @@ jobs:
ALPINE_IMAGE: "docker.io/s390x/alpine"
build_name: manywheel-py3_12-cpu-s390x
build_environment: linux-s390x-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cpu-s390x-test: # Testing

View File

@ -46,7 +46,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.8"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
# For sccache access (only on non-forked PRs)
AWS_ACCESS_KEY_ID: ${{ secrets.MACOS_SCCACHE_S3_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.MACOS_SCCACHE_S3_SECRET_ACCESS_KEY }}
@ -165,7 +165,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.9"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
# For sccache access (only on non-forked PRs)
AWS_ACCESS_KEY_ID: ${{ secrets.MACOS_SCCACHE_S3_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.MACOS_SCCACHE_S3_SECRET_ACCESS_KEY }}
@ -284,7 +284,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.10"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
# For sccache access (only on non-forked PRs)
AWS_ACCESS_KEY_ID: ${{ secrets.MACOS_SCCACHE_S3_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.MACOS_SCCACHE_S3_SECRET_ACCESS_KEY }}
@ -403,7 +403,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.11"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
# For sccache access (only on non-forked PRs)
AWS_ACCESS_KEY_ID: ${{ secrets.MACOS_SCCACHE_S3_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.MACOS_SCCACHE_S3_SECRET_ACCESS_KEY }}
@ -522,7 +522,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.12"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
# For sccache access (only on non-forked PRs)
AWS_ACCESS_KEY_ID: ${{ secrets.MACOS_SCCACHE_S3_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.MACOS_SCCACHE_S3_SECRET_ACCESS_KEY }}

View File

@ -46,7 +46,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.8"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -290,7 +290,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.8"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -536,7 +536,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.8"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -782,7 +782,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.8"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -1027,7 +1027,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.9"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -1271,7 +1271,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.9"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -1517,7 +1517,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.9"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -1763,7 +1763,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.9"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -2008,7 +2008,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.10"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -2252,7 +2252,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.10"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -2498,7 +2498,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.10"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -2744,7 +2744,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.10"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -2989,7 +2989,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.11"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -3233,7 +3233,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.11"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -3479,7 +3479,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.11"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -3725,7 +3725,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.11"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -3970,7 +3970,7 @@ jobs:
GPU_ARCH_TYPE: cpu
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.12"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -4214,7 +4214,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.12"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -4460,7 +4460,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.12"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash
@ -4706,7 +4706,7 @@ jobs:
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
DESIRED_PYTHON: "3.12"
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.1.0.70; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.1.3.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.0.2.54; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'
steps:
- name: Display EC2 information
shell: bash

View File

@ -24,8 +24,7 @@ jobs:
docker-image-name: pytorch-linux-focal-rocm-n-py3
test-matrix: |
{ include: [
{ config: "inductor", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2" },
{ config: "inductor", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2" },
{ config: "inductor", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.2" },
]}
linux-focal-rocm6_1-py3_8-inductor-test:
@ -172,21 +171,11 @@ jobs:
{ config: "cpu_inductor_timm_freezing", shard: 2, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_inductor_torchbench_freezing", shard: 1, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_inductor_torchbench_freezing", shard: 2, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_inductor_huggingface_amp_freezing", shard: 1, num_shards: 1, runner: "linux.16xlarge.spr" },
{ config: "cpu_inductor_timm_amp_freezing", shard: 1, num_shards: 2, runner: "linux.16xlarge.spr" },
{ config: "cpu_inductor_timm_amp_freezing", shard: 2, num_shards: 2, runner: "linux.16xlarge.spr" },
{ config: "cpu_inductor_torchbench_amp_freezing", shard: 1, num_shards: 2, runner: "linux.16xlarge.spr" },
{ config: "cpu_inductor_torchbench_amp_freezing", shard: 2, num_shards: 2, runner: "linux.16xlarge.spr" },
{ config: "dynamic_cpu_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
{ config: "dynamic_cpu_inductor_timm", shard: 1, num_shards: 2, runner: "linux.12xlarge" },
{ config: "dynamic_cpu_inductor_timm", shard: 2, num_shards: 2, runner: "linux.12xlarge" },
{ config: "dynamic_cpu_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.12xlarge" },
{ config: "dynamic_cpu_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_aot_inductor_huggingface_freezing", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
{ config: "cpu_aot_inductor_timm_freezing", shard: 1, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_aot_inductor_timm_freezing", shard: 2, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_aot_inductor_torchbench_freezing", shard: 1, num_shards: 2, runner: "linux.12xlarge" },
{ config: "cpu_aot_inductor_torchbench_freezing", shard: 2, num_shards: 2, runner: "linux.12xlarge" },
{ config: "inductor_torchbench_cpu_smoketest_perf", shard: 1, num_shards: 1, runner: "linux.24xl.spr-metal" },
]}
secrets:

View File

@ -19,10 +19,10 @@ jobs:
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
timeout: 120
runner: linux.2xlarge
runner: lf.linux.2xlarge
docker-image: pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-linter
# NB: A shallow checkout won't work here because calculate-docker-image requires a full checkout
# to run git rev-parse HEAD~:.ci/docker when a new image is needed
# to run git rev-parse HEAD~:.ci/docker when a new image is needed.
fetch-depth: 0
submodules: true
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
@ -35,7 +35,7 @@ jobs:
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
timeout: 120
runner: linux.2xlarge
runner: lf.linux.2xlarge
docker-image: pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-linter
# NB: A shallow checkout won't work here because calculate-docker-image requires a full checkout
# to run git rev-parse HEAD~:.ci/docker when a new image is needed
@ -49,7 +49,7 @@ jobs:
quick-checks:
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
runner: linux.2xlarge
runner: lf.linux.2xlarge
docker-image: pytorch-linux-focal-linter
fetch-depth: 0
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}

View File

@ -36,24 +36,33 @@ jobs:
ref: v0.0.2
path: llm-target-determinator
- name: Setup miniconda
uses: pytorch/test-infra/.github/actions/setup-miniconda@main
- name: Setup Conda
uses: conda-incubator/setup-miniconda@v2.1.1
with:
python-version: "3.9"
miniconda-version: "py39_4.12.0"
python-version: 3.9
- name: Install requirements
- name: Install Requirements
shell: bash -l {0}
run: |
set -euxo pipefail
${CONDA_RUN} pip install -r llm-target-determinator/requirements.txt
cd "${GITHUB_WORKSPACE}/codellama"
${CONDA_RUN} pip install -e .
conda create \
--yes \
--quiet \
--name "tdenv" \
"python=3.9"
conda activate tdenv
cd "${GITHUB_WORKSPACE}/llm-target-determinator"
pip install -r requirements.txt
cd ../codellama
pip install -e .
- name: Fetch CodeLlama Checkpoint
shell: bash -l {0}
run: |
set -euxo pipefail
cd "${GITHUB_WORKSPACE}/codellama"
conda activate tdenv
cd codellama/
mkdir "CodeLlama-7b-Python"
aws s3 cp "s3://target-determinator-assets/CodeLlama-7b-Python" "CodeLlama-7b-Python" --recursive --no-progress
@ -66,7 +75,7 @@ jobs:
shell: bash
command: |
set -euxo pipefail
${CONDA_RUN} python -m pip install awscli==1.29.40
python3 -m pip install awscli==1.29.40
cd "${GITHUB_WORKSPACE}"/llm-target-determinator/assets
aws s3 cp "s3://target-determinator-assets/indexes/latest" . --recursive
@ -79,8 +88,9 @@ jobs:
shell: bash -l {0}
run: |
set -euxo pipefail
conda activate tdenv
cd "${GITHUB_WORKSPACE}"/llm-target-determinator
${CONDA_RUN} torchrun \
torchrun \
--standalone \
--nnodes=1 \
--nproc-per-node=1 \

View File

@ -294,53 +294,3 @@ jobs:
build-environment: linux-focal-rocm6.1-py3.8
docker-image: ${{ needs.linux-focal-rocm6_1-py3_8-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-rocm6_1-py3_8-build.outputs.test-matrix }}
linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build:
name: linux-focal-cuda12.1-py3.10-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-build-label.yml
with:
use_split_build: true
build-environment: linux-focal-cuda12.1-py3.10-gcc9
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9
test-matrix: |
{ include: [
{ config: "nogpu_AVX512", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "linux.4xlarge.nvidia.gpu" },
]}
linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build-test:
name: linux-focal-cuda12.1-py3.10-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build
- target-determination
with:
build-environment: linux-focal-cuda12.1-py3.10-gcc9-experimental-split-build
docker-image: ${{ needs.linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build.outputs.test-matrix }}
linux-focal-cuda11_8-py3_9-gcc9-experimental-split-build:
name: linux-focal-cuda11.8-py3.9-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-build-label.yml
with:
use_split_build: true
build-environment: linux-focal-cuda11.8-py3.9-gcc9
docker-image-name: pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9
cuda-arch-list: 8.6
test-matrix: |
{ include: [
{ config: "multigpu", shard: 1, num_shards: 1, runner: "linux.g5.12xlarge.nvidia.gpu" },
]}
build-with-debug: false
linux-focal-cuda11_8-py3_9-gcc9-experimental-split-build-test:
name: linux-focal-cuda11.8-py3.9-gcc9-experimental-split-build-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-focal-cuda11_8-py3_9-gcc9-experimental-split-build
- target-determination
with:
build-environment: linux-focal-cuda11.8-py3.9-gcc9-experimental-split-build
docker-image: ${{ needs.linux-focal-cuda11_8-py3_9-gcc9-experimental-split-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-cuda11_8-py3_9-gcc9-experimental-split-build.outputs.test-matrix }}

