Compare commits

..

1 Commits

Author SHA1 Message Date
e16085a217 improve sharding propagation error msg in dtensor dispatch 2025-10-09 14:44:32 -07:00
1005 changed files with 9926 additions and 26058 deletions

View File

@ -8,8 +8,6 @@ if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
fi

View File

@ -181,7 +181,7 @@ case "$tag" in
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950;gfx1100"
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
@ -344,7 +344,7 @@ docker build \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942;gfx1100}" \
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \

View File

@ -10,6 +10,11 @@ BAD_SSL = "https://self-signed.badssl.com"
print("Testing SSL certificate checking for Python:", sys.version)
if sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4):
print("This version never checks SSL certs; skipping tests")
sys.exit(0)
EXC = OSError
print(f"Connecting to {GOOD_SSL} should work")

View File

@ -143,7 +143,7 @@ def sample_vllm_test_library():
"pytest -v -s compile/test_decorator.py",
],
},
"vllm_language_model_test_extended_generation_28_failure_test": {
"vllm_languagde_model_test_extended_generation_28_failure_test": {
"title": "Language Models Test (Extended Generation) 2.8 release failure",
"id": "vllm_languagde_model_test_extended_generation_28_failure_test",
"package_install": [

View File

@ -63,7 +63,7 @@ class VllmBuildParameters:
# DOCKERFILE_PATH: path to Dockerfile used when use_local_dockerfile is True"
use_local_dockerfile: bool = env_bool_field("USE_LOCAL_DOCKERFILE", True)
dockerfile_path: Path = env_path_field(
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile"
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile.tmp_vllm"
)
# the cleaning script to remove torch dependencies from pip

View File

@ -187,22 +187,19 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
export USE_CUFILE=0
else
DEPS_LIST+=(
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
DEPS_SONAME+=(
"libnvToolsExt.so.1"
"libcublas.so.12"
"libcublasLt.so.12"
"libcudart.so.12"
"libnvrtc.so.12"
"libcupti.so.12")
if [[ $CUDA_VERSION != 12.9* ]]; then
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
DEPS_SONAME+=("libnvToolsExt.so.1")
fi
fi
else
echo "Using nvidia libs from pypi."

View File

@ -337,13 +337,13 @@ test_python() {
test_python_smoke() {
# Smoke tests for H100/B200
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_python_smoke_b200() {
# Targeted smoke tests for B200 - staged approach to avoid too many failures
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
@ -1615,7 +1615,6 @@ test_operator_benchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
ARCH=$(uname -m)
test_inductor_set_cpu_affinity
@ -1630,7 +1629,7 @@ test_operator_benchmark() {
pip_install pandas
python check_perf_csv.py \
--actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
--expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv"
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {

View File

@ -12,7 +12,7 @@ ignore =
# to line this up with executable bit
EXE001,
# these ignores are from flake8-bugbear; please fix!
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907,B908,B910
# these ignores are from flake8-comprehensions; please fix!
C407,
# these ignores are from flake8-logging-format; please fix!

View File

@ -8,7 +8,6 @@ assignees: ''
---
> NOTE: Remember to label this issue with "`ci: sev`"
> If you want autorevert to be disabled, keep the ci: disable-autorevert label
<!-- Add the `merge blocking` label to this PR to prevent PRs from being merged while this issue is open -->

View File

@ -1,7 +1,7 @@
---
name: "D❌\U0001F519 ISABLE AUTOREVERT"
name: DISABLE AUTOREVERT
about: Disables autorevert when open
title: "[DISABLE AUTOREVERT]"
title: "❌​\U0001F519 [DISABLE AUTOREVERT]"
labels: 'ci: disable-autorevert'
assignees: ''

View File

@ -65,7 +65,7 @@ runs:
cd .ci/lumen_cli
python3 -m pip install -e .
)
MAX_JOBS="$(nproc --ignore=10)"
MAX_JOBS="$(nproc --ignore=6)"
export MAX_JOBS
# Split the comma-separated list and build each target

View File

@ -274,6 +274,8 @@ runs:
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}"
)
# Propagate download.pytorch.org IP to container
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts"
echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}"
docker exec -t "${container_name}" sh -c "pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}"

View File

@ -111,16 +111,3 @@ runs:
# This video group ID maps to subgid 1 inside the docker image due to the /etc/subgid entries.
# The group name corresponding to group ID 1 can change depending on the OS, so both are necessary.
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd $DEVICE_FLAG --group-add video --group-add $render_gid --group-add daemon --group-add bin --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --network=host" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Login to Amazon ECR
id: login-ecr
continue-on-error: true
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1

View File

@ -33,6 +33,10 @@ runs:
)
echo "CONTAINER_NAME=${container_name}" >> "$GITHUB_ENV"
if [[ "${GPU_ARCH_TYPE}" != "rocm" && "${BUILD_ENVIRONMENT}" != "linux-aarch64-binary-manywheel" && "${BUILD_ENVIRONMENT}" != "linux-s390x-binary-manywheel" && "${GPU_ARCH_TYPE}" != "xpu" ]]; then
# Propagate download.pytorch.org IP to container. This is only needed on Linux non aarch64 runner
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" bash -c "/bin/cat >> /etc/hosts"
fi
docker exec -t -w "${PYTORCH_ROOT}" "${container_name}" bash -c "bash .circleci/scripts/binary_populate_env.sh"
# Generate test script

View File

@ -1 +1 @@
1b013f5b5a87a1882eb143c26d79d091150d6a37
87ff22e49ed0e92576c4935ccb8c143daac4a3cd

View File

@ -1 +1 @@
faffd5cf673615583da6517275e361cb3dbc77e6
966da7e46f65d6d49df3e31214470a4fe5cc8e66

View File

@ -1 +1 @@
e5192819208c4d68194844b7dfafbc00020d0dea
0ad9951c416d33c5da4f7a504fb162cbe62386f5

View File

@ -1 +1 @@
0fa6e3129e61143224663e1ec67980d12b7ec4eb
2a9138a26ee257fef05310ad3fecf7c55fe80d73

View File

@ -1,41 +1,59 @@
# TODO(elainwy): remove this file after the torch nightly dockerfile is in sync in vllm repo
# The vLLM Dockerfile is used to construct vLLM image against torch nightly and torch main that can be directly used for testing
ARG CUDA_VERSION=12.8.1
ARG PYTHON_VERSION=3.12
# BUILD_BASE_IMAGE: used to setup python build xformers, and vllm wheels, It can be replaced with a different base image from local machine,
# by default, it uses the torch-nightly-base stage from this docker image
ARG BUILD_BASE_IMAGE=torch-nightly-base
# FINAL_BASE_IMAGE: used to set up vllm-instaled environment and build flashinfer,
# by default, it uses devel-ubuntu22.04 official image.
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
# The logic is copied from https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
#################### TORCH NIGHTLY BASE IMAGE ####################
# A base image for building vLLM with devel ubuntu 22.04, this is mainly used to build vllm in vllm builtkite ci
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
ARG CUDA_VERSION
ARG PYTHON_VERSION
ARG GET_PIP_URL
# Install system dependencies and uv, then create Python virtual environment
# Install Python and other dependencies
RUN apt-get update -y \
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
&& add-apt-repository -y ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
&& python3 --version && python3 -m pip --version
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
# as it was causing spam when compiling the CUTLASS kernels
RUN apt-get install -y gcc-10 g++-10
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
RUN <<EOF
gcc --version
EOF
# Ensure gcc >= 10 to avoid CUTLASS issues (bug 92519)
RUN current_gcc_version=$(gcc -dumpversion | cut -f1 -d.) && \
if command -v apt-get >/dev/null; then \
if [ "$current_gcc_version" -lt 10 ]; then \
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
apt-get update \
&& apt-get install -y gcc-10 g++-10 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 \
&& update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
else \
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
fi \
fi \
&& gcc --version && g++ --version
# Install uv for faster pip installs
# install uv for faster pip installs
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv==0.8.4
@ -43,32 +61,36 @@ ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
#################### TORCH NIGHTLY BASE IMAGE ####################
#################### BASE BUILD IMAGE ####################
# A base image for building vLLM with torch nightly or torch wheels
# prepare basic build environment
FROM ${BUILD_BASE_IMAGE} AS base
USER root
ARG CUDA_VERSION
ARG PYTHON_VERSION
# Only work with PyTorch manylinux builder
# TODO (huydhn): Only work with PyTorch manylinux builder
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
# Install some system dependencies and double check python version
RUN if command -v apt-get >/dev/null; then \
apt-get update -y \
&& apt-get install -y ccache software-properties-common git wget sudo vim; \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim; \
else \
dnf install -y git wget sudo; \
dnf install -y git curl wget sudo; \
fi \
&& python3 --version && python3 -m pip --version
# Install uv for faster pip installs if not existed
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv==0.8.4
if ! python3 -m uv --version >/dev/null 2>&1; then \
python3 -m pip install uv==0.8.4; \
fi
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
@ -76,15 +98,15 @@ ENV UV_LINK_MODE=copy
WORKDIR /workspace
# Install build and runtime dependencies
# install build and runtime dependencies
COPY requirements/common.txt requirements/common.txt
COPY use_existing_torch.py use_existing_torch.py
COPY pyproject.toml pyproject.toml
# Install build and runtime dependencies without stable torch version
# install build and runtime dependencies without stable torch version
RUN python3 use_existing_torch.py
# Default mount file as placeholder, this just avoid the mount error
# default mount file as placeholder, this just avoid the mount error
# change to a different vllm folder if this does not exist anymore
ARG TORCH_WHEELS_PATH="./requirements"
ARG PINNED_TORCH_VERSION
@ -116,36 +138,56 @@ RUN --mount=type=cache,target=/root/.cache/uv \
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/common.txt
# Must put before installing xformers, so it can install the correct version of xfomrers.
ARG xformers_cuda_arch_list='7.5;8.0+PTX;9.0a'
ENV TORCH_CUDA_ARCH_LIST=${xformers_cuda_arch_list}
ARG max_jobs=16
ENV MAX_JOBS=${max_jobs}
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
git clone https://github.com/facebookresearch/xformers.git
RUN echo ${TORCH_CUDA_ARCH_LIST}
RUN echo ${MAX_JOBS}
RUN pip freeze | grep -E 'ninja'
pushd xformers
git checkout v0.0.32.post2
git submodule update --init --recursive
python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose
popd
# Build xformers with cuda and torch nightly/wheel
# following official xformers guidance: https://github.com/facebookresearch/xformers#build
# sha for https://github.com/facebookresearch/xformers/tree/v0.0.32.post2
ARG XFORMERS_COMMIT=5d4b92a5e5a9c6c6d4878283f47d82e17995b468
ENV CCACHE_DIR=/root/.cache/ccache
rm -rf xformers
BASH
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/uv \
echo 'git clone xformers...' \
&& git clone https://github.com/facebookresearch/xformers.git --recursive \
&& cd xformers \
&& git checkout ${XFORMERS_COMMIT} \
&& git submodule update --init --recursive \
&& echo 'finish git clone xformers...' \
&& rm -rf build \
&& python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose \
&& cd .. \
&& rm -rf xformers
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system xformers-dist/*.whl
uv pip install --system xformers-dist/*.whl --verbose
# Build can take a long time, and the torch nightly version fetched from url can be different in next docker stage.
# track the nightly torch version used in the build, when we set up runtime environment we can make sure the version is the same
RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio' > torch_build_versions.txt
RUN cat torch_build_versions.txt
RUN pip freeze | grep -E 'torch|xformers|torchvision|torchaudio'
#################### BASE BUILD IMAGE ####################
#################### WHEEL BUILD IMAGE ####################
# Image used to build vllm wheel
FROM base AS build
ARG TARGETPLATFORM
COPY . .
RUN python3 use_existing_torch.py
RUN --mount=type=cache,target=/root/.cache/uv \
@ -155,17 +197,20 @@ ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
# Max jobs used by Ninja to build extensions
ARG max_jobs=16
ENV MAX_JOBS=${max_jobs}
ARG nvcc_threads=8
ARG nvcc_threads=4
ENV NVCC_THREADS=$nvcc_threads
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
ARG USE_SCCACHE
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
ARG SCCACHE_REGION_NAME=us-west-2
ARG SCCACHE_S3_NO_CREDENTIALS=0
# Use sccache to speed up compilation
# if USE_SCCACHE is set, use sccache to speed up compilation
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=.git,target=.git \
if [ "$USE_SCCACHE" = "1" ]; then \
@ -190,9 +235,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
&& sccache --show-stats; \
fi
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
ARG vllm_target_device="cuda"
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
ENV CCACHE_DIR=/root/.cache/ccache
@ -206,10 +248,17 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
export VLLM_DOCKER_BUILD_CONTEXT=1 && \
python3 setup.py bdist_wheel --dist-dir=vllm-dist --py-limited-api=cp38; \
fi
RUN echo "[INFO] Listing current directory:" && \
ls -al && \
echo "[INFO] Showing torch_build_versions.txt content:" && \
cat torch_build_versions.txt
#################### WHEEL BUILD IMAGE ####################
################### VLLM INSTALLED IMAGE ####################
# Setup clean environment for vLLM for test and api server using ubuntu22.04 with AOT flashinfer
FROM ${FINAL_BASE_IMAGE} AS vllm-base
USER root
@ -217,7 +266,7 @@ ARG CUDA_VERSION
ARG PYTHON_VERSION
ARG GET_PIP_URL
# Only work with PyTorch manylinux builder
# TODO (huydhn): Only work with PyTorch manylinux builder
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
# prepare for environment starts
@ -226,19 +275,20 @@ WORKDIR /workspace
# Install Python and other dependencies
RUN if command -v apt-get >/dev/null; then \
apt-get update -y \
&& apt-get install -y ccache software-properties-common git sudo vim python3-pip; \
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
&& add-apt-repository -y ppa:deadsnakes/ppa \
&& apt-get update -y \
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION}; \
else \
dnf install -y git wget sudo; \
dnf install -y git curl wget sudo; \
fi \
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
&& python3 --version && python3 -m pip --version
# Get the torch versions, and whls used in previous stage
# Get the torch versions, and whls used in previous stagtes for consistency
COPY --from=base /workspace/torch_build_versions.txt ./torch_build_versions.txt
COPY --from=base /workspace/xformers-dist /wheels/xformers
COPY --from=build /workspace/vllm-dist /wheels/vllm
@ -247,29 +297,33 @@ RUN echo "[INFO] Listing current directory before torch install step:" && \
echo "[INFO] Showing torch_build_versions.txt content:" && \
cat torch_build_versions.txt
# Install uv for faster pip installs if not existed
RUN --mount=type=cache,target=/root/.cache/uv \
python3 -m pip install uv==0.8.4
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
# Install build and runtime dependencies, this is needed for flashinfer install
COPY requirements/build.txt requirements/build.txt
COPY use_existing_torch.py use_existing_torch.py
RUN python3 use_existing_torch.py
RUN cat requirements/build.txt
# Install uv for faster pip installs if not existed
RUN --mount=type=cache,target=/root/.cache/uv \
if ! python3 -m uv --version > /dev/null 2>&1; then \
python3 -m pip install uv==0.8.4; \
fi
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/build.txt
# Default mount file as placeholder, this just avoid the mount error
ARG TORCH_WHEELS_PATH="./requirements"
# Install torch, torchaudio and torchvision. If TORCH_WHEELS_PATH is default
# to ./requirements, it will pull the nightly versions using pip. Otherwise,
# it will use the local wheels from TORCH_WHEELS_PATH
# Install torch, torchaudio and torchvision
# if TORCH_WHEELS_PATH is default "./requirements", it will pull the nightly versions using pip using torch_build_versions.txt
# otherwise, it will use the whls from TORCH_WHEELS_PATH from the host machine
RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
--mount=type=cache,target=/root/.cache/uv \
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
@ -290,14 +344,18 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Install xformers wheel from previous stage
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system /wheels/xformers/*.whl --verbose
# Build FlashInfer from source
# Build flashinfer from source.
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
# install package for build flashinfer
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
RUN pip freeze | grep -E 'setuptools|packaging|build'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# Build flashinfer for torch nightly from source around 10 mins
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
# Keep this in sync with https://github.com/vllm-project/vllm/blob/main/requirements/cuda.txt
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
RUN --mount=type=cache,target=/root/.cache/uv \
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
@ -309,7 +367,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
&& cd .. \
&& rm -rf flashinfer
# Install FlashInfer
# install flashinfer python
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system wheels/flashinfer/*.whl --verbose
@ -319,6 +377,49 @@ RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio\|^xformers\|^vllm
################### VLLM INSTALLED IMAGE ####################
#################### UNITTEST IMAGE #############################
FROM vllm-base as test
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Use copy mode to avoid hardlink failures with Docker cache mounts
ENV UV_LINK_MODE=copy
COPY tests/ tests/
COPY examples examples
COPY benchmarks benchmarks
COPY ./vllm/collect_env.py .
COPY requirements/common.txt requirements/common.txt
COPY use_existing_torch.py use_existing_torch.py
COPY pyproject.toml pyproject.toml
# Install build and runtime dependencies without stable torch version
COPY requirements/nightly_torch_test.txt requirements/nightly_torch_test.txt
RUN python3 use_existing_torch.py
# install packages
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/common.txt
# enable fast downloads from hf (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system hf_transfer
ENV HF_HUB_ENABLE_HF_TRANSFER 1
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -e tests/vllm_test_utils
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/nightly_torch_test.txt
# Logging to confirm the torch versions
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
# Logging to confirm all the packages are installed
RUN pip freeze
#################### UNITTEST IMAGE #############################
#################### EXPORT STAGE ####################
FROM scratch as export-wheels

