mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 14:59:34 +08:00
Compare commits
1 Commits
annotate_f
...
mingw_cons
Author | SHA1 | Date | |
---|---|---|---|
5ffea8b44e |
@ -8,8 +8,6 @@ if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
|
||||
fi
|
||||
|
@ -37,9 +37,9 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
rocm*)
|
||||
BASE_TARGET=rocm
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
|
||||
;;
|
||||
|
@ -181,7 +181,7 @@ case "$tag" in
|
||||
KATEX=yes
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950;gfx1100"
|
||||
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
|
||||
if [[ $tag =~ "benchmarks" ]]; then
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
fi
|
||||
@ -344,7 +344,7 @@ docker build \
|
||||
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
|
||||
--build-arg "KATEX=${KATEX:-}" \
|
||||
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942}" \
|
||||
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
|
||||
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
|
||||
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
|
||||
|
@ -1 +1 @@
|
||||
deb42f2a8e48f5032b4a98ee781a15fa87a157cf
|
||||
e0dda9059d082537cee36be6c5e4fe3b18c880c0
|
||||
|
@ -1 +1 @@
|
||||
v2.27.7-1
|
||||
v2.27.5-1
|
@ -1 +1 @@
|
||||
7416ffcb92cdbe98d9f97e4e6f95247e46dfc9fd
|
||||
27664085f804afc83df26f740bb46c365854f2c4
|
||||
|
@ -19,8 +19,8 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.23.0
|
||||
pip_install onnxscript==0.5.3
|
||||
pip_install onnxruntime==1.22.1
|
||||
pip_install onnxscript==0.4.0
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/
|
||||
|
@ -1,9 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -xe
|
||||
# Script used in Linux x86 and aarch64 CD pipeline
|
||||
|
||||
# Workaround for exposing statically linked libstdc++ CXX11 ABI symbols.
|
||||
# see: https://github.com/pytorch/pytorch/issues/133437
|
||||
LIBNONSHARED=$(gcc -print-file-name=libstdc++_nonshared.a)
|
||||
nm -g $LIBNONSHARED | grep " T " | grep recursive_directory_iterator | cut -c 20- > weaken-symbols.txt
|
||||
objcopy --weaken-symbols weaken-symbols.txt $LIBNONSHARED $LIBNONSHARED
|
@ -46,9 +46,9 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
|
||||
;;
|
||||
|
@ -130,8 +130,7 @@ ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/op
|
||||
RUN for cpython_version in "cp312-cp312" "cp313-cp313" "cp313-cp313t"; do \
|
||||
/opt/python/${cpython_version}/bin/python -m pip install setuptools wheel; \
|
||||
done;
|
||||
ADD ./common/patch_libstdc.sh patch_libstdc.sh
|
||||
RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
|
||||
|
||||
# cmake-3.18.4 from pip; force in case cmake3 already exists
|
||||
RUN yum install -y python3-pip && \
|
||||
|
@ -78,6 +78,4 @@ RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
|
||||
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
|
||||
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
|
||||
COPY --from=arm_compute /acl /acl
|
||||
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:/acl/build/:$LD_LIBRARY_PATH
|
||||
ADD ./common/patch_libstdc.sh patch_libstdc.sh
|
||||
RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:/acl/build/:$LD_LIBRARY_PATH
|
@ -106,5 +106,3 @@ COPY --from=arm_compute /acl /acl
|
||||
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
|
||||
ENV PATH=/usr/local/cuda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/acl/build/:$LD_LIBRARY_PATH
|
||||
ADD ./common/patch_libstdc.sh patch_libstdc.sh
|
||||
RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
|
@ -115,9 +115,6 @@ RUN env GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=True pip3 install grpcio
|
||||
# cmake-3.28.0 from pip for onnxruntime
|
||||
RUN python3 -mpip install cmake==3.28.0
|
||||
|
||||
ADD ./common/patch_libstdc.sh patch_libstdc.sh
|
||||
RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
|
||||
# build onnxruntime 1.21.0 from sources.
|
||||
# it is not possible to build it from sources using pip,
|
||||
# so just build it from upstream repository.
|
||||
|
@ -84,9 +84,9 @@ case ${image} in
|
||||
DEVTOOLSET_VERSION="11"
|
||||
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
|
||||
;;
|
||||
|
@ -10,6 +10,11 @@ BAD_SSL = "https://self-signed.badssl.com"
|
||||
|
||||
print("Testing SSL certificate checking for Python:", sys.version)
|
||||
|
||||
if sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4):
|
||||
print("This version never checks SSL certs; skipping tests")
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
EXC = OSError
|
||||
|
||||
print(f"Connecting to {GOOD_SSL} should work")
|
||||
|
@ -120,8 +120,9 @@ ninja==1.11.1.4
|
||||
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
|
||||
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
|
||||
#Description: Just-In-Time Compiler for Numerical Functions
|
||||
#Pinned versions: 0.55.2, 0.60.0
|
||||
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
|
||||
#test that import: test_numba_integration.py
|
||||
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
|
||||
#Need release > 0.61.2 for s390x due to https://github.com/numba/numba/pull/10073
|
||||
|
||||
#numpy
|
||||
@ -241,9 +242,10 @@ pygments==2.15.0
|
||||
#Pinned versions: 14.1.0
|
||||
#test that import:
|
||||
|
||||
scikit-image==0.22.0
|
||||
scikit-image==0.19.3 ; python_version < "3.10"
|
||||
scikit-image==0.22.0 ; python_version >= "3.10"
|
||||
#Description: image processing routines
|
||||
#Pinned versions: 0.22.0
|
||||
#Pinned versions:
|
||||
#test that import: test_nn.py
|
||||
|
||||
#scikit-learn
|
||||
@ -339,7 +341,7 @@ onnx==1.18.0
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.5.3
|
||||
onnxscript==0.4.0
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
@ -143,7 +143,7 @@ def sample_vllm_test_library():
|
||||
"pytest -v -s compile/test_decorator.py",
|
||||
],
|
||||
},
|
||||
"vllm_language_model_test_extended_generation_28_failure_test": {
|
||||
"vllm_languagde_model_test_extended_generation_28_failure_test": {
|
||||
"title": "Language Models Test (Extended Generation) 2.8 release failure",
|
||||
"id": "vllm_languagde_model_test_extended_generation_28_failure_test",
|
||||
"package_install": [
|
||||
|
@ -63,7 +63,7 @@ class VllmBuildParameters:
|
||||
# DOCKERFILE_PATH: path to Dockerfile used when use_local_dockerfile is True"
|
||||
use_local_dockerfile: bool = env_bool_field("USE_LOCAL_DOCKERFILE", True)
|
||||
dockerfile_path: Path = env_path_field(
|
||||
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile"
|
||||
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile.tmp_vllm"
|
||||
)
|
||||
|
||||
# the cleaning script to remove torch dependencies from pip
|
||||
|
@ -5,7 +5,7 @@ DESIRED_ROCM ?= 7.0
|
||||
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
|
||||
PACKAGE_NAME = magma-rocm
|
||||
# inherit this from underlying docker image, do not pass this env var to docker
|
||||
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1150;gfx1151;gfx1200;gfx1201
|
||||
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
|
||||
|
||||
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
|
||||
@ -18,6 +18,7 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
.PHONY: all
|
||||
all: magma-rocm70
|
||||
all: magma-rocm64
|
||||
all: magma-rocm63
|
||||
|
||||
.PHONY:
|
||||
clean:
|
||||
@ -33,3 +34,8 @@ magma-rocm70:
|
||||
magma-rocm64: DESIRED_ROCM := 6.4
|
||||
magma-rocm64:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-rocm63
|
||||
magma-rocm63: DESIRED_ROCM := 6.3
|
||||
magma-rocm63:
|
||||
$(DOCKER_RUN)
|
||||
|
@ -187,22 +187,19 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
|
||||
export USE_CUFILE=0
|
||||
else
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
|
||||
"/usr/local/cuda/lib64/libcublas.so.12"
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12"
|
||||
"/usr/local/cuda/lib64/libcudart.so.12"
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12"
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
|
||||
DEPS_SONAME+=(
|
||||
"libnvToolsExt.so.1"
|
||||
"libcublas.so.12"
|
||||
"libcublasLt.so.12"
|
||||
"libcudart.so.12"
|
||||
"libnvrtc.so.12"
|
||||
"libcupti.so.12")
|
||||
|
||||
if [[ $CUDA_VERSION != 12.9* ]]; then
|
||||
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
|
||||
DEPS_SONAME+=("libnvToolsExt.so.1")
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "Using nvidia libs from pypi."
|
||||
|
@ -233,9 +233,7 @@ if [[ "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
|
||||
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
|
||||
fi
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *-full-debug* ]]; then
|
||||
export CMAKE_BUILD_TYPE=Debug
|
||||
elif [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
|
||||
if [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
|
||||
export CMAKE_BUILD_TYPE=RelWithAssert
|
||||
fi
|
||||
|
||||
@ -301,11 +299,6 @@ else
|
||||
python -m build --wheel --no-isolation
|
||||
fi
|
||||
pip_install_whl "$(echo dist/*.whl)"
|
||||
if [[ "$BUILD_ENVIRONMENT" == *full-debug* ]]; then
|
||||
# Regression test for https://github.com/pytorch/pytorch/issues/164297
|
||||
# Torch should be importable and that's about it
|
||||
pushd /; python -c "import torch;print(torch.__config__.show(), torch.randn(5) + 1.7)"; popd
|
||||
fi
|
||||
|
||||
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *vision* ]]; then
|
||||
install_torchvision
|
||||
|
@ -256,7 +256,7 @@ test_torchbench_smoketest() {
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
|
||||
for backend in eager inductor; do
|
||||
|
||||
@ -319,7 +319,7 @@ test_aoti_torchbench_smoketest() {
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
|
||||
echo "Launching torchbench inference performance run for AOT Inductor and dtype ${dtype}"
|
||||
local dtype_arg="--${dtype}"
|
||||
|
@ -32,9 +32,6 @@ LIBTORCH_NAMESPACE_LIST = (
|
||||
"torch::",
|
||||
)
|
||||
|
||||
# Patterns for detecting statically linked libstdc++ symbols
|
||||
STATICALLY_LINKED_CXX11_ABI = [re.compile(r".*recursive_directory_iterator.*")]
|
||||
|
||||
|
||||
def _apply_libtorch_symbols(symbols):
|
||||
return [
|
||||
@ -56,17 +53,12 @@ def get_symbols(lib: str) -> list[tuple[str, str, str]]:
|
||||
return [x.split(" ", 2) for x in lines.decode("latin1").split("\n")[:-1]]
|
||||
|
||||
|
||||
def grep_symbols(
|
||||
lib: str, patterns: list[Any], symbol_type: str | None = None
|
||||
) -> list[str]:
|
||||
def grep_symbols(lib: str, patterns: list[Any]) -> list[str]:
|
||||
def _grep_symbols(
|
||||
symbols: list[tuple[str, str, str]], patterns: list[Any]
|
||||
) -> list[str]:
|
||||
rc = []
|
||||
for _s_addr, _s_type, s_name in symbols:
|
||||
# Filter by symbol type if specified
|
||||
if symbol_type and _s_type != symbol_type:
|
||||
continue
|
||||
for pattern in patterns:
|
||||
if pattern.match(s_name):
|
||||
rc.append(s_name)
|
||||
@ -88,18 +80,6 @@ def grep_symbols(
|
||||
return functools.reduce(list.__add__, (x.result() for x in tasks), [])
|
||||
|
||||
|
||||
def check_lib_statically_linked_libstdc_cxx_abi_symbols(lib: str) -> None:
|
||||
cxx11_statically_linked_symbols = grep_symbols(
|
||||
lib, STATICALLY_LINKED_CXX11_ABI, symbol_type="T"
|
||||
)
|
||||
num_statically_linked_symbols = len(cxx11_statically_linked_symbols)
|
||||
print(f"num_statically_linked_symbols (T): {num_statically_linked_symbols}")
|
||||
if num_statically_linked_symbols > 0:
|
||||
raise RuntimeError(
|
||||
f"Found statically linked libstdc++ symbols (recursive_directory_iterator): {cxx11_statically_linked_symbols[:100]}"
|
||||
)
|
||||
|
||||
|
||||
def check_lib_symbols_for_abi_correctness(lib: str) -> None:
|
||||
print(f"lib: {lib}")
|
||||
cxx11_symbols = grep_symbols(lib, LIBTORCH_CXX11_PATTERNS)
|
||||
@ -127,7 +107,6 @@ def main() -> None:
|
||||
|
||||
libtorch_cpu_path = str(install_root / "lib" / "libtorch_cpu.so")
|
||||
check_lib_symbols_for_abi_correctness(libtorch_cpu_path)
|
||||
check_lib_statically_linked_libstdc_cxx_abi_symbols(libtorch_cpu_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -34,14 +34,12 @@ fi
|
||||
|
||||
|
||||
# Patch numba to avoid CUDA-13 crash, see https://github.com/pytorch/pytorch/issues/162878
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
|
||||
if [ -n "$NUMBA_CUDA_DIR" ]; then
|
||||
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
|
||||
pushd "$NUMBA_CUDA_DIR"
|
||||
patch -p4 <"$NUMBA_PATCH"
|
||||
popd
|
||||
fi
|
||||
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
|
||||
if [ -n "$NUMBA_CUDA_DIR" ]; then
|
||||
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
|
||||
pushd "$NUMBA_CUDA_DIR"
|
||||
patch -p4 <"$NUMBA_PATCH"
|
||||
popd
|
||||
fi
|
||||
|
||||
echo "Environment variables:"
|
||||
@ -337,13 +335,13 @@ test_python() {
|
||||
|
||||
test_python_smoke() {
|
||||
# Smoke tests for H100/B200
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_python_smoke_b200() {
|
||||
# Targeted smoke tests for B200 - staged approach to avoid too many failures
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
@ -838,7 +836,7 @@ test_dynamo_benchmark() {
|
||||
elif [[ "${suite}" == "timm_models" ]]; then
|
||||
export TORCHBENCH_ONLY_MODELS="inception_v3"
|
||||
elif [[ "${suite}" == "torchbench" ]]; then
|
||||
export TORCHBENCH_ONLY_MODELS="BERT_pytorch"
|
||||
export TORCHBENCH_ONLY_MODELS="hf_Bert"
|
||||
fi
|
||||
fi
|
||||
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
|
||||
@ -869,13 +867,13 @@ test_inductor_torchbench_smoketest_perf() {
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
|
||||
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only BERT_pytorch \
|
||||
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
|
||||
--output "$TEST_REPORTS_DIR/inductor_training_smoketest.csv"
|
||||
# The threshold value needs to be actively maintained to make this check useful
|
||||
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_training_smoketest.csv" -t 1.4
|
||||
|
||||
# Check memory compression ratio for a few models
|
||||
for test in BERT_pytorch yolov3; do
|
||||
for test in hf_Albert timm_vision_transformer; do
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --amp --training \
|
||||
--disable-cudagraphs --batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" \
|
||||
--only $test --output "$TEST_REPORTS_DIR/inductor_training_smoketest_$test.csv"
|
||||
@ -886,7 +884,7 @@ test_inductor_torchbench_smoketest_perf() {
|
||||
done
|
||||
|
||||
# Perform some "warm-start" runs for a few huggingface models.
|
||||
for test in AllenaiLongformerBase DistilBertForMaskedLM DistillGPT2 GoogleFnet YituTechConvBert; do
|
||||
for test in AlbertForQuestionAnswering AllenaiLongformerBase DistilBertForMaskedLM DistillGPT2 GoogleFnet YituTechConvBert; do
|
||||
python benchmarks/dynamo/huggingface.py --accuracy --training --amp --inductor --device cuda --warm-start-latency \
|
||||
--only $test --output "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv"
|
||||
python benchmarks/dynamo/check_accuracy.py \
|
||||
@ -1615,7 +1613,6 @@ test_operator_benchmark() {
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
TEST_DIR=$(pwd)
|
||||
ARCH=$(uname -m)
|
||||
|
||||
test_inductor_set_cpu_affinity
|
||||
|
||||
@ -1630,7 +1627,7 @@ test_operator_benchmark() {
|
||||
pip_install pandas
|
||||
python check_perf_csv.py \
|
||||
--actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
|
||||
--expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
}
|
||||
|
||||
test_operator_microbenchmark() {
|
||||
|
@ -15,35 +15,37 @@ if errorlevel 1 exit /b 1
|
||||
if not errorlevel 0 exit /b 1
|
||||
|
||||
cd %TMP_DIR_WIN%\build\torch\test
|
||||
|
||||
:: Enable delayed variable expansion to make the list
|
||||
setlocal enabledelayedexpansion
|
||||
set EXE_LIST=
|
||||
for /r "." %%a in (*.exe) do (
|
||||
if "%%~na" == "c10_intrusive_ptr_benchmark" (
|
||||
@REM NB: This is not a gtest executable file, thus couldn't be handled by
|
||||
@REM pytest-cpp and is excluded from test discovery by run_test
|
||||
call "%%~fa"
|
||||
call :libtorch_check "%%~na" "%%~fa"
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
) else (
|
||||
if "%%~na" == "verify_api_visibility" (
|
||||
@REM Skip verify_api_visibility as it is a compile-level test
|
||||
) else (
|
||||
set EXE_LIST=!EXE_LIST! cpp/%%~na
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
goto :eof
|
||||
|
||||
:libtorch_check
|
||||
|
||||
cd %CWD%
|
||||
set CPP_TESTS_DIR=%TMP_DIR_WIN%\build\torch\test
|
||||
|
||||
:: Run python test\run_test.py on the list
|
||||
set NO_TD=True && python test\run_test.py --cpp --verbose -i !EXE_LIST!
