Compare commits

..

18 Commits

Author SHA1 Message Date
4f0a730a33 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-13 14:22:44 -07:00
be36363f4c Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-12 22:29:04 -07:00
eb5ac769cc Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-10 20:04:03 -07:00
73d7074090 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-08 20:23:10 -07:00
b14843c72a Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-08 20:12:11 -07:00
e7849b0e25 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-08 17:06:26 -07:00
f2561c472b Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-08 16:39:39 -07:00
5032e047b1 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-06 22:08:50 -07:00
068fb27c0f Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-02 14:23:25 -07:00
cf74c639e5 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-10-01 01:21:53 -07:00
d5c504aa6f Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-30 15:31:27 -07:00
77dcb8873b Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Creates the fork/join stream ops. These ops are passthrough ops which mutate all of their args (without actually performing any computation on them) so that during functionalization, implicit dependencies are added on all of their args. This allows us to prevent reordering during our pre/post grad graph passes. 


Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-18 23:57:32 -07:00
e2e99a1a99 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-18 16:10:31 -07:00
8076709416 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-16 10:21:33 -07:00
666a6ade8d Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-16 01:06:15 -07:00
57f1fed643 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-16 00:53:02 -07:00
ba34374652 Update base for Update on "[user-cuda-streams] Add fork/join custom ops"
Make custom ops inplace

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

[ghstack-poisoned]
2025-09-15 17:48:42 -07:00
2a1a2804ca [user-cuda-streams] Pass streams/events to the graph via lookup table
[ghstack-poisoned]
2025-09-13 23:43:03 -07:00
566 changed files with 7158 additions and 14965 deletions

View File

@ -187,22 +187,19 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
export USE_CUFILE=0
else
DEPS_LIST+=(
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
DEPS_SONAME+=(
"libnvToolsExt.so.1"
"libcublas.so.12"
"libcublasLt.so.12"
"libcudart.so.12"
"libnvrtc.so.12"
"libcupti.so.12")
if [[ $CUDA_VERSION != 12.9* ]]; then
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
DEPS_SONAME+=("libnvToolsExt.so.1")
fi
fi
else
echo "Using nvidia libs from pypi."

View File

@ -1615,7 +1615,6 @@ test_operator_benchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
ARCH=$(uname -m)
test_inductor_set_cpu_affinity
@ -1630,7 +1629,7 @@ test_operator_benchmark() {
pip_install pandas
python check_perf_csv.py \
--actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
--expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv"
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {

View File

@ -8,7 +8,6 @@ assignees: ''
---
> NOTE: Remember to label this issue with "`ci: sev`"
> If you want autorevert to be disabled, keep the ci: disable-autorevert label
<!-- Add the `merge blocking` label to this PR to prevent PRs from being merged while this issue is open -->

View File

@ -1,7 +1,7 @@
---
name: "D❌\U0001F519 ISABLE AUTOREVERT"
name: DISABLE AUTOREVERT
about: Disables autorevert when open
title: "[DISABLE AUTOREVERT]"
title: "❌​\U0001F519 [DISABLE AUTOREVERT]"
labels: 'ci: disable-autorevert'
assignees: ''

View File

@ -65,7 +65,7 @@ runs:
cd .ci/lumen_cli
python3 -m pip install -e .
)
MAX_JOBS="$(nproc --ignore=10)"
MAX_JOBS="$(nproc --ignore=6)"
export MAX_JOBS
# Split the comma-separated list and build each target

View File

@ -1 +1 @@
1b013f5b5a87a1882eb143c26d79d091150d6a37
8ad2aa5d354d1bf432339113860185d5a5d1abbd

View File

@ -1 +1 @@
faffd5cf673615583da6517275e361cb3dbc77e6
f5c6c2ec6490455e86f67b2a25c10390d60a27f7

View File

@ -15,8 +15,7 @@ ciflow_push_tags:
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-compare
- ciflow/inductor-perf-test-nightly-rocm-mi300
- ciflow/inductor-perf-test-nightly-rocm-mi355
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-periodic
- ciflow/inductor-rocm

View File

@ -241,11 +241,7 @@ def generate_libtorch_matrix(
arches += CUDA_ARCHES
arches += ROCM_ARCHES
elif os == "windows":
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
# in 2.10
windows_cuda_arches = CUDA_ARCHES.copy()
windows_cuda_arches.remove("12.9")
arches += windows_cuda_arches
arches += CUDA_ARCHES
if libtorch_variants is None:
libtorch_variants = [
"shared-with-deps",
@ -309,11 +305,7 @@ def generate_wheels_matrix(
if os == "linux":
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
elif os == "windows":
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
# in 2.10
windows_cuda_arches = CUDA_ARCHES.copy()
windows_cuda_arches.remove("12.9")
arches += windows_cuda_arches + XPU_ARCHES
arches += CUDA_ARCHES + XPU_ARCHES
elif os == "linux-aarch64":
# Separate new if as the CPU type is different and
# uses different build/test scripts

View File

@ -37,7 +37,7 @@ on:
runner:
required: false
type: string
default: "linux.c7i.2xlarge"
default: "linux.2xlarge"
description: |
Label of the runner this job should run on.
test-matrix:

View File

@ -27,8 +27,9 @@ jobs:
fail-fast: false
matrix:
python-version: [ '3.12' ]
# TODO (huydhn): Add cu130 after https://github.com/vllm-project/vllm/issues/24464 is resolved
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
device: [ 'cu128', 'cu129', 'cu130' ]
device: [ 'cu128', 'cu129' ]
include:
- platform: manylinux_2_28_x86_64
device: cu128
@ -38,10 +39,6 @@ jobs:
device: cu129
manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.9'
runner: linux.12xlarge.memory
- platform: manylinux_2_28_x86_64
device: cu130
manylinux-image: 'pytorch/manylinux2_28-builder:cuda13.0'
runner: linux.12xlarge.memory
- platform: manylinux_2_28_aarch64
device: cu128
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.8'
@ -50,11 +47,6 @@ jobs:
device: cu129
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.9'
runner: linux.arm64.r7g.12xlarge.memory
exclude:
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
# xformers is update to support 13.0
- platform: manylinux_2_28_aarch64
device: cu130
name: "Build ${{ matrix.device }} vLLM wheel on ${{ matrix.platform }}"
runs-on: ${{ matrix.runner }}
timeout-minutes: 480
@ -177,12 +169,7 @@ jobs:
fail-fast: false
matrix:
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
device: [ 'cu128', 'cu129', 'cu130' ]
exclude:
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
# xformers is update to support 13.0
- platform: manylinux_2_28_aarch64
device: cu130
device: [ 'cu128', 'cu129' ]
env:
PLATFORM: ${{ matrix.platform }}
BUILD_DEVICE: ${{ matrix.device }}

View File

@ -788,6 +788,256 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-debug
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-debug-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-debug
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-debug-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_9-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type

View File

@ -788,6 +788,256 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-release
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-release-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-release
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-release-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: "12.9"
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.10"
build_name: libtorch-cuda12_9-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda13_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type

File diff suppressed because it is too large Load Diff

View File

@ -1,132 +0,0 @@
name: inductor-perf-nightly-rocm-mi300
on:
push:
tags:
- ciflow/inductor-perf-test-nightly-rocm-mi300/*
schedule:
- cron: 15 0 * * *
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
workflow_dispatch:
inputs:
training:
description: Run training (on by default)?
required: false
type: boolean
default: true
inference:
description: Run inference (on by default)?
required: false
type: boolean
default: true
default:
description: Run inductor_default?
required: false
type: boolean
default: false
dynamic:
description: Run inductor_dynamic_shapes?
required: false
type: boolean
default: false
cppwrapper:
description: Run inductor_cpp_wrapper?
required: false
type: boolean
default: false
cudagraphs:
description: Run inductor_cudagraphs?
required: false
type: boolean
default: true
freezing_cudagraphs:
description: Run inductor_cudagraphs with freezing for inference?
required: false
type: boolean
default: false
aotinductor:
description: Run aot_inductor for inference?
required: false
type: boolean
default: false
maxautotune:
description: Run inductor_max_autotune?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf_rocm_mi300,inductor_timm_perf_rocm_mi300,inductor_torchbench_perf_rocm_mi300
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
jobs:
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
linux-jammy-rocm-py3_10-inductor-benchmark-build:
if: github.repository_owner == 'pytorch'
name: rocm-py3_10-inductor-benchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-rocm-py3_10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm_mi300", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit
linux-jammy-rocm-py3_10-inductor-benchmark-test:
permissions:
id-token: write
contents: read
name: rocm-py3_10-inductor-benchmark-test
uses: ./.github/workflows/_rocm-test.yml
needs: linux-jammy-rocm-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-rocm-py3_10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
docker-image: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
# Disable monitor in perf tests for more investigation
disable-monitor: true
monitor-log-interval: 10
monitor-data-collect-interval: 2
secrets: inherit

View File

@ -1,11 +1,11 @@
name: inductor-perf-nightly-rocm-mi355
name: inductor-perf-nightly-rocm
on:
push:
tags:
- ciflow/inductor-perf-test-nightly-rocm-mi355/*
- ciflow/inductor-perf-test-nightly-rocm/*
schedule:
- cron: 15 0 * * *
- cron: 0 7 * * 0,3
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
workflow_dispatch:
@ -59,7 +59,7 @@ on:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf_rocm_mi355,inductor_timm_perf_rocm_mi355,inductor_torchbench_perf_rocm_mi355
default: inductor_huggingface_perf_rocm,inductor_timm_perf_rocm,inductor_torchbench_perf_rocm
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
@ -88,27 +88,23 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
{ config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
]}
secrets: inherit

View File

@ -118,9 +118,9 @@ jobs:
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running all other linters"
if [ "$CHANGED_FILES" = '*' ]; then
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
else
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh
fi
quick-checks:

View File

@ -7,11 +7,9 @@ on:
workflow_dispatch:
inputs:
test_mode:
type: choice
options:
- 'short'
- 'long'
- 'all'
required: false
type: string
default: 'short'
description: tag filter for operator benchmarks, options from long, short, all
schedule:
# Run at 07:00 UTC every Sunday
@ -30,25 +28,38 @@ permissions:
contents: read
jobs:
x86-opbenchmark-build:
opbenchmark-build:
if: github.repository_owner == 'pytorch'
name: x86-opbenchmark-build
name: opbenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_${{ inputs.test_mode || 'short' }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
]}
secrets: inherit
x86-opbenchmark-test:
name: x86-opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: x86-opbenchmark-build
opbenchmark-on-demand-build:
if: ${{ github.event_name == 'workflow_dispatch' && github.repository_owner == 'pytorch' }}
name: opbenchmark-on-demand-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_${{ inputs.test_mode }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
]}
secrets: inherit
opbenchmark-test:
name: opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: opbenchmark-build
with:
build-environment: linux-jammy-py3.10-gcc11-build
docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -180,13 +180,13 @@ jobs:
disable-monitor: false
secrets: inherit
win-vs2022-cuda12_8-py3-build:
name: win-vs2022-cuda12.8-py3
win-vs2022-cuda12_6-py3-build:
name: win-vs2022-cuda12.6-py3
uses: ./.github/workflows/_win-build.yml
needs: get-label-type
with:
build-environment: win-vs2022-cuda12.8-py3
cuda-version: "12.8"
build-environment: win-vs2022-cuda12.6-py3
cuda-version: "12.6"
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
secrets: inherit

1
.gitignore vendored
View File

@ -395,4 +395,3 @@ android/pytorch_android_torchvision/.cxx
CLAUDE.local.md
/test_*.py
/debug_*.py
CLAUDE_CONTEXT/

View File

@ -209,46 +209,6 @@ command = [
'@{{PATHSFILE}}'
]
[[linter]]
code = 'PYREFLY'
include_patterns = [
'torch/**/*.py',
'torch/**/*.pyi',
'torchgen/**/*.py',
'torchgen/**/*.pyi',
'functorch/**/*.py',
'functorch/**/*.pyi',
]
exclude_patterns = []
command = [
'python3',
'tools/linter/adapters/pyrefly_linter.py',
'--config=pyrefly.toml',
]
init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'pyrefly==0.36.2',
'sympy==1.13.3',
'types-requests==2.27.25',
'types-pyyaml==6.0.2',
'types-tabulate==0.8.8',
'types-protobuf==5.29.1.20250403',
'types-setuptools==79.0.0.20250422',
'types-jinja2==2.11.9',
'types-colorama==0.4.6',
'filelock==3.18.0',
'junitparser==2.1.1',
'rich==14.1.0',
'optree==0.17.0',
'types-openpyxl==3.1.5.20250919',
'types-python-dateutil==2.9.0.20251008'
]
[[linter]]
code = 'CLANGTIDY'
include_patterns = [

View File

@ -256,7 +256,6 @@ endif()
IF(USE_FBGEMM_GENAI)
set(FBGEMM_THIRD_PARTY ${PROJECT_SOURCE_DIR}/third_party/fbgemm/external/)
set(FBGEMM_GENAI_SRCS ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize)
if(USE_CUDA)
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
@ -293,64 +292,58 @@ IF(USE_FBGEMM_GENAI)
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
)
target_include_directories(fbgemm_genai PRIVATE
target_include_directories(fbgemm_genai PUBLIC
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${fbgemm_genai_mx8mx8bf16_grouped}
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
else()
if(USE_ROCM)
# Only include the kernels we want to build to avoid increasing binary size.
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
# Add FBGEMM_GENAI include directories for torch_ops.h
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
elseif(USE_ROCM)
# Only include the kernels we want to build to avoid increasing binary size.
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
# Add additional HIPCC compiler flags for performance
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
-mllvm
-amdgpu-coerce-illegal-types=1
-mllvm
-enable-post-misched=0
-mllvm
-greedy-reverse-local-assignment=1
-fhip-new-launch-api)
# Only compile for gfx942 for now.
# This is rather hacky, I could not figure out a clean solution :(
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
endif()
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
# Only compile for gfx942 for now.
# This is rather hacky, I could not figure out a clean solution :(
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
target_include_directories(fbgemm_genai PUBLIC
# FBGEMM version of Composable Kernel is used due to some customizations
${FBGEMM_THIRD_PARTY}/composable_kernel/include
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
endif()
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
hip_add_library(
fbgemm_genai STATIC
${fbgemm_genai_native_rocm_hip}
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
target_include_directories(fbgemm_genai PRIVATE
# FBGEMM version of Composable Kernel is used due to some customizations
${FBGEMM_THIRD_PARTY}/composable_kernel/include
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)
# Add FBGEMM_GENAI include directories for torch_ops.h
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
endif()
endif()
@ -699,6 +692,12 @@ if(USE_CUDA AND NOT USE_ROCM)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/include)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/tools/util/include)
# Add FBGEMM_GENAI include directories for torch_ops.h
if(USE_FBGEMM_GENAI)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
endif()
if($ENV{ATEN_STATIC_CUDA})
if(CUDA_VERSION VERSION_LESS_EQUAL 12.9)
list(APPEND ATen_CUDA_DEPENDENCY_LIBS

View File

@ -389,16 +389,37 @@ void fillVersion<DLManagedTensorVersioned>(
// constructed out of ATen tensor
template <class T>
T* toDLPackImpl(const Tensor& src) {
auto view = src;
// Detect whether there is need to normalize the strides
// Background: gh-83069
//
// However, normalizing strides can come at a high-cost
// to slow down toDLPack conversion 3x, so we
// only normalize if needed.
//
// The following code detects whether the src follows
// a continuous pattern. If the src follows such pattern (common-case)
// then we do not need to normalize the strides.
bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1;
// less common case, try normalizing the strides
if (need_normalize_strides) {
// create a new tensor with possibly normalized strides
// gh-83069
auto shape = src.sizes();
view = src.as_strided(shape, {1}, src.storage_offset());
}
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);
atDLMTensor->handle = src;
atDLMTensor->handle = view;
atDLMTensor->tensor.manager_ctx = atDLMTensor;
atDLMTensor->tensor.deleter = &deleter<T>;
atDLMTensor->tensor.dl_tensor.data = src.data_ptr();
atDLMTensor->tensor.dl_tensor.data = view.data_ptr();
atDLMTensor->tensor.dl_tensor.device = torchDeviceToDLDevice(src.device());
atDLMTensor->tensor.dl_tensor.ndim = static_cast<int32_t>(src.dim());
atDLMTensor->tensor.dl_tensor.dtype = getDLDataType(src);
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(src.sizes().data());
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(src.strides().data());
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(view.sizes().data());
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(view.strides().data());
atDLMTensor->tensor.dl_tensor.byte_offset = 0;
fillVersion(&atDLMTensor->tensor);