View File

@ -15,8 +15,7 @@ ciflow_push_tags:
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-compare
- ciflow/inductor-perf-test-nightly-rocm-mi300
- ciflow/inductor-perf-test-nightly-rocm-mi355
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-periodic
- ciflow/inductor-rocm

View File

@ -512,8 +512,6 @@ def perform_misc_tasks(
"keep-going",
branch == MAIN_BRANCH
or bool(tag and re.match(r"^trunk/[a-f0-9]{40}$", tag))
# Pattern for tags created via manual run on HUD
or bool(tag and re.match(r"^ciflow/[^/]+/[a-f0-9]{40}$", tag))
or check_for_setting(labels, pr_body, "keep-going"),
)
set_output(

View File

@ -16,18 +16,16 @@ from typing import Optional
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
CUDA_ARCHES = ["12.6", "12.8", "13.0"]
CUDA_STABLE = "12.8"
CUDA_ARCHES_FULL_VERSION = {
"12.6": "12.6.3",
"12.8": "12.8.1",
"12.9": "12.9.1",
"13.0": "13.0.0",
}
CUDA_ARCHES_CUDNN_VERSION = {
"12.6": "9",
"12.8": "9",
"12.9": "9",
"13.0": "9",
}
@ -40,7 +38,7 @@ CPU_AARCH64_ARCH = ["cpu-aarch64"]
CPU_S390X_ARCH = ["cpu-s390x"]
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "12.9-aarch64", "13.0-aarch64"]
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "13.0-aarch64"]
PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
@ -78,23 +76,6 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
),
"12.9": (
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"13.0": (
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
"nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | "
@ -241,11 +222,7 @@ def generate_libtorch_matrix(
arches += CUDA_ARCHES
arches += ROCM_ARCHES
elif os == "windows":
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
# in 2.10
windows_cuda_arches = CUDA_ARCHES.copy()
windows_cuda_arches.remove("12.9")
arches += windows_cuda_arches
arches += CUDA_ARCHES
if libtorch_variants is None:
libtorch_variants = [
"shared-with-deps",
@ -309,11 +286,7 @@ def generate_wheels_matrix(
if os == "linux":
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
elif os == "windows":
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
# in 2.10
windows_cuda_arches = CUDA_ARCHES.copy()
windows_cuda_arches.remove("12.9")
arches += windows_cuda_arches + XPU_ARCHES
arches += CUDA_ARCHES + XPU_ARCHES
elif os == "linux-aarch64":
# Separate new if as the CPU type is different and
# uses different build/test scripts
@ -349,7 +322,7 @@ def generate_wheels_matrix(
# cuda linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
if (
arch_version in ["13.0", "12.9", "12.8", "12.6"]
arch_version in ["13.0", "12.8", "12.6"]
and os == "linux"
or arch_version in CUDA_AARCH64_ARCHES
):
@ -413,6 +386,5 @@ def generate_wheels_matrix(
validate_nccl_dep_consistency("13.0")
validate_nccl_dep_consistency("12.9")
validate_nccl_dep_consistency("12.8")
validate_nccl_dep_consistency("12.6")

View File

@ -2042,6 +2042,10 @@ def validate_revert(
f"[{', '.join(allowed_reverters)}], but instead is {author_association}."
)
# Raises exception if matching rule is not found, but ignores all status checks
find_matching_merge_rule(
pr, repo, skip_mandatory_checks=True, skip_internal_checks=True
)
commit_sha = get_pr_commit_sha(repo, pr)
return (author_login, commit_sha)

View File

@ -177,9 +177,6 @@ jobs:
runs-on: linux.rocm.gpu.mi250
timeout-minutes: !{{ common.timeout_minutes }}
!{{ upload.binary_env(config) }}
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm

View File

@ -72,7 +72,7 @@ jobs:
# Let's try to figure out how this can be improved
timeout-minutes: 360
- docs_type: python
runner: ${{ inputs.runner_prefix }}linux.c7i.2xlarge
runner: ${{ inputs.runner_prefix }}linux.2xlarge
# It takes less than 30m to finish python docs unless there are issues
timeout-minutes: 30
# Set a fixed name for this job instead of using the current matrix-generated name, i.e. build-docs (cpp, linux.12xlarge, 180)

View File

@ -37,7 +37,7 @@ on:
runner:
required: false
type: string
default: "linux.c7i.2xlarge"
default: "linux.2xlarge"
description: |
Label of the runner this job should run on.
test-matrix:

View File

@ -389,6 +389,8 @@ jobs:
"${DOCKER_IMAGE}" \
${DOCKER_SHELL_CMD}
)
# Propagate download.pytorch.org IP to container
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts"
echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}"
if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then

View File

@ -102,6 +102,19 @@ jobs:
exit 1
fi
- name: configure aws credentials
id: aws_creds
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Login to Amazon ECR
id: login-ecr
continue-on-error: true
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main

View File

@ -46,12 +46,10 @@ jobs:
fail-fast: false
matrix:
include: [
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.8", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.9", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cuda12.6", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },

View File

@ -27,8 +27,9 @@ jobs:
fail-fast: false
matrix:
python-version: [ '3.12' ]
# TODO (huydhn): Add cu130 after https://github.com/vllm-project/vllm/issues/24464 is resolved
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
device: [ 'cu128', 'cu129', 'cu130' ]
device: [ 'cu128', 'cu129' ]
include:
- platform: manylinux_2_28_x86_64
device: cu128
@ -38,10 +39,6 @@ jobs:
device: cu129
manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.9'
runner: linux.12xlarge.memory
- platform: manylinux_2_28_x86_64
device: cu130
manylinux-image: 'pytorch/manylinux2_28-builder:cuda13.0'
runner: linux.12xlarge.memory
- platform: manylinux_2_28_aarch64
device: cu128
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.8'
@ -50,11 +47,6 @@ jobs:
device: cu129
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.9'
runner: linux.arm64.r7g.12xlarge.memory
exclude:
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
# xformers is update to support 13.0
- platform: manylinux_2_28_aarch64
device: cu130
name: "Build ${{ matrix.device }} vLLM wheel on ${{ matrix.platform }}"
runs-on: ${{ matrix.runner }}
timeout-minutes: 480
@ -177,12 +169,7 @@ jobs:
fail-fast: false
matrix:
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
device: [ 'cu128', 'cu129', 'cu130' ]
exclude:
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
# xformers is update to support 13.0
- platform: manylinux_2_28_aarch64
device: cu130
device: [ 'cu128', 'cu129' ]
env:
PLATFORM: ${{ matrix.platform }}
BUILD_DEVICE: ${{ matrix.device }}

View File

@ -204,52 +204,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_10-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -453,52 +407,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -702,52 +610,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_12-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -951,52 +813,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1200,52 +1016,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13t-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1449,52 +1219,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1698,52 +1422,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda-aarch64-12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda-aarch64-12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14t-cuda-aarch64-12_9-build
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9-aarch64"
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda-aarch64-12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda-aarch64-13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml

View File

@ -248,74 +248,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: libtorch-cuda12_9-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-release-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-cuda12_9-shared-with-deps-release
build_environment: linux-binary-libtorch
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-cuda12_9-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -426,9 +358,6 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -544,9 +473,6 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm

View File

@ -241,72 +241,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_10-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_10-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_10-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -413,9 +347,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.10"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -528,9 +459,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.10"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -907,72 +835,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_11-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1079,9 +941,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.11"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -1194,9 +1053,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.11"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -1573,72 +1429,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_12-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_12-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_12-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1745,9 +1535,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.12"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -1860,9 +1647,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.12"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -2239,72 +2023,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_13-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -2411,9 +2129,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.13"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -2526,9 +2241,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.13"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -2905,72 +2617,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_13t-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_13t-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_13t-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -3077,9 +2723,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.13t"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -3192,9 +2835,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.13t"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -3571,72 +3211,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_14-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14"
build_name: manywheel-py3_14-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -3743,9 +3317,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.14"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -3858,9 +3429,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.14"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -4237,72 +3805,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_14t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_14t-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_14t-cuda12_9-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_14t-cuda12_9-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
DESIRED_PYTHON: "3.14t"
build_name: manywheel-py3_14t-cuda12_9
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_14t-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -4409,9 +3911,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.14t"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
@ -4524,9 +4023,6 @@ jobs:
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
DESIRED_PYTHON: "3.14t"
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm

View File

@ -130,7 +130,7 @@ jobs:
name: test-periodically
uses: ./.github/workflows/_linux-test.yml
needs: build
if: github.event.schedule == '15 0 * * 1-6'
if: github.event.schedule == '15 0,12 * * 1-6'
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm90
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true

View File

@ -1,132 +0,0 @@
name: inductor-perf-nightly-rocm-mi300
on:
push:
tags:
- ciflow/inductor-perf-test-nightly-rocm-mi300/*
schedule:
- cron: 15 0 * * *
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
workflow_dispatch:
inputs:
training:
description: Run training (on by default)?
required: false
type: boolean
default: true
inference:
description: Run inference (on by default)?
required: false
type: boolean
default: true
default:
description: Run inductor_default?
required: false
type: boolean
default: false
dynamic:
description: Run inductor_dynamic_shapes?
required: false
type: boolean
default: false
cppwrapper:
description: Run inductor_cpp_wrapper?
required: false
type: boolean
default: false
cudagraphs:
description: Run inductor_cudagraphs?
required: false
type: boolean
default: true
freezing_cudagraphs:
description: Run inductor_cudagraphs with freezing for inference?
required: false
type: boolean
default: false
aotinductor:
description: Run aot_inductor for inference?
required: false
type: boolean
default: false
maxautotune:
description: Run inductor_max_autotune?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf_rocm_mi300,inductor_timm_perf_rocm_mi300,inductor_torchbench_perf_rocm_mi300
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
jobs:
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
linux-jammy-rocm-py3_10-inductor-benchmark-build:
if: github.repository_owner == 'pytorch'
name: rocm-py3_10-inductor-benchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-rocm-py3_10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit
linux-jammy-rocm-py3_10-inductor-benchmark-test:
permissions:
id-token: write
contents: read
name: rocm-py3_10-inductor-benchmark-test
uses: ./.github/workflows/_rocm-test.yml
needs: linux-jammy-rocm-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-rocm-py3_10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
docker-image: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
# Disable monitor in perf tests for more investigation
disable-monitor: true
monitor-log-interval: 10
monitor-data-collect-interval: 2
secrets: inherit

View File

@ -1,11 +1,11 @@
name: inductor-perf-nightly-rocm-mi355
name: inductor-perf-nightly-rocm
on:
push:
tags:
- ciflow/inductor-perf-test-nightly-rocm-mi355/*
- ciflow/inductor-perf-test-nightly-rocm/*
schedule:
- cron: 15 0 * * *
- cron: 0 7 * * 0,3
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
workflow_dispatch:
@ -59,7 +59,7 @@ on:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf_rocm_mi355,inductor_timm_perf_rocm_mi355,inductor_torchbench_perf_rocm_mi355
default: inductor_huggingface_perf_rocm,inductor_timm_perf_rocm,inductor_torchbench_perf_rocm
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
@ -88,27 +88,23 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit

View File

@ -12,7 +12,6 @@ on:
- landchecks/*
tags:
- ciflow/pull/*
- ciflow/trunk/*
workflow_dispatch:
permissions: read-all
@ -33,12 +32,10 @@ jobs:
name: Get changed files
uses: ./.github/workflows/_get-changed-files.yml
with:
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') || github.event_name == 'push' }}
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') }}
lintrunner-clang:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
# Needed to prevent deduping on HUD
name: lintrunner-clang-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
needs: [get-label-type, get-changed-files]
# Only run if there are changed files relevant to clangtidy / clangformat
if: |
@ -78,7 +75,6 @@ jobs:
# fails to find types when it should
lintrunner-mypy:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
name: lintrunner-mypy-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
needs: [get-label-type, get-changed-files]
# Only run if there are changed files relevant to mypy
if: |
@ -103,7 +99,6 @@ jobs:
lintrunner-noclang:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
name: lintrunner-noclang-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
needs: [get-label-type, get-changed-files]
with:
timeout: 120
@ -118,9 +113,9 @@ jobs:
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running all other linters"
if [ "$CHANGED_FILES" = '*' ]; then
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
else
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh
fi
quick-checks:

View File

@ -7,11 +7,9 @@ on:
workflow_dispatch:
inputs:
test_mode:
type: choice
options:
- 'short'
- 'long'
- 'all'
required: false
type: string
default: 'short'
description: tag filter for operator benchmarks, options from long, short, all
schedule:
# Run at 07:00 UTC every Sunday
@ -30,25 +28,38 @@ permissions:
contents: read
jobs:
x86-opbenchmark-build:
opbenchmark-build:
if: github.repository_owner == 'pytorch'
name: x86-opbenchmark-build
name: opbenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_${{ inputs.test_mode || 'short' }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
]}
secrets: inherit
x86-opbenchmark-test:
name: x86-opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: x86-opbenchmark-build
opbenchmark-on-demand-build:
if: ${{ github.event_name == 'workflow_dispatch' && github.repository_owner == 'pytorch' }}
name: opbenchmark-on-demand-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_${{ inputs.test_mode }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
]}
secrets: inherit
opbenchmark-test:
name: opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: opbenchmark-build
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -182,11 +182,11 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11
test-matrix: |
{ include: [
{ config: "nogpu_AVX512", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "nogpu_AVX512", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "nogpu_AVX512", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "nogpu_NO_AVX2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
{ config: "nogpu_AVX512", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "nogpu_AVX512", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "nogpu_AVX512", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "nogpu_NO_AVX2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
]}
secrets: inherit

