Compare commits

..

102 Commits

Author SHA1 Message Date
d67ad35157 Bump pinned transformers to 4.57.1
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-18 17:00:37 +08:00
fe80f03726 Add B200 files to labeler and update codeowners (#165767)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165767
Approved by: https://github.com/slayton58
2025-10-17 23:24:17 +00:00
e50dc40d28 Revert "Update gm.print_readable to include Annotation (#165397)"
This reverts commit 7a657700131f31577544e93587eb339618677e97.

Reverted https://github.com/pytorch/pytorch/pull/165397 on behalf of https://github.com/malfet due to I don't know how/why, but it breaks windows tests, see 2e22b1a61e/1 ([comment](https://github.com/pytorch/pytorch/pull/165397#issuecomment-3417428128))
2025-10-17 22:35:50 +00:00
2e22b1a61e [pytorch] Composite backend potential fix for is_backend_available (#165061)
Summary: `is_backend_available` takes in a string and expects it to only be backend, if its given a composite (device:backend) string, it fails.

Reviewed By: prashrock

Differential Revision: D81886736

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165061
Approved by: https://github.com/H-Huang
2025-10-17 22:06:36 +00:00
616c6bdf8f [dynamo][ac] Config flag to allow eager and compile AC divergence for side-effects (#165775)
Eager AC/SAC reapplies the mutations (like global dict mutations) in the backward during the recomputation of forward. torch.compile has no easy way to reapply python mutations in the backward. But many users might be ok to skip reapplication of side effects in the backward. They can set this config flag to accept this eager and compile divergence.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165775
Approved by: https://github.com/zou3519
ghstack dependencies: #165734
2025-10-17 22:04:19 +00:00
c18ddfc572 [dynamo][easy] Support torch.accelerator.current_accelerator (#165734)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165734
Approved by: https://github.com/Skylion007
2025-10-17 22:04:19 +00:00
86ebce1766 [precompile] Pass tensor_to_context to backend. (#165702)
Summary:

Fixing a VLLM issue https://github.com/vllm-project/vllm/issues/27040 where
aot precompile fails on some models using symbolic shapes in inductor.

Test Plan:
pp HF_HUB_DISABLE_XET=1 VLLM_ENABLE_V1_MULTIPROCESSING=0 VLLM_USE_AOT_COMPILE=1 vllm bench latency --model microsoft/DialoGPT-small --input-len 128 --output-len 256 --num-iters 50 --dtype float16

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165702
Approved by: https://github.com/tugsbayasgalan
2025-10-17 21:52:04 +00:00
8cb2fb44f2 [Inductor] Support fallback for all gemm like ops (#165755)
Summary: Fill op_override field for bmm aten ops so they can be converted properly in the wrapper_fxir backend

Reviewed By: StellarrZ

Differential Revision: D84840948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165755
Approved by: https://github.com/blaine-rister
2025-10-17 21:08:29 +00:00
ab65498d71 Fix _StridedShard incorrect split (#165533)
https://github.com/pytorch/pytorch/pull/164820 introduced a bug that `_StridedShard` will call parent class `Shard`'s `split_tensor` method, thus results in incorrect data locality. (I think @ezyang spotted this issue, but we have no test to capture this)

Meanwhile, I notice another bug that when we normalize a `_StridedShard`'s placement, it will also trigger parent class `Shard`'s `split_tensor` method because it will create a Shard class [here](0c14f55de6/torch/distributed/tensor/_api.py (L783)). I think we never test `distribute_tensor` for `_StridedShard` before. So I added a test here to compare against ordered shard.

Using classmethod because the _split_tensor logic is different between `Shard` and `_StridedShard`. Basically I want to shard on local tensors without initializing the Shard object:
```
local_tensor = _StridedShard._make_shard_tensor(dim, tensor, mesh, mesh_dim, split_factor=split_factor)
local_tensor = Shard._make_shard_tensor(dim, tensor, mesh, mesh_dim)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165533
Approved by: https://github.com/XilunWu
2025-10-17 20:54:46 +00:00
06d324365c Revert "Escaped html tags name and target to appear as strings (#165543)"
This reverts commit 080365b7d82a3c99c995cab6dc912b7dfe22aa41.

Reverted https://github.com/pytorch/pytorch/pull/165543 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/165543#issuecomment-3417102048))
2025-10-17 20:45:48 +00:00
6c9c6e0936 Enable C407 of flake8 (#165046)
This PR enables C407 on flake8. The description is `C407` is `Unnecessary list comprehension - ‘<builtin>’ can take a generator`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165046
Approved by: https://github.com/albanD
2025-10-17 20:15:39 +00:00
2bcd892c86 [distributed] Replace assert statements in distributed checkpoint with explicit checks (#165256)
Fixes partially #164878

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165256
Approved by: https://github.com/albanD
2025-10-17 20:14:35 +00:00
75e2a9fae3 [annotate] add annotate_fn function decorator (#165703)
Example usage:

```
        @fx_traceback.annotate_fn({"pp_stage": 1})
        def example_function(x):
            return x * x

        class SimpleLinear(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 2)

            def forward(self, x):
                with fx_traceback.annotate({"pp_stage": 0}):
                    y = self.linear(x)
                y = example_function(y)
                return y - 1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165703
Approved by: https://github.com/SherlockNoMad
2025-10-17 20:10:53 +00:00
a16fd6b488 [NVSHMEM][Triton] Fix NVSHMEM triton test for wacky world sizes (#165704)
Currently assumes divisible by 4? world size

Not as slick as the old setup code but more general

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165704
Approved by: https://github.com/Skylion007, https://github.com/kwen2501
2025-10-17 19:33:26 +00:00
382b0150de [docs] Add usage examples to ConvTranspose1d docstring (#165618)
Fixes #165615

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165618
Approved by: https://github.com/mikaylagawarecki
2025-10-17 19:11:57 +00:00
a664b299ac Update docs for torch.mode (#165614)
Currently the docs for `torch.mode` include a note:

`This function is not defined for torch.cuda.Tensor yet.`

However with `torch==2.7.1+cu126` when I try to get the mode of a Tensor that is in cuda memory, I do not face any issues:

```
>>> a = torch.tensor([0, 2, 1, 1, 1, 3, 3])
>>> a.mode()
torch.return_types.mode(
values=tensor(1),
indices=tensor(4))
>>> a.cuda().mode()
torch.return_types.mode(
values=tensor(1, device='cuda:0'),
indices=tensor(4, device='cuda:0'))
```

Am I misunderstanding the note? If not, I suggest removing it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165614
Approved by: https://github.com/mikaylagawarecki
2025-10-17 19:06:33 +00:00
9c12651417 Improve error message for non-positive groups in convolution (#165669)
Prevents from segmentation fault for invalid groups value in convolution.

Fixes #142835

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165669
Approved by: https://github.com/mikaylagawarecki
2025-10-17 19:06:05 +00:00
08c97b4a1f Don't run compile inside kernel invocation (#165687)
When we call torch.compile during fake tensor prop, we shouldn't actually compile because we can't guarantee that the compiled artifact can be fake tensor prop-d. (for example, inductor backend). Instead we should just skip compiling. However, the inner compile will be triggered when being executed in runtime.

Fixes: https://github.com/pytorch/pytorch/issues/151328

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165687
Approved by: https://github.com/zou3519
2025-10-17 19:03:57 +00:00
fae74cd52f Revert "shrink_group implementation to expose ncclCommShrink API (#164518)"
This reverts commit a032510db38e8331afa08f7635d146f9cefdd0ab.

Reverted https://github.com/pytorch/pytorch/pull/164518 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/164518#issuecomment-3416718767))
2025-10-17 18:55:53 +00:00
7a65770013 Update gm.print_readable to include Annotation (#165397)
Sample output
```
[rank0]:        # Annotation: {'compile_with_inductor': 'flex_attention'} File: /data/users/bahuang/pytorch/torch/nn/attention/flex_attention.py:1490 in flex_attention, code: out, lse, max_scores = flex_attention_hop(
[rank0]:        score_mod_2 = self.score_mod_2
[rank0]:        mask_fn_2 = self.mask_fn_2
[rank0]:        flex_attention_1 = torch.ops.higher_order.flex_attention(xq_5, xk_5, xv_3, score_mod_2, (2048, 2048, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___kv_num_blocks, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___kv_indices, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___full_kv_num_blocks, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___full_kv_indices, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___q_num_blocks, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___q_indices, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___full_q_num_blocks, g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___full_q_indices, 128, 128, mask_fn_2), 0.25, {'PRESCALE_QK': False, 'ROWS_GUARANTEED_SAFE': False, 'BLOCKS_ARE_CONTIGUOUS': False, 'WRITE_DQ': True, 'OUTPUT_LOGSUMEXP': True, 'OUTPUT_MAX': False}, (), (g____import_torchtitan_dot_models_dot_attention___flex_attention_block_masks___block_causal___none___mask_mod___closure___0_cell_contents,));  xq_5 = xk_5 = xv_3 = score_mod_2 = mask_fn_2 = None
[rank0]:        out_2: "bf16[8, 4, 2048, 16]" = flex_attention_1[0];  flex_attention_1 = None
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165397
Approved by: https://github.com/yushangdi, https://github.com/anijain2305
2025-10-17 18:35:18 +00:00
e4454947e2 Widen ops support to take in IntHOArrayRef vs only std::vec (#165152)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165152
Approved by: https://github.com/mikaylagawarecki
ghstack dependencies: #164991
2025-10-17 18:32:39 +00:00
3806e9767b Refactor out headeronly ArrayRef (#164991)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164991
Approved by: https://github.com/swolchok
2025-10-17 18:32:39 +00:00
b08d8c2e50 Revert "[DebugMode][2/N] add nn.Module tracking (#165498)"
This reverts commit 45afaf08a14ab760d86ea80dea6d50cec8626513.

Reverted https://github.com/pytorch/pytorch/pull/165498 on behalf of https://github.com/seemethere due to First part of the stack was reverted so will need to revert this too ([comment](https://github.com/pytorch/pytorch/pull/165498#issuecomment-3416618198))
2025-10-17 18:22:48 +00:00
ca5b7f8ded torch.compile: populate compiler_config (#165581)
Summary: This starts writing the compiler_config metadata into logger

Test Plan:
Modified existing test case to make sure this is not null.
(Also eyeballed what we're logging tomake sure it's reasonable

Reviewed By: masnesral

Differential Revision: D84014636

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165581
Approved by: https://github.com/masnesral
2025-10-17 18:21:18 +00:00
9a71d96256 Revert "[DebugMode][1/N] refactor logs into _DebugCalls (#165376)"
This reverts commit 556fc09a9f67f24ca5591ec049c5d0c347c5f62a.

Reverted https://github.com/pytorch/pytorch/pull/165376 on behalf of https://github.com/seemethere due to This is failing for internal tests, see D84877379 for more context ([comment](https://github.com/pytorch/pytorch/pull/165376#issuecomment-3416570407))
2025-10-17 18:08:59 +00:00
0d4c2b71e8 [DeviceMesh] Simplify unflatten method (#165556)
By adding a few small helpers (e.g., a `splice` method to `_MeshLayout`, and making `_init_process_groups` static and thus stateless) we can substantially shorten the definition of the unflatten method, and help readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165556
Approved by: https://github.com/fduwjj
ghstack dependencies: #165554, #165555
2025-10-17 17:57:51 +00:00
d659bbde62 [DeviceMesh] Introduce private constructor instead of _create_mesh_from_ranks (#165555)
The refactoring of DeviceMesh is heavily constrained by the signature of its constructor, which is a public API which contains some "legacy" concepts which we'd love to get rid of, such as an explicit/materialized `mesh` Tensor.

In other languages the solution to this would be to add a private overload of the constructor. Python doesn't natively allow this, but in this PR I managed to build something that approximates it.

This new private constructor basically only takes `_layout`, `_global_rank_permutation`, and `mesh_dim_names`.

With such a constructor we can effectively simplify a lot of callsites and get rid of the `_create_mesh_from_ranks` helper method. That's a good thing because it was instantiating many DeviceMeshes in a for loop, which always felt unnecessary.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165555
Approved by: https://github.com/fduwjj, https://github.com/fegin
ghstack dependencies: #165554
2025-10-17 17:57:51 +00:00
58879bfafa [DeviceMesh] Prefer using _layout over _mesh for all sorts of things (#165554)
The goal of this PR is to avoid storing the explicit `mesh` Tensor inside each DeviceMesh, and instead compute it on-the-fly when the end user needs it, and try to replace all of its internal usages with `_layout` and the newly-introduced `_global_rank_permutation` Tensor. The name of this attribute is up for debate. The advantage of the `_global_rank_permutation` Tensor is that it is _the same_ Tensor for the root mesh and all its children, so it doesn't need to be copied/reallocated.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165554
Approved by: https://github.com/fduwjj
2025-10-17 17:57:51 +00:00
a032510db3 shrink_group implementation to expose ncclCommShrink API (#164518)
Closes #164529

To expose the new [ncclCommShrink](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/comms.html#ncclcommshrink) API to PyTorch.

This is useful when you need to exclude certain GPUs or nodes from a collective operation, for example in fault tolerance scenarios or when dynamically adjusting resource utilization.

For more info:  [Shrinking a communicator](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#shrinking-a-communicator)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164518
Approved by: https://github.com/Skylion007, https://github.com/syed-ahmed, https://github.com/kwen2501
2025-10-17 17:55:03 +00:00
39e0a832c9 Fix B200 test fails in scaled_mm (#165747)
Summary:

PR #165528 changes some scale/swizzle inference behavior in scaled_mm
tests - mxfp8 tests on Blackwell can get incorrectly classified,
resulting in failures.

Fix the scale/swizzle inference code to prevent this.

Fixes https://github.com/pytorch/pytorch/issues/165743

Test Plan:

```
pytest -svv test/test_scaled_matmul_cuda.py
```

Reviewers:

@jagadish-amd @jeffdaily @drisspg

Subscribers:

@Aidyn-A

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlaytonmeta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165747
Approved by: https://github.com/eqy, https://github.com/drisspg, https://github.com/jeffdaily
2025-10-17 17:52:19 +00:00
dd3b48e85d Fix bug with serialization after AOTAutogradCache hit (#165474)
Fixes #165447

On AOTAutogradCache load, the serialization function we pick is just lambda: self, because the object itself is an AOTAutogradCacheEntry. However, this isn't safe, because `wrap_post_compile` will make `self` unserializable, since it needs to load triton kernels and stuff!

So instead, on AOTAutogradCache load, we preserve the bytes that were used to load the object to begin with, and return that object on a call to serialize(). This effectively makes it so that we save a copy of the pre-hydrated artifact, without needing to do an eager copy until someone actually calls `serialize`.

Test Plan:

Run

```py
import torch

class M(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = torch.nn.Linear(2, 4)
        self.relu = torch.nn.ReLU()
        self.linear2 = torch.nn.Linear(4, 8)
    def forward(self, x):
        return self.linear2(self.relu(self.linear1(x)))

device = "cuda"
m = M().to(device)
sample_inputs = (torch.randn(2, 2, device=device),)
eager_out = m(*sample_inputs)

with torch._dynamo.config.patch("enable_aot_compile", True):
    compiled_fn_path = "./m.pt"
    compiled_fn = torch.compile(
        m,
        fullgraph=True
    ).forward.aot_compile((sample_inputs, {}))

    compiled_fn.save_compiled_function(compiled_fn_path)
    torch._dynamo.reset()
    with torch.compiler.set_stance("fail_on_recompile"):
        with open(compiled_fn_path, "rb") as f:
            loaded_fn = torch.compiler.load_compiled_function(f)

assert loaded_fn is not None

compiled_out = loaded_fn(m, *sample_inputs)

assert torch.allclose(eager_out, compiled_out)
```

twice, see that it succeeds.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165474
Approved by: https://github.com/yiming0416, https://github.com/zhxchen17
2025-10-17 17:47:24 +00:00
cff1b20771 Patch the flex_attention._get_mod_type to not use inspect.signature when computing num_positional_args (an alternative fix for flex attention graph break on create_block_mask) (#164923)
The initial fix for inspect.signature uses not a right approach (https://github.com/pytorch/pytorch/pull/164349#pullrequestreview-3306614010). As @williamwen42 suggests (https://github.com/pytorch/pytorch/pull/164349#issuecomment-3379222885) we can just for now get rid of `inspect.signature` call in flex_attention to resolve this high priority issue (https://github.com/pytorch/pytorch/issues/164247#issuecomment-3378673179). In this PR I did exactly this - limited the scope of fix to just computing `num_positional_args` in `flex_attention._get_mod_type` based on properties returned by `NestedUserFunctionVariable.const_getattr` (some were missing so I added them)

Fixes #164247

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164923
Approved by: https://github.com/williamwen42
2025-10-17 17:44:45 +00:00
da8517fa63 [ROCm][CI] upgrade wheels to 7.0.2 and 6.4.4 patch release (#165756)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165756
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-17 17:41:19 +00:00
45afaf08a1 [DebugMode][2/N] add nn.Module tracking (#165498)
Uses ModTracker to record nn.Module entries, much like CommDebugMode.

Can be switched on with `DebugMode(record_nn_module=True)`:
```
    [nn.Mod] Bar
      [nn.Mod] Bar.abc
        [nn.Mod] Bar.abc.l1
          aten::t(t: f32[4, 4])
          aten::addmm(t: f32[4], t: f32[4, 4], t: f32[4, 4])
        [nn.Mod] Bar.abc.l2
          aten::t(t: f32[4, 4])
          aten::addmm(t: f32[4], t: f32[4, 4], t: f32[4, 4])
      [nn.Mod] Bar.xyz
        aten::t(t: f32[4, 4])
        aten::addmm(t: f32[4], t: f32[4, 4], t: f32[4, 4])"""
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165498
Approved by: https://github.com/SherlockNoMad
ghstack dependencies: #165376
2025-10-17 17:39:48 +00:00
080365b7d8 Escaped html tags name and target to appear as strings (#165543)
Fixes small typo in markdown documentation file - Added escape characters to precede tag pattern.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165543
Approved by: https://github.com/mikaylagawarecki
2025-10-17 17:35:18 +00:00
2928c5c572 Revert "Pyrefly suppressions 2 (#165692)"
This reverts commit 43d78423ac224cce432bf34ed9627035169d5433.