View File

@ -2,7 +2,6 @@
#include <mutex>
#include <ATen/CachedTensorUtils.h>
#include <c10/core/GradMode.h>
#include <c10/util/flat_hash_map.h>
namespace at::autocast {
@ -37,29 +36,10 @@ namespace {
using weakref_type = c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl>;
using val_type = std::tuple<weakref_type, Tensor>;
// We maintain separate caches for gradient-enabled and gradient-disabled modes.
// This ensures that tensors cached in torch.no_grad() (with requires_grad=False)
// are not incorrectly reused in gradient-enabled contexts.
// This fixes issue #158232 while maintaining optimal performance for both modes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_enabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_enabled;
return cached_casts_grad_enabled;
ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts;
return cached_casts;
}
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_disabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_disabled;
return cached_casts_grad_disabled;
}
// Helper function to get the appropriate cache based on current gradient mode.
// This allows us to cache tensors separately for grad-enabled and grad-disabled contexts,
// preventing incorrect cache hits when gradient mode changes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
return at::GradMode::is_enabled() ?
get_cached_casts_grad_enabled() :
get_cached_casts_grad_disabled();
}
std::mutex cached_casts_mutex;
@ -106,9 +86,7 @@ thread_local bool cache_enabled = true;
void clear_cache() {
const std::lock_guard<std::mutex> lock(cached_casts_mutex);
// Clear both caches to ensure consistent behavior regardless of current gradient mode
get_cached_casts_grad_enabled().clear();
get_cached_casts_grad_disabled().clear();
get_cached_casts().clear();
}
int increment_nesting() {
@ -143,11 +121,6 @@ Tensor cached_cast(at::ScalarType to_type, const Tensor& arg, DeviceType device_
if (is_eligible(arg, device_type) && (arg.scalar_type() != to_type)) {
// Heuristic: Do what Apex does, and cache lower_precision_fp casts of fp32 model weights (leaves).
// See cached_casts declaration above for detailed strategy.
//
// We maintain separate caches for gradient-enabled and gradient-disabled modes
// (see get_cached_casts() above). This ensures correctness when mixing torch.no_grad()
// with torch.autocast(), while maintaining optimal performance for both training and inference.
// This fixes issue #158232 without any performance regression.
bool can_try_cache = (to_type == get_lower_precision_fp_from_device_type(device_type) &&
arg.scalar_type() == at::kFloat && arg.requires_grad() &&
arg.is_leaf() && !arg.is_view() && cache_enabled &&

View File

@ -624,14 +624,7 @@ struct TORCH_API IValue final {
IValue(const c10::SymBool& i) {
if (auto mi = i.maybe_as_bool()) {
tag = Tag::Bool;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
payload.u.as_int = *mi;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* due to byteorder if value assigned as_int, as_bool actually is not set correctly */
payload.u.as_bool = *mi;
#else
#error Unexpected or undefined __BYTE_ORDER__
#endif
} else {
tag = Tag::SymBool;
payload.u.as_intrusive_ptr = i.toSymNodeImpl().release();

View File

@ -13,7 +13,6 @@
#include <c10/core/ScalarType.h>
#include <ATen/cuda/tunable/TunableOp.h>
#include <ATen/cuda/tunable/Tunable.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/cuda/Exceptions.h>
#include <c10/util/StringUtil.h>
@ -151,7 +150,6 @@ inline std::string ScalarTypeToBLASType(c10::ScalarType scalar_type) {
BLASType = "unknown";
}
return BLASType;
}
// Similar to Compute Type in GemmRocblas.h
@ -246,25 +244,33 @@ inline std::string to_string_epilogue(const at::cuda::blas::GEMMAndBiasActivatio
namespace detail {
static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size, const NumericalCheckConfig& config) {
if (!config.enabled) {
return true; // skip when disabled
}
static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size) {
auto options = at::TensorOptions().dtype(dtype).device(at::kCUDA);
// comparison done as 1D tensor
at::Tensor ref = at::from_blob(c, {size}, options);
at::Tensor oth = at::from_blob(other_c, {size}, options);
at::Tensor ref_float = ref.to(at::kFloat);
at::Tensor oth_float = oth.to(at::kFloat);
const bool ok = at::allclose(ref_float, oth_float, config.rtol, config.atol);
if (ok) {
TUNABLE_LOG3("├──verify numerics: PASSED with atol=", config.atol, ", rtol=", config.rtol);
} else {
TUNABLE_LOG3("├──verify numerics: FAILED with atol=", config.atol, ", rtol=", config.rtol);
std::vector<double> atols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
std::vector<double> rtols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
double last_succeed_atol = 1;
double last_succeed_rtol = 1;
for (auto& atol : atols) {
for (auto& rtol : rtols) {
if (at::allclose(ref_float, oth_float, rtol, atol)) {
last_succeed_atol = atol;
last_succeed_rtol = rtol;
}
}
}
return ok;
if (last_succeed_atol == 1) {
return false;
}
else {
TUNABLE_LOG3("├──verify numerics: atol=", last_succeed_atol, ", rtol=", last_succeed_rtol);
}
return true;
}
}
@ -349,10 +355,8 @@ struct GemmParams : OpParams {
}
TuningStatus NumericalCheck(GemmParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
auto c_dtype = c10::CppTypeToScalarType<T>::value;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};
@ -445,10 +449,8 @@ struct GemmAndBiasParams : OpParams {
}
TuningStatus NumericalCheck(GemmAndBiasParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
auto c_dtype = c10::CppTypeToScalarType<T>::value;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};
@ -544,10 +546,8 @@ struct GemmStridedBatchedParams : OpParams {
}
TuningStatus NumericalCheck(GemmStridedBatchedParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
auto c_dtype = c10::CppTypeToScalarType<C_Dtype>::value;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};
@ -663,9 +663,7 @@ struct ScaledGemmParams : OpParams {
}
TuningStatus NumericalCheck(ScaledGemmParams<T> *other) {
auto* ctx = getTuningContext();
auto cfg = ctx->GetNumericalCheckConfig();
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
}
char transa{};

View File

@ -145,7 +145,7 @@ programmatically since the settings become fixed. Use the C++ or Python APIs ins
| PYTORCH_TUNABLEOP_VERBOSE | Default is 0. Set to 1 to enable basic logging. 2 for basic tuning status. 3 for full trace. |
| PYTORCH_TUNABLEOP_VERBOSE_FILENAME | Default is "err" for stderr. Set to "out" for stdout or a filename for capturing verbose logging. |
| PYTORCH_TUNABLEOP_FILENAME | Default is 'tunableop_results.csv'. |
| PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is off. Set 'atol_rtol' to enable, for example "1e-5_1e-5". |
| PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is 0. Set to 1 to enable. |
| PYTORCH_TUNABLEOP_ROCBLAS_ENABLED | Default is 1. Set to 0 to disable rocblas being considered during tuning. |
| PYTORCH_TUNABLEOP_HIPBLASLT_ENABLED | Default is 1. Set to 0 to disable hipblaslt being considered during tuning. |
| PYTORCH_TUNABLEOP_MAX_TUNING_DURATION_MS | Default is 30. Unit is milliseconds. |
@ -173,9 +173,10 @@ All python APIs exist in the `torch.cuda.tunable` module.
| get_max_tuning_iterations() -> int | |
| set_filename(filename: str, insert_device_ordinal: bool = False) -> None | |
| get_filename() -> str | |
| set_numerical_check_tolerances(enable: bool, atol: float, rtol: float) -> None | Enable or disable numerical checking; atol and rtol default to 1e-5.
| get_results() -> Tuple[str, str, str, float] | |
| get_validators() -> Tuple[str, str] | |
| write_file_on_exit(val: bool) -> None | Default is True. |
| write_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). |
| read_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). |
| tune_gemm_in_file(filename: str) -> None | read an untuned file and tune GEMMs in it. |
| mgpu_tune_gemm_in_file(filename_pattern: str, num_gpus: int) -> None: -> None | read one or more untuned files and tune all unique GEMMs on one or more GPUs. |

View File

@ -107,30 +107,14 @@ void TuningResultsManager::AddImpl(const std::string& op_signature,
}
void TuningResultsManager::Add(const std::string& op_signature, const std::string& params_signature, ResultEntry best) {
bool is_new = false;
ResultEntry inserted = ResultEntry::Null();
std::scoped_lock l{lock_};
// ---- mutate maps under results lock ----
{
std::scoped_lock l{lock_};
auto& km = results_[op_signature]; // creates if missing
is_new = (km.find(params_signature) == km.end());
AddImpl(op_signature, params_signature, std::move(best), km);
if (is_new) {
inserted = km.at(params_signature); // snapshot for I/O after unlocking
}
}
if (!is_new) return; // only write once per unique (op, params)
TuningContext* ctx = getTuningContext();
if (ctx->IsTuningEnabled() && !ctx->IsRecordUntunedEnabled()) {
InitRealtimeAppend(ctx->GetFilename(), ctx->GetTuningResultsValidator().GetAllValidators());
if (is_new && realtime_out_ && realtime_out_->good()) {
AppendResultLine(op_signature, params_signature, inserted);
}
auto it = results_.find(op_signature);
if (it == results_.end()) {
it = results_.insert({op_signature, {}}).first;
}
AddImpl(op_signature, params_signature, std::move(best), it->second);
}
void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature,
@ -166,77 +150,6 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std
}
}
void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const std::unordered_map<std::string, std::string>& validators) {
std::scoped_lock fl{realtime_file_mutex_};
if (realtime_out_ && realtime_out_->good() && realtime_filename_ == filename) {
return;
}
if (realtime_out_ && realtime_filename_ != filename) {
realtime_out_->flush();
realtime_out_->close();
realtime_out_.reset();
validators_written_ = false;
}
bool file_exists = false;
bool file_empty = true;
{
std::ifstream check_file(filename);
if (check_file.good()) {
file_exists = true;
file_empty = (check_file.peek() == std::ifstream::traits_type::eof());
}
}
realtime_out_ = std::make_unique<std::ofstream>(filename, std::ios::out | std::ios::app);
if (!realtime_out_->good()) {
TORCH_WARN("TunableOp realtime append: failed to open '", filename,"'");
realtime_out_.reset();
return;
}
if(!file_exists || file_empty) {
for(const auto& [key, val] : validators) {
(*realtime_out_) << "Validator," << key << "," << val << std::endl;
realtime_out_->flush();
}
validators_written_ = true;
TUNABLE_LOG2("Wrote validators to realtime output file");
}
realtime_filename_ = filename;
}
void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std::string& param_sig, const ResultEntry& result) {
std::scoped_lock fl{realtime_file_mutex_};
if(!realtime_out_ || !realtime_out_->good()) {
return;
}
(*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl;
realtime_out_->flush(); //ensure immediate write to disk
TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result);
}
void TuningResultsManager::CloseRealtimeAppend() {
std::scoped_lock fl{realtime_file_mutex_};
if(realtime_out_) {
realtime_out_->flush();
realtime_out_->close();
realtime_out_.reset();
TUNABLE_LOG2("Closed realtime output file");
}
}
void TuningResultsManager::Delete(const std::string& op_signature, const std::string& params_signature) {
std::scoped_lock l{lock_};
@ -483,6 +396,7 @@ TuningContext::TuningContext() :
tuning_enable_{true},
record_untuned_enable_{false},
manager_initialized_{false},
write_file_on_exit_{true},
numerics_check_enable_{false},
max_tuning_duration_ms_{30},
max_tuning_iterations_{100},
@ -503,8 +417,20 @@ TuningContext::~TuningContext() {
// but doesn't do any computation itself.
return;
}
TUNABLE_LOG1("Closing File");
GetTuningResultsManager().CloseRealtimeAppend(); // Since, we do instant logging by default now.
auto filename = GetFilename();
if (IsTunableOpEnabled() && IsTuningEnabled() && !filename.empty() && write_file_on_exit_) {
if (results_count_from_input_file_ < GetTuningResultsManager().GetSize()) {
if (results_count_from_input_file_ > 0) {
TUNABLE_LOG1("additional tuning results available, rewriting file ", filename);
}
else {
TUNABLE_LOG1("writing file ", filename);
}
if (!WriteFile(filename)) {
TUNABLE_LOG1("failed to write file ", filename);
}
}
}
if (untuned_file_.good()) {
untuned_file_.close();
@ -585,54 +511,20 @@ std::ofstream& TuningContext::GetUntunedFile(){
return untuned_file_;
}
void TuningContext::WriteFileOnExit(bool value) {
write_file_on_exit_ = value;
}
void TuningContext::EnableNumericsCheck(bool value) {
numerics_check_enable_ = value;
}
NumericalCheckConfig TuningContext::GetNumericalCheckConfig() const {
const auto env_opt = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK");
if (!env_opt.has_value()) {
return numerics_cfg_;
}
const std::string& env = env_opt.value();
if (env == "0") {
return NumericalCheckConfig(false, 1e-5, 1e-5);
}
const size_t underscore = env.find('_');
TORCH_CHECK(
underscore != std::string::npos,
"Invalid PYTORCH_TUNABLEOP_NUMERICAL_CHECK format. "
"Expected 'atol_rtol', got: ",
env);
double atol = 0.0;
double rtol = 0.0;
try {
atol = std::stod(env.substr(0, underscore));
rtol = std::stod(env.substr(underscore + 1));
} catch (const std::exception& e) {
TORCH_CHECK(false, "Failed to parse PYTORCH_TUNABLEOP_NUMERICAL_CHECK: ", e.what());
}
TORCH_CHECK( atol > 0.0 && rtol > 0.0, "Tolerance values must be positive. atol=", atol, ", rtol=", rtol);
return NumericalCheckConfig(true, atol, rtol);
}
void TuningContext::SetNumericalCheckConfig(bool enabled, double atol, double rtol) {
TORCH_CHECK(atol > 0.0 && rtol > 0.0, "Numerical check tolerances must be positive");
numerics_cfg_ = {enabled, atol, rtol};
}
bool TuningContext::IsNumericsCheckEnabled() const {
const auto cfg = GetNumericalCheckConfig();
return cfg.enabled || numerics_check_enable_;
const auto env = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK");
if (env == "1") {
return true;
}
return numerics_check_enable_;
}
void TuningContext::SetMaxTuningDurationMs(int max_duration_ms) {
@ -742,6 +634,11 @@ TuningResultsManager& TuningContext::GetTuningResultsManager() {
auto filename = GetFilename();
if (!filename.empty() && !IsRecordUntunedEnabled()) {
ReadFile(filename);
// attempt immediately to open file for writing to catch errors early
std::ofstream file(filename, std::ios::out | std::ios::app);
if (!file.good()) {
TORCH_WARN("failed to open file '", filename, "' for writing; your tuning results will not be saved");
}
}
});
return manager_;
@ -847,6 +744,27 @@ bool TuningContext::ReadFile(const std::string& filename_) {
return true;
}
bool TuningContext::WriteFile(const std::string& filename_) {
std::string filename = filename_.empty() ? GetFilename() : filename_;
std::ofstream file(filename, std::ios::out | std::ios::trunc);
if (!file.good()) {
TUNABLE_LOG1("error opening tuning results file for writing ", filename);
return false;
}
auto validators = GetTuningResultsValidator().GetAllValidators();
for (const auto& [key, val] : validators) {
file << "Validator," << key << "," << val << std::endl;
}
auto results = GetTuningResultsManager().Dump();
for (const auto& [op_sig, kernelmap] : results) {
for (const auto& [param_sig, result] : kernelmap) {
file << op_sig << "," << param_sig << "," << result << std::endl;
}
}
file.close();
return true;
}
namespace {
struct MaybeDelete {