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
:: Skip verify_api_visibility as it a compile level test
|
||||
if "%~1" == "verify_api_visibility" goto :eof
|
||||
|
||||
goto :eof
|
||||
echo Running "%~2"
|
||||
if "%~1" == "c10_intrusive_ptr_benchmark" (
|
||||
:: NB: This is not a gtest executable file, thus couldn't be handled by pytest-cpp
|
||||
call "%~2"
|
||||
goto :eof
|
||||
)
|
||||
|
||||
python test\run_test.py --cpp --verbose -i "cpp/%~1"
|
||||
if errorlevel 1 (
|
||||
echo %1 failed with exit code %errorlevel%
|
||||
goto fail
|
||||
)
|
||||
if not errorlevel 0 (
|
||||
echo %1 failed with exit code %errorlevel%
|
||||
goto fail
|
||||
)
|
||||
|
||||
:eof
|
||||
exit /b 0
|
||||
|
@ -38,7 +38,7 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
fi
|
||||
|
||||
# TODO: Move this to .ci/docker/requirements-ci.txt
|
||||
python -m pip install "psutil==5.9.1" nvidia-ml-py "pytest-shard==0.1.2"
|
||||
python -m pip install "psutil==5.9.1" "pynvml==11.4.1" "pytest-shard==0.1.2"
|
||||
|
||||
run_tests() {
|
||||
# Run nvidia-smi if available
|
||||
|
@ -37,10 +37,10 @@ IF "%CUDA_PATH_V128%"=="" (
|
||||
)
|
||||
|
||||
IF "%BUILD_VISION%" == "" (
|
||||
set TORCH_CUDA_ARCH_LIST=7.0;7.5;8.0;8.6;9.0;10.0;12.0
|
||||
set TORCH_CUDA_ARCH_LIST=6.1;7.0;7.5;8.0;8.6;9.0;10.0;12.0
|
||||
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
|
||||
) ELSE (
|
||||
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
|
||||
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
|
||||
)
|
||||
|
||||
set "CUDA_PATH=%CUDA_PATH_V128%"
|
||||
|
@ -71,7 +71,14 @@ export PYTORCH_BUILD_NUMBER=1
|
||||
|
||||
# Set triton version as part of PYTORCH_EXTRA_INSTALL_REQUIREMENTS
|
||||
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
|
||||
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
|
||||
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
|
||||
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
fi
|
||||
|
||||
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" && ! "$PYTORCH_BUILD_VERSION" =~ .*xpu.* ]]; then
|
||||
TRITON_REQUIREMENT="triton==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"
|
||||
|
@ -59,14 +59,13 @@ performance-*,
|
||||
-performance-enum-size,
|
||||
readability-container-size-empty,
|
||||
readability-delete-null-pointer,
|
||||
readability-duplicate-include,
|
||||
readability-duplicate-include
|
||||
readability-misplaced-array-index,
|
||||
readability-redundant*,
|
||||
readability-redundant*
|
||||
readability-simplify-subscript-expr,
|
||||
readability-string-compare,
|
||||
-readability-redundant-access-specifiers,
|
||||
-readability-redundant-control-flow,
|
||||
-readability-redundant-inline-specifier,
|
||||
'
|
||||
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
|
||||
WarningsAsErrors: '*'
|
||||
|
2
.flake8
2
.flake8
@ -12,7 +12,7 @@ ignore =
|
||||
# to line this up with executable bit
|
||||
EXE001,
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
|
||||
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907,B908,B910
|
||||
# these ignores are from flake8-comprehensions; please fix!
|
||||
C407,
|
||||
# these ignores are from flake8-logging-format; please fix!
|
||||
|
1
.github/ISSUE_TEMPLATE/ci-sev.md
vendored
1
.github/ISSUE_TEMPLATE/ci-sev.md
vendored
@ -8,7 +8,6 @@ assignees: ''
|
||||
---
|
||||
|
||||
> NOTE: Remember to label this issue with "`ci: sev`"
|
||||
> If you want autorevert to be disabled, keep the ci: disable-autorevert label
|
||||
|
||||
<!-- Add the `merge blocking` label to this PR to prevent PRs from being merged while this issue is open -->
|
||||
|
||||
|
4
.github/ISSUE_TEMPLATE/disable-autorevert.md
vendored
4
.github/ISSUE_TEMPLATE/disable-autorevert.md
vendored
@ -1,7 +1,7 @@
|
||||
---
|
||||
name: "D❌\U0001F519 ISABLE AUTOREVERT"
|
||||
name: DISABLE AUTOREVERT
|
||||
about: Disables autorevert when open
|
||||
title: "[DISABLE AUTOREVERT]"
|
||||
title: "❌\U0001F519 [DISABLE AUTOREVERT]"
|
||||
labels: 'ci: disable-autorevert'
|
||||
assignees: ''
|
||||
|
||||
|
@ -65,7 +65,7 @@ runs:
|
||||
cd .ci/lumen_cli
|
||||
python3 -m pip install -e .
|
||||
)
|
||||
MAX_JOBS="$(nproc --ignore=10)"
|
||||
MAX_JOBS="$(nproc --ignore=6)"
|
||||
export MAX_JOBS
|
||||
|
||||
# Split the comma-separated list and build each target
|
||||
|
2
.github/actions/linux-test/action.yml
vendored
2
.github/actions/linux-test/action.yml
vendored
@ -274,6 +274,8 @@ runs:
|
||||
-w /var/lib/jenkins/workspace \
|
||||
"${DOCKER_IMAGE}"
|
||||
)
|
||||
# Propagate download.pytorch.org IP to container
|
||||
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts"
|
||||
echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}"
|
||||
docker exec -t "${container_name}" sh -c "pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}"
|
||||
|
||||
|
35
.github/actions/setup-linux/action.yml
vendored
35
.github/actions/setup-linux/action.yml
vendored
@ -28,10 +28,6 @@ runs:
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
|
||||
- name: Print GPU info (if present)
|
||||
shell: bash
|
||||
run: if [ -f /usr/bin/nvidia-smi ]; then nvidia-smi; fi
|
||||
|
||||
- name: Check if in a container runner
|
||||
shell: bash
|
||||
id: check_container_runner
|
||||
@ -86,6 +82,37 @@ runs:
|
||||
# Prune all of the docker images
|
||||
docker system prune -af
|
||||
|
||||
- name: Manually resolve download.pytorch.org
|
||||
shell: bash
|
||||
continue-on-error: true
|
||||
run: |
|
||||
set +e
|
||||
set -x
|
||||
|
||||
PT_DOMAIN=download.pytorch.org
|
||||
# TODO: Flaky access to download.pytorch.org https://github.com/pytorch/pytorch/issues/100400,
|
||||
# cleaning this up once the issue is fixed. There are more than one resolved IP here, the last
|
||||
# one is returned at random
|
||||
RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" | tail -n1)
|
||||
|
||||
if [ -z "${RESOLVED_IP}" ]; then
|
||||
echo "Couldn't resolve ${PT_DOMAIN}, retrying with Google DNS..."
|
||||
RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" @8.8.8.8 | tail -n1)
|
||||
|
||||
if [ -z "${RESOLVED_IP}" ]; then
|
||||
echo "Couldn't resolve ${PT_DOMAIN}, exiting..."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if grep -r "${PT_DOMAIN}" /etc/hosts; then
|
||||
# Clean up any old records first
|
||||
sudo sed -i "/${PT_DOMAIN}/d" /etc/hosts
|
||||
fi
|
||||
|
||||
echo "${RESOLVED_IP} ${PT_DOMAIN}" | sudo tee -a /etc/hosts
|
||||
cat /etc/hosts
|
||||
|
||||
- name: Check that the docker daemon is running
|
||||
shell: bash
|
||||
continue-on-error: true
|
||||
|
13
.github/actions/setup-rocm/action.yml
vendored
13
.github/actions/setup-rocm/action.yml
vendored
@ -111,16 +111,3 @@ runs:
|
||||
# This video group ID maps to subgid 1 inside the docker image due to the /etc/subgid entries.
|
||||
# The group name corresponding to group ID 1 can change depending on the OS, so both are necessary.
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd $DEVICE_FLAG --group-add video --group-add $render_gid --group-add daemon --group-add bin --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --network=host" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
@ -33,6 +33,10 @@ runs:
|
||||
)
|
||||
|
||||
echo "CONTAINER_NAME=${container_name}" >> "$GITHUB_ENV"
|
||||
if [[ "${GPU_ARCH_TYPE}" != "rocm" && "${BUILD_ENVIRONMENT}" != "linux-aarch64-binary-manywheel" && "${BUILD_ENVIRONMENT}" != "linux-s390x-binary-manywheel" && "${GPU_ARCH_TYPE}" != "xpu" ]]; then
|
||||
# Propagate download.pytorch.org IP to container. This is only needed on Linux non aarch64 runner
|
||||
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" bash -c "/bin/cat >> /etc/hosts"
|
||||
fi
|
||||
|
||||
docker exec -t -w "${PYTORCH_ROOT}" "${container_name}" bash -c "bash .circleci/scripts/binary_populate_env.sh"
|
||||
# Generate test script
|
||||
|
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
1b013f5b5a87a1882eb143c26d79d091150d6a37
|
||||
87ff22e49ed0e92576c4935ccb8c143daac4a3cd
|
||||
|
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
faffd5cf673615583da6517275e361cb3dbc77e6
|
||||
966da7e46f65d6d49df3e31214470a4fe5cc8e66
|
||||
|
2
.github/ci_commit_pins/vllm.txt
vendored
2
.github/ci_commit_pins/vllm.txt
vendored
@ -1 +1 @@
|
||||
e5192819208c4d68194844b7dfafbc00020d0dea
|
||||
78a47f87ce259a48f0391fa9ae15add05ea7432b
|
||||
|
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
0fa6e3129e61143224663e1ec67980d12b7ec4eb
|
||||
0fc62aa26a30ed7ca419d285f285cb5ba02c4394
|
||||
|
@ -1,41 +1,59 @@
|
||||
# TODO(elainwy): remove this file after the torch nightly dockerfile is in sync in vllm repo
|
||||
# The vLLM Dockerfile is used to construct vLLM image against torch nightly and torch main that can be directly used for testing
|
||||
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
|
||||
# BUILD_BASE_IMAGE: used to setup python build xformers, and vllm wheels, It can be replaced with a different base image from local machine,
|
||||
# by default, it uses the torch-nightly-base stage from this docker image
|
||||
ARG BUILD_BASE_IMAGE=torch-nightly-base
|
||||
|
||||
# FINAL_BASE_IMAGE: used to set up vllm-instaled environment and build flashinfer,
|
||||
# by default, it uses devel-ubuntu22.04 official image.
|
||||
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
|
||||
# The logic is copied from https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile
|
||||
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
|
||||
|
||||
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
# A base image for building vLLM with devel ubuntu 22.04, this is mainly used to build vllm in vllm builtkite ci
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Install system dependencies and uv, then create Python virtual environment
|
||||
# Install Python and other dependencies
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
|
||||
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
||||
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
||||
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
||||
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
||||
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
||||
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
|
||||
&& add-apt-repository -y ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
RUN apt-get install -y gcc-10 g++-10
|
||||
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
|
||||
RUN <<EOF
|
||||
gcc --version
|
||||
EOF
|
||||
# Ensure gcc >= 10 to avoid CUTLASS issues (bug 92519)
|
||||
RUN current_gcc_version=$(gcc -dumpversion | cut -f1 -d.) && \
|
||||
if command -v apt-get >/dev/null; then \
|
||||
if [ "$current_gcc_version" -lt 10 ]; then \
|
||||
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
|
||||
apt-get update \
|
||||
&& apt-get install -y gcc-10 g++-10 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 \
|
||||
&& update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
|
||||
else \
|
||||
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
|
||||
fi \
|
||||
fi \
|
||||
&& gcc --version && g++ --version
|
||||
|
||||
# Install uv for faster pip installs
|
||||
# install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv==0.8.4
|
||||
|
||||
@ -43,32 +61,36 @@ ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# A base image for building vLLM with torch nightly or torch wheels
|
||||
# prepare basic build environment
|
||||
FROM ${BUILD_BASE_IMAGE} AS base
|
||||
USER root
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
|
||||
# Only work with PyTorch manylinux builder
|
||||
# TODO (huydhn): Only work with PyTorch manylinux builder
|
||||
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
|
||||
|
||||
# Install some system dependencies and double check python version
|
||||
RUN if command -v apt-get >/dev/null; then \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git wget sudo vim; \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim; \
|
||||
else \
|
||||
dnf install -y git wget sudo; \
|
||||
dnf install -y git curl wget sudo; \
|
||||
fi \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv==0.8.4
|
||||
|
||||
if ! python3 -m uv --version >/dev/null 2>&1; then \
|
||||
python3 -m pip install uv==0.8.4; \
|
||||
fi
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
@ -76,15 +98,15 @@ ENV UV_LINK_MODE=copy
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
# Install build and runtime dependencies
|
||||
# install build and runtime dependencies
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
COPY pyproject.toml pyproject.toml
|
||||
|
||||
# Install build and runtime dependencies without stable torch version
|
||||
# install build and runtime dependencies without stable torch version
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
# Default mount file as placeholder, this just avoid the mount error
|
||||
# default mount file as placeholder, this just avoid the mount error
|
||||
# change to a different vllm folder if this does not exist anymore
|
||||
ARG TORCH_WHEELS_PATH="./requirements"
|
||||
ARG PINNED_TORCH_VERSION
|
||||
@ -116,36 +138,56 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
|
||||
# Must put before installing xformers, so it can install the correct version of xfomrers.
|
||||
ARG xformers_cuda_arch_list='7.5;8.0+PTX;9.0a'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${xformers_cuda_arch_list}
|
||||
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
|
||||
git clone https://github.com/facebookresearch/xformers.git
|
||||
RUN echo ${TORCH_CUDA_ARCH_LIST}
|
||||
RUN echo ${MAX_JOBS}
|
||||
RUN pip freeze | grep -E 'ninja'
|
||||
|
||||
pushd xformers
|
||||
git checkout v0.0.32.post2
|
||||
git submodule update --init --recursive
|
||||
python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose
|
||||
popd
|
||||
# Build xformers with cuda and torch nightly/wheel
|
||||
# following official xformers guidance: https://github.com/facebookresearch/xformers#build
|
||||
# sha for https://github.com/facebookresearch/xformers/tree/v0.0.32.post2
|
||||
ARG XFORMERS_COMMIT=5d4b92a5e5a9c6c6d4878283f47d82e17995b468
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
rm -rf xformers
|
||||
BASH
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
echo 'git clone xformers...' \
|
||||
&& git clone https://github.com/facebookresearch/xformers.git --recursive \
|
||||
&& cd xformers \
|
||||
&& git checkout ${XFORMERS_COMMIT} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& echo 'finish git clone xformers...' \