View File

@ -35,33 +35,22 @@ jobs:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: ./.github/workflows/_runner-determinator.yml
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
linux-jammy-py3_8-gcc11-build:
name: linux-jammy-py3.8-gcc11
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3.8-gcc11
docker-image-name: pytorch-linux-jammy-py3.8-gcc11
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "docs_test", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "backwards_compat", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "distributed", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "distributed", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
{ config: "docs_test", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "backwards_compat", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "distributed", shard: 1, num_shards: 2, runner: "linux.2xlarge" },
{ config: "distributed", shard: 2, num_shards: 2, runner: "linux.2xlarge" },
]}
linux-jammy-py3_8-gcc11-test:
@ -86,9 +75,7 @@ jobs:
linux-jammy-py3_8-gcc11-no-ops:
name: linux-jammy-py3.8-gcc11-no-ops
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3.8-gcc11-no-ops
docker-image-name: pytorch-linux-jammy-py3.8-gcc11
test-matrix: |
@ -99,9 +86,7 @@ jobs:
linux-jammy-py3_8-gcc11-pch:
name: linux-jammy-py3.8-gcc11-pch
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3.8-gcc11-pch
docker-image-name: pytorch-linux-jammy-py3.8-gcc11
test-matrix: |
@ -113,19 +98,17 @@ jobs:
linux-jammy-py3_10-clang15-asan-build:
name: linux-jammy-py3.10-clang15-asan
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3.10-clang15-asan
docker-image-name: pytorch-linux-jammy-py3-clang15-asan
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 2, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 3, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 4, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 5, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 6, num_shards: 6, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 1, num_shards: 6, runner: "linux.4xlarge" },
{ config: "default", shard: 2, num_shards: 6, runner: "linux.4xlarge" },
{ config: "default", shard: 3, num_shards: 6, runner: "linux.4xlarge" },
{ config: "default", shard: 4, num_shards: 6, runner: "linux.4xlarge" },
{ config: "default", shard: 5, num_shards: 6, runner: "linux.4xlarge" },
{ config: "default", shard: 6, num_shards: 6, runner: "linux.4xlarge" },
]}
sync-tag: asan-build
@ -145,15 +128,13 @@ jobs:
linux-focal-py3_8-clang10-onnx-build:
name: linux-focal-py3.8-clang10-onnx
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-py3.8-clang10-onnx
docker-image-name: pytorch-linux-focal-py3-clang10-onnx
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 1, num_shards: 2, runner: "linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 2, runner: "linux.2xlarge" },
]}
linux-focal-py3_8-clang10-onnx-test:
@ -170,22 +151,19 @@ jobs:
linux-focal-py3_8-clang10-build:
name: linux-focal-py3.8-clang10
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-py3.8-clang10
docker-image-name: pytorch-linux-focal-py3.8-clang10
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "crossref", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "crossref", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
{ config: "crossref", shard: 1, num_shards: 2, runner: "linux.2xlarge" },
{ config: "crossref", shard: 2, num_shards: 2, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
]}
linux-focal-py3_8-clang10-test:
name: linux-focal-py3.8-clang10
@ -201,24 +179,22 @@ jobs:
linux-focal-py3_11-clang10-build:
name: linux-focal-py3.11-clang10
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-py3.11-clang10
docker-image-name: pytorch-linux-focal-py3.11-clang10
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "crossref", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "crossref", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
{ config: "crossref", shard: 1, num_shards: 2, runner: "linux.2xlarge" },
{ config: "crossref", shard: 2, num_shards: 2, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
]}
linux-focal-py3_11-clang10-test:
name: linux-focal-py3.11-clang10
uses: ./.github/workflows/_linux-test.yml
@ -233,20 +209,17 @@ jobs:
linux-focal-py3_12-clang10-build:
name: linux-focal-py3.12-clang10
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-py3.12-clang10
docker-image-name: pytorch-linux-focal-py3.12-clang10
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "default", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
]}
linux-focal-py3_12-clang10-test:
@ -262,16 +235,14 @@ jobs:
linux-focal-cuda11_8-py3_10-gcc9-build:
name: linux-focal-cuda11.8-py3.10-gcc9
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-cuda11.8-py3.10-gcc9
docker-image-name: pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" },
]}
linux-focal-cuda11_8-py3_10-gcc9-test:
@ -289,18 +260,16 @@ jobs:
linux-focal-cuda12_1-py3_10-gcc9-build:
name: linux-focal-cuda12.1-py3.10-gcc9
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-cuda12.1-py3.10-gcc9
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 1, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
]}
linux-focal-cuda12_1-py3_10-gcc9-test:
@ -318,9 +287,7 @@ jobs:
linux-jammy-py3-clang12-mobile-build:
name: linux-jammy-py3-clang12-mobile-build
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3-clang12-mobile-build
docker-image-name: pytorch-linux-jammy-py3-clang15-asan
build-generates-artifacts: false
@ -332,9 +299,7 @@ jobs:
linux-jammy-cuda-11_8-cudnn9-py3_8-clang12-build:
name: linux-jammy-cuda11.8-cudnn9-py3.8-clang12
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-cuda11.8-cudnn9-py3.8-clang12
docker-image-name: pytorch-linux-jammy-cuda11.8-cudnn9-py3.8-clang12
test-matrix: |
@ -345,9 +310,7 @@ jobs:
linux-focal-py3-clang9-mobile-custom-build-static:
name: linux-focal-py3-clang9-mobile-custom-build-static
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-py3-clang9-mobile-custom-build-static
docker-image-name: pytorch-linux-focal-py3-clang9-android-ndk-r21e
build-generates-artifacts: false
@ -359,14 +322,12 @@ jobs:
linux-focal-py3_8-clang9-xla-build:
name: linux-focal-py3_8-clang9-xla
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-py3.8-clang9-xla
docker-image-name: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/xla_base:v1.1-lite
test-matrix: |
{ include: [
{ config: "xla", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.12xlarge" },
{ config: "xla", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
]}
linux-focal-py3_8-clang9-xla-test:
@ -383,59 +344,51 @@ jobs:
if: github.event_name == 'pull_request'
name: win-vs2019-cpu-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2019-cpu-py3
cuda-version: cpu
sync-tag: win-cpu-build
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 1, num_shards: 3, runner: "windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 3, runner: "windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 3, runner: "windows.4xlarge.nonephemeral" },
]}
linux-focal-cpu-py3_10-gcc9-bazel-test:
name: linux-focal-cpu-py3.10-gcc9-bazel-test
uses: ./.github/workflows/_bazel-build-test.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.large"
build-environment: linux-focal-cuda12.1-py3.10-gcc9-bazel-test
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9
cuda-version: cpu
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "default", shard: 1, num_shards: 1, runner: "linux.4xlarge" },
]}
linux-focal-cuda12_1-py3_10-gcc9-bazel-test:
name: linux-focal-cuda12.1-py3.10-gcc9-bazel-test
uses: ./.github/workflows/_bazel-build-test.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.large"
build-environment: linux-focal-cuda12.1-py3.10-gcc9-bazel-test
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9
cuda-version: "12.1"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 1, num_shards: 1, runner: "linux.4xlarge.nvidia.gpu" },
]}
linux-focal-cuda12_4-py3_10-gcc9-bazel-test:
name: linux-focal-cuda12.4-py3.10-gcc9-bazel-test
uses: ./.github/workflows/_bazel-build-test.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.large"
build-environment: linux-focal-cuda12.4-py3.10-gcc9-bazel-test
docker-image-name: pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9
cuda-version: "12.4"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 1, num_shards: 1, runner: "linux.4xlarge.nvidia.gpu" },
]}
linux-focal-py3-clang9-android-ndk-r21e-gradle-custom-build-single:
@ -463,9 +416,7 @@ jobs:
linux-jammy-py3_8-gcc11-mobile-lightweight-dispatch-build:
name: linux-jammy-py3.8-gcc11-mobile-lightweight-dispatch-build
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3.8-gcc111-mobile-lightweight-dispatch-build
docker-image-name: pytorch-linux-jammy-py3.8-gcc11
build-generates-artifacts: false
@ -479,9 +430,7 @@ jobs:
if: github.event_name == 'pull_request'
name: linux-focal-rocm6.1-py3.8
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-rocm6.1-py3.8
docker-image-name: pytorch-linux-focal-rocm-n-py3
sync-tag: rocm-build
@ -495,19 +444,17 @@ jobs:
linux-focal-cuda12_1-py3_10-gcc9-sm86-build:
name: linux-focal-cuda12.1-py3.10-gcc9-sm86
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-cuda12.1-py3.10-gcc9-sm86
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9
cuda-arch-list: 8.6
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 1, num_shards: 5, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "linux.g5.4xlarge.nvidia.gpu" },
]}
linux-focal-cuda12_1-py3_10-gcc9-sm86-test:
@ -524,14 +471,12 @@ jobs:
linux-jammy-py3-clang12-executorch-build:
name: linux-jammy-py3-clang12-executorch
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3-clang12-executorch
docker-image-name: pytorch-linux-jammy-py3-clang12-executorch
test-matrix: |
{ include: [
{ config: "executorch", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge" },
{ config: "executorch", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
]}
linux-jammy-py3-clang12-executorch-test:
@ -546,22 +491,20 @@ jobs:
linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build:
name: linux-focal-cuda12.1-py3.10-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
use_split_build: true
build-environment: linux-focal-cuda12.1-py3.10-gcc9
docker-image-name: pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 1, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
]}
linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build-test:
linux-focal-cuda12_4-py3_10-gcc9-experimental-split-build-test:
name: linux-focal-cuda12.1-py3.10-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-test.yml
needs:
@ -572,29 +515,3 @@ jobs:
build-environment: linux-focal-cuda12.1-py3.10-gcc9-experimental-split-build
docker-image: ${{ needs.linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-cuda12_1-py3_10-gcc9-experimental-split-build.outputs.test-matrix }}
linux-focal-py3_12-clang10-experimental-split-build:
name: linux-focal-py3.12-clang10-experimental-split-build
uses: ./.github/workflows/_linux-build-label.yml
with:
use_split_build: True
build-environment: linux-focal-py3.12-clang10
docker-image-name: pytorch-linux-focal-py3.12-clang10
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "default", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 1, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 2, num_shards: 3, runner: "linux.2xlarge" },
{ config: "dynamo", shard: 3, num_shards: 3, runner: "linux.2xlarge" },
]}
linux-focal-py3_12-clang10-experimental-split-build-test:
name: linux-focal-py3.12-clang10-experimental-split-build
uses: ./.github/workflows/_linux-test.yml
needs: linux-focal-py3_12-clang10-experimental-split-build
with:
build-environment: linux-focal-py3.12-clang10-experimental-split-build
docker-image: ${{ needs.linux-focal-py3_12-clang10-experimental-split-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-py3_12-clang10-experimental-split-build.outputs.test-matrix }}
timeout-minutes: 600