Reverted https://github.com/pytorch/pytorch/pull/165692 on behalf of https://github.com/seemethere due to This is causing merge conflicts when attempting to land internally, see D84890919 for more details ([comment](https://github.com/pytorch/pytorch/pull/165692#issuecomment-3416397240))
2025-10-17 17:13:04 +00:00
630520b346 [dynamo][misc] Replace UserFunctionVariable with VariableTracker build (#165707)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165707
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #165683, #165706
2025-10-17 17:02:18 +00:00
1dc9a05d03 [dynamo][user_defined] Replace UserFunctionVariable with VariableTracker build (#165706)
Audit: To prevent future issues with functools.partial or callable
objects.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165706
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #165683
2025-10-17 17:02:18 +00:00
bfcdbd0a97 fix wrong accuracy_status when exception. (#165731)
When I debug `XPU` accruacy issue, I found the script output wrong accuracy_status.
When the `try` block raise an exception, we should process the exception, but not return the `fail_accuracy`.

Before fixing, it returned as `fail_accuracy`:
<img width="1109" height="216" alt="image" src="https://github.com/user-attachments/assets/385c354f-fbf6-48e4-a1be-3e37e987341b" />

After fixing, it returned the exception message:
<img width="1101" height="292" alt="image" src="https://github.com/user-attachments/assets/f18c0e3c-8358-4ec7-a6bb-c2e01b69d27f" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165731
Approved by: https://github.com/Stonepia, https://github.com/chuanqi129, https://github.com/Lucaskabela
2025-10-17 16:37:06 +00:00
faff826a46 Revert "[ROCm] new implementation of upsample_bilinear2d_backward (#164572)"
This reverts commit 53f9ae0e50d4dcc47f2ca4bf854803f9d4f875ae.

Reverted https://github.com/pytorch/pytorch/pull/164572 on behalf of https://github.com/seemethere due to Looks like this is failing in our internal builds, will post a suggestion for a fix but want you to double verify that this behavior is correct ([comment](https://github.com/pytorch/pytorch/pull/164572#issuecomment-3416262676))
2025-10-17 16:27:59 +00:00
85c5433d38 Revert "Fix _StridedShard incorrect split (#165533)"
This reverts commit dfc8a1c5ddc8401197e9ab546e03b0f745edc27b.

Reverted https://github.com/pytorch/pytorch/pull/165533 on behalf of https://github.com/seemethere due to Causing a merge conflict internally, see D84829161 ([comment](https://github.com/pytorch/pytorch/pull/165533#issuecomment-3416143176))
2025-10-17 15:57:01 +00:00
935ccdbe75 [MPS] Fix internal assertion in torch.linalg.solve for singular matrices (#165254)
Fixes #163962 by special casing MPS in the negative status code branch in `_linalg_check_errors`.

Checks if info is [`MPSMatrixDecompositionStatus.singular`](https://developer.apple.com/documentation/metalperformanceshaders/mpsmatrixdecompositionstatus/singular) (which has a raw value of -2). I didn't find an official Apple source with this raw value (besides printing the enum value), so I'm not sure if we can (or should) depend on it? Is there a way to directly get the Objective-C enum value in C++?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165254
Approved by: https://github.com/malfet
2025-10-17 15:35:49 +00:00
3af2f0c12a [inductor] require shape in TritonCSEVariable (#162275)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162275
Approved by: https://github.com/mlazos
ghstack dependencies: #164158
2025-10-17 14:47:45 +00:00
6ece527fc5 [CI] Add aarch64 operator benchmark (#165585)
Running on Graviton4
Skip ConvTranspose1d benchmarks if PyTorch is compiled with ACL, due to https://github.com/pytorch/pytorch/issues/165654
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165585
Approved by: https://github.com/huydhn
2025-10-17 14:42:14 +00:00
ce29d0d796 [ATen] Vectorize 8 elements on 16 bit data types for sum/mean (#165055)
Benchmarks for a full reduction + reduction on the contiguous dimension. Vectorized loads do not occur on the non contiguous dimension. Benchmarking done for FP16/BF16, ~6% improvement on average across shapes, up to ~24% for single reduction on contiguous dimension and 46% for full reduce:
**BF16**
```
Tensor Shape         Operation    Full reduce (ms)     Contiguous dim (ms)  Full reduce (ms)     Contiguous dim (ms)  Full reduce diff %   Contiguous diff %
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(256, 256)           mean         0.022686             0.008263             0.015498             0.008117                          +46.38%               +1.80%
(256, 256)           sum          0.022769             0.008269             0.015628             0.008185                          +45.69%               +1.03%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(512, 512)           mean         0.014116             0.009545             0.012892             0.008839                           +9.49%               +7.99%
(512, 512)           sum          0.014110             0.009892             0.012891             0.008878                           +9.46%              +11.42%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 1024)         mean         0.014727             0.012642             0.014061             0.010519                           +4.74%              +20.18%
(1024, 1024)         sum          0.014376             0.012636             0.014069             0.010595                           +2.18%              +19.26%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(2048, 2048)         mean         0.018663             0.018294             0.018171             0.014678                           +2.71%              +24.64%
(2048, 2048)         sum          0.018638             0.017931             0.018142             0.014713                           +2.73%              +21.87%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(4096, 4096)         mean         0.034216             0.036953             0.033520             0.030585                           +2.08%              +20.82%
(4096, 4096)         sum          0.034196             0.036942             0.033518             0.030676                           +2.02%              +20.43%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 8192)         mean         0.087763             0.095201             0.085439             0.084960                           +2.72%              +12.05%
(8192, 8192)         sum          0.088079             0.095592             0.085353             0.084632                           +3.19%              +12.95%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 16384)        mean         0.148174             0.149705             0.146274             0.138865                           +1.30%               +7.81%
(8192, 16384)        sum          0.147820             0.149371             0.146419             0.138752                           +0.96%               +7.65%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 32768)        mean         0.266144             0.260807             0.265953             0.253330                           +0.07%               +2.95%
(8192, 32768)        sum          0.266572             0.261163             0.265729             0.253294                           +0.32%               +3.11%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 65536)        mean         0.502034             0.486312             0.498417             0.481246                           +0.73%               +1.05%
(8192, 65536)        sum          0.501597             0.486351             0.497735             0.481579                           +0.78%               +0.99%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 131072)       mean         0.971178             0.942988             0.957164             0.938316                           +1.46%               +0.50%
(8192, 131072)       sum          0.971189             0.943232             0.956814             0.937816                           +1.50%               +0.58%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 262144)       mean         1.953728             1.877648             1.904937             1.861692                           +2.56%               +0.86%
(8192, 262144)       sum          1.953969             1.877538             1.905990             1.862547                           +2.52%               +0.80%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(4096, 262144)       mean         0.970408             0.940965             0.957871             0.936732                           +1.31%               +0.45%
(4096, 262144)       sum          0.970919             0.941652             0.957765             0.936676                           +1.37%               +0.53%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(2048, 262144)       mean         0.501477             0.486976             0.497964             0.483570                           +0.71%               +0.70%
(2048, 262144)       sum          0.501955             0.487213             0.498210             0.483218                           +0.75%               +0.83%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 262144)       mean         0.266536             0.257111             0.265642             0.255439                           +0.34%               +0.65%
(1024, 262144)       sum          0.266613             0.257096             0.265427             0.255472                           +0.45%               +0.64%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(512, 131072)        mean         0.087805             0.091200             0.085818             0.087851                           +2.32%               +3.81%
(512, 131072)        sum          0.087788             0.091249             0.085373             0.087944                           +2.83%               +3.76%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1000, 1000)         mean         0.014503             0.012328             0.013663             0.010190                           +6.15%              +20.98%
(1000, 1000)         sum          0.014545             0.012378             0.013662             0.010579                           +6.46%              +17.01%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 129)          mean         0.014163             0.008371             0.012893             0.008828                           +9.85%               -5.18%
(1024, 129)          sum          0.014132             0.008751             0.013234             0.008868                           +6.79%               -1.32%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 257)          mean         0.014296             0.009101             0.013334             0.008563                           +7.21%               +6.28%
(1024, 257)          sum          0.014302             0.009058             0.013020             0.008672                           +9.85%               +4.45%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 587)          mean         0.014127             0.010997             0.013443             0.009944                           +5.09%              +10.59%
(1024, 587)          sum          0.014471             0.011373             0.013123             0.010354                          +10.27%               +9.84%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(2048, 977)          mean         0.015607             0.013566             0.015089             0.012152                           +3.43%              +11.64%
(2048, 977)          sum          0.015953             0.013580             0.015039             0.011861                           +6.08%              +14.49%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 128)          mean         0.013982             0.008058             0.012747             0.008139                           +9.69%               -1.00%
(1024, 128)          sum          0.013967             0.008071             0.012726             0.007859                           +9.75%               +2.70%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 128)          mean         0.014378             0.009627             0.013712             0.009395                           +4.86%               +2.47%
(8192, 128)          sum          0.014389             0.009965             0.013718             0.009521                           +4.89%               +4.66%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 130)          mean         0.014156             0.008267             0.012895             0.008833                           +9.78%               -6.41%
(1024, 130)          sum          0.013797             0.008277             0.012903             0.008512                           +6.93%               -2.76%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 130)          mean         0.014977             0.010026             0.013911             0.009876                           +7.66%               +1.52%
(8192, 130)          sum          0.014994             0.010043             0.014235             0.009604                           +5.33%               +4.57%
====================================================================================================================================================================================
```

**FP16**
```
Tensor Shape         Operation    Full reduce (ms)     Contiguous dim (ms)  Full reduce (ms)     Contiguous dim (ms)  Full reduce diff %   Contiguous diff %
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(256, 256)           mean         0.022804             0.008298             0.015888             0.007848                          +43.53%               +5.73%
(256, 256)           sum          0.023215             0.008328             0.015677             0.007850                          +48.08%               +6.09%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(512, 512)           mean         0.013777             0.009988             0.012884             0.008512                           +6.93%              +17.34%
(512, 512)           sum          0.013775             0.009622             0.012870             0.009028                           +7.03%               +6.58%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 1024)         mean         0.014740             0.012322             0.013708             0.010239                           +7.53%              +20.34%
(1024, 1024)         sum          0.014762             0.012756             0.013722             0.010307                           +7.58%              +23.76%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(2048, 2048)         mean         0.018700             0.018364             0.018135             0.015078                           +3.12%              +21.79%
(2048, 2048)         sum          0.018276             0.018415             0.018471             0.015127                           -1.06%              +21.74%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(4096, 4096)         mean         0.034518             0.037000             0.033838             0.030617                           +2.01%              +20.85%
(4096, 4096)         sum          0.034569             0.037448             0.033842             0.031100                           +2.15%              +20.41%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 8192)         mean         0.087675             0.095176             0.085328             0.084105                           +2.75%              +13.16%
(8192, 8192)         sum          0.088102             0.095211             0.085707             0.084090                           +2.79%              +13.23%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 16384)        mean         0.147800             0.149263             0.146388             0.138390                           +0.96%               +7.86%
(8192, 16384)        sum          0.148147             0.148957             0.146439             0.138801                           +1.17%               +7.32%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 32768)        mean         0.266316             0.260294             0.265829             0.253411                           +0.18%               +2.72%
(8192, 32768)        sum          0.266562             0.260717             0.265744             0.253308                           +0.31%               +2.92%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 65536)        mean         0.502035             0.486077             0.498139             0.481374                           +0.78%               +0.98%
(8192, 65536)        sum          0.501571             0.485733             0.498353             0.481350                           +0.65%               +0.91%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 131072)       mean         0.971343             0.943016             0.956600             0.938622                           +1.54%               +0.47%
(8192, 131072)       sum          0.971463             0.942991             0.957352             0.938334                           +1.47%               +0.50%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 262144)       mean         1.952722             1.877165             1.906406             1.861455                           +2.43%               +0.84%
(8192, 262144)       sum          1.952634             1.876388             1.904677             1.861282                           +2.52%               +0.81%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(4096, 262144)       mean         0.970697             0.941298             0.956964             0.936160                           +1.44%               +0.55%
(4096, 262144)       sum          0.969981             0.941078             0.957016             0.936260                           +1.35%               +0.51%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(2048, 262144)       mean         0.501577             0.487208             0.498422             0.483493                           +0.63%               +0.77%
(2048, 262144)       sum          0.502029             0.487124             0.497854             0.483643                           +0.84%               +0.72%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 262144)       mean         0.266416             0.257383             0.265928             0.255140                           +0.18%               +0.88%
(1024, 262144)       sum          0.266434             0.257081             0.265817             0.255143                           +0.23%               +0.76%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(512, 131072)        mean         0.087858             0.091296             0.085816             0.087745                           +2.38%               +4.05%
(512, 131072)        sum          0.088144             0.091314             0.085664             0.087864                           +2.90%               +3.93%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1000, 1000)         mean         0.014977             0.012393             0.014141             0.010614                           +5.91%              +16.76%
(1000, 1000)         sum          0.014589             0.012804             0.014118             0.010320                           +3.34%              +24.07%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 129)          mean         0.014208             0.008383             0.013273             0.008440                           +7.04%               -0.68%
(1024, 129)          sum          0.013804             0.008863             0.013265             0.009003                           +4.06%               -1.56%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 257)          mean         0.014378             0.009109             0.013037             0.009038                          +10.29%               +0.79%
(1024, 257)          sum          0.014387             0.009113             0.013396             0.008698                           +7.40%               +4.77%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 587)          mean         0.014207             0.011037             0.013182             0.010391                           +7.78%               +6.22%
(1024, 587)          sum          0.014588             0.011453             0.013539             0.010049                           +7.75%              +13.97%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(2048, 977)          mean         0.016024             0.013614             0.015448             0.011845                           +3.73%              +14.93%
(2048, 977)          sum          0.015990             0.014033             0.015406             0.012278                           +3.79%              +14.29%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 128)          mean         0.014037             0.007804             0.013143             0.008242                           +6.80%               -5.31%
(1024, 128)          sum          0.014041             0.007847             0.012759             0.007850                          +10.05%               -0.04%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 128)          mean         0.014361             0.009644             0.014075             0.009061                           +2.03%               +6.43%
(8192, 128)          sum          0.014366             0.010032             0.013702             0.009181                           +4.85%               +9.27%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(1024, 130)          mean         0.014226             0.008696             0.012894             0.008835                          +10.33%               -1.57%
(1024, 130)          sum          0.013830             0.008740             0.013288             0.008989                           +4.08%               -2.77%
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(8192, 130)          mean         0.015036             0.010019             0.013917             0.009538                           +8.04%               +5.04%
(8192, 130)          sum          0.014652             0.010403             0.013900             0.009565                           +5.41%               +8.76%
====================================================================================================================================================================================
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165055
Approved by: https://github.com/ngimel
ghstack dependencies: #165494, #164790
2025-10-17 13:39:36 +00:00
7231118db3 Turn some const variables into constexpr in C++ code (#165401)
This PR checks the C++ code and turns some const variables into constexpr.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165401
Approved by: https://github.com/Skylion007
2025-10-17 13:24:46 +00:00
5d4da26ed0 Revert "[export] preserve_node_meta by default (#165524)"
This reverts commit fdd560afd1d413a9f814cbf7cc2a72e0d39b0117.

Reverted https://github.com/pytorch/pytorch/pull/165524 on behalf of https://github.com/lw due to test/functorch/test_control_flow.py::TestControlFlowTraced::test_cond_symint_closure [GH job link](https://github.com/pytorch/pytorch/actions/runs/18586312291/job/52991654051) [HUD commit link](fdd560afd1) ([comment](https://github.com/pytorch/pytorch/pull/165524#issuecomment-3415352522))
2025-10-17 12:27:17 +00:00
574c9fc950 Revert "Remove torch.serialization entries from the doc ignore list (#160224)"
This reverts commit 9fe3b2afbeff12080b483af1ee23e1c9d9fb0421.

Reverted https://github.com/pytorch/pytorch/pull/160224 on behalf of https://github.com/lw due to [GH job link](https://github.com/pytorch/pytorch/actions/runs/18588004962/job/52997748336) [HUD commit link](9fe3b2afbe) ([comment](https://github.com/pytorch/pytorch/pull/160224#issuecomment-3415345175))
2025-10-17 12:24:08 +00:00
80d2ca7566 Revert "[annotate] add annotate_fn function decorator (#165703)"
This reverts commit f1d882212afc3a73ce1e319d80b6406f9dc4a0c8.

Reverted https://github.com/pytorch/pytorch/pull/165703 on behalf of https://github.com/lw due to [GH job link](https://github.com/pytorch/pytorch/actions/runs/18585518705/job/52989521797) [HUD commit link](f1d882212a) ([comment](https://github.com/pytorch/pytorch/pull/165703#issuecomment-3415073467))
2025-10-17 11:23:13 +00:00
4a22139eea [MPS][BE] Fix unused variable warning (#165726)
Namely this one
```
/Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Shape.metal:19:18: warning: unused variable 'output_sizes' [-Wunused-variable]
  constant auto& output_sizes = shared_params.output_sizes;
                 ^
/Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Shape.metal:85:1: note: in instantiation of function template specialization 'cat<long, float, float>' requested here
REGISTER_CAT_FOR_INDEX_TYPE(int64_t);
^
/Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Shape.metal:69:3: note: expanded from macro 'REGISTER_CAT_FOR_INDEX_TYPE'
  REGISTER_CAT_OP_ALL_INPUT_TYPES(I, float);  \
  ^
/Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Shape.metal:55:3: note: expanded from macro 'REGISTER_CAT_OP_ALL_INPUT_TYPES'
  REGISTER_CAT_OP(I, float, T_out);               \
  ^
/Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Shape.metal:47:15: note: expanded from macro 'REGISTER_CAT_OP'
  kernel void cat<I, T_in, T_out>(                               \
```

Repeated about 20-30 times
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165726
Approved by: https://github.com/Skylion007
2025-10-17 11:16:21 +00:00
cb6e4d7d82 User-passed alpha to scaled_gemm (#165563)
Summary:

Add optional user-passed `alpha` argument to
`at::cuda::blas::scaled_gemm`, necessary for two-level-scaled NVFP4 gemm
calls (where the global de-scales are folded into the `alpha` argument.

Global de-scales are naturally device tensors, but using cublas'
device-pointer mode for `alpha`/`beta` has an interesting lifetime
implication - the `alpha` tensor must be valid & correct until the end
of the matmul call, *not* just the launch (as for host values). To
enable this, I added device-constant memory for `one` and `zero`, along
with a statically-held single-fp32-value tensor, which is valid from the
first passed-`alpha` invocation of `scaled_gemm` to the end of the
program. User-passed values are copied into this perpetual buffer to
ensure lifetime requirements are met.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165563
Approved by: https://github.com/drisspg, https://github.com/eqy
2025-10-17 09:42:33 +00:00
202f83dc4e [ROCm][layer_norm] Use __builtin_amdgcn_rcpf(x) instead of 1.f/x (#165589)
Replace (more) exact calculation with hardware approximation.

Benefits:
Reduced code size.
Improved performance for certain scenarios.

Experiments show low reduction in precision.
Experiments show no significant performance regressions. bfloat16 as well as float16 related calculations may benefit largely from this change.

Co-author: @mhalk @amd-hhashemi

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165589
Approved by: https://github.com/jeffdaily
2025-10-17 09:12:30 +00:00
9fe3b2afbe Remove torch.serialization entries from the doc ignore list (#160224)
Follows the approach done in #158581
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160224
Approved by: https://github.com/janeyx99
2025-10-17 09:06:09 +00:00
d0c24b392c [APF Logging][Error Trait] To fill the errorTraits for ChildFailedError with signal abort (re-attempt of #165476) (#165688)
**Summary**
Land @guoding83128 's PR https://github.com/pytorch/pytorch/pull/165476 on his behalf due to EasyCLA blocking.
Refer his original PR for detail. But in short, elastic leaves 'errorTraits' as unknown when the error dump file is missing,
this PR adds a "system terminated error" to such case so the internal scuba table can correctly aggregate.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165688
Approved by: https://github.com/fduwjj
2025-10-17 08:23:27 +00:00
b44fb14906 Remove unused parameter when query extension attribute (#165623)
# Motivation
This code is no longer needed since SYCL compiler 2025.0. We are now using compiler 2025.2 (two tool uplifts later), so it can be safely removed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165623
Approved by: https://github.com/EikanWang
ghstack dependencies: #165622
2025-10-17 08:16:13 +00:00
51348c0219 Give a friendly message for older Intel GPU (#165622)
# Motivation
Notify the user if the GPU is older than officially supported. This provides a friendly warning that the GPU may work, but the experience could be unstable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165622
Approved by: https://github.com/EikanWang
2025-10-17 08:16:13 +00:00
fdd560afd1 [export] preserve_node_meta by default (#165524)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165524
Approved by: https://github.com/malaybag
2025-10-17 07:55:28 +00:00
e925dfcc6b Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645
Approved by: https://github.com/ezyang, https://github.com/mlazos
2025-10-17 07:27:11 +00:00
f1d882212a [annotate] add annotate_fn function decorator (#165703)
Example usage:

