mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-30 19:54:53 +08:00
Compare commits
1 Commits
annotate_b
...
update_slo
| Author | SHA1 | Date | |
|---|---|---|---|
| 3efb7a197d |
@ -187,22 +187,19 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
|
||||
export USE_CUFILE=0
|
||||
else
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
|
||||
"/usr/local/cuda/lib64/libcublas.so.12"
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12"
|
||||
"/usr/local/cuda/lib64/libcudart.so.12"
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12"
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
|
||||
DEPS_SONAME+=(
|
||||
"libnvToolsExt.so.1"
|
||||
"libcublas.so.12"
|
||||
"libcublasLt.so.12"
|
||||
"libcudart.so.12"
|
||||
"libnvrtc.so.12"
|
||||
"libcupti.so.12")
|
||||
|
||||
if [[ $CUDA_VERSION != 12.9* ]]; then
|
||||
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
|
||||
DEPS_SONAME+=("libnvToolsExt.so.1")
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "Using nvidia libs from pypi."
|
||||
|
||||
@ -1615,7 +1615,6 @@ test_operator_benchmark() {
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
TEST_DIR=$(pwd)
|
||||
ARCH=$(uname -m)
|
||||
|
||||
test_inductor_set_cpu_affinity
|
||||
|
||||
@ -1630,7 +1629,7 @@ test_operator_benchmark() {
|
||||
pip_install pandas
|
||||
python check_perf_csv.py \
|
||||
--actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
|
||||
--expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
}
|
||||
|
||||
test_operator_microbenchmark() {
|
||||
|
||||
1
.github/ISSUE_TEMPLATE/ci-sev.md
vendored
1
.github/ISSUE_TEMPLATE/ci-sev.md
vendored
@ -8,7 +8,6 @@ assignees: ''
|
||||
---
|
||||
|
||||
> NOTE: Remember to label this issue with "`ci: sev`"
|
||||
> If you want autorevert to be disabled, keep the ci: disable-autorevert label
|
||||
|
||||
<!-- Add the `merge blocking` label to this PR to prevent PRs from being merged while this issue is open -->
|
||||
|
||||
|
||||
4
.github/ISSUE_TEMPLATE/disable-autorevert.md
vendored
4
.github/ISSUE_TEMPLATE/disable-autorevert.md
vendored
@ -1,7 +1,7 @@
|
||||
---
|
||||
name: "D❌\U0001F519 ISABLE AUTOREVERT"
|
||||
name: DISABLE AUTOREVERT
|
||||
about: Disables autorevert when open
|
||||
title: "[DISABLE AUTOREVERT]"
|
||||
title: "❌\U0001F519 [DISABLE AUTOREVERT]"
|
||||
labels: 'ci: disable-autorevert'
|
||||
assignees: ''
|
||||
|
||||
|
||||
@ -65,7 +65,7 @@ runs:
|
||||
cd .ci/lumen_cli
|
||||
python3 -m pip install -e .
|
||||
)
|
||||
MAX_JOBS="$(nproc --ignore=10)"
|
||||
MAX_JOBS="$(nproc --ignore=6)"
|
||||
export MAX_JOBS
|
||||
|
||||
# Split the comma-separated list and build each target
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
1b013f5b5a87a1882eb143c26d79d091150d6a37
|
||||
8ad2aa5d354d1bf432339113860185d5a5d1abbd
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
faffd5cf673615583da6517275e361cb3dbc77e6
|
||||
f5c6c2ec6490455e86f67b2a25c10390d60a27f7
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
0fa6e3129e61143224663e1ec67980d12b7ec4eb
|
||||
2a9138a26ee257fef05310ad3fecf7c55fe80d73
|
||||
|
||||
3
.github/pytorch-probot.yml
vendored
3
.github/pytorch-probot.yml
vendored
@ -15,8 +15,7 @@ ciflow_push_tags:
|
||||
- ciflow/inductor-micro-benchmark
|
||||
- ciflow/inductor-micro-benchmark-cpu-x86
|
||||
- ciflow/inductor-perf-compare
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi300
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi355
|
||||
- ciflow/inductor-perf-test-nightly-rocm
|
||||
- ciflow/inductor-perf-test-nightly-x86-zen
|
||||
- ciflow/inductor-periodic
|
||||
- ciflow/inductor-rocm
|
||||
|
||||
2
.github/scripts/filter_test_configs.py
vendored
2
.github/scripts/filter_test_configs.py
vendored
@ -512,8 +512,6 @@ def perform_misc_tasks(
|
||||
"keep-going",
|
||||
branch == MAIN_BRANCH
|
||||
or bool(tag and re.match(r"^trunk/[a-f0-9]{40}$", tag))
|
||||
# Pattern for tags created via manual run on HUD
|
||||
or bool(tag and re.match(r"^ciflow/[^/]+/[a-f0-9]{40}$", tag))
|
||||
or check_for_setting(labels, pr_body, "keep-going"),
|
||||
)
|
||||
set_output(
|
||||
|
||||
12
.github/scripts/generate_binary_build_matrix.py
vendored
12
.github/scripts/generate_binary_build_matrix.py
vendored
@ -241,11 +241,7 @@ def generate_libtorch_matrix(
|
||||
arches += CUDA_ARCHES
|
||||
arches += ROCM_ARCHES
|
||||
elif os == "windows":
|
||||
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
|
||||
# in 2.10
|
||||
windows_cuda_arches = CUDA_ARCHES.copy()
|
||||
windows_cuda_arches.remove("12.9")
|
||||
arches += windows_cuda_arches
|
||||
arches += CUDA_ARCHES
|
||||
if libtorch_variants is None:
|
||||
libtorch_variants = [
|
||||
"shared-with-deps",
|
||||
@ -309,11 +305,7 @@ def generate_wheels_matrix(
|
||||
if os == "linux":
|
||||
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
|
||||
elif os == "windows":
|
||||
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
|
||||
# in 2.10
|
||||
windows_cuda_arches = CUDA_ARCHES.copy()
|
||||
windows_cuda_arches.remove("12.9")
|
||||
arches += windows_cuda_arches + XPU_ARCHES
|
||||
arches += CUDA_ARCHES + XPU_ARCHES
|
||||
elif os == "linux-aarch64":
|
||||
# Separate new if as the CPU type is different and
|
||||
# uses different build/test scripts
|
||||
|
||||
4
.github/scripts/trymerge.py
vendored
4
.github/scripts/trymerge.py
vendored
@ -2042,6 +2042,10 @@ def validate_revert(
|
||||
f"[{', '.join(allowed_reverters)}], but instead is {author_association}."
|
||||
)
|
||||
|
||||
# Raises exception if matching rule is not found, but ignores all status checks
|
||||
find_matching_merge_rule(
|
||||
pr, repo, skip_mandatory_checks=True, skip_internal_checks=True
|
||||
)
|
||||
commit_sha = get_pr_commit_sha(repo, pr)
|
||||
return (author_login, commit_sha)
|
||||
|
||||
|
||||
2
.github/workflows/_linux-build.yml
vendored
2
.github/workflows/_linux-build.yml
vendored
@ -37,7 +37,7 @@ on:
|
||||
runner:
|
||||
required: false
|
||||
type: string
|
||||
default: "linux.c7i.2xlarge"
|
||||
default: "linux.2xlarge"
|
||||
description: |
|
||||
Label of the runner this job should run on.
|
||||
test-matrix:
|
||||
|
||||
19
.github/workflows/build-vllm-wheel.yml
vendored
19
.github/workflows/build-vllm-wheel.yml
vendored
@ -27,8 +27,9 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: [ '3.12' ]
|
||||
# TODO (huydhn): Add cu130 after https://github.com/vllm-project/vllm/issues/24464 is resolved
|
||||
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
|
||||
device: [ 'cu128', 'cu129', 'cu130' ]
|
||||
device: [ 'cu128', 'cu129' ]
|
||||
include:
|
||||
- platform: manylinux_2_28_x86_64
|
||||
device: cu128
|
||||
@ -38,10 +39,6 @@ jobs:
|
||||
device: cu129
|
||||
manylinux-image: 'pytorch/manylinux2_28-builder:cuda12.9'
|
||||
runner: linux.12xlarge.memory
|
||||
- platform: manylinux_2_28_x86_64
|
||||
device: cu130
|
||||
manylinux-image: 'pytorch/manylinux2_28-builder:cuda13.0'
|
||||
runner: linux.12xlarge.memory
|
||||
- platform: manylinux_2_28_aarch64
|
||||
device: cu128
|
||||
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.8'
|
||||
@ -50,11 +47,6 @@ jobs:
|
||||
device: cu129
|
||||
manylinux-image: 'pytorch/manylinuxaarch64-builder:cuda12.9'
|
||||
runner: linux.arm64.r7g.12xlarge.memory
|
||||
exclude:
|
||||
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
|
||||
# xformers is update to support 13.0
|
||||
- platform: manylinux_2_28_aarch64
|
||||
device: cu130
|
||||
name: "Build ${{ matrix.device }} vLLM wheel on ${{ matrix.platform }}"
|
||||
runs-on: ${{ matrix.runner }}
|
||||
timeout-minutes: 480
|
||||
@ -177,12 +169,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
platform: [ 'manylinux_2_28_x86_64', 'manylinux_2_28_aarch64' ]
|
||||
device: [ 'cu128', 'cu129', 'cu130' ]
|
||||
exclude:
|
||||
# TODO (huydhn): Add cu130 aarch64 once PyTorch is on 2.9+ and
|
||||
# xformers is update to support 13.0
|
||||
- platform: manylinux_2_28_aarch64
|
||||
device: cu130
|
||||
device: [ 'cu128', 'cu129' ]
|
||||
env:
|
||||
PLATFORM: ${{ matrix.platform }}
|
||||
BUILD_DEVICE: ${{ matrix.device }}
|
||||
|
||||
250
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
250
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
@ -788,6 +788,256 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda12_9-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-debug-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-debug-test
|
||||
with:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda13_0-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
|
||||
250
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
250
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
@ -788,6 +788,256 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda12_9-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-release
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-release
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda13_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
|
||||
1666
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
1666
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
File diff suppressed because it is too large
Load Diff
@ -1,132 +0,0 @@
|
||||
name: inductor-perf-nightly-rocm-mi300
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi300/*
|
||||
schedule:
|
||||
- cron: 15 0 * * *
|
||||
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
|
||||
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
training:
|
||||
description: Run training (on by default)?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
inference:
|
||||
description: Run inference (on by default)?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
default:
|
||||
description: Run inductor_default?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
dynamic:
|
||||
description: Run inductor_dynamic_shapes?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
cppwrapper:
|
||||
description: Run inductor_cpp_wrapper?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
cudagraphs:
|
||||
description: Run inductor_cudagraphs?
|
||||
required: false
|
||||
type: boolean
|
||||
default: true
|
||||
freezing_cudagraphs:
|
||||
description: Run inductor_cudagraphs with freezing for inference?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
aotinductor:
|
||||
description: Run aot_inductor for inference?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
maxautotune:
|
||||
description: Run inductor_max_autotune?
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
benchmark_configs:
|
||||
description: The list of configs used the benchmark
|
||||
required: false
|
||||
type: string
|
||||
default: inductor_huggingface_perf_rocm_mi300,inductor_timm_perf_rocm_mi300,inductor_torchbench_perf_rocm_mi300
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions: read-all
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
opt_out_experiments: lf
|
||||
|
||||
linux-jammy-rocm-py3_10-inductor-benchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: rocm-py3_10-inductor-benchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi300", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi300", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi300", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-inductor-benchmark-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: rocm-py3_10-inductor-benchmark-test
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs: linux-jammy-rocm-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
timeout-minutes: 720
|
||||
# Disable monitor in perf tests for more investigation
|
||||
disable-monitor: true
|
||||
monitor-log-interval: 10
|
||||
monitor-data-collect-interval: 2
|
||||
secrets: inherit
|
||||
@ -1,11 +1,11 @@
|
||||
name: inductor-perf-nightly-rocm-mi355
|
||||
name: inductor-perf-nightly-rocm
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/inductor-perf-test-nightly-rocm-mi355/*
|
||||
- ciflow/inductor-perf-test-nightly-rocm/*
|
||||
schedule:
|
||||
- cron: 15 0 * * *
|
||||
- cron: 0 7 * * 0,3
|
||||
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
|
||||
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
|
||||
workflow_dispatch:
|
||||
@ -59,7 +59,7 @@ on:
|
||||
description: The list of configs used the benchmark
|
||||
required: false
|
||||
type: string
|
||||
default: inductor_huggingface_perf_rocm_mi355,inductor_timm_perf_rocm_mi355,inductor_torchbench_perf_rocm_mi355
|
||||
default: inductor_huggingface_perf_rocm,inductor_timm_perf_rocm,inductor_torchbench_perf_rocm
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
@ -88,27 +88,23 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
4
.github/workflows/lint.yml
vendored
4
.github/workflows/lint.yml
vendored
@ -118,9 +118,9 @@ jobs:
|
||||
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
|
||||
echo "Running all other linters"
|
||||
if [ "$CHANGED_FILES" = '*' ]; then
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
|
||||
else
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
fi
|
||||
|
||||
quick-checks:
|
||||
|
||||
39
.github/workflows/operator_benchmark.yml
vendored
39
.github/workflows/operator_benchmark.yml
vendored
@ -7,11 +7,9 @@ on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
test_mode:
|
||||
type: choice
|
||||
options:
|
||||
- 'short'
|
||||
- 'long'
|
||||
- 'all'
|
||||
required: false
|
||||
type: string
|
||||
default: 'short'
|
||||
description: tag filter for operator benchmarks, options from long, short, all
|
||||
schedule:
|
||||
# Run at 07:00 UTC every Sunday
|
||||
@ -30,25 +28,38 @@ permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
x86-opbenchmark-build:
|
||||
opbenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: x86-opbenchmark-build
|
||||
name: opbenchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_operator_benchmark_${{ inputs.test_mode || 'short' }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
|
||||
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
x86-opbenchmark-test:
|
||||
name: x86-opbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: x86-opbenchmark-build
|
||||
opbenchmark-on-demand-build:
|
||||
if: ${{ github.event_name == 'workflow_dispatch' && github.repository_owner == 'pytorch' }}
|
||||
name: opbenchmark-on-demand-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-gcc11-inductor-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_operator_benchmark_${{ inputs.test_mode }}", shard: 1, num_shards: 1, runner: "linux.12xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opbenchmark-test:
|
||||
name: opbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: opbenchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
8
.github/workflows/trunk.yml
vendored
8
.github/workflows/trunk.yml
vendored
@ -180,13 +180,13 @@ jobs:
|
||||
disable-monitor: false
|
||||
secrets: inherit
|
||||
|
||||
win-vs2022-cuda12_8-py3-build:
|
||||
name: win-vs2022-cuda12.8-py3
|
||||
win-vs2022-cuda12_6-py3-build:
|
||||
name: win-vs2022-cuda12.6-py3
|
||||
uses: ./.github/workflows/_win-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
build-environment: win-vs2022-cuda12.8-py3
|
||||
cuda-version: "12.8"
|
||||
build-environment: win-vs2022-cuda12.6-py3
|
||||
cuda-version: "12.6"
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -395,4 +395,3 @@ android/pytorch_android_torchvision/.cxx
|
||||
CLAUDE.local.md
|
||||
/test_*.py
|
||||
/debug_*.py
|
||||
CLAUDE_CONTEXT/
|
||||
|
||||
@ -209,46 +209,6 @@ command = [
|
||||
'@{{PATHSFILE}}'
|
||||
]
|
||||
|
||||
|
||||
[[linter]]
|
||||
code = 'PYREFLY'
|
||||
include_patterns = [
|
||||
'torch/**/*.py',
|
||||
'torch/**/*.pyi',
|
||||
'torchgen/**/*.py',
|
||||
'torchgen/**/*.pyi',
|
||||
'functorch/**/*.py',
|
||||
'functorch/**/*.pyi',
|
||||
]
|
||||
exclude_patterns = []
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pyrefly_linter.py',
|
||||
'--config=pyrefly.toml',
|
||||
]
|
||||
init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'pyrefly==0.36.2',
|
||||
'sympy==1.13.3',
|
||||
'types-requests==2.27.25',
|
||||
'types-pyyaml==6.0.2',
|
||||
'types-tabulate==0.8.8',
|
||||
'types-protobuf==5.29.1.20250403',
|
||||
'types-setuptools==79.0.0.20250422',
|
||||
'types-jinja2==2.11.9',
|
||||
'types-colorama==0.4.6',
|
||||
'filelock==3.18.0',
|
||||
'junitparser==2.1.1',
|
||||
'rich==14.1.0',
|
||||
'optree==0.17.0',
|
||||
'types-openpyxl==3.1.5.20250919',
|
||||
'types-python-dateutil==2.9.0.20251008'
|
||||
]
|
||||
|
||||
[[linter]]
|
||||
code = 'CLANGTIDY'
|
||||
include_patterns = [
|
||||
|
||||
@ -256,7 +256,6 @@ endif()
|
||||
IF(USE_FBGEMM_GENAI)
|
||||
set(FBGEMM_THIRD_PARTY ${PROJECT_SOURCE_DIR}/third_party/fbgemm/external/)
|
||||
set(FBGEMM_GENAI_SRCS ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize)
|
||||
|
||||
if(USE_CUDA)