View File

@ -36,15 +36,6 @@ jobs:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: ./.github/workflows/_runner-determinator.yml
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-focal-cuda12_1-py3-gcc9-slow-gradcheck-build:
name: linux-focal-cuda12.1-py3-gcc9-slow-gradcheck
uses: ./.github/workflows/_linux-build.yml
@ -150,16 +141,14 @@ jobs:
linux-jammy-py3_10-clang15-asan-build:
name: linux-jammy-py3.10-clang15-asan
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-jammy-py3.10-clang15-asan
docker-image-name: pytorch-linux-jammy-py3-clang15-asan
test-matrix: |
{ include: [
{ config: "slow", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "slow", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "slow", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "slow", shard: 1, num_shards: 3, runner: "linux.4xlarge" },
{ config: "slow", shard: 2, num_shards: 3, runner: "linux.4xlarge" },
{ config: "slow", shard: 3, num_shards: 3, runner: "linux.4xlarge" },
]}
sync-tag: asan-build

View File

@ -34,15 +34,6 @@ jobs:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: ./.github/workflows/_runner-determinator.yml
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-focal-cuda12_4-py3_10-gcc9-sm86-build:
name: linux-focal-cuda12.4-py3.10-gcc9-sm86
uses: ./.github/workflows/_linux-build-label.yml
@ -179,17 +170,15 @@ jobs:
win-vs2019-cpu-py3-build:
name: win-vs2019-cpu-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2019-cpu-py3
cuda-version: cpu
sync-tag: win-cpu-build
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
{ config: "default", shard: 1, num_shards: 3, runner: "windows.4xlarge.nonephemeral" },
{ config: "default", shard: 2, num_shards: 3, runner: "windows.4xlarge.nonephemeral" },
{ config: "default", shard: 3, num_shards: 3, runner: "windows.4xlarge.nonephemeral" },
]}
win-vs2019-cpu-py3-test:
@ -203,21 +192,28 @@ jobs:
cuda-version: cpu
test-matrix: ${{ needs.win-vs2019-cpu-py3-build.outputs.test-matrix }}
win-vs2019-cuda12_1-py3-build:
name: win-vs2019-cuda12.1-py3
win-vs2019-cuda11_8-py3-build:
name: win-vs2019-cuda11.8-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2019-cuda12.1-py3
cuda-version: "12.1"
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
build-environment: win-vs2019-cuda11.8-py3
cuda-version: "11.8"
sync-tag: win-cuda-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "windows.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 6, runner: "windows.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 6, runner: "windows.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 6, runner: "windows.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 6, runner: "windows.g5.4xlarge.nvidia.gpu" },
{ config: "default", shard: 6, num_shards: 6, runner: "windows.g5.4xlarge.nvidia.gpu" },
{ config: "force_on_cpu", shard: 1, num_shards: 1, runner: "windows.4xlarge.nonephemeral" },
]}
linux-focal-rocm6_1-py3_8-build:
name: linux-focal-rocm6.1-py3.8
uses: ./.github/workflows/_linux-build-label.yml
needs: get-label-type
with:
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
build-environment: linux-focal-rocm6.1-py3.8
docker-image-name: pytorch-linux-focal-rocm-n-py3
sync-tag: rocm-build
@ -242,59 +238,3 @@ jobs:
docker-image: ${{ needs.linux-focal-rocm6_1-py3_8-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-rocm6_1-py3_8-build.outputs.test-matrix }}
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
linux-focal-cuda12_4-py3_10-gcc9-experimental-split-build:
name: linux-focal-cuda12.4-py3.10-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-build-label.yml
with:
use_split_build: true
build-environment: linux-focal-cuda12.4-py3.10-gcc9
docker-image-name: pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9
test-matrix: |
{ include: [
{ config: "nogpu_AVX512", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 1, runner: "linux.2xlarge" },
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 1, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 2, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 3, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 4, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
{ config: "default", shard: 5, num_shards: 5, runner: "linux.4xlarge.nvidia.gpu" },
]}
linux-focal-cuda12_4-py3_10-gcc9-experimental-split-build-test:
name: linux-focal-cuda12.4-py3.10-gcc9-experimental-split-build-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-focal-cuda12_4-py3_10-gcc9-experimental-split-build
- target-determination
with:
build-environment: linux-focal-cuda12.4-py3.10-gcc9-experimental-split-build
docker-image: ${{ needs.linux-focal-cuda12_4-py3_10-gcc9-experimental-split-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-cuda12_4-py3_10-gcc9-experimental-split-build.outputs.test-matrix }}
linux-focal-cuda11_8-py3_10-gcc9-experimental-split-build:
name: linux-focal-cuda11.8-py3.10-gcc9-experimental-split-build
uses: ./.github/workflows/_linux-build-label.yml
with:
use_split_build: true
build-environment: linux-focal-cuda11.8-py3.10-gcc9
docker-image-name: pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" },
]}
linux-focal-cuda11_8-py3_10-gcc9-experimental-split-build-test:
name: linux-focal-cuda11.8-py3.10-gcc9-experimental-split-build-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-focal-cuda11_8-py3_10-gcc9-experimental-split-build
- target-determination
with:
timeout-minutes: 360
build-environment: linux-focal-cuda11.8-py3.10-gcc9-experimental-split-build
docker-image: ${{ needs.linux-focal-cuda11_8-py3_10-gcc9-experimental-split-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-focal-cuda11_8-py3_10-gcc9-experimental-split-build.outputs.test-matrix }}

View File

@ -9,8 +9,6 @@ jobs:
name: try_merge_pr_${{ github.event.client_payload.pr_num }}
runs-on: linux.20_04.4x
environment: mergebot
permissions:
id-token: write
env:
GH_RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
steps:
@ -45,7 +43,6 @@ jobs:
IGNORE_CURRENT: ${{ github.event.client_payload.ignore_current }}
ROCKSET_API_KEY: ${{ secrets.ROCKSET_API_KEY }}
DRCI_BOT_KEY: ${{ secrets.DRCI_BOT_KEY }}
GITHUB_RUN_ID: ${{ github.run_id }}
run: |
set -x
if [ -n "${REBASE}" ]; then
@ -87,22 +84,6 @@ jobs:
set -x
python3 .github/scripts/comment_on_pr.py "${PR_NUM}" "merge"
- name: configure aws credentials
uses: aws-actions/configure-aws-credentials@v3
continue-on-error: true
with:
role-to-assume: arn:aws:iam::308535385114:role/upload_to_ossci_raw_job_status
aws-region: us-east-1
- name: Upload merge record to s3
if: always()
continue-on-error: true
uses: seemethere/upload-artifact-s3@v5
with:
s3-bucket: ossci-raw-job-status
s3-prefix: merges/${{ github.repository }}/${{ github.event.client_payload.pr_num }}/${{ github.event.client_payload.comment_id }}/${{ github.run_id }}
path: merge_record.json
# We want newer merge commands to supercede old ones
concurrency:
group: try-merge-${{ github.event.client_payload.pr_num }}

View File

@ -25,11 +25,12 @@ jobs:
upload-test-stats:
needs: get_workflow_conclusion
if: github.repository_owner == 'pytorch'
if:
github.repository_owner == 'pytorch' &&
(github.event.workflow_run.conclusion == 'success' || github.event.workflow_run.conclusion == 'failure' ||
needs.get_workflow_conclusion.outputs.conclusion == 'success' || needs.get_workflow_conclusion.outputs.conclusion == 'failure')
runs-on: ubuntu-22.04
environment: upload-stats
permissions:
id-token: write
name: Upload test stats for ${{ github.event.workflow_run.id }}, attempt ${{ github.event.workflow_run.run_attempt }}
steps:
- name: Print workflow information
@ -40,13 +41,6 @@ jobs:
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
- name: Configure aws credentials
uses: aws-actions/configure-aws-credentials@v3
continue-on-error: true
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_upload-torch-test-stats
aws-region: us-east-1
- uses: actions/setup-python@v4
with:
python-version: '3.11'
@ -58,6 +52,8 @@ jobs:
- name: Upload test artifacts
id: upload-s3
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
WORKFLOW_ARTIFACTS_URL: ${{ github.event.workflow_run.artifacts_url }}
WORKFLOW_RUN_ID: ${{ github.event.workflow_run.id }}
@ -73,6 +69,8 @@ jobs:
- name: Upload test stats
env:
ROCKSET_API_KEY: ${{ secrets.ROCKSET_API_KEY }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
WORKFLOW_RUN_ID: ${{ github.event.workflow_run.id }}
WORKFLOW_RUN_ATTEMPT: ${{ github.event.workflow_run.run_attempt }}
@ -86,6 +84,8 @@ jobs:
- name: Analyze disabled tests rerun
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
WORKFLOW_ARTIFACTS_URL: ${{ github.event.workflow_run.artifacts_url }}
WORKFLOW_RUN_ID: ${{ github.event.workflow_run.id }}
@ -99,12 +99,14 @@ jobs:
if: steps.upload-s3.outcome && steps.upload-s3.outcome == 'success' && github.event.workflow_run.name == 'inductor-micro-benchmark'
env:
ROCKSET_API_KEY: ${{ secrets.ROCKSET_API_KEY }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
WORKFLOW_RUN_ID: ${{ github.event.workflow_run.id }}
WORKFLOW_RUN_ATTEMPT: ${{ github.event.workflow_run.run_attempt }}
REPO_FULLNAME: ${{ github.event.workflow_run.repository.full_name }}
HEAD_BRANCH: ${{ github.event.workflow_run.head_branch }}
run: |
python3 -m tools.stats.upload_dynamo_perf_stats --workflow-run-id "${WORKFLOW_RUN_ID}" --workflow-run-attempt "${WORKFLOW_RUN_ATTEMPT}" --repo "${REPO_FULLNAME}" --head-branch "${HEAD_BRANCH}" --rockset-collection oss_ci_benchmark --rockset-workspace benchmarks --dynamodb-table torchci-oss-ci-benchmark --match-filename "^gpt_fast_benchmark"
python3 -m tools.stats.upload_dynamo_perf_stats --workflow-run-id "${WORKFLOW_RUN_ID}" --workflow-run-attempt "${WORKFLOW_RUN_ATTEMPT}" --repo "${REPO_FULLNAME}" --head-branch "${HEAD_BRANCH}" --rockset-collection oss_ci_benchmark --rockset-workspace benchmarks --match-filename "^gpt_fast_benchmark"
check-api-rate:
if: ${{ always() && github.repository_owner == 'pytorch' }}