View File

@ -103,24 +103,10 @@ class TORCH_CUDA_CPP_API TuningResultsManager {
void RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature,
const std::string& params_signature, const std::string& blas_signature);
void InitRealtimeAppend(
const std::string& filename,
const std::unordered_map<std::string, std::string>& validators);
void AppendResultLine(const std::string& op_sig,
const std::string& param_sig,
const ResultEntry& result);
void CloseRealtimeAppend(); // For clean shutdown
private:
std::mutex lock_;
std::mutex realtime_file_mutex_;
std::unique_ptr<std::ofstream> realtime_out_;
std::string realtime_filename_;
ResultsMap results_;
UntunedMap untuned_results_;
bool validators_written_ = false;
};
@ -148,16 +134,6 @@ class TORCH_CUDA_CPP_API TuningResultsValidator {
GetValidateFuncs validators_;
};
struct NumericalCheckConfig {
bool enabled{false};
double atol{1e-5};
double rtol{1e-5};
NumericalCheckConfig() = default;
NumericalCheckConfig(bool e, double a, double r) : enabled(e), atol(a), rtol(r) {}
};
class TORCH_CUDA_CPP_API TuningContext {
public:
TuningContext();
@ -179,8 +155,6 @@ class TORCH_CUDA_CPP_API TuningContext {
void EnableNumericsCheck(bool value);
bool IsNumericsCheckEnabled() const;
void SetNumericalCheckConfig(bool enabled, double atol, double rtol);
NumericalCheckConfig GetNumericalCheckConfig() const;
void SetMaxTuningDurationMs(int max_duration_ms);
int GetMaxTuningDurationMs() const;
@ -211,7 +185,10 @@ class TORCH_CUDA_CPP_API TuningContext {
void SetFilename(const std::string& filename, bool insert_device_ordinal=false);
std::string GetFilename() const;
void WriteFileOnExit(bool value);
bool ReadFile(const std::string& filename={});
bool WriteFile(const std::string& filename={});
template<class... Types>
void Log(int level, Types... args) {
@ -230,6 +207,7 @@ class TORCH_CUDA_CPP_API TuningContext {
bool tuning_enable_;
bool record_untuned_enable_;
bool manager_initialized_;
bool write_file_on_exit_;
bool numerics_check_enable_;
int max_tuning_duration_ms_;
int max_tuning_iterations_;
@ -244,8 +222,6 @@ class TORCH_CUDA_CPP_API TuningContext {
std::ofstream untuned_file_;
size_t results_count_from_input_file_;
bool is_shutting_down_;
NumericalCheckConfig numerics_cfg_{};
};
TORCH_CUDA_CPP_API TuningContext* getTuningContext();

View File

@ -267,10 +267,27 @@ class TunableOp {
for (size_t i = 0; i < op_names_.size(); i++) {
auto* candidate = ops_[op_names_[i]].get(); // borrow pointer
auto status = candidate->Call(reusable_params[0]);
if (status != OK) {
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
if (do_numerics_check) {
ParamsT* numerical_params = params->DeepCopy(false);
auto status = candidate->Call(numerical_params);
if (status != OK) {
numerical_params->Delete();
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
status = reference_params->NumericalCheck(numerical_params);
numerical_params->Delete();
if (status != OK) {
TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
}
else {
auto status = candidate->Call(reusable_params[0]);
if (status != OK) {
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
}
// collect a small profile
@ -293,22 +310,6 @@ class TunableOp {
continue;
}
if (do_numerics_check) {
ParamsT* numerical_params = params->DeepCopy(false);
auto status = candidate->Call(numerical_params);
if (status != OK) {
numerical_params->Delete();
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
status = reference_params->NumericalCheck(numerical_params);
numerical_params->Delete();
if (status != OK) {
TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
continue;
}
}
// for warmup does user set max duration, max iters, or both?
// warmup is skipped by default, i.e. warmup_iter = 0
// warmup will be set to the non-zero value of max_warmup_duration

View File

@ -213,22 +213,40 @@ static cudnn_grid_sample_backward_batch_rule(
return grid_sample_backward_helper_out(std::move(bw_out), 0, 0, bdim_size);
}
// uses functional formulation for one_hot under vmap to be compatible with
// fakeTensor/dynamic shapes and compiled functorch transforms.
// mirrors the meta path in aten/src/ATen/native/Onehot.cpp,
// but requires explicit positive num_classes under vmap to avoid
// data-dependent output shapes.
// TODO: replace with targetable functionalization
static Tensor one_hot_decomposition_hack(const Tensor &self, int64_t num_classes) {
TORCH_CHECK(self.dtype() == kLong, "one_hot is only applicable to index tensor.");
auto shape = self.sym_sizes().vec();
// empty tensor could be converted to one hot representation,
// but shape inference is not possible.
if (self.sym_numel() == 0) {
if (num_classes <= 0) {
TORCH_CHECK(false, "Can not infer total number of classes from empty tensor.");
} else {
shape.emplace_back(num_classes);
return at::empty_symint(shape, self.options());
}
}
// disallow implicit inference under vmap; this would be data-dependent
// and is intentionally guarded by Dynamo in torch/_dynamo/variables/torch.py.
TORCH_CHECK(num_classes > 0, "When vmap-ing torch.nn.functional.one_hot, please "
"provide an explicit positive num_classes argument.");
const auto options = self.options();
at::Tensor index = at::arange(num_classes, options);
return at::eq(self.unsqueeze(-1), index).to(at::kLong);
// Disabling all of the following checks. This is OK because scatter has checks too.
// Maybe one_hot should be a primitive wrt autograd so we don't have to deal with this.
// // non-empty tensor
// if (self.device().type() != at::kCUDA) {
// //for cuda, rely on device assert thrown by scatter
// TORCH_CHECK(self.min().item().toLong() >= 0, "Class values must be non-negative.");
// }
// if (self.device().type() != at::kCUDA) {
// //rely on device asserts from scatter to avoid sync here
// TORCH_CHECK(num_classes > self.max().item().toLong(), "Class values must be smaller than num_classes.");
// }
shape.emplace_back(num_classes);
Tensor ret = at::zeros_symint(shape, self.options());
return ret.scatter(-1, self.unsqueeze(-1), 1);
}
template <typename A, A a, typename C>

View File

@ -34,16 +34,16 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) {
}
}
auto shape = self.sym_sizes().vec();
auto shape = self.sizes().vec();
// empty tensor could be converted to one hot representation,
// but shape inference is not possible.
if (self.sym_numel() == 0) {
if (self.numel() == 0) {
if (num_classes <= 0) {
TORCH_CHECK(false, "Can not infer total number of classes from empty tensor.");
} else {
shape.emplace_back(num_classes);
return at::empty_symint(shape, self.options());
shape.push_back(num_classes);
return at::empty(shape, self.options());
}
}
@ -66,8 +66,8 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) {
}
}
shape.emplace_back(num_classes);
Tensor ret = at::zeros_symint(shape, self.options());
shape.push_back(num_classes);
Tensor ret = at::zeros(shape, self.options());
ret.scatter_(-1, self.unsqueeze(-1), 1);
return ret;
}

View File

@ -1906,9 +1906,11 @@ Tensor& index_fill_(
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
TORCH_CHECK(
self.is_complex() || !source.isComplex(),
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
if (!self.is_complex() && source.isComplex()) {
TORCH_CHECK(
false,
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
}
// Handle the case when `self` is 0-dim
Tensor self_nonzero_dim = (self.dim() == 0) ? self.unsqueeze(-1) : self;

View File

@ -120,7 +120,7 @@ static void pow_tensor_scalar_kernel(
} else if (dtype == ScalarType::Half) {
[&]() {
using scalar_t =
c10::impl::ScalarTypeToCPPTypeT<ScalarType::Half>;
decltype(c10::impl::ScalarTypeToCPPType<ScalarType::Half>::t);
const auto exp = exp_scalar.to<scalar_t>();
using Vec = Vectorized<scalar_t>;
cpu_kernel_vec(iter,

File diff suppressed because it is too large Load Diff

View File

@ -856,13 +856,9 @@ struct type_specialized_kernel_launcher {
out_calc_t output_offset_calculator,
loader_t loader,
storer_t storer) {
constexpr ScalarType sret_t = rt_binary_specializations[arg_index][0];
constexpr ScalarType sarg0_t = rt_binary_specializations[arg_index][1];
constexpr ScalarType sarg1_t = rt_binary_specializations[arg_index][2];
if (ret_t == sret_t && arg0_t == sarg0_t && arg1_t == sarg1_t) {
using cret_t = c10::impl::ScalarTypeToCPPTypeT<sret_t>;
using carg0_t = c10::impl::ScalarTypeToCPPTypeT<sarg0_t>;
using carg1_t = c10::impl::ScalarTypeToCPPTypeT<sarg1_t>;
if (ret_t == rt_binary_specializations[arg_index][0] &&
arg0_t == rt_binary_specializations[arg_index][1] &&
arg1_t == rt_binary_specializations[arg_index][2])
launch_vectorized_templated_kernel<
func_t,
array_t,
@ -870,9 +866,12 @@ struct type_specialized_kernel_launcher {
out_calc_t,
loader_t,
storer_t,
cret_t,
carg0_t,
carg1_t>(
decltype(c10::impl::ScalarTypeToCPPType<
rt_binary_specializations[arg_index][0]>::t),
decltype(c10::impl::ScalarTypeToCPPType<
rt_binary_specializations[arg_index][1]>::t),
decltype(c10::impl::ScalarTypeToCPPType<
rt_binary_specializations[arg_index][2]>::t)>(
numel,
f,
data,
@ -880,7 +879,6 @@ struct type_specialized_kernel_launcher {
output_offset_calculator,
loader,
storer);
}
}
};

View File

@ -38,41 +38,12 @@ __device__ inline int min(int a, int b) {
#define BLOCK_STRIDE_BWD 2 // increasing block_stride to lower # of blocks launched
#endif
template <typename index_t>
static __device__ inline index_t p_start(index_t size, int pad, int kernel, int dilation, int stride) {
const auto kernel_extent = static_cast<index_t>((kernel - 1) * dilation + 1);
return (size + pad < kernel_extent) ? index_t(0) : (size + pad - kernel_extent) / stride + 1;
static __device__ inline int p_start(int size, int pad, int kernel, int dilation, int stride) {
return (size + pad < ((kernel - 1) * dilation + 1)) ? 0 : (size + pad - ((kernel - 1) * dilation + 1)) / stride + 1;
}
template <typename index_t>
static __device__ inline index_t p_end(index_t size, int pad, index_t pooled_size, int stride) {
return std::min((size + pad) / stride + 1, pooled_size);
}
static inline bool can_use_int32_nhwc(
int64_t nbatch, int64_t channels,
int64_t height, int64_t width,
int64_t pooled_height, int64_t pooled_width,
int64_t in_stride_n, int64_t in_stride_c,
int64_t in_stride_h, int64_t in_stride_w)
{
constexpr int64_t int_max = std::numeric_limits<int>::max();
int64_t max_intra_batch =
(height ? (height - 1) * in_stride_h : 0) +
(width ? (width - 1) * in_stride_w : 0) +
(channels? (channels - 1) * in_stride_c : 0);
int64_t max_input_offset = (nbatch ? (nbatch - 1) * in_stride_n : 0) + max_intra_batch;
if (max_input_offset > int_max) return false;
int64_t out_batch_stride = pooled_height * pooled_width * channels;
if ((nbatch ? (nbatch - 1) * out_batch_stride : 0) > int_max) return false;
if (height * width > int_max) return false;
return true;
static __device__ inline int p_end(int size, int pad, int pooled_size, int stride) {
return min((size + pad) / stride + 1, pooled_size);
}
// kernels borrowed from Caffe
@ -114,25 +85,21 @@ __global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom
}
}
template <typename scalar_t, typename index_t>
template <typename scalar_t>
C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS)
__global__ void max_pool_forward_nhwc(
const scalar_t* bottom_data,
const int nbatch,
const index_t channels, const index_t height, const index_t width,
const index_t pooled_height, const index_t pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const index_t in_stride_n, const index_t in_stride_c,
const index_t in_stride_h, const index_t in_stride_w,
const int kernel_stride_C, const int kernel_size_C,
scalar_t* top_data, int64_t* top_mask) {
extern __shared__ unsigned char smem_raw[];
index_t *out_mask_cached = reinterpret_cast<index_t*>(smem_raw);
scalar_t *out_cached = reinterpret_cast<scalar_t*>(
out_mask_cached + kernel_size_C*blockDim.x*blockDim.y*blockDim.z);
__global__ void max_pool_forward_nhwc(const scalar_t* bottom_data, const int nbatch,
const int64_t channels, const int64_t height,
const int64_t width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const int in_stride_n, const int in_stride_c,
const int in_stride_h, const int in_stride_w,
const int kernel_stride_C, const int kernel_size_C,
scalar_t* top_data, int64_t* top_mask) {
extern __shared__ int smem[];
int *out_mask_cached = smem;
scalar_t *out_cached = reinterpret_cast<scalar_t*>(&out_mask_cached[kernel_size_C*blockDim.x*blockDim.y*blockDim.z]);
// flattening cta for pre-computation & smem initialization;
int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z);
@ -151,26 +118,26 @@ __global__ void max_pool_forward_nhwc(
int channel_id = blockIdx.x / nbatch;
int channel_offset = threadIdx.x + channel_id * blockDim.x;
top_data = top_data + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
top_mask = top_mask + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
bottom_data = bottom_data + static_cast<index_t>(batch_id) * in_stride_n;
top_data = top_data + batch_id * pooled_height * pooled_width * channels;
top_mask = top_mask + batch_id * pooled_height * pooled_width * channels;
bottom_data = bottom_data + batch_id * in_stride_n;
out_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
out_mask_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
out_mask_cached = &out_mask_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
int oH = (static_cast<int>(pooled_height) + gridDim.z - 1) / gridDim.z;
int oW = (static_cast<int>(pooled_width) + gridDim.y - 1) / gridDim.y;
int oH = (pooled_height + gridDim.z-1) / gridDim.z;
int oW = (pooled_width + gridDim.y-1) / gridDim.y;
int ostartH = threadIdx.z + blockIdx.z*oH;
int oendH = ::min(ostartH+oH, static_cast<int>(pooled_height));
int oendH = ::min(ostartH+oH, pooled_height);
int ostartW = threadIdx.y + blockIdx.y*oW;
int oendW = ::min(ostartW+oW, static_cast<int>(pooled_width));
int oendW = ::min(ostartW+oW, pooled_width);
for (int oh = ostartH; oh < oendH; oh+=blockDim.z) {
index_t hstart = static_cast<index_t>(oh) * stride_h - pad_h;
index_t hend = std::min(hstart + static_cast<index_t>((kernel_h - 1) * dilation_h + 1), height);
int hstart = oh * stride_h - pad_h;
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
for (int ow = ostartW; ow < oendW; ow+=blockDim.y) {
index_t wstart = static_cast<index_t>(ow) * stride_w - pad_w;
index_t wend = std::min(wstart + static_cast<index_t>((kernel_w - 1) * dilation_w + 1), width);
int wstart = ow * stride_w - pad_w;
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
while(hstart < 0)
hstart += dilation_h;
while(wstart < 0)
@ -218,12 +185,12 @@ __global__ void max_pool_forward_nhwc(
// Else do it Non-Prefetch...
else
#endif
for (index_t ih = hstart; ih < hend; ih += dilation_h) {
for (index_t iw = wstart; iw < wend; iw += dilation_w) {
for (int ih = hstart; ih < hend; ih += dilation_h) {
for (int iw = wstart; iw < wend; iw += dilation_w) {
int cached_index = threadIdx.x;
const scalar_t *ptr_input = bottom_data + ih * in_stride_h + iw * in_stride_w;
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
scalar_t val = ptr_input[c * in_stride_c];
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
scalar_t val = ptr_input[c*in_stride_c];
if ((val > out_cached[cached_index]) || at::_isnan(val)) {
out_cached[cached_index] = val;
out_mask_cached[cached_index] = ih * width + iw;
@ -233,15 +200,15 @@ __global__ void max_pool_forward_nhwc(
}
}
scalar_t *ptr_output_data = top_data + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
int64_t *ptr_output_mask = top_mask + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
scalar_t *ptr_output_data = top_data + (oh * pooled_width + ow) * channels;
int64_t *ptr_output_mask = top_mask + (oh * pooled_width + ow) * channels;
int cached_index = threadIdx.x;
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
ptr_output_data[c] = out_cached[cached_index];
ptr_output_mask[c] = static_cast<int64_t>(out_mask_cached[cached_index]);
ptr_output_mask[c] = out_mask_cached[cached_index];
out_cached[cached_index] = at::numeric_limits<scalar_t>::lower_bound();
out_mask_cached[cached_index] = index_t(0);
out_mask_cached[cached_index] = 0;
cached_index += blockDim.x;
}
}
@ -495,11 +462,6 @@ const Tensor& indices) {
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z));
const dim3 block(block_x, block_y, block_z);
bool use_int32 = can_use_int32_nhwc(
nbatch, nInputPlane, inputHeight, inputWidth,
outputHeight, outputWidth,
in_stride_n, in_stride_c, in_stride_h, in_stride_w);
int kernel_stride_C = ceil_div(
safe_downcast<int, int64_t>(nInputPlane), block_x * 4);
int kernel_size_C = ceil_div(
@ -514,41 +476,18 @@ const Tensor& indices) {
ceil_div(safe_downcast<int, int64_t>(outputHeight), block_z*BLOCK_STRIDE_FWD));
const dim3 grid(grid_x, grid_y, grid_z);
size_t shmem_size;
size_t mask_elems = static_cast<size_t>(kernel_size_C) * block_x * block_y * block_z;
size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * (sizeof(int) + sizeof(scalar_t));
AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock);
if (use_int32) {
shmem_size = mask_elems * (sizeof(int32_t) + sizeof(scalar_t));
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
"shared memory too small");
max_pool_forward_nhwc<scalar_t, int32_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, static_cast<int>(nbatch),
static_cast<int32_t>(nInputPlane),
static_cast<int32_t>(inputHeight),
static_cast<int32_t>(inputWidth),
static_cast<int32_t>(outputHeight),
static_cast<int32_t>(outputWidth),
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
static_cast<int32_t>(in_stride_n),
static_cast<int32_t>(in_stride_c),
static_cast<int32_t>(in_stride_h),
static_cast<int32_t>(in_stride_w),
kernel_stride_C, kernel_size_C,
output_data, indices_data);
} else {
shmem_size = mask_elems * (sizeof(int64_t) + sizeof(scalar_t));
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
"shared memory too small");
max_pool_forward_nhwc<scalar_t, int64_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, static_cast<int>(nbatch),
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
in_stride_n, in_stride_c, in_stride_h, in_stride_w,
kernel_stride_C, kernel_size_C,
output_data, indices_data);
}
max_pool_forward_nhwc<scalar_t>
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
input_data, nbatch,
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
in_stride_n, in_stride_c,
in_stride_h, in_stride_w,
kernel_stride_C, kernel_size_C,
output_data, indices_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}