|
||||
&& rm -rf build \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose \
|
||||
&& cd .. \
|
||||
&& rm -rf xformers
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system xformers-dist/*.whl
|
||||
uv pip install --system xformers-dist/*.whl --verbose
|
||||
|
||||
# Build can take a long time, and the torch nightly version fetched from url can be different in next docker stage.
|
||||
# track the nightly torch version used in the build, when we set up runtime environment we can make sure the version is the same
|
||||
RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio' > torch_build_versions.txt
|
||||
|
||||
RUN cat torch_build_versions.txt
|
||||
RUN pip freeze | grep -E 'torch|xformers|torchvision|torchaudio'
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
# Image used to build vllm wheel
|
||||
FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
@ -155,17 +197,20 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Max jobs used by Ninja to build extensions
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
ARG nvcc_threads=8
|
||||
ARG nvcc_threads=4
|
||||
ENV NVCC_THREADS=$nvcc_threads
|
||||
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
ARG USE_SCCACHE
|
||||
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
|
||||
# Use sccache to speed up compilation
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
@ -190,9 +235,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
&& sccache --show-stats; \
|
||||
fi
|
||||
|
||||
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
ARG vllm_target_device="cuda"
|
||||
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
@ -206,10 +248,17 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
export VLLM_DOCKER_BUILD_CONTEXT=1 && \
|
||||
python3 setup.py bdist_wheel --dist-dir=vllm-dist --py-limited-api=cp38; \
|
||||
fi
|
||||
|
||||
RUN echo "[INFO] Listing current directory:" && \
|
||||
ls -al && \
|
||||
echo "[INFO] Showing torch_build_versions.txt content:" && \
|
||||
cat torch_build_versions.txt
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
|
||||
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
# Setup clean environment for vLLM for test and api server using ubuntu22.04 with AOT flashinfer
|
||||
FROM ${FINAL_BASE_IMAGE} AS vllm-base
|
||||
USER root
|
||||
|
||||
@ -217,7 +266,7 @@ ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Only work with PyTorch manylinux builder
|
||||
# TODO (huydhn): Only work with PyTorch manylinux builder
|
||||
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
|
||||
|
||||
# prepare for environment starts
|
||||
@ -226,19 +275,20 @@ WORKDIR /workspace
|
||||
# Install Python and other dependencies
|
||||
RUN if command -v apt-get >/dev/null; then \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git sudo vim python3-pip; \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
|
||||
&& add-apt-repository -y ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION}; \
|
||||
else \
|
||||
dnf install -y git wget sudo; \
|
||||
dnf install -y git curl wget sudo; \
|
||||
fi \
|
||||
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
||||
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
||||
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
||||
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
||||
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
||||
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Get the torch versions, and whls used in previous stage
|
||||
# Get the torch versions, and whls used in previous stagtes for consistency
|
||||
COPY --from=base /workspace/torch_build_versions.txt ./torch_build_versions.txt
|
||||
COPY --from=base /workspace/xformers-dist /wheels/xformers
|
||||
COPY --from=build /workspace/vllm-dist /wheels/vllm
|
||||
@ -249,27 +299,19 @@ RUN echo "[INFO] Listing current directory before torch install step:" && \
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv==0.8.4
|
||||
|
||||
if ! python3 -m uv --version > /dev/null 2>&1; then \
|
||||
python3 -m pip install uv==0.8.4; \
|
||||
fi
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
# Install build and runtime dependencies, this is needed for flashinfer install
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
RUN python3 use_existing_torch.py
|
||||
RUN cat requirements/build.txt
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
# Default mount file as placeholder, this just avoid the mount error
|
||||
ARG TORCH_WHEELS_PATH="./requirements"
|
||||
# Install torch, torchaudio and torchvision. If TORCH_WHEELS_PATH is default
|
||||
# to ./requirements, it will pull the nightly versions using pip. Otherwise,
|
||||
# it will use the local wheels from TORCH_WHEELS_PATH
|
||||
# Install torch, torchaudio and torchvision
|
||||
# if TORCH_WHEELS_PATH is default "./requirements", it will pull the nightly versions using pip using torch_build_versions.txt
|
||||
# otherwise, it will use the whls from TORCH_WHEELS_PATH from the host machine
|
||||
RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
|
||||
@ -291,13 +333,19 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/xformers/*.whl --verbose
|
||||
|
||||
# Build FlashInfer from source
|
||||
# Build flashinfer from source.
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
# install package for build flashinfer
|
||||
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
|
||||
|
||||
RUN pip install build==1.3.0
|
||||
RUN pip freeze | grep -E 'setuptools|packaging|build'
|
||||
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
# Build flashinfer for torch nightly from source around 10 mins
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
# Keep this in sync with https://github.com/vllm-project/vllm/blob/main/requirements/cuda.txt
|
||||
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
@ -309,7 +357,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
&& cd .. \
|
||||
&& rm -rf flashinfer
|
||||
|
||||
# Install FlashInfer
|
||||
# install flashinfer python
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system wheels/flashinfer/*.whl --verbose
|
||||
|
||||
@ -319,6 +367,49 @@ RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio\|^xformers\|^vllm
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
FROM vllm-base as test
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
COPY tests/ tests/
|
||||
COPY examples examples
|
||||
COPY benchmarks benchmarks
|
||||
COPY ./vllm/collect_env.py .
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
COPY pyproject.toml pyproject.toml
|
||||
# Install build and runtime dependencies without stable torch version
|
||||
COPY requirements/nightly_torch_test.txt requirements/nightly_torch_test.txt
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
# install packages
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
# enable fast downloads from hf (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system hf_transfer
|
||||
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -e tests/vllm_test_utils
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/nightly_torch_test.txt
|
||||
|
||||
# Logging to confirm the torch versions
|
||||
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
|
||||
|
||||
# Logging to confirm all the packages are installed
|
||||
RUN pip freeze
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
|
||||
#################### EXPORT STAGE ####################
|
||||
FROM scratch as export-wheels
|
||||
|
@ -1,14 +1,9 @@
|
||||
import glob
|
||||
import os
|
||||
|
||||
|
||||
requires_files = glob.glob("requirements/*.txt")
|
||||
requires_files += ["pyproject.toml"]
|
||||
|
||||
for file in requires_files:
|
||||
if not os.path.exists(file):
|
||||
print(f"!!! skipping missing {file}")
|
||||
continue
|
||||
print(f">>> cleaning {file}")
|
||||
with open(file) as f:
|
||||
lines = f.readlines()
|
||||
|
4
.github/pytorch-probot.yml
vendored
4
.github/pytorch-probot.yml
vendored
@ -15,8 +15,7 @@ ciflow_push_tags:
|
||||
- ciflow/inductor-micro-benchmark
|
||||
- ciflow/inductor-micro-benchmark-cpu-x86
|
||||
- ciflow/inductor-perf-compare
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi300
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi355
|
||||
- ciflow/inductor-perf-test-nightly-rocm
|
||||
- ciflow/inductor-perf-test-nightly-x86-zen
|
||||
- ciflow/inductor-periodic
|
||||
- ciflow/inductor-rocm
|
||||
@ -31,7 +30,6 @@ ciflow_push_tags:
|
||||
- ciflow/riscv64
|
||||
- ciflow/rocm
|
||||
- ciflow/rocm-mi300
|
||||
- ciflow/rocm-mi355
|
||||
- ciflow/s390
|
||||
- ciflow/slow
|
||||
- ciflow/torchbench
|
||||
|
BIN
.github/scripts/drci_mocks.json.gz
vendored
BIN
.github/scripts/drci_mocks.json.gz
vendored
Binary file not shown.
2
.github/scripts/filter_test_configs.py
vendored
2
.github/scripts/filter_test_configs.py
vendored
@ -512,8 +512,6 @@ def perform_misc_tasks(
|
||||
"keep-going",
|
||||
branch == MAIN_BRANCH
|
||||
or bool(tag and re.match(r"^trunk/[a-f0-9]{40}$", tag))
|
||||
# Pattern for tags created via manual run on HUD
|
||||
or bool(tag and re.match(r"^ciflow/[^/]+/[a-f0-9]{40}$", tag))
|
||||
or check_for_setting(labels, pr_body, "keep-going"),
|
||||
)
|
||||
set_output(
|
||||
|
40
.github/scripts/generate_binary_build_matrix.py
vendored
40
.github/scripts/generate_binary_build_matrix.py
vendored
@ -16,18 +16,16 @@ from typing import Optional
|
||||
|
||||
|
||||
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
|
||||
CUDA_ARCHES = ["12.6", "12.8", "13.0"]
|
||||
CUDA_STABLE = "12.8"
|
||||
CUDA_ARCHES_FULL_VERSION = {
|
||||
"12.6": "12.6.3",
|
||||
"12.8": "12.8.1",
|
||||
"12.9": "12.9.1",
|
||||
"13.0": "13.0.0",
|
||||
}
|
||||
CUDA_ARCHES_CUDNN_VERSION = {
|
||||
"12.6": "9",
|
||||
"12.8": "9",
|
||||
"12.9": "9",
|
||||
"13.0": "9",
|
||||
}
|
||||
|
||||
@ -40,7 +38,7 @@ CPU_AARCH64_ARCH = ["cpu-aarch64"]
|
||||
|
||||
CPU_S390X_ARCH = ["cpu-s390x"]
|
||||
|
||||
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "12.9-aarch64", "13.0-aarch64"]
|
||||
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "13.0-aarch64"]
|
||||
|
||||
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
@ -78,23 +76,6 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
|
||||
),
|
||||
"12.9": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"13.0": (
|
||||
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | "
|
||||
@ -106,7 +87,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "
|
||||
@ -241,11 +222,7 @@ def generate_libtorch_matrix(
|
||||
arches += CUDA_ARCHES
|
||||
arches += ROCM_ARCHES
|
||||
elif os == "windows":
|
||||
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
|
||||
# in 2.10
|
||||
windows_cuda_arches = CUDA_ARCHES.copy()
|
||||
windows_cuda_arches.remove("12.9")
|
||||
arches += windows_cuda_arches
|
||||
arches += CUDA_ARCHES
|
||||
if libtorch_variants is None:
|
||||
libtorch_variants = [
|
||||
"shared-with-deps",
|
||||
@ -309,11 +286,7 @@ def generate_wheels_matrix(
|
||||
if os == "linux":
|
||||
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
|
||||
elif os == "windows":
|
||||
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
|
||||
# in 2.10
|
||||
windows_cuda_arches = CUDA_ARCHES.copy()
|
||||
windows_cuda_arches.remove("12.9")
|
||||
arches += windows_cuda_arches + XPU_ARCHES
|
||||
arches += CUDA_ARCHES + XPU_ARCHES
|
||||
elif os == "linux-aarch64":
|
||||
# Separate new if as the CPU type is different and
|
||||
# uses different build/test scripts
|
||||
@ -349,7 +322,7 @@ def generate_wheels_matrix(
|
||||
# cuda linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
|
||||
|
||||
if (
|
||||
arch_version in ["13.0", "12.9", "12.8", "12.6"]
|
||||
arch_version in ["13.0", "12.8", "12.6"]
|
||||
and os == "linux"
|
||||
or arch_version in CUDA_AARCH64_ARCHES
|
||||
):
|
||||
@ -413,6 +386,5 @@ def generate_wheels_matrix(
|
||||
|
||||
|
||||
validate_nccl_dep_consistency("13.0")
|
||||
validate_nccl_dep_consistency("12.9")
|
||||
validate_nccl_dep_consistency("12.8")
|
||||
validate_nccl_dep_consistency("12.6")
|
||||
|
1
.github/scripts/github_utils.py
vendored
1
.github/scripts/github_utils.py
vendored
@ -18,7 +18,6 @@ class GitHubComment:
|
||||
body_text: str
|
||||
created_at: str
|
||||
author_login: str
|
||||
author_url: Optional[str]
|
||||
author_association: str
|
||||
editor_login: Optional[str]
|
||||
database_id: int
|
||||
|
BIN
.github/scripts/gql_mocks.json.gz
vendored
BIN
.github/scripts/gql_mocks.json.gz
vendored
Binary file not shown.
2
.github/scripts/test_check_labels.py
vendored
2
.github/scripts/test_check_labels.py
vendored
@ -38,7 +38,6 @@ def mock_get_comments() -> list[GitHubComment]:
|
||||
body_text="mock_body_text",
|
||||
created_at="",
|
||||
author_login="",
|
||||
author_url=None,
|
||||
author_association="",
|
||||
editor_login=None,
|
||||
database_id=1,
|
||||
@ -49,7 +48,6 @@ def mock_get_comments() -> list[GitHubComment]:
|
||||
body_text=" #" + LABEL_ERR_MSG_TITLE.replace("`", ""),
|
||||
created_at="",
|
||||
author_login=BOT_AUTHORS[1],
|
||||
author_url=None,
|
||||
author_association="",
|
||||
editor_login=None,
|
||||
database_id=2,
|
||||
|
18
.github/scripts/test_trymerge.py
vendored
18
.github/scripts/test_trymerge.py
vendored
@ -32,7 +32,6 @@ from trymerge import (
|
||||
main as trymerge_main,
|
||||
MandatoryChecksMissingError,
|
||||
MergeRule,
|
||||
PostCommentError,
|
||||
RE_GHSTACK_DESC,
|
||||
read_merge_rules,
|
||||
remove_job_name_suffix,
|
||||
@ -589,23 +588,6 @@ class TestTryMerge(TestCase):
|
||||
self.assertEqual(mock_merge_base, pr.get_merge_base())
|
||||
mocked_gh_fetch_merge_base.assert_called_once()
|
||||
|
||||
def test_app_can_revert(self, *args: Any) -> None:
|
||||
pr = GitHubPR("pytorch", "pytorch", 164660)
|
||||
repo = DummyGitRepo()
|
||||
app_comment_id, impostor_comment_id = 3375785595, 3377647892
|
||||
# Check that app can revert
|
||||
self.assertIsNotNone(validate_revert(repo, pr, comment_id=app_comment_id))
|
||||
# But impostor can not
|
||||
self.assertRaises(
|
||||
PostCommentError,
|
||||
lambda: validate_revert(repo, pr, comment_id=impostor_comment_id),
|
||||
)
|
||||
# Despite it's name being the name of the bot
|
||||
self.assertEqual(
|
||||
pr.get_comment_by_id(impostor_comment_id).author_login,
|
||||
"pytorch-auto-revert",
|
||||
)
|
||||
|
||||
|
||||
@mock.patch("trymerge.gh_graphql", side_effect=mocked_gh_graphql)
|
||||
@mock.patch("trymerge.gh_fetch_merge_base", return_value="")
|
||||
|
11
.github/scripts/trymerge.py
vendored
11
.github/scripts/trymerge.py
vendored
@ -234,7 +234,6 @@ query ($owner: String!, $name: String!, $number: Int!) {
|
||||
createdAt
|
||||
author {
|
||||
login
|
||||
url
|
||||
}
|
||||
authorAssociation
|
||||
editor {
|
||||
@ -1094,7 +1093,6 @@ class GitHubPR:
|
||||
body_text=node["bodyText"],
|
||||
created_at=node["createdAt"] if "createdAt" in node else "",
|
||||
author_login=node["author"]["login"],
|
||||
author_url=node["author"].get("url", None),
|
||||
author_association=node["authorAssociation"],
|
||||
editor_login=editor["login"] if editor else None,
|
||||
database_id=node["databaseId"],
|
||||
@ -2031,17 +2029,16 @@ def validate_revert(
|
||||
# For some reason, one can not be a member of private repo, only CONTRIBUTOR
|
||||
if pr.is_base_repo_private():
|
||||
allowed_reverters.append("CONTRIBUTOR")
|
||||
# Special case the pytorch-auto-revert app, whose does not have association
|
||||
# But should be able to issue revert command
|
||||
if comment.author_url == "https://github.com/apps/pytorch-auto-revert":
|
||||
allowed_reverters.append("NONE")
|
||||
|
||||
if author_association not in allowed_reverters:
|
||||
raise PostCommentError(
|
||||
f"Will not revert as @{author_login} is not one of "
|
||||
f"[{', '.join(allowed_reverters)}], but instead is {author_association}."