View File

@ -26,8 +26,6 @@ jobs:
github.event.workflow_run.conclusion == 'failure' || needs.get-conclusion.outputs.conclusion == 'failure'
runs-on: ubuntu-22.04
environment: upload-stats
permissions:
id-token: write
name: Upload dynamo performance stats for ${{ github.event.workflow_run.id }}, attempt ${{ github.event.workflow_run.run_attempt }}
steps:
- name: Checkout PyTorch
@ -36,13 +34,6 @@ jobs:
submodules: false
fetch-depth: 1
- name: Configure aws credentials
uses: aws-actions/configure-aws-credentials@v3
continue-on-error: true
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_upload-torch-test-stats
aws-region: us-east-1
- uses: actions/setup-python@v4
with:
python-version: '3.11'
@ -54,6 +45,8 @@ jobs:
- name: Upload torch dynamo performance stats to S3
id: upload-s3
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
WORKFLOW_ARTIFACTS_URL: ${{ github.event.workflow_run.artifacts_url }}
WORKFLOW_RUN_ID: ${{ github.event.workflow_run.id }}
@ -68,9 +61,11 @@ jobs:
if: steps.upload-s3.outcome && steps.upload-s3.outcome == 'success'
env:
ROCKSET_API_KEY: ${{ secrets.ROCKSET_API_KEY }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
WORKFLOW_RUN_ID: ${{ github.event.workflow_run.id }}
WORKFLOW_RUN_ATTEMPT: ${{ github.event.workflow_run.run_attempt }}
REPO_FULLNAME: ${{ github.event.workflow_run.repository.full_name }}
HEAD_BRANCH: ${{ github.event.workflow_run.head_branch }}
run: |
python3 -m tools.stats.upload_dynamo_perf_stats --workflow-run-id "${WORKFLOW_RUN_ID}" --workflow-run-attempt "${WORKFLOW_RUN_ATTEMPT}" --repo "${REPO_FULLNAME}" --head-branch "${HEAD_BRANCH}" --rockset-collection torch_dynamo_perf_stats --rockset-workspace inductor --dynamodb-table torchci-dynamo-perf-stats --match-filename "^inductor_"
python3 -m tools.stats.upload_dynamo_perf_stats --workflow-run-id "${WORKFLOW_RUN_ID}" --workflow-run-attempt "${WORKFLOW_RUN_ATTEMPT}" --repo "${REPO_FULLNAME}" --head-branch "${HEAD_BRANCH}" --rockset-collection torch_dynamo_perf_stats --rockset-workspace inductor --match-filename "^inductor_"

1
.gitignore vendored
View File

@ -129,7 +129,6 @@ env
scripts/release_notes/*.json
sccache-stats*.json
lint.json
merge_record.json
# These files get copied over on invoking setup.py
torchgen/packaged/*

View File

@ -68,7 +68,6 @@ include_patterns = [
'aten/src/ATen/native/cudnn/*.cpp',
'c10/**/*.h',
'c10/**/*.cpp',
'distributed/c10d/*DMAConnectivity.*',
'distributed/c10d/*SymmetricMemory.*',
'torch/csrc/**/*.h',
'torch/csrc/**/*.hpp',
@ -204,8 +203,6 @@ include_patterns = [
'torch/csrc/*.cpp',
'torch/csrc/**/*.h',
'torch/csrc/**/*.cpp',
'torch/csrc/jit/serialization/*.h',
'torch/csrc/jit/serialization/*.cpp',
]
exclude_patterns = [
# The negative filters below are to exclude files that include onnx_pb.h or
@ -227,6 +224,7 @@ exclude_patterns = [
'c10/util/win32-headers.h',
'c10/util/*inl.h',
'c10/test/**/*.h',
'aten/src/ATen/core/TensorImpl_test.cpp',
'third_party/**/*',
'torch/csrc/api/**',
'torch/csrc/autograd/generated/**',
@ -234,7 +232,8 @@ exclude_patterns = [
'torch/csrc/dynamo/eval_frame.h',
'torch/csrc/inductor/**/*',
'torch/csrc/jit/**/*',
'torch/csrc/jit/serialization/mobile_bytecode_generated.h',
'torch/csrc/jit/serialization/import_legacy.cpp',
'torch/csrc/jit/serialization/export.cpp',
'torch/csrc/lazy/**/*',
]
init_command = [
@ -1104,6 +1103,7 @@ exclude_patterns = [
'test/test_prims.py',
'test/test_proxy_tensor.py',
'test/test_pruning_op.py',
'test/test_public_bindings.py',
'test/test_quantization.py',
'test/test_reductions.py',
'test/test_scatter_gather_ops.py',
@ -1129,6 +1129,8 @@ exclude_patterns = [
'test/test_type_promotion.py',
'test/test_unary_ufuncs.py',
'test/test_vulkan.py',
'test/test_xnnpack_integration.py',
'test/torch_np/numpy_test/**/*.py',
'torch/_awaits/__init__.py',
'torch/_custom_op/__init__.py',
'torch/_custom_op/autograd.py',
@ -1189,6 +1191,9 @@ exclude_patterns = [
'torch/_export/serde/upgrade.py',
'torch/_export/trace.py',
'torch/_export/verifier.py',
'torch/_higher_order_ops/__init__.py',
'torch/_higher_order_ops/out_dtype.py',
'torch/_higher_order_ops/wrap.py',
'torch/_vendor/**',
'torch/ao/__init__.py',
'torch/ao/nn/__init__.py',
@ -1531,7 +1536,12 @@ exclude_patterns = [
'torch/signal/__init__.py',
'torch/signal/windows/__init__.py',
'torch/signal/windows/windows.py',
'torch/sparse/__init__.py',
'torch/sparse/_semi_structured_conversions.py',
'torch/sparse/_triton_ops.py',
'torch/sparse/semi_structured.py',
'torch/special/__init__.py',
'torch/storage.py',
'torch/testing/_internal/__init__.py',
'torch/testing/_internal/autocast_test_lists.py',
'torch/testing/_internal/autograd_function_db.py',
@ -1604,6 +1614,7 @@ exclude_patterns = [
'torch/testing/_internal/test_module/__init__.py',
'torch/testing/_internal/test_module/future_div.py',
'torch/testing/_internal/test_module/no_future_div.py',
'torch/utils/__init__.py',
'torch/utils/_contextlib.py',
'torch/utils/_cpp_extension_versioner.py',
'torch/utils/_crash_handler.py',
@ -1654,6 +1665,53 @@ exclude_patterns = [
'torch/utils/collect_env.py',
'torch/utils/cpp_backtrace.py',
'torch/utils/cpp_extension.py',
'torch/utils/data/__init__.py',
'torch/utils/data/_utils/__init__.py',
'torch/utils/data/_utils/collate.py',
'torch/utils/data/_utils/fetch.py',
'torch/utils/data/_utils/pin_memory.py',
'torch/utils/data/_utils/serialization.py',
'torch/utils/data/_utils/signal_handling.py',
'torch/utils/data/_utils/worker.py',
'torch/utils/data/backward_compatibility.py',
'torch/utils/data/dataloader.py',
'torch/utils/data/datapipes/__init__.py',
'torch/utils/data/datapipes/_decorator.py',
'torch/utils/data/datapipes/_hook_iterator.py',
'torch/utils/data/datapipes/_typing.py',
'torch/utils/data/datapipes/dataframe/__init__.py',
'torch/utils/data/datapipes/dataframe/dataframe_wrapper.py',
'torch/utils/data/datapipes/dataframe/dataframes.py',
'torch/utils/data/datapipes/dataframe/datapipes.py',
'torch/utils/data/datapipes/dataframe/structures.py',
'torch/utils/data/datapipes/datapipe.py',
'torch/utils/data/datapipes/gen_pyi.py',
'torch/utils/data/datapipes/iter/__init__.py',
'torch/utils/data/datapipes/iter/callable.py',
'torch/utils/data/datapipes/iter/combinatorics.py',
'torch/utils/data/datapipes/iter/combining.py',
'torch/utils/data/datapipes/iter/filelister.py',
'torch/utils/data/datapipes/iter/fileopener.py',
'torch/utils/data/datapipes/iter/grouping.py',
'torch/utils/data/datapipes/iter/routeddecoder.py',
'torch/utils/data/datapipes/iter/selecting.py',
'torch/utils/data/datapipes/iter/sharding.py',
'torch/utils/data/datapipes/iter/streamreader.py',
'torch/utils/data/datapipes/iter/utils.py',
'torch/utils/data/datapipes/map/__init__.py',
'torch/utils/data/datapipes/map/callable.py',
'torch/utils/data/datapipes/map/combinatorics.py',
'torch/utils/data/datapipes/map/combining.py',
'torch/utils/data/datapipes/map/grouping.py',
'torch/utils/data/datapipes/map/utils.py',
'torch/utils/data/datapipes/utils/__init__.py',
'torch/utils/data/datapipes/utils/common.py',
'torch/utils/data/datapipes/utils/decoder.py',
'torch/utils/data/datapipes/utils/snapshot.py',
'torch/utils/data/distributed.py',
'torch/utils/data/graph.py',
'torch/utils/data/graph_settings.py',
'torch/utils/data/sampler.py',
'torch/utils/dlpack.py',
'torch/utils/file_baton.py',
'torch/utils/flop_counter.py',
@ -1693,9 +1751,8 @@ init_command = [
'--dry-run={{DRYRUN}}',
'--no-black-binary',
'black==23.12.1',
'ufmt==2.7.0',
'usort==1.0.8.post1',
'isort==5.13.2',
'ufmt==2.1.0',
'usort==1.0.6',
]
is_formatter = true
@ -1779,7 +1836,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.5.0',
'ruff==0.4.8',
]
is_formatter = true

View File

@ -762,7 +762,6 @@ cc_library(
":torch_headers",
"@kineto",
"@cpp-httplib",
"@nlohmann",
] + if_cuda([
"@cuda//:nvToolsExt",
"@cutlass",