View File

@ -127,7 +127,6 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan

View File

@ -140,7 +140,6 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan

View File

@ -56,7 +56,7 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
build-generates-artifacts: false
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.c7i.4xlarge"
runner: "linux.4xlarge"
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 1 },
@ -180,13 +180,13 @@ jobs:
disable-monitor: false
secrets: inherit
win-vs2022-cuda12_8-py3-build:
name: win-vs2022-cuda12.8-py3
win-vs2022-cuda12_6-py3-build:
name: win-vs2022-cuda12.6-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2022-cuda12.8-py3
cuda-version: "12.8"
build-environment: win-vs2022-cuda12.6-py3
cuda-version: "12.6"
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
secrets: inherit

View File

@ -46,7 +46,7 @@ jobs:
runner: linux.24xlarge.memory
test-matrix: |
{ include: [
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_basic_models_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_entrypoints_test", shard: 1, num_shards: 1,runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_regression_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
@ -54,7 +54,7 @@ jobs:
{ config: "vllm_pytorch_compilation_unit_tests", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_multi_model_test_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
{ config: "vllm_language_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
{ config: "vllm_languagde_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
{ config: "vllm_distributed_test_2_gpu_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_test", shard: 0, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
{ config: "vllm_lora_test", shard: 1, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },

1
.gitignore vendored
View File

@ -395,4 +395,3 @@ android/pytorch_android_torchvision/.cxx
CLAUDE.local.md
/test_*.py
/debug_*.py
CLAUDE_CONTEXT/

View File

@ -209,46 +209,6 @@ command = [
'@{{PATHSFILE}}'
]
[[linter]]
code = 'PYREFLY'
include_patterns = [
'torch/**/*.py',
'torch/**/*.pyi',
'torchgen/**/*.py',
'torchgen/**/*.pyi',
'functorch/**/*.py',
'functorch/**/*.pyi',
]
exclude_patterns = []
command = [
'python3',
'tools/linter/adapters/pyrefly_linter.py',
'--config=pyrefly.toml',
]
init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'pyrefly==0.36.2',
'sympy==1.13.3',
'types-requests==2.27.25',
'types-pyyaml==6.0.2',
'types-tabulate==0.8.8',
'types-protobuf==5.29.1.20250403',
'types-setuptools==79.0.0.20250422',
'types-jinja2==2.11.9',
'types-colorama==0.4.6',
'filelock==3.18.0',
'junitparser==2.1.1',
'rich==14.1.0',
'optree==0.17.0',
'types-openpyxl==3.1.5.20250919',
'types-python-dateutil==2.9.0.20251008'
]
[[linter]]
code = 'CLANGTIDY'
include_patterns = [

View File

@ -256,7 +256,6 @@ endif()
IF(USE_FBGEMM_GENAI)
set(FBGEMM_THIRD_PARTY ${PROJECT_SOURCE_DIR}/third_party/fbgemm/external/)
set(FBGEMM_GENAI_SRCS ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize)
if(USE_CUDA)
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
@ -293,64 +292,58 @@ IF(USE_FBGEMM_GENAI)
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
)
target_include_directories(fbgemm_genai PRIVATE
target_include_directories(fbgemm_genai PUBLIC
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${fbgemm_genai_mx8mx8bf16_grouped}
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
else()
if(USE_ROCM)
# Only include the kernels we want to build to avoid increasing binary size.
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
# Add FBGEMM_GENAI include directories for torch_ops.h
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
elseif(USE_ROCM)
# Only include the kernels we want to build to avoid increasing binary size.
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
# Only compile for gfx942 for now.
# This is rather hacky, I could not figure out a clean solution :(
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
endif()
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
# Only compile for gfx942 for now.
# This is rather hacky, I could not figure out a clean solution :(
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
target_include_directories(fbgemm_genai PUBLIC
# FBGEMM version of Composable Kernel is used due to some customizations
${FBGEMM_THIRD_PARTY}/composable_kernel/include
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
endif()
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
target_include_directories(fbgemm_genai PRIVATE
# FBGEMM version of Composable Kernel is used due to some customizations
${FBGEMM_THIRD_PARTY}/composable_kernel/include
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
# Add FBGEMM_GENAI include directories for torch_ops.h
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
endif()
endif()
@ -699,6 +692,12 @@ if(USE_CUDA AND NOT USE_ROCM)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/include)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/tools/util/include)
# Add FBGEMM_GENAI include directories for torch_ops.h
if(USE_FBGEMM_GENAI)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
endif()
if($ENV{ATEN_STATIC_CUDA})
if(CUDA_VERSION VERSION_LESS_EQUAL 12.9)
list(APPEND ATen_CUDA_DEPENDENCY_LIBS

View File

@ -389,16 +389,37 @@ void fillVersion<DLManagedTensorVersioned>(
// constructed out of ATen tensor
template <class T>
T* toDLPackImpl(const Tensor& src) {
auto view = src;
// Detect whether there is need to normalize the strides
// Background: gh-83069
//
// However, normalizing strides can come at a high-cost
// to slow down toDLPack conversion 3x, so we
// only normalize if needed.
//
// The following code detects whether the src follows
// a continuous pattern. If the src follows such pattern (common-case)
// then we do not need to normalize the strides.
bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1;
// less common case, try normalizing the strides
if (need_normalize_strides) {
// create a new tensor with possibly normalized strides
// gh-83069
auto shape = src.sizes();
view = src.as_strided(shape, {1}, src.storage_offset());
}
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);
atDLMTensor->handle = src;
atDLMTensor->handle = view;
atDLMTensor->tensor.manager_ctx = atDLMTensor;
atDLMTensor->tensor.deleter = &deleter<T>;
atDLMTensor->tensor.dl_tensor.data = src.data_ptr();
atDLMTensor->tensor.dl_tensor.data = view.data_ptr();
atDLMTensor->tensor.dl_tensor.device = torchDeviceToDLDevice(src.device());
atDLMTensor->tensor.dl_tensor.ndim = static_cast<int32_t>(src.dim());
atDLMTensor->tensor.dl_tensor.dtype = getDLDataType(src);
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(src.sizes().data());
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(src.strides().data());
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(view.sizes().data());
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(view.strides().data());
atDLMTensor->tensor.dl_tensor.byte_offset = 0;
fillVersion(&atDLMTensor->tensor);

View File

@ -52,16 +52,16 @@ struct DLPackTraits {};
template <>
struct DLPackTraits<DLManagedTensor> {
inline static constexpr const char* capsule = "dltensor";
inline static constexpr const char* used = "used_dltensor";
inline static const char* capsule = "dltensor";
inline static const char* used = "used_dltensor";
inline static auto toDLPack = at::toDLPack;
inline static auto fromDLPack = at::fromDLPack;
};
template <>
struct DLPackTraits<DLManagedTensorVersioned> {
inline static constexpr const char* capsule = "dltensor_versioned";
inline static constexpr const char* used = "used_dltensor_versioned";
inline static const char* capsule = "dltensor_versioned";
inline static const char* used = "used_dltensor_versioned";
inline static auto toDLPack = at::toDLPackVersioned;
inline static auto fromDLPack = at::fromDLPackVersioned;
};

View File

@ -16,8 +16,8 @@ inline void check_size_nonnegative(ArrayRef<int64_t> size) {
inline void check_size_nonnegative(ArrayRef<c10::SymInt> size) {
for (const auto& x : size) {
TORCH_SYM_CHECK(
x.sym_ge(0),
TORCH_CHECK(
x.expect_size(__FILE__, __LINE__),
"Trying to create tensor with negative dimension ",
x,
": ",

View File

@ -4,7 +4,6 @@
#include <c10/core/ScalarType.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/util/DimVector.h>
#include <c10/util/Exception.h>
#include <optional>
#include <sstream>
#include <vector>
@ -27,7 +26,9 @@ inline void infer_size_impl(
std::optional<int64_t> infer_dim;
for (int64_t dim = 0, ndim = shape.size(); dim != ndim; dim++) {
if (TORCH_GUARD_OR_FALSE(sym_eq(shape[dim], -1))) {
TORCH_CHECK(!infer_dim, "only one dimension can be inferred");
if (infer_dim) {
throw std::runtime_error("only one dimension can be inferred");
}
infer_dim = dim;
} else {
// in case of unbacked shape[dim] we assume it's not -1 and add a runtime

View File

@ -58,7 +58,7 @@ namespace at {
namespace{
// PyTorch allows operations to specify dim 0 and dim -1 on a scalar tensor.
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
return dim == 0 || dim == -1;
}
@ -365,7 +365,7 @@ Tensor select_batching_rule(const Tensor& self, int64_t dim, int64_t index) {
return self_physical.getPhysicalToLogicalMap().apply(result);
}
int64_t getGradInputPhysicalDim(int64_t dim, IntArrayRef input_sizes, int64_t num_batch_dims) {
static int64_t getGradInputPhysicalDim(int64_t dim, IntArrayRef input_sizes, int64_t num_batch_dims) {
return maybe_wrap_dim(dim, static_cast<int64_t>(input_sizes.size())) + num_batch_dims;
}
@ -488,7 +488,7 @@ Tensor view_as_complex_batching_rule(const Tensor& self) {
// Checks that the smallest batch stride is greater than the largest example
// stride. This is something we can support but we choose not to because it's
// potentially error prone.
void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_batch_dims) {
static void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_batch_dims) {
auto smallest_batch_stride = std::min_element(
physical_strides.begin(), physical_strides.begin() + num_batch_dims);
auto largest_example_stride = std::max_element(
@ -508,7 +508,7 @@ void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_bat
// given (sizes, strides, storage_offset) returns the maximum location that
// can be indexed (or nullopt if such a location doesn't exist, e.g., tensors
// with zero-size dims).
std::optional<int64_t> maximum_indexable_location(
static std::optional<int64_t> maximum_indexable_location(
IntArrayRef sizes, IntArrayRef strides, int64_t storage_offset) {
auto result = native::storage_size_for(sizes, strides);
if (result == 0) {
@ -521,7 +521,7 @@ std::optional<int64_t> maximum_indexable_location(
// This checks that the range of possible memory locations accessible by
// x.as_strided(sizes, strides, maybe_storage_offset)
// are within the bounds of possible memory locations accessible by x.
void checkBasicAsStridedValidForSlice(
static void checkBasicAsStridedValidForSlice(
const Tensor& physical_tensor,
int64_t num_batch_dims,
IntArrayRef sizes,

View File

@ -42,14 +42,8 @@ const PythonTorchFunctionTLS& PythonTorchFunctionTLS::get_state() {
}
bool torch_function_mode_enabled() {
// Manually flatten because gcc is refusing to inline here. Note
// that we are still calling __tls_get_addr twice here with GCC,
// presumably because of
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81501 (which says
// the fix ships in GCC 16), but forcing inlining still improves
// performance.
const auto& ptfs = pythonTorchFunctionState;
return ptfs.disabled_state_ != TorchFunctionDisabledState::ALL_DISABLED && !ptfs.stack_.empty();
return PythonTorchFunctionTLS::get_disabled_state() != TorchFunctionDisabledState::ALL_DISABLED &&
PythonTorchFunctionTLS::stack_len() > 0;
}
// This is needed to disambiguate the ternary torch function disabled states

View File

@ -27,7 +27,6 @@ struct TORCH_API PythonTorchFunctionTLS {
TorchFunctionDisabledState disabled_state_ =
TorchFunctionDisabledState::ENABLED;
std::vector<std::shared_ptr<c10::SafePyObject>> stack_;
friend TORCH_API bool torch_function_mode_enabled();
};
TORCH_API bool torch_function_mode_enabled();

View File

@ -13,7 +13,7 @@ namespace {
// and left at true for the rest of the execution.
// It's an optimization so that users who never use default hooks don't need to
// read the thread_local variables pack_hook_ and unpack_hook_.
bool is_initialized(false);
static bool is_initialized(false);
}
static void assertSavedTensorHooksNotDisabled() {

View File

@ -56,7 +56,7 @@ inline void get_strides(int64_t* strides, ArrayRef<OperandInfo> operands, int64_
}
}
OptionalTensorRef make_otr(const TensorBase &tensor) {
static OptionalTensorRef make_otr(const TensorBase &tensor) {
if (tensor.defined()) {
return OptionalTensorRef(tensor);
} else {

View File

@ -103,7 +103,9 @@ std::string get_cpu_capability() {
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
case native::CPUCapability::ZVECTOR:
return "Z VECTOR";
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
case native::CPUCapability::SVE128:
return "SVE128";
case native::CPUCapability::SVE256:
return "SVE256";
#else

View File

@ -2,7 +2,6 @@
#include <mutex>
#include <ATen/CachedTensorUtils.h>
#include <c10/core/GradMode.h>
#include <c10/util/flat_hash_map.h>
namespace at::autocast {
@ -37,29 +36,10 @@ namespace {
using weakref_type = c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl>;
using val_type = std::tuple<weakref_type, Tensor>;
// We maintain separate caches for gradient-enabled and gradient-disabled modes.
// This ensures that tensors cached in torch.no_grad() (with requires_grad=False)
// are not incorrectly reused in gradient-enabled contexts.
// This fixes issue #158232 while maintaining optimal performance for both modes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_enabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_enabled;
return cached_casts_grad_enabled;
}
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_disabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_disabled;
return cached_casts_grad_disabled;
}
// Helper function to get the appropriate cache based on current gradient mode.
// This allows us to cache tensors separately for grad-enabled and grad-disabled contexts,
// preventing incorrect cache hits when gradient mode changes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
return at::GradMode::is_enabled() ?
get_cached_casts_grad_enabled() :
get_cached_casts_grad_disabled();
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts;
return cached_casts;
}
std::mutex cached_casts_mutex;
@ -106,9 +86,7 @@ thread_local bool cache_enabled = true;
void clear_cache() {
const std::lock_guard<std::mutex> lock(cached_casts_mutex);
// Clear both caches to ensure consistent behavior regardless of current gradient mode
get_cached_casts_grad_enabled().clear();
get_cached_casts_grad_disabled().clear();
get_cached_casts().clear();
}
int increment_nesting() {
@ -143,11 +121,6 @@ Tensor cached_cast(at::ScalarType to_type, const Tensor& arg, DeviceType device_
if (is_eligible(arg, device_type) && (arg.scalar_type() != to_type)) {
// Heuristic: Do what Apex does, and cache lower_precision_fp casts of fp32 model weights (leaves).
// See cached_casts declaration above for detailed strategy.
//
// We maintain separate caches for gradient-enabled and gradient-disabled modes
// (see get_cached_casts() above). This ensures correctness when mixing torch.no_grad()
// with torch.autocast(), while maintaining optimal performance for both training and inference.
// This fixes issue #158232 without any performance regression.
bool can_try_cache = (to_type == get_lower_precision_fp_from_device_type(device_type) &&
arg.scalar_type() == at::kFloat && arg.requires_grad() &&
arg.is_leaf() && !arg.is_view() && cache_enabled &&