|
||||
)
|
||||
|
||||
# Raises exception if matching rule is not found, but ignores all status checks
|
||||
find_matching_merge_rule(
|
||||
pr, repo, skip_mandatory_checks=True, skip_internal_checks=True
|
||||
)
|
||||
commit_sha = get_pr_commit_sha(repo, pr)
|
||||
return (author_login, commit_sha)
|
||||
|
||||
|
@ -177,9 +177,6 @@ jobs:
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: !{{ common.timeout_minutes }}
|
||||
!{{ upload.binary_env(config) }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
|
2
.github/workflows/_docs.yml
vendored
2
.github/workflows/_docs.yml
vendored
@ -72,7 +72,7 @@ jobs:
|
||||
# Let's try to figure out how this can be improved
|
||||
timeout-minutes: 360
|
||||
- docs_type: python
|
||||
runner: ${{ inputs.runner_prefix }}linux.c7i.2xlarge
|
||||
runner: ${{ inputs.runner_prefix }}linux.2xlarge
|
||||
# It takes less than 30m to finish python docs unless there are issues
|
||||
timeout-minutes: 30
|
||||
# Set a fixed name for this job instead of using the current matrix-generated name, i.e. build-docs (cpp, linux.12xlarge, 180)
|
||||
|
9
.github/workflows/_get-changed-files.yml
vendored
9
.github/workflows/_get-changed-files.yml
vendored
@ -40,15 +40,6 @@ jobs:
|
||||
# Use gh CLI to get changed files in the PR with explicit repo
|
||||
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
|
||||
|
||||
# See https://github.com/pytorch/pytorch/pull/134215#issuecomment-2332128790
|
||||
PYI_FILES_TO_ADD=""
|
||||
for file in ${CHANGED_FILES}; do
|
||||
if [[ "${file}" == *".pyi.in" ]]; then
|
||||
PYI_FILES_TO_ADD="${PYI_FILES_TO_ADD} ${file//.in/}"
|
||||
fi
|
||||
done
|
||||
CHANGED_FILES="${CHANGED_FILES}${PYI_FILES_TO_ADD}"
|
||||
|
||||
if [ -z "$CHANGED_FILES" ]; then
|
||||
echo "No changed files found, setting to '*'"
|
||||
CHANGED_FILES="*"
|
||||
|
2
.github/workflows/_linux-build.yml
vendored
2
.github/workflows/_linux-build.yml
vendored
@ -37,7 +37,7 @@ on:
|
||||
runner:
|
||||
required: false
|
||||
type: string
|
||||
default: "linux.c7i.2xlarge"
|
||||
default: "linux.2xlarge"
|
||||
description: |
|
||||
Label of the runner this job should run on.
|
||||
test-matrix:
|
||||
|
2
.github/workflows/_linux-test.yml
vendored
2
.github/workflows/_linux-test.yml
vendored
@ -389,6 +389,8 @@ jobs:
|
||||
"${DOCKER_IMAGE}" \
|
||||
${DOCKER_SHELL_CMD}
|
||||
)
|
||||
# Propagate download.pytorch.org IP to container
|
||||
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts"
|
||||
echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}"
|
||||
|
||||
if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then
|
||||
|
13
.github/workflows/_rocm-test.yml
vendored
13
.github/workflows/_rocm-test.yml
vendored
@ -102,6 +102,19 @@ jobs:
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
|
4
.github/workflows/build-manywheel-images.yml
vendored
4
.github/workflows/build-manywheel-images.yml
vendored
@ -46,12 +46,10 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include: [
|
||||
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda12.8", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda12.9", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda12.6", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
|
||||
|
19
.github/workflows/build-vllm-wheel.yml
vendored
19
.github/workflows/build-vllm-wheel.yml
vendored
@ -27,8 +27,9 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: [ '3.12' ]
|
||||
# TODO (huydhn): Add cu130 after https://github.com/vllm-project/vllm/issues/24464 is resolved
|
||||
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
|
||||
device: [ 'cu128', 'cu129', 'cu130' ]
|
||||
device: [ 'cu128', 'cu129' ]
|
||||
include:
|
||||
- platform: manylinux_2_28_x86_64
|
||||
device: cu128
|
||||
@ -38,10 +39,6 @@ jobs:
|
||||
device: cu129
|
||||
manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.9'
|
||||
runner: linux.12xlarge.memory
|
||||
- platform: manylinux_2_28_x86_64
|
||||
device: cu130
|
||||
manylinux-image: 'pytorch/manylinux2_28-builder:cuda13.0'
|
||||
runner: linux.12xlarge.memory
|
||||
- platform: manylinux_2_28_aarch64
|
||||
device: cu128
|
||||
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.8'
|
||||
@ -50,11 +47,6 @@ jobs:
|
||||
device: cu129
|
||||
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.9'
|
||||
runner: linux.arm64.r7g.12xlarge.memory
|
||||
exclude:
|
||||
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
|
||||
# xformers is update to support 13.0
|
||||
- platform: manylinux_2_28_aarch64
|
||||
device: cu130
|
||||
name: "Build ${{ matrix.device }} vLLM wheel on ${{ matrix.platform }}"
|
||||
runs-on: ${{ matrix.runner }}
|
||||
timeout-minutes: 480
|
||||
@ -177,12 +169,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
|
||||
device: [ 'cu128', 'cu129', 'cu130' ]
|
||||
exclude:
|
||||
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
|
||||
# xformers is update to support 13.0
|
||||
- platform: manylinux_2_28_aarch64
|
||||
device: cu130
|
||||
device: [ 'cu128', 'cu129' ]
|
||||
env:
|
||||
PLATFORM: ${{ matrix.platform }}
|
||||
BUILD_DEVICE: ${{ matrix.device }}
|
||||
|
336
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
336
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -204,52 +204,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_10-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -270,7 +224,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -453,52 +407,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_11-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -519,7 +427,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -702,52 +610,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_12-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -768,7 +630,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -951,52 +813,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1017,7 +833,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1200,52 +1016,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13t-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1266,7 +1036,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1449,52 +1219,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1515,7 +1239,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1698,52 +1422,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14t-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1764,7 +1442,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
74
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
74
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
@ -248,74 +248,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-cuda13_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -426,9 +358,6 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -544,9 +473,6 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
|
518
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
518
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
@ -241,72 +241,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_10-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_10-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -325,7 +259,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda13_0-test: # Testing
|
||||
@ -413,9 +347,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.10"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -528,9 +459,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.10"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -907,72 +835,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_11-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_11-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -991,7 +853,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda13_0-test: # Testing
|
||||
@ -1079,9 +941,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.11"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -1194,9 +1053,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.11"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -1573,72 +1429,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_12-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_12-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1657,7 +1447,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda13_0-test: # Testing
|
||||
@ -1745,9 +1535,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.12"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -1860,9 +1647,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.12"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -2239,72 +2023,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_13-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -2323,7 +2041,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda13_0-test: # Testing
|
||||
@ -2411,9 +2129,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.13"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -2526,9 +2241,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.13"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -2905,72 +2617,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_13t-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13t-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -2989,7 +2635,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda13_0-test: # Testing
|
||||
@ -3077,9 +2723,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -3192,9 +2835,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -3571,72 +3211,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_14-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -3655,7 +3229,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda13_0-test: # Testing
|
||||
@ -3743,9 +3317,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.14"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -3858,9 +3429,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.14"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -4237,72 +3805,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_14t-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14t-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -4321,7 +3823,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda13_0-test: # Testing
|
||||
@ -4409,9 +3911,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -4524,9 +4023,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
|
2
.github/workflows/h100-distributed.yml
vendored
2
.github/workflows/h100-distributed.yml
vendored
@ -37,7 +37,7 @@ jobs:
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: "linux.c7i.12xlarge"
|
||||
runner: "linux.12xlarge"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '9.0'
|
||||
|
@ -2,7 +2,7 @@ name: inductor-perf-nightly-h100
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 15 0 * * 1-6
|
||||
- cron: 15 0,12 * * 1-6
|
||||
- cron: 0 7 * * 0
|
||||
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
|
||||
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
|
||||
@ -130,7 +130,7 @@ jobs:
|
||||
name: test-periodically
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: build
|
||||
if: github.event.schedule == '15 0 * * 1-6'
|
||||
if: github.event.schedule == '15 0,12 * * 1-6'
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm90
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
|
||||
|
@ -63,7 +63,6 @@ jobs:
|
||||
# Same as the build job
|
||||
python-version: 3.12.7
|
||||
test-matrix: ${{ needs.macos-perf-py3-arm64-build.outputs.test-matrix }}
|
||||
timeout-minutes: 300
|
||||
disable-monitor: false
|
||||
monitor-log-interval: 15
|
||||
monitor-data-collect-interval: 4
|
||||
|
@ -1,132 +0,0 @@
|
||||
name: inductor-perf-nightly-rocm-mi300
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi300/*
|
||||
schedule:
|
||||
- cron: 15 0 * * *
|
||||
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
|
||||
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
training:
|
||||
description: Run training (on by default)?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
inference:
|
||||
description: Run inference (on by default)?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
default:
|
||||
description: Run inductor_default?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
dynamic:
|
||||
description: Run inductor_dynamic_shapes?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
cppwrapper:
|
||||
description: Run inductor_cpp_wrapper?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
cudagraphs:
|
||||
description: Run inductor_cudagraphs?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
freezing_cudagraphs:
|
||||
description: Run inductor_cudagraphs with freezing for inference?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
aotinductor:
|
||||
description: Run aot_inductor for inference?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
maxautotune:
|
||||
description: Run inductor_max_autotune?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
benchmark_configs:
|
||||
description: The list of configs used the benchmark
|
||||
required: false
|
||||
type: string
|
||||
default: inductor_huggingface_perf_rocm_mi300,inductor_timm_perf_rocm_mi300,inductor_torchbench_perf_rocm_mi300
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions: read-all
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
opt_out_experiments: lf
|
||||
|
||||
linux-jammy-rocm-py3_10-inductor-benchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: rocm-py3_10-inductor-benchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-inductor-benchmark-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: rocm-py3_10-inductor-benchmark-test
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs: linux-jammy-rocm-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
timeout-minutes: 720
|
||||
# Disable monitor in perf tests for more investigation
|
||||
disable-monitor: true
|
||||
monitor-log-interval: 10
|
||||
monitor-data-collect-interval: 2
|
||||
secrets: inherit
|
@ -1,11 +1,11 @@
|
||||
name: inductor-perf-nightly-rocm-mi355
|
||||
name: inductor-perf-nightly-rocm
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi355/*
|
||||
- ciflow/inductor-perf-test-nightly-rocm/*
|
||||
schedule:
|
||||
- cron: 15 0 * * *
|
||||
- cron: 0 7 * * 0,3
|
||||
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
|
||||
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
|
||||
workflow_dispatch:
|
||||
@ -59,7 +59,7 @@ on:
|
||||
description: The list of configs used the benchmark
|
||||
required: false
|
||||
type: string
|
||||
default: inductor_huggingface_perf_rocm_mi355,inductor_timm_perf_rocm_mi355,inductor_torchbench_perf_rocm_mi355
|
||||
default: inductor_huggingface_perf_rocm,inductor_timm_perf_rocm,inductor_torchbench_perf_rocm
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
@ -88,27 +88,23 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
10
.github/workflows/inductor-periodic.yml
vendored
10
.github/workflows/inductor-periodic.yml
vendored
@ -106,16 +106,6 @@ jobs:
|
||||
{ config: "dynamic_aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
11
.github/workflows/lint.yml
vendored
11
.github/workflows/lint.yml
vendored
@ -12,7 +12,6 @@ on:
|
||||
- landchecks/*
|
||||
tags:
|
||||
- ciflow/pull/*
|
||||
- ciflow/trunk/*
|
||||
workflow_dispatch:
|
||||
|
||||
permissions: read-all
|
||||
@ -33,12 +32,10 @@ jobs:
|
||||
name: Get changed files
|
||||
uses: ./.github/workflows/_get-changed-files.yml
|
||||
with:
|
||||
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') || github.event_name == 'push' }}
|
||||
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') }}
|
||||
|
||||
lintrunner-clang:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
# Needed to prevent deduping on HUD
|
||||
name: lintrunner-clang-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
# Only run if there are changed files relevant to clangtidy / clangformat
|
||||
if: |
|
||||
@ -78,7 +75,6 @@ jobs:
|
||||
# fails to find types when it should
|
||||
lintrunner-mypy:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
name: lintrunner-mypy-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
# Only run if there are changed files relevant to mypy
|
||||
if: |
|
||||
@ -103,7 +99,6 @@ jobs:
|
||||
|
||||
lintrunner-noclang:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
name: lintrunner-noclang-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
with:
|
||||
timeout: 120
|
||||
@ -118,9 +113,9 @@ jobs:
|
||||
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
|
||||
echo "Running all other linters"
|
||||
if [ "$CHANGED_FILES" = '*' ]; then
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
|
||||
else
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
fi
|
||||
|
||||
quick-checks:
|
||||
|
39
.github/workflows/operator_benchmark.yml
vendored
39
.github/workflows/operator_benchmark.yml
vendored
@ -7,11 +7,9 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
test_mode:
|
||||
type: choice
|
||||
options:
|
||||
- 'short'
|
||||
- 'long'
|
||||
- 'all'
|
||||
required: false
|
||||
type: string
|
||||
default: 'short'
|
||||
description: tag filter for operator benchmarks, options from long, short, all
|
||||
schedule:
|