View File

@ -208,6 +208,7 @@ endif()
include(CMakeDependentOption)
option(ATEN_NO_TEST "Do not build ATen test binaries" OFF)
option(BUILD_BINARY "Build C++ binaries" OFF)
option(BUILD_DOCS "Build Caffe2 documentation" OFF)
option(BUILD_CUSTOM_PROTOBUF
"Build and use Caffe2's own protobuf under third_party" ON)
option(BUILD_PYTHON "Build Python binaries" ON)
@ -749,6 +750,7 @@ if(NOT TORCH_BUILD_VERSION)
CACHE STRING "Torch build version" FORCE)
endif()
caffe2_parse_version_str(TORCH ${TORCH_BUILD_VERSION})
caffe2_parse_version_str(CAFFE2 ${TORCH_BUILD_VERSION})
set(TORCH_SOVERSION "${TORCH_VERSION_MAJOR}.${TORCH_VERSION_MINOR}")
# ---[ CMake scripts + modules
@ -1221,6 +1223,45 @@ endif()
add_subdirectory(c10)
add_subdirectory(caffe2)
# --[ Documentation
if(BUILD_DOCS)
# check if Doxygen is installed
find_package(Doxygen)
if(DOXYGEN_FOUND)
message("Generating documentation")
set(DOXYGEN_C_IN ${CMAKE_CURRENT_SOURCE_DIR}/docs/caffe2/.Doxyfile-c)
set(DOXYGEN_C_OUT ${CMAKE_CURRENT_SOURCE_DIR}/docs/caffe2/Doxyfile-c)
set(DOXYGEN_P_IN ${CMAKE_CURRENT_SOURCE_DIR}/docs/caffe2/.Doxyfile-python)
set(DOXYGEN_P_OUT ${CMAKE_CURRENT_SOURCE_DIR}/docs/caffe2/Doxyfile-python)
if(EXISTS ${CMAKE_CURRENT_BINARY_DIR}/docs)
file(REMOVE_RECURSE ${CMAKE_CURRENT_BINARY_DIR}/docs)
endif()
file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/docs)
configure_file(${DOXYGEN_C_IN} ${DOXYGEN_C_OUT} @ONLY)
configure_file(${DOXYGEN_P_IN} ${DOXYGEN_P_OUT} @ONLY)
add_custom_target(
doc_doxygen_c ALL
COMMAND ${DOXYGEN_EXECUTABLE} ${DOXYGEN_C_OUT}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
COMMENT "Generating C++ API documentation with Doxygen"
VERBATIM)
add_custom_target(
doc_doxygen_python ALL
COMMAND ${DOXYGEN_EXECUTABLE} ${DOXYGEN_P_OUT}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
COMMENT "Generating Python API documentation with Doxygen"
VERBATIM)
else()
message(
FATAL_ERROR "Doxygen needs to be installed to generate the documentation")
endif()
endif()
# ---[ CMake related files Uninistall option.
if(NOT TARGET caffe2_uninstall)
configure_file(

View File

@ -108,10 +108,10 @@ aten/src/ATen/detail/MTIAHooksInterface.h @egienvalue
torch/csrc/mtia/ @egienvalue
# Profiler
torch/csrc/autograd/profiler* @aaronenyeshi @sraikund16
torch/autograd/profiler* @aaronenyeshi @sraikund16
torch/csrc/profiler/ @aaronenyeshi @sraikund16
torch/profiler/ @aaronenyeshi @sraikund16
torch/csrc/autograd/profiler* @aaronenyeshi
torch/autograd/profiler* @aaronenyeshi
torch/csrc/profiler/ @aaronenyeshi
torch/profiler/ @aaronenyeshi
# AOTDispatch tests
test/functorch/test_aotdispatch.py @ezyang @Chillee

View File

@ -51,7 +51,6 @@ Following is the Release Compatibility Matrix for PyTorch releases:
| PyTorch version | Python | Stable CUDA | Experimental CUDA | Stable ROCm |
| --- | --- | --- | --- | --- |
| 2.4 | >=3.8, <=3.12 | CUDA 11.8, CUDA 12.1, CUDNN 9.1.0.70 | CUDA 12.4, CUDNN 9.1.0.70 | ROCm 6.1 |
| 2.3 | >=3.8, <=3.11, (3.12 experimental) | CUDA 11.8, CUDNN 8.7.0.84 | CUDA 12.1, CUDNN 8.9.2.26 | ROCm 6.0 |
| 2.2 | >=3.8, <=3.11, (3.12 experimental) | CUDA 11.8, CUDNN 8.7.0.84 | CUDA 12.1, CUDNN 8.9.2.26 | ROCm 5.7 |
| 2.1 | >=3.8, <=3.11 | CUDA 11.8, CUDNN 8.7.0.84 | CUDA 12.1, CUDNN 8.9.2.26 | ROCm 5.6 |
@ -61,19 +60,15 @@ Following is the Release Compatibility Matrix for PyTorch releases:
## Release Cadence
Following is the release cadence for year 2023/2024. All dates below are tentative, for latest updates on the release scheduled please follow [dev discuss](https://dev-discuss.pytorch.org/c/release-announcements/27). Please note: Patch Releases are optional.
Following is the release cadence for year 2023/2024. All dates below are tentative, for latest updates on the release scheduled please follow [dev discuss](https://dev-discuss.pytorch.org/c/release-announcements/27).
| Minor Version | Release branch cut | Release date | First patch release date | Second patch release date|
| --- | --- | --- | --- | --- |
| 2.1 | Aug 2023 | Oct 2023 | Nov 2023 | Dec 2023 |
| 2.2 | Dec 2023 | Jan 2024 | Feb 2024 | Mar 2024 |
| 2.3 | Mar 2024 | Apr 2024 | Jun 2024 | Not planned |
| 2.4 | Jun 2024 | Jul 2024 | (Sept 2024) | Not planned |
| 2.5 | Aug 2024 | Oct 2024 | (Nov 2024) | (Dec 2024) |
| 2.6 | Dec 2024 | Jan 2025 | (Feb 2025) | (Mar 2025) |
| 2.7 | Mar 2025 | Apr 2025 | (May 2025) | (Jun 2025) |
| 2.8 | Jun 2025 | Jul 2025 | (Aug 2025) | (Sept 2025) |
| 2.9 | Aug 2025 | Oct 2025 | (Nov 2025) | (Dec 2025) |
| 2.4 | Jun 2024 | Jul 2024 | Aug 2024 | Sep 2024 |
| 2.5 | Aug 2024 | Oct 2024 | Nov 2024 | Dec 2024 |
## General Overview

View File

@ -174,12 +174,6 @@ new_local_repository(
path = "third_party/cpp-httplib",
)
new_local_repository(
name = "nlohmann",
build_file = "//third_party:nlohmann.BUILD",
path = "third_party/nlohmann",
)
new_local_repository(
name = "tensorpipe",
build_file = "//third_party:tensorpipe.BUILD",

View File

@ -119,7 +119,7 @@ class PytorchJni : public facebook::jni::HybridClass<PytorchJni> {
}
deviceType_ = deviceJniCodeToDeviceType(device);
module_ = torch::jit::load(
std::move(modelPath->toStdString()), std::nullopt, extra_files);
std::move(modelPath->toStdString()), c10::nullopt, extra_files);
if (has_extra) {
static auto putMethod =
facebook::jni::JMap<facebook::jni::JString, facebook::jni::JString>::

View File

@ -84,9 +84,9 @@ class PytorchJni : public facebook::jni::HybridClass<PytorchJni> {
}
deviceType_ = deviceJniCodeToDeviceType(device);
module_ = torch::jit::_load_for_mobile(
std::move(modelPath->toStdString()), std::nullopt, extra_files);
std::move(modelPath->toStdString()), c10::nullopt, extra_files);
torch::jit::_load_extra_only_for_mobile(
std::move(modelPath->toStdString()), std::nullopt, extra_files);
std::move(modelPath->toStdString()), c10::nullopt, extra_files);
if (has_extra) {
static auto putMethod =
facebook::jni::JMap<facebook::jni::JString, facebook::jni::JString>::

View File

@ -53,6 +53,11 @@ if(NOT BUILD_LITE_INTERPRETER)
file(GLOB_RECURSE ATen_CORE_TEST_SRCS "core/*_test.cpp")
endif()
EXCLUDE(ATen_CORE_SRCS "${ATen_CORE_SRCS}" ${ATen_CORE_TEST_SRCS})
# Exclude TensorImpl_test.cpp if compiling without Caffe2
if(NOT BUILD_LITE_INTERPRETER)
file(GLOB_RECURSE ATen_CORE_EXCLUDED_TEST_SRCS "core/TensorImpl_test.cpp")
EXCLUDE(ATen_CORE_TEST_SRCS "${ATen_CORE_TEST_SRCS}" ${ATen_CORE_EXCLUDED_TEST_SRCS})
endif()
file(GLOB base_h "*.h" "detail/*.h" "cpu/*.h" "cpu/vec/vec512/*.h" "cpu/vec/vec256/*.h" "cpu/vec/vec256/vsx/*.h" "cpu/vec/vec256/zarch/*.h" "cpu/vec/*.h" "quantized/*.h" "functorch/*.h")
file(GLOB base_cpp "*.cpp" "detail/*.cpp" "cpu/*.cpp" "functorch/*.cpp")

View File

@ -222,7 +222,7 @@ c10::intrusive_ptr<c10::TensorImpl> CPUGeneratorImpl::get_state() const {
static const size_t size = sizeof(CPUGeneratorImplState);
static_assert(std::is_standard_layout_v<CPUGeneratorImplState>, "CPUGeneratorImplState is not a PODType");
auto state_tensor = at::detail::empty_cpu({(int64_t)size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto state_tensor = at::detail::empty_cpu({(int64_t)size}, ScalarType::Byte, c10::nullopt, c10::nullopt, c10::nullopt, c10::nullopt);
auto rng_state = state_tensor.data_ptr();
// accumulate generator data to be copied into byte tensor

View File

@ -3,7 +3,7 @@
#include <ATen/core/Generator.h>
#include <ATen/core/MT19937RNGEngine.h>
#include <c10/core/GeneratorImpl.h>
#include <optional>
#include <c10/util/Optional.h>
namespace at {