View File

@ -6,9 +6,9 @@ namespace at {
namespace {
std::array<HostAllocator*, at::COMPILE_TIME_MAX_DEVICE_TYPES>
static std::array<HostAllocator*, at::COMPILE_TIME_MAX_DEVICE_TYPES>
allocator_array{};
std::array<uint8_t, at::COMPILE_TIME_MAX_DEVICE_TYPES>
static std::array<uint8_t, at::COMPILE_TIME_MAX_DEVICE_TYPES>
allocator_priority{};
} // anonymous namespace

View File

@ -624,14 +624,7 @@ struct TORCH_API IValue final {
IValue(const c10::SymBool& i) {
if (auto mi = i.maybe_as_bool()) {
tag = Tag::Bool;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
payload.u.as_int = *mi;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* due to byteorder if value assigned as_int, as_bool actually is not set correctly */
payload.u.as_bool = *mi;
#else
#error Unexpected or undefined __BYTE_ORDER__
#endif
} else {
tag = Tag::SymBool;
payload.u.as_intrusive_ptr = i.toSymNodeImpl().release();

View File

@ -102,8 +102,31 @@ struct VecReduceAllSIMD<float, Op> {
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) &&
// !defined(C10_MOBILE)
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
!defined(CPU_CAPABILITY_SVE)
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
#if defined(CPU_CAPABILITY_SVE256)
template <typename Op>
struct VecReduceAllSIMD<float, Op> {
static inline float apply(
const Op& vec_fun,
const Vectorized<float>& acc_vec) {
using Vec = Vectorized<float>;
Vec v = acc_vec;
// 128-bit shuffle
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
Vec v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 64-bit shuffle
ind = svdupq_n_u32(2, 3, 0, 1);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 32-bit shuffle
ind = svdupq_n_u32(1, 0, 2, 3);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
return svlasta(svpfalse(), v);
}
};
#else
template <typename Op>
struct VecReduceAllSIMD<float, Op> {
static inline float apply(
@ -140,35 +163,8 @@ struct VecReduceAllSIMD<float, std::plus<Vectorized<float>>> {
return vaddvq_f32(acc_vec);
}
};
#endif // defined(CPU_CAPABILITY_SVE256)
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
// && !defined(CPU_CAPABILITY_SVE)
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
defined(CPU_CAPABILITY_SVE256)
template <typename Op>
struct VecReduceAllSIMD<float, Op> {
static inline float apply(
const Op& vec_fun,
const Vectorized<float>& acc_vec) {
using Vec = Vectorized<float>;
Vec v = acc_vec;
// 128-bit shuffle
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
Vec v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 64-bit shuffle
ind = svdupq_n_u32(2, 3, 0, 1);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
// 32-bit shuffle
ind = svdupq_n_u32(1, 0, 2, 3);
v1 = svtbl_f32(v, ind);
v = vec_fun(v, v1);
return svlasta(svpfalse(), v);
}
};
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
// && defined(CPU_CAPABILITY_SVE256)
template <typename scalar_t, typename Op>
inline scalar_t vec_reduce_all(

View File

@ -1,9 +1,21 @@
#pragma once
#include <ATen/cpu/vec/intrinsics.h>
#include <c10/macros/Macros.h>
#include <cstdint>
#include <ATen/cpu/vec/vec_base.h>
#if defined(__aarch64__) && \
(defined(AT_BUILD_ARM_VEC256_WITH_SLEEF) || \
defined(AT_BUILD_ARM_VECSVE_WITH_SLEEF))
#define SLEEF_STATIC_LIBS
#include <sleef.h>
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
#else
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
#endif
#if defined(CPU_CAPABILITY_SVE)
// Define the data type of VLS(vector-length specific).

View File

@ -2,7 +2,6 @@
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/sve/vec_common_sve.h>
#include <ATen/cpu/vec/sve/vec_float.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/util/bit_cast.h>

View File

@ -1,6 +1,8 @@
#pragma once
#if defined(CPU_CAPABILITY_AVX512)
#if defined(__aarch64__)
#include <ATen/cpu/vec/vec_common_aarch64.h>
#elif defined(CPU_CAPABILITY_AVX512)
#include <ATen/cpu/vec/vec512/vec512.h>
#else
#include <ATen/cpu/vec/vec128/vec128.h>
@ -11,6 +13,34 @@ namespace at::vec {
// See Note [CPU_CAPABILITY namespace]
inline namespace CPU_CAPABILITY {
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
stream << val.val_;
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
stream << static_cast<int>(val.val_);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
stream << static_cast<unsigned int>(val.val_);
return stream;
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
T buf[Vectorized<T>::size()];
vec.store(buf);
stream << "vec[";
for (int i = 0; i != Vectorized<T>::size(); i++) {
if (i != 0) {
stream << ", ";
}
stream << buf[i];
}
stream << "]";
return stream;
}
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
__at_align__ bool buffer[x.size()];
x.ne(Vectorized<int8_t>(0)).store(buffer);

View File

@ -2,6 +2,7 @@
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
#include <ATen/cpu/vec/vec_base.h>
@ -262,6 +263,13 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
c10::bit_cast<at_bfloat16_t>(val6.x),
c10::bit_cast<at_bfloat16_t>(val7.x)}) {}
#ifdef CPU_CAPABILITY_SVE128
Vectorized(svbfloat16_t v) : Vectorized16(svget_neonq(v)) {}
operator svbfloat16_t() const {
return svset_neonq(svundef_bf16(), values);
}
#endif
static Vectorized<c10::BFloat16> blendv(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
@ -374,6 +382,23 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
Vectorized ge(const Vectorized& other) const;
Vectorized lt(const Vectorized& other) const;
Vectorized le(const Vectorized& other) const;
#ifdef CPU_CAPABILITY_SVE128
template <typename step_t>
static Vectorized<BFloat16> arange(
BFloat16 base = 0.f,
step_t step = static_cast<step_t>(1)) {
__at_align__ BFloat16 buffer[size()];
for (int64_t i = 0; i < size(); i++) {
buffer[i] = base + i * step;
}
return svget_neonq(
svld1_bf16(ptrue, reinterpret_cast<bfloat16_t*>(buffer)));
}
#endif // CPU_CAPABILITY_SVE128
}; // Vectorized<c10::BFloat16>
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
@ -397,6 +422,24 @@ inline Vectorized<c10::BFloat16> convert_float_bfloat16(
return Vectorized<c10::BFloat16>(at_vcombine_bf16(x1, x2));
}
inline void load_fp32_from_bf16(const BFloat16* data, Vectorized<float>& out) {
__at_align__ float values[Vectorized<float>::size()];
for (const auto k : c10::irange(Vectorized<float>::size())) {
values[k] = data[k];
}
out = Vectorized<float>::loadu(values);
}
inline void load_fp32_from_bf16(
const BFloat16* data,
Vectorized<float>& out1,
Vectorized<float>& out2) {
Vectorized<BFloat16> bf16_vec = Vectorized<BFloat16>::loadu(data);
auto floats = convert_bfloat16_float(bf16_vec);
out1 = std::get<0>(floats);
out2 = std::get<1>(floats);
}
template <typename Op>
Vectorized<c10::BFloat16> binary_operator_via_float(
Op op,
@ -579,6 +622,12 @@ Vectorized<c10::BFloat16> inline fnmsub(
return -a * b - c;
}
#else //
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16)
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
} // namespace CPU_CAPABILITY

View File

@ -4,7 +4,7 @@
namespace at::vec {
inline namespace CPU_CAPABILITY {
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
#if defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
template <typename src_t>
struct VecConvert<
float,
@ -60,6 +60,7 @@ struct VecConvert<float, 1, BFloat16, 1> {
}
};
#endif // defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
#endif // defined(__aarch64__) && (!defined(CPU_CAPABILITY_SVE) ||
// defined(CPU_CAPABILITY_SVE128))
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -4,13 +4,10 @@
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/util/irange.h>
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
#include <sleef.h>
#endif
// Sleef offers vectorized versions of some transcedentals
// such as sin, cos, tan etc..
// However for now opting for STL, since we are not building
@ -35,12 +32,6 @@ inline namespace CPU_CAPABILITY {
#error "Big endian is not supported."
#endif
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
#else
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
#endif
template <int index, bool mask_val>
struct BlendRegs {
static float32x4_t impl(
@ -94,6 +85,12 @@ class Vectorized<float> {
operator float32x4_t() const {
return values;
}
#ifdef CPU_CAPABILITY_SVE128
Vectorized(svfloat32_t v) : values(svget_neonq(v)) {}
operator svfloat32_t() const {
return svset_neonq(svundef_f32(), values);
}
#endif
template <int64_t mask>
static Vectorized<float> blend(
const Vectorized<float>& a,

View File

@ -4,7 +4,6 @@
// See Note [Do not compile initializers with AVX]
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec128/vec128_convert.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
#include <ATen/cpu/vec/vec_base.h>
@ -25,7 +24,6 @@ inline namespace CPU_CAPABILITY {
// https://bugs.llvm.org/show_bug.cgi?id=45824
// Most likely we will do aarch32 support with inline asm.
#if !defined(C10_MOBILE) && defined(__aarch64__)
#ifdef __BIG_ENDIAN__
#error "Big endian is not supported."
#endif
@ -421,6 +419,24 @@ Vectorized<c10::Half> inline operator+(
#endif
}
inline void load_fp32_from_fp16(const c10::Half* data, Vectorized<float>& out) {
__at_align__ float values[Vectorized<float>::size()];
for (const auto k : c10::irange(Vectorized<float>::size())) {
values[k] = data[k];
}
out = Vectorized<float>::loadu(values);
}
inline void load_fp32_from_fp16(
const c10::Half* data,
Vectorized<float>& out1,
Vectorized<float>& out2) {
Vectorized<c10::Half> f16_vec = Vectorized<c10::Half>::loadu(data);
auto floats = convert_half_float(f16_vec);
out1 = std::get<0>(floats);
out2 = std::get<1>(floats);
}
template <>
Vectorized<c10::Half> inline operator-(
const Vectorized<c10::Half>& a,
@ -656,6 +672,53 @@ Vectorized<c10::Half> inline fnmsub(
return -a * b - c;
#endif
}
#else
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
inline std::tuple<Vectorized<float>, Vectorized<float>> \
convert_##name##_float(const Vectorized<type>& a) { \
constexpr int64_t K = Vectorized<type>::size(); \
__at_align__ float arr[K]; \
__at_align__ type arr2[K]; \
a.store(arr2); \
convert(arr2, arr, K); \
return std::make_tuple( \
Vectorized<float>::loadu(arr), \
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
} \
inline Vectorized<type> convert_float_##name( \
const Vectorized<float>& a, const Vectorized<float>& b) { \
constexpr int64_t K = Vectorized<type>::size(); \
__at_align__ float arr[K]; \
__at_align__ type arr2[K]; \
a.store(arr); \
b.store(arr + Vectorized<float>::size()); \
convert(arr, arr2, K); \
return Vectorized<type>::loadu(arr2); \
}
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
inline void load_fp32_from_##name( \
const type* data, Vectorized<float>& out) { \
__at_align__ float values[Vectorized<float>::size()]; \
for (const auto k : c10::irange(Vectorized<float>::size())) { \
values[k] = data[k]; \
} \
out = Vectorized<float>::loadu(values); \
} \
\
inline void load_fp32_from_##name( \
const type* data, Vectorized<float>& out1, Vectorized<float>& out2) { \
load_fp32_from_##name(data, out1); \
data += Vectorized<float>::size(); \
load_fp32_from_##name(data, out2); \
}
CONVERT_NON_VECTORIZED_INIT(Half, half)
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16)
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
} // namespace CPU_CAPABILITY

View File

@ -9,21 +9,16 @@
#if !( \
defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || \
defined(CPU_CAPABILITY_ZVECTOR))
#if defined(CPU_CAPABILITY_SVE256)
#include <ATen/cpu/vec/sve/vec_common_sve.h>
#else
// clang-format off
#include <ATen/cpu/vec/vec256/vec256_float.h>
#include <ATen/cpu/vec/vec256/vec256_double.h>
#include <ATen/cpu/vec/vec256/vec256_float.h>
#include <ATen/cpu/vec/vec256/vec256_int.h>
#include <ATen/cpu/vec/vec256/vec256_qint.h>
#endif
#if !defined(CPU_CAPABILITY_SVE256) || !defined(__ARM_FEATURE_BF16)
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
#endif
#include <ATen/cpu/vec/vec256/vec256_half.h>
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
#include <ATen/cpu/vec/vec256/vec256_half.h>
// clang-format on
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
@ -56,34 +51,6 @@ namespace at::vec {
// accessed as `at::vec`.
inline namespace CPU_CAPABILITY {
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
stream << val.val_;
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
stream << static_cast<int>(val.val_);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
stream << static_cast<unsigned int>(val.val_);
return stream;
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
T buf[Vectorized<T>::size()];
vec.store(buf);
stream << "vec[";
for (int i = 0; i != Vectorized<T>::size(); i++) {
if (i != 0) {
stream << ", ";
}
stream << buf[i];
}
stream << "]";
return stream;
}
#if defined(CPU_CAPABILITY_AVX2)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -268,9 +268,7 @@ LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16)
#else // defined(CPU_CAPABILITY_AVX2)
#if !( \
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
!defined(CPU_CAPABILITY_SVE256))
#if !(defined(__aarch64__))
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
#endif

View File

@ -268,9 +268,7 @@ LOAD_FP32_VECTORIZED_INIT(Half, fp16)
#else // defined(CPU_CAPABILITY_AVX2)
#if !( \
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
!defined(CPU_CAPABILITY_SVE256))
#if !defined(__aarch64__) || defined(CPU_CAPABILITY_SVE256)
CONVERT_NON_VECTORIZED_INIT(Half, half)
#endif

View File

@ -5,6 +5,13 @@
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#ifdef __aarch64__
#if defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#endif
#endif
#include <ATen/native/quantized/AffineQuantizerBase.h>
#include <c10/util/irange.h>
@ -915,7 +922,7 @@ Vectorized<c10::quint8> inline maximum(
return a.maximum(b);
}
#elif !defined(CPU_CAPABILITY_SVE256)
#else
// NOTE: These are low-performance implementations that we fall back on
// if we are not building with AVX2. This may not be an issue, because
@ -1372,12 +1379,18 @@ Vectorized<c10::quint8> inline maximum(
return a.maximum(b);
}
#endif // if defined(CPU_CAPABILITY_AVX2)
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
#if defined(__aarch64__) && \
(defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE))
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<int8_t> src) {
#ifdef CPU_CAPABILITY_SVE
svint8_t x = src;
auto s8x8 = vget_low_s8(svget_neonq(x));
#else
auto s8x8 = vld1_s8(src.operator const int8_t*());
#endif
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
@ -1402,7 +1415,14 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<int8_t> src) {
#ifdef CPU_CAPABILITY_SVE
svint8_t x = src;
auto s8x8 = vget_low_s8(svget_neonq(x));
#else
auto s8x8 = vld1_s8(src.operator const int8_t*());
#endif
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
@ -1420,5 +1440,8 @@ Vectorized<float> inline convert_int8_half_register_to_float(
}
#endif
#endif // if defined(CPU_CAPABILITY_AVX2)
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -31,34 +31,6 @@ namespace vec {
// See Note [CPU_CAPABILITY namespace]
inline namespace CPU_CAPABILITY {
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
stream << val.val_;
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
stream << static_cast<int>(val.val_);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
stream << static_cast<unsigned int>(val.val_);
return stream;
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
T buf[Vectorized<T>::size()];
vec.store(buf);
stream << "vec[";
for (int i = 0; i != Vectorized<T>::size(); i++) {
if (i != 0) {
stream << ", ";
}
stream << buf[i];
}
stream << "]";
return stream;
}
#if defined(CPU_CAPABILITY_AVX512)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX512)