||||
# Run at 07:00 UTC every Sunday
|
||||
@ -30,25 +28,38 @@ permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
x86-opbenchmark-build:
|
||||
opbenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: x86-opbenchmark-build
|
||||
name: opbenchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_operator_benchmark_${{ inputs.test_mode || 'short' }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
|
||||
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
x86-opbenchmark-test:
|
||||
name: x86-opbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: x86-opbenchmark-build
|
||||
opbenchmark-on-demand-build:
|
||||
if: ${{ github.event_name == 'workflow_dispatch' && github.repository_owner == 'pytorch' }}
|
||||
name: opbenchmark-on-demand-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_operator_benchmark_${{ inputs.test_mode }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opbenchmark-test:
|
||||
name: opbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: opbenchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
54
.github/workflows/operator_microbenchmark.yml
vendored
54
.github/workflows/operator_microbenchmark.yml
vendored
@ -18,7 +18,6 @@ permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
# H100 A100 runners
|
||||
opmicrobenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build
|
||||
@ -45,56 +44,3 @@ jobs:
|
||||
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
# B200 runner
|
||||
opmicrobenchmark-build-b200:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build-b200
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '10.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opmicrobenchmark-test-b200:
|
||||
name: opmicrobenchmark-test-b200
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: opmicrobenchmark-build-b200
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
|
||||
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
secrets: inherit
|
||||
|
||||
# ROCM MI300 runner
|
||||
opmicrobenchmark-build-rocm:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build-rocm
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opmicrobenchmark-test-rocm:
|
||||
name: opmicrobenchmark-test-rocm
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs: opmicrobenchmark-build-rocm
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image: ${{ needs.opmicrobenchmark-build-rocm.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build-rocm.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
16
.github/workflows/periodic.yml
vendored
16
.github/workflows/periodic.yml
vendored
@ -182,11 +182,11 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "nogpu_AVX512", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_AVX512", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_AVX512", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_AVX512", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_AVX512", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_AVX512", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
@ -213,9 +213,9 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
1
.github/workflows/pull.yml
vendored
1
.github/workflows/pull.yml
vendored
@ -127,6 +127,7 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# More memory is needed to build with asan
|
||||
runner: linux.2xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-clang18-asan
|
||||
|
7
.github/workflows/rocm-mi355.yml
vendored
7
.github/workflows/rocm-mi355.yml
vendored
@ -1,9 +1,6 @@
|
||||
name: rocm-mi355
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/rocm-mi355/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: 30 11,1 * * * # about 4:30am PDT and 6:30pm PDT
|
||||
@ -67,7 +64,5 @@ jobs:
|
||||
build-environment: linux-noble-rocm-py3.12-mi355
|
||||
docker-image: ${{ needs.linux-noble-rocm-py3_12-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-noble-rocm-py3_12-build.outputs.test-matrix }}
|
||||
tests-to-include: >-
|
||||
${{ github.event_name == 'schedule' && 'test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor test_matmul_cuda test_scaled_matmul_cuda'
|
||||
|| '' }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor"
|
||||
secrets: inherit
|
||||
|
26
.github/workflows/rocm.yml
vendored
26
.github/workflows/rocm.yml
vendored
@ -59,29 +59,3 @@ jobs:
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-gfx1100-test:
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3_10-gfx1100
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
]}
|
||||
tests-to-include: >
|
||||
test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
|
||||
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
|
||||
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
|
||||
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
|
||||
inductor/test_flex_attention inductor/test_max_autotune
|
||||
secrets: inherit
|
||||
|
1
.github/workflows/slow.yml
vendored
1
.github/workflows/slow.yml
vendored
@ -140,6 +140,7 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# More memory is needed to build with asan
|
||||
runner: linux.2xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-clang18-asan
|
||||
|
63
.github/workflows/trunk.yml
vendored
63
.github/workflows/trunk.yml
vendored
@ -56,7 +56,7 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
build-generates-artifacts: false
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: "linux.c7i.4xlarge"
|
||||
runner: "linux.4xlarge"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 1 },
|
||||
@ -160,10 +160,9 @@ jobs:
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
@ -180,16 +179,51 @@ jobs:
|
||||
disable-monitor: false
|
||||
secrets: inherit
|
||||
|
||||
win-vs2022-cuda12_8-py3-build:
|
||||
name: win-vs2022-cuda12.8-py3
|
||||
win-vs2022-cuda12_6-py3-build:
|
||||
name: win-vs2022-cuda12.6-py3
|
||||
uses: ./.github/workflows/_win-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: win-vs2022-cuda12.8-py3
|
||||
cuda-version: "12.8"
|
||||
build-environment: win-vs2022-cuda12.6-py3
|
||||
cuda-version: "12.6"
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "distributed", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.4" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
name: inductor-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
@ -249,14 +283,3 @@ jobs:
|
||||
docker-image: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-py3-clang12-executorch-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-py3_10-gcc11-full-debug-build-only:
|
||||
name: linux-jammy-py3.10-gcc11-full-debug-build-only
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: linux.2xlarge.memory
|
||||
build-environment: linux-jammy-py3.10-gcc11-full-debug-build-only
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3.10-gcc11
|
||||
secrets: inherit
|
||||
|
2
.github/workflows/update-viablestrict.yml
vendored
2
.github/workflows/update-viablestrict.yml
vendored
@ -23,7 +23,7 @@ jobs:
|
||||
with:
|
||||
repository: pytorch/pytorch
|
||||
stable-branch: viable/strict
|
||||
requires: '[\"pull\", \"trunk\", \"lint\", \"linux-aarch64\"]'
|
||||
requires: '[\"pull\", \"trunk\", \"lint\", \"^linux-binary-manywheel$\", \"^linux-binary-libtorch-release$\", \"linux-aarch64\"]'
|
||||
secret-bot-token: ${{ secrets.MERGEBOT_TOKEN }}
|
||||
clickhouse-url: ${{ secrets.CLICKHOUSE_URL }}
|
||||
clickhouse-username: ${{ secrets.CLICKHOUSE_VIABLESTRICT_USERNAME }}
|
||||
|
6
.github/workflows/vllm.yml
vendored
6
.github/workflows/vllm.yml
vendored
@ -42,11 +42,11 @@ jobs:
|
||||
build-external-packages: "vllm"
|
||||
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm
|
||||
cuda-arch-list: '8.0 8.9 9.0'
|
||||
cuda-arch-list: '8.0;8.9;9.0'
|
||||
runner: linux.24xlarge.memory
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_basic_models_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_entrypoints_test", shard: 1, num_shards: 1,runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_regression_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
@ -54,7 +54,7 @@ jobs:
|
||||
{ config: "vllm_pytorch_compilation_unit_tests", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_lora_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_multi_model_test_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
|
||||
{ config: "vllm_language_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
|
||||
{ config: "vllm_languagde_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
|
||||
{ config: "vllm_distributed_test_2_gpu_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_lora_test", shard: 0, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_lora_test", shard: 1, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
|
4
.github/workflows/xpu.yml
vendored
4
.github/workflows/xpu.yml
vendored
@ -35,7 +35,7 @@ jobs:
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-1-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-1-py3
|
||||
runner: linux.c7i.12xlarge
|
||||
runner: linux.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
|
||||
@ -56,7 +56,7 @@ jobs:
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
runner: linux.c7i.12xlarge
|
||||
runner: linux.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 8, runner: "linux.idc.xpu" },
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -88,7 +88,7 @@ torch_compile_debug/
|
||||
# Listed manually because some files in this directory are not generated
|
||||
torch/testing/_internal/generated/annotated_fn_args.py
|
||||
torch/testing/_internal/data/*.pt
|
||||
torch/headeronly/version.h
|
||||
torch/csrc/api/include/torch/version.h
|
||||
torch/csrc/cudnn/cuDNN.cpp
|
||||
torch/csrc/generated
|
||||
torch/csrc/generic/TensorMethods.cpp
|
||||
@ -395,4 +395,3 @@ android/pytorch_android_torchvision/.cxx
|
||||
CLAUDE.local.md
|
||||
/test_*.py
|
||||
/debug_*.py
|
||||
CLAUDE_CONTEXT/
|
||||
|
@ -18,7 +18,6 @@ exclude_patterns = [
|
||||
'torch/_inductor/autoheuristic/artifacts/**',
|
||||
'scripts/**',
|
||||
'test/generated_type_hints_smoketest.py',
|
||||
'test/test_torchfuzz_repros.py',
|
||||
# CPython tests
|
||||
'test/dynamo/cpython/**',
|
||||
# Tests from the NumPy test suite
|
||||
@ -28,7 +27,6 @@ exclude_patterns = [
|
||||
'torch/lib/**',
|
||||
'venv/**',
|
||||
'**/*.pyi',
|
||||
"tools/experimental/torchfuzz/**",
|
||||
'tools/test/test_selective_build.py',
|
||||
]
|
||||
command = [
|
||||
@ -198,7 +196,7 @@ exclude_patterns = [
|
||||
'tools/test/gen_operators_yaml_test.py',
|
||||
'tools/test/gen_oplist_test.py',
|
||||
'tools/test/test_selective_build.py',
|
||||
'tools/experimental/torchfuzz/**',
|
||||
'tools/experimental/dynamic_shapes/torchfuzz/**',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
@ -209,46 +207,6 @@ command = [
|
||||
'@{{PATHSFILE}}'
|
||||
]
|
||||
|
||||
|
||||
[[linter]]
|
||||
code = 'PYREFLY'
|
||||
include_patterns = [
|
||||
'torch/**/*.py',
|
||||
'torch/**/*.pyi',
|
||||
'torchgen/**/*.py',
|
||||
'torchgen/**/*.pyi',
|
||||
'functorch/**/*.py',
|
||||
'functorch/**/*.pyi',
|
||||
]
|
||||
exclude_patterns = []
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pyrefly_linter.py',
|
||||
'--config=pyrefly.toml',
|
||||
]
|
||||
init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'pyrefly==0.36.2',
|
||||
'sympy==1.13.3',
|
||||
'types-requests==2.27.25',
|
||||
'types-pyyaml==6.0.2',
|
||||
'types-tabulate==0.8.8',
|
||||
'types-protobuf==5.29.1.20250403',
|
||||
'types-setuptools==79.0.0.20250422',
|
||||
'types-jinja2==2.11.9',
|
||||
'types-colorama==0.4.6',
|
||||
'filelock==3.18.0',
|
||||
'junitparser==2.1.1',
|
||||
'rich==14.1.0',
|
||||
'optree==0.17.0',
|
||||
'types-openpyxl==3.1.5.20250919',
|
||||
'types-python-dateutil==2.9.0.20251008'
|
||||
]
|
||||
|
||||
[[linter]]
|
||||
code = 'CLANGTIDY'
|
||||
include_patterns = [
|
||||
@ -1613,7 +1571,6 @@ exclude_patterns = [
|
||||
'torch/_inductor/fx_passes/serialized_patterns/**',
|
||||
'torch/_inductor/autoheuristic/artifacts/**',
|
||||
'test/dynamo/cpython/**',
|
||||
'test/test_torchfuzz_repros.py',
|
||||
'scripts/**',
|
||||
'third_party/**',
|
||||
'fb/**',
|
||||
|
@ -13,9 +13,6 @@ load(":build_variables.bzl", "jit_core_sources", "lazy_tensor_ts_sources", "libt
|
||||
load(":ufunc_defs.bzl", "aten_ufunc_generated_cpu_kernel_sources", "aten_ufunc_generated_cpu_sources", "aten_ufunc_generated_cuda_sources")
|
||||
load("//:tools/bazel.bzl", "rules")
|
||||
|
||||
# Export files for use by torch/headeronly (where version.h generation now lives)
|
||||
exports_files(["version.txt"])
|
||||
|
||||
define_targets(rules = rules)
|
||||
|
||||
COMMON_COPTS = [
|
||||
@ -693,9 +690,7 @@ cc_library(
|
||||
"torch/csrc/*/generated/*.h",
|
||||
"torch/csrc/jit/serialization/mobile_bytecode_generated.h",
|
||||
] + torch_cuda_headers,
|
||||
) + GENERATED_AUTOGRAD_CPP + [
|
||||
"//torch/headeronly:version_h",
|
||||
],
|
||||
) + GENERATED_AUTOGRAD_CPP + [":version_h"],
|
||||
includes = [
|
||||
"third_party/kineto/libkineto/include",
|
||||
"torch/csrc",
|
||||
|
@ -388,9 +388,9 @@ cmake_dependent_option(USE_PRIORITIZED_TEXT_FOR_LD "Use prioritized text linker
|
||||
|
||||
option(USE_MIMALLOC "Use mimalloc" OFF)
|
||||
# Enable third party mimalloc library to improve memory allocation performance
|
||||
# on Windows and AArch64.
|
||||
# on Windows.
|
||||
option(USE_MIMALLOC_ON_MKL "Use mimalloc on MKL" OFF)
|
||||
if(WIN32 OR (CPU_AARCH64 AND NOT APPLE))
|
||||
if(WIN32)
|
||||
set(USE_MIMALLOC ON)
|
||||
|
||||
# Not enable USE_MIMALLOC_ON_MKL due to it caused issue:
|
||||
|
18
CODEOWNERS
18
CODEOWNERS
@ -181,15 +181,15 @@ caffe2/utils/hip @jeffdaily @jithunnair-amd
|
||||
/torch/csrc/jit/python/init.cpp @mikaylagawarecki
|
||||
|
||||
# CUDA and CUDA math libraries
|
||||
aten/src/ATen/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/native/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/native/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
c10/cuda @eqy @syed-ahmed @Aidyn-A
|
||||
torch/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
torch/csrc/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
torch/backends/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/cuda/ @eqy @syed-ahmed
|
||||
aten/src/ATen/cudnn/ @eqy @syed-ahmed
|
||||
aten/src/ATen/native/cuda/ @eqy @syed-ahmed
|
||||
aten/src/ATen/native/cudnn/ @eqy @syed-ahmed
|
||||
c10/cuda @eqy @syed-ahmed
|
||||
torch/cuda/ @eqy @syed-ahmed
|
||||
torch/csrc/cuda/ @eqy @syed-ahmed
|
||||
torch/backends/cuda/ @eqy @syed-ahmed
|
||||
torch/backends/cudnn/ @eqy @syed-ahmed
|
||||
|
||||
# PyTree utilities
|
||||
/torch/utils/_pytree.py @XuehaiPan
|
||||
|
@ -50,10 +50,11 @@ RUN git submodule update --init --recursive
|
||||
FROM conda as conda-installs
|
||||
ARG PYTHON_VERSION=3.11
|
||||
ARG CUDA_PATH=cu121
|
||||
ARG CUDA_CHANNEL=nvidia
|
||||
ARG INSTALL_CHANNEL=whl/nightly
|
||||
# Automatically set by buildx
|
||||
# pinning version of conda here see: https://github.com/pytorch/pytorch/issues/164574
|
||||
RUN /opt/conda/bin/conda install -y python=${PYTHON_VERSION} conda=25.7.0
|
||||
RUN /opt/conda/bin/conda update -y -n base -c defaults conda
|
||||
RUN /opt/conda/bin/conda install -y python=${PYTHON_VERSION}
|
||||
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
|
17
RELEASE.md
17
RELEASE.md
@ -3,7 +3,6 @@
|
||||
<!-- toc -->
|
||||
|
||||
- [Release Compatibility Matrix](#release-compatibility-matrix)
|
||||
- [PyTorch CUDA Support Matrix](#pytorch-cuda-support-matrix)
|
||||
- [Release Cadence](#release-cadence)
|
||||
- [General Overview](#general-overview)
|
||||
- [Frequently Asked Questions](#frequently-asked-questions)
|
||||
@ -64,22 +63,6 @@ Following is the Release Compatibility Matrix for PyTorch releases:
|
||||
| 1.13 | >=3.7, <=3.10 | C++14 | CUDA 11.6, CUDNN 8.3.2.44 | CUDA 11.7, CUDNN 8.5.0.96 | ROCm 5.2 |
|
||||
| 1.12 | >=3.7, <=3.10 | C++14 | CUDA 11.3, CUDNN 8.3.2.44 | CUDA 11.6, CUDNN 8.3.2.44 | ROCm 5.0 |
|
||||
|
||||
### PyTorch CUDA Support Matrix
|
||||
|
||||
For Release 2.9 PyTorch Supports following CUDA Architectures:
|
||||
|
||||
| CUDA | architectures supported for Linux x86 and Windows builds | notes |
|
||||
| --- | --- | --- |
|
||||
| 12.6.3 | Maxwell(5.0), Pascal(6.0), Volta(7.0), Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0) | |
|
||||
| 12.8.1 | Volta(7.0), Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0), Blackwell(10.0, 12.0) | |
|
||||
| 13.0.0 | Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0), Blackwell(10.0, 12.0+PTX) | +PTX available on linux builds only |
|
||||
|
||||
| CUDA | architectures supported for Linux aarch64 builds |
|
||||
| --- | --- |
|
||||
| 12.6.3 | Ampere(8.0), Hopper(9.0) |
|
||||
| 12.8.1 | Ampere(8.0), Hopper(9.0), Blackwell(10.0, 12.0) |
|
||||
| 13.0.0 | Ampere(8.0), Hopper(9.0), Blackwell(10.0, 11.0, 12.0+PTX) |
|
||||
|
||||
## Release Cadence
|
||||
|
||||
Following is the release cadence. All future dates below are tentative. For latest updates on the release schedule, please follow [dev discuss](https://dev-discuss.pytorch.org/c/release-announcements/27). Please note: Patch Releases are optional.