```
        @fx_traceback.annotate_fn({"pp_stage": 1})
        def example_function(x):
            return x * x

        class SimpleLinear(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 2)

            def forward(self, x):
                with fx_traceback.annotate({"pp_stage": 0}):
                    y = self.linear(x)
                y = example_function(y)
                return y - 1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165703
Approved by: https://github.com/SherlockNoMad
2025-10-17 07:18:47 +00:00
24879f0de9 [dynamo] Use Variable Builder to build the property fget object (#165683)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165683
Approved by: https://github.com/ezyang, https://github.com/williamwen42
2025-10-17 06:29:24 +00:00
9e94ec76b8 Revert "Turn some const variables into constexpr in C++ code (#165401)"
This reverts commit 5b2afe4c5dc87786ca65bf22ca9a78f7c21a33a4.

Reverted https://github.com/pytorch/pytorch/pull/165401 on behalf of https://github.com/seemethere due to This is breaking test/distributions/test_distributions.py::TestDistributions::test_binomial_sample on HUD, see 5b2afe4c5d ([comment](https://github.com/pytorch/pytorch/pull/165401#issuecomment-3414023134))
2025-10-17 06:14:09 +00:00
364624e209 [codemod][lowrisk] Remove unused exception parameter from some files (#165700)
Summary:
`-Wunused-exception-parameter` has identified an unused exception parameter. This diff removes it.

This:
```
try {
    ...
} catch (exception& e) {
    // no use of e
}
```
should instead be written as
```
} catch (exception&) {
```

If the code compiles, this is safe to land.

Test Plan: Sandcastle

Differential Revision: D84868162

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165700
Approved by: https://github.com/Skylion007
2025-10-17 05:30:06 +00:00
7e150467f7 allow providing full fr trace path (#165639)
Summary:
- allow users to specify the full path instead of fr suffixing the rank id
- this will be used by torchft to provide the global rank id accross all replicas
- we can't just prefix the replica id because analysis tool expects the file name to provide a unique integer

---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/pytorch/pytorch/pull/165639).
* #165638
* #165640
* #165677
* #165642
* __->__ #165639

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165639
Approved by: https://github.com/fduwjj
2025-10-17 04:43:44 +00:00
43d78423ac Pyrefly suppressions 2 (#165692)
This is the last directory to opt in for the regular mypy.ini file. Will put up a diff to remove unused ignores before making sure we're also type checking all the files in the mypy strict configurations

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165692
Approved by: https://github.com/oulgen
2025-10-17 04:15:25 +00:00
fcbde24c1c [ONNX] Remove common imports from torchlib (#165156)
The Rank and IsScalar functions are no longer used in the torchlib. Requires onnxscript v0.5.4

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165156
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-10-17 03:25:34 +00:00
861cdb887b use statically_known_leq & *=2 instead of bound_sympy in persistent rblock (#165657)
While these should be equivalent, we've found instances where they are not, and an error was caused. update until we figure out underlying issue.

Differential Revision: [D84835898](https://our.internmc.facebook.com/intern/diff/D84835898)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165657
Approved by: https://github.com/bobrenjc93
2025-10-17 02:48:03 +00:00
3154482072 [CUDA][cuBLAS] Only xFail addmm with reduced precision reductions on non-RTX skus (#165379)
RTX Blackwells don't behave quite like their datacenter counterparts here

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165379
Approved by: https://github.com/Skylion007
2025-10-17 02:45:07 +00:00
9fccbdd4f0 Fix incorrect function signature in template (#165567)
Summary:
In https://github.com/pytorch/pytorch/pull/148305 we refactored the grid
argument out, but it's not reflected in our template.

Test Plan:
Included in commit.
python test/inductor/test_aot_inductor.py
AOTInductorTestABICompatibleGpu.test_cond_symint_input_disable_one_pass_cuda

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165567
Approved by: https://github.com/desertfire
2025-10-17 02:40:56 +00:00
7dabfb07cb [torchfuzz] add support for --stop-at-first-failure flag (#165529)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165529
Approved by: https://github.com/pianpwk
ghstack dependencies: #164749
2025-10-17 02:18:07 +00:00
d0add0be43 [torchfuzz] check in some more ignore regexes (#164749)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164749
Approved by: https://github.com/pianpwk
2025-10-17 02:18:07 +00:00
11e2084308 Revert "[Mem Snapshot] Add Metadata Field (#165490)"
This reverts commit 5b3ea758951558e7d9f681ae784acb57eaa07910.

Reverted https://github.com/pytorch/pytorch/pull/165490 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/165490#issuecomment-3413491091))
2025-10-17 02:01:53 +00:00
9726553653 [BE][Ez]: Use sys.executable instead of hardcoded Python (#165679)
Handles edgecase to ensure proper interpreter is called. Inspired by #165633
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165679
Approved by: https://github.com/FindHao
2025-10-17 01:07:40 +00:00
d82527b32a [Windows] Add AOTI cross-compilation CI (#165573)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165573
Approved by: https://github.com/malfet
ghstack dependencies: #165560
2025-10-17 01:05:35 +00:00
5d9b024276 Add mingw to docker (#165560)
Add mingw to `pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11` docker image to support AOTI cross-compilation

This PR will make docker container rebuild, and upgrade python version from 3.13.7 to 3.13.8. and it relies on https://github.com/pytorch/pytorch/pull/165667
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165560
Approved by: https://github.com/malfet
2025-10-17 00:47:01 +00:00
5b2afe4c5d Turn some const variables into constexpr in C++ code (#165401)
This PR checks the C++ code and turns some const variables into constexpr.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165401
Approved by: https://github.com/Skylion007
2025-10-17 00:40:11 +00:00
b2953f5643 [9/N] Apply ruff UP035 rule (#165515)
This is follow-up of #165214 to continue applying ruff UP035 rule to the code base.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165515
Approved by: https://github.com/Lucaskabela
2025-10-17 00:09:51 +00:00
470e2f61c3 Revert "[Fix] Use sys.executable instead of hardcoded python (#165633)"
This reverts commit 37f3ba274a8ccebc6b3409f52cf068a8b23617d4.

Reverted https://github.com/pytorch/pytorch/pull/165633 on behalf of https://github.com/malfet due to Looks like it broke test_collect_callgrind in slow workflows, see e0fe37fa68/1 ([comment](https://github.com/pytorch/pytorch/pull/165633#issuecomment-3413290813))
2025-10-17 00:06:40 +00:00
e0fe37fa68 [MPS] Move torch.cat impl to Metal (#165373)
After this change, all of the cases tested in [this performance measurement script](10de64c5ac/cat/perf0.py) take either roughly the same runtime or less.

Before:

```
idx: cpu time, mps time, speedup, op, args, kwargs
-----------------------------------------
0: 0.000857 ms, 0.016098 ms, 0.05, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': -1}
1: 0.000858 ms, 0.014861 ms, 0.06, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': 1}
2: 0.000806 ms, 0.015145 ms, 0.05, cat, [[tensor(shape[10, 5]), tensor(shape[5, 5])]], {'dim': 0}
3: 0.000829 ms, 0.015355 ms, 0.05, cat, [[tensor(shape[1, 2, 3]), tensor(shape[1, 2, 3])]], {'dim': -2}
4: 0.000591 ms, 0.000582 ms, 1.02, cat, [[tensor(shape[0]), tensor(shape[0])]], {'dim': 0}
5: 0.001076 ms, 0.022387 ms, 0.05, cat, [[tensor(shape[0]), tensor(shape[5, 5])]], {'dim': 1}
6: 0.000708 ms, 0.022300 ms, 0.03, cat, [[tensor(shape[0, 5]), tensor(shape[5, 5])]], {'dim': 0}
7: 0.000640 ms, 0.014367 ms, 0.04, cat, [[tensor(shape[1]), tensor(shape[1])]], {}
8: 0.000777 ms, 0.027506 ms, 0.03, cat, [[tensor(shape[2, 2, 2, 2])], 1], {}
9: 0.003383 ms, 0.269277 ms, 0.01, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
10: 0.526138 ms, 0.650852 ms, 0.81, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
11: 0.444091 ms, 0.628630 ms, 0.71, cat, "[[tensor(shape[1, 3, 2]), tensor(shape[2, 3, 2]), tensor(shape[3, 3, 2]), tensor(shape[1, 3, 2]), te...", {'dim': 0}
12: 2.011870 ms, 0.989525 ms, 2.03, cat, [[tensor(shape[1000000, 3, 2]), tensor(shape[1000000, 3, 2])]], {'dim': 0}
13: 3.100653 ms, 0.948178 ms, 3.27, cat, [[tensor(shape[3, 1000000, 2]), tensor(shape[3, 1000000, 2])]], {'dim': 1}
14: 3.112174 ms, 0.954174 ms, 3.26, cat, [[tensor(shape[3, 2, 1000000]), tensor(shape[3, 2, 1000000])]], {'dim': 2}
```

After:

```
idx: cpu time, mps time, speedup, op, args, kwargs
-----------------------------------------
0: 0.000790 ms, 0.013111 ms, 0.06, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': -1}
1: 0.000800 ms, 0.014419 ms, 0.06, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': 1}
2: 0.000748 ms, 0.010019 ms, 0.07, cat, [[tensor(shape[10, 5]), tensor(shape[5, 5])]], {'dim': 0}
3: 0.000767 ms, 0.010063 ms, 0.08, cat, [[tensor(shape[1, 2, 3]), tensor(shape[1, 2, 3])]], {'dim': -2}
4: 0.000591 ms, 0.000591 ms, 1.00, cat, [[tensor(shape[0]), tensor(shape[0])]], {'dim': 0}
5: 0.001220 ms, 0.009763 ms, 0.12, cat, [[tensor(shape[0]), tensor(shape[5, 5])]], {'dim': 1}
6: 0.000739 ms, 0.006203 ms, 0.12, cat, [[tensor(shape[0, 5]), tensor(shape[5, 5])]], {'dim': 0}
7: 0.000647 ms, 0.009905 ms, 0.07, cat, [[tensor(shape[1]), tensor(shape[1])]], {}
8: 0.000753 ms, 0.007818 ms, 0.10, cat, [[tensor(shape[2, 2, 2, 2])], 1], {}
9: 0.003823 ms, 0.192723 ms, 0.02, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
10: 0.576564 ms, 0.733920 ms, 0.79, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
11: 0.462957 ms, 0.692799 ms, 0.67, cat, "[[tensor(shape[1, 3, 2]), tensor(shape[2, 3, 2]), tensor(shape[3, 3, 2]), tensor(shape[1, 3, 2]), te...", {'dim': 0}
12: 2.017181 ms, 0.968345 ms, 2.08, cat, [[tensor(shape[1000000, 3, 2]), tensor(shape[1000000, 3, 2])]], {'dim': 0}
13: 3.203508 ms, 0.986382 ms, 3.25, cat, [[tensor(shape[3, 1000000, 2]), tensor(shape[3, 1000000, 2])]], {'dim': 1}
14: 3.181249 ms, 1.007773 ms, 3.16, cat, [[tensor(shape[3, 2, 1000000]), tensor(shape[3, 2, 1000000])]], {'dim': 2}
```

Fixes #165350
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165373
Approved by: https://github.com/kulinseth, https://github.com/malfet
2025-10-17 00:03:04 +00:00
d2c82bafb7 Revert "158232 Fix autocast cache incorrectly retaining no_grad state (#165068)"
This reverts commit 5daef30b26b794d237fbbc399c1d47ec0380200a.

Reverted https://github.com/pytorch/pytorch/pull/165068 on behalf of https://github.com/jeffdaily due to This broke ROCm CI. test/test_transformers.py::TestTransformersCUDA::test_transformerencoder_fastpath_use_torchscript_False_enable_nested_tensor_True_use_autocast_True_d_model_256_cuda [GH job link](https://github.com/pytorch/pytorch/actions/runs/18572589089/job/52952074008) [HUD commit link](5daef30b26) ([comment](https://github.com/pytorch/pytorch/pull/165068#issuecomment-3413184445))
2025-10-16 23:08:27 +00:00
98a488c9aa Start recording inductor provenance (#162669)
Summary:
This stores information on where fx graphs come from, which makes it
significantly easier to debug.

One outstanding question

1) I only stored the kernel stack traces, do we also want the node mappings?

Test Plan:
I wrote a explicit logging test which makes a module, fx traces it, compiles it, and makes sure the logging infomration shows up.

```
clr@devvm17763 ~/fbsource/fbcode/caffe2/test/dynamo
 % buck2 test @//mode/opt fbcode//caffe2/test/dynamo:test_dynamo -- test_utils

File changed: fbsource//xplat/caffe2/test/dynamo/test_utils.py
File changed: fbcode//caffe2/test/dynamo/test_utils.py
Buck UI: https://www.internalfb.com/buck2/528dea32-2416-4a62-a1ec-39f3c0efdd2e
Test UI: https://www.internalfb.com/intern/testinfra/testrun/13229324015574003
Network: Up: 0B  Down: 0B
Executing actions. Remaining     0/2
Command: test.
Time elapsed: 17.3s
Tests finished: Pass 16. Fail 0. Fatal 0. Skip 0. Build failure 0
```

Rollback Plan:

Differential Revision: D82037582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162669
Approved by: https://github.com/yushangdi
2025-10-16 23:05:31 +00:00
5b3ea75895 [Mem Snapshot] Add Metadata Field (#165490)
Summary:
The implementation adds the ability to:

Set custom metadata strings that will be attached to all subsequent allocations
Clear or change the metadata at any point
View the metadata in memory snapshots via _dump_snapshot()

Test Plan: Added test in test_cuda.py and check manually in snapshot to see that metadata was added.