View File

@ -655,14 +655,8 @@ struct ReduceOp {
}
__syncthreads();
// Intra-warp reduction, fix CUDA to have offset decreasing for better numerics
// matching Triton, etc.
// todo for AMD
#ifdef USE_ROCM
for (int offset = 1; offset < dim_x; offset <<= 1) {
#else
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
#endif
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
arg_t other = ops.warp_shfl_down(value[i], offset);

View File

@ -77,8 +77,8 @@ struct nansum_functor_complex {
#if AT_USE_JITERATOR()
void operator()(TensorIterator& iter) {
std::string func = jiterator_stringify(
arg_t combine(arg_t a, arg_t b) {
return a + (std::isnan(b) ? arg_t{0.} : b);
arg_t combine(arg_t a, scalar_t b) {
return a + (std::isnan(b) ? arg_t{0.} : arg_t{b});
}
);
jitted_gpu_reduce_kernel<nansum_name, scalar_t, scalar_t>(

View File

@ -464,7 +464,6 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
}
#endif
int32_t trailingSize;
int nDimsLocal = nDims;
TensorSizeStride<unsigned int, CAT_ARRAY_MAX_INPUT_DIMS> kernelOutputParam;
if (isInOutAligned) {
// in this case we can and should flatten the tensors after the cat dim
@ -478,7 +477,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
// and divide all strides except last by elems_per_vec (last stride is 1 always)
// for input, we will fix up the sizes and strides in the kernel directly
kernelOutputParam = outputParam;
nDimsLocal = dimension + 1;
nDims = dimension + 1;
constexpr auto elems_per_vec = alignment / sizeof(scalar_t);
auto out_size = dimension == 0 ? out.numel() : kernelOutputParam.tensorStride[dimension-1];
kernelOutputParam.tensorSize[dimension] = out_size / elems_per_vec;
@ -495,7 +494,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
case 0:
break;
case 1:
cat_dim = nDimsLocal - cat_dim;
cat_dim = nDims - cat_dim;
break;
default:
cat_dim--;
@ -526,7 +525,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
data, catMetaData, outputParam, cat_dim, outputParam.tensorStride[cat_dim]);\
}\
C10_CUDA_KERNEL_LAUNCH_CHECK();
switch (nDimsLocal) {
switch (nDims) {
case 1:
HANDLE_CASE(1);
break;

View File

@ -21,15 +21,9 @@ namespace {
struct offset_t {
int stride;
int begin;
__device__ int operator[](int i) const {
__device__ int operator[](int i) {
return stride * (begin + i);
}
#if CCCL_VERSION >= 3001000
__device__ offset_t& operator+=(int i) {
begin += i;
return *this;
}
#endif
};
// Segmented sort by full sort algorithm:.
// Say we are sorting a (2, 3) tensor. We have in flattened form:

View File

@ -127,29 +127,6 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
}
}
#ifdef USE_ROCM
// Helper function to compute output pixel range that can contribute to input pixel
template <typename accscalar_t>
__device__ __forceinline__ void compute_output_range(
int input_pos,
accscalar_t scale,
int output_size,
bool align_corners,
int& min_output,
int& max_output) {
accscalar_t lo, hi;
if (align_corners) {
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
} else {
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
}
min_output = max(0, static_cast<int>(ceil(lo)));
max_output = min(output_size - 1, static_cast<int>(floor(hi)));
}
#endif
// Backward (adjoint) operation 1 <- 2 (accumulates)
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
@ -164,74 +141,8 @@ __global__ void upsample_bilinear2d_backward_out_frame(
const bool align_corners,
scalar_t* __restrict__ idata,
const scalar_t* __restrict__ odata) {
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
const size_t i_numel = nc * width1 * height1;
#ifdef USE_ROCM
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
index += blockDim.x * gridDim.x) {
// Decode input pixel coordinates
size_t index_temp = index;
const int w1 = index_temp % width1;
index_temp /= width1;
const int h1 = index_temp % height1;
const size_t nc_idx = index_temp / height1;
accscalar_t grad_sum = 0;
// Find range of output pixels that could interpolate from this input pixel
int h2_min, h2_max, w2_min, w2_max;
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
// Iterate over potential output pixels
for (int h2 = h2_min; h2 <= h2_max; h2++) {
for (int w2 = w2_min; w2 <= w2_max; w2++) {
// Compute source coordinates for this output pixel
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
rheight, h2, align_corners, /*cubic=*/false);
const int h1_base = (int)h1r;
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
const accscalar_t h1lambda = h1r - h1_base;
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
rwidth, w2, align_corners, /*cubic=*/false);
const int w1_base = (int)w1r;
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
const accscalar_t w1lambda = w1r - w1_base;
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
// Check if our input pixel participates in this interpolation and accumulate all weights
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
// to the same pixel, so we need to accumulate weights from all matching positions
accscalar_t weight = 0;
// Check all four interpolation positions and accumulate weights
if (h1 == h1_base && w1 == w1_base) {
weight += h0lambda * w0lambda; // top-left
}
if (h1 == h1_base && w1 == w1_base + w1p) {
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base) {
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
}
if (weight > 0) {
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
}
}
}
// Write accumulated gradient (no atomics needed)
idata[index] = static_cast<scalar_t>(grad_sum);
}
#else
const size_t o_numel = nc * width2 * height2;
const size_t i_numel = nc * width1 * height1;
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
index += blockDim.x * gridDim.x) {
size_t index_temp = index;
@ -280,7 +191,6 @@ __global__ void upsample_bilinear2d_backward_out_frame(
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
true);
}
#endif
}
template <typename scalar_t, typename accscalar_t>
@ -477,6 +387,7 @@ static void upsample_bilinear2d_backward_out_cuda_template(
// threads are not covering the whole input tensor.
grad_input.zero_();
const size_t num_kernels = nbatch * channels * output_height * output_width;
const int num_threads = std::min(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -486,12 +397,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
return;
}
#ifdef USE_ROCM
constexpr bool use_input = true;
#else
constexpr bool use_input = false;
#endif
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half, at::ScalarType::BFloat16,
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
@ -509,8 +414,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * output_height * output_width;
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
input_height,
@ -541,8 +444,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
num_threads,

View File

@ -466,11 +466,7 @@ struct ReduceJitOp {
__syncthreads();
#ifdef USE_ROCM
for (int offset = 1; offset < dim_x; offset <<= 1) {
#else
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
#endif
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
arg_t other = reducer::warp_shfl_down(value[i], offset);

View File

@ -3,9 +3,6 @@
#include <ATen/core/Tensor.h>
#include <ATen/native/DispatchStub.h>
#include <c10/util/accumulate.h>
#include <c10/core/SymBool.h>
#include <c10/util/StringUtil.h>
namespace at::native {
@ -22,30 +19,28 @@ C10_ALWAYS_INLINE void _check_rms_norm_inputs_symint(
"Expected normalized_shape to be at least 1-dimensional, i.e., ",
"containing at least one element, but got normalized_shape = ",
normalized_shape);
if (weight.defined()) {
TORCH_SYM_CHECK(
sym_equals(weight.sym_sizes(), normalized_shape),
"Expected weight to be of same shape as normalized_shape, but got ",
"weight of shape ",
weight.sym_sizes(),
" and normalized_shape = ",
normalized_shape);
}
TORCH_CHECK(
!weight.defined() || weight.sym_sizes().equals(normalized_shape),
"Expected weight to be of same shape as normalized_shape, but got ",
"weight of shape ",
weight.sym_sizes(),
" and normalized_shape = ",
normalized_shape);
const auto input_ndim = input.dim();
const auto input_shape = input.sym_sizes();
TORCH_CHECK_VALUE(
input_ndim >= normalized_ndim,
"Input tensor must have at least ", normalized_ndim, " dimensions, but got ", input_ndim);
auto expect_input_shape_msg = c10::str(
"Given normalized_shape=", normalized_shape,
", expected input with shape [*", c10::Join(", ", normalized_shape),
"], but got input of size", input_shape);
TORCH_SYM_CHECK(
sym_equals(input_shape.slice(input_ndim - normalized_ndim), normalized_shape),
expect_input_shape_msg);
if (input_ndim < normalized_ndim ||
!input_shape.slice(input_ndim - normalized_ndim)
.equals(normalized_shape)) {
std::stringstream ss;
ss << "Given normalized_shape=" << normalized_shape
<< ", expected input with shape [*";
for (auto size : normalized_shape) {
ss << ", " << size;
}
ss << "], but got input of size" << input_shape;
TORCH_CHECK(false, ss.str());
}
}
C10_ALWAYS_INLINE std::pair<int64_t, int64_t> _check_layer_norm_inputs(

View File

@ -160,12 +160,8 @@ static bool mkldnn_conv_enabled_fpmath_mode_bf16(){
}
static bool mkldnn_conv_enabled_fpmath_mode_tf32(){
#if defined(__x86_64__) || defined(_M_X64)
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
cpuinfo_has_x86_amx_fp16();
#else
return false; //TF32 not supported on power system
#endif
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
cpuinfo_has_x86_amx_fp16();
}
static inline at::MemoryFormat mkldnn_convolution_memory_format(int64_t dims, bool is_channels_last) {

View File

@ -74,12 +74,8 @@ static bool use_mkldnn_bf32_linear() {
}
static bool use_mkldnn_tf32_linear() {
#if defined(__x86_64__) || defined(_M_X64)
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
cpuinfo_has_x86_amx_fp16();
#else
return false; // TF32 not supported on power system
#endif
}
Tensor mkldnn_linear(

View File

@ -114,13 +114,8 @@ static bool use_mkldnn_bf32_matmul() {
return use_mkldnn_bf16_matmul() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::BF16;
}
static bool use_mkldnn_tf32_matmul() {
#if defined(__x86_64__) || defined(_M_X64)
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
#else
return false; // TF32 not supported on power system
#endif
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
}
// returns an ideep::tensor

View File

@ -712,7 +712,7 @@ Tensor wrapped_scalar_tensor_mps(const Scalar& scalar, const Device device) {
} else if (scalar.isBoolean()) {
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kBool));
} else if (scalar.isComplex()) {
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kComplexFloat));
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kComplexDouble));
} else {
TORCH_INTERNAL_ASSERT(scalar.isIntegral(false));
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kLong));

View File

@ -512,7 +512,7 @@ TORCH_IMPL_FUNC(threshold_backward_out_mps)
}
static MPSGraphTensor* normcdf(MPSGraph* mpsGraph, MPSGraphTensor* inputTensor) {
// (1.0f + erf(x*SQRT1_2)) * 0.5f;
// (1.0f + erf(x*SQRT1_2)) * 0.5f * x;
auto dataType = [inputTensor dataType];
const float SQRT1_2 = 0.707106781186547524400844362104849039f;
MPSGraphTensor* sqrt1_2 = [mpsGraph constantWithScalar:SQRT1_2 shape:@[ @1 ] dataType:dataType];

View File

@ -54,10 +54,6 @@ Tensor dot_mps(const Tensor& self, const Tensor& other) {
using namespace mps;
using CachedGraph = MPSBinaryCachedGraph;
if (self.numel() == 0 & other.numel() == 0) {
return zeros({}, self.options());
}
dot_check(self, other);
auto output = at::empty({}, self.scalar_type(), std::nullopt, kMPS, std::nullopt, std::nullopt);

View File

@ -907,8 +907,6 @@ Tensor& index_fill_mps_(Tensor& self, int64_t dim, const Tensor& index, const Te
TORCH_CHECK(index.scalar_type() == ScalarType::Long || index.scalar_type() == ScalarType::Int,
"index_fill_(): Expected dtype int32 or int64 for index");
TORCH_CHECK(dim == 0 || dim < self.dim(), "index_fill_(): Indexing dim ", dim, " is out of bounds of tensor");
TORCH_CHECK(self.is_complex() || !source.is_complex(),
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
// MPS.scatter crashes if used with complex dtypes
TORCH_CHECK(!c10::isComplexType(self.scalar_type()), "index_fill_(): Complex types are yet not supported");

View File

@ -4545,7 +4545,6 @@
- func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor
dispatch:
CPU, CUDA: _cdist_forward
MTIA: _cdist_forward_mtia
MPS: _cdist_forward_mps
autogen: _cdist_forward.out
tags: core
@ -7183,12 +7182,6 @@
CUDA: _scaled_grouped_mm_cuda
tags: needs_exact_strides
- func: _scaled_grouped_mm_v2(Tensor self, Tensor mat2, Tensor[] scale_a, int[] recipe_a, int[] swizzle_a, Tensor[] scale_b, int[] recipe_b, int[] swizzle_b, Tensor? offs=None, Tensor? bias=None, ScalarType? out_dtype=None, int[] contraction_dim=[], bool use_fast_accum=False) -> Tensor
variants: function
dispatch:
CUDA: _scaled_grouped_mm_cuda_v2
tags: needs_exact_strides
- func: _grouped_mm(Tensor self, Tensor mat2, Tensor? offs=None, Tensor? bias=None, ScalarType? out_dtype=None) -> Tensor
variants: function
dispatch:
@ -7384,7 +7377,7 @@
- func: sparse_mask(Tensor self, Tensor mask) -> Tensor
variants: method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: sparse_mask
SparseCPU, SparseCUDA: sparse_mask
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_mask_sparse_compressed
autogen: sparse_mask.out