View File

@ -67,18 +67,7 @@ Windows llvm will not have this definition.
#endif
#define VECTOR_WIDTH 64
#define int_vector __m512i
#elif defined(__aarch64__) && \
!defined(CPU_CAPABILITY_SVE) // CPU_CAPABILITY_AVX512
// SVE code expects 256-vectors; leave that set for SVE?
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(16)))
#elif defined(_WIN32)
#define __at_align__ __declspec(align(16))
#else
#define __at_align__
#endif
#define VECTOR_WIDTH 16
#else // CPU_CAPABILITY_AVX512
#elif defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_SVE256)
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(32)))
#elif defined(_WIN32)
@ -88,7 +77,27 @@ Windows llvm will not have this definition.
#endif
#define VECTOR_WIDTH 32
#define int_vector __m256i
#endif // CPU_CAPABILITY_AVX512
#elif defined(__aarch64__)
// Define alignment and vector width for SVE128/Default (e.g., NEON)
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(16)))
#elif defined(_WIN32)
#define __at_align__ __declspec(align(16))
#else
#define __at_align__
#endif
#define VECTOR_WIDTH 16
#else
// Fallback: define default alignment and vector width
#if defined(__GNUC__)
#define __at_align__ __attribute__((aligned(32)))
#elif defined(_WIN32)
#define __at_align__ __declspec(align(32))
#else
#define __at_align__
#endif
#define VECTOR_WIDTH 32
#endif
namespace at::vec {
// See Note [CPU_CAPABILITY namespace]

View File

@ -8,13 +8,48 @@
#include <ATen/cpu/vec/sve/sve_helper.h>
#include <ATen/cpu/vec/vec_base.h>
#if defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
#include <ATen/cpu/vec/sve/vec_double.h>
#include <ATen/cpu/vec/sve/vec_float.h>
#include <ATen/cpu/vec/sve/vec_int.h>
#ifdef CPU_CAPABILITY_SVE128
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_convert.h>
#include <ATen/cpu/vec/sve/vec_qint.h>
#endif
#elif defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/sve/vec_float.h>
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
#include <ATen/cpu/vec/sve/vec_double.h>
#include <ATen/cpu/vec/sve/vec_int.h>
#include <ATen/cpu/vec/sve/vec_qint.h>
#include <ATen/cpu/vec/vec256/vec256_half.h>
#include <ATen/cpu/vec/vec256/vec256_convert.h>
#else // NEON
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_convert.h>
#include <ATen/cpu/vec/vec256/vec256_qint.h>
#endif // defined(CPU_CAPABILITY_SVE128)
#include <ATen/cpu/vec/functional.h>
namespace at::vec {
// Note [CPU_CAPABILITY namespace]
@ -48,12 +83,6 @@ DEFINE_SVE_CAST(int32_t, s32, float, f32)
DEFINE_SVE_CAST(int16_t, s16, float, f32)
DEFINE_SVE_CAST(float, f32, double, f64)
#ifdef __ARM_FEATURE_BF16
DEFINE_SVE_CAST(int64_t, s64, c10::BFloat16, bf16)
DEFINE_SVE_CAST(int32_t, s32, c10::BFloat16, bf16)
DEFINE_SVE_CAST(int16_t, s16, c10::BFloat16, bf16)
#endif // __ARM_FEATURE_BF16
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <int64_t scale = 1>
@ -173,9 +202,11 @@ std::pair<
// group cols crossing lanes:
// return {a0, b0, a1, b1, a2, b2, a3, b3}
// {a4, b4, a5, b5, a6, b6, a7, b7}
return std::make_pair(
Vectorized<c10::BFloat16>(svzip1_bf16(a, b)),
Vectorized<c10::BFloat16>(svzip2_bf16(a, b)));
svbfloat16_t aReg = a;
svbfloat16_t bReg = b;
Vectorized<c10::BFloat16> c = svzip1_bf16(aReg, bReg);
Vectorized<c10::BFloat16> d = svzip2_bf16(aReg, bReg);
return std::make_pair(c, d);
}
#endif // __ARM_FEATURE_BF16
@ -224,12 +255,27 @@ std::pair<
// swap lanes:
// return {a0, a1, a2, a3, a4, a5, a6, a7}
// {b0, b1, b2, b3, b4, b5, b6, b7}
return std::make_pair(
Vectorized<c10::BFloat16>(svuzp1_bf16((svbfloat16_t)a, (svbfloat16_t)b)),
Vectorized<c10::BFloat16>(svuzp2_bf16((svbfloat16_t)a, (svbfloat16_t)b)));
svbfloat16_t aReg = a;
svbfloat16_t bReg = b;
Vectorized<c10::BFloat16> c = svuzp1_bf16(aReg, bReg);
Vectorized<c10::BFloat16> d = svuzp2_bf16(aReg, bReg);
return std::make_pair(c, d);
}
#endif // __ARM_FEATURE_BF16
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#define DEFINE_FLIP_FUNC(type, sve_func) \
inline Vectorized<type> flip(const Vectorized<type>& v) { \
return Vectorized<type>(sve_func(v)); \
}
// Use the macro to define the flip functions
DEFINE_FLIP_FUNC(float, svrev_f32)
DEFINE_FLIP_FUNC(double, svrev_f64)
DEFINE_FLIP_FUNC(int64_t, svrev_s64)
DEFINE_FLIP_FUNC(int32_t, svrev_s32)
DEFINE_FLIP_FUNC(int16_t, svrev_s16)
DEFINE_FLIP_FUNC(int8_t, svrev_s8)
#endif // defined(CPU_CAPABILITY_SVE)
} // namespace CPU_CAPABILITY

View File

@ -108,7 +108,7 @@ static hipblasStatus_t rocBLASStatusToHIPStatus(rocblas_status error)
namespace {
cublasOperation_t _cublasOpFromChar(char op) {
static cublasOperation_t _cublasOpFromChar(char op) {
// NOLINTNEXTLINE(bugprone-switch-missing-default-case)
switch (op) {
case 'n':
@ -128,7 +128,7 @@ cublasOperation_t _cublasOpFromChar(char op) {
"_cublasOpFromChar input should be 't', 'n' or 'c' but got `", op, "`");
}
void _cublasAdjustLdLevel2(int64_t m, int64_t n, int64_t* lda) {
static void _cublasAdjustLdLevel2(int64_t m, int64_t n, int64_t* lda) {
// Note: leading dimensions generally are checked that they are > 0
// and at least as big the result requires (even if the value won't
// be used).
@ -142,7 +142,7 @@ void _cublasAdjustLdLevel2(int64_t m, int64_t n, int64_t* lda) {
*lda = std::max<int64_t>(m, 1);
}
void _cublasAdjustLdLevel3(
static void _cublasAdjustLdLevel3(
char transa,
char transb,
int64_t m,

View File

@ -15,19 +15,19 @@ namespace cuda::detail {
namespace {
// Total number of gpus in the system.
int64_t num_gpus;
static int64_t num_gpus;
// Ensures default_gens_cuda is initialized once.
std::deque<c10::once_flag> cuda_gens_init_flag;
static std::deque<c10::once_flag> cuda_gens_init_flag;
// Default, global CUDA generators, one per GPU.
std::vector<Generator> default_gens_cuda;
static std::vector<Generator> default_gens_cuda;
/*
* Populates the global variables related to CUDA generators
* Warning: this function must only be called once!
*/
void initCUDAGenVector() {
static void initCUDAGenVector() {
// Ensures we only call cudaGetDeviceCount only once.
static bool num_gpu_init_flag [[maybe_unused]] = []() {
num_gpus = static_cast<int32_t>(c10::cuda::device_count());

View File

@ -13,7 +13,6 @@
#include <c10/core/ScalarType.h>
#include <ATen/cuda/tunable/TunableOp.h>
#include <ATen/cuda/tunable/Tunable.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/cuda/Exceptions.h>
#include <c10/util/StringUtil.h>
@ -151,7 +150,6 @@ inline std::string ScalarTypeToBLASType(c10::ScalarType scalar_type) {
BLASType = "unknown";
}
return BLASType;
}
// Similar to Compute Type in GemmRocblas.h
@ -246,25 +244,33 @@ inline std::string to_string_epilogue(const at::cuda::blas::GEMMAndBiasActivatio
namespace detail {
static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size, const NumericalCheckConfig& config) {
if (!config.enabled) {
return true; // skip when disabled
}
static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size) {
auto options = at::TensorOptions().dtype(dtype).device(at::kCUDA);
// comparison done as 1D tensor
at::Tensor ref = at::from_blob(c, {size}, options);
at::Tensor oth = at::from_blob(other_c, {size}, options);
at::Tensor ref_float = ref.to(at::kFloat);
at::Tensor oth_float = oth.to(at::kFloat);
const bool ok = at::allclose(ref_float, oth_float, config.rtol, config.atol);
if (ok) {
TUNABLE_LOG3("├──verify numerics: PASSED with atol=", config.atol, ", rtol=", config.rtol);
} else {
TUNABLE_LOG3("├──verify numerics: FAILED with atol=", config.atol, ", rtol=", config.rtol);
std::vector<double> atols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
std::vector<double> rtols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
double last_succeed_atol = 1;
double last_succeed_rtol = 1;
for (auto& atol : atols) {
for (auto& rtol : rtols) {
if (at::allclose(ref_float, oth_float, rtol, atol)) {
last_succeed_atol = atol;
last_succeed_rtol = rtol;
}
}
}
return ok;
if (last_succeed_atol == 1) {
return false;
}
else {
TUNABLE_LOG3("├──verify numerics: atol=", last_succeed_atol, ", rtol=", last_succeed_rtol);
}
return true;
}
}
@ -349,10 +355,8 @@ struct GemmParams : OpParams {
}
TuningStatus NumericalCheck(GemmParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
auto c_dtype = c10::CppTypeToScalarType<T>::value;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};
@ -445,10 +449,8 @@ struct GemmAndBiasParams : OpParams {
}
TuningStatus NumericalCheck(GemmAndBiasParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
auto c_dtype = c10::CppTypeToScalarType<T>::value;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};
@ -544,10 +546,8 @@ struct GemmStridedBatchedParams : OpParams {
}
TuningStatus NumericalCheck(GemmStridedBatchedParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
auto c_dtype = c10::CppTypeToScalarType<C_Dtype>::value;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};
@ -663,9 +663,7 @@ struct ScaledGemmParams : OpParams {
}
TuningStatus NumericalCheck(ScaledGemmParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};

View File

@ -145,7 +145,7 @@ programmatically since the settings become fixed. Use the C++ or Python APIs ins
| PYTORCH_TUNABLEOP_VERBOSE | Default is 0. Set to 1 to enable basic logging. 2 for basic tuning status. 3 for full trace. |
| PYTORCH_TUNABLEOP_VERBOSE_FILENAME | Default is "err" for stderr. Set to "out" for stdout or a filename for capturing verbose logging. |
| PYTORCH_TUNABLEOP_FILENAME | Default is 'tunableop_results.csv'. |
| PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is off. Set 'atol_rtol' to enable, for example "1e-5_1e-5". |
| PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is 0. Set to 1 to enable. |
| PYTORCH_TUNABLEOP_ROCBLAS_ENABLED | Default is 1. Set to 0 to disable rocblas being considered during tuning. |
| PYTORCH_TUNABLEOP_HIPBLASLT_ENABLED | Default is 1. Set to 0 to disable hipblaslt being considered during tuning. |
| PYTORCH_TUNABLEOP_MAX_TUNING_DURATION_MS | Default is 30. Unit is milliseconds. |
@ -173,9 +173,10 @@ All python APIs exist in the `torch.cuda.tunable` module.
| get_max_tuning_iterations() -> int | |
| set_filename(filename: str, insert_device_ordinal: bool = False) -> None | |
| get_filename() -> str | |
| set_numerical_check_tolerances(enable: bool, atol: float, rtol: float) -> None | Enable or disable numerical checking; atol and rtol default to 1e-5.
| get_results() -> Tuple[str, str, str, float] | |
| get_validators() -> Tuple[str, str] | |
| write_file_on_exit(val: bool) -> None | Default is True. |
| write_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). |
| read_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). |
| tune_gemm_in_file(filename: str) -> None | read an untuned file and tune GEMMs in it. |
| mgpu_tune_gemm_in_file(filename_pattern: str, num_gpus: int) -> None: -> None | read one or more untuned files and tune all unique GEMMs on one or more GPUs. |