|
||||
|
@ -28,19 +28,4 @@ inline std::ostream& operator<<(std::ostream& stream, at::BlasBackend backend) {
|
||||
return stream << BlasBackendToString(backend);
|
||||
}
|
||||
|
||||
namespace blas {
|
||||
|
||||
enum class ScalingType : std::uint8_t {
|
||||
TensorWise, // fp32 scales
|
||||
RowWise, // fp32 scales
|
||||
BlockWise1x16, // fp8_e4m3fn scales
|
||||
BlockWise1x32, // fp8_e8m0fnu scales
|
||||
BlockWise1x128, // fp32 scales
|
||||
BlockWise128x128, // fp32 scales
|
||||
};
|
||||
|
||||
enum class SwizzleType : std::uint8_t { NO_SWIZZLE = 0, SWIZZLE_32_4_4 = 1 };
|
||||
|
||||
} // namespace blas
|
||||
|
||||
} // namespace at
|
||||
|
@ -256,7 +256,6 @@ endif()
|
||||
IF(USE_FBGEMM_GENAI)
|
||||
set(FBGEMM_THIRD_PARTY ${PROJECT_SOURCE_DIR}/third_party/fbgemm/external/)
|
||||
set(FBGEMM_GENAI_SRCS ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize)
|
||||
|
||||
if(USE_CUDA)
|
||||
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
|
||||
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
|
||||
@ -293,64 +292,58 @@ IF(USE_FBGEMM_GENAI)
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
|
||||
)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
target_include_directories(fbgemm_genai PUBLIC
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${fbgemm_genai_mx8mx8bf16_grouped}
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
else()
|
||||
if(USE_ROCM)
|
||||
# Only include the kernels we want to build to avoid increasing binary size.
|
||||
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
|
||||
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
|
||||
|
||||
# Add FBGEMM_GENAI include directories for torch_ops.h
|
||||
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
|
||||
elseif(USE_ROCM)
|
||||
# Only include the kernels we want to build to avoid increasing binary size.
|
||||
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
|
||||
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
|
||||
# Add additional HIPCC compiler flags for performance
|
||||
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
|
||||
-mllvm
|
||||
-amdgpu-coerce-illegal-types=1
|
||||
-mllvm
|
||||
-enable-post-misched=0
|
||||
-mllvm
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
|
||||
# Add additional HIPCC compiler flags for performance
|
||||
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
|
||||
-mllvm
|
||||
-amdgpu-coerce-illegal-types=1
|
||||
-mllvm
|
||||
-enable-post-misched=0
|
||||
-mllvm
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
|
||||
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
|
||||
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
|
||||
endif()
|
||||
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
|
||||
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
|
||||
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
|
||||
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
|
||||
hip_add_library(
|
||||
fbgemm_genai STATIC
|
||||
${fbgemm_genai_native_rocm_hip}
|
||||
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
|
||||
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
|
||||
|
||||
target_include_directories(fbgemm_genai PUBLIC
|
||||
# FBGEMM version of Composable Kernel is used due to some customizations
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/include
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
endif()
|
||||
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
|
||||
|
||||
hip_add_library(
|
||||
fbgemm_genai STATIC
|
||||
${fbgemm_genai_native_rocm_hip}
|
||||
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
|
||||
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
# FBGEMM version of Composable Kernel is used due to some customizations
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/include
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
|
||||
# Add FBGEMM_GENAI include directories for torch_ops.h
|
||||
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
|
||||
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -612,11 +605,6 @@ if(UNIX)
|
||||
if(HAVE_MALLOC_USABLE_SIZE)
|
||||
add_definitions(-DHAVE_MALLOC_USABLE_SIZE=1)
|
||||
endif(HAVE_MALLOC_USABLE_SIZE)
|
||||
set(CMAKE_EXTRA_INCLUDE_FILES "fcntl.h")
|
||||
CHECK_FUNCTION_EXISTS(posix_fallocate HAVE_POSIX_FALLOCATE)
|
||||
if(HAVE_POSIX_FALLOCATE)
|
||||
add_definitions(-DHAVE_POSIX_FALLOCATE=1)
|
||||
endif(HAVE_POSIX_FALLOCATE)
|
||||
endif(UNIX)
|
||||
|
||||
ADD_DEFINITIONS(-DUSE_EXTERNAL_MZCRC)
|
||||
@ -699,6 +687,12 @@ if(USE_CUDA AND NOT USE_ROCM)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/include)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/tools/util/include)
|
||||
|
||||
# Add FBGEMM_GENAI include directories for torch_ops.h
|
||||
if(USE_FBGEMM_GENAI)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
|
||||
endif()
|
||||
|
||||
if($ENV{ATEN_STATIC_CUDA})
|
||||
if(CUDA_VERSION VERSION_LESS_EQUAL 12.9)
|
||||
list(APPEND ATen_CUDA_DEPENDENCY_LIBS
|
||||
|
@ -144,7 +144,8 @@ inline std::string _all_equal_numel_error(at::ArrayRef<Tensor> tensors) {
|
||||
inline bool _apply_preamble(ArrayRef<Tensor> tensors) {
|
||||
checkDeviceType("CPU_tensor_apply", tensors, kCPU);
|
||||
checkLayout("CPU_tensor_apply", tensors, kStrided);
|
||||
TORCH_CHECK(_all_equal_numel(tensors), _all_equal_numel_error(tensors));
|
||||
if (!_all_equal_numel(tensors))
|
||||
TORCH_CHECK(false, _all_equal_numel_error(tensors));
|
||||
// An empty tensor has no elements
|
||||
for (auto& t : tensors)
|
||||
if (t.numel() == 0)
|
||||
|
@ -40,6 +40,41 @@ namespace {
|
||||
->conv
|
||||
->rnn
|
||||
*/
|
||||
const std::map<std::string, std::vector<std::string>> _fp32_precisions = {
|
||||
{"generic", {{"ieee", "tf32", "bf16", "none"}}},
|
||||
{"mkldnn", {{"ieee", "tf32", "bf16", "none"}}},
|
||||
{"cuda", {{"ieee", "tf32", "none"}}}};
|
||||
|
||||
// Check whether the backend and op are legal
|
||||
void check_fp32_prec_backend_and_op(
|
||||
const std::string& backend,
|
||||
const std::string& op) {
|
||||
static std::vector<std::string> backends = {"generic", "mkldnn", "cuda"};
|
||||
static std::vector<std::string> operators = {"conv", "matmul", "rnn", "all"};
|
||||
TORCH_CHECK(
|
||||
std::find(backends.begin(), backends.end(), backend) != backends.end(),
|
||||
"Invalid backend: ",
|
||||
backend);
|
||||
TORCH_CHECK(
|
||||
std::find(operators.begin(), operators.end(), op) != operators.end(),
|
||||
"Invalid operator: ",
|
||||
op);
|
||||
if (backend == "generic") {
|
||||
TORCH_CHECK(op == "all", "Invalid operation for generic backend: ", op);
|
||||
}
|
||||
}
|
||||
|
||||
// Return whether the precision is supported by backends
|
||||
bool validate_fp32_prec(
|
||||
const std::string& backend,
|
||||
const std::string& precision) {
|
||||
auto iterp = _fp32_precisions.find(backend);
|
||||
TORCH_CHECK(iterp != _fp32_precisions.end());
|
||||
auto precisions = iterp->second;
|
||||
bool valid = std::find(precisions.begin(), precisions.end(), precision) !=
|
||||
precisions.end();
|
||||
return valid;
|
||||
}
|
||||
|
||||
C10_ALWAYS_INLINE void warn_deprecated_fp32_precision_api(){
|
||||
TORCH_WARN_ONCE(
|
||||
@ -51,54 +86,6 @@ namespace {
|
||||
}
|
||||
} // namespace
|
||||
|
||||
Float32Backend str2backend(const std::string& name) {
|
||||
if (name == "generic")
|
||||
return Float32Backend::GENERIC;
|
||||
else if (name == "cuda")
|
||||
return Float32Backend::CUDA;
|
||||
else if (name == "mkldnn")
|
||||
return Float32Backend::MKLDNN;
|
||||
TORCH_CHECK(false, "Unknown backend: ", name);
|
||||
}
|
||||
|
||||
Float32Op str2op(const std::string& name) {
|
||||
if (name == "all")
|
||||
return Float32Op::ALL;
|
||||
else if (name == "conv")
|
||||
return Float32Op::CONV;
|
||||
else if (name == "rnn")
|
||||
return Float32Op::RNN;
|
||||
else if (name == "matmul")
|
||||
return Float32Op::MATMUL;
|
||||
TORCH_CHECK(false, "Unknown op: ", name);
|
||||
}
|
||||
|
||||
Float32Precision str2precision(const std::string& name) {
|
||||
if (name == "none")
|
||||
return Float32Precision::NONE;
|
||||
else if (name == "ieee")
|
||||
return Float32Precision::IEEE;
|
||||
else if (name == "tf32")
|
||||
return Float32Precision::TF32;
|
||||
else if (name == "bf16")
|
||||
return Float32Precision::BF16;
|
||||
TORCH_CHECK(false, "Unknown precision: ", name);
|
||||
}
|
||||
|
||||
std::string precision2str(Float32Precision prec) {
|
||||
switch (prec) {
|
||||
case Float32Precision::NONE:
|
||||
return "none";
|
||||
case Float32Precision::IEEE:
|
||||
return "ieee";
|
||||
case Float32Precision::TF32:
|
||||
return "tf32";
|
||||
case Float32Precision::BF16:
|
||||
return "bf16";
|
||||
}
|
||||
TORCH_CHECK(false, "Invalid enum Float32Precision(", static_cast<int>(prec), ")");
|
||||
}
|
||||
|
||||
Context::Context() = default;
|
||||
|
||||
// TODO: This could be bad juju if someone calls globalContext() in the
|
||||
@ -192,10 +179,10 @@ void Context::setUserEnabledNNPACK(bool e) {
|
||||
enabled_nnpack = e;
|
||||
}
|
||||
|
||||
bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
|
||||
if (!op.has_value()) {
|
||||
bool allow_tf32_rnn = float32Precision(Float32Backend::CUDA, Float32Op::RNN) == Float32Precision::TF32;
|
||||
bool allow_tf32_conv = float32Precision(Float32Backend::CUDA, Float32Op::CONV) == Float32Precision::TF32;
|
||||
bool Context::allowTF32CuDNN(const std::string& op) const {
|
||||
if (op.empty()){
|
||||
bool allow_tf32_rnn = float32Precision("cuda", "rnn") == "tf32";
|
||||
bool allow_tf32_conv = float32Precision("cuda", "conv") == "tf32";
|
||||
TORCH_CHECK(
|
||||
allow_tf32_rnn == allow_tf32_conv && allow_tf32_rnn == allow_tf32_cudnn,
|
||||
"PyTorch is checking whether allow_tf32 is enabled for cuDNN without a specific operator name,",
|
||||
@ -204,15 +191,15 @@ bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
|
||||
"We suggest only using the new API to set the TF32 flag(s). See also: ",
|
||||
"https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices");
|
||||
} else {
|
||||
return float32Precision(Float32Backend::CUDA, op.value()) == Float32Precision::TF32;
|
||||
return float32Precision("cuda", op) == "tf32";
|
||||
}
|
||||
warn_deprecated_fp32_precision_api();
|
||||
return allow_tf32_cudnn;
|
||||
}
|
||||
|
||||
void Context::setAllowTF32CuDNN(bool b) {
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::RNN, b ? Float32Precision::TF32 : Float32Precision::NONE);
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::CONV, b ? Float32Precision::TF32 : Float32Precision::NONE);
|
||||
setFloat32Precision("cuda", "rnn", b ? "tf32" : "none");
|
||||
setFloat32Precision("cuda", "conv", b ? "tf32" : "none");
|
||||
allow_tf32_cudnn = b;
|
||||
warn_deprecated_fp32_precision_api();
|
||||
}
|
||||
@ -292,6 +279,42 @@ bool Context::userEnabledOverrideableSDP() const {
|
||||
return enabled_overrideable;
|
||||
}
|
||||
|
||||
static constexpr const auto cublas_config_var_name = "CUBLAS_WORKSPACE_CONFIG";
|
||||
static constexpr const std::array<const char*, 2> cublas_deterministic_configs = {":4096:8", ":16:8"};
|
||||
|
||||
bool Context::checkCuBLASConfigDeterministic() {
|
||||
// If using CUDA 10.2 or greater, need to make sure CuBLAS workspace config
|
||||
// is set to deterministic setting
|
||||
if (hasCUDART()) {
|
||||
const auto workspace_config = c10::utils::get_env(cublas_config_var_name);
|
||||
return (workspace_config == cublas_deterministic_configs[0] || workspace_config == cublas_deterministic_configs[1]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void Context::alertCuBLASConfigNotDeterministic() const {
|
||||
static const bool cublas_config_deterministic = checkCuBLASConfigDeterministic();
|
||||
if (C10_LIKELY(!deterministicAlgorithms() || cublas_config_deterministic)) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto msg = c10::str(
|
||||
"Deterministic behavior was enabled with either `torch.use_deterministic_algorithms(True)` or ",
|
||||
"`at::Context::setDeterministicAlgorithms(true)`, but this operation is not deterministic because ",
|
||||
"it uses CuBLAS and you have CUDA >= 10.2. To enable deterministic behavior in this ",
|
||||
"case, you must set an environment variable before running your PyTorch application: ",
|
||||
cublas_config_var_name, "=", cublas_deterministic_configs[0], " or ",
|
||||
cublas_config_var_name, "=", cublas_deterministic_configs[1], ". For more information, go to ",
|
||||
"https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility"
|
||||
);
|
||||
|
||||
if (deterministicAlgorithmsWarnOnly()) {
|
||||
TORCH_WARN(msg);
|
||||
} else {
|
||||
TORCH_CHECK(false, msg);
|
||||
}
|
||||
}
|
||||
|
||||
bool Context::benchmarkCuDNN() const {
|
||||
return benchmark_cudnn;
|
||||
}
|
||||
@ -318,7 +341,7 @@ void Context::setImmediateMiopen(bool b) {
|
||||
|
||||
bool Context::allowTF32CuBLAS() const {
|
||||
bool legacy_allow_tf32 = float32_matmul_precision != at::Float32MatmulPrecision::HIGHEST;
|
||||
bool allow_tf32_new = float32Precision(Float32Backend::CUDA, Float32Op::MATMUL) == Float32Precision::TF32;
|
||||
bool allow_tf32_new = float32Precision("cuda", "matmul") == "tf32";
|
||||
TORCH_CHECK(
|
||||
legacy_allow_tf32 == allow_tf32_new,
|
||||
"PyTorch is checking whether allow_tf32_new is enabled for cuBlas matmul,",
|
||||
@ -331,17 +354,17 @@ bool Context::allowTF32CuBLAS() const {
|
||||
|
||||
void Context::setAllowTF32CuBLAS(bool b) {
|
||||
float32_matmul_precision = b ? at::Float32MatmulPrecision::HIGH : at::Float32MatmulPrecision::HIGHEST;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, b ? Float32Precision::TF32 : Float32Precision::IEEE);
|
||||
setFloat32Precision("cuda", "matmul", b ? "tf32" : "ieee");
|
||||
}
|
||||
|
||||
Float32MatmulPrecision Context::float32MatmulPrecision() const {
|
||||
bool invalid = float32Precision(Float32Backend::CUDA, Float32Op::MATMUL) == Float32Precision::TF32 &&
|
||||
bool invalid = float32Precision("cuda", "matmul") == "tf32" &&
|
||||
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST;
|
||||
invalid = invalid ||
|
||||
(float32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL) == Float32Precision::BF16 &&
|
||||
(float32Precision("mkldnn", "matmul") == "bf16" &&
|
||||
float32_matmul_precision != at::Float32MatmulPrecision::MEDIUM);
|
||||
invalid = invalid ||
|
||||