View File

@ -178,30 +178,24 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_channel_affine_b
0 & \text{ else }
\end{cases}
*/
bool is_bfloat16 = (X.scalar_type() == at::kBFloat16);
at::Tensor X_ = is_bfloat16 ? X.to(ScalarType::Float) : X;
at::Tensor dY_ = is_bfloat16 ? dY.to(ScalarType::Float) : dY;
at::Tensor scale_ = is_bfloat16 ? scale.to(ScalarType::Float) : scale;
at::Tensor zero_point_ = is_bfloat16 ? zero_point.to(ScalarType::Float) : zero_point;
auto zero_point_rounded = _get_rounded_zero_point(zero_point, quant_min, quant_max);
auto zero_point_rounded = _get_rounded_zero_point(zero_point_, quant_min, quant_max);
TORCH_CHECK(dY.scalar_type() == ScalarType::Float);
TORCH_CHECK(X.scalar_type() == ScalarType::Float);
TORCH_CHECK(scale.scalar_type() == ScalarType::Float);
TORCH_CHECK(zero_point.scalar_type() == ScalarType::Float);
TORCH_CHECK(dY_.scalar_type() == ScalarType::Float);
TORCH_CHECK(X_.scalar_type() == ScalarType::Float);
TORCH_CHECK(scale_.scalar_type() == ScalarType::Float);
TORCH_CHECK(zero_point_.scalar_type() == ScalarType::Float);
TORCH_CHECK(X_.sizes() == dY_.sizes(), "`X` and `dY` are not the same size");
TORCH_CHECK(X.sizes() == dY.sizes(), "`X` and `dY` are not the same size");
TORCH_CHECK(
quant_min <= 0 && quant_max >= 0,
"Expecting `quant_min` <= 0 and `quant_max` >= 0");
TORCH_CHECK(scale_.dim() == 1, "scale should be a 1-D tensor");
TORCH_CHECK(zero_point_.dim() == 1, "zero point should be a 1-D tensor");
TORCH_CHECK(scale.dim() == 1, "scale should be a 1-D tensor");
TORCH_CHECK(zero_point.dim() == 1, "zero point should be a 1-D tensor");
TORCH_CHECK(
scale_.numel() == zero_point_.numel(),
scale.numel() == zero_point.numel(),
"scale and zero-point need to have the same dimensions");
TORCH_CHECK(
scale_.numel() == X_.size(axis),
scale.numel() == X.size(axis),
"dimensions of scale and zero-point are not consistent with input tensor")
TORCH_CHECK(
@ -210,42 +204,42 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_channel_affine_b
"`zero_point` must be between `quant_min` and `quant_max`.");
TORCH_CHECK(
axis >= 0 && axis < X_.dim(),
axis >= 0 && axis < X.dim(),
"`axis` must be between 0 and number of dimensions of input");
if (X_.numel() <= 0) {
if (X.numel() <= 0) {
return std::make_tuple(X, scale, zero_point);
}
auto dX = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dScale_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dZeroPoint_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto numDimensions = X_.ndimension();
auto dX = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto dScale_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto dZeroPoint_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto numDimensions = X.ndimension();
// Create an axis mask for vectorizing and reshaping the scale and zero point tensors
// into the same shapes as X along the channel axis.
c10::DimVector axis_mask(numDimensions);
for (const auto i : c10::irange(numDimensions)) {
axis_mask[i] = (i == axis) ? X_.size(axis) : 1;
axis_mask[i] = (i == axis) ? X.size(axis) : 1;
}
auto X_shape = X_.sizes();
auto scale_vectorized = scale_.reshape(at::IntArrayRef(axis_mask.data(), numDimensions)).expand(X_shape);
auto X_shape = X.sizes();
auto scale_vectorized = scale.reshape(at::IntArrayRef(axis_mask.data(), numDimensions)).expand(X_shape);
auto zero_point_vectorized = zero_point_rounded.reshape(at::IntArrayRef(axis_mask.data(), numDimensions)).expand(X_shape);
auto iter = TensorIteratorConfig()
.add_output(dX)
.add_output(dScale_vec)
.add_output(dZeroPoint_vec)
.add_input(X_)
.add_input(dY_)
.add_input(X)
.add_input(dY)
.add_input(scale_vectorized)
.add_input(zero_point_vectorized)
.build();
fake_quant_grad_learnable_channel_stub(
X_.device().type(), iter, quant_min, quant_max, grad_factor);
X.device().type(), iter, quant_min, quant_max, grad_factor);
auto numElements = X_.ndimension() - 1;
auto numElements = X.ndimension() - 1;
// Create a collection of axes that include all but the channel axis for
// reduction when summing over the dScale and dZeroPoint tensors.

View File

@ -184,23 +184,15 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_tensor_affine_ba
0 & \text{ else }
\end{cases}
*/
bool is_bfloat16 = (X.scalar_type() == at::kBFloat16);
at::Tensor X_ = is_bfloat16 ? X.to(ScalarType::Float) : X;
at::Tensor dY_ = is_bfloat16 ? dY.to(ScalarType::Float) : dY;
at::Tensor scale_ = is_bfloat16 ? scale.to(ScalarType::Float) : scale;
at::Tensor zero_point_ = is_bfloat16 ? zero_point.to(ScalarType::Float) : zero_point;
float scale_val = scale_[0].item<float>();
float scale_val = scale[0].item<float>();
float inv_scale_val = 1.0f / scale_val;
int64_t zero_point_val = native::_get_zero_point_from_tensor(zero_point_, quant_min, quant_max, false);
int64_t zero_point_val = native::_get_zero_point_from_tensor(zero_point, quant_min, quant_max, false);
TORCH_CHECK(dY_.scalar_type() == ScalarType::Float);
TORCH_CHECK(X_.scalar_type() == ScalarType::Float);
TORCH_CHECK(scale_.scalar_type() == ScalarType::Float);
TORCH_CHECK(zero_point_.scalar_type() == ScalarType::Float);
TORCH_CHECK(X_.numel() == dY_.numel(), "`X` and `dY` are not the same size");
TORCH_CHECK(dY.scalar_type() == ScalarType::Float);
TORCH_CHECK(X.scalar_type() == ScalarType::Float);
TORCH_CHECK(scale.scalar_type() == ScalarType::Float);
TORCH_CHECK(zero_point.scalar_type() == ScalarType::Float);
TORCH_CHECK(X.numel() == dY.numel(), "`X` and `dY` are not the same size");
TORCH_CHECK(
quant_min <= 0 && quant_max >= 0,
"`quant_min` should be less than or \
@ -208,28 +200,28 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_tensor_affine_ba
TORCH_CHECK(
zero_point_val >= quant_min && zero_point_val <= quant_max,
"`zero_point` must be between `quant_min` and `quant_max`.");
if (X_.numel() <= 0) {
if (X.numel() <= 0) {
return std::make_tuple(X, scale, zero_point);
}
auto dX = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dScale_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dZeroPoint_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
auto dX = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto dScale_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto dZeroPoint_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
auto iter = TensorIteratorConfig()
.add_output(dX)
.add_output(dScale_vec)
.add_output(dZeroPoint_vec)
.add_input(X_)
.add_input(dY_)
.add_input(X)
.add_input(dY)
.build();
fake_quant_grad_learnable_tensor_stub(
X_.device().type(), iter, scale_val, inv_scale_val, zero_point_val, quant_min, quant_max, grad_factor);
X.device().type(), iter, scale_val, inv_scale_val, zero_point_val, quant_min, quant_max, grad_factor);
// The total sums over the scale and zero point gradient vectors are what will be returned in the end.
auto dScale = dScale_vec.sum().unsqueeze(0).to(scale_.device());
auto dZeroPoint = dZeroPoint_vec.sum().unsqueeze(0).to(zero_point_.device());
auto dScale = dScale_vec.sum().unsqueeze(0).to(scale.device());
auto dZeroPoint = dZeroPoint_vec.sum().unsqueeze(0).to(zero_point.device());
return std::make_tuple(dX, dScale, dZeroPoint);
}

View File

@ -1,8 +1,6 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/SparseTensorUtils.h>
#include <ATen/native/mps/OperationUtils.h>
#include <ATen/native/sparse/SparseStubs.h>
#include <ATen/native/sparse/SparseBinaryOpIntersectionCommon.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -15,8 +13,6 @@
#include <ATen/ops/mul_native.h>
#include <ATen/ops/empty_native.h>
#include <ATen/ops/zeros_native.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/argsort.h>
#include <ATen/ops/result_type.h>
#include <ATen/ops/copy_sparse_to_sparse.h>
#include <ATen/ops/mul.h>
@ -440,137 +436,4 @@ SparseTensor& add_out_sparse_mps(const SparseTensor& self,
return out;
}
using OptTensor = std::optional<Tensor>;
static void sparse_mask_apply_out_mps_kernel(
Tensor& result,
const Tensor& src_in,
const Tensor& mask_in,
bool accumulate_matches,
bool require_same_sizes,
bool coalesce_mask) {
TORCH_CHECK(src_in.is_sparse() && mask_in.is_sparse(),
"sparse_mask: expected both inputs to be sparse COO");
TORCH_CHECK(src_in.is_mps() && mask_in.is_mps(),
"sparse_mask: expected tensors to be on MPS device");
TORCH_CHECK(src_in.sparse_dim() == mask_in.sparse_dim(),
"sparse_mask: sparse_dim mismatch: ", src_in.sparse_dim(), " vs ", mask_in.sparse_dim());
if (require_same_sizes) {
TORCH_CHECK(src_in.sizes().equals(mask_in.sizes()),
"sparse_mask: sizes must match exactly (no broadcasting)");
}
auto src = src_in.coalesce();
auto mask = coalesce_mask ? mask_in.coalesce() : mask_in;
const int64_t src_nnz = src._nnz();
const int64_t mask_nnz = mask._nnz();
const int64_t sd = src.sparse_dim();
result.sparse_resize_(mask.sizes(), mask.sparse_dim(), mask.dense_dim());
auto commonDtype = at::result_type(src, mask);
TORCH_CHECK(canCast(commonDtype, result.scalar_type()),
"Can't convert result type ", commonDtype, " to output ", result.scalar_type());
if (mask_nnz == 0) {
alias_into_sparse(
result,
mask._indices().narrow(1, 0, 0),
at::empty({0}, result.options().dtype(result.scalar_type())));
result._coalesced_(mask.is_coalesced());
return;
}
TORCH_CHECK(sd > 0 || (src_nnz <= 1 && mask_nnz <= 1),
"sparse_mask: invalid sparse_dim or nnz");
if (sd == 0) {
auto out_indices = mask._indices().narrow(1, 0, 1);
auto out_values = src_nnz
? src._values().narrow(0, 0, 1).to(commonDtype)
: at::zeros({1}, at::device(result.device()).dtype(commonDtype));
alias_into_sparse(result, out_indices, out_values);
result._coalesced_(mask.is_coalesced());
return;
}
if (src_nnz == 0) {
auto out_indices = mask._indices().contiguous();
auto src_values = src._values().to(commonDtype);
auto out_val_sizes = src_values.sizes().vec();
out_val_sizes[0] = mask_nnz;
auto out_values = at::zeros(out_val_sizes, src_values.options());
alias_into_sparse(result, out_indices, out_values);
result._coalesced_(mask.is_coalesced());
return;
}
auto mask_indices = mask._indices().contiguous();
auto src_indices = src._indices().contiguous();
auto src_values = src._values().to(commonDtype).contiguous();
auto mask_keys = flatten_indices(mask_indices, mask.sizes().slice(0, sd)).contiguous();
auto src_keys = flatten_indices(src_indices, src.sizes().slice(0, sd)).contiguous();
const bool A_is_src = (src_nnz <= mask_nnz);
const int64_t lenA = A_is_src ? src_nnz : mask_nnz;
const int64_t lenB = A_is_src ? mask_nnz : src_nnz;
auto A_keys = A_is_src ? src_keys : mask_keys;
auto B_keys = A_is_src ? mask_keys : src_keys;
const auto device = result.device();
auto stream = getCurrentMPSStream();
auto outA_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
auto outB_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
auto counter = at::zeros({1}, at::device(device).dtype(at::kInt));
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
auto enc = stream->commandEncoder();
[enc setComputePipelineState:pso];
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
static_cast<uint32_t>(lenB), A_is_src);
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
}
});
const int64_t M = static_cast<int64_t>(counter.item<int32_t>());
auto out_val_sizes = src_values.sizes().vec();
out_val_sizes[0] = mask_nnz;
auto out_values = at::zeros(out_val_sizes, src_values.options());
if (M > 0) {
auto src_match = outA_idx.narrow(0, 0, M);
auto mask_match = outB_idx.narrow(0, 0, M);
auto src_rows = src_values.index_select(0, src_match);
if (accumulate_matches) {
out_values.index_add_(0, mask_match, src_rows);
} else {
out_values.index_copy_(0, mask_match, src_rows);
}
}
alias_into_sparse(result, mask_indices, out_values);
result._coalesced_(mask.is_coalesced());
}
static void sparse_mask_intersection_out_mps_kernel(
Tensor& result,
const Tensor& lhs,
const Tensor& rhs,
const OptTensor& = std::nullopt) {
sparse_mask_apply_out_mps_kernel(
result,
/*src_in=*/lhs,
/*mask_in=*/rhs,
/*accumulate_matches=*/false,
/*require_same_sizes=*/false,
/*coalesce_mask=*/false);
}
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
} // namespace at::native

View File

@ -3,9 +3,6 @@
using namespace metal;
template <typename T> struct MulAccum { using type = float; };
template <> struct MulAccum<float2> { using type = float2; };
template <typename T>
kernel void dense_sparse_mul_kernel(
device const T* dense [[buffer(0)]],
@ -32,9 +29,8 @@ kernel void dense_sparse_mul_kernel(
ulong dense_idx = (ulong)key * (ulong)view_cols + (ulong)col;
ulong val_idx = (ulong)i * (ulong)view_cols + (ulong)col;
using accum_t = typename MulAccum<T>::type;
const accum_t a = static_cast<accum_t>(values[val_idx]);
const accum_t b = static_cast<accum_t>(dense[dense_idx]);
const auto a = static_cast<float>(values[val_idx]);
const auto b = static_cast<float>(dense[dense_idx]);
out_values[val_idx] = static_cast<T>(a * b);
}
@ -134,8 +130,6 @@ kernel void fused_gather_mul_kernel(
INSTANTIATE_DENSE_SPARSE_MUL(float);
INSTANTIATE_DENSE_SPARSE_MUL(half);
INSTANTIATE_DENSE_SPARSE_MUL(bfloat);
INSTANTIATE_DENSE_SPARSE_MUL(long);
INSTANTIATE_DENSE_SPARSE_MUL(float2);
#define INSTANTIATE_FUSED_GATHER_MUL(DTYPE) \
template [[host_name("fused_gather_mul_kernel_" #DTYPE)]] kernel void \

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,fail_accuracy,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,fail_accuracy,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 fail_accuracy pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass fail_accuracy 0
nfnet_l0 pass 0
repvgg_a2 fail_accuracy 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,fail_accuracy,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s fail_accuracy pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass fail_accuracy 6 7
nfnet_l0 pass 7
repvgg_a2 fail_accuracy 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 fail_accuracy pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass fail_accuracy 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,pass,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
deit_base_distilled_patch16_224,pass,0
deit_tiny_patch16_224.fb_in1k,pass,0
dm_nfnet_f0,pass,0
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
visformer_small,pass,0
vit_base_patch14_dinov2.lvd142m,pass,0
vit_base_patch16_siglip_256,pass,0

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 0
11 mobilenetv3_large_100 nfnet_l0 pass 0
12 mobilevit_s repvgg_a2 pass 0
nfnet_l0 pass 0
repvgg_a2 pass 0
swin_base_patch4_window7_224 pass 0
tf_efficientnet_b0 pass 0
13 visformer_small swin_base_patch4_window7_224 pass 0
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 pass 0
15 vit_base_patch16_siglip_256 visformer_small pass 0
16
17
18
19
55
56
57

View File

@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
convnextv2_nano.fcmae_ft_in22k_in1k,fail_accuracy,7
deit_base_distilled_patch16_224,pass,7
deit_tiny_patch16_224.fb_in1k,pass,7
dm_nfnet_f0,pass,6
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
visformer_small,pass,7
vit_base_patch14_dinov2.lvd142m,fail_accuracy,7
vit_base_patch16_siglip_256,pass,7

1 name accuracy graph_breaks
10 mobilenetv2_100 mobilevit_s pass 7 6
11 mobilenetv3_large_100 nfnet_l0 pass 7
12 mobilevit_s repvgg_a2 pass 6 7
nfnet_l0 pass 7
repvgg_a2 pass 7
swin_base_patch4_window7_224 pass 7
tf_efficientnet_b0 pass 6
13 visformer_small swin_base_patch4_window7_224 pass 7
14 vit_base_patch14_dinov2.lvd142m tf_efficientnet_b0 fail_accuracy pass 7 6
15 vit_base_patch16_siglip_256 visformer_small pass 7
16
17
18
19
55
56
57