View File

@ -107,30 +107,14 @@ void TuningResultsManager::AddImpl(const std::string& op_signature,
}
void TuningResultsManager::Add(const std::string& op_signature, const std::string& params_signature, ResultEntry best) {
bool is_new = false;
ResultEntry inserted = ResultEntry::Null();
std::scoped_lock l{lock_};
// ---- mutate maps under results lock ----
{
std::scoped_lock l{lock_};
auto& km = results_[op_signature]; // creates if missing
is_new = (km.find(params_signature) == km.end());
AddImpl(op_signature, params_signature, std::move(best), km);
if (is_new) {
inserted = km.at(params_signature); // snapshot for I/O after unlocking
}
}
if (!is_new) return; // only write once per unique (op, params)
TuningContext* ctx = getTuningContext();
if (ctx->IsTuningEnabled() && !ctx->IsRecordUntunedEnabled()) {
InitRealtimeAppend(ctx->GetFilename(), ctx->GetTuningResultsValidator().GetAllValidators());
if (is_new && realtime_out_ && realtime_out_->good()) {
AppendResultLine(op_signature, params_signature, inserted);
}
auto it = results_.find(op_signature);
if (it == results_.end()) {
it = results_.insert({op_signature, {}}).first;
}
AddImpl(op_signature, params_signature, std::move(best), it->second);
}
void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature,
@ -166,77 +150,6 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std
}
}
void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const std::unordered_map<std::string, std::string>& validators) {
std::scoped_lock fl{realtime_file_mutex_};
if (realtime_out_ && realtime_out_->good() && realtime_filename_ == filename) {
return;
}
if (realtime_out_ && realtime_filename_ != filename) {
realtime_out_->flush();
realtime_out_->close();
realtime_out_.reset();
validators_written_ = false;
}
bool file_exists = false;
bool file_empty = true;
{
std::ifstream check_file(filename);
if (check_file.good()) {
file_exists = true;
file_empty = (check_file.peek() == std::ifstream::traits_type::eof());
}
}
realtime_out_ = std::make_unique<std::ofstream>(filename, std::ios::out | std::ios::app);
if (!realtime_out_->good()) {
TORCH_WARN("TunableOp realtime append: failed to open '", filename,"'");
realtime_out_.reset();
return;
}
if(!file_exists || file_empty) {
for(const auto& [key, val] : validators) {
(*realtime_out_) << "Validator," << key << "," << val << std::endl;
realtime_out_->flush();
}
validators_written_ = true;
TUNABLE_LOG2("Wrote validators to realtime output file");
}
realtime_filename_ = filename;
}
void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std::string& param_sig, const ResultEntry& result) {
std::scoped_lock fl{realtime_file_mutex_};
if(!realtime_out_ || !realtime_out_->good()) {
return;
}
(*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl;
realtime_out_->flush(); //ensure immediate write to disk
TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result);
}
void TuningResultsManager::CloseRealtimeAppend() {
std::scoped_lock fl{realtime_file_mutex_};
if(realtime_out_) {
realtime_out_->flush();
realtime_out_->close();
realtime_out_.reset();
TUNABLE_LOG2("Closed realtime output file");
}
}
void TuningResultsManager::Delete(const std::string& op_signature, const std::string& params_signature) {
std::scoped_lock l{lock_};
@ -483,6 +396,7 @@ TuningContext::TuningContext() :
tuning_enable_{true},
record_untuned_enable_{false},
manager_initialized_{false},
write_file_on_exit_{true},
numerics_check_enable_{false},
max_tuning_duration_ms_{30},
max_tuning_iterations_{100},
@ -503,8 +417,20 @@ TuningContext::~TuningContext() {
// but doesn't do any computation itself.
return;
}
TUNABLE_LOG1("Closing File");
GetTuningResultsManager().CloseRealtimeAppend(); // Since, we do instant logging by default now.
auto filename = GetFilename();
if (IsTunableOpEnabled() && IsTuningEnabled() && !filename.empty() && write_file_on_exit_) {
if (results_count_from_input_file_ < GetTuningResultsManager().GetSize()) {
if (results_count_from_input_file_ > 0) {
TUNABLE_LOG1("additional tuning results available, rewriting file ", filename);
}
else {
TUNABLE_LOG1("writing file ", filename);
}
if (!WriteFile(filename)) {
TUNABLE_LOG1("failed to write file ", filename);
}
}
}
if (untuned_file_.good()) {
untuned_file_.close();
@ -585,54 +511,20 @@ std::ofstream& TuningContext::GetUntunedFile(){
return untuned_file_;
}
void TuningContext::WriteFileOnExit(bool value) {
write_file_on_exit_ = value;
}
void TuningContext::EnableNumericsCheck(bool value) {
numerics_check_enable_ = value;
}
NumericalCheckConfig TuningContext::GetNumericalCheckConfig() const {
const auto env_opt = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK");
if (!env_opt.has_value()) {
return numerics_cfg_;
}
const std::string& env = env_opt.value();
if (env == "0") {
return NumericalCheckConfig(false, 1e-5, 1e-5);
}
const size_t underscore = env.find('_');
TORCH_CHECK(
underscore != std::string::npos,
"Invalid PYTORCH_TUNABLEOP_NUMERICAL_CHECK format. "
"Expected 'atol_rtol', got: ",
env);
double atol = 0.0;
double rtol = 0.0;
try {
atol = std::stod(env.substr(0, underscore));
rtol = std::stod(env.substr(underscore + 1));
} catch (const std::exception& e) {
TORCH_CHECK(false, "Failed to parse PYTORCH_TUNABLEOP_NUMERICAL_CHECK: ", e.what());
}
TORCH_CHECK( atol > 0.0 && rtol > 0.0, "Tolerance values must be positive. atol=", atol, ", rtol=", rtol);
return NumericalCheckConfig(true, atol, rtol);
}
void TuningContext::SetNumericalCheckConfig(bool enabled, double atol, double rtol) {
TORCH_CHECK(atol > 0.0 && rtol > 0.0, "Numerical check tolerances must be positive");
numerics_cfg_ = {enabled, atol, rtol};
}
bool TuningContext::IsNumericsCheckEnabled() const {
const auto cfg = GetNumericalCheckConfig();
return cfg.enabled || numerics_check_enable_;
const auto env = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK");
if (env == "1") {
return true;
}
return numerics_check_enable_;
}
void TuningContext::SetMaxTuningDurationMs(int max_duration_ms) {
@ -742,6 +634,11 @@ TuningResultsManager& TuningContext::GetTuningResultsManager() {
auto filename = GetFilename();
if (!filename.empty() && !IsRecordUntunedEnabled()) {
ReadFile(filename);
// attempt immediately to open file for writing to catch errors early
std::ofstream file(filename, std::ios::out | std::ios::app);
if (!file.good()) {
TORCH_WARN("failed to open file '", filename, "' for writing; your tuning results will not be saved");
}
}
});
return manager_;
@ -847,6 +744,27 @@ bool TuningContext::ReadFile(const std::string& filename_) {
return true;
}
bool TuningContext::WriteFile(const std::string& filename_) {
std::string filename = filename_.empty() ? GetFilename() : filename_;
std::ofstream file(filename, std::ios::out | std::ios::trunc);
if (!file.good()) {
TUNABLE_LOG1("error opening tuning results file for writing ", filename);
return false;
}
auto validators = GetTuningResultsValidator().GetAllValidators();
for (const auto& [key, val] : validators) {
file << "Validator," << key << "," << val << std::endl;
}
auto results = GetTuningResultsManager().Dump();
for (const auto& [op_sig, kernelmap] : results) {
for (const auto& [param_sig, result] : kernelmap) {
file << op_sig << "," << param_sig << "," << result << std::endl;
}
}
file.close();
return true;
}
namespace {
struct MaybeDelete {

View File

@ -103,24 +103,10 @@ class TORCH_CUDA_CPP_API TuningResultsManager {
void RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature,
const std::string& params_signature, const std::string& blas_signature);
void InitRealtimeAppend(
const std::string& filename,
const std::unordered_map<std::string, std::string>& validators);
void AppendResultLine(const std::string& op_sig,
const std::string& param_sig,
const ResultEntry& result);
void CloseRealtimeAppend(); // For clean shutdown
private:
std::mutex lock_;
std::mutex realtime_file_mutex_;
std::unique_ptr<std::ofstream> realtime_out_;
std::string realtime_filename_;
ResultsMap results_;
UntunedMap untuned_results_;
bool validators_written_ = false;
};
@ -148,16 +134,6 @@ class TORCH_CUDA_CPP_API TuningResultsValidator {
GetValidateFuncs validators_;
};
struct NumericalCheckConfig {
bool enabled{false};
double atol{1e-5};
double rtol{1e-5};
NumericalCheckConfig() = default;
NumericalCheckConfig(bool e, double a, double r) : enabled(e), atol(a), rtol(r) {}
};
class TORCH_CUDA_CPP_API TuningContext {
public:
TuningContext();
@ -179,8 +155,6 @@ class TORCH_CUDA_CPP_API TuningContext {
void EnableNumericsCheck(bool value);
bool IsNumericsCheckEnabled() const;
void SetNumericalCheckConfig(bool enabled, double atol, double rtol);
NumericalCheckConfig GetNumericalCheckConfig() const;
void SetMaxTuningDurationMs(int max_duration_ms);
int GetMaxTuningDurationMs() const;
@ -211,7 +185,10 @@ class TORCH_CUDA_CPP_API TuningContext {
void SetFilename(const std::string& filename, bool insert_device_ordinal=false);
std::string GetFilename() const;
void WriteFileOnExit(bool value);
bool ReadFile(const std::string& filename={});
bool WriteFile(const std::string& filename={});
template<class... Types>
void Log(int level, Types... args) {
@ -230,6 +207,7 @@ class TORCH_CUDA_CPP_API TuningContext {
bool tuning_enable_;
bool record_untuned_enable_;
bool manager_initialized_;
bool write_file_on_exit_;
bool numerics_check_enable_;
int max_tuning_duration_ms_;
int max_tuning_iterations_;
@ -244,8 +222,6 @@ class TORCH_CUDA_CPP_API TuningContext {
std::ofstream untuned_file_;
size_t results_count_from_input_file_;
bool is_shutting_down_;
NumericalCheckConfig numerics_cfg_{};
};
TORCH_CUDA_CPP_API TuningContext* getTuningContext();

View File

@ -267,10 +267,27 @@ class TunableOp {
for (size_t i = 0; i < op_names_.size(); i++) {
auto* candidate = ops_[op_names_[i]].get(); // borrow pointer
auto status = candidate->Call(reusable_params[0]);
if (status != OK) {
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
if (do_numerics_check) {
ParamsT* numerical_params = params->DeepCopy(false);
auto status = candidate->Call(numerical_params);
if (status != OK) {
numerical_params->Delete();
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
status = reference_params->NumericalCheck(numerical_params);
numerical_params->Delete();
if (status != OK) {
TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
}
else {
auto status = candidate->Call(reusable_params[0]);
if (status != OK) {
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
}
// collect a small profile
@ -293,22 +310,6 @@ class TunableOp {
continue;
}
if (do_numerics_check) {
ParamsT* numerical_params = params->DeepCopy(false);
auto status = candidate->Call(numerical_params);
if (status != OK) {
numerical_params->Delete();
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
status = reference_params->NumericalCheck(numerical_params);
numerical_params->Delete();
if (status != OK) {
TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
}
// for warmup does user set max duration, max iters, or both?
// warmup is skipped by default, i.e. warmup_iter = 0
// warmup will be set to the non-zero value of max_warmup_duration

View File

@ -2,8 +2,6 @@
#include <ATen/ATen.h>
#include <c10/util/Exception.h>
namespace at::native {
cudnnDataType_t getCudnnDataTypeFromScalarType(const at::ScalarType dtype) {
@ -22,10 +20,9 @@ cudnnDataType_t getCudnnDataTypeFromScalarType(const at::ScalarType dtype) {
} else if (dtype == at::kByte) {
return CUDNN_DATA_UINT8;
}
TORCH_CHECK(false,
"getCudnnDataTypeFromScalarType() not supported for ",
toString(dtype)
);
std::string msg("getCudnnDataTypeFromScalarType() not supported for ");
msg += toString(dtype);
throw std::runtime_error(msg);
}
cudnnDataType_t getCudnnDataType(const at::Tensor& tensor) {

View File

@ -39,7 +39,7 @@ Tensor vdot_decomp(const Tensor& A, const Tensor& B) {
// NB: I wrote this like this because we *might* want its for a future matmul
// batch rule that isn't decomposed...
// "tv" = tensor @ vector
std::tuple<Tensor, std::optional<int64_t>> tv_batch_rule(
static std::tuple<Tensor, std::optional<int64_t>> tv_batch_rule(
const Tensor& self, std::optional<int64_t> self_bdim,
const Tensor& other, std::optional<int64_t> other_bdim) {
if (self_bdim && other_bdim) {
@ -66,7 +66,7 @@ std::tuple<Tensor, std::optional<int64_t>> tv_batch_rule(
TORCH_INTERNAL_ASSERT(false, "can't get here");
}
std::tuple<Tensor, std::optional<int64_t>> mv_batch_rule(
static std::tuple<Tensor, std::optional<int64_t>> mv_batch_rule(
const Tensor& self, std::optional<int64_t> self_bdim,
const Tensor& other, std::optional<int64_t> other_bdim) {
auto self_logical_rank = rankWithoutBatchDim(self, self_bdim);
@ -79,7 +79,7 @@ std::tuple<Tensor, std::optional<int64_t>> mv_batch_rule(
return tv_batch_rule(self, self_bdim, other, other_bdim);
}
std::tuple<Tensor, std::optional<int64_t>> mm_batch_rule(
static std::tuple<Tensor, std::optional<int64_t>> mm_batch_rule(
const Tensor& self, std::optional<int64_t> self_bdim,
const Tensor& other, std::optional<int64_t> other_bdim) {
auto self_logical_rank = rankWithoutBatchDim(self, self_bdim);
@ -94,7 +94,7 @@ std::tuple<Tensor, std::optional<int64_t>> mm_batch_rule(
return std::make_tuple( at::matmul(self_, other_), 0 );
}
std::tuple<Tensor, std::optional<int64_t>> bmm_batch_rule(
static std::tuple<Tensor, std::optional<int64_t>> bmm_batch_rule(
const Tensor& self, std::optional<int64_t> self_bdim,
const Tensor& other, std::optional<int64_t> other_bdim) {
auto self_logical_rank = rankWithoutBatchDim(self, self_bdim);
@ -250,7 +250,7 @@ struct LinalgCheckMatrixBinaryRuleHelper<op_name, F, Func, typelist<A, B, T...>>
}
};
void expect_at_least_rank(
static void expect_at_least_rank(
const Tensor& tensor,
std::optional<int64_t> tensor_bdim,
int64_t expected_rank,
@ -472,7 +472,7 @@ atol_rtol_tensor_batch_rule(
return std::make_tuple(Func(input_, atol_, rtol_, hermitian), 0);
}
std::tuple<Tensor, std::optional<int64_t>>
static std::tuple<Tensor, std::optional<int64_t>>
pinv_batch_rule(
const Tensor& input, std::optional<int64_t> input_bdim, const std::optional<Tensor>& atol,
const std::optional<int64_t> atol_bdim, const std::optional<Tensor>& rtol,

View File

@ -213,22 +213,40 @@ static cudnn_grid_sample_backward_batch_rule(
return grid_sample_backward_helper_out(std::move(bw_out), 0, 0, bdim_size);
}
// uses functional formulation for one_hot under vmap to be compatible with
// fakeTensor/dynamic shapes and compiled functorch transforms.
// mirrors the meta path in aten/src/ATen/native/Onehot.cpp,
// but requires explicit positive num_classes under vmap to avoid
// data-dependent output shapes.
// TODO: replace with targetable functionalization
static Tensor one_hot_decomposition_hack(const Tensor &self, int64_t num_classes) {
TORCH_CHECK(self.dtype() == kLong, "one_hot is only applicable to index tensor.");
auto shape = self.sym_sizes().vec();
// empty tensor could be converted to one hot representation,
// but shape inference is not possible.
if (self.sym_numel() == 0) {
if (num_classes <= 0) {
TORCH_CHECK(false, "Can not infer total number of classes from empty tensor.");
} else {
shape.emplace_back(num_classes);
return at::empty_symint(shape, self.options());
}
}
// disallow implicit inference under vmap; this would be data-dependent
// and is intentionally guarded by Dynamo in torch/_dynamo/variables/torch.py.
TORCH_CHECK(num_classes > 0, "When vmap-ing torch.nn.functional.one_hot, please "
"provide an explicit positive num_classes argument.");
const auto options = self.options();
at::Tensor index = at::arange(num_classes, options);
return at::eq(self.unsqueeze(-1), index).to(at::kLong);
// Disabling all of the following checks. This is OK because scatter has checks too.
// Maybe one_hot should be a primitive wrt autograd so we don't have to deal with this.
// // non-empty tensor
// if (self.device().type() != at::kCUDA) {
// //for cuda, rely on device assert thrown by scatter
// TORCH_CHECK(self.min().item().toLong() >= 0, "Class values must be non-negative.");
// }
// if (self.device().type() != at::kCUDA) {
// //rely on device asserts from scatter to avoid sync here
// TORCH_CHECK(num_classes > self.max().item().toLong(), "Class values must be smaller than num_classes.");
// }
shape.emplace_back(num_classes);
Tensor ret = at::zeros_symint(shape, self.options());
return ret.scatter(-1, self.unsqueeze(-1), 1);
}
template <typename A, A a, typename C>