Differential Revision: D84654933

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165490
Approved by: https://github.com/yushangdi
2025-10-16 22:54:27 +00:00
556fc09a9f [DebugMode][1/N] refactor logs into _DebugCalls (#165376)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165376
Approved by: https://github.com/SherlockNoMad
2025-10-16 22:43:52 +00:00
ce109b3f79 Add torch.backends.mkldnn.is_acl_available() method (#165678)
That tells whether or not PyTorch was compiled with Arm Compute Library
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165678
Approved by: https://github.com/Skylion007, https://github.com/atalman, https://github.com/albanD
ghstack dependencies: #165583, #165584, #165676
2025-10-16 22:34:21 +00:00
4d833f859b [BE] [CI] Fix aarch64 arch checks (#165676)
Instead of relying on `TEST_CONFIG` environment variable  to contain `aarch64`, which is prone to errors,  use output of  `$(uname -m)` that is equal to `aarch64` on Linux ARM systems
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165676
Approved by: https://github.com/huydhn, https://github.com/atalman
ghstack dependencies: #165583, #165584
2025-10-16 22:19:53 +00:00
d7e275d4b4 [CI][CUDA] Add periodic b200 distributed job (#159323)
1. Run distributed job with B200 runner, periodically.
2. discovered generic distributed test issue that certain unit test hard-coded ranks, calling for require_exact_world_size(world_size) API instead of require_world_size(world_size).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159323
Approved by: https://github.com/eqy

Co-authored-by: Aidyn-A <aidyn.b.aitzhan@gmail.com>
2025-10-16 21:54:04 +00:00
d5db3aee0d [CI] Use 1-GPU runners for rocm-mi355.yml (#165658)
Should only need 1-GPU runners for rocm-mi355.yml since it runs `default` test config which only needs 1 GPU

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165658
Approved by: https://github.com/jeffdaily
2025-10-16 21:53:22 +00:00
5641de7b6b Add suppressions for _inductor/codegen (#165659)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165659
Approved by: https://github.com/oulgen
2025-10-16 21:37:37 +00:00
cbc08c8993 Add NEON acceleration for Vectorized<int[8|16|32|64> (#165273)
Summary:
Adding NEON specializations of Vectorized<T> for int8, int16, int32 and int64.

Correcness has been checked using test_ops.py and the comprehensive torch test

operator_benchmark_test.py has been enhanced by adding cases of bitwise operations, boolean ops and integer ops.
The benchmark, which uses the PyTorch API, shows significant enhancements in a wide variety of operations:

Before:

bitwise xor: 779.882us
boolean any: 636.209us
boolean all: 538.621us
integer mul: 304.457us
integer asr: 447.997us

After:

bitwise xor: 680.221us ---> 15% higher throughput
boolean any: 391.468us ---> 63% higher throughput
boolean all: 390.189us ---> 38% higher throughput
integer mul: 193.532us ---> 57% higher throughput
integer asr: 179.929us---> 149% higher throughput

Test Plan:
Correctness:

buck2 test @mode/opt //caffe2/test:test_ops
buck2 test @mode/opt //caffe2/test:torch
buck2 test @mode/opt //caffe2/test/distributed/launcher/fb:fb_run_test

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Differential Revision: D84424638