|
||||
# To avoid increasing the build time/binary size unnecessarily, use an allow-list of kernels to build.
|
||||
# If you want to integrate a kernel from FBGEMM into torch, you have to add it here.
|
||||
@ -293,64 +292,58 @@ IF(USE_FBGEMM_GENAI)
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
|
||||
)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
target_include_directories(fbgemm_genai PUBLIC
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${fbgemm_genai_mx8mx8bf16_grouped}
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
else()
|
||||
if(USE_ROCM)
|
||||
# Only include the kernels we want to build to avoid increasing binary size.
|
||||
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
|
||||
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
|
||||
|
||||
# Add FBGEMM_GENAI include directories for torch_ops.h
|
||||
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
|
||||
elseif(USE_ROCM)
|
||||
# Only include the kernels we want to build to avoid increasing binary size.
|
||||
file(GLOB_RECURSE fbgemm_genai_native_rocm_hip
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/kernels/fp8_rowwise_grouped*.hip"
|
||||
"${FBGEMM_GENAI_SRCS}/ck_extensions/fp8_rowwise_grouped/fp8_rowwise_grouped_gemm.hip")
|
||||
set_source_files_properties(${fbgemm_genai_native_rocm_hip} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
|
||||
# Add additional HIPCC compiler flags for performance
|
||||
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
|
||||
-mllvm
|
||||
-amdgpu-coerce-illegal-types=1
|
||||
-mllvm
|
||||
-enable-post-misched=0
|
||||
-mllvm
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
|
||||
# Add additional HIPCC compiler flags for performance
|
||||
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
|
||||
-mllvm
|
||||
-amdgpu-coerce-illegal-types=1
|
||||
-mllvm
|
||||
-enable-post-misched=0
|
||||
-mllvm
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
|
||||
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
|
||||
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
|
||||
endif()
|
||||
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
|
||||
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
set(HIP_CLANG_FLAGS_ORIGINAL ${HIP_CLANG_FLAGS})
|
||||
string(REGEX REPLACE "--offload-arch=[^ ]*" "" FILTERED_HIP_CLANG_FLAGS "${HIP_CLANG_FLAGS}")
|
||||
if("gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
list(APPEND FILTERED_HIP_CLANG_FLAGS --offload-arch=gfx942;)
|
||||
hip_add_library(
|
||||
fbgemm_genai STATIC
|
||||
${fbgemm_genai_native_rocm_hip}
|
||||
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
|
||||
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
|
||||
|
||||
target_include_directories(fbgemm_genai PUBLIC
|
||||
# FBGEMM version of Composable Kernel is used due to some customizations
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/include
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
endif()
|
||||
set(HIP_CLANG_FLAGS ${FILTERED_HIP_CLANG_FLAGS})
|
||||
|
||||
hip_add_library(
|
||||
fbgemm_genai STATIC
|
||||
${fbgemm_genai_native_rocm_hip}
|
||||
HIPCC_OPTIONS ${HIP_HCC_FLAGS} ${FBGEMM_GENAI_EXTRA_HIPCC_FLAGS})
|
||||
set(HIP_CLANG_FLAGS ${HIP_CLANG_FLAGS_ORIGINAL})
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(fbgemm_genai PRIVATE FBGEMM_GENAI_NO_EXTENDED_SHAPES)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
# FBGEMM version of Composable Kernel is used due to some customizations
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/include
|
||||
${FBGEMM_THIRD_PARTY}/composable_kernel/library/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
|
||||
# Add FBGEMM_GENAI include directories for torch_ops.h
|
||||
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
|
||||
list(APPEND ATen_HIP_INCLUDE ${PROJECT_SOURCE_DIR}/third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@ -699,6 +692,12 @@ if(USE_CUDA AND NOT USE_ROCM)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/include)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/cutlass/tools/util/include)
|
||||
|
||||
# Add FBGEMM_GENAI include directories for torch_ops.h
|
||||
if(USE_FBGEMM_GENAI)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/include)
|
||||
list(APPEND ATen_CUDA_INCLUDE ${CMAKE_CURRENT_SOURCE_DIR}/../../../third_party/fbgemm/fbgemm_gpu/experimental/gen_ai/src/quantize/common/include)
|
||||
endif()
|
||||
|
||||
if($ENV{ATEN_STATIC_CUDA})
|
||||
if(CUDA_VERSION VERSION_LESS_EQUAL 12.9)
|
||||
list(APPEND ATen_CUDA_DEPENDENCY_LIBS
|
||||
|
||||
@ -389,16 +389,37 @@ void fillVersion<DLManagedTensorVersioned>(
|
||||
// constructed out of ATen tensor
|
||||
template <class T>
|
||||
T* toDLPackImpl(const Tensor& src) {
|
||||
auto view = src;
|
||||
|
||||
// Detect whether there is need to normalize the strides
|
||||
// Background: gh-83069
|
||||
//
|
||||
// However, normalizing strides can come at a high-cost
|
||||
// to slow down toDLPack conversion 3x, so we
|
||||
// only normalize if needed.
|
||||
//
|
||||
// The following code detects whether the src follows
|
||||
// a continuous pattern. If the src follows such pattern (common-case)
|
||||
// then we do not need to normalize the strides.
|
||||
bool need_normalize_strides = src.dim() == 1 && src.size(0) == 1 && src.stride(0) != 1;
|
||||
// less common case, try normalizing the strides
|
||||
if (need_normalize_strides) {
|
||||
// create a new tensor with possibly normalized strides
|
||||
// gh-83069
|
||||
auto shape = src.sizes();
|
||||
view = src.as_strided(shape, {1}, src.storage_offset());
|
||||
}
|
||||
|
||||
ATenDLMTensor<T>* atDLMTensor(new ATenDLMTensor<T>);
|
||||
atDLMTensor->handle = src;
|
||||
atDLMTensor->handle = view;
|
||||
atDLMTensor->tensor.manager_ctx = atDLMTensor;
|
||||
atDLMTensor->tensor.deleter = &deleter<T>;
|
||||
atDLMTensor->tensor.dl_tensor.data = src.data_ptr();
|
||||
atDLMTensor->tensor.dl_tensor.data = view.data_ptr();
|
||||
atDLMTensor->tensor.dl_tensor.device = torchDeviceToDLDevice(src.device());
|
||||
atDLMTensor->tensor.dl_tensor.ndim = static_cast<int32_t>(src.dim());
|
||||
atDLMTensor->tensor.dl_tensor.dtype = getDLDataType(src);
|
||||
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(src.sizes().data());
|
||||
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(src.strides().data());
|
||||
atDLMTensor->tensor.dl_tensor.shape = const_cast<int64_t*>(view.sizes().data());
|
||||
atDLMTensor->tensor.dl_tensor.strides = const_cast<int64_t*>(view.strides().data());
|
||||
atDLMTensor->tensor.dl_tensor.byte_offset = 0;
|
||||
fillVersion(&atDLMTensor->tensor);
|
||||
|
||||
|
||||
@ -52,16 +52,16 @@ struct DLPackTraits {};
|
||||
|
||||
template <>
|
||||
struct DLPackTraits<DLManagedTensor> {
|
||||
inline static constexpr const char* capsule = "dltensor";
|
||||
inline static constexpr const char* used = "used_dltensor";
|
||||
inline static const char* capsule = "dltensor";
|
||||
inline static const char* used = "used_dltensor";
|
||||
inline static auto toDLPack = at::toDLPack;
|
||||
inline static auto fromDLPack = at::fromDLPack;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DLPackTraits<DLManagedTensorVersioned> {
|
||||
inline static constexpr const char* capsule = "dltensor_versioned";
|
||||
inline static constexpr const char* used = "used_dltensor_versioned";
|
||||
inline static const char* capsule = "dltensor_versioned";
|
||||
inline static const char* used = "used_dltensor_versioned";
|
||||
inline static auto toDLPack = at::toDLPackVersioned;
|
||||
inline static auto fromDLPack = at::fromDLPackVersioned;
|
||||
};
|
||||
|
||||
@ -42,14 +42,8 @@ const PythonTorchFunctionTLS& PythonTorchFunctionTLS::get_state() {
|
||||
}
|
||||
|
||||
bool torch_function_mode_enabled() {
|
||||
// Manually flatten because gcc is refusing to inline here. Note
|
||||
// that we are still calling __tls_get_addr twice here with GCC,
|
||||
// presumably because of
|
||||
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81501 (which says
|
||||
// the fix ships in GCC 16), but forcing inlining still improves
|
||||
// performance.
|
||||
const auto& ptfs = pythonTorchFunctionState;
|
||||
return ptfs.disabled_state_ != TorchFunctionDisabledState::ALL_DISABLED && !ptfs.stack_.empty();
|
||||
return PythonTorchFunctionTLS::get_disabled_state() != TorchFunctionDisabledState::ALL_DISABLED &&
|
||||
PythonTorchFunctionTLS::stack_len() > 0;
|
||||
}
|
||||
|
||||
// This is needed to disambiguate the ternary torch function disabled states
|
||||
|
||||
@ -27,7 +27,6 @@ struct TORCH_API PythonTorchFunctionTLS {
|
||||
TorchFunctionDisabledState disabled_state_ =
|
||||
TorchFunctionDisabledState::ENABLED;
|
||||
std::vector<std::shared_ptr<c10::SafePyObject>> stack_;
|
||||
friend TORCH_API bool torch_function_mode_enabled();
|
||||
};
|
||||
|
||||
TORCH_API bool torch_function_mode_enabled();
|
||||
|
||||
@ -2,7 +2,6 @@
|
||||
|
||||
#include <mutex>
|
||||
#include <ATen/CachedTensorUtils.h>
|
||||
#include <c10/core/GradMode.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
|
||||
namespace at::autocast {
|
||||
@ -37,29 +36,10 @@ namespace {
|
||||
using weakref_type = c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl>;
|
||||
using val_type = std::tuple<weakref_type, Tensor>;
|
||||
|
||||
// We maintain separate caches for gradient-enabled and gradient-disabled modes.
|
||||
// This ensures that tensors cached in torch.no_grad() (with requires_grad=False)
|
||||
// are not incorrectly reused in gradient-enabled contexts.
|
||||
// This fixes issue #158232 while maintaining optimal performance for both modes.
|
||||
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_enabled() {
|
||||
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_enabled;
|
||||
return cached_casts_grad_enabled;
|
||||
ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
|
||||
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts;
|
||||
return cached_casts;
|
||||
}
|
||||
|
||||
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_disabled() {
|
||||
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_disabled;
|
||||
return cached_casts_grad_disabled;
|
||||
}
|
||||
|
||||
// Helper function to get the appropriate cache based on current gradient mode.
|
||||
// This allows us to cache tensors separately for grad-enabled and grad-disabled contexts,
|
||||
// preventing incorrect cache hits when gradient mode changes.
|
||||
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
|
||||
return at::GradMode::is_enabled() ?
|
||||
get_cached_casts_grad_enabled() :
|
||||
get_cached_casts_grad_disabled();
|
||||
}
|
||||
|
||||
std::mutex cached_casts_mutex;
|
||||
|
||||
|
||||
@ -106,9 +86,7 @@ thread_local bool cache_enabled = true;
|
||||
|
||||
void clear_cache() {
|
||||
const std::lock_guard<std::mutex> lock(cached_casts_mutex);
|
||||
// Clear both caches to ensure consistent behavior regardless of current gradient mode
|
||||
get_cached_casts_grad_enabled().clear();
|
||||
get_cached_casts_grad_disabled().clear();
|
||||
get_cached_casts().clear();
|
||||
}
|
||||
|
||||
int increment_nesting() {
|
||||
@ -143,11 +121,6 @@ Tensor cached_cast(at::ScalarType to_type, const Tensor& arg, DeviceType device_
|
||||
if (is_eligible(arg, device_type) && (arg.scalar_type() != to_type)) {
|
||||
// Heuristic: Do what Apex does, and cache lower_precision_fp casts of fp32 model weights (leaves).
|
||||
// See cached_casts declaration above for detailed strategy.
|
||||
//
|
||||
// We maintain separate caches for gradient-enabled and gradient-disabled modes
|
||||
// (see get_cached_casts() above). This ensures correctness when mixing torch.no_grad()
|
||||
// with torch.autocast(), while maintaining optimal performance for both training and inference.
|
||||
// This fixes issue #158232 without any performance regression.