View File

@ -1060,8 +1060,6 @@ def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
frozen_model_iter_fn = export_nativert(model, example_inputs)
elif args.torchscript_jit_trace:
frozen_model_iter_fn = torchscript_jit_trace(model, example_inputs)
elif args.aot_precompile:
frozen_model_iter_fn = aot_precompile(model, example_inputs)
else:
if kwargs["hf_llm"]:
# If it's an llm, we want to optimize model.forward, and use
@ -1497,37 +1495,6 @@ def export(model, example_inputs):
return opt_export
def aot_precompile(model, example_inputs):
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
with tempfile.NamedTemporaryFile(suffix=".pt", delete=False) as f:
save_path = f.name
with fresh_cache(), torch._dynamo.config.patch("enable_aot_compile", True):
compiled_fn = torch.compile(
model,
fullgraph=True,
options={"guard_filter_fn": lambda guards: [False for _ in guards]},
).forward.aot_compile((example_args, example_kwargs))
compiled_fn.save_compiled_function(save_path)
torch._dynamo.reset()
with open(save_path, "rb") as f:
load_start_time = time.perf_counter()
loaded_fn = torch.compiler.load_compiled_function(f)
load_end_time = time.perf_counter()
print(
f"AOT Precompile loading time: {load_end_time - load_start_time} seconds"
)
def opt_aot_precompile(_, example_inputs, collect_outputs=False):
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
return loaded_fn(model, *example_args, **example_kwargs)
return opt_aot_precompile
def export_nativert(model, example_inputs):
optimized = NativeRTCache.load(model, example_inputs)
@ -2307,7 +2274,6 @@ class BenchmarkRunner:
or self.args.export_aot_inductor
or self.args.export_nativert
or self.args.torchscript_jit_trace
or self.args.aot_precompile
):
# apply export on module directly
# no need for n iterations
@ -2763,7 +2729,6 @@ class BenchmarkRunner:
self.args.export_aot_inductor
or self.args.export_nativert
or self.args.torchscript_jit_trace
or self.args.aot_precompile
):
optimized_model_iter_fn = optimize_ctx
else:
@ -3540,11 +3505,6 @@ def parse_args(args=None):
action="store_true",
help="Measure pass rate with Export+AOTInductor",
)
group.add_argument(
"--aot-precompile",
action="store_true",
help="Measure pass rate with AOT Precompile",
)
group.add_argument(
"--export-nativert",
action="store_true",
@ -3975,10 +3935,6 @@ def run(runner, args, original_dir=None):
optimize_ctx = export
experiment = speedup_experiment
output_filename = "export.csv"
elif args.aot_precompile:
optimize_ctx = aot_precompile
experiment = speedup_experiment
output_filename = "aot_precompile.csv"
elif args.export_nativert:
optimize_ctx = export_nativert
experiment = speedup_experiment

View File

@ -271,6 +271,8 @@ class TimmRunner(BenchmarkRunner):
memory_format=torch.channels_last if channels_last else None,
)
self.num_classes = model.num_classes
data_config = resolve_data_config(
vars(self._args) if timmversion >= "0.8.0" else self._args,
model=model,
@ -300,6 +302,7 @@ class TimmRunner(BenchmarkRunner):
example_inputs = [
example_inputs,
]
self.target = self._gen_target(batch_size, device)
self.loss = torch.nn.CrossEntropyLoss().to(device)
@ -367,6 +370,11 @@ class TimmRunner(BenchmarkRunner):
tolerance = 1e-2
return tolerance, cosine
def _gen_target(self, batch_size, device):
return torch.empty((batch_size,) + (), device=device, dtype=torch.long).random_(
self.num_classes
)
def compute_loss(self, pred):
# High loss values make gradient checking harder, as small changes in
# accumulation order upsets accuracy checks.

View File

@ -1,8 +1,6 @@
adv_inception_v3 128
beit_base_patch16_224 128
convnextv2_nano.fcmae_ft_in22k_in1k 128
deit_base_distilled_patch16_224 128
deit_tiny_patch16_224.fb_in1k 128
dm_nfnet_f0 128
ghostnet_100 512
inception_v3 128
@ -14,5 +12,3 @@ repvgg_a2 128
swin_base_patch4_window7_224 128
tf_efficientnet_b0 128
visformer_small 128
vit_base_patch14_dinov2.lvd142m 128
vit_base_patch16_siglip_256 128

View File

@ -1,8 +1,6 @@
adv_inception_v3,128
beit_base_patch16_224,64
convnextv2_nano.fcmae_ft_in22k_in1k,128
deit_base_distilled_patch16_224,64
deit_tiny_patch16_224.fb_in1k,128
dm_nfnet_f0,128
ghostnet_100,128
inception_v3,128
@ -14,5 +12,3 @@ repvgg_a2,128
swin_base_patch4_window7_224,64
tf_efficientnet_b0,128
visformer_small,128
vit_base_patch14_dinov2.lvd142m,128
ViT-B-16-SigLIP-i18n-256,128

View File

@ -13,22 +13,20 @@ constexpr size_t kRoundUpPowerOfTwoEnd = 64 * 1024ul * kMB; // 64GB
AcceleratorAllocatorConfig& AcceleratorAllocatorConfig::instance() {
static AcceleratorAllocatorConfig instance;
#define C10_ALLOCATOR_CONFIG_PARSE_ENV(env) \
auto env##_name = c10::utils::get_env(#env); \
if (env##_name.has_value()) { \
instance.parseArgs(env##_name.value()); \
return true; \
#define C10_ALLOCATOR_CONFIG_PARSE_ENV(env, deprecated) \
auto env##_name = c10::utils::get_env(#env); \
if (env##_name.has_value()) { \
if (deprecated) { \
TORCH_WARN_ONCE(#env " is deprecated, use PYTORCH_ALLOC_CONF instead"); \
} \
instance.parseArgs(env##_name.value()); \
return true; \
}
static bool env_flag [[maybe_unused]] = []() {
// Parse allocator configuration from environment variables.
// The first two entries are kept for backward compatibility with legacy
// CUDA and HIP environment variable names. The new unified variable
// (PYTORCH_ALLOC_CONF) should be used going forward.
// Note: keep the parsing order and logic stable to avoid potential
// performance regressions in internal tests.
C10_ALLOCATOR_CONFIG_PARSE_ENV(PYTORCH_CUDA_ALLOC_CONF)
C10_ALLOCATOR_CONFIG_PARSE_ENV(PYTORCH_HIP_ALLOC_CONF)
C10_ALLOCATOR_CONFIG_PARSE_ENV(PYTORCH_ALLOC_CONF)
C10_ALLOCATOR_CONFIG_PARSE_ENV(PYTORCH_ALLOC_CONF, false)
// Keep this for backwards compatibility
C10_ALLOCATOR_CONFIG_PARSE_ENV(PYTORCH_CUDA_ALLOC_CONF, /*deprecated=*/true)
C10_ALLOCATOR_CONFIG_PARSE_ENV(PYTORCH_HIP_ALLOC_CONF, /*deprecated=*/true)
return false;
}();
#undef C10_ALLOCATOR_CONFIG_PARSE_ENV
@ -129,7 +127,8 @@ size_t AcceleratorAllocatorConfig::parseRoundUpPower2Divisions(
std::fill(
std::next(
roundup_power2_divisions_.begin(),
static_cast<std::vector<size_t>::difference_type>(last_index)),
static_cast<std::vector<size_t>::difference_type>(
last_index + 1)),
roundup_power2_divisions_.end(),
value);
} else {

View File

@ -28,8 +28,101 @@
namespace c10 {
// See [dtype Macros note] in torch/headeronly/core/ScalarType.h
// regarding macros.
// [dtype Macros note] For the macros below:
//
// For users: If you want to macro some code for all non-QInt scalar types
// (i.e. types with complete information, you probably want one of the
// AT_FORALL_SCALAR_TYPES / AT_FORALL_SCALAR_TYPES_AND macros below, which are
// designed to behave similarly to the Dispatch macros with the same name.
//
// For adding a new dtype: In the beginning, we had an idea that there was a
// list of all scalar types, and you could use AT_FORALL_SCALAR_TYPES to
// iterate over them. But over the years we added weird types which couldn't
// be handled uniformly everywhere and so in the end we ended up with some
// mish-mosh of some helper macros, but mostly use sites making a call about
// what dtypes they can or can't support. So if you want to add a new dtype,
// the preferred resolution is to find a dtype similar to what you want,
// grep for it and edit all the sites you find this way. If you need to add
// a completely new kind of dtype, you're going to have to laboriously audit
// all of the sites everywhere to figure out how it should work. Consulting
// some old PRs where we added new dtypes (check history of this file) can
// help give you an idea where to start.
// If you want to support ComplexHalf for real, add ComplexHalf
// into this macro (and change the name). But beware: convert()
// doesn't work for all the conversions you need...
//
// TODO: To add unsigned int types here, we must define accumulate type.
// But uint8 currently accumulates into int64, so we would have to make
// an inconsistent choice for the larger types. Difficult.
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_EXCEPT_COMPLEX_HALF_F8NZ(_) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(at::Half, Half) \
_(float, Float) \
_(double, Double) \
_(c10::complex<float>, ComplexFloat) \
_(c10::complex<double>, ComplexDouble) \
_(bool, Bool) \
_(at::BFloat16, BFloat16) \
_(at::Float8_e5m2, Float8_e5m2) \
_(at::Float8_e4m3fn, Float8_e4m3fn)
// This macro controls many of our C++ APIs, including constructors
// for Scalar as well as the data() and item() accessors on Tensor
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(_) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(at::Half, Half) \
_(float, Float) \
_(double, Double) \
_(c10::complex<c10::Half>, ComplexHalf) \
_(c10::complex<float>, ComplexFloat) \
_(c10::complex<double>, ComplexDouble) \
_(bool, Bool) \
_(at::BFloat16, BFloat16) \
_(at::Float8_e5m2, Float8_e5m2) \
_(at::Float8_e4m3fn, Float8_e4m3fn) \
_(at::Float8_e5m2fnuz, Float8_e5m2fnuz) \
_(at::Float8_e4m3fnuz, Float8_e4m3fnuz) \
_(at::Float8_e8m0fnu, Float8_e8m0fnu)
namespace impl {
// These are used to map ScalarTypes to C++ types.
template <c10::ScalarType N>
struct ScalarTypeToCPPType;
#define SPECIALIZE_ScalarTypeToCPPType(cpp_type, scalar_type) \
template <> \
struct ScalarTypeToCPPType<c10::ScalarType::scalar_type> { \
using type = cpp_type; \
\
/* This is a workaround for the CUDA bug which prevents */ \
/* ::detail::ScalarTypeToCType<T>::type being used directly due to */ \
/* ambiguous reference which can't to be resolved. For some reason it */ \
/* can't pick between at::detail and at::cuda::detail. */ \
/* For repro example, please see: */ \
/* https://gist.github.com/izdeby/952ae7cf256ddb740a73776d39a7e7ba */ \
/* TODO: remove once the bug is fixed. */ \
static type t; \
};
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_ScalarTypeToCPPType)
#undef SPECIALIZE_ScalarTypeToCPPType
template <c10::ScalarType N>
using ScalarTypeToCPPTypeT = typename ScalarTypeToCPPType<N>::type;
} // namespace impl
template <typename T>
struct CppTypeToScalarType;
@ -45,6 +138,130 @@ AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
#undef SPECIALIZE_CppTypeToScalarType
// NB: despite its generic sounding name, the macros that don't take _AND
// are mostly only used by tensorexpr
#define AT_FORALL_INT_TYPES(_) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long)
#define AT_FORALL_SCALAR_TYPES(_) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(float, Float) \
_(double, Double)
// These macros are often controlling how many template instantiations we
// create for kernels. It is typically inappropriate to add new dtypes here,
// instead, new types should be added to use sites on a case-by-case basis.
// We generally are not accepting new dtypes due to binary size concerns.
#define AT_FORALL_SCALAR_TYPES_AND(SCALARTYPE, _) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(float, Float) \
_(double, Double) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE>::t), \
SCALARTYPE)
#define AT_FORALL_SCALAR_TYPES_AND2(SCALARTYPE1, SCALARTYPE2, _) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(float, Float) \
_(double, Double) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE1>::t), \
SCALARTYPE1) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE2>::t), \
SCALARTYPE2)
#define AT_FORALL_SCALAR_TYPES_AND3(SCALARTYPE1, SCALARTYPE2, SCALARTYPE3, _) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(float, Float) \
_(double, Double) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE1>::t), \
SCALARTYPE1) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE2>::t), \
SCALARTYPE2) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE3>::t), \
SCALARTYPE3)
#define AT_FORALL_SCALAR_TYPES_AND7( \
SCALARTYPE1, \
SCALARTYPE2, \
SCALARTYPE3, \
SCALARTYPE4, \
SCALARTYPE5, \
SCALARTYPE6, \
SCALARTYPE7, \
_) \
_(uint8_t, Byte) \
_(int8_t, Char) \
_(int16_t, Short) \
_(int, Int) \
_(int64_t, Long) \
_(float, Float) \
_(double, Double) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE1>::t), \
SCALARTYPE1) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE2>::t), \
SCALARTYPE2) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE3>::t), \
SCALARTYPE3) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE4>::t), \
SCALARTYPE4) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE5>::t), \
SCALARTYPE5) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE6>::t), \
SCALARTYPE6) \
_(decltype(::c10::impl::ScalarTypeToCPPType< \
::c10::ScalarType::SCALARTYPE7>::t), \
SCALARTYPE7)
#define AT_FORALL_QINT_TYPES(_) \
_(c10::qint8, QInt8) \
_(c10::quint8, QUInt8) \
_(c10::qint32, QInt32) \
_(c10::quint4x2, QUInt4x2) \
_(c10::quint2x4, QUInt2x4)
#define AT_FORALL_FLOAT8_TYPES(_) \
_(at::Float8_e5m2, Float8_e5m2) \
_(at::Float8_e4m3fn, Float8_e4m3fn) \
_(at::Float8_e5m2fnuz, Float8_e5m2fnuz) \
_(at::Float8_e4m3fnuz, Float8_e4m3fnuz) \
_(at::Float8_e8m0fnu, Float8_e8m0fnu)
#define AT_FORALL_COMPLEX_TYPES(_) \
_(c10::complex<float>, ComplexFloat) \
_(c10::complex<double>, ComplexDouble)
#define DEFINE_CONSTANT(_, name) \
constexpr ScalarType k##name = ScalarType::name;
@ -52,6 +269,19 @@ AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CONSTANT)
#undef DEFINE_CONSTANT
inline const char* toString(ScalarType t) {
#define DEFINE_CASE(_, name) \
case ScalarType::name: \
return #name;
switch (t) {
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CASE)
default:
return "UNKNOWN_SCALAR";
}
#undef DEFINE_CASE
}
inline size_t elementSize(ScalarType t) {
#define CASE_ELEMENTSIZE_CASE(ctype, name) \
case ScalarType::name: \
@ -295,6 +525,12 @@ inline bool canCast(const ScalarType from, const ScalarType to) {
C10_API ScalarType promoteTypes(ScalarType a, ScalarType b);
inline std::ostream& operator<<(
std::ostream& stream,
at::ScalarType scalar_type) {
return stream << toString(scalar_type);
}
// Returns a pair of strings representing the names for each dtype.
// The returned pair is (name, legacy_name_if_applicable)
C10_API std::pair<std::string, std::string> getDtypeNames(

View File

@ -86,23 +86,4 @@ inline SymIntArrayRef fromIntArrayRefSlow(IntArrayRef array_ref) {
reinterpret_cast<const SymInt*>(array_ref.data()), array_ref.size());
}
inline c10::SymBool sym_equals(SymIntArrayRef LHS, SymIntArrayRef RHS) {
if (LHS.size() != RHS.size()) {
return c10::SymBool(false);
}
c10::SymBool result = sym_eq(LHS.size(), RHS.size());
for (size_t i = 0; i < RHS.size(); ++i) {
c10::SymBool equals = sym_eq(LHS[i], RHS[i]);
std::optional<bool> equals_bool = equals.maybe_as_bool();
if (equals_bool.has_value() && !*equals_bool) {
// Early return if element comparison is known to be false
return equals;
}
result = result.sym_and(equals);
}
return result;
}
} // namespace c10