(float32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL) == Float32Precision::TF32 &&
|
||||
(float32Precision("mkldnn", "matmul") == "tf32" &&
|
||||
float32_matmul_precision != at::Float32MatmulPrecision::HIGH);
|
||||
TORCH_CHECK(
|
||||
!invalid,
|
||||
@ -353,26 +376,15 @@ Float32MatmulPrecision Context::float32MatmulPrecision() const {
|
||||
return float32_matmul_precision;
|
||||
}
|
||||
|
||||
Float32Precision Context::float32Precision(Float32Backend backend, Float32Op op) const {
|
||||
std::pair<Float32Backend, Float32Op> key{backend, op};
|
||||
auto it = fp32_precision.find(key);
|
||||
TORCH_CHECK(it != fp32_precision.end(), "Invalid (backend, op) pair: (", backend, ", ", op, ")");
|
||||
|
||||
Float32Precision precision = it->second;
|
||||
if (precision == Float32Precision::NONE) {
|
||||
key.second = Float32Op::ALL;
|
||||
precision = fp32_precision.find(key)->second;
|
||||
}
|
||||
if (precision == Float32Precision::NONE) {
|
||||
key.first = Float32Backend::GENERIC;
|
||||
precision = fp32_precision.find(key)->second;
|
||||
}
|
||||
|
||||
// "cuda" does not support "bf16"
|
||||
if (backend == Float32Backend::CUDA && precision == Float32Precision::BF16) {
|
||||
return Float32Precision::NONE;
|
||||
}
|
||||
return precision;
|
||||
std::string Context::float32Precision(const std::string& backend, const std::string& op) const {
|
||||
check_fp32_prec_backend_and_op(backend, op);
|
||||
auto precision = fp32_precision.find(backend)->second.find(op)->second;
|
||||
if (precision == "none")
|
||||
precision = fp32_precision.find(backend)->second.find("all")->second;
|
||||
if (precision == "none")
|
||||
precision = fp32_precision.find("generic")->second.find("all")->second;
|
||||
bool valid_prec = validate_fp32_prec(backend, precision);
|
||||
return valid_prec ? precision : "none";
|
||||
}
|
||||
|
||||
void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
@ -381,18 +393,18 @@ void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
// TODO: consider if CuDNN field needs to also be set for potential future CuDNN ops like multi-headed attention
|
||||
if (s_ == "highest") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::HIGHEST;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::IEEE);
|
||||
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::IEEE);
|
||||
setFloat32Precision("cuda", "matmul", "ieee");
|
||||
setFloat32Precision("mkldnn", "matmul", "ieee");
|
||||
return true;
|
||||
} else if (s_ == "high") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::HIGH;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::TF32);
|
||||
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::TF32);
|
||||
setFloat32Precision("cuda", "matmul", "tf32");
|
||||
setFloat32Precision("mkldnn", "matmul", "tf32");
|
||||
return true;
|
||||
} else if (s_ == "medium") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::MEDIUM;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::TF32);
|
||||
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::BF16);
|
||||
setFloat32Precision("cuda", "matmul", "tf32");
|
||||
setFloat32Precision("mkldnn", "matmul", "bf16");
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -406,16 +418,25 @@ void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
"setFloat32MatmulPrecision call has no effect.");
|
||||
}
|
||||
|
||||
void Context::setFloat32Precision(Float32Backend backend, Float32Op op, Float32Precision p) {
|
||||
auto it = fp32_precision.find(std::make_pair(backend, op));
|
||||
TORCH_CHECK(
|
||||
it != fp32_precision.end(),
|
||||
"Invalid (backend, op) pair: (", backend, ", ", op, ")");
|
||||
TORCH_CHECK(
|
||||
!(backend == Float32Backend::CUDA && p == Float32Precision::BF16),
|
||||
"backend 'cuda' does not support precision 'bf16'");
|
||||
|
||||
it->second = p;
|
||||
void Context::setFloat32Precision(const std::string& backend, const std::string& op, const std::string& p) {
|
||||
check_fp32_prec_backend_and_op(backend, op);
|
||||
if (validate_fp32_prec(backend, p)) {
|
||||
fp32_precision[backend][op] = p;
|
||||
} else {
|
||||
std::string msg;
|
||||
auto iterp = _fp32_precisions.find(backend);
|
||||
TORCH_CHECK(iterp != _fp32_precisions.end());
|
||||
for (const auto& p : iterp->second) {
|
||||
msg += p;
|
||||
msg += " ";
|
||||
}
|
||||
TORCH_WARN(
|
||||
"you have set wrong precision for backend:",
|
||||
backend,
|
||||
" setFloat32Precision call has no effect.",
|
||||
"Please choose precision from: ",
|
||||
msg);
|
||||
}
|
||||
}
|
||||
|
||||
at::LinalgBackend Context::linalgPreferredBackend() const {
|
||||
@ -483,8 +504,8 @@ at::BlasBackend Context::blasPreferredBackend() {
|
||||
#if ROCM_VERSION >= 60300
|
||||
"gfx1100", "gfx1101", "gfx1200", "gfx1201", "gfx908",
|
||||
#endif
|
||||
#if ROCM_VERSION >= 70000
|
||||
"gfx950", "gfx1150", "gfx1151"
|
||||
#if ROCM_VERSION >= 60500
|
||||
"gfx950"
|
||||
#endif
|
||||
};
|
||||
for (auto index: c10::irange(detail::getCUDAHooks().deviceCount())) {
|
||||
@ -587,33 +608,20 @@ void Context::setROCmFAPreferredBackend(at::ROCmFABackend b) {
|
||||
rocm_fa_preferred_backend = b;
|
||||
}
|
||||
|
||||
CuBLASReductionOption Context::allowFP16ReductionCuBLAS() const {
|
||||
bool Context::allowFP16ReductionCuBLAS() const {
|
||||
return allow_fp16_reduction_cublas;
|
||||
}
|
||||
|
||||
CuBLASReductionOption inline get_reduction_option(bool allow_reduced_precision, bool allow_splitk) {
|
||||
TORCH_CHECK(
|
||||
!(allow_reduced_precision && !allow_splitk),
|
||||
"allow_splitk=False is not supported when reduced precision reductions are enabled");
|
||||
if (allow_reduced_precision) {
|
||||
return CuBLASReductionOption::AllowReducedPrecisionWithSplitK;
|
||||
} else if (allow_splitk) {
|
||||
return CuBLASReductionOption::DisallowReducedPrecisionAllowSplitK;
|
||||
} else {
|
||||
return CuBLASReductionOption::DisallowReducedPrecisionDisallowSplitK;
|
||||
}
|
||||
void Context::setAllowFP16ReductionCuBLAS(bool b) {
|
||||
allow_fp16_reduction_cublas = b;
|
||||
}
|
||||
|
||||
void Context::setAllowFP16ReductionCuBLAS(bool allow_reduced_precision, bool allow_splitk) {
|
||||
allow_fp16_reduction_cublas = get_reduction_option(allow_reduced_precision, allow_splitk);
|
||||
}
|
||||
|
||||
CuBLASReductionOption Context::allowBF16ReductionCuBLAS() const {
|
||||
bool Context::allowBF16ReductionCuBLAS() const {
|
||||
return allow_bf16_reduction_cublas;
|
||||
}
|
||||
|
||||
void Context::setAllowBF16ReductionCuBLAS(bool allow_reduced_precision, bool allow_splitk) {
|
||||
allow_bf16_reduction_cublas = get_reduction_option(allow_reduced_precision, allow_splitk);
|
||||
void Context::setAllowBF16ReductionCuBLAS(bool b) {
|
||||
allow_bf16_reduction_cublas = b;
|
||||
}
|
||||
|
||||
bool Context::allowFP16AccumulationCuBLAS() const {
|
||||
|
@ -25,13 +25,11 @@
|
||||
#include <c10/util/CallOnce.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/hash.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <mutex>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace at {
|
||||
|
||||
@ -39,20 +37,6 @@ class Tensor;
|
||||
|
||||
enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM };
|
||||
|
||||
enum class CuBLASReductionOption : uint8_t {
|
||||
AllowReducedPrecisionWithSplitK = 0,
|
||||
DisallowReducedPrecisionAllowSplitK = 1,
|
||||
DisallowReducedPrecisionDisallowSplitK = 2,
|
||||
};
|
||||
enum class TORCH_API Float32Backend { GENERIC, CUDA, MKLDNN };
|
||||
enum class TORCH_API Float32Op { ALL, CONV, RNN, MATMUL };
|
||||
enum class TORCH_API Float32Precision { NONE, IEEE, TF32, BF16 };
|
||||
|
||||
TORCH_API Float32Backend str2backend(const std::string& name);
|
||||
TORCH_API Float32Op str2op(const std::string& name);
|
||||
TORCH_API Float32Precision str2precision(const std::string& name);
|
||||
TORCH_API std::string precision2str(Float32Precision prec);
|
||||
|
||||
class TORCH_API Context {
|
||||
public:
|
||||
Context();
|
||||
@ -226,15 +210,15 @@ class TORCH_API Context {
|
||||
bool userEnabledMkldnn() const;
|
||||
void setUserEnabledMkldnn(bool e);
|
||||
bool benchmarkCuDNN() const;
|
||||
void setBenchmarkCuDNN(bool /*b*/);
|
||||
void setBenchmarkCuDNN(bool);
|
||||
int benchmarkLimitCuDNN() const;
|
||||
void setBenchmarkLimitCuDNN(int /*b*/);
|
||||
void setBenchmarkLimitCuDNN(int);
|
||||
bool immediateMiopen() const;
|
||||
void setImmediateMiopen(bool /*b*/);
|
||||
void setImmediateMiopen(bool);
|
||||
bool deterministicCuDNN() const;
|
||||
void setDeterministicCuDNN(bool /*b*/);
|
||||
void setDeterministicCuDNN(bool);
|
||||
bool deterministicMkldnn() const;
|
||||
void setDeterministicMkldnn(bool /*b*/);
|
||||
void setDeterministicMkldnn(bool);
|
||||
bool userEnabledNNPACK() const;
|
||||
void setUserEnabledNNPACK(bool e);
|
||||
|
||||
@ -252,32 +236,32 @@ class TORCH_API Context {
|
||||
void setSDPPriorityOrder(const std::vector<int64_t>& order);
|
||||
std::array<at::SDPBackend, at::num_sdp_backends> sDPPriorityOrder();
|
||||
|
||||
void setSDPUseFlash(bool /*e*/);
|
||||
void setSDPUseFlash(bool);
|
||||
bool userEnabledFlashSDP() const;
|
||||
|
||||
void setSDPUseMemEfficient(bool /*e*/);
|
||||
void setSDPUseMemEfficient(bool);
|
||||
bool userEnabledMemEfficientSDP() const;
|
||||
|
||||
void setSDPUseMath(bool /*e*/);
|
||||
void setSDPUseMath(bool);
|
||||
bool userEnabledMathSDP() const;
|
||||
|
||||
void setSDPUseCuDNN(bool /*e*/);
|
||||
void setSDPUseCuDNN(bool);
|
||||
bool userEnabledCuDNNSDP() const;
|
||||
|
||||
void setAllowFP16BF16ReductionMathSDP(bool /*e*/);
|
||||
void setAllowFP16BF16ReductionMathSDP(bool);
|
||||
bool allowFP16BF16ReductionMathSDP() const;
|
||||
|
||||
void setSDPUseOverrideable(bool /*e*/);
|
||||
void setSDPUseOverrideable(bool);
|
||||
bool userEnabledOverrideableSDP() const;
|
||||
|
||||
at::LinalgBackend linalgPreferredBackend() const;
|
||||
void setLinalgPreferredBackend(at::LinalgBackend /*b*/);
|
||||
void setLinalgPreferredBackend(at::LinalgBackend);
|
||||
|
||||
at::BlasBackend blasPreferredBackend();
|
||||
void setBlasPreferredBackend(at::BlasBackend /*b*/);
|
||||
void setBlasPreferredBackend(at::BlasBackend);
|
||||
|
||||
at::ROCmFABackend getROCmFAPreferredBackend();
|
||||
void setROCmFAPreferredBackend(at::ROCmFABackend /*b*/);
|
||||
void setROCmFAPreferredBackend(at::ROCmFABackend);
|
||||
|
||||
// Note [Enabling Deterministic Operations]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -310,9 +294,9 @@ class TORCH_API Context {
|
||||
|
||||
bool deterministicAlgorithms() const;
|
||||
bool deterministicAlgorithmsWarnOnly() const;
|
||||
void setDeterministicAlgorithms(bool /*b*/, bool /*warn_only*/);
|
||||
void setDeterministicAlgorithms(bool, bool);
|
||||
bool deterministicFillUninitializedMemory() const;
|
||||
void setDeterministicFillUninitializedMemory(bool /*b*/);
|
||||
void setDeterministicFillUninitializedMemory(bool);
|
||||
|
||||
// Note [Writing Nondeterministic Operations]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@ -326,7 +310,13 @@ class TORCH_API Context {
|
||||
//
|
||||
// * Throw an error when `Context::deterministicAlgorithms()` is true. Most
|
||||
// of the time, this should be accomplished by calling
|
||||
// `at::globalContext().alertNotDeterminstic().
|
||||
// `at::globalContext().alertNotDeterminstic()`. However, if the
|
||||
// nondeterministic behavior is caused by the CuBLAS workspace
|
||||
// configuration in CUDA >= 10.2,
|
||||
// `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
|
||||
// called instead (in this case, a comment explaining why the operation is
|
||||
// nondeterministic is not necessary). See below for details on these
|
||||
// methods.
|
||||
//
|
||||
// * Have an entry in the list of nondeterministic PyTorch operations in the
|
||||
// docstring of `use_deterministic_algorithms()` in torch/__init__.py
|
||||
@ -350,29 +340,33 @@ class TORCH_API Context {
|
||||
// Throws an error if `Context::deterministicAlgorithms()` is true
|
||||
static void alertNotDeterministic(std::string_view const& caller);
|
||||
|
||||
// Throws an error if `Context::deterministicAlgorithms()` is true, CUDA
|
||||
// >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or
|
||||
// ":4096:8". For more details:
|
||||
// https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
|
||||
void alertCuBLASConfigNotDeterministic() const;
|
||||
|
||||
void setFloat32MatmulPrecision(const std::string& s);
|
||||
void setFloat32Precision(
|
||||
Float32Backend backend,
|
||||
Float32Op op,
|
||||
Float32Precision p);
|
||||
bool allowTF32CuDNN(std::optional<Float32Op> op = std::nullopt) const;
|
||||
void setAllowTF32CuDNN(bool /*b*/);
|
||||
const std::string& backend,
|
||||
const std::string& op,
|
||||
const std::string& s);
|
||||
bool allowTF32CuDNN(const std::string& op = std::string()) const;
|
||||
void setAllowTF32CuDNN(bool);
|
||||
bool allowTF32OneDNN() const;
|
||||
void setAllowTF32OneDNN(bool /*b*/);
|
||||
void setAllowTF32OneDNN(bool);
|
||||
bool allowTF32CuBLAS() const;
|
||||
void setAllowTF32CuBLAS(bool /*b*/);
|
||||
void setAllowTF32CuBLAS(bool);
|
||||
Float32MatmulPrecision float32MatmulPrecision() const;
|
||||
Float32Precision float32Precision(Float32Backend backend, Float32Op op) const;
|
||||
CuBLASReductionOption allowFP16ReductionCuBLAS() const;
|
||||
void setAllowFP16ReductionCuBLAS(
|
||||
bool allow_reduced_precision,
|
||||
bool allow_splitk = true);
|
||||
CuBLASReductionOption allowBF16ReductionCuBLAS() const;
|
||||
void setAllowBF16ReductionCuBLAS(
|
||||
bool allow_reduced_precision,
|
||||
bool allow_splitk = true);
|
||||
std::string float32Precision(
|
||||
const std::string& backend,
|
||||
const std::string& op) const;
|
||||
bool allowFP16ReductionCuBLAS() const;
|
||||
void setAllowFP16ReductionCuBLAS(bool);
|
||||
bool allowBF16ReductionCuBLAS() const;
|
||||
void setAllowBF16ReductionCuBLAS(bool);
|
||||
bool allowFP16AccumulationCuBLAS() const;
|
||||
void setAllowFP16AccumulationCuBLAS(bool /*b*/);
|
||||
void setAllowFP16AccumulationCuBLAS(bool);
|
||||
|
||||
// Matmuls can use a so-called "persistent" kernel which launches one CUDA
|
||||
// block for each SM on the GPU, and each block then iterates over multiple
|
||||
@ -384,7 +378,7 @@ class TORCH_API Context {
|
||||
// to make matmuls target only a subset of the SMs, so they can fully schedule
|
||||
// even next to a comms kernel, and only be a few percent slower.