View File

@ -56,14 +56,6 @@ void Context::setDeterministicCuDNN(bool b) {
deterministic_cudnn = b;
}
bool Context::deterministicMkldnn() const {
return deterministic_mkldnn;
}
void Context::setDeterministicMkldnn(bool b) {
deterministic_mkldnn = b;
}
bool Context::deterministicAlgorithms() const {
return _deterministic_algorithms;
}
@ -153,13 +145,6 @@ void Context::setSDPUseCuDNN(bool e) {
enabled_cudnnSDP = e;
}
void Context::setSDPUseOverrideable(bool e) {
enabled_overrideable = e;
}
bool Context::userEnabledOverrideableSDP() const {
return enabled_overrideable;
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
static const char cublas_config_var_name[] = "CUBLAS_WORKSPACE_CONFIG";
@ -278,24 +263,7 @@ void Context::setLinalgPreferredBackend(at::LinalgBackend b) {
}
}
at::BlasBackend Context::blasPreferredBackend() {
#ifdef USE_ROCM
if (blas_preferred_backend == at::BlasBackend::Cublaslt) {
static const bool hipblaslt_unsupported = []() {
static const std::vector<std::string> archs = {"gfx90a", "gfx940", "gfx941", "gfx942"};
for (auto index: c10::irange(getNumGPUs())) {
if (!detail::getCUDAHooks().isGPUArch(index, archs)) {
TORCH_WARN_ONCE(
"Attempting to use hipBLASLt on an unsupported architecture! "
"Overriding blas backend to hipblas");
return true;
}
}
return false;
}();
if (hipblaslt_unsupported) blas_preferred_backend = at::BlasBackend::Cublas;
}
#endif
at::BlasBackend Context::blasPreferredBackend() const {
return blas_preferred_backend;
}

View File

@ -59,14 +59,12 @@ class TORCH_API Context {
}
}
const AcceleratorHooksInterface& getAcceleratorHooksInterface(
std::optional<c10::DeviceType> opt_device_type = std::nullopt) {
std::optional<c10::DeviceType> opt_device_type = c10::nullopt) {
c10::DeviceType device_type = opt_device_type.has_value()
? opt_device_type.value()
: at::getAccelerator(true).value();
if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks();
} else if (device_type == at::kXPU) {
return at::detail::getXPUHooks();
} else if (device_type == at::kMPS) {
return at::detail::getMPSHooks();
} else if (device_type == at::kPrivateUse1) {
@ -190,8 +188,6 @@ class TORCH_API Context {
void setBenchmarkLimitCuDNN(int);
bool deterministicCuDNN() const;
void setDeterministicCuDNN(bool);
bool deterministicMkldnn() const;
void setDeterministicMkldnn(bool);
bool userEnabledNNPACK() const;
void setUserEnabledNNPACK(bool e);
@ -218,13 +214,10 @@ class TORCH_API Context {
void setSDPUseCuDNN(bool);
bool userEnabledCuDNNSDP() const;
void setSDPUseOverrideable(bool);
bool userEnabledOverrideableSDP() const;
at::LinalgBackend linalgPreferredBackend() const;
void setLinalgPreferredBackend(at::LinalgBackend);
at::BlasBackend blasPreferredBackend();
at::BlasBackend blasPreferredBackend() const;
void setBlasPreferredBackend(at::BlasBackend);
// Note [Enabling Deterministic Operations]
@ -365,15 +358,13 @@ class TORCH_API Context {
c10::once_flag thp_init;
bool enabled_cudnn = true;
bool deterministic_cudnn = false;
bool deterministic_mkldnn = false;
bool _deterministic_algorithms = false;
bool _deterministic_algorithms_warn_only = false;
bool _deterministic_fill_uninitialized_memory = true;
bool enabled_flashSDP = true;
bool enabled_mem_efficientSDP = true;
bool enabled_mathSDP = true;
bool enabled_cudnnSDP = true;
bool enabled_overrideable = true;
bool enabled_cudnnSDP = false;
#ifdef USE_ROCM
bool benchmark_cudnn = true;
#else
@ -407,7 +398,7 @@ class TORCH_API Context {
bool release_original_weights = false;
#endif
bool display_vmap_fallback_warnings_ = false;
std::optional<at::QEngine> quantized_engine = std::nullopt;
std::optional<at::QEngine> quantized_engine = c10::nullopt;
bool enable_sparse_tensor_invariant_checks = false;
bool allow_fp16_reduction_cpu = false;

View File

@ -115,9 +115,6 @@ static DLDevice getDLDevice(const Tensor& tensor, c10::DeviceIndex device_id) {
ctx.device_id =
at::detail::getXPUHooks().getGlobalIdxFromDevice(tensor.device());
break;
case DeviceType::MAIA:
ctx.device_type = DLDeviceType::kDLMAIA;
break;
default:
TORCH_CHECK(false, "Cannot pack tensors on " + tensor.device().str());
}
@ -144,8 +141,6 @@ static Device getATenDevice(const DLDevice& ctx, void* data) {
#endif
case DLDeviceType::kDLOneAPI:
return at::detail::getXPUHooks().getDeviceFromPtr(data);
case DLDeviceType::kDLMAIA:
return at::Device(DeviceType::MAIA, ctx.device_id);
default:
TORCH_CHECK(
false, "Unsupported device_type: ", std::to_string(ctx.device_type));

View File

@ -1,37 +1,39 @@
#include <ATen/Context.h>
#include <ATen/DeviceAccelerator.h>
#include <ATen/Context.h>
namespace at {
C10_API std::optional<DeviceType> getAccelerator(bool checked) {
#define DETECT_AND_ASSIGN_ACCELERATOR(device_name) \
if (at::has##device_name()) { \
device_type = k##device_name; \
TORCH_CHECK( \
!is_accelerator_detected, \
"Cannot have ", \
device_type.value(), \
" with other accelerators."); \
is_accelerator_detected = true; \
}
#define CHECK_NO_CUDA \
TORCH_CHECK(!at::hasCUDA(), "Cannot have both CUDA and PrivateUse1");
if (is_privateuse1_backend_registered()) {
// We explicitly allow PrivateUse1 and another device at the same time as we
// use this for testing. Whenever a PrivateUse1 device is registered, use it
// first.
return kPrivateUse1;
}
std::optional<DeviceType> device_type = std::nullopt;
bool is_accelerator_detected = false;
DETECT_AND_ASSIGN_ACCELERATOR(CUDA)
DETECT_AND_ASSIGN_ACCELERATOR(MTIA)
DETECT_AND_ASSIGN_ACCELERATOR(XPU)
if (checked) {
TORCH_CHECK(
device_type, "Cannot access accelerator device when none is available.")
}
return device_type;
#define CHECK_NO_PU1 \
TORCH_CHECK(!is_privateuse1_backend_registered(), "Cannot have both CUDA and PrivateUse1");
#undef DETECT_AND_ASSIGN_ACCELERATOR
#define CHECK_NO_MTIA \
TORCH_CHECK(!at::hasMTIA(), "Cannot have MTIA with other devices");
if (is_privateuse1_backend_registered()) {
// We explicitly allow PrivateUse1 and another device at the same time
// as we use this for testing.
// Whenever a PrivateUse1 device is registered, use it first.
return kPrivateUse1;
} else if (at::hasCUDA()) {
CHECK_NO_PU1
CHECK_NO_MTIA
return kCUDA;
} else if (at::hasMTIA()) {
CHECK_NO_CUDA
CHECK_NO_PU1
return kMTIA;
} else {
TORCH_CHECK(!checked, "Cannot access accelerator device when none is available.")
return std::nullopt;
}
#undef CHECK_NO_CUDA
#undef CHECK_NO_PU1
}
} // namespace at

View File

@ -13,9 +13,9 @@
// - It provides a set of common APIs as defined by AcceleratorHooksInterface
//
// As of today, accelerator devices are (in no particular order):
// CUDA, MTIA, XPU, PrivateUse1
// CUDA, MTIA, PrivateUse1
// We want to add once all the proper APIs are supported and tested:
// HIP, MPS
// HIP, MPS, XPU
namespace at {

View File

@ -17,14 +17,14 @@ namespace at {
/// Return the Device of a Tensor, if the Tensor is defined.
inline std::optional<Device> device_of(const Tensor& t) {
if (t.defined()) {
return std::make_optional(t.device());
return c10::make_optional(t.device());
} else {
return std::nullopt;
return c10::nullopt;
}
}
inline std::optional<Device> device_of(const std::optional<Tensor>& t) {
return t.has_value() ? device_of(t.value()) : std::nullopt;
return t.has_value() ? device_of(t.value()) : c10::nullopt;
}
/// Return the Device of a TensorList, if the list is non-empty and
@ -34,7 +34,7 @@ inline std::optional<Device> device_of(ITensorListRef t) {
if (!t.empty()) {
return device_of(t.front());
} else {
return std::nullopt;
return c10::nullopt;
}
}

View File

@ -29,7 +29,6 @@ c10::Allocator* GetCPUAllocatorMaybePinned(bool pin_memory) {
return c10::GetCPUAllocator();
}
#ifndef C10_MOBILE
constexpr uint64_t storage_max() {
// int64_t and size_t are used somewhat inconsistently throughout ATen.
// To be safe, storage size calculations must fit in both types.
@ -39,7 +38,6 @@ constexpr uint64_t storage_max() {
std::numeric_limits<size_t>::max());
return std::min(int64_max, size_max);
}
#endif
inline void raise_warning_for_complex_half(ScalarType dtype) {
if (dtype == kComplexHalf) {

View File

@ -76,7 +76,7 @@ TORCH_API TensorBase empty_cpu(
IntArrayRef size,
ScalarType dtype,
bool pin_memory = false,
std::optional<c10::MemoryFormat> memory_format_opt = std::nullopt);
std::optional<c10::MemoryFormat> memory_format_opt = c10::nullopt);
TORCH_API TensorBase empty_cpu(
IntArrayRef size,
@ -110,7 +110,7 @@ TORCH_API TensorBase empty_strided_cpu(
TORCH_API TensorBase empty_meta(
IntArrayRef size,
ScalarType dtype,
std::optional<c10::MemoryFormat> memory_format_opt = std::nullopt);
std::optional<c10::MemoryFormat> memory_format_opt = c10::nullopt);
TORCH_API TensorBase empty_meta(
IntArrayRef size,