|
||||
bool can_try_cache = (to_type == get_lower_precision_fp_from_device_type(device_type) &&
|
||||
arg.scalar_type() == at::kFloat && arg.requires_grad() &&
|
||||
arg.is_leaf() && !arg.is_view() && cache_enabled &&
|
||||
|
||||
@ -624,14 +624,7 @@ struct TORCH_API IValue final {
|
||||
IValue(const c10::SymBool& i) {
|
||||
if (auto mi = i.maybe_as_bool()) {
|
||||
tag = Tag::Bool;
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
payload.u.as_int = *mi;
|
||||
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
/* due to byteorder if value assigned as_int, as_bool actually is not set correctly */
|
||||
payload.u.as_bool = *mi;
|
||||
#else
|
||||
#error Unexpected or undefined __BYTE_ORDER__
|
||||
#endif
|
||||
} else {
|
||||
tag = Tag::SymBool;
|
||||
payload.u.as_intrusive_ptr = i.toSymNodeImpl().release();
|
||||
|
||||
@ -13,7 +13,6 @@
|
||||
#include <c10/core/ScalarType.h>
|
||||
|
||||
#include <ATen/cuda/tunable/TunableOp.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
@ -151,7 +150,6 @@ inline std::string ScalarTypeToBLASType(c10::ScalarType scalar_type) {
|
||||
BLASType = "unknown";
|
||||
}
|
||||
return BLASType;
|
||||
|
||||
}
|
||||
|
||||
// Similar to Compute Type in GemmRocblas.h
|
||||
@ -246,25 +244,33 @@ inline std::string to_string_epilogue(const at::cuda::blas::GEMMAndBiasActivatio
|
||||
|
||||
namespace detail {
|
||||
|
||||
static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size, const NumericalCheckConfig& config) {
|
||||
|
||||
if (!config.enabled) {
|
||||
return true; // skip when disabled
|
||||
}
|
||||
|
||||
static bool NumericalCheck(ScalarType dtype, void* c, void* other_c, int64_t size) {
|
||||
auto options = at::TensorOptions().dtype(dtype).device(at::kCUDA);
|
||||
// comparison done as 1D tensor
|
||||
at::Tensor ref = at::from_blob(c, {size}, options);
|
||||
at::Tensor oth = at::from_blob(other_c, {size}, options);
|
||||
at::Tensor ref_float = ref.to(at::kFloat);
|
||||
at::Tensor oth_float = oth.to(at::kFloat);
|
||||
|
||||
const bool ok = at::allclose(ref_float, oth_float, config.rtol, config.atol);
|
||||
if (ok) {
|
||||
TUNABLE_LOG3("├──verify numerics: PASSED with atol=", config.atol, ", rtol=", config.rtol);
|
||||
} else {
|
||||
TUNABLE_LOG3("├──verify numerics: FAILED with atol=", config.atol, ", rtol=", config.rtol);
|
||||
std::vector<double> atols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
|
||||
std::vector<double> rtols{1e-1, 1e-2, 1e-3, 1e-4, 1e-5};
|
||||
double last_succeed_atol = 1;
|
||||
double last_succeed_rtol = 1;
|
||||
for (auto& atol : atols) {
|
||||
for (auto& rtol : rtols) {
|
||||
if (at::allclose(ref_float, oth_float, rtol, atol)) {
|
||||
last_succeed_atol = atol;
|
||||
last_succeed_rtol = rtol;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
if (last_succeed_atol == 1) {
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
TUNABLE_LOG3("├──verify numerics: atol=", last_succeed_atol, ", rtol=", last_succeed_rtol);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
@ -349,10 +355,8 @@ struct GemmParams : OpParams {
|
||||
}
|
||||
|
||||
TuningStatus NumericalCheck(GemmParams<T> *other) {
|
||||
auto* ctx = getTuningContext();
|
||||
auto cfg = ctx->GetNumericalCheckConfig();
|
||||
auto c_dtype = c10::CppTypeToScalarType<T>::value;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa{};
|
||||
@ -445,10 +449,8 @@ struct GemmAndBiasParams : OpParams {
|
||||
}
|
||||
|
||||
TuningStatus NumericalCheck(GemmAndBiasParams<T> *other) {
|
||||
auto* ctx = getTuningContext();
|
||||
auto cfg = ctx->GetNumericalCheckConfig();
|
||||
auto c_dtype = c10::CppTypeToScalarType<T>::value;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa{};
|
||||
@ -544,10 +546,8 @@ struct GemmStridedBatchedParams : OpParams {
|
||||
}
|
||||
|
||||
TuningStatus NumericalCheck(GemmStridedBatchedParams<T> *other) {
|
||||
auto* ctx = getTuningContext();
|
||||
auto cfg = ctx->GetNumericalCheckConfig();
|
||||
auto c_dtype = c10::CppTypeToScalarType<C_Dtype>::value;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa{};
|
||||
@ -663,9 +663,7 @@ struct ScaledGemmParams : OpParams {
|
||||
}
|
||||
|
||||
TuningStatus NumericalCheck(ScaledGemmParams<T> *other) {
|
||||
auto* ctx = getTuningContext();
|
||||
auto cfg = ctx->GetNumericalCheckConfig();
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T), cfg) ? OK : FAIL;
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa{};
|
||||
|
||||
@ -145,7 +145,7 @@ programmatically since the settings become fixed. Use the C++ or Python APIs ins
|
||||
| PYTORCH_TUNABLEOP_VERBOSE | Default is 0. Set to 1 to enable basic logging. 2 for basic tuning status. 3 for full trace. |
|
||||
| PYTORCH_TUNABLEOP_VERBOSE_FILENAME | Default is "err" for stderr. Set to "out" for stdout or a filename for capturing verbose logging. |
|
||||
| PYTORCH_TUNABLEOP_FILENAME | Default is 'tunableop_results.csv'. |
|
||||
| PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is off. Set 'atol_rtol' to enable, for example "1e-5_1e-5". |
|
||||
| PYTORCH_TUNABLEOP_NUMERICAL_CHECK | Default is 0. Set to 1 to enable. |
|
||||
| PYTORCH_TUNABLEOP_ROCBLAS_ENABLED | Default is 1. Set to 0 to disable rocblas being considered during tuning. |
|
||||
| PYTORCH_TUNABLEOP_HIPBLASLT_ENABLED | Default is 1. Set to 0 to disable hipblaslt being considered during tuning. |
|
||||
| PYTORCH_TUNABLEOP_MAX_TUNING_DURATION_MS | Default is 30. Unit is milliseconds. |
|
||||
@ -173,9 +173,10 @@ All python APIs exist in the `torch.cuda.tunable` module.
|
||||
| get_max_tuning_iterations() -> int | |
|
||||
| set_filename(filename: str, insert_device_ordinal: bool = False) -> None | |
|
||||
| get_filename() -> str | |
|
||||
| set_numerical_check_tolerances(enable: bool, atol: float, rtol: float) -> None | Enable or disable numerical checking; atol and rtol default to 1e-5.
|
||||
| get_results() -> Tuple[str, str, str, float] | |
|
||||
| get_validators() -> Tuple[str, str] | |
|
||||
| write_file_on_exit(val: bool) -> None | Default is True. |
|
||||
| write_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). |
|
||||
| read_file(filename: Optional[str] = None) -> None | If filename not given, it will call get_filename(). |
|
||||
| tune_gemm_in_file(filename: str) -> None | read an untuned file and tune GEMMs in it. |
|
||||
| mgpu_tune_gemm_in_file(filename_pattern: str, num_gpus: int) -> None: -> None | read one or more untuned files and tune all unique GEMMs on one or more GPUs. |
|
||||
|
||||
@ -107,30 +107,14 @@ void TuningResultsManager::AddImpl(const std::string& op_signature,
|
||||
}
|
||||
|
||||
void TuningResultsManager::Add(const std::string& op_signature, const std::string& params_signature, ResultEntry best) {
|
||||
bool is_new = false;
|
||||
ResultEntry inserted = ResultEntry::Null();
|
||||
std::scoped_lock l{lock_};
|
||||
|
||||
// ---- mutate maps under results lock ----
|
||||
{
|
||||
std::scoped_lock l{lock_};
|
||||
auto& km = results_[op_signature]; // creates if missing
|
||||
is_new = (km.find(params_signature) == km.end());
|
||||
AddImpl(op_signature, params_signature, std::move(best), km);
|
||||
if (is_new) {
|
||||
inserted = km.at(params_signature); // snapshot for I/O after unlocking
|
||||
}
|
||||
}
|
||||
if (!is_new) return; // only write once per unique (op, params)
|
||||
|
||||
TuningContext* ctx = getTuningContext();
|
||||
if (ctx->IsTuningEnabled() && !ctx->IsRecordUntunedEnabled()) {
|
||||
InitRealtimeAppend(ctx->GetFilename(), ctx->GetTuningResultsValidator().GetAllValidators());
|
||||
|
||||
if (is_new && realtime_out_ && realtime_out_->good()) {
|
||||
AppendResultLine(op_signature, params_signature, inserted);
|
||||
}
|
||||
auto it = results_.find(op_signature);
|
||||
if (it == results_.end()) {
|
||||
it = results_.insert({op_signature, {}}).first;
|
||||
}
|
||||
|
||||
AddImpl(op_signature, params_signature, std::move(best), it->second);
|
||||
}
|
||||
|
||||
void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature,
|
||||
@ -166,77 +150,6 @@ void TuningResultsManager::RecordUntuned( std::ofstream& untuned_file, const std
|
||||
}
|
||||
}
|
||||
|
||||
void TuningResultsManager::InitRealtimeAppend(const std::string& filename, const std::unordered_map<std::string, std::string>& validators) {
|
||||
std::scoped_lock fl{realtime_file_mutex_};
|
||||
|
||||
if (realtime_out_ && realtime_out_->good() && realtime_filename_ == filename) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (realtime_out_ && realtime_filename_ != filename) {
|
||||
realtime_out_->flush();
|
||||
realtime_out_->close();
|
||||
realtime_out_.reset();
|
||||
validators_written_ = false;
|
||||
}
|
||||
|
||||
bool file_exists = false;
|
||||
bool file_empty = true;
|
||||
|
||||
{
|
||||
std::ifstream check_file(filename);
|
||||
if (check_file.good()) {
|
||||
file_exists = true;
|
||||
file_empty = (check_file.peek() == std::ifstream::traits_type::eof());
|
||||
}
|
||||
}
|
||||
|
||||
realtime_out_ = std::make_unique<std::ofstream>(filename, std::ios::out | std::ios::app);
|
||||
|
||||
if (!realtime_out_->good()) {
|
||||
TORCH_WARN("TunableOp realtime append: failed to open '", filename,"'");
|
||||
realtime_out_.reset();
|
||||
return;
|
||||
}
|
||||
|
||||
if(!file_exists || file_empty) {
|
||||
for(const auto& [key, val] : validators) {
|
||||
(*realtime_out_) << "Validator," << key << "," << val << std::endl;
|
||||
realtime_out_->flush();
|
||||
}
|
||||
validators_written_ = true;
|
||||
|
||||
TUNABLE_LOG2("Wrote validators to realtime output file");
|
||||
}
|
||||
|
||||
realtime_filename_ = filename;
|
||||
}
|
||||
|
||||
void TuningResultsManager::AppendResultLine(const std::string& op_sig, const std::string& param_sig, const ResultEntry& result) {
|
||||
std::scoped_lock fl{realtime_file_mutex_};
|
||||
|
||||
if(!realtime_out_ || !realtime_out_->good()) {
|
||||
return;
|
||||
}
|
||||
|
||||
(*realtime_out_) << op_sig << "," << param_sig << "," << result << std::endl;
|
||||
realtime_out_->flush(); //ensure immediate write to disk
|
||||
|
||||
TUNABLE_LOG3("Realtime append: ", op_sig, "(", param_sig, ") -> ", result);
|
||||
}
|
||||
|
||||
void TuningResultsManager::CloseRealtimeAppend() {
|
||||
std::scoped_lock fl{realtime_file_mutex_};
|
||||
|
||||
|
||||
if(realtime_out_) {
|
||||
realtime_out_->flush();
|
||||
realtime_out_->close();
|
||||
realtime_out_.reset();
|
||||
TUNABLE_LOG2("Closed realtime output file");
|
||||
}
|
||||
}
|
||||
|
||||
void TuningResultsManager::Delete(const std::string& op_signature, const std::string& params_signature) {
|
||||
std::scoped_lock l{lock_};
|
||||
|
||||
@ -483,6 +396,7 @@ TuningContext::TuningContext() :
|
||||
tuning_enable_{true},
|
||||
record_untuned_enable_{false},
|
||||
manager_initialized_{false},
|
||||
write_file_on_exit_{true},
|
||||
numerics_check_enable_{false},
|
||||
max_tuning_duration_ms_{30},
|
||||
max_tuning_iterations_{100},
|
||||
@ -503,8 +417,20 @@ TuningContext::~TuningContext() {
|
||||
// but doesn't do any computation itself.
|
||||
return;
|
||||
}
|
||||
TUNABLE_LOG1("Closing File");
|
||||
GetTuningResultsManager().CloseRealtimeAppend(); // Since, we do instant logging by default now.
|
||||
auto filename = GetFilename();
|
||||
if (IsTunableOpEnabled() && IsTuningEnabled() && !filename.empty() && write_file_on_exit_) {
|
||||
if (results_count_from_input_file_ < GetTuningResultsManager().GetSize()) {
|
||||
if (results_count_from_input_file_ > 0) {
|
||||
TUNABLE_LOG1("additional tuning results available, rewriting file ", filename);
|
||||
}
|
||||
else {
|
||||
TUNABLE_LOG1("writing file ", filename);
|
||||
}
|
||||
if (!WriteFile(filename)) {
|
||||
TUNABLE_LOG1("failed to write file ", filename);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (untuned_file_.good()) {
|
||||
untuned_file_.close();
|
||||
@ -585,54 +511,20 @@ std::ofstream& TuningContext::GetUntunedFile(){
|
||||
return untuned_file_;
|
||||
}
|
||||
|
||||
void TuningContext::WriteFileOnExit(bool value) {
|
||||
write_file_on_exit_ = value;
|
||||
}
|
||||
|
||||
void TuningContext::EnableNumericsCheck(bool value) {
|
||||
numerics_check_enable_ = value;
|
||||
}
|
||||
|
||||
NumericalCheckConfig TuningContext::GetNumericalCheckConfig() const {
|
||||
const auto env_opt = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK");
|
||||
|
||||
if (!env_opt.has_value()) {
|
||||
return numerics_cfg_;
|
||||
}
|
||||
|
||||
const std::string& env = env_opt.value();
|
||||
|
||||
if (env == "0") {
|
||||
return NumericalCheckConfig(false, 1e-5, 1e-5);
|
||||
}
|
||||
|
||||
const size_t underscore = env.find('_');
|
||||
|
||||
TORCH_CHECK(
|
||||
underscore != std::string::npos,
|
||||
"Invalid PYTORCH_TUNABLEOP_NUMERICAL_CHECK format. "
|
||||
"Expected 'atol_rtol', got: ",
|
||||
env);
|
||||
|
||||
double atol = 0.0;
|
||||
double rtol = 0.0;
|
||||
|
||||
try {
|
||||
atol = std::stod(env.substr(0, underscore));
|
||||
rtol = std::stod(env.substr(underscore + 1));
|
||||
} catch (const std::exception& e) {
|
||||
TORCH_CHECK(false, "Failed to parse PYTORCH_TUNABLEOP_NUMERICAL_CHECK: ", e.what());
|
||||
}
|
||||
|
||||
TORCH_CHECK( atol > 0.0 && rtol > 0.0, "Tolerance values must be positive. atol=", atol, ", rtol=", rtol);
|
||||
return NumericalCheckConfig(true, atol, rtol);
|
||||
}
|
||||
|
||||
void TuningContext::SetNumericalCheckConfig(bool enabled, double atol, double rtol) {
|
||||
TORCH_CHECK(atol > 0.0 && rtol > 0.0, "Numerical check tolerances must be positive");
|
||||
numerics_cfg_ = {enabled, atol, rtol};
|
||||
}
|
||||
|
||||
bool TuningContext::IsNumericsCheckEnabled() const {
|
||||
const auto cfg = GetNumericalCheckConfig();
|
||||
return cfg.enabled || numerics_check_enable_;
|
||||
const auto env = c10::utils::get_env("PYTORCH_TUNABLEOP_NUMERICAL_CHECK");
|
||||
if (env == "1") {
|
||||
return true;
|
||||
}
|
||||
return numerics_check_enable_;
|
||||
}
|
||||
|
||||
void TuningContext::SetMaxTuningDurationMs(int max_duration_ms) {
|
||||
@ -742,6 +634,11 @@ TuningResultsManager& TuningContext::GetTuningResultsManager() {
|
||||
auto filename = GetFilename();
|
||||
if (!filename.empty() && !IsRecordUntunedEnabled()) {
|
||||
ReadFile(filename);
|
||||
// attempt immediately to open file for writing to catch errors early
|
||||
std::ofstream file(filename, std::ios::out | std::ios::app);
|
||||
if (!file.good()) {
|
||||
TORCH_WARN("failed to open file '", filename, "' for writing; your tuning results will not be saved");
|
||||
}
|
||||
}
|
||||
});
|
||||
return manager_;
|
||||
@ -847,6 +744,27 @@ bool TuningContext::ReadFile(const std::string& filename_) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool TuningContext::WriteFile(const std::string& filename_) {
|
||||
std::string filename = filename_.empty() ? GetFilename() : filename_;
|
||||
std::ofstream file(filename, std::ios::out | std::ios::trunc);
|
||||
if (!file.good()) {
|
||||
TUNABLE_LOG1("error opening tuning results file for writing ", filename);
|
||||
return false;
|
||||
}
|
||||
auto validators = GetTuningResultsValidator().GetAllValidators();
|
||||
for (const auto& [key, val] : validators) {
|
||||
file << "Validator," << key << "," << val << std::endl;
|
||||
}
|
||||
auto results = GetTuningResultsManager().Dump();
|
||||
for (const auto& [op_sig, kernelmap] : results) {
|
||||
for (const auto& [param_sig, result] : kernelmap) {
|
||||
file << op_sig << "," << param_sig << "," << result << std::endl;
|
||||
}
|
||||
}
|
||||
file.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
struct MaybeDelete {
|
||||
|
||||
@ -103,24 +103,10 @@ class TORCH_CUDA_CPP_API TuningResultsManager {
|
||||
|
||||
void RecordUntuned( std::ofstream& untuned_file, const std::string& op_signature,
|
||||
const std::string& params_signature, const std::string& blas_signature);
|
||||
|
||||
void InitRealtimeAppend(
|
||||
const std::string& filename,
|
||||
const std::unordered_map<std::string, std::string>& validators);
|
||||
|
||||
void AppendResultLine(const std::string& op_sig,
|
||||
const std::string& param_sig,
|
||||
const ResultEntry& result);
|
||||
|
||||
void CloseRealtimeAppend(); // For clean shutdown
|
||||
private:
|
||||
std::mutex lock_;
|
||||
std::mutex realtime_file_mutex_;
|
||||
std::unique_ptr<std::ofstream> realtime_out_;
|
||||
std::string realtime_filename_;
|
||||
ResultsMap results_;
|
||||
UntunedMap untuned_results_;
|
||||
bool validators_written_ = false;
|
||||
|
||||
};
|
||||
|
||||
@ -148,16 +134,6 @@ class TORCH_CUDA_CPP_API TuningResultsValidator {
|
||||