View File

@ -1,5 +1,6 @@
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/util/llvmMathExtras.h>
#if !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/driver_api.h>
@ -7,119 +8,386 @@
namespace c10::cuda::CUDACachingAllocator {
constexpr size_t kRoundUpPowerOfTwoIntervals = 16;
CUDAAllocatorConfig::CUDAAllocatorConfig()
: m_max_split_size(std::numeric_limits<size_t>::max()),
m_max_non_split_rounding_size(kLargeBuffer),
m_garbage_collection_threshold(0),
m_pinned_num_register_threads(1),
m_pinned_reserve_segment_size_mb(0),
m_expandable_segments(false),
#if CUDA_VERSION >= 12030
m_expandable_segments_handle_type(
Expandable_Segments_Handle_Type::UNSPECIFIED),
#else
m_expandable_segments_handle_type(
Expandable_Segments_Handle_Type::POSIX_FD),
#endif
m_release_lock_on_cudamalloc(false),
m_pinned_use_cuda_host_register(false),
m_graph_capture_record_stream_reuse(false),
m_pinned_use_background_threads(false) {
m_roundup_power2_divisions.assign(kRoundUpPowerOfTwoIntervals, 0);
}
size_t CUDAAllocatorConfig::roundup_power2_divisions(size_t size) {
size_t log_size = (63 - llvm::countLeadingZeros(size));
// Our intervals start at 1MB and end at 64GB
const size_t interval_start =
63 - llvm::countLeadingZeros(static_cast<size_t>(1048576));
const size_t interval_end =
63 - llvm::countLeadingZeros(static_cast<size_t>(68719476736));
TORCH_CHECK(
(interval_end - interval_start == kRoundUpPowerOfTwoIntervals),
"kRoundUpPowerOfTwoIntervals mismatch");
int index = static_cast<int>(log_size) - static_cast<int>(interval_start);
index = std::max(0, index);
index = std::min(index, static_cast<int>(kRoundUpPowerOfTwoIntervals) - 1);
return instance().m_roundup_power2_divisions[index];
}
void CUDAAllocatorConfig::lexArgs(
const std::string& env,
std::vector<std::string>& config) {
std::vector<char> buf;
for (char ch : env) {
if (ch == ',' || ch == ':' || ch == '[' || ch == ']') {
if (!buf.empty()) {
config.emplace_back(buf.begin(), buf.end());
buf.clear();
}
config.emplace_back(1, ch);
} else if (ch != ' ') {
buf.emplace_back(ch);
}
}
if (!buf.empty()) {
config.emplace_back(buf.begin(), buf.end());
}
}
void CUDAAllocatorConfig::consumeToken(
const std::vector<std::string>& config,
size_t i,
const char c) {
TORCH_CHECK(
i < config.size() && config[i] == std::string(1, c),
"Error parsing CachingAllocator settings, expected ",
c,
"");
}
size_t CUDAAllocatorConfig::parseMaxSplitSize(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
constexpr int mb = 1024 * 1024;
if (++i < config.size()) {
size_t val1 = stoi(config[i]);
TORCH_CHECK(
val1 > kLargeBuffer / mb,
"CachingAllocator option max_split_size_mb too small, must be > ",
kLargeBuffer / mb,
"");
val1 = std::max(val1, kLargeBuffer / mb);
val1 = std::min(val1, (std::numeric_limits<size_t>::max() / mb));
m_max_split_size = val1 * 1024 * 1024;
} else {
TORCH_CHECK(false, "Error, expecting max_split_size_mb value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseMaxNonSplitRoundingSize(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
constexpr int mb = 1024 * 1024;
if (++i < config.size()) {
size_t val1 = stoi(config[i]);
TORCH_CHECK(
val1 > kLargeBuffer / mb,
"CachingAllocator option max_non_split_rounding_mb too small, must be > ",
kLargeBuffer / mb,
"");
val1 = std::max(val1, kLargeBuffer / mb);
val1 = std::min(val1, (std::numeric_limits<size_t>::max() / mb));
m_max_non_split_rounding_size = val1 * 1024 * 1024;
} else {
TORCH_CHECK(false, "Error, expecting max_non_split_rounding_mb value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseGarbageCollectionThreshold(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
double val1 = stod(config[i]);
TORCH_CHECK(
val1 > 0, "garbage_collect_threshold too small, set it 0.0~1.0", "");
TORCH_CHECK(
val1 < 1.0, "garbage_collect_threshold too big, set it 0.0~1.0", "");
m_garbage_collection_threshold = val1;
} else {
TORCH_CHECK(
false, "Error, expecting garbage_collection_threshold value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseRoundUpPower2Divisions(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
bool first_value = true;
if (++i < config.size()) {
if (std::string_view(config[i]) == "[") {
size_t last_index = 0;
// NOLINTNEXTLINE(bugprone-inc-dec-in-conditions)
while (++i < config.size() && std::string_view(config[i]) != "]") {
const std::string& val1 = config[i];
size_t val2 = 0;
consumeToken(config, ++i, ':');
if (++i < config.size()) {
val2 = stoi(config[i]);
} else {
TORCH_CHECK(
false, "Error parsing roundup_power2_divisions value", "");
}
TORCH_CHECK(
val2 == 0 || llvm::isPowerOf2_64(val2),
"For roundups, the divisions has to be power of 2 or 0 to disable roundup ",
"");
if (std::string_view(val1) == ">") {
std::fill(
std::next(
m_roundup_power2_divisions.begin(),
static_cast<std::vector<unsigned long>::difference_type>(
last_index)),
m_roundup_power2_divisions.end(),
val2);
} else {
size_t val1_long = stoul(val1);
TORCH_CHECK(
llvm::isPowerOf2_64(val1_long),
"For roundups, the intervals have to be power of 2 ",
"");
size_t index = 63 - llvm::countLeadingZeros(val1_long);
index = std::max((size_t)0, index);
index = std::min(index, m_roundup_power2_divisions.size() - 1);
if (first_value) {
std::fill(
m_roundup_power2_divisions.begin(),
std::next(
m_roundup_power2_divisions.begin(),
static_cast<std::vector<unsigned long>::difference_type>(
index)),
val2);
first_value = false;
}
if (index < m_roundup_power2_divisions.size()) {
m_roundup_power2_divisions[index] = val2;
}
last_index = index;
}
if (std::string_view(config[i + 1]) != "]") {
consumeToken(config, ++i, ',');
}
}
} else { // Keep this for backwards compatibility
size_t val1 = stoi(config[i]);
TORCH_CHECK(
llvm::isPowerOf2_64(val1),
"For roundups, the divisions has to be power of 2 ",
"");
std::fill(
m_roundup_power2_divisions.begin(),
m_roundup_power2_divisions.end(),
val1);
}
} else {
TORCH_CHECK(false, "Error, expecting roundup_power2_divisions value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseAllocatorConfig(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i,
bool& used_cudaMallocAsync) {
// For ease of maintenance and understanding, the CUDA and ROCm
// implementations of this function are separated. This avoids having many
// #ifdef's throughout.
#ifdef USE_ROCM
// Ease burden on ROCm users by allowing either cuda or hip tokens.
// cuda token is broken up to prevent hipify matching it.
#define PYTORCH_TOKEN1 \
"cud" \
"aMallocAsync"
#define PYTORCH_TOKEN2 "hipMallocAsync"
tokenizer.checkToken(++i, ":");
i++; // Move to the value after the colon
#ifdef USE_ROCM
TORCH_CHECK(
((tokenizer[i] == "native") || (tokenizer[i] == PYTORCH_TOKEN1) ||
(tokenizer[i] == PYTORCH_TOKEN2)),
"Unknown allocator backend, "
"options are native, " PYTORCH_TOKEN1 ", and " PYTORCH_TOKEN2);
used_cudaMallocAsync =
(tokenizer[i] == PYTORCH_TOKEN1 || tokenizer[i] == PYTORCH_TOKEN2);
TORCH_INTERNAL_ASSERT(
tokenizer[i] == get()->name() ||
(tokenizer[i] == PYTORCH_TOKEN1 && get()->name() == PYTORCH_TOKEN2),
"Allocator backend parsed at runtime != "
"allocator backend parsed at load time, ",
tokenizer[i],
" != ",
get()->name());
#else // USE_ROCM
TORCH_CHECK(
((tokenizer[i] == "native") || (tokenizer[i] == PYTORCH_TOKEN1)),
"Unknown allocator backend, "
"options are native and " PYTORCH_TOKEN1);
used_cudaMallocAsync = (tokenizer[i] == PYTORCH_TOKEN1);
TORCH_INTERNAL_ASSERT(
tokenizer[i] == get()->name(),
"Allocator backend parsed at runtime != "
"allocator backend parsed at load time, ",
tokenizer[i],
" != ",
get()->name());
if (used_cudaMallocAsync) {
#if CUDA_VERSION >= 11040
int version = 0;
C10_CUDA_CHECK(cudaDriverGetVersion(&version));
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
version >= 11040,
"backend:cudaMallocAsync requires CUDA runtime "
"11.4 or newer, but cudaDriverGetVersion returned ",
version);
#else // CUDA_VERSION >= 11040
TORCH_CHECK(
false,
"backend:cudaMallocAsync requires PyTorch to be built with "
"CUDA 11.4 or newer, but CUDA_VERSION is ",
CUDA_VERSION);
#endif // CUDA_VERSION >= 11040
((config[i] == "native") || (config[i] == PYTORCH_TOKEN1) ||
(config[i] == PYTORCH_TOKEN2)),
"Unknown allocator backend, "
"options are native, " PYTORCH_TOKEN1 ", and " PYTORCH_TOKEN2);
used_cudaMallocAsync =
(config[i] == PYTORCH_TOKEN1 || config[i] == PYTORCH_TOKEN2);
TORCH_INTERNAL_ASSERT(
config[i] == get()->name() ||
(config[i] == PYTORCH_TOKEN1 && get()->name() == PYTORCH_TOKEN2),
"Allocator backend parsed at runtime != "
"allocator backend parsed at load time, ",
config[i],
" != ",
get()->name());
} else {
TORCH_CHECK(false, "Error parsing backend value", "");
}
#endif // USE_ROCM
return i;
#undef PYTORCH_TOKEN1
#undef PYTORCH_TOKEN2
#else // USE_ROCM
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
((config[i] == "native") || (config[i] == "cudaMallocAsync")),
"Unknown allocator backend, "
"options are native and cudaMallocAsync");
used_cudaMallocAsync = (config[i] == "cudaMallocAsync");
if (used_cudaMallocAsync) {
#if CUDA_VERSION >= 11040
int version = 0;
C10_CUDA_CHECK(cudaDriverGetVersion(&version));
TORCH_CHECK(
version >= 11040,
"backend:cudaMallocAsync requires CUDA runtime "
"11.4 or newer, but cudaDriverGetVersion returned ",
version);
#else
TORCH_CHECK(
false,
"backend:cudaMallocAsync requires PyTorch to be built with "
"CUDA 11.4 or newer, but CUDA_VERSION is ",
CUDA_VERSION);
#endif
}
TORCH_INTERNAL_ASSERT(
config[i] == get()->name(),
"Allocator backend parsed at runtime != "
"allocator backend parsed at load time");
} else {
TORCH_CHECK(false, "Error parsing backend value", "");
}
return i;
#endif // USE_ROCM
}
void CUDAAllocatorConfig::parseArgs(const std::string& env) {
void CUDAAllocatorConfig::parseArgs(const std::optional<std::string>& env) {
// If empty, set the default values
m_max_split_size = std::numeric_limits<size_t>::max();
m_roundup_power2_divisions.assign(kRoundUpPowerOfTwoIntervals, 0);
m_garbage_collection_threshold = 0;
bool used_cudaMallocAsync = false;
bool used_native_specific_option = false;
c10::CachingAllocator::ConfigTokenizer tokenizer(env);
for (size_t i = 0; i < tokenizer.size(); i++) {
const auto& key = tokenizer[i];
if (key == "backend") {
i = parseAllocatorConfig(tokenizer, i, used_cudaMallocAsync);
if (!env.has_value()) {
return;
}
{
std::lock_guard<std::mutex> lock(m_last_allocator_settings_mutex);
m_last_allocator_settings = env.value();
}
std::vector<std::string> config;
lexArgs(env.value(), config);
for (size_t i = 0; i < config.size(); i++) {
std::string_view config_item_view(config[i]);
if (config_item_view == "max_split_size_mb") {
i = parseMaxSplitSize(config, i);
used_native_specific_option = true;
} else if (config_item_view == "max_non_split_rounding_mb") {
i = parseMaxNonSplitRoundingSize(config, i);
used_native_specific_option = true;
} else if (config_item_view == "garbage_collection_threshold") {
i = parseGarbageCollectionThreshold(config, i);
used_native_specific_option = true;
} else if (config_item_view == "roundup_power2_divisions") {
i = parseRoundUpPower2Divisions(config, i);
used_native_specific_option = true;
} else if (config_item_view == "backend") {
i = parseAllocatorConfig(config, i, used_cudaMallocAsync);
} else if (config_item_view == "expandable_segments") {
used_native_specific_option = true;
consumeToken(config, ++i, ':');
++i;
TORCH_CHECK(
i < config.size() &&
(std::string_view(config[i]) == "True" ||
std::string_view(config[i]) == "False"),
"Expected a single True/False argument for expandable_segments");
config_item_view = config[i];
m_expandable_segments = (config_item_view == "True");
} else if (
// ROCm build's hipify step will change "cuda" to "hip", but for ease of
// use, accept both. We must break up the string to prevent hipify here.
key == "release_lock_on_hipmalloc" ||
key ==
config_item_view == "release_lock_on_hipmalloc" ||
config_item_view ==
"release_lock_on_c"
"udamalloc") {
used_native_specific_option = true;
tokenizer.checkToken(++i, ":");
m_release_lock_on_cudamalloc = tokenizer.toBool(++i);
consumeToken(config, ++i, ':');
++i;
TORCH_CHECK(
i < config.size() &&
(std::string_view(config[i]) == "True" ||
std::string_view(config[i]) == "False"),
"Expected a single True/False argument for release_lock_on_cudamalloc");
config_item_view = config[i];
m_release_lock_on_cudamalloc = (config_item_view == "True");
} else if (
// ROCm build's hipify step will change "cuda" to "hip", but for ease of
// use, accept both. We must break up the string to prevent hipify here.
key == "pinned_use_hip_host_register" ||
key ==
config_item_view == "pinned_use_hip_host_register" ||
config_item_view ==
"pinned_use_c"
"uda_host_register") {
i = parsePinnedUseCudaHostRegister(tokenizer, i);
i = parsePinnedUseCudaHostRegister(config, i);
used_native_specific_option = true;
} else if (key == "pinned_num_register_threads") {
i = parsePinnedNumRegisterThreads(tokenizer, i);
} else if (config_item_view == "pinned_num_register_threads") {
i = parsePinnedNumRegisterThreads(config, i);
used_native_specific_option = true;
} else if (key == "pinned_reserve_segment_size_mb") {
i = parsePinnedReserveSegmentSize(tokenizer, i);
} else if (config_item_view == "pinned_reserve_segment_size_mb") {
i = parsePinnedReserveSegmentSize(config, i);
used_native_specific_option = true;
} else if (key == "graph_capture_record_stream_reuse") {
i = parseGraphCaptureRecordStreamReuse(tokenizer, i);
} else if (config_item_view == "pinned_use_background_threads") {
i = parsePinnedUseBackgroundThreads(config, i);
used_native_specific_option = true;
} else if (config_item_view == "graph_capture_record_stream_reuse") {
i = parseGraphCaptureRecordStreamReuse(config, i);
used_native_specific_option = true;
} else {
const auto& keys =
c10::CachingAllocator::AcceleratorAllocatorConfig::getKeys();
TORCH_CHECK(
keys.find(key) != keys.end(),
"Unrecognized key '",
key,
"' in CUDA allocator config.");
// Skip the key and its value
i = tokenizer.skipKey(i);
false, "Unrecognized CachingAllocator option: ", config_item_view);
}
if (i + 1 < tokenizer.size()) {
tokenizer.checkToken(++i, ",");
if (i + 1 < config.size()) {
consumeToken(config, ++i, ',');
}
}
@ -131,51 +399,97 @@ void CUDAAllocatorConfig::parseArgs(const std::string& env) {
}
size_t CUDAAllocatorConfig::parsePinnedUseCudaHostRegister(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i) {
tokenizer.checkToken(++i, ":");
m_pinned_use_cuda_host_register = tokenizer.toBool(++i);
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
(config[i] == "True" || config[i] == "False"),
"Expected a single True/False argument for pinned_use_cuda_host_register");
m_pinned_use_cuda_host_register = (config[i] == "True");
} else {
TORCH_CHECK(
false, "Error, expecting pinned_use_cuda_host_register value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parseGraphCaptureRecordStreamReuse(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i) {
tokenizer.checkToken(++i, ":");
m_graph_capture_record_stream_reuse = tokenizer.toBool(++i);
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
(config[i] == "True" || config[i] == "False"),
"Expected a single True/False argument for graph_capture_record_stream_reuse");
m_graph_capture_record_stream_reuse = (config[i] == "True");
} else {
TORCH_CHECK(
false, "Error, expecting graph_capture_record_stream_reuse value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parsePinnedNumRegisterThreads(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i) {
tokenizer.checkToken(++i, ":");
size_t val2 = tokenizer.toSizeT(++i);
TORCH_CHECK(
llvm::isPowerOf2_64(val2),
"Number of register threads has to be power of 2, got ",
val2);
auto maxThreads = CUDAAllocatorConfig::pinned_max_register_threads();
TORCH_CHECK(
val2 <= maxThreads,
"Number of register threads should be less than or equal to ",
maxThreads,
", got ",
val2);
m_pinned_num_register_threads = val2;
consumeToken(config, ++i, ':');
if (++i < config.size()) {
size_t val2 = stoi(config[i]);
TORCH_CHECK(
llvm::isPowerOf2_64(val2),
"Number of register threads has to be power of 2 ",
"");
auto maxThreads = CUDAAllocatorConfig::pinned_max_register_threads();
TORCH_CHECK(
val2 <= maxThreads,
"Number of register threads should be less than or equal to " +
std::to_string(maxThreads),
"");
m_pinned_num_register_threads = val2;
} else {
TORCH_CHECK(
false, "Error, expecting pinned_num_register_threads value", "");
}
return i;
}
size_t CUDAAllocatorConfig::parsePinnedReserveSegmentSize(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i) {
tokenizer.checkToken(++i, ":");
size_t val2 = tokenizer.toSizeT(++i);
TORCH_CHECK(val2 > 0, "Pinned reserve segment size has to be greater than 0");
m_pinned_reserve_segment_size_mb = val2;
consumeToken(config, ++i, ':');
if (++i < config.size()) {
size_t val2 = stoi(config[i]);
TORCH_CHECK(
val2 > 0, "Pinned reserve segment size has to be greater than 0 ", "");
m_pinned_reserve_segment_size_mb = val2;
} else {
TORCH_CHECK(
false, "Error, expecting pinned_reserve_segment_size_mb value", "");
}
return i;
}
REGISTER_ALLOCATOR_CONFIG_PARSE_HOOK(CUDAAllocatorConfig)
size_t CUDAAllocatorConfig::parsePinnedUseBackgroundThreads(
const std::vector<std::string>& config,
size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(
(config[i] == "True" || config[i] == "False"),
"Expected a single True/False argument for pinned_use_background_threads");
m_pinned_use_background_threads = (config[i] == "True");
} else {
TORCH_CHECK(
false, "Error, expecting pinned_use_background_threads value", "");
}
return i;
}
// General caching allocator utilities
void setAllocatorSettings(const std::string& env) {
CUDACachingAllocator::CUDAAllocatorConfig::instance().parseArgs(env.c_str());
}
} // namespace c10::cuda::CUDACachingAllocator