View File

@ -303,7 +303,7 @@ Tensor FunctionalInverses::_nested_view_from_buffer_inverse(const Tensor& base,
return Tensor();
}
Tensor FunctionalInverses::_nested_view_from_jagged_inverse(const Tensor& base, const Tensor& mutated_view, InverseReturnMode inverse_return_mode, const Tensor& offsets, const Tensor& dummy, const std::optional<Tensor>& lengths, int64_t ragged_idx, const std::optional<Tensor>& min_seqlen, const std::optional<Tensor>& max_seqlen) {
Tensor FunctionalInverses::_nested_view_from_jagged_inverse(const Tensor& base, const Tensor& mutated_view, InverseReturnMode inverse_return_mode, const Tensor& offsets, const Tensor& dummy, const std::optional<Tensor>& lengths, int64_t ragged_idx) {
auto values = at::_nested_get_values(mutated_view);
if (inverse_return_mode != InverseReturnMode::NeverView) {
return values;
@ -317,12 +317,7 @@ Tensor FunctionalInverses::_nested_get_values_inverse(const Tensor& base, const
auto lengths = at::_nested_get_lengths(base);
auto ragged_idx = at::_nested_get_ragged_idx(base);
auto dummy = at::_nested_get_jagged_dummy(base);
auto min_seqlen = at::_nested_get_min_seqlen(base);
auto max_seqlen = at::_nested_get_max_seqlen(base);
auto nt = at::_nested_view_from_jagged(
mutated_view, offsets, dummy, lengths, ragged_idx,
(min_seqlen.defined() ? std::optional<Tensor>(min_seqlen) : std::nullopt),
(max_seqlen.defined() ? std::optional<Tensor>(max_seqlen) : std::nullopt));
auto nt = at::_nested_view_from_jagged(mutated_view, offsets, dummy, lengths, ragged_idx);
if (inverse_return_mode != InverseReturnMode::NeverView) {
return nt;

View File

@ -514,9 +514,6 @@ c10::SymInt FunctionalTensorWrapper::sym_size_custom(int64_t d) const {
c10::SymInt FunctionalTensorWrapper::sym_storage_offset_custom() const {
return value_.unsafeGetTensorImpl()->sym_storage_offset();
}
c10::Layout FunctionalTensorWrapper::layout_impl() const {
return value_.unsafeGetTensorImpl()->layout();
}
namespace functionalization {
namespace impl {
@ -531,9 +528,9 @@ Tensor to_functional_tensor(const Tensor& tensor) {
}
std::optional<Tensor> to_functional_tensor(const std::optional<Tensor>& tensor) {
if (tensor.has_value()) {
return std::make_optional<Tensor>(to_functional_tensor(*tensor));
return c10::make_optional<Tensor>(to_functional_tensor(*tensor));
}
return std::nullopt;
return c10::nullopt;
}
c10::List<::std::optional<Tensor>> to_functional_tensor(const c10::List<::std::optional<Tensor>>& t_list) {
c10::List<::std::optional<Tensor>> outputs;
@ -569,9 +566,9 @@ Tensor from_functional_tensor(const Tensor& tensor, bool assert_functional) {
}
std::optional<Tensor> from_functional_tensor(const std::optional<Tensor>& t, bool assert_functional) {
if (t.has_value()) {
return std::make_optional<Tensor>(from_functional_tensor(*t, assert_functional));
return c10::make_optional<Tensor>(from_functional_tensor(*t, assert_functional));
}
return std::nullopt;
return c10::nullopt;
}
std::vector<Tensor> from_functional_tensor(ITensorListRef t_list) {
std::vector<Tensor> outputs;

View File

@ -222,7 +222,6 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
c10::SymIntArrayRef sym_strides_custom() const override;
c10::SymInt sym_storage_offset_custom() const override;
c10::Device device_custom() const override;
c10::Layout layout_impl() const override;
private:
const char* tensorimpl_type_name() const override;

View File

@ -217,7 +217,7 @@ static at::Tensor lift_fresh_functionalize_copy(const at::Tensor & self) {
// we will end up hitting PreDispatch stack first. So, we should
// directly redispatch to the functionalize key manually.
static auto op = c10::Dispatcher::singleton().findSchemaOrThrow("aten::clone", "").typed<at::Tensor(const at::Tensor &, std::optional<at::MemoryFormat>)>();
return op.redispatch(c10::DispatchKeySet({c10::DispatchKey::Functionalize}), self, std::nullopt);
return op.redispatch(c10::DispatchKeySet({c10::DispatchKey::Functionalize}), self, c10::nullopt);
}
at::AutoDispatchSkipFunctionalize guard;

View File

@ -4,7 +4,7 @@
#include <c10/core/ScalarType.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/util/DimVector.h>
#include <optional>
#include <c10/util/Optional.h>
#include <sstream>
#include <vector>

View File

@ -139,7 +139,7 @@ static void batchedTensorInplaceForLoopFallback(const c10::OperatorHandle& op, t
if (self_vmap_levels != (self_vmap_levels | other_vmap_levels)) {
// Find one vmap level to complain about
auto additional_bdims = (self_vmap_levels | other_vmap_levels) ^ self_vmap_levels;
[[maybe_unused]] auto offending_level = llvm::findLastSet(additional_bdims.to_ulong());
auto offending_level = llvm::findLastSet(additional_bdims.to_ulong());
// The following prints out "vmap: aten::add_(tensor, ...) is not possible",
// but it would be better to print out "tensor.add_(...) is not possible".
// Afaict there's no official way to get the add_ and there is no way to

View File

@ -62,7 +62,7 @@ static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
return dim == 0 || dim == -1;
}
Tensor sum_batching_rule(const Tensor& self, OptionalIntArrayRef opt_dims, bool keepdim, std::optional<ScalarType> dtype) {
Tensor sum_batching_rule(const Tensor& self, OptionalIntArrayRef opt_dims, bool keepdim, optional<ScalarType> dtype) {
if (opt_dims.has_value()) {
auto dims = opt_dims.value();
// PyTorch has a special case where sum(scalar_tensor, dim=0) does not fail
@ -198,7 +198,7 @@ std::vector<Tensor> chunk_batching_rule(const Tensor& self, int64_t chunks, int6
return result;
}
Tensor clamp_batching_rule(const Tensor& self, const std::optional<Scalar>& min, const std::optional<Scalar>& max) {
Tensor clamp_batching_rule(const Tensor& self, const optional<Scalar>& min, const optional<Scalar>& max) {
auto self_physical = MultiBatchVmapTransform::logicalToPhysical(self);
auto result = at::clamp(self_physical.tensor(), min, max);
return self_physical.getPhysicalToLogicalMap().apply(result);
@ -508,11 +508,11 @@ static void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t
// given (sizes, strides, storage_offset) returns the maximum location that
// can be indexed (or nullopt if such a location doesn't exist, e.g., tensors
// with zero-size dims).
static std::optional<int64_t> maximum_indexable_location(
static optional<int64_t> maximum_indexable_location(
IntArrayRef sizes, IntArrayRef strides, int64_t storage_offset) {
auto result = native::storage_size_for(sizes, strides);
if (result == 0) {
return std::nullopt;
return nullopt;
}
return result + storage_offset;
}
@ -526,7 +526,7 @@ static void checkBasicAsStridedValidForSlice(
int64_t num_batch_dims,
IntArrayRef sizes,
IntArrayRef strides,
std::optional<int64_t> maybe_storage_offset) {
optional<int64_t> maybe_storage_offset) {
auto slice_sizes = physical_tensor.sizes().slice(num_batch_dims);
auto slice_strides = physical_tensor.strides().slice(num_batch_dims);
auto base_offset = physical_tensor.storage_offset();
@ -614,7 +614,7 @@ Tensor as_strided_batching_rule(
const Tensor& tensor,
IntArrayRef sizes,
IntArrayRef strides,
std::optional<int64_t> storage_offset) {
optional<int64_t> storage_offset) {
auto physical_view = at::MultiBatchVmapTransform::logicalToPhysical(tensor);
auto num_batch_dims = physical_view.numBatchDims();
auto physical_sizes = physical_view.getPhysicalShape(sizes);
@ -763,7 +763,7 @@ Tensor pow_scalar_Tensor_batching_rule(const Scalar& other, const Tensor& self)
return makeBatched(output_physical, BatchDims(old_bdims.begin(), old_bdims.end()));
}
Tensor clone_batching_rule(const Tensor& self, std::optional<MemoryFormat> memory_format) {
Tensor clone_batching_rule(const Tensor& self, optional<MemoryFormat> memory_format) {
// Memory format support is a little tricky because vmap is allowed to move
// around batch dimensions and some memory formats are rank-dependent.
// Another weird case is:
@ -958,12 +958,12 @@ Tensor stack_batching_rule(TensorList tensors, int64_t dim) {
// unwrap_and_call<..., at::to> because at::to takes TensorOptions& (!!)
Tensor to_dtype_layout_batching_rule(
const Tensor& self,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory,
optional<ScalarType> dtype,
optional<Layout> layout,
optional<Device> device,
optional<bool> pin_memory,
bool non_blocking, bool copy,
std::optional<MemoryFormat> memory_format) {
optional<MemoryFormat> memory_format) {
auto options = TensorOptions()
.dtype(dtype)
.layout(layout)
@ -978,10 +978,10 @@ Tensor to_dtype_layout_batching_rule(
Tensor new_zeros_batching_rule(
const Tensor& self,
IntArrayRef size,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
optional<ScalarType> dtype,
optional<Layout> layout,
optional<Device> device,
optional<bool> pin_memory) {
auto physical_view = MultiBatchVmapTransform::logicalToPhysical(self);
auto physical_size = physical_view.getPhysicalShape(size);
auto options = TensorOptions()
@ -1010,10 +1010,10 @@ Tensor new_empty_strided_batching_rule(
const Tensor& self,
IntArrayRef size,
IntArrayRef stride,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
optional<ScalarType> dtype,
optional<Layout> layout,
optional<Device> device,
optional<bool> pin_memory) {
auto physical_view = MultiBatchVmapTransform::logicalToPhysical(self);
auto physical_size = physical_view.getPhysicalShape(size);
@ -1181,9 +1181,9 @@ TORCH_LIBRARY_IMPL(aten, Batched, m) {
m.impl(name, unwrap_and_call_method< \
to_type, &Tensor::to, __VA_ARGS__>);\
}
TO_BATCHING_RULE("to.device", Device, ScalarType, bool, bool, std::optional<MemoryFormat>)
TO_BATCHING_RULE("to.dtype", ScalarType, bool, bool, std::optional<MemoryFormat>)
TO_BATCHING_RULE("to.other", const Tensor&, bool, bool, std::optional<MemoryFormat>)
TO_BATCHING_RULE("to.device", Device, ScalarType, bool, bool, optional<MemoryFormat>)
TO_BATCHING_RULE("to.dtype", ScalarType, bool, bool, optional<MemoryFormat>)
TO_BATCHING_RULE("to.other", const Tensor&, bool, bool, optional<MemoryFormat>)
m.impl("to.dtype_layout", to_dtype_layout_batching_rule);
#undef TO_BATCHING_RULE
m.impl("clone", clone_batching_rule);