GetValidateFuncs validators_;
|
||||
};
|
||||
|
||||
struct NumericalCheckConfig {
|
||||
bool enabled{false};
|
||||
double atol{1e-5};
|
||||
double rtol{1e-5};
|
||||
|
||||
NumericalCheckConfig() = default;
|
||||
NumericalCheckConfig(bool e, double a, double r) : enabled(e), atol(a), rtol(r) {}
|
||||
};
|
||||
|
||||
|
||||
class TORCH_CUDA_CPP_API TuningContext {
|
||||
public:
|
||||
TuningContext();
|
||||
@ -179,8 +155,6 @@ class TORCH_CUDA_CPP_API TuningContext {
|
||||
|
||||
void EnableNumericsCheck(bool value);
|
||||
bool IsNumericsCheckEnabled() const;
|
||||
void SetNumericalCheckConfig(bool enabled, double atol, double rtol);
|
||||
NumericalCheckConfig GetNumericalCheckConfig() const;
|
||||
|
||||
void SetMaxTuningDurationMs(int max_duration_ms);
|
||||
int GetMaxTuningDurationMs() const;
|
||||
@ -211,7 +185,10 @@ class TORCH_CUDA_CPP_API TuningContext {
|
||||
void SetFilename(const std::string& filename, bool insert_device_ordinal=false);
|
||||
std::string GetFilename() const;
|
||||
|
||||
void WriteFileOnExit(bool value);
|
||||
|
||||
bool ReadFile(const std::string& filename={});
|
||||
bool WriteFile(const std::string& filename={});
|
||||
|
||||
template<class... Types>
|
||||
void Log(int level, Types... args) {
|
||||
@ -230,6 +207,7 @@ class TORCH_CUDA_CPP_API TuningContext {
|
||||
bool tuning_enable_;
|
||||
bool record_untuned_enable_;
|
||||
bool manager_initialized_;
|
||||
bool write_file_on_exit_;
|
||||
bool numerics_check_enable_;
|
||||
int max_tuning_duration_ms_;
|
||||
int max_tuning_iterations_;
|
||||
@ -244,8 +222,6 @@ class TORCH_CUDA_CPP_API TuningContext {
|
||||
std::ofstream untuned_file_;
|
||||
size_t results_count_from_input_file_;
|
||||
bool is_shutting_down_;
|
||||
|
||||
NumericalCheckConfig numerics_cfg_{};
|
||||
};
|
||||
|
||||
TORCH_CUDA_CPP_API TuningContext* getTuningContext();
|
||||
|
||||
@ -267,10 +267,27 @@ class TunableOp {
|
||||
for (size_t i = 0; i < op_names_.size(); i++) {
|
||||
auto* candidate = ops_[op_names_[i]].get(); // borrow pointer
|
||||
|
||||
auto status = candidate->Call(reusable_params[0]);
|
||||
if (status != OK) {
|
||||
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
|
||||
continue;
|
||||
if (do_numerics_check) {
|
||||
ParamsT* numerical_params = params->DeepCopy(false);
|
||||
auto status = candidate->Call(numerical_params);
|
||||
if (status != OK) {
|
||||
numerical_params->Delete();
|
||||
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
|
||||
continue;
|
||||
}
|
||||
status = reference_params->NumericalCheck(numerical_params);
|
||||
numerical_params->Delete();
|
||||
if (status != OK) {
|
||||
TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else {
|
||||
auto status = candidate->Call(reusable_params[0]);
|
||||
if (status != OK) {
|
||||
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// collect a small profile
|
||||
@ -293,22 +310,6 @@ class TunableOp {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (do_numerics_check) {
|
||||
ParamsT* numerical_params = params->DeepCopy(false);
|
||||
auto status = candidate->Call(numerical_params);
|
||||
if (status != OK) {
|
||||
numerical_params->Delete();
|
||||
TUNABLE_LOG3("├──unsupported id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
|
||||
continue;
|
||||
}
|
||||
status = reference_params->NumericalCheck(numerical_params);
|
||||
numerical_params->Delete();
|
||||
if (status != OK) {
|
||||
TUNABLE_LOG3("├──numerics check failed for id=", i, ", ", op_sig, '(', params_sig, ") ", op_names_[i]);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// for warmup does user set max duration, max iters, or both?
|
||||
// warmup is skipped by default, i.e. warmup_iter = 0
|
||||
// warmup will be set to the non-zero value of max_warmup_duration
|
||||
|
||||
@ -213,22 +213,40 @@ static cudnn_grid_sample_backward_batch_rule(
|
||||
return grid_sample_backward_helper_out(std::move(bw_out), 0, 0, bdim_size);
|
||||
}
|
||||
|
||||
// uses functional formulation for one_hot under vmap to be compatible with
|
||||
// fakeTensor/dynamic shapes and compiled functorch transforms.
|
||||
// mirrors the meta path in aten/src/ATen/native/Onehot.cpp,
|
||||
// but requires explicit positive num_classes under vmap to avoid
|
||||
// data-dependent output shapes.
|
||||
// TODO: replace with targetable functionalization
|
||||
static Tensor one_hot_decomposition_hack(const Tensor &self, int64_t num_classes) {
|
||||
TORCH_CHECK(self.dtype() == kLong, "one_hot is only applicable to index tensor.");
|
||||
auto shape = self.sym_sizes().vec();
|
||||
|
||||
// empty tensor could be converted to one hot representation,
|
||||
// but shape inference is not possible.
|
||||
if (self.sym_numel() == 0) {
|
||||
if (num_classes <= 0) {
|
||||
TORCH_CHECK(false, "Can not infer total number of classes from empty tensor.");
|
||||
} else {
|
||||
shape.emplace_back(num_classes);
|
||||
return at::empty_symint(shape, self.options());
|
||||
}
|
||||
}
|
||||
|
||||
// disallow implicit inference under vmap; this would be data-dependent
|
||||
// and is intentionally guarded by Dynamo in torch/_dynamo/variables/torch.py.
|
||||
TORCH_CHECK(num_classes > 0, "When vmap-ing torch.nn.functional.one_hot, please "
|
||||
"provide an explicit positive num_classes argument.");
|
||||
|
||||
const auto options = self.options();
|
||||
at::Tensor index = at::arange(num_classes, options);
|
||||
return at::eq(self.unsqueeze(-1), index).to(at::kLong);
|
||||
// Disabling all of the following checks. This is OK because scatter has checks too.
|
||||
// Maybe one_hot should be a primitive wrt autograd so we don't have to deal with this.
|
||||
// // non-empty tensor
|
||||
// if (self.device().type() != at::kCUDA) {
|
||||
// //for cuda, rely on device assert thrown by scatter
|
||||
// TORCH_CHECK(self.min().item().toLong() >= 0, "Class values must be non-negative.");
|
||||
// }
|
||||
// if (self.device().type() != at::kCUDA) {
|
||||
// //rely on device asserts from scatter to avoid sync here
|
||||
// TORCH_CHECK(num_classes > self.max().item().toLong(), "Class values must be smaller than num_classes.");
|
||||
// }
|
||||
|
||||
shape.emplace_back(num_classes);
|
||||
Tensor ret = at::zeros_symint(shape, self.options());
|
||||
return ret.scatter(-1, self.unsqueeze(-1), 1);
|
||||
}
|
||||
|
||||
template <typename A, A a, typename C>
|
||||
|
||||
@ -34,16 +34,16 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) {
|
||||
}
|
||||
}
|
||||
|
||||
auto shape = self.sym_sizes().vec();
|
||||
auto shape = self.sizes().vec();
|
||||
|
||||
// empty tensor could be converted to one hot representation,
|
||||
// but shape inference is not possible.
|
||||
if (self.sym_numel() == 0) {
|
||||
if (self.numel() == 0) {
|
||||
if (num_classes <= 0) {
|
||||
TORCH_CHECK(false, "Can not infer total number of classes from empty tensor.");
|
||||
} else {
|
||||
shape.emplace_back(num_classes);
|
||||
return at::empty_symint(shape, self.options());
|
||||
shape.push_back(num_classes);
|
||||
return at::empty(shape, self.options());
|
||||
}
|
||||
}
|
||||
|
||||
@ -66,8 +66,8 @@ Tensor one_hot(const Tensor &self, int64_t num_classes) {
|
||||
}
|
||||
}
|
||||
|
||||
shape.emplace_back(num_classes);
|
||||
Tensor ret = at::zeros_symint(shape, self.options());
|
||||
shape.push_back(num_classes);
|
||||
Tensor ret = at::zeros(shape, self.options());
|
||||
ret.scatter_(-1, self.unsqueeze(-1), 1);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -1906,9 +1906,11 @@ Tensor& index_fill_(
|
||||
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
|
||||
}
|
||||
|
||||
TORCH_CHECK(
|
||||
self.is_complex() || !source.isComplex(),
|
||||
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
|
||||
if (!self.is_complex() && source.isComplex()) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
|
||||
}
|
||||
|
||||
// Handle the case when `self` is 0-dim
|
||||
Tensor self_nonzero_dim = (self.dim() == 0) ? self.unsqueeze(-1) : self;
|
||||
|
||||
@ -120,7 +120,7 @@ static void pow_tensor_scalar_kernel(
|
||||
} else if (dtype == ScalarType::Half) {
|
||||
[&]() {
|
||||
using scalar_t =
|
||||
c10::impl::ScalarTypeToCPPTypeT<ScalarType::Half>;
|
||||
decltype(c10::impl::ScalarTypeToCPPType<ScalarType::Half>::t);
|
||||
const auto exp = exp_scalar.to<scalar_t>();
|
||||
using Vec = Vectorized<scalar_t>;
|
||||
cpu_kernel_vec(iter,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -856,13 +856,9 @@ struct type_specialized_kernel_launcher {
|
||||
out_calc_t output_offset_calculator,
|
||||
loader_t loader,
|
||||
storer_t storer) {
|
||||
constexpr ScalarType sret_t = rt_binary_specializations[arg_index][0];
|
||||
constexpr ScalarType sarg0_t = rt_binary_specializations[arg_index][1];
|
||||
constexpr ScalarType sarg1_t = rt_binary_specializations[arg_index][2];
|
||||
if (ret_t == sret_t && arg0_t == sarg0_t && arg1_t == sarg1_t) {
|
||||
using cret_t = c10::impl::ScalarTypeToCPPTypeT<sret_t>;
|
||||
using carg0_t = c10::impl::ScalarTypeToCPPTypeT<sarg0_t>;
|
||||
using carg1_t = c10::impl::ScalarTypeToCPPTypeT<sarg1_t>;
|
||||
if (ret_t == rt_binary_specializations[arg_index][0] &&
|
||||
arg0_t == rt_binary_specializations[arg_index][1] &&
|
||||
arg1_t == rt_binary_specializations[arg_index][2])
|
||||
launch_vectorized_templated_kernel<
|
||||
func_t,
|
||||
array_t,
|
||||
@ -870,9 +866,12 @@ struct type_specialized_kernel_launcher {
|
||||
out_calc_t,
|
||||
loader_t,
|
||||
storer_t,
|
||||
cret_t,
|
||||
carg0_t,
|
||||
carg1_t>(
|
||||
decltype(c10::impl::ScalarTypeToCPPType<
|
||||
rt_binary_specializations[arg_index][0]>::t),
|
||||
decltype(c10::impl::ScalarTypeToCPPType<
|
||||
rt_binary_specializations[arg_index][1]>::t),
|
||||
decltype(c10::impl::ScalarTypeToCPPType<
|
||||
rt_binary_specializations[arg_index][2]>::t)>(
|
||||
numel,
|
||||
f,
|
||||
data,
|
||||
@ -880,7 +879,6 @@ struct type_specialized_kernel_launcher {
|
||||
output_offset_calculator,
|
||||
loader,
|
||||
storer);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@ -38,41 +38,12 @@ __device__ inline int min(int a, int b) {
|
||||
#define BLOCK_STRIDE_BWD 2 // increasing block_stride to lower # of blocks launched
|
||||
#endif
|
||||
|
||||
template <typename index_t>
|
||||
static __device__ inline index_t p_start(index_t size, int pad, int kernel, int dilation, int stride) {
|
||||
const auto kernel_extent = static_cast<index_t>((kernel - 1) * dilation + 1);
|
||||
return (size + pad < kernel_extent) ? index_t(0) : (size + pad - kernel_extent) / stride + 1;
|
||||
static __device__ inline int p_start(int size, int pad, int kernel, int dilation, int stride) {
|
||||
return (size + pad < ((kernel - 1) * dilation + 1)) ? 0 : (size + pad - ((kernel - 1) * dilation + 1)) / stride + 1;
|
||||
}
|
||||
|
||||
template <typename index_t>
|
||||
static __device__ inline index_t p_end(index_t size, int pad, index_t pooled_size, int stride) {
|
||||
return std::min((size + pad) / stride + 1, pooled_size);
|
||||
}
|
||||
|
||||
static inline bool can_use_int32_nhwc(
|
||||
int64_t nbatch, int64_t channels,
|
||||
int64_t height, int64_t width,
|
||||
int64_t pooled_height, int64_t pooled_width,
|
||||
int64_t in_stride_n, int64_t in_stride_c,
|
||||
int64_t in_stride_h, int64_t in_stride_w)
|
||||
{
|
||||
constexpr int64_t int_max = std::numeric_limits<int>::max();
|
||||
|
||||
int64_t max_intra_batch =
|
||||
(height ? (height - 1) * in_stride_h : 0) +
|
||||
(width ? (width - 1) * in_stride_w : 0) +
|
||||
(channels? (channels - 1) * in_stride_c : 0);
|
||||
|
||||
int64_t max_input_offset = (nbatch ? (nbatch - 1) * in_stride_n : 0) + max_intra_batch;
|
||||
|
||||
if (max_input_offset > int_max) return false;
|
||||
|
||||
int64_t out_batch_stride = pooled_height * pooled_width * channels;
|
||||
if ((nbatch ? (nbatch - 1) * out_batch_stride : 0) > int_max) return false;
|
||||
|
||||
if (height * width > int_max) return false;
|
||||
|
||||
return true;
|
||||
static __device__ inline int p_end(int size, int pad, int pooled_size, int stride) {
|
||||
return min((size + pad) / stride + 1, pooled_size);
|
||||
}
|
||||
|
||||
// kernels borrowed from Caffe
|
||||
@ -114,25 +85,21 @@ __global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename index_t>
|
||||
template <typename scalar_t>
|
||||
C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS)
|
||||
__global__ void max_pool_forward_nhwc(
|
||||
const scalar_t* bottom_data,
|
||||
const int nbatch,
|
||||
const index_t channels, const index_t height, const index_t width,
|
||||
const index_t pooled_height, const index_t pooled_width,
|
||||
const int kernel_h, const int kernel_w, const int stride_h,
|
||||
const int stride_w, const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const index_t in_stride_n, const index_t in_stride_c,
|
||||
const index_t in_stride_h, const index_t in_stride_w,
|
||||
const int kernel_stride_C, const int kernel_size_C,
|
||||
scalar_t* top_data, int64_t* top_mask) {
|
||||
|
||||
extern __shared__ unsigned char smem_raw[];
|
||||
index_t *out_mask_cached = reinterpret_cast<index_t*>(smem_raw);
|
||||
scalar_t *out_cached = reinterpret_cast<scalar_t*>(
|
||||
out_mask_cached + kernel_size_C*blockDim.x*blockDim.y*blockDim.z);
|
||||
__global__ void max_pool_forward_nhwc(const scalar_t* bottom_data, const int nbatch,
|
||||
const int64_t channels, const int64_t height,
|
||||
const int64_t width, const int pooled_height, const int pooled_width,
|
||||
const int kernel_h, const int kernel_w, const int stride_h,
|
||||
const int stride_w, const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int in_stride_n, const int in_stride_c,
|
||||
const int in_stride_h, const int in_stride_w,
|
||||
const int kernel_stride_C, const int kernel_size_C,
|
||||
scalar_t* top_data, int64_t* top_mask) {
|
||||
extern __shared__ int smem[];
|
||||
int *out_mask_cached = smem;
|
||||
scalar_t *out_cached = reinterpret_cast<scalar_t*>(&out_mask_cached[kernel_size_C*blockDim.x*blockDim.y*blockDim.z]);
|
||||
|
||||
// flattening cta for pre-computation & smem initialization;
|
||||
int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z);
|
||||
@ -151,26 +118,26 @@ __global__ void max_pool_forward_nhwc(
|
||||
int channel_id = blockIdx.x / nbatch;
|
||||
int channel_offset = threadIdx.x + channel_id * blockDim.x;
|
||||
|
||||
top_data = top_data + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
|
||||
top_mask = top_mask + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
|
||||
bottom_data = bottom_data + static_cast<index_t>(batch_id) * in_stride_n;
|
||||
top_data = top_data + batch_id * pooled_height * pooled_width * channels;
|
||||
top_mask = top_mask + batch_id * pooled_height * pooled_width * channels;
|
||||
bottom_data = bottom_data + batch_id * in_stride_n;
|
||||
|
||||
out_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
|
||||
out_mask_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
|
||||
out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
|
||||
out_mask_cached = &out_mask_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
|
||||
|
||||
int oH = (static_cast<int>(pooled_height) + gridDim.z - 1) / gridDim.z;
|
||||
int oW = (static_cast<int>(pooled_width) + gridDim.y - 1) / gridDim.y;
|
||||
int oH = (pooled_height + gridDim.z-1) / gridDim.z;
|
||||
int oW = (pooled_width + gridDim.y-1) / gridDim.y;
|
||||
int ostartH = threadIdx.z + blockIdx.z*oH;
|
||||
int oendH = ::min(ostartH+oH, static_cast<int>(pooled_height));
|
||||
int oendH = ::min(ostartH+oH, pooled_height);
|
||||
int ostartW = threadIdx.y + blockIdx.y*oW;
|
||||
int oendW = ::min(ostartW+oW, static_cast<int>(pooled_width));
|
||||
int oendW = ::min(ostartW+oW, pooled_width);
|
||||
|
||||
for (int oh = ostartH; oh < oendH; oh+=blockDim.z) {
|
||||
index_t hstart = static_cast<index_t>(oh) * stride_h - pad_h;
|
||||
index_t hend = std::min(hstart + static_cast<index_t>((kernel_h - 1) * dilation_h + 1), height);
|
||||
int hstart = oh * stride_h - pad_h;
|
||||
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
|
||||
for (int ow = ostartW; ow < oendW; ow+=blockDim.y) {
|
||||
index_t wstart = static_cast<index_t>(ow) * stride_w - pad_w;
|
||||
index_t wend = std::min(wstart + static_cast<index_t>((kernel_w - 1) * dilation_w + 1), width);
|
||||
int wstart = ow * stride_w - pad_w;
|
||||
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
|
||||
while(hstart < 0)
|
||||
hstart += dilation_h;
|
||||
while(wstart < 0)
|
||||
@ -218,12 +185,12 @@ __global__ void max_pool_forward_nhwc(
|
||||
// Else do it Non-Prefetch...