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165273
Approved by: https://github.com/malfet
2025-10-16 21:35:13 +00:00
1a54d3333d [easy] Fix graph_capture in aot_joint_with_descriptors test (#165660)
when `with_export=True`, `aot_export_joint_with_descriptors` should take the graph produced by `_dynamo_graph_capture_for_export`

```
python test/functorch/test_aot_joint_with_descriptors.py -k test_preserve_annotate_simple
python test/functorch/test_aot_joint_with_descriptors.py -k test_preserve_annotate_flex_attention
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165660
Approved by: https://github.com/yushangdi
2025-10-16 21:10:11 +00:00
4c1c341fa0 FakeTensorMode shouldn't cache syms when tracing (#164718)
Improve FakeTensor cache to handle SymNode and tracing properly.

For now, when we're proxy tracing just don't bother caching operations that contain SymNodes in the output. The problem is that the proxy tracer relies on SymNode identity and our cache doesn't preserve that. It can be fixed (and I left some notes in _validate_symbolic_output_for_caching() how) but it's not worth it for now.

If we aren't proxy tracing then caching is fine.

Thus these changes:

1. Our cache key needs to include whether we were actively tracing or not - this way if we create a cache entry when we weren't tracing and then we try to use it when we ARE tracing it gets rerun.

2. If there's a SymNode in the output then bypass tracing.

3. Some general cleanup of the output validation - we were unnecessarily doing it as a two-step process when it could just be a single step (it's still two parts internally but only a single outer try/except).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164718
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #165266, #164717
2025-10-16 20:57:07 +00:00
5f21cc786a Teach ProxyTorchDispatchMode how to decompose sympy.Expr into known inputs (#164717)
In a training library we hit a weird conflict between dtensor, dynamic shapes, and proxy tensor.

The problem is occuring because in sharding_prop we use FakeTensors to compute an operation size (so we don't have to  use the full "real" data). We turn off proxy tracing while we're doing that because we don't want the FakeTensor ops to end up in the graph.  We then use that size when doing later operations.

Normally this is no problem - but when those sizes are dynamic shapes then we have a problem - the proxy tracer wants to track the provenance of all shape operations (`s1*s2`) but since tracing is disabled it doesn't see the operation and when we then use the result shape later on the proxy tracer gets all confused (because the SymNode appeared out of nowhere).

At first we were thinking to never disable shape tracing - but that caused a slew of other downstream problems (lots of code that actually needs the shape tracing to be disabled) so instead we enable having a "sym tracing override" and surgically when we disable proxy tracing we leave shape tracing enabled.

After this change the dtensor embedding is "fixed" but then runs afoul of a FakeTensor cache bug - which is fixed in the next PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164717
Approved by: https://github.com/bobrenjc93, https://github.com/ezyang
ghstack dependencies: #165266
2025-10-16 20:57:06 +00:00
e86942f422 minor proxy_tensor reorg (#165266)
Moving some code around in proxy_tensor in preparation for the next PR. There we
no actual changes (other than simple relabeling such as `self.tracer` ->
`tracer`):

- Move _compute_proxy() out of ProxyTorchDispatchMode.

- Give `sympy_expr_tracker` a structured type instead of `object`.

- Split SymNode registration out of ProxyTorchDispatchMode.__sym_dispatch__() so
  it can be reused.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165266
Approved by: https://github.com/ezyang, https://github.com/mlazos
2025-10-16 20:57:06 +00:00
2cd5fd1588 Enable local tensor mode on DTensor view ops test (#165596)
While enabling this test discovered lack of support for sub meshes. Added limited support
for sub meshes by properly computing rank coordinates for a given sub mesh. The implementation
follows similar approach to collectives. We infer all sub meshes for the given dimensions and
compute each rank's coordinates with respect to is sub mesh.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165596
Approved by: https://github.com/ezyang
2025-10-16 20:52:06 +00:00
7d0f872cb3 Use union syntax in torch/_inductor runtime and fx_passes (#165652)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165652
Approved by: https://github.com/aorenste
2025-10-16 20:51:59 +00:00
fb06e49ce8 Revert "[inductor] print 0.0 as 0 for triton (#164291)"
This reverts commit 99b32a6750bfd0cfe2bc84a47823e1da34802b7b.

Reverted https://github.com/pytorch/pytorch/pull/164291 on behalf of https://github.com/malfet due to Broke slow job, see aba8c43594/1  ([comment](https://github.com/pytorch/pytorch/pull/164291#issuecomment-3412768915))
2025-10-16 20:44:29 +00:00
27a98e6ae9 Revert "[DeviceMesh] Prefer using _layout over _mesh for all sorts of things (#165554)"
This reverts commit d61a9b88cf3be04a29c5a7d6e9622ae5e8d51de3.

Reverted https://github.com/pytorch/pytorch/pull/165554 on behalf of https://github.com/malfet due to Looks like it broke serialization test, see aba8c43594/1 ([comment](https://github.com/pytorch/pytorch/pull/165554#issuecomment-3412765681))
2025-10-16 20:41:37 +00:00
b10f463b1a Revert "[DeviceMesh] Introduce private constructor instead of _create_mesh_from_ranks (#165555)"
This reverts commit 99097b6d89c927c15180ff4683c38be01f9955f6.

Reverted https://github.com/pytorch/pytorch/pull/165555 on behalf of https://github.com/malfet due to Looks like it broke serialization test, see aba8c43594/1 ([comment](https://github.com/pytorch/pytorch/pull/165554#issuecomment-3412765681))
2025-10-16 20:41:37 +00:00
431c13cf61 Revert "[DeviceMesh] Simplify unflatten method (#165556)"
This reverts commit 86fd4fc23e697e275d37c36e3cbe521f156434fd.

Reverted https://github.com/pytorch/pytorch/pull/165556 on behalf of https://github.com/malfet due to Looks like it broke serialization test, see aba8c43594/1 ([comment](https://github.com/pytorch/pytorch/pull/165554#issuecomment-3412765681))
2025-10-16 20:41:37 +00:00
aead9270f5 12/n : Remove fbandroid_compiler_flags (#165558)
Summary:
Currently `get_c2_fbandroid_xplat_compiler_flags()` is reading the `caffe2.strip_glog` buckconfig which we want to get rid of.
This diff removes the `fbandroid_compiler_flags` arg and merges it with compiler_flags with a nested select and the select version of the method

The goal is to get rid of all the usages of `get_c2_fbandroid_xplat_compiler_flags()` so that we can get rid of the `caffe2.strip_glog` buckconfig

Test Plan: CI

bifferential Revision: D84626885

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165558
Approved by: https://github.com/malfet
2025-10-16 20:41:24 +00:00
9bf5b38c14 [Inductor][Triton][FP8] Refactor scaled_mm template to accept scaling mode (#164318)
Summary: Refactor `scaled_mm` Inductor template to support template choice based on scaling mode. This modification sets up the infrastructure for adding new templates based on new scaling modes, such as deepseek-style scaling (a follow-up diff), as new scaling modes (deepseek, block, group) scale before the accumulation (as opposed to per-tensor and per-row scaling, which apply scaling after accumulation). This modification also further enables Inductor to infer a scaling type based on the shape of the scaling tensors, which makes existing infrastructure more extensible to new scaling modes.

Test Plan:
```
TORCHINDUCTOR_CACHE_DIR=~/personal/cache_dir_inductor CUDA_LAUNCH_BLOCKING=1 TORCH_USE_CUDA_DSA=1 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 buck2 run mode/{opt,inplace} pytorch/tritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --m 256 --n 768 --k 512 --output="/home/jananisriram/personal/random_bench.csv" --scaling_rowwise --atol=20 --rtol=2 2>&1 | tee ~/personal/random.log
```

bifferential Revision: D83591083

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164318
Approved by: https://github.com/drisspg, https://github.com/slayton58
2025-10-16 20:40:45 +00:00
aba8c43594 Register var for MTIA (#165382)
Summary: Registers variance kernel

Reviewed By: srsuryadev

Differential Revision: D84546250

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165382
Approved by: https://github.com/malfet
2025-10-16 20:35:15 +00:00
37f3ba274a [Fix] Use sys.executable instead of hardcoded python (#165633)
Replace hardcoded "python" string with sys.executable to ensure correct Python interpreter is used. This fixes failures on systems with multiple Python runtimes or where "python" is not in PATH.

Similar to pytorch/pytorch#155918

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165633
Approved by: https://github.com/Skylion007
2025-10-16 20:26:10 +00:00
291 changed files with 5519 additions and 1511 deletions

View File

@ -113,6 +113,7 @@ case "$tag" in
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INSTALL_MINGW=yes
;;
pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11)
CUDA_VERSION=13.0.0
@ -361,6 +362,7 @@ docker build \
--build-arg "OPENBLAS=${OPENBLAS:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
--build-arg "INSTALL_MINGW=${INSTALL_MINGW:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \

View File

@ -1,2 +1,2 @@
transformers==4.56.0
transformers==4.57.1
soxr==0.5.0

View File

@ -0,0 +1,10 @@
#!/bin/bash
set -ex
# Install MinGW-w64 for Windows cross-compilation
apt-get update
apt-get install -y g++-mingw-w64-x86-64-posix
echo "MinGW-w64 installed successfully"
x86_64-w64-mingw32-g++ --version

View File

@ -20,7 +20,7 @@ pip_install \
pip_install coloredlogs packaging
pip_install onnxruntime==1.23.0
pip_install onnxscript==0.5.3
pip_install onnxscript==0.5.4
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -39,9 +39,13 @@ case ${DOCKER_TAG_PREFIX} in
DOCKER_GPU_BUILD_ARG=""
;;
rocm*)
# we want the patch version of 7.0 instead
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete

View File

@ -75,9 +75,13 @@ case ${image} in
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 7.0 instead
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"

View File

@ -103,6 +103,11 @@ COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt
ARG INSTALL_MINGW
COPY ./common/install_mingw.sh install_mingw.sh
RUN if [ -n "${INSTALL_MINGW}" ]; then bash ./install_mingw.sh; fi
RUN rm install_mingw.sh
ARG TRITON
ARG TRITON_CPU

View File

@ -485,6 +485,22 @@ test_inductor_aoti() {
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
test_inductor_aoti_cross_compile_for_windows() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
# Set WINDOWS_CUDA_HOME environment variable
WINDOWS_CUDA_HOME="$(pwd)/win-torch-wheel-extracted"
export WINDOWS_CUDA_HOME
echo "WINDOWS_CUDA_HOME is set to: $WINDOWS_CUDA_HOME"
echo "Contents:"
ls -lah "$(pwd)/win-torch-wheel-extracted/lib/x64/" || true
python test/inductor/test_aoti_cross_compile_windows.py -k compile --package-dir "$TEST_REPORTS_DIR" --win-torch-lib-dir "$(pwd)/win-torch-wheel-extracted/torch/lib"
}
test_inductor_cpp_wrapper_shard() {
if [[ -z "$NUM_TEST_SHARDS" ]]; then
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
@ -900,7 +916,7 @@ test_inductor_set_cpu_affinity(){
export LD_PRELOAD="$JEMALLOC_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
if [[ "${TEST_CONFIG}" != *aarch64* ]]; then
if [[ "$(uname -m)" != "aarch64" ]]; then
# Use Intel OpenMP for x86
IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so"
export LD_PRELOAD="$IOMP_LIB":"$LD_PRELOAD"
@ -914,7 +930,7 @@ test_inductor_set_cpu_affinity(){
cores=$((cpus / thread_per_core))
# Set number of cores to 16 on aarch64 for performance runs
if [[ "${TEST_CONFIG}" == *aarch64* && $cores -gt 16 ]]; then
if [[ "$(uname -m)" == "aarch64" && $cores -gt 16 ]]; then
cores=16
fi
export OMP_NUM_THREADS=$cores
@ -1667,7 +1683,7 @@ if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
fi
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" == 'default' ]]; then
test_linux_aarch64
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
test_forward_backward_compatibility
@ -1718,6 +1734,8 @@ elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
test_inductor_triton_cpu
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
test_inductor_micro_benchmark
elif [[ "${TEST_CONFIG}" == *aoti_cross_compile_for_windows* ]]; then
test_inductor_aoti_cross_compile_for_windows
elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then
install_torchvision
id=$((SHARD_NUMBER-1))

View File

@ -13,8 +13,6 @@ ignore =
EXE001,
# these ignores are from flake8-bugbear; please fix!
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
# these ignores are from flake8-comprehensions; please fix!
C407,
# these ignores are from flake8-logging-format; please fix!
G100,G101,G200
# these ignores are from flake8-simplify. please fix or ignore with commented reason

29
.github/labeler.yml vendored
View File

@ -133,3 +133,32 @@
"ciflow/vllm":
- .github/ci_commit_pins/vllm.txt
"ciflow/b200":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/h100":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/**/*cublas*
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm
"ciflow/rocm":
- test/test_matmul_cuda.py
- test/test_scaled_matmul_cuda.py
- test/inductor/test_fp8.py
- aten/src/ATen/native/cuda/Blas.cpp
- torch/_inductor/kernel/mm.py
- test/inductor/test_max_autotune.py
- third_party/fbgemm

View File

@ -3,6 +3,7 @@ ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-symm-mem
- ciflow/b200-distributed
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel

View File

@ -1092,7 +1092,7 @@ class GitHubPR:
editor = node["editor"]
return GitHubComment(
body_text=node["bodyText"],
created_at=node["createdAt"] if "createdAt" in node else "",
created_at=node.get("createdAt", ""),
author_login=node["author"]["login"],
author_url=node["author"].get("url", None),
author_association=node["authorAssociation"],

View File

@ -224,6 +224,46 @@ jobs:
continue-on-error: true
uses: ./.github/actions/download-td-artifacts
- name: Download Windows torch wheel for cross-compilation
if: matrix.win_torch_wheel_artifact != ''
uses: seemethere/download-artifact-s3@1da556a7aa0a088e3153970611f6c432d58e80e6 # v4.2.0
with:
name: ${{ matrix.win_torch_wheel_artifact }}
path: win-torch-wheel
- name: Extract Windows wheel and setup CUDA libraries
if: matrix.win_torch_wheel_artifact != ''
shell: bash
run: |
set -x
# Find the wheel file
WHEEL_FILE=$(find win-torch-wheel -name "*.whl" -type f | head -n 1)
if [ -z "$WHEEL_FILE" ]; then
echo "Error: No wheel file found in win-torch-wheel directory"
exit 1
fi
echo "Found wheel file: $WHEEL_FILE"
# Unzip the wheel file
unzip -q "$WHEEL_FILE" -d win-torch-wheel-extracted
echo "Extracted wheel contents"
# Setup CUDA libraries (cuda.lib and cudart.lib) directory
mkdir -p win-torch-wheel-extracted/lib/x64
if [ -f "win-torch-wheel/cuda.lib" ]; then
mv win-torch-wheel/cuda.lib win-torch-wheel-extracted/lib/x64/
echo "Moved cuda.lib to win-torch-wheel-extracted/lib/x64/"
fi
if [ -f "win-torch-wheel/cudart.lib" ]; then
mv win-torch-wheel/cudart.lib win-torch-wheel-extracted/lib/x64/
echo "Moved cudart.lib to win-torch-wheel-extracted/lib/x64/"
fi
# Verify CUDA libraries are present
echo "CUDA libraries:"
ls -la win-torch-wheel-extracted/lib/x64/ || echo "No CUDA libraries found"
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py

View File

@ -168,6 +168,31 @@ jobs:
run: |
.ci/pytorch/win-build.sh
# Collect Windows torch libs and CUDA libs for cross-compilation
- name: Collect Windows CUDA libs for cross-compilation
if: steps.build.outcome != 'skipped' && inputs.cuda-version != 'cpu'
shell: bash
run: |
set -ex
# Create directory structure if does not exist
mkdir -p /c/${{ github.run_id }}/build-results
# Copy CUDA libs
CUDA_PATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${{ inputs.cuda-version }}"
if [ -f "${CUDA_PATH}/lib/x64/cuda.lib" ]; then
cp "${CUDA_PATH}/lib/x64/cuda.lib" /c/${{ github.run_id }}/build-results/
fi
if [ -f "${CUDA_PATH}/lib/x64/cudart.lib" ]; then
cp "${CUDA_PATH}/lib/x64/cudart.lib" /c/${{ github.run_id }}/build-results/
fi
# List collected files
echo "Collected CUDA libs:"
ls -lah /c/${{ github.run_id }}/build-results/*.lib
# Upload to github so that people can click and download artifacts
- name: Upload artifacts to s3
if: steps.build.outcome != 'skipped'

62
.github/workflows/b200-distributed.yml vendored Normal file
View File

@ -0,0 +1,62 @@
name: CI for distributed tests on B200
on:
pull_request:
paths:
- .github/workflows/b200-distributed.yml
workflow_dispatch:
push:
tags:
- ciflow/b200-distributed/*
schedule:
- cron: 46 8 * * * # about 1:46am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200:
name: linux-jammy-cuda12.8-py3.10-gcc11-build-distributed-b200
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 2, runner: "linux.dgx.b200.8" },
{ config: "distributed", shard: 2, num_shards: 2, runner: "linux.dgx.b200.8" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-test-distributed-b200:
name: linux-jammy-cuda12.8-py3.10-gcc11-test-b200
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200
with:
timeout-minutes: 1200
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-distributed-b200
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build-distributed-b200.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -88,27 +88,27 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
]}
secrets: inherit

View File

@ -52,3 +52,27 @@ jobs:
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
secrets: inherit
aarch64-opbenchmark-build:
if: github.repository_owner == 'pytorch'
name: aarch64-opbenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-aarch64-py3.10
runner: linux.arm64.m7g.4xlarge
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11
test-matrix: |
{ include: [
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.arm64.m8g.4xlarge" },
]}
secrets: inherit
aarch64-opbenchmark-test:
name: aarch64-opbenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: aarch64-opbenchmark-build
with:
build-environment: linux-jammy-aarch64-py3.10
docker-image: ${{ needs.aarch64-opbenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.aarch64-opbenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -45,12 +45,12 @@ jobs:
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
{ config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
]}
secrets: inherit

View File

@ -200,6 +200,23 @@ jobs:
cuda-arch-list: '8.0'
secrets: inherit
# Test cross-compiled models with Windows libs extracted from wheel
cross-compile-linux-test:
name: cross-compile-linux-test
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-build
- get-label-type
- win-vs2022-cuda12_8-py3-build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
test-matrix: |
{ include: [
{ config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" },
]}
secrets: inherit
verify-cachebench-cpu-build:
name: verify-cachebench-cpu-build
uses: ./.github/workflows/_linux-build.yml

View File

@ -201,3 +201,17 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
/torch/csrc/stable/ @janeyx99 @mikaylagawarecki
/torch/headeronly/ @janeyx99
/torch/header_only_apis.txt @janeyx99
# FlexAttention
/torch/nn/attention/flex_attention.py @drisspg
/torch/_higher_order_ops/flex_attention.py @drisspg
/torch/_inductor/kernel/flex/ @drisspg
/torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg
/test/inductor/test_flex_attention.py @drisspg
/test/inductor/test_flex_decoding.py @drisspg
# Low Precision GEMMs
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
/test/test_scaled_matmul_cuda.py @drisspg @slayton58

View File

@ -2,7 +2,6 @@
#include <mutex>
#include <ATen/CachedTensorUtils.h>
#include <c10/core/GradMode.h>
#include <c10/util/flat_hash_map.h>
namespace at::autocast {
@ -37,29 +36,10 @@ namespace {
using weakref_type = c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl>;
using val_type = std::tuple<weakref_type, Tensor>;
// We maintain separate caches for gradient-enabled and gradient-disabled modes.
// This ensures that tensors cached in torch.no_grad() (with requires_grad=False)
// are not incorrectly reused in gradient-enabled contexts.
// This fixes issue #158232 while maintaining optimal performance for both modes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_enabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_enabled;
return cached_casts_grad_enabled;
ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts;
return cached_casts;
}
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts_grad_disabled() {
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts_grad_disabled;
return cached_casts_grad_disabled;
}
// Helper function to get the appropriate cache based on current gradient mode.
// This allows us to cache tensors separately for grad-enabled and grad-disabled contexts,
// preventing incorrect cache hits when gradient mode changes.
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
return at::GradMode::is_enabled() ?
get_cached_casts_grad_enabled() :
get_cached_casts_grad_disabled();
}
std::mutex cached_casts_mutex;
@ -106,9 +86,7 @@ thread_local bool cache_enabled = true;
void clear_cache() {
const std::lock_guard<std::mutex> lock(cached_casts_mutex);
// Clear both caches to ensure consistent behavior regardless of current gradient mode
get_cached_casts_grad_enabled().clear();
get_cached_casts_grad_disabled().clear();
get_cached_casts().clear();
}
int increment_nesting() {