View File

@ -275,9 +275,7 @@ MapAllocator::MapAllocator(WithFd, c10::string_view filename, int fd, int flags,
struct stat file_stat{};
if (fstat(fd, &file_stat) == -1) {
#ifndef STRIP_ERROR_MESSAGES
int last_err = errno;
#endif
if (!(flags_ & ALLOCATOR_MAPPED_FROMFD)) {
::close(fd);
}
@ -291,9 +289,7 @@ MapAllocator::MapAllocator(WithFd, c10::string_view filename, int fd, int flags,
TORCH_CHECK(false, "unable to resize file <", filename_, "> to the right size: ", strerror(errno), " (", errno, ")");
}
if (fstat(fd, &file_stat) == -1 || file_stat.st_size < static_cast<int64_t>(size)) {
#ifndef STRIP_ERROR_MESSAGES
int last_err = errno;
#endif
::close(fd);
TORCH_CHECK(false, "unable to stretch file <", filename_, "> to the right size: ", strerror(last_err), " (", last_err, ")");
}
@ -302,9 +298,7 @@ MapAllocator::MapAllocator(WithFd, c10::string_view filename, int fd, int flags,
*/
#ifndef __APPLE__
if ((write(fd, "", 1)) != 1) /* note that the string "" contains the '\0' byte ... */ {
#ifndef STRIP_ERROR_MESSAGES
int last_err = errno;
#endif
::close(fd);
TORCH_CHECK(false, "unable to write to file <", filename_, ">: ", strerror(last_err), " (", last_err, ")");
}

View File

@ -8,14 +8,12 @@
namespace at {
#ifndef STRIP_ERROR_MESSAGES
// Returns "Tensor['N', 'C', 'H', 'W']" for a tensor with names ('N', 'C', 'H', 'W').
static std::string toDimnameRepr(const Tensor& tensor) {
std::ostringstream os;
os << "Tensor" << tensor.names();
return os.str();
}
#endif
int64_t dimname_to_position(const Tensor& tensor, Dimname dim) {
TORCH_CHECK(dim.type() != NameType::WILDCARD,

View File

@ -173,7 +173,7 @@ NestedTensorImpl::NestedTensorImpl(
nested_sizes_(std::move(nested_sizes)),
nested_strides_(std::move(nested_strides)),
storage_offsets_(std::move(storage_offsets)),
opt_sizes_(std::nullopt) {
opt_sizes_(c10::nullopt) {
C10_LOG_API_USAGE_ONCE("torch.NestedTensor");
TORCH_WARN_ONCE(
"The PyTorch API of nested tensors is in prototype stage and will change "
@ -230,7 +230,7 @@ NestedTensorImpl::NestedTensorImpl(
nested_sizes_(std::move(nested_sizes)),
nested_strides_(std::move(nested_strides)),
storage_offsets_(std::move(storage_offsets)),
opt_sizes_(std::nullopt) {
opt_sizes_(c10::nullopt) {
validate_nested_tensor_metadata(nested_sizes_, nested_strides_, storage_offsets_);
refresh_dim();
set_custom_sizes_strides(c10::TensorImpl::SizesStridesPolicy::CustomSizes);
@ -239,11 +239,11 @@ NestedTensorImpl::NestedTensorImpl(
std::optional<int64_t> NestedTensorImpl::opt_size(int64_t d) const {
if (C10_UNLIKELY(!opt_sizes_.has_value())) {
// Cache the metadata to avoid recomputing it each time.
opt_sizes_ = std::make_optional(construct_opt_sizes(nested_sizes_));
opt_sizes_ = c10::make_optional(construct_opt_sizes(nested_sizes_));
}
d = at::maybe_wrap_dim(d, dim(), false);
if ((*opt_sizes_)[d] == -1) {
return std::nullopt;
return c10::nullopt;
}
return (*opt_sizes_)[d];
}

View File

@ -29,7 +29,6 @@ const char* get_env_var(
return value ? value : def_value;
}
#ifndef C10_MOBILE
size_t get_env_num_threads(const char* var_name, size_t def_value = 0) {
try {
if (auto* value = std::getenv(var_name)) {
@ -44,7 +43,6 @@ size_t get_env_num_threads(const char* var_name, size_t def_value = 0) {
}
return def_value;
}
#endif
} // namespace

View File

@ -32,7 +32,7 @@ void SavedTensorDefaultHooks::disable(const std::string& message) {
}
void SavedTensorDefaultHooks::enable() {
tls.disabled_error_message = std::nullopt;
tls.disabled_error_message = c10::nullopt;
}
/* static */ bool SavedTensorDefaultHooks::set_tracing(bool is_tracing) {

View File

@ -1,8 +1,8 @@
#pragma once
#include <c10/macros/Export.h>
#include <c10/util/Optional.h>
#include <c10/util/python_stub.h>
#include <optional>
#include <stack>
#include <string>

View File

@ -27,7 +27,7 @@ Tensor scalar_tensor_static(const Scalar& s, std::optional<ScalarType> dtype_opt
at::tracer::impl::NoTracerDispatchMode tracer_guard;
at::AutoDispatchBelowAutograd mode;
Tensor result = at::detail::empty_cpu(
{}, dtype_opt, std::nullopt, device_opt, std::nullopt, std::nullopt);
{}, dtype_opt, c10::nullopt, device_opt, c10::nullopt, c10::nullopt);
scalar_fill(result, s);
return result;
}

View File

@ -140,7 +140,7 @@ struct TORCH_API SparseTensorImpl : public TensorImpl {
"), but got ",
size.size());
if (nnz() > 0) {
[[maybe_unused]] auto constexpr alt_options_msg =
auto alt_options_msg =
"You could try the following options:\n\
1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\
2. If you need to resize this tensor, you have the following options:\n\

View File

@ -5,8 +5,8 @@
#include <ATen/core/Tensor.h>
#include <ATen/core/TensorBody.h>
#include <c10/core/SymInt.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <optional>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -29,7 +29,7 @@ constexpr int64_t INDEX_MAX = -(INDEX_MIN + 1);
enum class TensorIndexType { None, Ellipsis, SymInt, Boolean, Slice, Tensor };
constexpr std::nullopt_t None = std::nullopt;
constexpr c10::nullopt_t None = c10::nullopt;
struct TORCH_API EllipsisIndexType final {
EllipsisIndexType() = default;
@ -39,9 +39,9 @@ TORCH_API extern const EllipsisIndexType Ellipsis;
struct TORCH_API Slice final {
public:
Slice(
std::optional<c10::SymInt> start_index = std::nullopt,
std::optional<c10::SymInt> stop_index = std::nullopt,
std::optional<c10::SymInt> step_index = std::nullopt) {
std::optional<c10::SymInt> start_index = c10::nullopt,
std::optional<c10::SymInt> stop_index = c10::nullopt,
std::optional<c10::SymInt> step_index = c10::nullopt) {
if (!step_index.has_value()) {
step_ = c10::SymInt(1);
} else {
@ -110,7 +110,7 @@ TORCH_API std::ostream& operator<<(std::ostream& stream, const Slice& slice);
// `torch.tensor([1, 2])`) | `torch::tensor({1, 2})`
struct TORCH_API TensorIndex final {
// Case 1: `at::indexing::None`
TensorIndex(std::nullopt_t) : type_(TensorIndexType::None) {}
TensorIndex(c10::nullopt_t) : type_(TensorIndexType::None) {}
// Case 2: "..." / `at::indexing::Ellipsis`
TensorIndex(at::indexing::EllipsisIndexType)
@ -530,7 +530,7 @@ inline Tensor applySlicing(
auto& obj = indices[i];
// See NOTE [nested tensor size for indexing]
std::optional<SymIntArrayRef> result_sizes = result.is_nested()
? std::optional<SymIntArrayRef>(std::nullopt)
? std::optional<SymIntArrayRef>(c10::nullopt)
: std::optional<SymIntArrayRef>(result.sym_sizes());
result = handleDimInMultiDimIndexing(
/*prev_dim_result=*/result,
@ -606,7 +606,7 @@ inline Tensor get_item(
// as null may need to be changed after we reach a better solution for nested
// tensor size
std::optional<SymIntArrayRef> self_sizes = self.is_nested()
? std::optional<SymIntArrayRef>(std::nullopt)
? std::optional<SymIntArrayRef>(c10::nullopt)
: std::optional<SymIntArrayRef>(self.sym_sizes());
// handle simple types: integers, slices, none, ellipsis, bool

View File

@ -171,7 +171,7 @@ TensorIteratorConfig& TensorIteratorConfig::declare_static_shape(IntArrayRef sha
// This will bypass all shape checking in the TensorIterator. Kernels which call this method
// are expected to check shapes before calling `add_owned_input` or `add_owned_output`.
TORCH_CHECK(!resize_outputs_, "resize_outputs() must be called before declare_static_shape(...)")
static_shape_ = std::make_optional(DimVector(shape));
static_shape_ = c10::make_optional(DimVector(shape));
return *this;
}

View File

@ -147,7 +147,7 @@ struct TORCH_API OperandInfo {
/// promotion target_dtype value can become different from tensor's dtype
/// also, during type promotion target_dtype and device can be set for an
/// undefined tensor so that tensor can be properly constructed later.
std::optional<Device> device = std::nullopt;
std::optional<Device> device = c10::nullopt;
ScalarType target_dtype = ScalarType::Undefined;
// Caches dtype of the tensor, because scalar_type is an expensive operation
// If dtype of the tensor is changed (e.g. as a result of type promotion or in
@ -971,9 +971,9 @@ class TORCH_API TensorIteratorConfig final {
int num_outputs_ = 0;
int num_inputs_ = 0;
std::optional<DimVector> static_shape_ = std::nullopt;
std::optional<ScalarType> static_dtype_ = std::nullopt;
std::optional<Device> static_device_ = std::nullopt;
std::optional<DimVector> static_shape_ = c10::nullopt;
std::optional<ScalarType> static_dtype_ = c10::nullopt;
std::optional<Device> static_device_ = c10::nullopt;
bool check_mem_overlap_ = true;
bool allow_cpu_scalars_ = false;
bool is_reduction_ = false;

Some files were not shown because too many files have changed in this diff Show More