|
||||
else
|
||||
#endif
|
||||
for (index_t ih = hstart; ih < hend; ih += dilation_h) {
|
||||
for (index_t iw = wstart; iw < wend; iw += dilation_w) {
|
||||
for (int ih = hstart; ih < hend; ih += dilation_h) {
|
||||
for (int iw = wstart; iw < wend; iw += dilation_w) {
|
||||
int cached_index = threadIdx.x;
|
||||
const scalar_t *ptr_input = bottom_data + ih * in_stride_h + iw * in_stride_w;
|
||||
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
|
||||
scalar_t val = ptr_input[c * in_stride_c];
|
||||
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
|
||||
scalar_t val = ptr_input[c*in_stride_c];
|
||||
if ((val > out_cached[cached_index]) || at::_isnan(val)) {
|
||||
out_cached[cached_index] = val;
|
||||
out_mask_cached[cached_index] = ih * width + iw;
|
||||
@ -233,15 +200,15 @@ __global__ void max_pool_forward_nhwc(
|
||||
}
|
||||
}
|
||||
|
||||
scalar_t *ptr_output_data = top_data + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
|
||||
int64_t *ptr_output_mask = top_mask + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
|
||||
scalar_t *ptr_output_data = top_data + (oh * pooled_width + ow) * channels;
|
||||
int64_t *ptr_output_mask = top_mask + (oh * pooled_width + ow) * channels;
|
||||
|
||||
int cached_index = threadIdx.x;
|
||||
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
|
||||
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
|
||||
ptr_output_data[c] = out_cached[cached_index];
|
||||
ptr_output_mask[c] = static_cast<int64_t>(out_mask_cached[cached_index]);
|
||||
ptr_output_mask[c] = out_mask_cached[cached_index];
|
||||
out_cached[cached_index] = at::numeric_limits<scalar_t>::lower_bound();
|
||||
out_mask_cached[cached_index] = index_t(0);
|
||||
out_mask_cached[cached_index] = 0;
|
||||
cached_index += blockDim.x;
|
||||
}
|
||||
}
|
||||
@ -495,11 +462,6 @@ const Tensor& indices) {
|
||||
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z));
|
||||
const dim3 block(block_x, block_y, block_z);
|
||||
|
||||
bool use_int32 = can_use_int32_nhwc(
|
||||
nbatch, nInputPlane, inputHeight, inputWidth,
|
||||
outputHeight, outputWidth,
|
||||
in_stride_n, in_stride_c, in_stride_h, in_stride_w);
|
||||
|
||||
int kernel_stride_C = ceil_div(
|
||||
safe_downcast<int, int64_t>(nInputPlane), block_x * 4);
|
||||
int kernel_size_C = ceil_div(
|
||||
@ -514,41 +476,18 @@ const Tensor& indices) {
|
||||
ceil_div(safe_downcast<int, int64_t>(outputHeight), block_z*BLOCK_STRIDE_FWD));
|
||||
const dim3 grid(grid_x, grid_y, grid_z);
|
||||
|
||||
size_t shmem_size;
|
||||
size_t mask_elems = static_cast<size_t>(kernel_size_C) * block_x * block_y * block_z;
|
||||
size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * (sizeof(int) + sizeof(scalar_t));
|
||||
AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock);
|
||||
|
||||
if (use_int32) {
|
||||
shmem_size = mask_elems * (sizeof(int32_t) + sizeof(scalar_t));
|
||||
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
|
||||
"shared memory too small");
|
||||
max_pool_forward_nhwc<scalar_t, int32_t>
|
||||
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
|
||||
input_data, static_cast<int>(nbatch),
|
||||
static_cast<int32_t>(nInputPlane),
|
||||
static_cast<int32_t>(inputHeight),
|
||||
static_cast<int32_t>(inputWidth),
|
||||
static_cast<int32_t>(outputHeight),
|
||||
static_cast<int32_t>(outputWidth),
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
static_cast<int32_t>(in_stride_n),
|
||||
static_cast<int32_t>(in_stride_c),
|
||||
static_cast<int32_t>(in_stride_h),
|
||||
static_cast<int32_t>(in_stride_w),
|
||||
kernel_stride_C, kernel_size_C,
|
||||
output_data, indices_data);
|
||||
} else {
|
||||
shmem_size = mask_elems * (sizeof(int64_t) + sizeof(scalar_t));
|
||||
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
|
||||
"shared memory too small");
|
||||
max_pool_forward_nhwc<scalar_t, int64_t>
|
||||
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
|
||||
input_data, static_cast<int>(nbatch),
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
in_stride_n, in_stride_c, in_stride_h, in_stride_w,
|
||||
kernel_stride_C, kernel_size_C,
|
||||
output_data, indices_data);
|
||||
}
|
||||
max_pool_forward_nhwc<scalar_t>
|
||||
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
|
||||
input_data, nbatch,
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
in_stride_n, in_stride_c,
|
||||
in_stride_h, in_stride_w,
|
||||
kernel_stride_C, kernel_size_C,
|
||||
output_data, indices_data);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
break;
|
||||
}
|
||||
|
||||
@ -655,14 +655,8 @@ struct ReduceOp {
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
// Intra-warp reduction, fix CUDA to have offset decreasing for better numerics
|
||||
// matching Triton, etc.
|
||||
// todo for AMD
|
||||
#ifdef USE_ROCM
|
||||
|
||||
for (int offset = 1; offset < dim_x; offset <<= 1) {
|
||||
#else
|
||||
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
|
||||
#endif
|
||||
#pragma unroll
|
||||
for (int i = 0; i < output_vec_size; i++) {
|
||||
arg_t other = ops.warp_shfl_down(value[i], offset);
|
||||
|
||||
@ -77,8 +77,8 @@ struct nansum_functor_complex {
|
||||
#if AT_USE_JITERATOR()
|
||||
void operator()(TensorIterator& iter) {
|
||||
std::string func = jiterator_stringify(
|
||||
arg_t combine(arg_t a, arg_t b) {
|
||||
return a + (std::isnan(b) ? arg_t{0.} : b);
|
||||
arg_t combine(arg_t a, scalar_t b) {
|
||||
return a + (std::isnan(b) ? arg_t{0.} : arg_t{b});
|
||||
}
|
||||
);
|
||||
jitted_gpu_reduce_kernel<nansum_name, scalar_t, scalar_t>(
|
||||
|
||||
@ -464,7 +464,6 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
|
||||
}
|
||||
#endif
|
||||
int32_t trailingSize;
|
||||
int nDimsLocal = nDims;
|
||||
TensorSizeStride<unsigned int, CAT_ARRAY_MAX_INPUT_DIMS> kernelOutputParam;
|
||||
if (isInOutAligned) {
|
||||
// in this case we can and should flatten the tensors after the cat dim
|
||||
@ -478,7 +477,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
|
||||
// and divide all strides except last by elems_per_vec (last stride is 1 always)
|
||||
// for input, we will fix up the sizes and strides in the kernel directly
|
||||
kernelOutputParam = outputParam;
|
||||
nDimsLocal = dimension + 1;
|
||||
nDims = dimension + 1;
|
||||
constexpr auto elems_per_vec = alignment / sizeof(scalar_t);
|
||||
auto out_size = dimension == 0 ? out.numel() : kernelOutputParam.tensorStride[dimension-1];
|
||||
kernelOutputParam.tensorSize[dimension] = out_size / elems_per_vec;
|
||||
@ -495,7 +494,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
|
||||
case 0:
|
||||
break;
|
||||
case 1:
|
||||
cat_dim = nDimsLocal - cat_dim;
|
||||
cat_dim = nDims - cat_dim;
|
||||
break;
|
||||
default:
|
||||
cat_dim--;
|
||||
@ -526,7 +525,7 @@ void parallel_cat(const Tensor &out, const MaterializedITensorListRef& inputs, i
|
||||
data, catMetaData, outputParam, cat_dim, outputParam.tensorStride[cat_dim]);\
|
||||
}\
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
switch (nDimsLocal) {
|
||||
switch (nDims) {
|
||||
case 1:
|
||||
HANDLE_CASE(1);
|
||||
break;
|
||||
|
||||
@ -21,15 +21,9 @@ namespace {
|
||||
struct offset_t {
|
||||
int stride;
|
||||
int begin;
|
||||
__device__ int operator[](int i) const {
|
||||
__device__ int operator[](int i) {
|
||||
return stride * (begin + i);
|
||||
}
|
||||
#if CCCL_VERSION >= 3001000
|
||||
__device__ offset_t& operator+=(int i) {
|
||||
begin += i;
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
};
|
||||
// Segmented sort by full sort algorithm:.
|
||||
// Say we are sorting a (2, 3) tensor. We have in flattened form:
|
||||
|
||||
@ -127,29 +127,6 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
// Helper function to compute output pixel range that can contribute to input pixel
|
||||
template <typename accscalar_t>
|
||||
__device__ __forceinline__ void compute_output_range(
|
||||
int input_pos,
|
||||
accscalar_t scale,
|
||||
int output_size,
|
||||
bool align_corners,
|
||||
int& min_output,
|
||||
int& max_output) {
|
||||
accscalar_t lo, hi;
|
||||
if (align_corners) {
|
||||
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
|
||||
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
|
||||
} else {
|
||||
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
|
||||
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
|
||||
}
|
||||
min_output = max(0, static_cast<int>(ceil(lo)));
|
||||
max_output = min(output_size - 1, static_cast<int>(floor(hi)));
|
||||
}
|
||||
#endif
|
||||
|
||||
// Backward (adjoint) operation 1 <- 2 (accumulates)
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
C10_LAUNCH_BOUNDS_1(1024)
|
||||
@ -164,74 +141,8 @@ __global__ void upsample_bilinear2d_backward_out_frame(
|
||||
const bool align_corners,
|
||||
scalar_t* __restrict__ idata,
|
||||
const scalar_t* __restrict__ odata) {
|
||||
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
|
||||
const size_t i_numel = nc * width1 * height1;
|
||||
#ifdef USE_ROCM
|
||||
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
|
||||
index += blockDim.x * gridDim.x) {
|
||||
// Decode input pixel coordinates
|
||||
size_t index_temp = index;
|
||||
const int w1 = index_temp % width1;
|
||||
index_temp /= width1;
|
||||
const int h1 = index_temp % height1;
|
||||
const size_t nc_idx = index_temp / height1;
|
||||
|
||||
accscalar_t grad_sum = 0;
|
||||
|
||||
// Find range of output pixels that could interpolate from this input pixel
|
||||
int h2_min, h2_max, w2_min, w2_max;
|
||||
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
|
||||
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
|
||||
|
||||
// Iterate over potential output pixels
|
||||
for (int h2 = h2_min; h2 <= h2_max; h2++) {
|
||||
for (int w2 = w2_min; w2 <= w2_max; w2++) {
|
||||
// Compute source coordinates for this output pixel
|
||||
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
|
||||
rheight, h2, align_corners, /*cubic=*/false);
|
||||
const int h1_base = (int)h1r;
|
||||
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
|
||||
const accscalar_t h1lambda = h1r - h1_base;
|
||||
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
|
||||
|
||||
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
|
||||
rwidth, w2, align_corners, /*cubic=*/false);
|
||||
const int w1_base = (int)w1r;
|
||||
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
|
||||
const accscalar_t w1lambda = w1r - w1_base;
|
||||
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
|
||||
|
||||
// Check if our input pixel participates in this interpolation and accumulate all weights
|
||||
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
|
||||
// to the same pixel, so we need to accumulate weights from all matching positions
|
||||
accscalar_t weight = 0;
|
||||
|
||||
// Check all four interpolation positions and accumulate weights
|
||||
if (h1 == h1_base && w1 == w1_base) {
|
||||
weight += h0lambda * w0lambda; // top-left
|
||||
}
|
||||
if (h1 == h1_base && w1 == w1_base + w1p) {
|
||||
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
|
||||
}
|
||||
if (h1 == h1_base + h1p && w1 == w1_base) {
|
||||
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
|
||||
}
|
||||
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
|
||||
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
|
||||
}
|
||||
|
||||
if (weight > 0) {
|
||||
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
|
||||
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write accumulated gradient (no atomics needed)
|
||||
idata[index] = static_cast<scalar_t>(grad_sum);
|
||||
}
|
||||
#else
|
||||
const size_t o_numel = nc * width2 * height2;
|
||||
const size_t i_numel = nc * width1 * height1;
|
||||
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
|
||||
index += blockDim.x * gridDim.x) {
|
||||
size_t index_temp = index;
|
||||
@ -280,7 +191,6 @@ __global__ void upsample_bilinear2d_backward_out_frame(
|
||||
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
|
||||
true);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
@ -477,6 +387,7 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
// threads are not covering the whole input tensor.