View File

@ -12,14 +12,13 @@
#include <ATen/native/IndexKernel.h>
#include <ATen/native/IndexingUtils.h>
#include <torch/library.h>
#include <c10/util/Exception.h>
// NOLINTBEGIN(bugprone-unchecked-optional-access)
namespace at::functorch {
namespace {
bool any_has_value(ArrayRef<std::optional<int64_t>> bdims) {
static bool any_has_value(ArrayRef<std::optional<int64_t>> bdims) {
for (const auto& bdim : bdims) {
if (bdim.has_value()) {
return true;
@ -28,7 +27,7 @@ bool any_has_value(ArrayRef<std::optional<int64_t>> bdims) {
return false;
}
int64_t get_num_leading_nones(ArrayRef<std::optional<Tensor>> indices) {
static int64_t get_num_leading_nones(ArrayRef<std::optional<Tensor>> indices) {
int64_t result = 0;
for (const auto& idx : indices) {
if (!idx.has_value() || !idx->defined()) {
@ -40,7 +39,7 @@ int64_t get_num_leading_nones(ArrayRef<std::optional<Tensor>> indices) {
return result;
}
int64_t get_max_index_logical_dim(
static int64_t get_max_index_logical_dim(
ArrayRef<std::optional<Tensor>> indices,
ArrayRef<std::optional<int64_t>> indices_bdims) {
int64_t max_logical_dim = -1;
@ -57,7 +56,7 @@ int64_t get_max_index_logical_dim(
return max_logical_dim;
}
std::vector<std::optional<Tensor>> batchIndices(
static std::vector<std::optional<Tensor>> batchIndices(
at::TensorOptions options,
ArrayRef<std::optional<Tensor>> indices,
ArrayRef<std::optional<int64_t>> indices_bdims,
@ -95,10 +94,9 @@ std::vector<std::optional<Tensor>> batchIndices(
if (index.has_value() && index->sym_numel() != 0) {
const auto idx_bdim = indices_bdims[i];
indices_.emplace_back(maybePadToLogicalRank(moveBatchDimToFront(index.value(), idx_bdim), idx_bdim, maxLogicalRank));
TORCH_CHECK(
!(index.value().dtype() == kBool) || !indices_bdims[i].has_value(),
"vmap: We do not support batching operators that can support dynamic shape. Attempting to batch over indexing with a boolean mask."
);
if (index.value().dtype() == kBool && indices_bdims[i].has_value()) {
throw std::runtime_error("vmap: We do not support batching operators that can support dynamic shape. Attempting to batch over indexing with a boolean mask.");
}
} else {
indices_.push_back(index);
}
@ -126,7 +124,7 @@ std::vector<std::optional<Tensor>> batchIndices(
// Define an "advanced index" to be a selection object that is
// a non-trivial Tensor (i.e. it does not represent :).
bool is_advanced_index(const std::optional<Tensor>& idx) {
static bool is_advanced_index(const std::optional<Tensor>& idx) {
if (!idx.has_value()) {
return false;
}
@ -137,7 +135,7 @@ bool is_advanced_index(const std::optional<Tensor>& idx) {
}
// See NOTE: [advanced indices adjacent] for definition
bool are_advanced_indices_adjacent(ArrayRef<std::optional<Tensor>> indices) {
static bool are_advanced_indices_adjacent(ArrayRef<std::optional<Tensor>> indices) {
int64_t num_advanced_indices_regions = 0;
bool in_advanced_indices_region = false;
for (const auto& idx : indices) {
@ -165,7 +163,7 @@ bool are_advanced_indices_adjacent(ArrayRef<std::optional<Tensor>> indices) {
// - result: Tensor[B, 4, 5, 6, 2, 3, 7, 8]
// ------- ----
// region2 region1
Tensor swap_regions(const Tensor& tensor, int64_t first_region_size, int64_t second_region_size) {
static Tensor swap_regions(const Tensor& tensor, int64_t first_region_size, int64_t second_region_size) {
VmapDimVector permutation(tensor.dim(), 0);
std::iota(permutation.begin(), permutation.end(), 0);
std::rotate(
@ -553,7 +551,7 @@ Tensor &_index_put_impl__plumbing(Tensor &self, const List<std::optional<Tensor>
return self;
}
Tensor maybe_permute_values(
static Tensor maybe_permute_values(
const Tensor& values,
ArrayRef<std::optional<Tensor>> orig_indices,
ArrayRef<std::optional<int64_t>> orig_indices_bdims) {
@ -1052,7 +1050,7 @@ std::tuple<Tensor, std::optional<int64_t>> index_add_batch_rule(
other, other_bdim, alpha, false);
}
std::tuple<Tensor,Tensor> binary_pointwise_align(
static std::tuple<Tensor,Tensor> binary_pointwise_align(
const Tensor & self,
std::optional<int64_t> self_bdim,
const Tensor & mask,

View File

@ -346,7 +346,7 @@ std::tuple<Tensor, std::optional<int64_t>> slice_batch_rule(
return std::make_tuple(std::move(result), 0);
}
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
return dim == 0 || dim == -1;
}

View File

@ -3,7 +3,6 @@
#include <ATen/functorch/Macros.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/util/Exception.h>
#include <optional>
#include <bitset>
#include <utility>
@ -107,10 +106,9 @@ struct VmapInterpreterMeta {
template <typename T>
friend void to_json(T& json_j, const VmapInterpreterMeta& json_t) {
TORCH_CHECK(
!json_t.batchSize_.is_heap_allocated(),
"Serialization for heap-allocated SymInt is not implemented yet"
);
if (json_t.batchSize_.is_heap_allocated()) {
throw std::runtime_error("Serialization for heap-allocated SymInt is not implemented yet");
}
json_j["batchSize"] = json_t.batchSize_.as_int_unchecked();
json_j["randomness"] = static_cast<int64_t>(json_t.randomness_);
}
@ -304,7 +302,7 @@ struct Interpreter {
} else if (meta.contains("Functionalize")) {
json_t.meta_.emplace<FunctionalizeInterpreterMeta>(meta["Functionalize"].template get<FunctionalizeInterpreterMeta>());
} else {
TORCH_CHECK(false, "unknown interpreter metadata type");
throw std::runtime_error("unknown interpreter metadata type");
}
}

View File

@ -68,18 +68,18 @@ namespace at::functorch {
namespace{
// PyTorch allows operations to specify dim 0 and dim -1 on a scalar tensor.
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
return dim == 0 || dim == -1;
}
int64_t get_current_level() {
static int64_t get_current_level() {
auto maybe_level = maybeCurrentDynamicLayer();
TORCH_INTERNAL_ASSERT(maybe_level.has_value());
return maybe_level->layerId();
}
// This check should probably go into the dispatcher...
bool participatesInCurrentLevel(const Tensor& self) {
static bool participatesInCurrentLevel(const Tensor& self) {
auto current_level = get_current_level();
auto* maybe_batched_impl = maybeGetBatchedImpl(self);
if (!maybe_batched_impl) {
@ -90,7 +90,7 @@ bool participatesInCurrentLevel(const Tensor& self) {
return self_level == current_level;
}
bool participatesInCurrentLevel(ITensorListRef self) {
static bool participatesInCurrentLevel(ITensorListRef self) {
for (const Tensor& tensor : self) {
if (participatesInCurrentLevel(tensor)) {
return true;
@ -285,7 +285,7 @@ std::vector<Tensor> unbind_batching_rule(const Tensor& self, int64_t dim) {
// given (sizes, strides, storage_offset) returns the maximum location that
// can be indexed (or nullopt if such a location doesn't exist, e.g., tensors
// with zero-size dims).
std::optional<c10::SymInt> maximum_indexable_location(
static std::optional<c10::SymInt> maximum_indexable_location(
c10::SymIntArrayRef sizes, c10::SymIntArrayRef strides, const c10::SymInt& storage_offset) {
auto result = native::storage_size_for(sizes, strides);
if (result == 0) {
@ -298,7 +298,7 @@ std::optional<c10::SymInt> maximum_indexable_location(
// This checks that the range of possible memory locations accessible by
// x.as_strided(sizes, strides, maybe_storage_offset)
// are within the bounds of possible memory locations accessible by x.
void checkBasicAsStridedValidForSlice(
static void checkBasicAsStridedValidForSlice(
const Tensor& physical_tensor,
int64_t num_batch_dims,
c10::SymIntArrayRef sizes,

View File

@ -6,7 +6,6 @@
#include <ATen/functorch/BatchedTensorImpl.h>
#include <ATen/Dispatch.h>
#include <c10/util/irange.h>
#include <c10/util/Exception.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/native/LinearAlgebraUtils.h>
#include <ATen/native/xnnpack/Engine.h>
@ -71,7 +70,7 @@ Tensor linear_hack(const Tensor& input, const Tensor& weight, const std::optiona
return output;
}
inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
static inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
if (reduction == at::Reduction::Mean) {
return unreduced.mean();
} else if (reduction == at::Reduction::Sum) {
@ -109,7 +108,9 @@ Tensor binary_cross_entropy_with_logits_hack(
}
Tensor trace_backward_decomp(const Tensor& grad, IntArrayRef sizes) {
TORCH_CHECK(sizes.size() == 2, "expected matrix input");
if (sizes.size() != 2) {
throw std::runtime_error("expected matrix input");
}
auto grad_input = at::zeros(sizes[0] * sizes[1], grad.options());
auto indices = at::arange(0, grad_input.numel(), sizes[1] + 1, grad.options().dtype(at::kLong));
// Workaround using index_put instead of yet unsupported index_fill_
@ -127,7 +128,7 @@ namespace {
template<bool inplace>
using Ctype = std::conditional_t<inplace, Tensor&, Tensor>;
Tensor make_feature_noise(const Tensor& input) {
static Tensor make_feature_noise(const Tensor& input) {
auto input_sizes = input.sizes();
TORCH_CHECK(input.dim() >= 2, "Feature dropout requires at least 2 dimensions in the input");
std::vector<int64_t> sizes;
@ -141,7 +142,7 @@ Tensor make_feature_noise(const Tensor& input) {
return at::empty(sizes, input.options());
}
bool is_fused_kernel_acceptable(const Tensor& input, double p) {
static bool is_fused_kernel_acceptable(const Tensor& input, double p) {
return (input.is_cuda() || input.is_xpu() || input.is_lazy() || input.is_privateuseone()) && p > 0 && p < 1 && input.numel() > 0;
}
@ -210,7 +211,7 @@ ALIAS_SPECIALIZATION(_feature_dropout, true, false)
ALIAS_SPECIALIZATION(_alpha_dropout, false, true )
ALIAS_SPECIALIZATION(_feature_alpha_dropout, true, true )
Tensor dropout(const Tensor& input, double p, bool train) {
static Tensor dropout(const Tensor& input, double p, bool train) {
auto result = [&]() {
NoNamesGuard guard;
if (train && is_fused_kernel_acceptable(input, p)) {

View File

@ -24,7 +24,7 @@ namespace at::native {
namespace {
template <typename scalar_t>
void adaptive_avg_pool3d_out_frame(
static void adaptive_avg_pool3d_out_frame(
const scalar_t* input_p,
scalar_t* output_p,
int64_t sizeD,
@ -176,7 +176,7 @@ void adaptive_avg_pool3d_out_cpu_template(
}
template <typename scalar_t>
void adaptive_avg_pool3d_backward_out_frame(
static void adaptive_avg_pool3d_backward_out_frame(
scalar_t* gradInput_p,
const scalar_t* gradOutput_p,
int64_t sizeD,

View File

@ -93,7 +93,7 @@ namespace {
// 5d tensor B x D x T x H x W
template <typename scalar_t>
void adaptive_max_pool3d_single_out_frame(
static void adaptive_max_pool3d_single_out_frame(
const scalar_t *input_p,
scalar_t *output_p,
int64_t *ind_p,
@ -170,7 +170,7 @@ void adaptive_max_pool3d_single_out_frame(
}
template <typename scalar_t>
void adaptive_max_pool3d_out_frame(
static void adaptive_max_pool3d_out_frame(
const scalar_t *input_data,
scalar_t *output_data,
int64_t *indices_data,
@ -202,7 +202,7 @@ void adaptive_max_pool3d_out_frame(
}
template <typename scalar_t>
void adaptive_max_pool3d_backward_single_out_frame(
static void adaptive_max_pool3d_backward_single_out_frame(
scalar_t *gradInput_p,
const scalar_t *gradOutput_p,
const int64_t *ind_p,
@ -241,7 +241,7 @@ void adaptive_max_pool3d_backward_single_out_frame(
}
template <typename scalar_t>
void adaptive_max_pool3d_backward_out_frame(
static void adaptive_max_pool3d_backward_out_frame(
scalar_t *gradInput_data,
const scalar_t *gradOutput_data,
const int64_t *indices_data,

View File

@ -153,7 +153,7 @@ namespace at::native {
namespace {
template <typename scalar_t>
void avg_pool3d_out_frame(
static void avg_pool3d_out_frame(
const scalar_t *input_p,
scalar_t *output_p,
int64_t nslices,
@ -333,7 +333,7 @@ TORCH_IMPL_FUNC(avg_pool3d_out_cpu) (
namespace {
template <typename scalar_t>
void avg_pool3d_backward_out_frame(
static void avg_pool3d_backward_out_frame(
scalar_t *gradInput_p,
const scalar_t *gradOutput_p,
int64_t nslices,