@ -143,11 +121,6 @@ Tensor cached_cast(at::ScalarType to_type, const Tensor& arg, DeviceType device_
if (is_eligible(arg, device_type) && (arg.scalar_type() != to_type)) {
// Heuristic: Do what Apex does, and cache lower_precision_fp casts of fp32 model weights (leaves).
// See cached_casts declaration above for detailed strategy.
//
// We maintain separate caches for gradient-enabled and gradient-disabled modes
// (see get_cached_casts() above). This ensures correctness when mixing torch.no_grad()
// with torch.autocast(), while maintaining optimal performance for both training and inference.
// This fixes issue #158232 without any performance regression.
bool can_try_cache = (to_type == get_lower_precision_fp_from_device_type(device_type) &&
arg.scalar_type() == at::kFloat && arg.requires_grad() &&
arg.is_leaf() && !arg.is_view() && cache_enabled &&

View File

@ -229,10 +229,10 @@ private:
}
static const uint32_t kPhilox10A = 0x9E3779B9;
static const uint32_t kPhilox10B = 0xBB67AE85;
static const uint32_t kPhiloxSA = 0xD2511F53;
static const uint32_t kPhiloxSB = 0xCD9E8D57;
static constexpr uint32_t kPhilox10A = 0x9E3779B9;
static constexpr uint32_t kPhilox10B = 0xBB67AE85;
static constexpr uint32_t kPhiloxSA = 0xD2511F53;
static constexpr uint32_t kPhiloxSB = 0xCD9E8D57;
};
typedef philox_engine Philox4_32;

View File

@ -8,6 +8,7 @@
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
#endif
#include <ATen/cpu/vec/vec128/vec128_convert.h>

View File

@ -0,0 +1,794 @@
#pragma once
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/macros/Macros.h>
#include <c10/util/irange.h>
namespace at::vec {
// Note [CPU_CAPABILITY namespace]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This header, and all of its subheaders, will be compiled with
// different architecture flags for each supported set of vector
// intrinsics. So we need to make sure they aren't inadvertently
// linked together. We do this by declaring objects in an `inline
// namespace` which changes the name mangling, but can still be
// accessed as `at::vec`.
inline namespace CPU_CAPABILITY {
#define VEC_INT_NEON_TEMPLATE(vl, bit) \
template <> \
struct is_vec_specialized_for<int##bit##_t> : std::bool_constant<true> {}; \
\
template <> \
class Vectorized<int##bit##_t> { \
using neon_type = int##bit##x##vl##_t; \
\
private: \
neon_type values; \
\
public: \
using value_type = int##bit##_t; \
using size_type = int; \
static constexpr size_type size() { \
return vl; \
} \
Vectorized() { \
values = vdupq_n_s##bit(0); \
} \
Vectorized(neon_type v) : values(v) {} \
Vectorized(int##bit##_t val); \
template < \
typename... Args, \
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
Vectorized(Args... vals) { \
__at_align__ int##bit##_t buffer[size()] = {vals...}; \
values = vld1q_s##bit(buffer); \
} \
operator neon_type() const { \
return values; \
} \
static Vectorized<int##bit##_t> loadu( \
const void* ptr, \
int64_t count = size()); \
void store(void* ptr, int64_t count = size()) const; \
template <int64_t mask> \
static Vectorized<int##bit##_t> blend( \
const Vectorized<int##bit##_t>& a, \
const Vectorized<int##bit##_t>& b); \
static Vectorized<int##bit##_t> blendv( \
const Vectorized<int##bit##_t>& a, \
const Vectorized<int##bit##_t>& b, \
const Vectorized<int##bit##_t>& mask_) { \
return vbslq_s##bit(vreinterpretq_u##bit##_s##bit(mask_.values), b, a); \
} \
template <typename step_t> \
static Vectorized<int##bit##_t> arange( \
value_type base = 0, \
step_t step = static_cast<step_t>(1)); \
static Vectorized<int##bit##_t> set( \
const Vectorized<int##bit##_t>& a, \
const Vectorized<int##bit##_t>& b, \
int64_t count = size()); \
const int##bit##_t& operator[](int idx) const = delete; \
int##bit##_t& operator[](int idx) = delete; \
Vectorized<int##bit##_t> abs() const { \
return vabsq_s##bit(values); \
} \
Vectorized<int##bit##_t> real() const { \
return values; \
} \
Vectorized<int##bit##_t> imag() const { \
return vdupq_n_s##bit(0); \
} \
Vectorized<int##bit##_t> conj() const { \
return values; \
} \
Vectorized<int##bit##_t> neg() const { \
return vnegq_s##bit(values); \
} \
int##bit##_t reduce_add() const { \
return vaddvq_s##bit(values); \
} \
int##bit##_t reduce_max() const; \
Vectorized<int##bit##_t> operator==( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vceqq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator!=( \
const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> operator<( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcltq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator<=( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcleq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator>( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcgtq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> operator>=( \
const Vectorized<int##bit##_t>& other) const { \
return Vectorized<value_type>( \
vreinterpretq_s##bit##_u##bit(vcgeq_s##bit(values, other.values))); \
} \
Vectorized<int##bit##_t> eq(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> ne(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> gt(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> ge(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> lt(const Vectorized<int##bit##_t>& other) const; \
Vectorized<int##bit##_t> le(const Vectorized<int##bit##_t>& other) const; \
}; \
template <> \
Vectorized<int##bit##_t> inline operator+( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vaddq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator-( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vsubq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator&( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vandq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator|( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return vorrq_s##bit(a, b); \
} \
template <> \
Vectorized<int##bit##_t> inline operator^( \
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
return veorq_s##bit(a, b); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::eq( \
const Vectorized<int##bit##_t>& other) const { \
return (*this == other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ne( \
const Vectorized<int##bit##_t>& other) const { \
return (*this != other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::gt( \
const Vectorized<int##bit##_t>& other) const { \
return (*this > other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ge( \
const Vectorized<int##bit##_t>& other) const { \
return (*this >= other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::lt( \
const Vectorized<int##bit##_t>& other) const { \
return (*this < other) & Vectorized<int##bit##_t>(1); \
} \
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::le( \
const Vectorized<int##bit##_t>& other) const { \
return (*this <= other) & Vectorized<int##bit##_t>(1); \
}
VEC_INT_NEON_TEMPLATE(2, 64)
VEC_INT_NEON_TEMPLATE(4, 32)
VEC_INT_NEON_TEMPLATE(8, 16)
VEC_INT_NEON_TEMPLATE(16, 8)
inline int32_t Vectorized<int32_t>::reduce_max() const {
return vmaxvq_s32(values);
}
inline int16_t Vectorized<int16_t>::reduce_max() const {
return vmaxvq_s16(values);
}
inline int8_t Vectorized<int8_t>::reduce_max() const {
return vmaxvq_s8(values);
}
template <>
Vectorized<int32_t> inline operator*(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
return vmulq_s32(a, b);
}
template <>
Vectorized<int16_t> inline operator*(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
return vmulq_s16(a, b);
}
template <>
Vectorized<int8_t> inline operator*(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
return vmulq_s8(a, b);
}
template <>
inline Vectorized<int64_t> operator~(const Vectorized<int64_t>& a) {
int64x2_t val = a;
return ~val;
}
template <>
inline Vectorized<int32_t> operator~(const Vectorized<int32_t>& a) {
return vmvnq_s32(a);
}
template <>
inline Vectorized<int16_t> operator~(const Vectorized<int16_t>& a) {
return vmvnq_s16(a);
}
template <>
inline Vectorized<int8_t> operator~(const Vectorized<int8_t>& a) {
return vmvnq_s8(a);
}
inline Vectorized<int64_t> Vectorized<int64_t>::operator!=(
const Vectorized<int64_t>& other) const {
return ~(*this == other);
}
inline Vectorized<int32_t> Vectorized<int32_t>::operator!=(
const Vectorized<int32_t>& other) const {
return ~(*this == other);
}
inline Vectorized<int16_t> Vectorized<int16_t>::operator!=(
const Vectorized<int16_t>& other) const {
return ~(*this == other);
}
inline Vectorized<int8_t> Vectorized<int8_t>::operator!=(
const Vectorized<int8_t>& other) const {
return ~(*this == other);
}
template <>
Vectorized<int32_t> inline minimum(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
return vminq_s32(a, b);
}
template <>
Vectorized<int16_t> inline minimum(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
return vminq_s16(a, b);
}
template <>
Vectorized<int8_t> inline minimum(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
return vminq_s8(a, b);
}
template <>
Vectorized<int32_t> inline maximum(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
return vmaxq_s32(a, b);
}
template <>
Vectorized<int16_t> inline maximum(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
return vmaxq_s16(a, b);
}
template <>
Vectorized<int8_t> inline maximum(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
return vmaxq_s8(a, b);
}
template <int64_t mask>
Vectorized<int64_t> Vectorized<int64_t>::blend(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint64x2_t maskArray = {
(mask & 1LL) ? 0xFFFFFFFFFFFFFFFF : 0,
(mask & 2LL) ? 0xFFFFFFFFFFFFFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s64(maskArray, b.values, a.values);
}
template <int64_t mask>
Vectorized<int32_t> Vectorized<int32_t>::blend(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint32x4_t maskArray = {
(mask & 1LL) ? 0xFFFFFFFF : 0,
(mask & 2LL) ? 0xFFFFFFFF : 0,
(mask & 4LL) ? 0xFFFFFFFF : 0,
(mask & 8LL) ? 0xFFFFFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s32(maskArray, b.values, a.values);
}
template <int64_t mask>
Vectorized<int16_t> Vectorized<int16_t>::blend(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint16x8_t maskArray = {
(mask & 1LL) ? 0xFFFF : 0,
(mask & 2LL) ? 0xFFFF : 0,
(mask & 4LL) ? 0xFFFF : 0,
(mask & 8LL) ? 0xFFFF : 0,
(mask & 16LL) ? 0xFFFF : 0,
(mask & 32LL) ? 0xFFFF : 0,
(mask & 64LL) ? 0xFFFF : 0,
(mask & 128LL) ? 0xFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s16(maskArray, b.values, a.values);
}
template <int64_t mask>
Vectorized<int8_t> Vectorized<int8_t>::blend(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint8x16_t maskArray = {
(mask & 1LL) ? 0xFF : 0,
(mask & 2LL) ? 0xFF : 0,
(mask & 4LL) ? 0xFF : 0,
(mask & 8LL) ? 0xFF : 0,
(mask & 16LL) ? 0xFF : 0,
(mask & 32LL) ? 0xFF : 0,
(mask & 64LL) ? 0xFF : 0,
(mask & 128LL) ? 0xFF : 0,
(mask & 256LL) ? 0xFF : 0,
(mask & 512LL) ? 0xFF : 0,
(mask & 1024LL) ? 0xFF : 0,
(mask & 2048LL) ? 0xFF : 0,
(mask & 4096LL) ? 0xFF : 0,
(mask & 8192LL) ? 0xFF : 0,
(mask & 16384LL) ? 0xFF : 0,
(mask & 32768LL) ? 0xFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s8(maskArray, b.values, a.values);
}
#define VEC_INT_NEON_OPS(vl, bit) \
inline Vectorized<int##bit##_t>::Vectorized(int##bit##_t val) { \
values = vdupq_n_s##bit(val); \
} \
inline Vectorized<int##bit##_t> Vectorized<int##bit##_t>::loadu( \
const void* ptr, int64_t count) { \
if (count == size()) { \
return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(ptr)); \
} else { \
__at_align__ int##bit##_t tmp_values[size()]; \
for (const auto i : c10::irange(size())) { \
tmp_values[i] = 0; \
} \
std::memcpy( \
tmp_values, \
reinterpret_cast<const int##bit##_t*>(ptr), \
count * sizeof(int##bit##_t)); \
return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(tmp_values)); \
} \
} \
inline void Vectorized<int##bit##_t>::store(void* ptr, int64_t count) \
const { \
if (count == size()) { \
vst1q_s##bit(reinterpret_cast<int##bit##_t*>(ptr), values); \
} else { \
int##bit##_t tmp_values[size()]; \
vst1q_s##bit(reinterpret_cast<int##bit##_t*>(tmp_values), values); \
std::memcpy(ptr, tmp_values, count * sizeof(int##bit##_t)); \
} \
}
VEC_INT_NEON_OPS(2, 64)
VEC_INT_NEON_OPS(4, 32)
VEC_INT_NEON_OPS(8, 16)
VEC_INT_NEON_OPS(16, 8)
template <>
Vectorized<int64_t> inline operator*(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return x * y;
}
template <>
Vectorized<int64_t> inline operator/(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return x / y;
}
template <>
Vectorized<int32_t> inline operator/(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
int32x4_t x = a;
int32x4_t y = b;
return x / y;
}
inline int64_t Vectorized<int64_t>::reduce_max() const {
return std::max(values[0], values[1]);
}
template <>
Vectorized<int64_t> inline minimum(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return {std::min(x[0], y[0]), std::min(x[1], y[1])};
}
template <>
Vectorized<int64_t> inline maximum(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
return {std::max(x[0], y[0]), std::max(x[1], y[1])};
}
template <typename step_t>
inline Vectorized<int64_t> Vectorized<int64_t>::arange(
int64_t base,
step_t step) {
const Vectorized<int64_t> base_vec(base);
const Vectorized<int64_t> step_vec(step);
const int64x2_t step_sizes = {0, 1};
return base_vec.values + step_sizes * step_vec.values;
}
template <typename step_t>
inline Vectorized<int32_t> Vectorized<int32_t>::arange(
int32_t base,
step_t step) {
const Vectorized<int32_t> base_vec(base);
const Vectorized<int32_t> step_vec(step);
const int32x4_t step_sizes = {0, 1, 2, 3};
return vmlaq_s32(base_vec, step_sizes, step_vec);
}
template <typename step_t>
inline Vectorized<int16_t> Vectorized<int16_t>::arange(
int16_t base,
step_t step) {
const Vectorized<int16_t> base_vec(base);
const Vectorized<int16_t> step_vec(step);
const int16x8_t step_sizes = {0, 1, 2, 3, 4, 5, 6, 7};
return vmlaq_s16(base_vec, step_sizes, step_vec);
}
template <typename step_t>
inline Vectorized<int8_t> Vectorized<int8_t>::arange(int8_t base, step_t step) {
const Vectorized<int8_t> base_vec(base);
const Vectorized<int8_t> step_vec(step);
const int8x16_t step_sizes = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
return vmlaq_s8(base_vec, step_sizes, step_vec);
}
template <>
Vectorized<int64_t> inline operator>>(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t x = a;
int64x2_t y = b;
uint64x2_t u = vreinterpretq_u64_s64(y);
uint64x2_t z = {std::min(u[0], (uint64_t)63), std::min(u[1], (uint64_t)63)};
return x >> vreinterpretq_s64_u64(z);
}
template <>
Vectorized<int32_t> inline operator>>(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
int32x4_t x = a;
int32x4_t y = b;
uint32x4_t bound = vdupq_n_u32(31);
uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound);
return x >> vreinterpretq_s32_u32(z);
}
template <>
Vectorized<int16_t> inline operator>>(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
int16x8_t x = a;
int16x8_t y = b;
uint16x8_t bound = vdupq_n_u16(15);
uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound);
return x >> vreinterpretq_s16_u16(z);
}
template <>
Vectorized<int8_t> inline operator>>(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
int8x16_t x = a;
int8x16_t y = b;
uint8x16_t bound = vdupq_n_u8(7);
int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound));
return x >> z;
}
template <>
Vectorized<int64_t> inline operator<<(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b) {
int64x2_t y = b;
uint64x2_t u = vreinterpretq_u64_s64(y);
uint64x2_t z = {std::min(u[0], (uint64_t)64), std::min(u[1], (uint64_t)64)};
return vshlq_s64(a, vreinterpretq_s64_u64(z));
}
template <>
Vectorized<int32_t> inline operator<<(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b) {
int32x4_t y = b;
uint32x4_t bound = vdupq_n_u32(32);
uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound);
return vshlq_s32(a, vreinterpretq_s32_u32(z));
}
template <>
Vectorized<int16_t> inline operator<<(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
int16x8_t y = b;
uint16x8_t bound = vdupq_n_u16(16);
uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound);
return vshlq_s16(a, vreinterpretq_s16_u16(z));
}
template <>
Vectorized<int8_t> inline operator<<(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
int8x16_t y = b;
uint8x16_t bound = vdupq_n_u8(8);
int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound));
return vshlq_s8(a, z);
}
inline Vectorized<int64_t> Vectorized<int64_t>::set(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 2) {
return b;
} else {
int64x2_t c = {b.values[0], a.values[1]};
return c;
}
}
inline Vectorized<int32_t> Vectorized<int32_t>::set(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 4) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint32x4_t maskArray = {
(count >= 1LL) ? 0xFFFFFFFF : 0,
(count >= 2LL) ? 0xFFFFFFFF : 0,
(count >= 3LL) ? 0xFFFFFFFF : 0,
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s32(maskArray, b.values, a.values);
}
}
inline Vectorized<int16_t> Vectorized<int16_t>::set(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 8) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint16x8_t maskArray = {
static_cast<uint16_t>((count >= 1LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 2LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 3LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 4LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 5LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 6LL) ? 0xFFFF : 0),
static_cast<uint16_t>((count >= 7LL) ? 0xFFFF : 0),
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s16(maskArray, b.values, a.values);
}
}
inline Vectorized<int8_t> Vectorized<int8_t>::set(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b,
int64_t count) {
if (count == 0) {
return a;
} else if (count >= 16) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint8x16_t maskArray = {
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_s8(maskArray, b.values, a.values);
}
}
template <>
Vectorized<int16_t> inline operator/(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b) {
Vectorized<int32_t> highBitsA = vmovl_high_s16(a);
Vectorized<int32_t> highBitsB = vmovl_high_s16(b);
Vectorized<int32_t> lowBitsA = vmovl_s16(vget_low_s16(a));
Vectorized<int32_t> lowBitsB = vmovl_s16(vget_low_s16(b));
int32x4_t highBitsResult = highBitsA / highBitsB;
int32x4_t lowBitsResult = lowBitsA / lowBitsB;
return vuzp1q_s16(
vreinterpretq_s16_s32(lowBitsResult),
vreinterpretq_s16_s32(highBitsResult));
}
template <>
Vectorized<int8_t> inline operator/(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& b) {
Vectorized<int16_t> highBitsA = vmovl_high_s8(a);
Vectorized<int16_t> highBitsB = vmovl_high_s8(b);
Vectorized<int16_t> lowBitsA = vmovl_s8(vget_low_s8(a));
Vectorized<int16_t> lowBitsB = vmovl_s8(vget_low_s8(b));
int16x8_t highBitsResult = highBitsA / highBitsB;
int16x8_t lowBitsResult = lowBitsA / lowBitsB;
return vuzp1q_s8(
vreinterpretq_s8_s16(lowBitsResult),
vreinterpretq_s8_s16(highBitsResult));
}
template <>
Vectorized<int64_t> inline clamp(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& min,
const Vectorized<int64_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int32_t> inline clamp(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& min,
const Vectorized<int32_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int16_t> inline clamp(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& min,
const Vectorized<int16_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int8_t> inline clamp(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& min,
const Vectorized<int8_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<int64_t> inline clamp_max(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int32_t> inline clamp_max(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int16_t> inline clamp_max(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int8_t> inline clamp_max(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<int64_t> inline clamp_min(
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& min) {
return maximum(min, a);
}
template <>
Vectorized<int32_t> inline clamp_min(
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& min) {
return maximum(min, a);
}
template <>
Vectorized<int16_t> inline clamp_min(
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& min) {
return maximum(min, a);
}
template <>
Vectorized<int8_t> inline clamp_min(
const Vectorized<int8_t>& a,
const Vectorized<int8_t>& min) {
return maximum(min, a);
}
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -1377,7 +1377,7 @@ Vectorized<c10::quint8> inline maximum(
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<int8_t> src) {
auto s8x8 = vld1_s8(src.operator const int8_t*());
auto s8x8 = vget_low_s8(src);
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
@ -1402,7 +1402,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<int8_t> src) {
auto s8x8 = vld1_s8(src.operator const int8_t*());
auto s8x8 = vget_low_s8(src);
auto s16x8 = vmovl_s8(s8x8);
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));

View File

@ -16,6 +16,8 @@
#include <c10/util/irange.h>
#include <c10/core/ScalarType.h>
#include <ATen/cuda/detail/BLASConstants.h>
#ifdef USE_ROCM
#include <c10/cuda/CUDAStream.h>
#include <hipblaslt/hipblaslt-ext.hpp>
@ -1954,13 +1956,15 @@ void scaled_gemm(
const void *result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
bool use_fast_accum) {
bool use_fast_accum,
const std::optional<Tensor>& alpha) {
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
// of input arguments to this function.
const auto computeType = CUBLAS_COMPUTE_32F;
const auto scaleType = CUDA_R_32F;
const float alpha_val = 1.0;
const float beta_val = 0.0;