|
||||
grad_input.zero_();
|
||||
|
||||
const size_t num_kernels = nbatch * channels * output_height * output_width;
|
||||
const int num_threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
@ -486,12 +397,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
constexpr bool use_input = true;
|
||||
#else
|
||||
constexpr bool use_input = false;
|
||||
#endif
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::ScalarType::Half, at::ScalarType::BFloat16,
|
||||
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
|
||||
@ -509,8 +414,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
|
||||
input_width, output_width, align_corners, scales_w);
|
||||
|
||||
const size_t num_kernels = nbatch * channels * output_height * output_width;
|
||||
|
||||
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
|
||||
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
|
||||
input_height,
|
||||
@ -541,8 +444,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
|
||||
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
|
||||
input_width, output_width, align_corners, scales_w);
|
||||
|
||||
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
|
||||
|
||||
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
|
||||
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
|
||||
num_threads,
|
||||
|
||||
@ -662,7 +662,7 @@ void svd_cusolver(const Tensor& A,
|
||||
const auto n = A.size(-1);
|
||||
const auto k = std::min(m, n);
|
||||
|
||||
static constexpr const char* check_svd_doc = "Check doc at https://pytorch.org/docs/stable/generated/torch.linalg.svd.html";
|
||||
static const char* check_svd_doc = "Check doc at https://pytorch.org/docs/stable/generated/torch.linalg.svd.html";
|
||||
|
||||
// The default heuristic is to use gesvdj driver
|
||||
#ifdef USE_ROCM
|
||||
|
||||
@ -466,11 +466,7 @@ struct ReduceJitOp {
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#ifdef USE_ROCM
|
||||
for (int offset = 1; offset < dim_x; offset <<= 1) {
|
||||
#else
|
||||
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
|
||||
#endif
|
||||
#pragma unroll
|
||||
for (int i = 0; i < output_vec_size; i++) {
|
||||
arg_t other = reducer::warp_shfl_down(value[i], offset);
|
||||
|
||||
@ -3,9 +3,6 @@
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/native/DispatchStub.h>
|
||||
#include <c10/util/accumulate.h>
|
||||
#include <c10/core/SymBool.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
|
||||
|
||||
namespace at::native {
|
||||
|
||||
@ -22,30 +19,28 @@ C10_ALWAYS_INLINE void _check_rms_norm_inputs_symint(
|
||||
"Expected normalized_shape to be at least 1-dimensional, i.e., ",
|
||||
"containing at least one element, but got normalized_shape = ",
|
||||
normalized_shape);
|
||||
if (weight.defined()) {
|
||||
TORCH_SYM_CHECK(
|
||||
sym_equals(weight.sym_sizes(), normalized_shape),
|
||||
"Expected weight to be of same shape as normalized_shape, but got ",
|
||||
"weight of shape ",
|
||||
weight.sym_sizes(),
|
||||
" and normalized_shape = ",
|
||||
normalized_shape);
|
||||
}
|
||||
TORCH_CHECK(
|
||||
!weight.defined() || weight.sym_sizes().equals(normalized_shape),
|
||||
"Expected weight to be of same shape as normalized_shape, but got ",
|
||||
"weight of shape ",
|
||||
weight.sym_sizes(),
|
||||
" and normalized_shape = ",
|
||||
normalized_shape);
|
||||
|
||||
const auto input_ndim = input.dim();
|
||||
const auto input_shape = input.sym_sizes();
|
||||
TORCH_CHECK_VALUE(
|
||||
input_ndim >= normalized_ndim,
|
||||
"Input tensor must have at least ", normalized_ndim, " dimensions, but got ", input_ndim);
|
||||
|
||||
auto expect_input_shape_msg = c10::str(
|
||||
"Given normalized_shape=", normalized_shape,
|
||||
", expected input with shape [*", c10::Join(", ", normalized_shape),
|
||||
"], but got input of size", input_shape);
|
||||
|
||||
TORCH_SYM_CHECK(
|
||||
sym_equals(input_shape.slice(input_ndim - normalized_ndim), normalized_shape),
|
||||
expect_input_shape_msg);
|
||||
if (input_ndim < normalized_ndim ||
|
||||
!input_shape.slice(input_ndim - normalized_ndim)
|
||||
.equals(normalized_shape)) {
|
||||
std::stringstream ss;
|
||||
ss << "Given normalized_shape=" << normalized_shape
|
||||
<< ", expected input with shape [*";
|
||||
for (auto size : normalized_shape) {
|
||||
ss << ", " << size;
|
||||
}
|
||||
ss << "], but got input of size" << input_shape;
|
||||
TORCH_CHECK(false, ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
C10_ALWAYS_INLINE std::pair<int64_t, int64_t> _check_layer_norm_inputs(
|
||||
|
||||
@ -160,12 +160,8 @@ static bool mkldnn_conv_enabled_fpmath_mode_bf16(){
|
||||
}
|
||||
|
||||
static bool mkldnn_conv_enabled_fpmath_mode_tf32(){
|
||||
#if defined(__x86_64__) || defined(_M_X64)
|
||||
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
|
||||
cpuinfo_has_x86_amx_fp16();
|
||||
#else
|
||||
return false; //TF32 not supported on power system
|
||||
#endif
|
||||
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::CONV) == at::Float32Precision::TF32 &&
|
||||
cpuinfo_has_x86_amx_fp16();
|
||||
}
|
||||
|
||||
static inline at::MemoryFormat mkldnn_convolution_memory_format(int64_t dims, bool is_channels_last) {
|
||||
|
||||
@ -74,12 +74,8 @@ static bool use_mkldnn_bf32_linear() {
|
||||
}
|
||||
|
||||
static bool use_mkldnn_tf32_linear() {
|
||||
#if defined(__x86_64__) || defined(_M_X64)
|
||||
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
|
||||
return at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32 &&
|
||||
cpuinfo_has_x86_amx_fp16();
|
||||
#else
|
||||
return false; // TF32 not supported on power system
|
||||
#endif
|
||||
}
|
||||
|
||||
Tensor mkldnn_linear(
|
||||
|
||||
@ -114,13 +114,8 @@ static bool use_mkldnn_bf32_matmul() {
|
||||
return use_mkldnn_bf16_matmul() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::BF16;
|
||||
}
|
||||
|
||||
|
||||
static bool use_mkldnn_tf32_matmul() {
|
||||
#if defined(__x86_64__) || defined(_M_X64)
|
||||
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
|
||||
#else
|
||||
return false; // TF32 not supported on power system
|
||||
#endif
|
||||
return cpuinfo_has_x86_amx_fp16() && at::globalContext().float32Precision(at::Float32Backend::MKLDNN, at::Float32Op::MATMUL) == at::Float32Precision::TF32;
|
||||
}
|
||||
|
||||
// returns an ideep::tensor
|
||||
|
||||
@ -99,9 +99,6 @@ Tensor getTensorView(const Tensor& t, MPSShape* shape);
|
||||
MPSShape* getMPSShape(const TensorBase& t, c10::MemoryFormat memory_format = MemoryFormat::Contiguous);
|
||||
MPSShape* getMPSShape(IntArrayRef sizes, c10::MemoryFormat memory_format = MemoryFormat::Contiguous);
|
||||
|
||||
// Determines whether a tensor is too large to use MPSGraph
|
||||
bool isTooLargeForMPSGraph(const Tensor& tensor, bool useMPSStridedAPI = true);
|
||||
|
||||
static inline id<MTLBuffer> getMTLBufferStorage(const TensorBase& tensor) {
|
||||
return __builtin_bit_cast(id<MTLBuffer>, tensor.storage().data());
|
||||
}
|
||||
|
||||
@ -439,22 +439,6 @@ static void check_mps_shape(MPSShape* shape) {
|
||||
}
|
||||
}
|
||||
|
||||
bool isTooLargeForMPSGraph(const Tensor& tensor, bool useMPSStridedAPI) {
|
||||
static const bool is_macOS_15_0_or_newer = is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS);
|
||||
if ((!tensor.is_contiguous() || tensor.storage_offset()) && useMPSStridedAPI && is_macOS_15_0_or_newer) {
|
||||
auto storage_numel = tensor.storage().nbytes() / tensor.element_size() - tensor.storage_offset();
|
||||
if (storage_numel > std::numeric_limits<int32_t>::max()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
for (auto size : tensor.sizes()) {
|
||||
if (size > std::numeric_limits<int32_t>::max()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
MPSNDArray* getMPSNDArray(const TensorBase& t, MPSShape* sizes, MPSShape* strides) {
|
||||
id<MTLBuffer> srcBuf = getMTLBufferStorage(t);
|
||||
|
||||
@ -712,7 +696,7 @@ Tensor wrapped_scalar_tensor_mps(const Scalar& scalar, const Device device) {
|
||||
} else if (scalar.isBoolean()) {
|
||||
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kBool));
|
||||
} else if (scalar.isComplex()) {
|
||||
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kComplexFloat));
|
||||
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kComplexDouble));
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT(scalar.isIntegral(false));
|
||||
tensor = at::scalar_tensor(scalar, at::device(device).dtype(at::kLong));
|
||||
|
||||
@ -249,7 +249,7 @@ kernel void embedding_bag(
|
||||
|
||||
template <EmbeddingBagMode M, typename T>
|
||||
struct MaybeDivBagSize {
|
||||
inline opmath_t<T> operator()(opmath_t<T> val, opmath_t<T> /*bag_size*/) {
|
||||
inline opmath_t<T> operator()(opmath_t<T> val, opmath_t<T> bag_size) {
|
||||
return val;
|
||||
}
|
||||
};
|
||||
|
||||
@ -1,18 +0,0 @@
|
||||
#pragma once
|
||||
#include <c10/metal/common.h>
|
||||
|
||||
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
|
||||
struct CatLargeSharedParams {
|
||||
int32_t ndim;
|
||||
int32_t cat_dim;
|
||||
::c10::metal::array<idx_type_t, N> output_strides;
|
||||
::c10::metal::array<idx_type_t, N> output_sizes;
|
||||
};
|
||||
|
||||
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
|
||||
struct CatLargeInputParams {
|
||||
idx_type_t cat_dim_offset;
|
||||
idx_type_t input_element_offset;
|
||||
::c10::metal::array<idx_type_t, N> input_strides;
|
||||
::c10::metal::array<idx_type_t, N> input_sizes;
|
||||
};
|
||||
@ -1,82 +0,0 @@
|
||||
#include <ATen/native/mps/kernels/Shape.h>
|
||||
#include <c10/metal/utils.h>
|
||||
#include <metal_array>
|
||||
#include <metal_stdlib>
|
||||
|
||||
using namespace metal;
|
||||
using namespace c10::metal;
|
||||
|
||||
template <typename T_in, typename T_out>
|
||||
kernel void cat_large(
|
||||
constant T_in* input [[buffer(0)]],
|
||||
device T_out* output [[buffer(1)]],
|
||||
constant CatLargeSharedParams<>& shared_params [[buffer(2)]],
|
||||
constant CatLargeInputParams<>& input_params [[buffer(3)]],
|
||||
uint tid [[thread_position_in_grid]]) {
|
||||
auto ndim = shared_params.ndim;
|
||||
auto cat_dim = shared_params.cat_dim;
|
||||
constant auto& output_strides = shared_params.output_strides;
|
||||
constant auto& output_sizes = shared_params.output_sizes;
|
||||
|
||||
auto cat_dim_offset = input_params.cat_dim_offset;
|
||||
auto input_element_offset = input_params.input_element_offset;
|
||||
constant auto& input_strides = input_params.input_strides;
|
||||
constant auto& input_sizes = input_params.input_sizes;
|
||||
|
||||
auto input_element_idx = static_cast<int64_t>(tid) + input_element_offset;
|
||||
int64_t input_offset = 0;
|
||||
int64_t output_offset = 0;
|
||||
|
||||
for (auto dim = ndim - 1; dim >= 0; dim--) {
|
||||
auto dim_size = input_sizes[dim];
|
||||
auto input_dim_idx = input_element_idx % dim_size;
|
||||
auto output_dim_idx =
|
||||
input_dim_idx + ((dim == cat_dim) ? cat_dim_offset : 0);
|
||||
|
||||
input_offset += input_strides[dim] * input_dim_idx;
|
||||
output_offset += output_strides[dim] * output_dim_idx;
|
||||
|
||||
input_element_idx = input_element_idx / dim_size;
|
||||
}
|
||||
|
||||
output[output_offset] = static_cast<T_out>(input[input_offset]);
|
||||
}
|
||||
|
||||
#define REGISTER_CAT_LARGE_OP(T_in, T_out) \
|
||||
template [[host_name("cat_large_" #T_in "_" #T_out)]] \
|
||||
kernel void cat_large<T_in, T_out>( \
|
||||
constant T_in * input [[buffer(0)]], \
|
||||
device T_out * output [[buffer(1)]], \
|
||||
constant CatLargeSharedParams<> & shared_params [[buffer(2)]], \
|
||||
constant CatLargeInputParams<> & input_params [[buffer(3)]], \
|
||||
uint tid [[thread_position_in_grid]]);
|
||||
|
||||
#define REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(T_out) \
|
||||
REGISTER_CAT_LARGE_OP(float, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(half, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(bfloat, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(int, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(uint, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(long, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(ulong, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(short, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(ushort, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(char, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(uchar, T_out); \
|
||||
REGISTER_CAT_LARGE_OP(bool, T_out);
|
||||
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(float);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(half);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bfloat);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(int);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uint);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(long);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ulong);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(short);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ushort);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(char);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uchar);
|
||||
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bool);
|
||||
|
||||
REGISTER_CAT_LARGE_OP(float2, float2);
|
||||
REGISTER_CAT_LARGE_OP(half2, half2);
|
||||
@ -512,7 +512,7 @@ TORCH_IMPL_FUNC(threshold_backward_out_mps)
|
||||
}
|
||||
|
||||
static MPSGraphTensor* normcdf(MPSGraph* mpsGraph, MPSGraphTensor* inputTensor) {
|
||||
// (1.0f + erf(x*SQRT1_2)) * 0.5f;
|
||||
// (1.0f + erf(x*SQRT1_2)) * 0.5f * x;
|
||||
auto dataType = [inputTensor dataType];
|
||||
const float SQRT1_2 = 0.707106781186547524400844362104849039f;
|
||||
MPSGraphTensor* sqrt1_2 = [mpsGraph constantWithScalar:SQRT1_2 shape:@[ @1 ] dataType:dataType];
|
||||
|
||||
@ -54,10 +54,6 @@ Tensor dot_mps(const Tensor& self, const Tensor& other) {
|
||||
using namespace mps;
|
||||
using CachedGraph = MPSBinaryCachedGraph;
|
||||
|
||||
if (self.numel() == 0 & other.numel() == 0) {
|
||||
return zeros({}, self.options());
|
||||
}
|
||||
|
||||
dot_check(self, other);
|
||||
|
||||
auto output = at::empty({}, self.scalar_type(), std::nullopt, kMPS, std::nullopt, std::nullopt);
|
||||
|
||||
@ -907,8 +907,6 @@ Tensor& index_fill_mps_(Tensor& self, int64_t dim, const Tensor& index, const Te
|
||||
TORCH_CHECK(index.scalar_type() == ScalarType::Long || index.scalar_type() == ScalarType::Int,
|
||||
"index_fill_(): Expected dtype int32 or int64 for index");
|
||||
TORCH_CHECK(dim == 0 || dim < self.dim(), "index_fill_(): Indexing dim ", dim, " is out of bounds of tensor");
|
||||
TORCH_CHECK(self.is_complex() || !source.is_complex(),
|
||||
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
|
||||
// MPS.scatter crashes if used with complex dtypes
|
||||
TORCH_CHECK(!c10::isComplexType(self.scalar_type()), "index_fill_(): Complex types are yet not supported");
|
||||
|
||||
|
||||
@ -2,13 +2,9 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/MemoryOverlap.h>
|
||||
#include <ATen/WrapDimUtils.h>
|
||||
#include <ATen/mps/MPSProfiler.h>
|
||||
#include <ATen/native/TensorShape.h>
|
||||
#include <ATen/native/TypeProperties.h>
|
||||
#include <ATen/native/mps/OperationUtils.h>
|
||||
#include <ATen/native/mps/kernels/Shape.h>
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -20,13 +16,6 @@
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#ifndef PYTORCH_JIT_COMPILE_SHADERS
|
||||
static auto& lib = mps::MetalShaderLibrary::getBundledLibrary();
|
||||
#else
|
||||
#include <ATen/native/mps/Shape_metallib.h>
|
||||
#endif
|
||||
|
||||
namespace mps {
|
||||
|
||||
// Produces a shape with the `dim` dimension set to 0.