View File

@ -143,13 +143,13 @@ Tensor& cholesky_inverse_kernel_impl(Tensor& result, Tensor& infos, bool upper)
For more info see https://github.com/pytorch/pytorch/issues/145801#issuecomment-2631781776
*/
template <typename T>
inline
static inline
std::enable_if_t<std::is_floating_point_v<T>, int> lapack_work_to_int(const T val) {
const auto next_after = std::nextafter(val, std::numeric_limits<T>::infinity());
return std::max<int>(1, std::ceil(next_after));
}
template <typename T>
inline
static inline
std::enable_if_t<c10::is_complex<T>::value, int> lapack_work_to_int(const T val) {
return lapack_work_to_int(val.real());
}
@ -343,7 +343,7 @@ void linalg_eigh_kernel(const Tensor& eigenvalues, const Tensor& eigenvectors, c
For further details, please see the LAPACK documentation for GEQRF.
*/
template <typename scalar_t>
void apply_geqrf(const Tensor& input, const Tensor& tau) {
static void apply_geqrf(const Tensor& input, const Tensor& tau) {
#if !AT_BUILD_WITH_LAPACK()
TORCH_CHECK(
false,
@ -1039,7 +1039,7 @@ void lu_solve_kernel(const Tensor& LU, const Tensor& pivots, const Tensor& B, Tr
}
template <typename scalar_t>
void apply_svd(const Tensor& A,
static void apply_svd(const Tensor& A,
const bool full_matrices,
const bool compute_uv,
const Tensor& U,
@ -1157,103 +1157,103 @@ REGISTER_AVX512_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_AVX2_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_VSX_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_ZVECTOR_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_SVE256_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_SVE_DISPATCH(cholesky_stub, &cholesky_kernel)
REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl)
REGISTER_AVX512_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_AVX2_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_VSX_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_ZVECTOR_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_SVE256_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_SVE_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
REGISTER_ARCH_DISPATCH(linalg_eig_stub, DEFAULT, &linalg_eig_kernel)
REGISTER_AVX512_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_AVX2_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_VSX_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_ZVECTOR_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_SVE256_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_SVE_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
REGISTER_ARCH_DISPATCH(linalg_eigh_stub, DEFAULT, &linalg_eigh_kernel)
REGISTER_AVX512_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_AVX2_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_VSX_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_ZVECTOR_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_SVE256_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_SVE_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
REGISTER_ARCH_DISPATCH(geqrf_stub, DEFAULT, &geqrf_kernel)
REGISTER_AVX512_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_AVX2_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_VSX_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_ZVECTOR_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_SVE256_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_SVE_DISPATCH(geqrf_stub, &geqrf_kernel)
REGISTER_ARCH_DISPATCH(orgqr_stub, DEFAULT, &orgqr_kernel_impl)
REGISTER_AVX512_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_AVX2_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_VSX_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_ZVECTOR_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_SVE256_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_SVE_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
REGISTER_ARCH_DISPATCH(ormqr_stub, DEFAULT, &ormqr_kernel)
REGISTER_AVX512_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_AVX2_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_VSX_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_ZVECTOR_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_SVE256_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_SVE_DISPATCH(ormqr_stub, &ormqr_kernel)
REGISTER_ARCH_DISPATCH(lstsq_stub, DEFAULT, &lstsq_kernel)
REGISTER_AVX512_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_AVX2_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_VSX_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_ZVECTOR_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_SVE256_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_SVE_DISPATCH(lstsq_stub, &lstsq_kernel)
REGISTER_ARCH_DISPATCH(triangular_solve_stub, DEFAULT, &triangular_solve_kernel)
REGISTER_AVX512_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_AVX2_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_VSX_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_ZVECTOR_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_SVE256_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_SVE_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
REGISTER_ARCH_DISPATCH(lu_factor_stub, DEFAULT, &lu_factor_kernel)
REGISTER_AVX512_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_AVX2_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_VSX_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_ZVECTOR_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_SVE256_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_SVE_DISPATCH(lu_factor_stub, &lu_factor_kernel)
REGISTER_ARCH_DISPATCH(ldl_factor_stub, DEFAULT, &ldl_factor_kernel)
REGISTER_AVX512_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_AVX2_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_VSX_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_ZVECTOR_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_SVE256_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_SVE_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
REGISTER_ARCH_DISPATCH(ldl_solve_stub, DEFAULT, &ldl_solve_kernel)
REGISTER_AVX512_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_AVX2_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_VSX_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_ZVECTOR_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_SVE256_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_SVE_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
REGISTER_ARCH_DISPATCH(lu_solve_stub, DEFAULT, &lu_solve_kernel)
REGISTER_AVX512_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_AVX2_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_VSX_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_ZVECTOR_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_SVE256_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_SVE_DISPATCH(lu_solve_stub, &lu_solve_kernel)
REGISTER_ARCH_DISPATCH(svd_stub, DEFAULT, &svd_kernel)
REGISTER_AVX512_DISPATCH(svd_stub, &svd_kernel)
REGISTER_AVX2_DISPATCH(svd_stub, &svd_kernel)
REGISTER_VSX_DISPATCH(svd_stub, &svd_kernel)
REGISTER_ZVECTOR_DISPATCH(svd_stub, &svd_kernel)
REGISTER_SVE256_DISPATCH(svd_stub, &svd_kernel)
REGISTER_SVE_DISPATCH(svd_stub, &svd_kernel)
REGISTER_ARCH_DISPATCH(unpack_pivots_stub, DEFAULT, &unpack_pivots_cpu_kernel)
REGISTER_AVX512_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_AVX2_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_VSX_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_ZVECTOR_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_SVE256_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
REGISTER_SVE_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
} // namespace at::native

View File

@ -71,7 +71,7 @@
namespace at::native {
namespace {
void col2im_out_cpu_template(
static void col2im_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef output_size,

View File

@ -25,7 +25,7 @@ namespace at::native {
namespace {
Tensor compute_columns2d(
static Tensor compute_columns2d(
const Tensor& input,
IntArrayRef padding,
IntArrayRef stride,
@ -93,7 +93,7 @@ Tensor compute_columns2d(
return columns.contiguous();
}
inline void slow_conv2d_shape_check(
static inline void slow_conv2d_shape_check(
const Tensor& input,
const Tensor& grad_output,
const Tensor& weight,
@ -205,7 +205,7 @@ inline void slow_conv2d_shape_check(
}
}
inline Tensor view_weight_2d(const Tensor& weight_,
static inline Tensor view_weight_2d(const Tensor& weight_,
at::MemoryFormat memory_format = at::MemoryFormat::Contiguous) {
Tensor weight = weight_.contiguous(memory_format);
if (weight.dim() == 4) {
@ -220,7 +220,7 @@ inline Tensor view_weight_2d(const Tensor& weight_,
}
template <typename scalar_t>
void slow_conv2d_update_output_frame(
static void slow_conv2d_update_output_frame(
TensorAccessor<const scalar_t, 3> input,
TensorAccessor<scalar_t, 3> output,
TensorAccessor<const scalar_t, 2> weight,
@ -480,7 +480,7 @@ void slow_conv2d_backward_weight_frame(
}
}
void slow_conv2d_backward_weight_out_cpu_template(
static void slow_conv2d_backward_weight_out_cpu_template(
Tensor& grad_weight,
const Tensor& input,
const Tensor& grad_output_,

View File

@ -28,7 +28,7 @@ namespace at::native {
namespace {
Tensor compute_columns3d(
static Tensor compute_columns3d(
const Tensor& input_,
IntArrayRef stride,
IntArrayRef padding,
@ -108,7 +108,7 @@ Tensor compute_columns3d(
return columns;
}
inline void slow_conv3d_shape_check(
static inline void slow_conv3d_shape_check(
const Tensor& input,
const Tensor& grad_output,
const Tensor& weight,
@ -273,7 +273,7 @@ inline void slow_conv3d_shape_check(
}
}
Tensor view_weight_2d(const Tensor& weight_) {
static Tensor view_weight_2d(const Tensor& weight_) {
Tensor weight = weight_.contiguous();
if (weight.dim() == 5) {
const int64_t s1 = weight.size(0);
@ -286,7 +286,7 @@ Tensor view_weight_2d(const Tensor& weight_) {
}
template <typename scalar_t>
void slow_conv3d_update_output_frame(
static void slow_conv3d_update_output_frame(
TensorAccessor<const scalar_t, 4> input,
TensorAccessor<scalar_t, 4> output,
TensorAccessor<const scalar_t, 2> weight,
@ -515,7 +515,7 @@ void slow_conv3d_backward_weight_frame(
grad_weight.data(), ldc, grad_weight.stride(0) * n);
}
void slow_conv3d_backward_parameters_out_cpu_template(
static void slow_conv3d_backward_parameters_out_cpu_template(
Tensor& grad_weight,
const Tensor& input,
const Tensor& grad_output,

View File

@ -39,19 +39,21 @@ static CPUCapability compute_cpu_capability() {
}
#elif defined(HAVE_SVE_CPU_DEFINITION)
int sve_vl = cpuinfo_get_max_arm_sve_length(); //Returns maximum SVE VL supported by your HW.
#ifdef HAVE_SVE256_CPU_DEFINITION
if (envar == "sve256") {
if (envar == "sve") {
// Select SVE capability based on the maximum SVE VL supported by the HW.
if (sve_vl == 256) {
#ifdef HAVE_ARM_BF16_CPU_DEFINITION
if (cpuinfo_has_arm_bf16()) {
return CPUCapability::SVE256;
}
#endif
} else if (sve_vl == 128) {
if (cpuinfo_has_arm_bf16()) {
return CPUCapability::SVE128;
}
} else {
TORCH_WARN("SVE capability not available on hardware. Falling back to DEFAULT");
return CPUCapability::DEFAULT;
}
TORCH_WARN("SVE256 capability not available on hardware. Falling back to DEFAULT");
return CPUCapability::DEFAULT;
}
#endif
#else
#ifdef HAVE_AVX512_CPU_DEFINITION
if (envar == "avx512") {
@ -113,6 +115,11 @@ static CPUCapability compute_cpu_capability() {
#endif
}
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
if (sve_vl == 128) { // Check for SVE128
return CPUCapability::SVE128;
}
#endif
// Return the default CPU capability.
return CPUCapability::DEFAULT;
}
@ -147,6 +154,9 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
) {
constexpr auto supported_devices = c10::array_of<c10::DeviceType>(
c10::DeviceType::CPU,
@ -184,6 +194,9 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, SVE128
#endif
);
if (!std::holds_alternative<ErrorType>(result)) {
@ -242,6 +255,9 @@ void* DispatchStubImpl::get_call_ptr(
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
) {
auto result = try_get_call_ptr(
@ -266,6 +282,10 @@ void* DispatchStubImpl::get_call_ptr(
#ifdef HAVE_SVE256_CPU_DEFINITION
,
SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
,
SVE128
#endif
);
if (std::holds_alternative<ErrorType>(result)) {
@ -300,6 +320,9 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
){
@ -342,6 +365,16 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
return DispatchResult(SVE256);
}
}
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
if (C10_UNLIKELY(!SVE128)) {
// dispatch to DEFAULT, since the SVE kernel is missing
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
} else {
return DispatchResult(SVE128);
}
}
#endif
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
}
@ -363,6 +396,9 @@ void* DispatchStubImpl::choose_cpu_impl(
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
) {
auto capability = static_cast<int>(get_cpu_capability());
(void)capability;
@ -408,6 +444,17 @@ void* DispatchStubImpl::choose_cpu_impl(
return SVE256;
}
}
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
if (C10_UNLIKELY(!SVE128)) {
// dispatch to DEFAULT, since the SVE kernel is missing
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
return DEFAULT;
} else {
return SVE128;
}
}
#endif
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
return DEFAULT;

View File

@ -64,8 +64,9 @@ enum class CPUCapability {
VSX = 1,
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
ZVECTOR = 1,
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
SVE256 = 1,
SVE128 = 2,
#else
AVX2 = 1,
AVX512 = 2,
@ -117,6 +118,9 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -138,6 +142,9 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -159,6 +166,9 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -183,6 +193,9 @@ struct TORCH_API DispatchStubImpl {
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, void *SVE256
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, void *SVE128
#endif
);
@ -240,6 +253,9 @@ private:
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, reinterpret_cast<void*>(SVE256)
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, reinterpret_cast<void*>(SVE128)
#endif
)
);
@ -301,6 +317,9 @@ public:
#endif
#ifdef HAVE_SVE256_CPU_DEFINITION
, reinterpret_cast<void*>(SVE256)
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
, reinterpret_cast<void*>(SVE128)
#endif
);
if (std::holds_alternative<ErrorType>(result)){
@ -325,6 +344,9 @@ public:
#ifdef HAVE_SVE256_CPU_DEFINITION
static TORCH_API FnPtr SVE256;
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
static TORCH_API FnPtr SVE128;
#endif
private:
DispatchStubImpl impl;
};
@ -432,6 +454,12 @@ struct RegisterPRIVATEUSE1Dispatch {
#define REGISTER_SVE256_DISPATCH(name, fn)
#endif
#ifdef HAVE_SVE128_CPU_DEFINITION
#define REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, SVE128, fn)
#else
#define REGISTER_SVE128_DISPATCH(name, fn)
#endif
// Macro to register the same kernel for all CPU arch types. This is useful
// if a kernel does not benefit from being recompiled across different arch types.
#define REGISTER_ALL_CPU_DISPATCH(name, fn) \
@ -440,6 +468,11 @@ struct RegisterPRIVATEUSE1Dispatch {
REGISTER_AVX2_DISPATCH(name, fn) \
REGISTER_VSX_DISPATCH(name, fn) \
REGISTER_ZVECTOR_DISPATCH(name, fn) \
REGISTER_SVE256_DISPATCH(name, fn) \
REGISTER_SVE128_DISPATCH(name, fn)
#define REGISTER_SVE_DISPATCH(name, fn) \
REGISTER_SVE128_DISPATCH(name, fn) \
REGISTER_SVE256_DISPATCH(name, fn)
#define REGISTER_NO_CPU_DISPATCH(name) \
@ -482,6 +515,7 @@ struct RegisterPRIVATEUSE1Dispatch {
// REGISTER_DISPATCH now dispatches an AVX512 kernel to nullptr but registers other dispatches.
// ALSO_REGISTER_AVX512_DISPATCH should be used for ensuring AVX512 dispatch, among others.
// ALSO_REGISTER_SVE256_DISPATCH should be used for ensuring SVE256 dispatch, among others.
// ALSO_REGISTER_SVE128_DISPATCH should be used for ensuring SVE128 dispatch, among others.
#ifdef CPU_CAPABILITY_AVX512
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, ((void*)(fn) ? nullptr : nullptr))
#else
@ -489,6 +523,7 @@ struct RegisterPRIVATEUSE1Dispatch {
#endif
#define ALSO_REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#define ALSO_REGISTER_SVE256_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#define ALSO_REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
#endif
} // namespace at::native

View File

@ -108,7 +108,7 @@ bool is_fast_path(const Tensor& src, const std::optional<Tensor>& scale, Tensor&
// index_add (using add_indices as the index), without creating an intermediary
// tensor to hold the selected embeddings
template <typename data_t, typename index_t>
std::enable_if_t<std::is_same_v<data_t, double>, void>
static std::enable_if_t<std::is_same_v<data_t, double>, void>
index_select_add(
const Tensor& select_indices,
const Tensor& add_indices,
@ -494,7 +494,7 @@ index_select_add(const Tensor &select_indices,
// mul (scaling by per_sample_weights)
// index_add (using add_indices as the index)
template <typename data_t, typename index_t>
std::enable_if_t<std::is_same_v<data_t, double>, void>
static std::enable_if_t<std::is_same_v<data_t, double>, void>
index_select_scale_add(
const Tensor& select_indices,
const Tensor& add_indices,

View File

@ -130,7 +130,7 @@ namespace native {
namespace {
template <typename scalar_t>
void fractional_max_pool2d_out_single_batch_frame(
static void fractional_max_pool2d_out_single_batch_frame(
const scalar_t* input,
scalar_t* output,
int64_t* indices,
@ -188,7 +188,7 @@ void fractional_max_pool2d_out_single_batch_frame(
}
template <typename scalar_t>
void fractional_max_pool2d_out_frame(
static void fractional_max_pool2d_out_frame(
const scalar_t* input,
scalar_t* output,
int64_t* indices,
@ -220,7 +220,7 @@ void fractional_max_pool2d_out_frame(
}
template <typename scalar_t>
void fractional_max_pool2d_backward_out_single_batch_frame(
static void fractional_max_pool2d_backward_out_single_batch_frame(
scalar_t* gradInput,
const scalar_t* gradOutput,
const int64_t* indices,
@ -247,7 +247,7 @@ void fractional_max_pool2d_backward_out_single_batch_frame(
}
template <typename scalar_t>
void fractional_max_pool2d_backward_out_frame(
static void fractional_max_pool2d_backward_out_frame(
scalar_t* gradInput,
const scalar_t* gradOutput,
const int64_t* indices,

Some files were not shown because too many files have changed in this diff Show More