|
||||
std::optional<int32_t> _SMCarveout_EXPERIMENTAL() const;
|
||||
void _setSMCarveout_EXPERIMENTAL(std::optional<int32_t> /*c*/);
|
||||
void _setSMCarveout_EXPERIMENTAL(std::optional<int32_t>);
|
||||
|
||||
at::QEngine qEngine() const;
|
||||
void setQEngine(at::QEngine e);
|
||||
@ -405,7 +399,7 @@ class TORCH_API Context {
|
||||
void setDefaultMobileCPUAllocator();
|
||||
void unsetDefaultMobileCPUAllocator();
|
||||
bool allowFP16ReductionCPU() const;
|
||||
void setAllowFP16ReductionCPU(bool /*b*/);
|
||||
void setAllowFP16ReductionCPU(bool);
|
||||
|
||||
// Preserved for BC
|
||||
void lazyInitCUDA() {
|
||||
@ -435,6 +429,7 @@ class TORCH_API Context {
|
||||
}
|
||||
|
||||
private:
|
||||
static bool checkCuBLASConfigDeterministic();
|
||||
std::array<c10::once_flag, at::COMPILE_TIME_MAX_DEVICE_TYPES> init_;
|
||||
bool enabled_cudnn = true;
|
||||
bool deterministic_cudnn = false;
|
||||
@ -462,10 +457,8 @@ class TORCH_API Context {
|
||||
: at::Float32MatmulPrecision::HIGHEST;
|
||||
int benchmark_limit_cudnn = 10;
|
||||
bool allow_tf32_cudnn = true;
|
||||
CuBLASReductionOption allow_fp16_reduction_cublas =
|
||||
CuBLASReductionOption::AllowReducedPrecisionWithSplitK;
|
||||
CuBLASReductionOption allow_bf16_reduction_cublas =
|
||||
CuBLASReductionOption::AllowReducedPrecisionWithSplitK;
|
||||
bool allow_fp16_reduction_cublas = true;
|
||||
bool allow_bf16_reduction_cublas = true;
|
||||
bool allow_fp16_accumulation_cublas = false;
|
||||
std::optional<int32_t> sm_carveout = std::nullopt;
|
||||
bool enabled_mkldnn = true;
|
||||
@ -495,20 +488,21 @@ class TORCH_API Context {
|
||||
bool enable_sparse_tensor_invariant_checks = false;
|
||||
bool allow_fp16_reduction_cpu = false;
|
||||
|
||||
using Key = std::pair<Float32Backend, Float32Op>;
|
||||
std::unordered_map<Key, Float32Precision, c10::hash<Key>> fp32_precision = {
|
||||
{{Float32Backend::GENERIC, Float32Op::ALL}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::ALL}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::CONV}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::RNN}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::MATMUL}, Float32Precision::NONE},
|
||||
{{Float32Backend::CUDA, Float32Op::ALL}, Float32Precision::NONE},
|
||||
{{Float32Backend::CUDA, Float32Op::CONV}, Float32Precision::TF32},
|
||||
{{Float32Backend::CUDA, Float32Op::RNN}, Float32Precision::TF32},
|
||||
{{Float32Backend::CUDA, Float32Op::MATMUL},
|
||||
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST
|
||||
? Float32Precision::NONE
|
||||
: Float32Precision::TF32},
|
||||
std::map<std::string, std::map<std::string, std::string>> fp32_precision = {
|
||||
{"generic", {{"all", "none"}}},
|
||||
{"mkldnn",
|
||||
{{"matmul", "none"},
|
||||
{"conv", "none"},
|
||||
{"rnn", "none"},
|
||||
{"all", "none"}}},
|
||||
{"cuda",
|
||||
{{"matmul",
|
||||
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST
|
||||
? "none"
|
||||
: "tf32"},
|
||||
{"conv", "tf32"},
|
||||
{"rnn", "tf32"},
|
||||
{"all", "none"}}},
|
||||
};
|
||||
|
||||
Allocator* prev_allocator_ptr_{nullptr};
|
||||
@ -690,4 +684,5 @@ struct TORCH_API ROCmBackwardPassGuard {
|
||||
~ROCmBackwardPassGuard();
|
||||
static bool is_backward_pass();
|
||||
};
|
||||
|
||||
} // namespace at
|
||||
|
@ -389,16 +389,37 @@ void fillVersion<DLManagedTensorVersioned>(
|
||||
// constructed out of ATen tensor
|
||||
template <class T>
|
||||
T* toDLPackImpl(const Tensor& src) {
|
||||
auto view = src;
|
||||
|
||||
// Detect whether there is need to normalize the strides
|
||||
// Background: gh-83069
|
||||
//
|
||||
// However, normalizing strides can come at a high-cost
|
||||
// to slow down toDLPack conversion 3x, so we
|
||||
// only normalize if needed.
|
||||
//
|
||||
// The following code detects whether the src follows
|
||||
// a continuous pattern. If the src follows such pattern (common-case)
|
||||
// then we do not need to normalize the strides.
|
||||
bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1;
|
||||
// less common case, try normalizing the strides
|
||||
if (need_normalize_strides) {
|
||||
// create a new tensor with possibly normalized strides
|
||||
// gh-83069
|
||||
auto shape = src.sizes();
|
||||
view = src.as_strided(shape, {1}, src.storage_offset());
|
||||
}
|
||||
|
||||
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);
|
||||
atDLMTensor->handle = src;
|
||||
atDLMTensor->handle = view;
|
||||
atDLMTensor->tensor.manager_ctx = atDLMTensor;
|
||||
atDLMTensor->tensor.deleter = &deleter<T>;
|
||||
atDLMTensor->tensor.dl_tensor.data = src.data_ptr();
|
||||
atDLMTensor->tensor.dl_tensor.data = view.data_ptr();
|
||||
atDLMTensor->tensor.dl_tensor.device = torchDeviceToDLDevice(src.device());
|
||||
atDLMTensor->tensor.dl_tensor.ndim = static_cast<int32_t>(src.dim());
|
||||
atDLMTensor->tensor.dl_tensor.dtype = getDLDataType(src);
|
||||
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(src.sizes().data());
|
||||
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(src.strides().data());
|
||||
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(view.sizes().data());
|
||||
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(view.strides().data());
|
||||
atDLMTensor->tensor.dl_tensor.byte_offset = 0;
|
||||
fillVersion(&atDLMTensor->tensor);
|
||||
|
||||
|
@ -52,16 +52,16 @@ struct DLPackTraits {};
|
||||
|
||||
template <>
|
||||
struct DLPackTraits<DLManagedTensor> {
|
||||
inline static constexpr const char* capsule = "dltensor";
|
||||
inline static constexpr const char* used = "used_dltensor";
|
||||
inline static const char* capsule = "dltensor";
|
||||
inline static const char* used = "used_dltensor";
|
||||
inline static auto toDLPack = at::toDLPack;
|
||||
inline static auto fromDLPack = at::fromDLPack;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DLPackTraits<DLManagedTensorVersioned> {
|
||||
inline static constexpr const char* capsule = "dltensor_versioned";
|
||||
inline static constexpr const char* used = "used_dltensor_versioned";
|
||||
inline static const char* capsule = "dltensor_versioned";
|
||||
inline static const char* used = "used_dltensor_versioned";
|
||||
inline static auto toDLPack = at::toDLPackVersioned;
|
||||
inline static auto fromDLPack = at::fromDLPackVersioned;
|
||||
};
|
||||
|
@ -16,8 +16,8 @@ inline void check_size_nonnegative(ArrayRef<int64_t> size) {
|
||||
|
||||
inline void check_size_nonnegative(ArrayRef<c10::SymInt> size) {
|
||||
for (const auto& x : size) {
|
||||
TORCH_SYM_CHECK(
|
||||
x.sym_ge(0),
|
||||
TORCH_CHECK(
|
||||
x.expect_size(__FILE__, __LINE__),
|
||||
"Trying to create tensor with negative dimension ",
|
||||
x,
|
||||
": ",
|
||||
|
@ -4,7 +4,6 @@
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/core/SymIntArrayRef.h>
|
||||
#include <c10/util/DimVector.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
@ -27,7 +26,9 @@ inline void infer_size_impl(
|
||||
std::optional<int64_t> infer_dim;
|
||||
for (int64_t dim = 0, ndim = shape.size(); dim != ndim; dim++) {
|
||||
if (TORCH_GUARD_OR_FALSE(sym_eq(shape[dim], -1))) {
|
||||
TORCH_CHECK(!infer_dim, "only one dimension can be inferred");
|
||||
if (infer_dim) {
|
||||
throw std::runtime_error("only one dimension can be inferred");
|
||||
}
|
||||
infer_dim = dim;
|
||||
} else {
|
||||
// in case of unbacked shape[dim] we assume it's not -1 and add a runtime
|
||||
|
@ -58,7 +58,7 @@ namespace at {
|
||||
namespace{
|
||||
|
||||
// PyTorch allows operations to specify dim 0 and dim -1 on a scalar tensor.
|
||||
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
return dim == 0 || dim == -1;
|
||||
}
|
||||
|
||||
@ -365,7 +365,7 @@ Tensor select_batching_rule(const Tensor& self, int64_t dim, int64_t index) {
|
||||
return self_physical.getPhysicalToLogicalMap().apply(result);
|
||||
}
|
||||
|
||||
int64_t getGradInputPhysicalDim(int64_t dim, IntArrayRef input_sizes, int64_t num_batch_dims) {
|
||||
static int64_t getGradInputPhysicalDim(int64_t dim, IntArrayRef input_sizes, int64_t num_batch_dims) {
|
||||
return maybe_wrap_dim(dim, static_cast<int64_t>(input_sizes.size())) + num_batch_dims;
|
||||
}
|
||||
|
||||
@ -488,7 +488,7 @@ Tensor view_as_complex_batching_rule(const Tensor& self) {
|
||||
// Checks that the smallest batch stride is greater than the largest example
|
||||
// stride. This is something we can support but we choose not to because it's
|
||||
// potentially error prone.
|
||||
void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_batch_dims) {
|
||||
static void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_batch_dims) {
|
||||
auto smallest_batch_stride = std::min_element(
|
||||
physical_strides.begin(), physical_strides.begin() + num_batch_dims);
|
||||
auto largest_example_stride = std::max_element(
|
||||
@ -508,7 +508,7 @@ void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_bat
|
||||
// given (sizes, strides, storage_offset) returns the maximum location that
|
||||
// can be indexed (or nullopt if such a location doesn't exist, e.g., tensors
|
||||
// with zero-size dims).
|
||||
std::optional<int64_t> maximum_indexable_location(
|
||||
static std::optional<int64_t> maximum_indexable_location(
|
||||
IntArrayRef sizes, IntArrayRef strides, int64_t storage_offset) {
|
||||
auto result = native::storage_size_for(sizes, strides);
|
||||
if (result == 0) {
|
||||
@ -521,7 +521,7 @@ std::optional<int64_t> maximum_indexable_location(
|
||||
// This checks that the range of possible memory locations accessible by
|
||||
// x.as_strided(sizes, strides, maybe_storage_offset)
|
||||
// are within the bounds of possible memory locations accessible by x.
|
||||
void checkBasicAsStridedValidForSlice(
|
||||
static void checkBasicAsStridedValidForSlice(
|
||||
const Tensor& physical_tensor,
|
||||
int64_t num_batch_dims,
|
||||
IntArrayRef sizes,
|
||||
|
@ -62,7 +62,7 @@ constexpr const char* unknown_eventname = "eventname not specified";
|
||||
#endif
|
||||
} // namespace (anonymous)
|
||||
|
||||
MapAllocator::MapAllocator(WithFd /*unused*/, std::string_view filename, int fd, int flags, size_t size)
|
||||
MapAllocator::MapAllocator(WithFd, std::string_view filename, int fd, int flags, size_t size)
|
||||
: filename_(filename.empty() ? unknown_filename : filename)
|
||||
, size_(0) // to be filled later
|
||||
#ifdef _WIN32
|
||||
@ -292,28 +292,6 @@ MapAllocator::MapAllocator(WithFd /*unused*/, std::string_view filename, int fd,
|
||||
if (ftruncate(fd, static_cast<off_t>(size)) == -1) {
|
||||
TORCH_CHECK(false, "unable to resize file <", filename_, "> to the right size: ", c10::utils::str_error(errno), " (", errno, ")");
|
||||
}
|
||||
|
||||
#ifdef HAVE_POSIX_FALLOCATE
|
||||
if (flags_ & ALLOCATOR_MAPPED_SHAREDMEM) {
|
||||
for (;;) {
|
||||
if (posix_fallocate(fd, 0, static_cast<off_t>(size)) == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (errno == EINTR) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (errno == EINVAL || errno == EOPNOTSUPP) {
|
||||
// the underlying filesystem does not support the operation
|
||||
break;
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "unable to allocate shared memory(shm) for file <", filename_, ">: ", c10::utils::str_error(errno), " (", errno, ")");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (fstat(fd, &file_stat) == -1 || file_stat.st_size < static_cast<int64_t>(size)) {
|
||||
#ifndef STRIP_ERROR_MESSAGES
|
||||
int last_err = errno;
|
||||
@ -494,7 +472,7 @@ RefcountedMapAllocator::RefcountedMapAllocator(const char *filename, int flags,
|
||||
|
||||
initializeAlloc();
|
||||
}
|
||||
RefcountedMapAllocator::RefcountedMapAllocator(WithFd /*unused*/, const char *filename, int fd, int flags, size_t size)
|
||||
RefcountedMapAllocator::RefcountedMapAllocator(WithFd, const char *filename, int fd, int flags, size_t size)
|
||||
: RefcountedMapAllocatorArgCheck(flags)
|
||||
, MapAllocator(WITH_FD, filename, flags, fd, size + map_alloc_alignment) {
|
||||
|
||||
@ -614,7 +592,7 @@ at::DataPtr MapAllocator::makeDataPtr(std::string_view filename, int flags, size
|
||||
return {context->data(), context, &deleteMapAllocator, at::DeviceType::CPU};
|
||||
}
|
||||
|
||||
at::DataPtr MapAllocator::makeDataPtr(WithFd /*unused*/, const char *filename, int fd, int flags, size_t size, size_t* actual_size_out) {
|
||||
at::DataPtr MapAllocator::makeDataPtr(WithFd, const char *filename, int fd, int flags, size_t size, size_t* actual_size_out) {
|
||||
auto* context = new MapAllocator(WITH_FD, filename, fd, flags, size);
|
||||
if (actual_size_out) *actual_size_out = context->size();
|
||||
return {context->data(), context, &deleteMapAllocator, at::DeviceType::CPU};
|
||||
@ -626,7 +604,7 @@ at::DataPtr RefcountedMapAllocator::makeDataPtr(const char *filename, int flags,
|
||||
return {context->data(), context, &deleteRefcountedMapAllocator, at::DeviceType::CPU};
|
||||
}
|
||||
|
||||
at::DataPtr RefcountedMapAllocator::makeDataPtr(WithFd /*unused*/, const char *filename, int fd, int flags, size_t size, size_t* actual_size_out) {
|
||||
at::DataPtr RefcountedMapAllocator::makeDataPtr(WithFd, const char *filename, int fd, int flags, size_t size, size_t* actual_size_out) {
|
||||
auto* context = new RefcountedMapAllocator(WITH_FD, filename, fd, flags, size);
|
||||
if (actual_size_out) *actual_size_out = context->size() - map_alloc_alignment;
|
||||
return {context->data(), context, &deleteRefcountedMapAllocator, at::DeviceType::CPU};
|
||||
|
@ -25,7 +25,7 @@ class TORCH_API MapAllocator {
|
||||
public:
|
||||
MapAllocator(std::string_view filename, int flags, size_t size);
|
||||
MapAllocator(
|
||||
WithFd /*unused*/,
|
||||
WithFd,
|
||||
std::string_view filename,
|
||||
int fd,
|
||||
int flags,
|
||||
@ -59,14 +59,14 @@ class TORCH_API MapAllocator {
|
||||
return flags_;
|
||||
}
|
||||
|
||||
static MapAllocator* fromDataPtr(const at::DataPtr& /*dptr*/);
|
||||
static MapAllocator* fromDataPtr(const at::DataPtr&);
|
||||
static at::DataPtr makeDataPtr(
|
||||
std::string_view filename,
|
||||
int flags,
|
||||
size_t size,
|
||||
size_t* actual_size_out);
|
||||
static at::DataPtr makeDataPtr(
|
||||
WithFd /*unused*/,
|
||||
WithFd,
|
||||
const char* filename,
|
||||
int fd,
|
||||
int flags,
|
||||
@ -105,13 +105,13 @@ class TORCH_API RefcountedMapAllocator : private RefcountedMapAllocatorArgCheck,
|
||||
public:
|
||||
RefcountedMapAllocator(const char* filename, int flags, size_t size);
|
||||
RefcountedMapAllocator(
|
||||
WithFd /*unused*/,
|
||||
WithFd,
|
||||
const char* filename,
|
||||
int fd,
|
||||
int flags,
|
||||
size_t size);
|
||||
|
||||
static RefcountedMapAllocator* fromDataPtr(const at::DataPtr& /*dptr*/);
|
||||
static RefcountedMapAllocator* fromDataPtr(const at::DataPtr&);
|
||||
RefcountedMapAllocator(const RefcountedMapAllocator&) = delete;
|
||||
RefcountedMapAllocator(RefcountedMapAllocator&&) = delete;
|
||||
RefcountedMapAllocator& operator=(const RefcountedMapAllocator&) = delete;
|
||||
@ -122,7 +122,7 @@ class TORCH_API RefcountedMapAllocator : private RefcountedMapAllocatorArgCheck,
|
||||
size_t size,
|
||||
size_t* actual_size_out);
|
||||
static at::DataPtr makeDataPtr(
|
||||
WithFd /*unused*/,
|
||||
WithFd,
|
||||
const char* filename,
|
||||
int fd,
|
||||
int flags,
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user