|
||||
@ -68,70 +57,6 @@ static void check_shape_except_dim(const Tensor& first, const Tensor& second, in
|
||||
")");
|
||||
}
|
||||
}
|
||||
|
||||
// This implementation of cat is used only if one of the inputs or the output is
|
||||
// too large to use MPSGraph.
|
||||
// NOTE: `output` is expected to already have the correct size.
|
||||
static void cat_out_large_tensor_mps(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
|
||||
CatLargeSharedParams shared_params;
|
||||
|
||||
shared_params.ndim = output.dim();
|
||||
shared_params.cat_dim = dimension;
|
||||
|
||||
for (const auto dim : c10::irange(output.dim())) {
|
||||
shared_params.output_strides[dim] = output.stride(dim);
|
||||
shared_params.output_sizes[dim] = output.size(dim);
|
||||
}
|
||||
|
||||
int64_t cat_dim_offset = 0;
|
||||
size_t input_idx = 0;
|
||||
MPSStream* stream = getCurrentMPSStream();
|
||||
|
||||
// Launch a separate kernels for each input. This will produce some overhead,
|
||||
// but that should be relatively minimal since at least one of the inputs is
|
||||
// very large. In order to launch only one kernel to process all inputs, we
|
||||
// would have to copy all the input tensor data into a packed buffer, which
|
||||
// would not be ideal.
|
||||
for (const Tensor& input : inputs) {
|
||||
if (input.numel() == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Metal can only launch up to MAX_INT threads at one time. If the input has
|
||||
// more than that number of elements, launch multiple kernels with different
|
||||
// offsets into the data.
|
||||
const int64_t max_num_threads = static_cast<int64_t>(std::numeric_limits<int32_t>::max());
|
||||
|
||||
for (int64_t numel_remaining = input.numel(); numel_remaining > 0; numel_remaining -= max_num_threads) {
|
||||
auto num_threads = std::min(max_num_threads, numel_remaining);
|
||||
CatLargeInputParams input_params;
|
||||
|
||||
input_params.cat_dim_offset = cat_dim_offset;
|
||||
input_params.input_element_offset = input.numel() - numel_remaining;
|
||||
|
||||
for (const auto dim : c10::irange(input.dim())) {
|
||||
input_params.input_strides[dim] = input.stride(dim);
|
||||
input_params.input_sizes[dim] = input.size(dim);
|
||||
}
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
|
||||
auto pipeline_state = lib.getPipelineStateForFunc(
|
||||
fmt::format("cat_large_{}_{}", scalarToMetalTypeString(input), scalarToMetalTypeString(output)));
|
||||
getMPSProfiler().beginProfileKernel(pipeline_state, "cat", {input});
|
||||
[computeEncoder setComputePipelineState:pipeline_state];
|
||||
mtl_setArgs(computeEncoder, input, output, shared_params, input_params);
|
||||
mtl_dispatch1DJob(computeEncoder, pipeline_state, num_threads);
|
||||
getMPSProfiler().endProfileKernel(pipeline_state);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
cat_dim_offset += input.size(dimension);
|
||||
input_idx++;
|
||||
}
|
||||
}
|
||||
} // namespace mps
|
||||
|
||||
// topk
|
||||
@ -306,11 +231,7 @@ TORCH_IMPL_FUNC(cat_out_mps)
|
||||
// Compute size of the result in the cat dimension
|
||||
int64_t cat_dim_size = 0;
|
||||
idx = 0;
|
||||
bool has_large_tensor = false;
|
||||
for (const Tensor& tensor : materialized_inputs) {
|
||||
if (isTooLargeForMPSGraph(tensor)) {
|
||||
has_large_tensor |= true;
|
||||
}
|
||||
if (!should_skip(tensor)) {
|
||||
// TODO: Factor out `check_shape_except_dim`
|
||||
check_shape_except_dim(notSkippedTensor, tensor, dimension, idx);
|
||||
@ -328,12 +249,6 @@ TORCH_IMPL_FUNC(cat_out_mps)
|
||||
return;
|
||||
}
|
||||
|
||||
has_large_tensor |= isTooLargeForMPSGraph(out);
|
||||
|
||||
if (has_large_tensor) {
|
||||
return mps::cat_out_large_tensor_mps(materialized_inputs, dimension, out);
|
||||
}
|
||||
|
||||
struct CachedGraph : public MPSCachedGraph {
|
||||
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
|
||||
std::vector<MPSGraphTensor*> inputTensors_;
|
||||
|
||||
@ -4545,7 +4545,6 @@
|
||||
- func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor
|
||||
dispatch:
|
||||
CPU, CUDA: _cdist_forward
|
||||
MTIA: _cdist_forward_mtia
|
||||
MPS: _cdist_forward_mps
|
||||
autogen: _cdist_forward.out
|
||||
tags: core
|
||||
@ -7183,12 +7182,6 @@
|
||||
CUDA: _scaled_grouped_mm_cuda
|
||||
tags: needs_exact_strides
|
||||
|
||||
- func: _scaled_grouped_mm_v2(Tensor self, Tensor mat2, Tensor[] scale_a, int[] recipe_a, int[] swizzle_a, Tensor[] scale_b, int[] recipe_b, int[] swizzle_b, Tensor? offs=None, Tensor? bias=None, ScalarType? out_dtype=None, int[] contraction_dim=[], bool use_fast_accum=False) -> Tensor
|
||||
variants: function
|
||||
dispatch:
|
||||
CUDA: _scaled_grouped_mm_cuda_v2
|
||||
tags: needs_exact_strides
|
||||
|
||||
- func: _grouped_mm(Tensor self, Tensor mat2, Tensor? offs=None, Tensor? bias=None, ScalarType? out_dtype=None) -> Tensor
|
||||
variants: function
|
||||
dispatch:
|
||||
@ -7384,7 +7377,7 @@
|
||||
- func: sparse_mask(Tensor self, Tensor mask) -> Tensor
|
||||
variants: method
|
||||
dispatch:
|
||||
SparseCPU, SparseCUDA, SparseMPS: sparse_mask
|
||||
SparseCPU, SparseCUDA: sparse_mask
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: sparse_mask_sparse_compressed
|
||||
autogen: sparse_mask.out
|
||||
|
||||
|
||||
@ -178,30 +178,24 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_channel_affine_b
|
||||
0 & \text{ else }
|
||||
\end{cases}
|
||||
*/
|
||||
bool is_bfloat16 = (X.scalar_type() == at::kBFloat16);
|
||||
at::Tensor X_ = is_bfloat16 ? X.to(ScalarType::Float) : X;
|
||||
at::Tensor dY_ = is_bfloat16 ? dY.to(ScalarType::Float) : dY;
|
||||
at::Tensor scale_ = is_bfloat16 ? scale.to(ScalarType::Float) : scale;
|
||||
at::Tensor zero_point_ = is_bfloat16 ? zero_point.to(ScalarType::Float) : zero_point;
|
||||
auto zero_point_rounded = _get_rounded_zero_point(zero_point, quant_min, quant_max);
|
||||
|
||||
auto zero_point_rounded = _get_rounded_zero_point(zero_point_, quant_min, quant_max);
|
||||
TORCH_CHECK(dY.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(X.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(scale.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(zero_point.scalar_type() == ScalarType::Float);
|
||||
|
||||
TORCH_CHECK(dY_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(X_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(scale_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(zero_point_.scalar_type() == ScalarType::Float);
|
||||
|
||||
TORCH_CHECK(X_.sizes() == dY_.sizes(), "`X` and `dY` are not the same size");
|
||||
TORCH_CHECK(X.sizes() == dY.sizes(), "`X` and `dY` are not the same size");
|
||||
TORCH_CHECK(
|
||||
quant_min <= 0 && quant_max >= 0,
|
||||
"Expecting `quant_min` <= 0 and `quant_max` >= 0");
|
||||
TORCH_CHECK(scale_.dim() == 1, "scale should be a 1-D tensor");
|
||||
TORCH_CHECK(zero_point_.dim() == 1, "zero point should be a 1-D tensor");
|
||||
TORCH_CHECK(scale.dim() == 1, "scale should be a 1-D tensor");
|
||||
TORCH_CHECK(zero_point.dim() == 1, "zero point should be a 1-D tensor");
|
||||
TORCH_CHECK(
|
||||
scale_.numel() == zero_point_.numel(),
|
||||
scale.numel() == zero_point.numel(),
|
||||
"scale and zero-point need to have the same dimensions");
|
||||
TORCH_CHECK(
|
||||
scale_.numel() == X_.size(axis),
|
||||
scale.numel() == X.size(axis),
|
||||
"dimensions of scale and zero-point are not consistent with input tensor")
|
||||
|
||||
TORCH_CHECK(
|
||||
@ -210,42 +204,42 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_channel_affine_b
|
||||
"`zero_point` must be between `quant_min` and `quant_max`.");
|
||||
|
||||
TORCH_CHECK(
|
||||
axis >= 0 && axis < X_.dim(),
|
||||
axis >= 0 && axis < X.dim(),
|
||||
"`axis` must be between 0 and number of dimensions of input");
|
||||
|
||||
if (X_.numel() <= 0) {
|
||||
if (X.numel() <= 0) {
|
||||
return std::make_tuple(X, scale, zero_point);
|
||||
}
|
||||
|
||||
auto dX = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
|
||||
auto dScale_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
|
||||
auto dZeroPoint_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
|
||||
auto numDimensions = X_.ndimension();
|
||||
auto dX = at::empty_like(X, X.options(), MemoryFormat::Preserve);
|
||||
auto dScale_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
|
||||
auto dZeroPoint_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
|
||||
auto numDimensions = X.ndimension();
|
||||
|
||||
// Create an axis mask for vectorizing and reshaping the scale and zero point tensors
|
||||
// into the same shapes as X along the channel axis.
|
||||
c10::DimVector axis_mask(numDimensions);
|
||||
for (const auto i : c10::irange(numDimensions)) {
|
||||
axis_mask[i] = (i == axis) ? X_.size(axis) : 1;
|
||||
axis_mask[i] = (i == axis) ? X.size(axis) : 1;
|
||||
}
|
||||
auto X_shape = X_.sizes();
|
||||
auto scale_vectorized = scale_.reshape(at::IntArrayRef(axis_mask.data(), numDimensions)).expand(X_shape);
|
||||
auto X_shape = X.sizes();
|
||||
auto scale_vectorized = scale.reshape(at::IntArrayRef(axis_mask.data(), numDimensions)).expand(X_shape);
|
||||
auto zero_point_vectorized = zero_point_rounded.reshape(at::IntArrayRef(axis_mask.data(), numDimensions)).expand(X_shape);
|
||||
|
||||
auto iter = TensorIteratorConfig()
|
||||
.add_output(dX)
|
||||
.add_output(dScale_vec)
|
||||
.add_output(dZeroPoint_vec)
|
||||
.add_input(X_)
|
||||
.add_input(dY_)
|
||||
.add_input(X)
|
||||
.add_input(dY)
|
||||
.add_input(scale_vectorized)
|
||||
.add_input(zero_point_vectorized)
|
||||
.build();
|
||||
|
||||
fake_quant_grad_learnable_channel_stub(
|
||||
X_.device().type(), iter, quant_min, quant_max, grad_factor);
|
||||
X.device().type(), iter, quant_min, quant_max, grad_factor);
|
||||
|
||||
auto numElements = X_.ndimension() - 1;
|
||||
auto numElements = X.ndimension() - 1;
|
||||
|
||||
// Create a collection of axes that include all but the channel axis for
|
||||
// reduction when summing over the dScale and dZeroPoint tensors.
|
||||
|
||||
@ -184,23 +184,15 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_tensor_affine_ba
|
||||
0 & \text{ else }
|
||||
\end{cases}
|
||||
*/
|
||||
|
||||
bool is_bfloat16 = (X.scalar_type() == at::kBFloat16);
|
||||
|
||||
at::Tensor X_ = is_bfloat16 ? X.to(ScalarType::Float) : X;
|
||||
at::Tensor dY_ = is_bfloat16 ? dY.to(ScalarType::Float) : dY;
|
||||
at::Tensor scale_ = is_bfloat16 ? scale.to(ScalarType::Float) : scale;
|
||||
at::Tensor zero_point_ = is_bfloat16 ? zero_point.to(ScalarType::Float) : zero_point;
|
||||
|
||||
float scale_val = scale_[0].item<float>();
|
||||
float scale_val = scale[0].item<float>();
|
||||
float inv_scale_val = 1.0f / scale_val;
|
||||
int64_t zero_point_val = native::_get_zero_point_from_tensor(zero_point_, quant_min, quant_max, false);
|
||||
int64_t zero_point_val = native::_get_zero_point_from_tensor(zero_point, quant_min, quant_max, false);
|
||||
|
||||
TORCH_CHECK(dY_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(X_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(scale_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(zero_point_.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(X_.numel() == dY_.numel(), "`X` and `dY` are not the same size");
|
||||
TORCH_CHECK(dY.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(X.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(scale.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(zero_point.scalar_type() == ScalarType::Float);
|
||||
TORCH_CHECK(X.numel() == dY.numel(), "`X` and `dY` are not the same size");
|
||||
TORCH_CHECK(
|
||||
quant_min <= 0 && quant_max >= 0,
|
||||
"`quant_min` should be less than or \
|
||||
@ -208,28 +200,28 @@ std::tuple<Tensor, Tensor, Tensor> _fake_quantize_learnable_per_tensor_affine_ba
|
||||
TORCH_CHECK(
|
||||
zero_point_val >= quant_min && zero_point_val <= quant_max,
|
||||
"`zero_point` must be between `quant_min` and `quant_max`.");
|
||||
if (X_.numel() <= 0) {
|
||||
if (X.numel() <= 0) {
|
||||
return std::make_tuple(X, scale, zero_point);
|
||||
}
|
||||
|
||||
auto dX = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
|
||||
auto dScale_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
|
||||
auto dZeroPoint_vec = at::empty_like(X_, X_.options(), MemoryFormat::Preserve);
|
||||
auto dX = at::empty_like(X, X.options(), MemoryFormat::Preserve);
|
||||
auto dScale_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
|
||||
auto dZeroPoint_vec = at::empty_like(X, X.options(), MemoryFormat::Preserve);
|
||||
|
||||
auto iter = TensorIteratorConfig()
|
||||
.add_output(dX)
|
||||
.add_output(dScale_vec)
|
||||
.add_output(dZeroPoint_vec)
|
||||
.add_input(X_)
|
||||
.add_input(dY_)
|
||||
.add_input(X)
|
||||
.add_input(dY)
|
||||
.build();
|
||||
|
||||
fake_quant_grad_learnable_tensor_stub(
|
||||
X_.device().type(), iter, scale_val, inv_scale_val, zero_point_val, quant_min, quant_max, grad_factor);
|
||||
X.device().type(), iter, scale_val, inv_scale_val, zero_point_val, quant_min, quant_max, grad_factor);
|
||||
|
||||
// The total sums over the scale and zero point gradient vectors are what will be returned in the end.