// Note: alpha_val may change later depending on user-passed argument
float alpha_val = 1.0;
float beta_val = 0.0;
CuBlasLtMatmulDescriptor computeDesc(computeType, scaleType);
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSA, _cublasOpFromChar(transa));
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, _cublasOpFromChar(transb));
@ -2031,6 +2035,33 @@ void scaled_gemm(
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, CUBLASLT_EPILOGUE_BIAS);
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE, ScalarTypeToCudaDataType(bias_dtype));
}
// Handle user-passed alpha
float *alpha_ptr = &alpha_val;
float *beta_ptr = &beta_val;
if (alpha.has_value()) {
auto& a = alpha.value();
// if device-tensor
if (a.is_cuda()) {
// NOTE: there are lifetime requirements on device-side pointers for alpha/beta -- the value must be
// valid & correct until the cublas call finishes (not is scheduled like host-side values). Thus
// we need to use allocations for alpha/beta that have some guarantees on lifetime - a statically
// managed 4B buffer for alpha that we'll copy the passed alpha value into, and constant memory
// for beta respectively.
float *user_alpha_ptr = at::cuda::detail::get_user_alpha_ptr();
at::Tensor user_alpha = at::from_blob(user_alpha_ptr, {1}, TensorOptions().device(kCUDA).dtype(kFloat));
user_alpha.copy_(a);
// Tell cublasLt we're using device-side pointers for alpha/beta
auto pointer_mode = CUBLASLT_POINTER_MODE_DEVICE;
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_POINTER_MODE, pointer_mode);
alpha_ptr = user_alpha.data_ptr<float>();
beta_ptr = at::cuda::detail::get_cublas_device_zero();
} else {
alpha_val = a.item<float>();
}
}
// For other data types, use the get_scale_mode function based on scaling type
// The SCALE_MODE attrs only exist in cuBLAS 12.8+/ROCm 7.0 or in recent hipblaslt,
// but we must invoke get_scale_mode anyways to trigger the version checks.
@ -2048,6 +2079,7 @@ void scaled_gemm(
cublasLtMatmulHeuristicResult_t heuristicResult = {};
int returnedResult = 0;
cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle();
TORCH_CUDABLAS_CHECK(cublasLtMatmulAlgoGetHeuristic(
ltHandle,
computeDesc.descriptor(),
@ -2088,10 +2120,10 @@ void scaled_gemm(
auto is_valid_status = hipblaslt_ext::matmulIsAlgoSupported(
ltHandle,
computeDesc.descriptor(),
&alpha_val,
alpha_ptr,
Adesc.descriptor(),
Bdesc.descriptor(),
&beta_val,
beta_ptr,
Cdesc.descriptor(),
Ddesc.descriptor(),
all_algos[i].algo,
@ -2110,17 +2142,14 @@ void scaled_gemm(
cublasStatus_t cublasStatus = cublasLtMatmul(
ltHandle,
computeDesc.descriptor(),
&alpha_val,
alpha_ptr,
mat1_ptr,
Adesc.descriptor(),
mat2_ptr,
Bdesc.descriptor(),
&beta_val,
#ifdef USE_ROCM
beta_ptr,
// NOTE: always use result_ptr here, because cuBLASLt w/device beta=0 can't handle nullptr either
result_ptr, // unused, since beta_val is 0, but hipblaslt can't handle nullptr
#else
nullptr,
#endif // ifdef USE_ROCM
Cdesc.descriptor(),
result_ptr,
Ddesc.descriptor(),

View File

@ -161,7 +161,8 @@ void scaled_gemm(
const void* result_scale_ptr,
int64_t result_ld,
ScalarType result_dtype,
bool use_fast_accum);
bool use_fast_accum,
const std::optional<Tensor>& alpha);
#define CUDABLAS_BGEMM_ARGTYPES(Dtype) CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, Dtype)

View File

@ -325,9 +325,9 @@ uint64_t CUDAGeneratorImpl::seed() {
*/
c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
// The RNG state comprises the seed, and an offset used for Philox.
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(int64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto rng_state = state_tensor.data_ptr<uint8_t>();
@ -346,9 +346,9 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
* and size of the internal state.
*/
void CUDAGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(int64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(int64_t);
constexpr size_t total_size = seed_size + offset_size;
detail::check_rng_state(new_state);

View File

@ -0,0 +1,54 @@
#include <ATen/Functions.h>
#include <ATen/Tensor.h>
#include <ATen/cuda/Exceptions.h>
#include <mutex>
namespace at {
namespace cuda {
namespace detail {
__device__ __constant__ float cublas_one_device;
__device__ __constant__ float cublas_zero_device;
float *get_cublas_device_one() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float one = 1.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float)));
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return ptr;
}
float *get_cublas_device_zero() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
const float zero = 0.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float)));
});
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return ptr;
}
float *get_user_alpha_ptr() {
static float *alpha_ptr;
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float)));
});
return alpha_ptr;
}
} // namespace detail
} // namespace cuda
} // namespace at

View File

@ -0,0 +1,11 @@
#pragma once
#include <ATen/core/TensorBase.h>
namespace at::cuda::detail {
float *get_cublas_device_one();
float *get_cublas_device_zero();
float *get_user_alpha_ptr();
} // namespace at::cuda::detail

View File

@ -109,7 +109,8 @@ class DefaultScaledGemmOp : public Callable<ScaledGemmParams<T>> {
params->c_scale_ptr,
params->ldc,
params->c_dtype,
params->use_fast_accum);
params->use_fast_accum,
std::nullopt /* alpha */);
return OK;
}
};

View File

@ -240,8 +240,8 @@ TORCH_META_FUNC(gelu_backward) (
namespace at::native {
static const double SELU_ALPHA = 1.6732632423543772848170429916717;
static const double SELU_SCALE = 1.0507009873554804934193349852946;
static constexpr double SELU_ALPHA = 1.6732632423543772848170429916717;
static constexpr double SELU_SCALE = 1.0507009873554804934193349852946;
DEFINE_DISPATCH(elu_stub);
DEFINE_DISPATCH(elu_backward_stub);

View File

@ -286,7 +286,7 @@ template void scal_fast_path<scalar_t>(int *n, scalar_t *a, scalar_t *x, int *in
#if AT_BUILD_WITH_BLAS()
template <>
bool scal_use_fast_path<double>(int64_t n, int64_t incx) {
auto intmax = std::numeric_limits<int>::max();
auto constexpr intmax = std::numeric_limits<int>::max();
return n <= intmax && incx <= intmax;
}
@ -315,7 +315,7 @@ bool gemv_use_fast_path<float>(
int64_t incx,
[[maybe_unused]] float beta,
int64_t incy) {
auto intmax = std::numeric_limits<int>::max();
auto constexpr intmax = std::numeric_limits<int>::max();
return (m <= intmax) && (n <= intmax) && (lda <= intmax) &&
(incx > 0) && (incx <= intmax) && (incy > 0) && (incy <= intmax);
}

View File

@ -658,6 +658,7 @@ static void check_shape_forward(const at::Tensor& input,
TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported");
TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported");
TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero");
TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups);
TORCH_CHECK(weight_dim == k,
"Expected ", weight_dim, "-dimensional input for ", weight_dim,

View File

@ -1,5 +1,6 @@
#pragma once
#include <array>
#include <ATen/native/Math.h>
#include <c10/macros/Macros.h>
#include <c10/util/MathConstants.h>
@ -127,7 +128,7 @@ C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, unifor
template<typename scalar_t>
C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
const static scalar_t kTailValues[] = {
constexpr static scalar_t kTailValues[] = {
0.0810614667953272,
0.0413406959554092,
0.0276779256849983,
@ -139,7 +140,7 @@ C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
0.00925546218271273,
0.00833056343336287
};
if (k <= 9) {
if (k < std::size(kTailValues)) {
return kTailValues[static_cast<size_t>(k)];
}
scalar_t kp1sq = (k + 1) * (k + 1);

View File

@ -581,7 +581,7 @@ scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
template <typename scalar_t>
static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
static const scalar_t lanczos_sum_expg_scaled_num[13] = {
static constexpr scalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
@ -596,7 +596,7 @@ static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
static constexpr scalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
@ -712,7 +712,7 @@ static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
template <typename scalar_t>
static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
static const scalar_t d[25][25] =
static constexpr scalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,

View File

@ -62,7 +62,7 @@
#include <utility>
#include <vector>
static const int MIOPEN_DIM_MAX = 5;
static constexpr int MIOPEN_DIM_MAX = 5;
namespace at::meta {

View File

@ -77,7 +77,7 @@ inline AdvancedIndex make_info(Tensor self, IOptTensorListRef orig) {
// next broadcast all index tensors together
try {
indices = expand_outplace(indices);
} catch (std::exception& e) {
} catch (std::exception&) {
TORCH_CHECK_INDEX(
false,
"shape mismatch: indexing tensors could not be broadcast together"

View File

@ -1038,7 +1038,7 @@ struct HelperInterpNearest : public HelperInterpBase {
// We keep this structure for BC and consider as deprecated.
// See HelperInterpNearestExact as replacement
static const int interp_size = 1;
static constexpr int interp_size = 1;
static inline void init_indices_weights(
at::ScalarType output_type,
@ -1155,7 +1155,7 @@ struct HelperInterpNearestExact : public HelperInterpNearest {
struct HelperInterpLinear : public HelperInterpBase {
static const int interp_size = 2;
static constexpr int interp_size = 2;
// Compute indices and weights for each interpolated dimension
// indices_weights = {
@ -1275,7 +1275,7 @@ struct HelperInterpLinear : public HelperInterpBase {
struct HelperInterpCubic : public HelperInterpBase {
static const int interp_size = 4;
static constexpr int interp_size = 4;
// Compute indices and weights for each interpolated dimension
// indices_weights = {

View File

@ -1359,7 +1359,8 @@ _scaled_gemm(
const ScalingType scaling_choice_a, const ScalingType scaling_choice_b,
const std::optional<Tensor>& bias,
const bool use_fast_accum,
Tensor& out) {
Tensor& out,
const std::optional<Tensor>& alpha = std::nullopt) {
cublasCommonArgs args(mat1, mat2, out, scale_a, scale_b, std::nullopt, scaling_choice_a, scaling_choice_b);
const auto out_dtype_ = args.result->scalar_type();
TORCH_CHECK(args.transa == 't' && args.transb == 'n', "Only multiplication of row-major and column-major matrices is supported by cuBLASLt");
@ -1410,7 +1411,8 @@ _scaled_gemm(
args.scale_result_ptr,
args.result_ld,
out_dtype_,
use_fast_accum);
use_fast_accum,
alpha);
return out;
}
}

View File

@ -249,7 +249,7 @@ __global__ void max_pool_forward_nhwc(
}
static const int BLOCK_THREADS = 256;
static constexpr int BLOCK_THREADS = 256;
template <typename scalar_t, typename accscalar_t>
#if defined (USE_ROCM)

View File

@ -36,9 +36,9 @@ namespace at::native {
namespace {
#if defined(USE_ROCM)
static const int BLOCKDIMY = 16;
static constexpr int BLOCKDIMY = 16;
#else
static const int BLOCKDIMY = 32;
static constexpr int BLOCKDIMY = 32;
#endif
template

View File

@ -82,7 +82,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const accscalar_t lanczos_sum_expg_scaled_num[13] = {
constexpr accscalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
@ -97,7 +97,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static const accscalar_t lanczos_sum_expg_scaled_denom[13] = {
constexpr accscalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
@ -126,10 +126,10 @@ __host__ __device__ scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t ax, fac, res, num, numfac;
static const accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
constexpr accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
7.09782712893383996843E2 : 88.72283905206835;
static const accscalar_t EXP1 = 2.718281828459045;
static const accscalar_t lanczos_g = 6.024680040776729583740234375;
constexpr accscalar_t EXP1 = 2.718281828459045;
constexpr accscalar_t lanczos_g = 6.024680040776729583740234375;
if (::fabs(a - x) > 0.4 * ::fabs(a)) {
ax = a * ::log(x) - x - ::lgamma(a);
@ -158,9 +158,9 @@ __host__ __device__ scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
// Compute igam using DLMF 8.11.4. [igam1]
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static const int MAXITER = 2000;
constexpr int MAXITER = 2000;
int i;
accscalar_t ans, ax, c, r;
@ -196,8 +196,8 @@ __host__ __device__ scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
accscalar_t fac = 1;
accscalar_t sum = 0;
accscalar_t term, logx;
static const int MAXITER = 2000;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr int MAXITER = 2000;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
for (n = 1; n < MAXITER; n++) {
@ -219,7 +219,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const accscalar_t d[25][25] =
constexpr accscalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9, 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10, -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11, -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13, -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16, -1.9752288294349443e-15},
{-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3, -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7, -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6, 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8, 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9, 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14, 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13, -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14, -4.13125571381061e-15},
{4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4, 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5, -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6, -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10, -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9, 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11, 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12, 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17, 8.8592218725911273e-15},
@ -248,7 +248,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
int k, n, sgn;
int maxpow = 0;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
accscalar_t lambda = x / a;
accscalar_t sigma = (x - a) / a;
@ -314,12 +314,12 @@ __host__ __device__ scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar
int i;
accscalar_t ans, ax, c, yc, r, t, y, z;
accscalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
static const int MAXITER = 2000;
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
constexpr int MAXITER = 2000;
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static const accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
constexpr accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
4.503599627370496e15 : 16777216.;
static const accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
constexpr accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
2.22044604925031308085e-16 : 5.9604644775390625E-8;
ax = _igam_helper_fac(a, x);
@ -385,10 +385,10 @@ __noinline__ __host__ __device__ scalar_t calc_igammac(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t absxma_a;
static const accscalar_t SMALL = 20.0;
static const accscalar_t LARGE = 200.0;
static const accscalar_t SMALLRATIO = 0.3;
static const accscalar_t LARGERATIO = 4.5;
constexpr accscalar_t SMALL = 20.0;
constexpr accscalar_t LARGE = 200.0;
constexpr accscalar_t SMALLRATIO = 0.3;
constexpr accscalar_t LARGERATIO = 4.5;
if ((x < 0) || (a < 0)) {
// out of defined-region of the function
@ -467,10 +467,10 @@ __noinline__ __host__ __device__ scalar_t calc_igamma(scalar_t a, scalar_t x) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
accscalar_t absxma_a;
static const accscalar_t SMALL = 20.0;
static const accscalar_t LARGE = 200.0;
static const accscalar_t SMALLRATIO = 0.3;
static const accscalar_t LARGERATIO = 4.5;
constexpr accscalar_t SMALL = 20.0;
constexpr accscalar_t LARGE = 200.0;
constexpr accscalar_t SMALLRATIO = 0.3;
constexpr accscalar_t LARGERATIO = 4.5;
// boundary values following SciPy
if ((x < 0) || (a < 0)) {

View File

@ -231,7 +231,7 @@ const auto lcm_string = jiterator_stringify(
const auto digamma_string = jiterator_stringify(
template <typename T>
T digamma(T x) {
static const double PI_f64 = 3.14159265358979323846;
static constexpr double PI_f64 = 3.14159265358979323846;
// Short-circuits if x is +/- 0 and returns -/+ ∞ per the C++ standard
if (x == 0) {
@ -3072,9 +3072,9 @@ template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) {
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const double PI_f64 = 3.14159265358979323846;
const accscalar_t PSI_10 = 2.25175258906672110764;
const accscalar_t A[] = {
static constexpr double PI_f64 = 3.14159265358979323846;
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
constexpr accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,

View File

@ -1097,11 +1097,7 @@ ReduceConfig setReduceConfig(const TensorIterator& iter){
// threads with different threadIdx.x are independent and will produce results for different outputs.
// In such case, values in each loaded vector always correspond to different outputs.
if (fastest_moving_stride == sizeof(scalar_t)) {
#ifdef USE_ROCM
if (reduction_on_fastest_striding_dimension && dim0 >= 128 && iter.num_reduce_dims() == 1) {
#else
if (reduction_on_fastest_striding_dimension && dim0 > 128 && iter.num_reduce_dims() == 1 && vt0 >= input_vec_size) {
#endif
// Case 1: "vectorize along input"
// Note that if vt0 < ReduceConfig::vec_size, then this means the register pressure could be high, in such case,
// we should avoid vectorization.

View File

@ -39,9 +39,14 @@ static void std_var_kernel_cuda(TensorIterator& iter, double correction, bool ta
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
void mean_kernel_impl(TensorIterator& iter) {
// returns acc_t for all non-complex dtypes and returns T for c10::complex<T>
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
using factor_t = typename c10::scalar_value_type<acc_t>::type;
factor_t factor = static_cast<factor_t>(iter.num_output_elements()) / iter.numel();
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
if constexpr (is_16_bits) {
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
} else {
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
}
}
static void mean_kernel_cuda(TensorIterator& iter) {

View File

@ -13,24 +13,19 @@ namespace at::native {
template <typename scalar_t, typename acc_t = scalar_t, typename out_t = scalar_t>
struct sum_functor {
void operator()(TensorIterator& iter) {
#ifdef USE_ROCM
// Half and BFloat16 can be packed in groups of up to 8 elements and
// can use *_DWORDX4 instructions to achieve that.
const bool is_16_bits =
( (std::is_same<at::Half, scalar_t>::value) ||
(std::is_same<at::BFloat16, scalar_t>::value) );
if (is_16_bits) {
const auto sum_combine = [] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
};
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
if constexpr (is_16_bits) {
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
return;
iter, func_wrapper<out_t>(sum_combine)
);
} else {
gpu_reduce_kernel<scalar_t, out_t>(
iter, func_wrapper<out_t>(sum_combine)
);
}
#endif
gpu_reduce_kernel<scalar_t, out_t>(
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
}
};

View File

@ -277,7 +277,7 @@ struct BilinearFilterFunctor {
return 0;
}
static const int size = 2;
static constexpr int size = 2;
};
// taken from
@ -301,7 +301,7 @@ struct BicubicFilterFunctor {
return 0;
}
static const int size = 4;
static constexpr int size = 4;
};
template <typename accscalar_t>

View File

@ -127,29 +127,6 @@ __global__ void upsample_bilinear2d_nhwc_out_frame(
}
}
#ifdef USE_ROCM
// Helper function to compute output pixel range that can contribute to input pixel
template <typename accscalar_t>
__device__ __forceinline__ void compute_output_range(
int input_pos,
accscalar_t scale,
int output_size,
bool align_corners,
int& min_output,
int& max_output) {
accscalar_t lo, hi;
if (align_corners) {
lo = static_cast<accscalar_t>(input_pos - 1) / scale;
hi = static_cast<accscalar_t>(input_pos + 1) / scale;
} else {
lo = (input_pos - static_cast<accscalar_t>(0.5)) / scale - static_cast<accscalar_t>(0.5);
hi = (input_pos + static_cast<accscalar_t>(1.5)) / scale - static_cast<accscalar_t>(0.5);
}
min_output = max(0, static_cast<int>(ceil(lo)));
max_output = min(output_size - 1, static_cast<int>(floor(hi)));
}
#endif
// Backward (adjoint) operation 1 <- 2 (accumulates)
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
@ -164,74 +141,8 @@ __global__ void upsample_bilinear2d_backward_out_frame(
const bool align_corners,
scalar_t* __restrict__ idata,
const scalar_t* __restrict__ odata) {
// In C++, integer multiplication, like in standard arithmetic, is generally commutative.
const size_t i_numel = nc * width1 * height1;
#ifdef USE_ROCM
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < i_numel;
index += blockDim.x * gridDim.x) {
// Decode input pixel coordinates
size_t index_temp = index;
const int w1 = index_temp % width1;
index_temp /= width1;
const int h1 = index_temp % height1;
const size_t nc_idx = index_temp / height1;
accscalar_t grad_sum = 0;
// Find range of output pixels that could interpolate from this input pixel
int h2_min, h2_max, w2_min, w2_max;
compute_output_range<accscalar_t>(h1, rheight, height2, align_corners, h2_min, h2_max);
compute_output_range<accscalar_t>(w1, rwidth, width2, align_corners, w2_min, w2_max);
// Iterate over potential output pixels
for (int h2 = h2_min; h2 <= h2_max; h2++) {
for (int w2 = w2_min; w2 <= w2_max; w2++) {