View File

@ -1,11 +1,16 @@
#pragma once
#include <c10/core/AllocatorConfig.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAMacros.h>
#include <c10/util/Exception.h>
#include <c10/util/env.h>
#include <atomic>
#include <cstddef>
#include <cstdlib>
#include <mutex>
#include <string>
#include <vector>
namespace c10::cuda::CUDACachingAllocator {
enum class Expandable_Segments_Handle_Type : int {
@ -18,23 +23,20 @@ enum class Expandable_Segments_Handle_Type : int {
class C10_CUDA_API CUDAAllocatorConfig {
public:
static size_t max_split_size() {
return c10::CachingAllocator::AcceleratorAllocatorConfig::max_split_size();
return instance().m_max_split_size;
}
static double garbage_collection_threshold() {
return c10::CachingAllocator::AcceleratorAllocatorConfig::
garbage_collection_threshold();
return instance().m_garbage_collection_threshold;
}
static bool expandable_segments() {
bool enabled = c10::CachingAllocator::AcceleratorAllocatorConfig::
use_expandable_segments();
#ifndef PYTORCH_C10_DRIVER_API_SUPPORTED
if (enabled) {
if (instance().m_expandable_segments) {
TORCH_WARN_ONCE("expandable_segments not supported on this platform")
}
return false;
#else
return enabled;
return instance().m_expandable_segments;
#endif
}
@ -65,8 +67,7 @@ class C10_CUDA_API CUDAAllocatorConfig {
}
static bool pinned_use_background_threads() {
return c10::CachingAllocator::AcceleratorAllocatorConfig::
pinned_use_background_threads();
return instance().m_pinned_use_background_threads;
}
static size_t pinned_reserve_segment_size_mb() {
@ -80,23 +81,24 @@ class C10_CUDA_API CUDAAllocatorConfig {
return 128;
}
static size_t roundup_power2_divisions(size_t size) {
return c10::CachingAllocator::AcceleratorAllocatorConfig::
roundup_power2_divisions(size);
}
// This is used to round-up allocation size to nearest power of 2 divisions.
// More description below in function roundup_power2_next_division
// As an example, if we want 4 divisions between 2's power, this can be done
// using env variable: PYTORCH_CUDA_ALLOC_CONF=roundup_power2_divisions:4
static size_t roundup_power2_divisions(size_t size);
static std::vector<size_t> roundup_power2_divisions() {
return c10::CachingAllocator::AcceleratorAllocatorConfig::
roundup_power2_divisions();
return instance().m_roundup_power2_divisions;
}
static size_t max_non_split_rounding_size() {
return c10::CachingAllocator::AcceleratorAllocatorConfig::
max_non_split_rounding_size();
return instance().m_max_non_split_rounding_size;
}
static std::string last_allocator_settings() {
return c10::CachingAllocator::getAllocatorSettings();
std::lock_guard<std::mutex> lock(
instance().m_last_allocator_settings_mutex);
return instance().m_last_allocator_settings;
}
static CUDAAllocatorConfig& instance() {
@ -109,75 +111,70 @@ class C10_CUDA_API CUDAAllocatorConfig {
env = c10::utils::get_env("PYTORCH_HIP_ALLOC_CONF");
}
#endif
// Note: keep the parsing order and logic stable to avoid potential
// performance regressions in internal tests.
if (!env.has_value()) {
env = c10::utils::get_env("PYTORCH_ALLOC_CONF");
}
if (env.has_value()) {
inst->parseArgs(env.value());
}
inst->parseArgs(env);
return inst;
})();
return *s_instance;
}
// Use `Construct On First Use Idiom` to avoid `Static Initialization Order`
// issue.
static const std::unordered_set<std::string>& getKeys() {
static std::unordered_set<std::string> keys{
"backend",
// keep BC for Rocm: `cuda` -> `cud` `a`, to avoid hipify issues
// NOLINTBEGIN(bugprone-suspicious-missing-comma,-warnings-as-errors)
"release_lock_on_cud"
"amalloc",
"pinned_use_cud"
"a_host_register",
// NOLINTEND(bugprone-suspicious-missing-comma,-warnings-as-errors)
"release_lock_on_hipmalloc",
"pinned_use_hip_host_register",
"graph_capture_record_stream_reuse",
"pinned_reserve_segment_size_mb",
"pinned_num_register_threads"};
return keys;
}
void parseArgs(const std::string& env);
void parseArgs(const std::optional<std::string>& env);
private:
CUDAAllocatorConfig() = default;
CUDAAllocatorConfig();
static void lexArgs(const std::string& env, std::vector<std::string>& config);
static void consumeToken(
const std::vector<std::string>& config,
size_t i,
const char c);
size_t parseMaxSplitSize(const std::vector<std::string>& config, size_t i);
size_t parseMaxNonSplitRoundingSize(
const std::vector<std::string>& config,
size_t i);
size_t parseGarbageCollectionThreshold(
const std::vector<std::string>& config,
size_t i);
size_t parseRoundUpPower2Divisions(
const std::vector<std::string>& config,
size_t i);
size_t parseAllocatorConfig(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i,
bool& used_cudaMallocAsync);
size_t parsePinnedUseCudaHostRegister(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i);
size_t parsePinnedNumRegisterThreads(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i);
size_t parsePinnedReserveSegmentSize(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i);
size_t parsePinnedUseBackgroundThreads(
const std::vector<std::string>& config,
size_t i);
size_t parseGraphCaptureRecordStreamReuse(
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
const std::vector<std::string>& config,
size_t i);
std::atomic<size_t> m_pinned_num_register_threads{1};
std::atomic<size_t> m_pinned_reserve_segment_size_mb{0};
std::atomic<Expandable_Segments_Handle_Type> m_expandable_segments_handle_type
#if CUDA_VERSION >= 12030
{Expandable_Segments_Handle_Type::UNSPECIFIED};
#else
{Expandable_Segments_Handle_Type::POSIX_FD};
#endif
std::atomic<bool> m_release_lock_on_cudamalloc{false};
std::atomic<bool> m_pinned_use_cuda_host_register{false};
std::atomic<bool> m_graph_capture_record_stream_reuse{false};
std::atomic<size_t> m_max_split_size;
std::atomic<size_t> m_max_non_split_rounding_size;
std::vector<size_t> m_roundup_power2_divisions;
std::atomic<double> m_garbage_collection_threshold;
std::atomic<size_t> m_pinned_num_register_threads;
std::atomic<size_t> m_pinned_reserve_segment_size_mb;
std::atomic<bool> m_expandable_segments;
std::atomic<Expandable_Segments_Handle_Type>
m_expandable_segments_handle_type;
std::atomic<bool> m_release_lock_on_cudamalloc;
std::atomic<bool> m_pinned_use_cuda_host_register;
std::atomic<bool> m_graph_capture_record_stream_reuse;
std::atomic<bool> m_pinned_use_background_threads;
std::string m_last_allocator_settings;
std::mutex m_last_allocator_settings_mutex;
};
// Keep this for backwards compatibility
using c10::CachingAllocator::setAllocatorSettings;
// General caching allocator utilities
C10_CUDA_API void setAllocatorSettings(const std::string& env);
} // namespace c10::cuda::CUDACachingAllocator

View File

@ -64,6 +64,10 @@ namespace cuda::CUDACachingAllocator {
using namespace c10::CachingAllocator;
using namespace c10::CachingDeviceAllocator;
// Included here as this is externally used in CUDAAllocatorConfig
const size_t kLargeBuffer =
20971520; // "large" allocations may be packed in 20 MiB blocks
namespace Native {
//
@ -1076,12 +1080,19 @@ class RingBuffer {
void getEntries(std::vector<T>& result) const {
std::lock_guard<std::mutex> lk(alloc_trace_lock);
result.reserve(result.size() + alloc_trace->size());
std::rotate_copy(
result.reserve(alloc_trace->size());
result.insert(
result.end(),
alloc_trace->begin() +
static_cast<typename std::vector<T>::difference_type>(
alloc_trace_next),
alloc_trace->end());
result.insert(
result.end(),
alloc_trace->begin(),
std::next(alloc_trace->begin(), alloc_trace_next),
alloc_trace->end(),
std::back_inserter(result));
alloc_trace->begin() +
static_cast<typename std::vector<T>::difference_type>(
alloc_trace_next));
}
void clear() {
@ -4455,7 +4466,10 @@ struct BackendStaticInitializer {
if (kv[0] == "backend") {
#ifdef USE_ROCM
// convenience for ROCm users to allow either CUDA or HIP env var
if (kv[1] == "cudaMallocAsync" || kv[1] == "hipMallocAsync")
if (kv[1] ==
"cud"
"aMallocAsync" ||
kv[1] == "hipMallocAsync")
#else
if (kv[1] == "cudaMallocAsync")
#endif
@ -4477,7 +4491,9 @@ struct BackendStaticInitializer {
// HIPAllocatorMasqueradingAsCUDA because it needs to happen during static
// initialization, and doing so there may introduce static initialization
// order (SIOF) issues.
#define HIP_MASQUERADING_AS_CUDA "cuda"
#define HIP_MASQUERADING_AS_CUDA \
"cud" \
"a"
at::SetAllocator(c10::Device(HIP_MASQUERADING_AS_CUDA).type(), r, 0);
allocator.store(r);
#undef HIP_MASQUERADING_AS_CUDA

View File

@ -1,6 +1,5 @@
#pragma once
#include <c10/core/AllocatorConfig.h>
#include <c10/core/CachingDeviceAllocator.h>
#include <c10/cuda/CUDAGraphsC10Utils.h>
#include <c10/cuda/CUDAMacros.h>
@ -50,9 +49,10 @@ namespace c10::cuda::CUDACachingAllocator {
// Preserved only for BC reasons
// NOLINTNEXTLINE(misc-unused-using-decls)
using c10::CachingAllocator::kLargeBuffer;
using c10::CachingDeviceAllocator::DeviceStats;
extern const size_t kLargeBuffer;
typedef std::shared_ptr<GatheredContext> (*CreateContextFn)();
// Struct containing info of an allocation block (i.e. a fractional part of a

View File

@ -67,8 +67,8 @@ TEST(AllocatorConfigTest, allocator_config_test) {
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(128 * kMB), 2);
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(256 * kMB), 4);
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(512 * kMB), 2);
// EXPECT_EQ(
// AcceleratorAllocatorConfig::roundup_power2_divisions(1024 * kMB), 4);
EXPECT_EQ(
AcceleratorAllocatorConfig::roundup_power2_divisions(1024 * kMB), 4);
EXPECT_EQ(
AcceleratorAllocatorConfig::roundup_power2_divisions(2048 * kMB), 1);
EXPECT_EQ(
@ -101,8 +101,8 @@ TEST(AllocatorConfigTest, allocator_config_test) {
EXPECT_EQ(AcceleratorAllocatorConfig::roundup_power2_divisions(512 * kMB), 1);
EXPECT_EQ(
AcceleratorAllocatorConfig::roundup_power2_divisions(1024 * kMB), 0);
// EXPECT_EQ(
// AcceleratorAllocatorConfig::roundup_power2_divisions(2048 * kMB), 8);
EXPECT_EQ(
AcceleratorAllocatorConfig::roundup_power2_divisions(2048 * kMB), 8);
EXPECT_EQ(
AcceleratorAllocatorConfig::roundup_power2_divisions(4096 * kMB), 2);

View File

@ -65,7 +65,7 @@ struct default_constructible
namespace impl {
template <typename T>
constexpr bool supports_default_construction(const ::strong::default_constructible::modifier<T>* /*unused*/)
constexpr bool supports_default_construction(const ::strong::default_constructible::modifier<T>*)
{
return true;
}
@ -76,7 +76,7 @@ class type : public modifier<M, type<T, Tag, M...>>...
{
public:
template <typename TT = T, typename = std::enable_if_t<std::is_trivially_constructible<TT>{}>>
explicit type(uninitialized_t /*unused*/)
explicit type(uninitialized_t)
noexcept
{
}
@ -138,7 +138,7 @@ private:
namespace impl {
template <typename T, typename Tag, typename ... Ms>
constexpr bool is_strong_type_func(const strong::type<T, Tag, Ms...>* /*unused*/) { return true;}
constexpr bool is_strong_type_func(const strong::type<T, Tag, Ms...>*) { return true;}
constexpr bool is_strong_type_func(...) { return false;}
template <typename T, typename Tag, typename ... Ms>
constexpr T underlying_type(strong::type<T, Tag, Ms...>*);

View File

@ -20,6 +20,8 @@ constexpr size_t kMinBlockSize = 512;
constexpr size_t kSmallSize = 1048576;
// "small" allocations are packed in 2 MiB blocks
constexpr size_t kSmallBuffer = 2097152;
// "large" allocations may be packed in 20 MiB blocks
constexpr size_t kLargeBuffer = 20971520;
// allocations between 1 and 10 MiB may use kLargeBuffer
constexpr size_t kMinLargeAlloc = 10485760;
// round up large allocations to 2 MiB
@ -433,18 +435,6 @@ class DeviceCachingAllocator {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device);
auto device_total = device_prop.global_mem_size;
// Estimate the available device memory when the SYCL runtime does not
// support the corresponding aspect (ext_intel_free_memory).
size_t device_free = device_prop.global_mem_size -
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
.current;
auto& raw_device = c10::xpu::get_raw_device(device);
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
// affected devices.
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
device_free =
raw_device.get_info<sycl::ext::intel::info::device::free_memory>();
}
auto allocated_bytes =
stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)]
.current;
@ -467,9 +457,7 @@ class DeviceCachingAllocator {
static_cast<int>(device),
" has a total capacity of ",
format_size(device_total),
" of which ",
format_size(device_free),
" is free. Of the allocated memory ",
". Of the allocated memory ",
format_size(allocated_bytes),
" is allocated by PyTorch, and ",
format_size(reserved_bytes - allocated_bytes),

View File

@ -1,6 +1,5 @@
#pragma once
#include <c10/core/AllocatorConfig.h>
#include <c10/core/CachingDeviceAllocator.h>
#include <c10/xpu/XPUStream.h>

Some files were not shown because too many files have changed in this diff Show More