|
||||
auto dScale = dScale_vec.sum().unsqueeze(0).to(scale_.device());
|
||||
auto dZeroPoint = dZeroPoint_vec.sum().unsqueeze(0).to(zero_point_.device());
|
||||
auto dScale = dScale_vec.sum().unsqueeze(0).to(scale.device());
|
||||
auto dZeroPoint = dZeroPoint_vec.sum().unsqueeze(0).to(zero_point.device());
|
||||
|
||||
return std::make_tuple(dX, dScale, dZeroPoint);
|
||||
}
|
||||
|
||||
@ -1,8 +1,6 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/native/SparseTensorUtils.h>
|
||||
#include <ATen/native/mps/OperationUtils.h>
|
||||
#include <ATen/native/sparse/SparseStubs.h>
|
||||
#include <ATen/native/sparse/SparseBinaryOpIntersectionCommon.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -15,8 +13,6 @@
|
||||
#include <ATen/ops/mul_native.h>
|
||||
#include <ATen/ops/empty_native.h>
|
||||
#include <ATen/ops/zeros_native.h>
|
||||
#include <ATen/ops/ones_like.h>
|
||||
#include <ATen/ops/argsort.h>
|
||||
#include <ATen/ops/result_type.h>
|
||||
#include <ATen/ops/copy_sparse_to_sparse.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
@ -440,137 +436,4 @@ SparseTensor& add_out_sparse_mps(const SparseTensor& self,
|
||||
return out;
|
||||
}
|
||||
|
||||
using OptTensor = std::optional<Tensor>;
|
||||
|
||||
|
||||
static void sparse_mask_apply_out_mps_kernel(
|
||||
Tensor& result,
|
||||
const Tensor& src_in,
|
||||
const Tensor& mask_in,
|
||||
bool accumulate_matches,
|
||||
bool require_same_sizes,
|
||||
bool coalesce_mask) {
|
||||
TORCH_CHECK(src_in.is_sparse() && mask_in.is_sparse(),
|
||||
"sparse_mask: expected both inputs to be sparse COO");
|
||||
TORCH_CHECK(src_in.is_mps() && mask_in.is_mps(),
|
||||
"sparse_mask: expected tensors to be on MPS device");
|
||||
TORCH_CHECK(src_in.sparse_dim() == mask_in.sparse_dim(),
|
||||
"sparse_mask: sparse_dim mismatch: ", src_in.sparse_dim(), " vs ", mask_in.sparse_dim());
|
||||
if (require_same_sizes) {
|
||||
TORCH_CHECK(src_in.sizes().equals(mask_in.sizes()),
|
||||
"sparse_mask: sizes must match exactly (no broadcasting)");
|
||||
}
|
||||
auto src = src_in.coalesce();
|
||||
auto mask = coalesce_mask ? mask_in.coalesce() : mask_in;
|
||||
|
||||
const int64_t src_nnz = src._nnz();
|
||||
const int64_t mask_nnz = mask._nnz();
|
||||
const int64_t sd = src.sparse_dim();
|
||||
result.sparse_resize_(mask.sizes(), mask.sparse_dim(), mask.dense_dim());
|
||||
|
||||
auto commonDtype = at::result_type(src, mask);
|
||||
TORCH_CHECK(canCast(commonDtype, result.scalar_type()),
|
||||
"Can't convert result type ", commonDtype, " to output ", result.scalar_type());
|
||||
|
||||
if (mask_nnz == 0) {
|
||||
alias_into_sparse(
|
||||
result,
|
||||
mask._indices().narrow(1, 0, 0),
|
||||
at::empty({0}, result.options().dtype(result.scalar_type())));
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
return;
|
||||
}
|
||||
|
||||
TORCH_CHECK(sd > 0 || (src_nnz <= 1 && mask_nnz <= 1),
|
||||
"sparse_mask: invalid sparse_dim or nnz");
|
||||
|
||||
if (sd == 0) {
|
||||
auto out_indices = mask._indices().narrow(1, 0, 1);
|
||||
auto out_values = src_nnz
|
||||
? src._values().narrow(0, 0, 1).to(commonDtype)
|
||||
: at::zeros({1}, at::device(result.device()).dtype(commonDtype));
|
||||
alias_into_sparse(result, out_indices, out_values);
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
return;
|
||||
}
|
||||
|
||||
if (src_nnz == 0) {
|
||||
auto out_indices = mask._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype);
|
||||
auto out_val_sizes = src_values.sizes().vec();
|
||||
out_val_sizes[0] = mask_nnz;
|
||||
auto out_values = at::zeros(out_val_sizes, src_values.options());
|
||||
alias_into_sparse(result, out_indices, out_values);
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_indices = mask._indices().contiguous();
|
||||
auto src_indices = src._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype).contiguous();
|
||||
|
||||
auto mask_keys = flatten_indices(mask_indices, mask.sizes().slice(0, sd)).contiguous();
|
||||
auto src_keys = flatten_indices(src_indices, src.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
const bool A_is_src = (src_nnz <= mask_nnz);
|
||||
const int64_t lenA = A_is_src ? src_nnz : mask_nnz;
|
||||
const int64_t lenB = A_is_src ? mask_nnz : src_nnz;
|
||||
auto A_keys = A_is_src ? src_keys : mask_keys;
|
||||
auto B_keys = A_is_src ? mask_keys : src_keys;
|
||||
|
||||
const auto device = result.device();
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
auto outA_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
|
||||
auto outB_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
|
||||
auto counter = at::zeros({1}, at::device(device).dtype(at::kInt));
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), A_is_src);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const int64_t M = static_cast<int64_t>(counter.item<int32_t>());
|
||||
|
||||
auto out_val_sizes = src_values.sizes().vec();
|
||||
out_val_sizes[0] = mask_nnz;
|
||||
auto out_values = at::zeros(out_val_sizes, src_values.options());
|
||||
|
||||
if (M > 0) {
|
||||
auto src_match = outA_idx.narrow(0, 0, M);
|
||||
auto mask_match = outB_idx.narrow(0, 0, M);
|
||||
|
||||
auto src_rows = src_values.index_select(0, src_match);
|
||||
if (accumulate_matches) {
|
||||
out_values.index_add_(0, mask_match, src_rows);
|
||||
} else {
|
||||
out_values.index_copy_(0, mask_match, src_rows);
|
||||
}
|
||||
}
|
||||
|
||||
alias_into_sparse(result, mask_indices, out_values);
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
}
|
||||
|
||||
static void sparse_mask_intersection_out_mps_kernel(
|
||||
Tensor& result,
|
||||
const Tensor& lhs,
|
||||
const Tensor& rhs,
|
||||
const OptTensor& = std::nullopt) {
|
||||
sparse_mask_apply_out_mps_kernel(
|
||||
result,
|
||||
/*src_in=*/lhs,
|
||||
/*mask_in=*/rhs,
|
||||
/*accumulate_matches=*/false,
|
||||
/*require_same_sizes=*/false,
|
||||
/*coalesce_mask=*/false);
|
||||
}
|
||||
|
||||
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
|
||||
} // namespace at::native
|
||||
@ -3,9 +3,6 @@
|
||||
using namespace metal;
|
||||
|
||||
|
||||
template <typename T> struct MulAccum { using type = float; };
|
||||
template <> struct MulAccum<float2> { using type = float2; };
|
||||
|
||||
template <typename T>
|
||||
kernel void dense_sparse_mul_kernel(
|
||||
device const T* dense [[buffer(0)]],
|
||||
@ -32,9 +29,8 @@ kernel void dense_sparse_mul_kernel(
|
||||
ulong dense_idx = (ulong)key * (ulong)view_cols + (ulong)col;
|
||||
ulong val_idx = (ulong)i * (ulong)view_cols + (ulong)col;
|
||||
|
||||
using accum_t = typename MulAccum<T>::type;
|
||||
const accum_t a = static_cast<accum_t>(values[val_idx]);
|
||||
const accum_t b = static_cast<accum_t>(dense[dense_idx]);
|
||||
const auto a = static_cast<float>(values[val_idx]);
|
||||
const auto b = static_cast<float>(dense[dense_idx]);
|
||||
out_values[val_idx] = static_cast<T>(a * b);
|
||||
}
|
||||
|
||||
@ -134,8 +130,6 @@ kernel void fused_gather_mul_kernel(
|
||||
INSTANTIATE_DENSE_SPARSE_MUL(float);
|
||||
INSTANTIATE_DENSE_SPARSE_MUL(half);
|
||||
INSTANTIATE_DENSE_SPARSE_MUL(bfloat);
|
||||
INSTANTIATE_DENSE_SPARSE_MUL(long);
|
||||
INSTANTIATE_DENSE_SPARSE_MUL(float2);
|
||||
|
||||
#define INSTANTIATE_FUSED_GATHER_MUL(DTYPE) \
|
||||
template [[host_name("fused_gather_mul_kernel_" #DTYPE)]] kernel void \
|
||||
|
||||
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,0
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,0
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,0
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,0
|
||||
|
||||
|
||||
visformer_small,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,pass,0
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,0
|
||||
|
||||
|
@ -10,18 +10,10 @@ beit_base_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
deit_base_distilled_patch16_224,pass,7
|
||||
|
||||
|
||||
|
||||
deit_tiny_patch16_224.fb_in1k,pass,7
|
||||
|
||||
|
||||
|
||||
dm_nfnet_f0,pass,6
|
||||
|
||||
|
||||
@ -63,11 +55,3 @@ tf_efficientnet_b0,pass,6
|
||||
|
||||
|
||||
visformer_small,pass,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch14_dinov2.lvd142m,fail_accuracy,7
|
||||
|
||||
|
||||
|
||||
vit_base_patch16_siglip_256,pass,7
|
||||
|
||||
|
@ -1060,8 +1060,6 @@ def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs):
|
||||
frozen_model_iter_fn = export_nativert(model, example_inputs)
|
||||
elif args.torchscript_jit_trace:
|
||||
frozen_model_iter_fn = torchscript_jit_trace(model, example_inputs)
|
||||
elif args.aot_precompile:
|
||||
frozen_model_iter_fn = aot_precompile(model, example_inputs)
|
||||
else:
|
||||
if kwargs["hf_llm"]:
|
||||
# If it's an llm, we want to optimize model.forward, and use
|
||||
@ -1497,37 +1495,6 @@ def export(model, example_inputs):
|
||||
return opt_export
|
||||
|
||||
|
||||
def aot_precompile(model, example_inputs):
|
||||
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".pt", delete=False) as f:
|
||||
save_path = f.name
|
||||
|
||||
with fresh_cache(), torch._dynamo.config.patch("enable_aot_compile", True):
|
||||
compiled_fn = torch.compile(
|
||||
model,
|
||||
fullgraph=True,
|
||||
options={"guard_filter_fn": lambda guards: [False for _ in guards]},
|
||||
).forward.aot_compile((example_args, example_kwargs))
|
||||
|
||||
compiled_fn.save_compiled_function(save_path)
|
||||
|
||||
torch._dynamo.reset()
|
||||
with open(save_path, "rb") as f:
|
||||
load_start_time = time.perf_counter()
|
||||
loaded_fn = torch.compiler.load_compiled_function(f)
|
||||
load_end_time = time.perf_counter()
|
||||
print(
|
||||
f"AOT Precompile loading time: {load_end_time - load_start_time} seconds"
|
||||
)
|
||||
|
||||
def opt_aot_precompile(_, example_inputs, collect_outputs=False):
|
||||
example_args, example_kwargs = _normalize_bench_inputs(example_inputs)
|
||||
return loaded_fn(model, *example_args, **example_kwargs)
|
||||
|
||||
return opt_aot_precompile
|
||||
|
||||
|
||||
def export_nativert(model, example_inputs):
|
||||
optimized = NativeRTCache.load(model, example_inputs)
|
||||
|
||||
@ -2307,7 +2274,6 @@ class BenchmarkRunner:
|
||||
or self.args.export_aot_inductor
|
||||
or self.args.export_nativert
|
||||
or self.args.torchscript_jit_trace
|
||||
or self.args.aot_precompile
|
||||
):
|
||||
# apply export on module directly
|
||||
# no need for n iterations
|
||||
@ -2763,7 +2729,6 @@ class BenchmarkRunner:
|
||||
self.args.export_aot_inductor
|
||||
or self.args.export_nativert
|
||||
or self.args.torchscript_jit_trace
|
||||
or self.args.aot_precompile
|
||||
):
|
||||
optimized_model_iter_fn = optimize_ctx
|
||||
else:
|
||||
@ -3540,11 +3505,6 @@ def parse_args(args=None):
|
||||
action="store_true",
|
||||
help="Measure pass rate with Export+AOTInductor",
|
||||
)
|
||||
group.add_argument(
|
||||
"--aot-precompile",
|
||||
action="store_true",
|
||||
help="Measure pass rate with AOT Precompile",
|
||||
)
|
||||
group.add_argument(
|
||||
"--export-nativert",
|
||||
action="store_true",
|
||||
@ -3975,10 +3935,6 @@ def run(runner, args, original_dir=None):
|
||||
optimize_ctx = export
|
||||
experiment = speedup_experiment
|
||||
output_filename = "export.csv"
|
||||
elif args.aot_precompile:
|
||||
optimize_ctx = aot_precompile
|
||||
experiment = speedup_experiment
|
||||
output_filename = "aot_precompile.csv"
|
||||
elif args.export_nativert:
|
||||
optimize_ctx = export_nativert
|
||||
experiment = speedup_experiment
|
||||
|
||||
@ -271,6 +271,8 @@ class TimmRunner(BenchmarkRunner):
|
||||
memory_format=torch.channels_last if channels_last else None,
|
||||
)
|
||||
|
||||
self.num_classes = model.num_classes
|
||||
|
||||
data_config = resolve_data_config(
|
||||
vars(self._args) if timmversion >= "0.8.0" else self._args,
|
||||
model=model,
|
||||
@ -300,6 +302,7 @@ class TimmRunner(BenchmarkRunner):
|
||||
example_inputs = [
|
||||
example_inputs,
|
||||
]
|
||||
self.target = self._gen_target(batch_size, device)
|
||||
|
||||
self.loss = torch.nn.CrossEntropyLoss().to(device)
|
||||
|
||||
@ -367,6 +370,11 @@ class TimmRunner(BenchmarkRunner):
|
||||
tolerance = 1e-2
|
||||
return tolerance, cosine
|
||||
|
||||
def _gen_target(self, batch_size, device):
|
||||
return torch.empty((batch_size,) + (), device=device, dtype=torch.long).random_(
|
||||
self.num_classes
|
||||
)
|
||||
|
||||
def compute_loss(self, pred):
|
||||
# High loss values make gradient checking harder, as small changes in
|
||||
# accumulation order upsets accuracy checks.
|
||||
|
||||
@ -1,8 +1,6 @@
|
||||
adv_inception_v3 128
|
||||
beit_base_patch16_224 128
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k 128
|
||||
deit_base_distilled_patch16_224 128
|
||||
deit_tiny_patch16_224.fb_in1k 128
|
||||
dm_nfnet_f0 128
|
||||
ghostnet_100 512
|
||||
inception_v3 128
|
||||
@ -14,5 +12,3 @@ repvgg_a2 128
|
||||
swin_base_patch4_window7_224 128
|
||||
tf_efficientnet_b0 128
|
||||
visformer_small 128
|
||||
vit_base_patch14_dinov2.lvd142m 128
|
||||
vit_base_patch16_siglip_256 128
|
||||
@ -1,8 +1,6 @@
|
||||
adv_inception_v3,128
|
||||
beit_base_patch16_224,64
|
||||
convnextv2_nano.fcmae_ft_in22k_in1k,128
|
||||
deit_base_distilled_patch16_224,64
|
||||
deit_tiny_patch16_224.fb_in1k,128
|
||||
dm_nfnet_f0,128
|
||||
ghostnet_100,128
|
||||
inception_v3,128
|
||||
@ -14,5 +12,3 @@ repvgg_a2,128
|
||||
swin_base_patch4_window7_224,64
|
||||
tf_efficientnet_b0,128
|
||||
visformer_small,128
|
||||
vit_base_patch14_dinov2.lvd142m,128
|
||||
ViT-B-16-SigLIP-i18n-256,128
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user