// Compute source coordinates for this output pixel
const accscalar_t h1r = area_pixel_compute_source_index<accscalar_t>(
rheight, h2, align_corners, /*cubic=*/false);
const int h1_base = (int)h1r;
const int h1p = (h1_base < height1 - 1) ? 1 : 0;
const accscalar_t h1lambda = h1r - h1_base;
const accscalar_t h0lambda = static_cast<accscalar_t>(1) - h1lambda;
const accscalar_t w1r = area_pixel_compute_source_index<accscalar_t>(
rwidth, w2, align_corners, /*cubic=*/false);
const int w1_base = (int)w1r;
const int w1p = (w1_base < width1 - 1) ? 1 : 0;
const accscalar_t w1lambda = w1r - w1_base;
const accscalar_t w0lambda = static_cast<accscalar_t>(1) - w1lambda;
// Check if our input pixel participates in this interpolation and accumulate all weights
// At boundaries, h1p=0 or w1p=0 causes some sampling positions to collapse
// to the same pixel, so we need to accumulate weights from all matching positions
accscalar_t weight = 0;
// Check all four interpolation positions and accumulate weights
if (h1 == h1_base && w1 == w1_base) {
weight += h0lambda * w0lambda; // top-left
}
if (h1 == h1_base && w1 == w1_base + w1p) {
weight += h0lambda * w1lambda; // top-right (may be same as top-left if w1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base) {
weight += h1lambda * w0lambda; // bottom-left (may be same as top-left if h1p=0)
}
if (h1 == h1_base + h1p && w1 == w1_base + w1p) {
weight += h1lambda * w1lambda; // bottom-right (may collapse to other positions)
}
if (weight > 0) {
const size_t output_idx = nc_idx * height2 * width2 + h2 * width2 + w2;
grad_sum += weight * static_cast<accscalar_t>(odata[output_idx]);
}
}
}
// Write accumulated gradient (no atomics needed)
idata[index] = static_cast<scalar_t>(grad_sum);
}
#else
const size_t o_numel = nc * width2 * height2;
const size_t i_numel = nc * width1 * height1;
for (size_t index = blockDim.x * blockIdx.x + threadIdx.x; index < o_numel;
index += blockDim.x * gridDim.x) {
size_t index_temp = index;
@ -280,7 +191,6 @@ __global__ void upsample_bilinear2d_backward_out_frame(
static_cast<scalar_t>(h1lambda * w1lambda * d2val),
true);
}
#endif
}
template <typename scalar_t, typename accscalar_t>
@ -477,6 +387,7 @@ static void upsample_bilinear2d_backward_out_cuda_template(
// threads are not covering the whole input tensor.
grad_input.zero_();
const size_t num_kernels = nbatch * channels * output_height * output_width;
const int num_threads = std::min(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
@ -486,12 +397,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
return;
}
#ifdef USE_ROCM
constexpr bool use_input = true;
#else
constexpr bool use_input = false;
#endif
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half, at::ScalarType::BFloat16,
grad_output_.scalar_type(), "upsample_bilinear2d_backward_out_frame", [&] {
@ -509,8 +414,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * output_height * output_width;
upsample_bilinear2d_backward_nhwc_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)), num_threads, 0, stream>>>(
input_height,
@ -541,8 +444,6 @@ static void upsample_bilinear2d_backward_out_cuda_template(
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
const size_t num_kernels = nbatch * channels * (use_input ? input_height * input_width : output_height * output_width);
upsample_bilinear2d_backward_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, static_cast<size_t>(num_threads)),
num_threads,

View File

@ -141,7 +141,11 @@ WelfordDataLN cuWelfordOnlineSum(
if constexpr (!rms_norm){
U delta = val - curr_sum.mean;
U new_count = curr_sum.count + 1.f;
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
U new_mean = curr_sum.mean + delta * __builtin_amdgcn_rcpf(new_count);
#else
U new_mean = curr_sum.mean + delta * (1.f/new_count); //proper division is slow, this is less accurate but noticeably faster
#endif
return {new_mean, curr_sum.sigma2 + delta * (val - new_mean), new_count};
} else{
return {0.f, curr_sum.sigma2 + val * val, 0};
@ -159,7 +163,11 @@ WelfordDataLN cuWelfordCombine(
U count = dataA.count + dataB.count;
U mean, sigma2;
if (count > decltype(dataB.count){0}) {
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
auto coef = __builtin_amdgcn_rcpf(count);
#else
auto coef = 1.f/count; //NB we don't use --use_fast_math, but this is emulation, 1./count goes to intrinsic, `* coef` is multiplication, instead of slow fp division
#endif
auto nA = dataA.count * coef;
auto nB = dataB.count * coef;
mean = nA*dataA.mean + nB*dataB.mean;

View File

@ -416,7 +416,7 @@ static inline bool checksize(const Tensor& mat1, const Tensor& mat2){
// else if dim = 3, mat1's size = (b * m * n), mat2's size = (b * n * k)
// else called from aten::mv, mat1.size = (m * n), mat2.size = (n)
// only m * n * b * k(if exist) are large enough we can get benefit from mkldnn optimized gemm kernel
static const int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
constexpr int64_t mkldnn_gemm_min_size = 16 * 16 * 16;
if (mat1.dim() == 1 && mat2.dim() == 1) {
// aten::dot
return mat1.size(0) > mkldnn_gemm_min_size;

View File

@ -1,16 +1,16 @@
#pragma once
#include <c10/metal/common.h>
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
struct CatLargeSharedParams {
template <typename idx_type_t = int64_t, unsigned N = c10::metal::max_ndim>
struct CatSharedParams {
int32_t ndim;
int32_t cat_dim;
::c10::metal::array<idx_type_t, N> output_strides;
::c10::metal::array<idx_type_t, N> output_sizes;
};
template <unsigned N = c10::metal::max_ndim, typename idx_type_t = int64_t>
struct CatLargeInputParams {
template <typename idx_type_t = int64_t, unsigned N = c10::metal::max_ndim>
struct CatInputParams {
idx_type_t cat_dim_offset;
idx_type_t input_element_offset;
::c10::metal::array<idx_type_t, N> input_strides;

View File

@ -6,26 +6,25 @@
using namespace metal;
using namespace c10::metal;
template <typename T_in, typename T_out>
kernel void cat_large(
template <typename I, typename T_in, typename T_out>
kernel void cat(
constant T_in* input [[buffer(0)]],
device T_out* output [[buffer(1)]],
constant CatLargeSharedParams<>& shared_params [[buffer(2)]],
constant CatLargeInputParams<>& input_params [[buffer(3)]],
constant CatSharedParams<I>& shared_params [[buffer(2)]],
constant CatInputParams<I>& input_params [[buffer(3)]],
uint tid [[thread_position_in_grid]]) {
auto ndim = shared_params.ndim;
auto cat_dim = shared_params.cat_dim;
constant auto& output_strides = shared_params.output_strides;
constant auto& output_sizes = shared_params.output_sizes;
auto cat_dim_offset = input_params.cat_dim_offset;
auto input_element_offset = input_params.input_element_offset;
constant auto& input_strides = input_params.input_strides;
constant auto& input_sizes = input_params.input_sizes;
auto input_element_idx = static_cast<int64_t>(tid) + input_element_offset;
int64_t input_offset = 0;
int64_t output_offset = 0;
auto input_element_idx = static_cast<I>(tid) + input_element_offset;
I input_offset = 0;
I output_offset = 0;
for (auto dim = ndim - 1; dim >= 0; dim--) {
auto dim_size = input_sizes[dim];
@ -42,41 +41,45 @@ kernel void cat_large(
output[output_offset] = static_cast<T_out>(input[input_offset]);
}
#define REGISTER_CAT_LARGE_OP(T_in, T_out) \
template [[host_name("cat_large_" #T_in "_" #T_out)]] \
kernel void cat_large<T_in, T_out>( \
constant T_in * input [[buffer(0)]], \
device T_out * output [[buffer(1)]], \
constant CatLargeSharedParams<> & shared_params [[buffer(2)]], \
constant CatLargeInputParams<> & input_params [[buffer(3)]], \
#define REGISTER_CAT_OP(I, T_in, T_out) \
template [[host_name("cat_" #I "_" #T_in "_" #T_out)]] \
kernel void cat<I, T_in, T_out>( \
constant T_in * input [[buffer(0)]], \
device T_out * output [[buffer(1)]], \
constant CatSharedParams<I> & shared_params [[buffer(2)]], \
constant CatInputParams<I> & input_params [[buffer(3)]], \
uint tid [[thread_position_in_grid]]);
#define REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(T_out) \
REGISTER_CAT_LARGE_OP(float, T_out); \
REGISTER_CAT_LARGE_OP(half, T_out); \
REGISTER_CAT_LARGE_OP(bfloat, T_out); \
REGISTER_CAT_LARGE_OP(int, T_out); \
REGISTER_CAT_LARGE_OP(uint, T_out); \
REGISTER_CAT_LARGE_OP(long, T_out); \
REGISTER_CAT_LARGE_OP(ulong, T_out); \
REGISTER_CAT_LARGE_OP(short, T_out); \
REGISTER_CAT_LARGE_OP(ushort, T_out); \
REGISTER_CAT_LARGE_OP(char, T_out); \
REGISTER_CAT_LARGE_OP(uchar, T_out); \
REGISTER_CAT_LARGE_OP(bool, T_out);
#define REGISTER_CAT_OP_ALL_INPUT_TYPES(I, T_out) \
REGISTER_CAT_OP(I, float, T_out); \
REGISTER_CAT_OP(I, half, T_out); \
REGISTER_CAT_OP(I, bfloat, T_out); \
REGISTER_CAT_OP(I, int, T_out); \
REGISTER_CAT_OP(I, uint, T_out); \
REGISTER_CAT_OP(I, long, T_out); \
REGISTER_CAT_OP(I, ulong, T_out); \
REGISTER_CAT_OP(I, short, T_out); \
REGISTER_CAT_OP(I, ushort, T_out); \
REGISTER_CAT_OP(I, char, T_out); \
REGISTER_CAT_OP(I, uchar, T_out); \
REGISTER_CAT_OP(I, bool, T_out);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(float);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(half);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bfloat);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(int);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uint);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(long);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ulong);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(short);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(ushort);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(char);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(uchar);
REGISTER_CAT_LARGE_OP_ALL_INPUT_TYPES(bool);
#define REGISTER_CAT_FOR_INDEX_TYPE(I) \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, float); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, half); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, bfloat); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, int); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, uint); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, long); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, ulong); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, short); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, ushort); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, char); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, uchar); \
REGISTER_CAT_OP_ALL_INPUT_TYPES(I, bool); \
\
REGISTER_CAT_OP(I, float2, float2); \
REGISTER_CAT_OP(I, half2, half2);
REGISTER_CAT_LARGE_OP(float2, float2);
REGISTER_CAT_LARGE_OP(half2, half2);
REGISTER_CAT_FOR_INDEX_TYPE(int64_t);
REGISTER_CAT_FOR_INDEX_TYPE(int32_t);

View File

@ -196,6 +196,28 @@ bool use_metal_mm(const Tensor& self, const Tensor& other, const Tensor& output)
other.size(0) > max_stride_size || other.size(1) > max_stride_size);
}
void map_mps_decomposition_error_code_to_blas(const Tensor& status) {
const auto& status_flat = status.view(-1);
for (const auto i : c10::irange(status_flat.size(0))) {
int code = status_flat[i].item<int>();
switch (code) {
case MPSMatrixDecompositionStatusSuccess:
status_flat[i] = 0;
break;
case MPSMatrixDecompositionStatusNonPositiveDefinite:
case MPSMatrixDecompositionStatusSingular:
status_flat[i] = 2;
break;
case MPSMatrixDecompositionStatusFailure:
status_flat[i] = -1;
break;
default:
TORCH_INTERNAL_ASSERT(false, "Unknown MPSMatrixDecompositionStatus enum value: ", code);
}
}
}
} // anonymous namespace
static void linalg_lu_factor_ex_out_mps_impl(const Tensor& A,
@ -487,6 +509,9 @@ static void linalg_solve_out_mps_impl(const Tensor& A,
"mpsmatrixdecompositionstatus for details.");
}
}
map_mps_decomposition_error_code_to_blas(info);
if (!left) {
// If this was a right solve, transpose the result back
result.copy_(result_t.transpose(-2, -1).contiguous());

View File

@ -3,6 +3,7 @@
#include <ATen/MemoryOverlap.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/mps/MPSProfiler.h>
#include <ATen/native/Pool.h>
#include <ATen/native/TensorShape.h>
#include <ATen/native/TypeProperties.h>
#include <ATen/native/mps/OperationUtils.h>
@ -69,29 +70,40 @@ static void check_shape_except_dim(const Tensor& first, const Tensor& second, in
}
}
// This implementation of cat is used only if one of the inputs or the output is
// too large to use MPSGraph.
template <typename T>
std::string get_type_str();
template <>
std::string get_type_str<int64_t>() {
return "int64_t";
}
template <>
std::string get_type_str<int32_t>() {
return "int32_t";
}
// NOTE: `output` is expected to already have the correct size.
static void cat_out_large_tensor_mps(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
CatLargeSharedParams shared_params;
template <typename idx_type_t>
static void cat_out_mps_impl(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
CatSharedParams<idx_type_t> shared_params;
shared_params.ndim = output.dim();
shared_params.cat_dim = dimension;
for (const auto dim : c10::irange(output.dim())) {
shared_params.output_strides[dim] = output.stride(dim);
shared_params.output_sizes[dim] = output.size(dim);
shared_params.output_strides[dim] = safe_downcast<idx_type_t, int64_t>(output.stride(dim));
shared_params.output_sizes[dim] = safe_downcast<idx_type_t, int64_t>(output.size(dim));
}
int64_t cat_dim_offset = 0;
idx_type_t cat_dim_offset = 0;
size_t input_idx = 0;
MPSStream* stream = getCurrentMPSStream();
// Launch a separate kernels for each input. This will produce some overhead,
// but that should be relatively minimal since at least one of the inputs is
// very large. In order to launch only one kernel to process all inputs, we
// would have to copy all the input tensor data into a packed buffer, which
// would not be ideal.
// Launch a separate kernels for each input. This will produce some overhead.
// In order to launch only one kernel to process all inputs, we would have to
// copy all the input tensor data into a packed buffer, which would not be
// ideal.
for (const Tensor& input : inputs) {
if (input.numel() == 0) {
continue;
@ -104,21 +116,23 @@ static void cat_out_large_tensor_mps(const ITensorListRef& inputs, int64_t dimen
for (int64_t numel_remaining = input.numel(); numel_remaining > 0; numel_remaining -= max_num_threads) {
auto num_threads = std::min(max_num_threads, numel_remaining);
CatLargeInputParams input_params;
CatInputParams<idx_type_t> input_params;
input_params.cat_dim_offset = cat_dim_offset;
input_params.input_element_offset = input.numel() - numel_remaining;
input_params.cat_dim_offset = safe_downcast<idx_type_t, int64_t>(cat_dim_offset);
input_params.input_element_offset = safe_downcast<idx_type_t, int64_t>(input.numel() - numel_remaining);
for (const auto dim : c10::irange(input.dim())) {
input_params.input_strides[dim] = input.stride(dim);
input_params.input_sizes[dim] = input.size(dim);
input_params.input_strides[dim] = safe_downcast<idx_type_t, int64_t>(input.stride(dim));
input_params.input_sizes[dim] = safe_downcast<idx_type_t, int64_t>(input.size(dim));
}
dispatch_sync_with_rethrow(stream->queue(), ^() {
@autoreleasepool {
id<MTLComputeCommandEncoder> computeEncoder = stream->commandEncoder();
auto pipeline_state = lib.getPipelineStateForFunc(
fmt::format("cat_large_{}_{}", scalarToMetalTypeString(input), scalarToMetalTypeString(output)));
auto pipeline_state = lib.getPipelineStateForFunc(fmt::format("cat_{}_{}_{}",
get_type_str<idx_type_t>(),
scalarToMetalTypeString(input),
scalarToMetalTypeString(output)));
getMPSProfiler().beginProfileKernel(pipeline_state, "cat", {input});
[computeEncoder setComputePipelineState:pipeline_state];
mtl_setArgs(computeEncoder, input, output, shared_params, input_params);
@ -294,13 +308,6 @@ TORCH_IMPL_FUNC(cat_out_mps)
" and out is on ",
out.device());
// TODO: For better performance by eliminating input tensor gathering and post transpose,
// TODO: it is better to keep the out tensor's memory format.
// TODO: dimension needs to be recomputed as:
// TODO: dim = 0 --> dim = 0; dim = 1 or 2 --> dim = out.dim()- dim; otherwise dim = dim-1
if (needsGather(out)) {
out.unsafeGetTensorImpl()->empty_tensor_restride(MemoryFormat::Contiguous);
}
std::vector<int64_t> size(notSkippedTensor.sizes().vec());
// Compute size of the result in the cat dimension
@ -331,82 +338,9 @@ TORCH_IMPL_FUNC(cat_out_mps)
has_large_tensor |= isTooLargeForMPSGraph(out);
if (has_large_tensor) {
return mps::cat_out_large_tensor_mps(materialized_inputs, dimension, out);
}
struct CachedGraph : public MPSCachedGraph {
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
std::vector<MPSGraphTensor*> inputTensors_;
MPSGraphTensor* outputTensor_ = nil;
};
@autoreleasepool {
std::string key = "cat_out_mps:" + std::to_string(dimension) + ":" +
(memory_format == MemoryFormat::ChannelsLast ? "NHWC" : "NCHW");
if (!all_same_dtype) {
key += getTensorsStringKey(input_tensors, true, all_same_sizes_and_stride);
} else {
key += ":" + getMPSTypeString(input_tensors[0].scalar_type(), true) + ":" + std::to_string(inputs.size());
}
for (auto idx : skipped_tensor_indices) {
key += "," + std::to_string(idx);
}
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
auto len_tensor_array = inputs.size() - skipped_tensor_indices.size();
std::vector<MPSGraphTensor*> castInputTensors(len_tensor_array);
newCachedGraph->inputTensors_.reserve(len_tensor_array);
for (const auto idx : c10::irange(len_tensor_array)) {
const Tensor& tensor = input_tensors[idx];
auto scalar_type = getMPSScalarType(tensor.scalar_type());
if (tensor.scalar_type() == kBool) {
scalar_type = MPSDataTypeInt8;
}
newCachedGraph->inputTensors_[idx] = mpsGraphUnrankedPlaceHolder(mpsGraph, scalar_type);
if (tensor.scalar_type() != out_dtype) {
castInputTensors[idx] = [mpsGraph castTensor:newCachedGraph->inputTensors_[idx]
toType:getMPSDataType(out_dtype)
name:@"castInput"];
} else {
castInputTensors[idx] = newCachedGraph->inputTensors_[idx];
}
}
auto inputTensorsArray = [NSArray arrayWithObjects:castInputTensors.data() count:len_tensor_array];
MPSGraphTensor* outputTensor = [mpsGraph concatTensors:inputTensorsArray
dimension:dimension // Maybe convert this from int64_t -> int32
name:nil];
if (getMPSDataType(out_dtype) == MPSDataTypeBool) {
outputTensor = [mpsGraph castTensor:outputTensor toType:MPSDataTypeBool name:@"outputTensor"];
}
newCachedGraph->outputTensor_ = outputTensor;
});
std::vector<Placeholder> inputPlaceholders;
int i = 0;
int t_idx = 0;
for (const Tensor& tensor : materialized_inputs) {
if (std::find(skipped_tensor_indices.begin(), skipped_tensor_indices.end(), i) == skipped_tensor_indices.end()) {
auto scalar_type = getMPSScalarType(tensor.scalar_type());
if (tensor.scalar_type() == kBool) {
scalar_type = MPSDataTypeInt8;
}
inputPlaceholders.emplace_back(cachedGraph->inputTensors_[t_idx], tensor, nullptr, true, scalar_type);
t_idx++;
}
i++;
}
auto outputDataType = getMPSScalarType(out.scalar_type());
Placeholder outputPlaceholder =
Placeholder(cachedGraph->outputTensor_, out, /*mpsShape=*/nil, /*gatherTensorData=*/false, outputDataType);
NSMutableDictionary* feeds = [[NSMutableDictionary new] autorelease];
for (auto& inputPlaceholder : inputPlaceholders) {
feeds[inputPlaceholder.getMPSGraphTensor()] = inputPlaceholder.getMPSGraphTensorData();
}
runMPSGraph(getCurrentMPSStream(), cachedGraph->graph(), feeds, outputPlaceholder);
return mps::cat_out_mps_impl<int64_t>(materialized_inputs, dimension, out);
} else {
return mps::cat_out_mps_impl<int32_t>(materialized_inputs, dimension, out);
}
}

View File

@ -6531,6 +6531,7 @@
dispatch:
CPU, CUDA: var
MPS: var_mps
MTIA: var_mtia
tags: core
- func: var.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)

View File

@ -3551,7 +3551,7 @@ void dequantize_tensor_per_tensor_affine_cpu(
#if defined(__ARM_NEON__) || defined(__aarch64__)
const static int PARALLEL_THRESHOLD = 1 << 20;
constexpr static int PARALLEL_THRESHOLD = 1 << 20;
// Generic template defaults to naive quantize implementation
template <typename T>

View File

@ -1388,7 +1388,7 @@ namespace at::native {
TORCH_CHECK(act_scale.numel() == 1 && act_zero_point.numel() <= 1,
"onednn int8 linear: act scale/zp size should be 1/<=1");
static std::optional<at::Tensor> other = std::nullopt;
static const std::string_view binary_post_op = "none";
constexpr std::string_view binary_post_op = "none";
int64_t act_zp = act_zero_point.numel() == 1 ? act_zero_point.item().toLong() : 0;
return linear_int8_with_onednn_weight(
act, act_scale.item().toDouble(), act_zp,

View File

@ -16,8 +16,8 @@ namespace {
#ifdef USE_PYTORCH_QNNPACK
const static float qnnpack_softmax_output_scale = 0x1.0p-8f;
const static int qnnpack_softmax_output_zero_point = 0;
constexpr static float qnnpack_softmax_output_scale = 0x1.0p-8f;
constexpr static int qnnpack_softmax_output_zero_point = 0;
bool is_qnnpack_compatible(
const Tensor& qx,

View File

@ -110,9 +110,9 @@ class ApplyLogSumExp {
using ElementCompute = ElementCompute_;
using ElementLSE = ElementLSE_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
static const ScaleType::Kind kScale =
static int constexpr kElementsPerAccess = ElementsPerAccess;
static int constexpr kCount = kElementsPerAccess;
static constexpr ScaleType::Kind kScale =
cutlass::epilogue::thread::ScaleType::NoBetaScaling;
using FragmentOutput = Array<ElementOutput, kCount>;

View File

@ -14,16 +14,16 @@ using namespace at;
namespace {
const auto int_min = std::numeric_limits<int>::min();
const auto int_max = std::numeric_limits<int>::max();
const auto long_min = std::numeric_limits<int64_t>::min();
const auto long_max = std::numeric_limits<int64_t>::max();
const auto float_lowest = std::numeric_limits<float>::lowest();
const auto float_min = std::numeric_limits<float>::min();
const auto float_max = std::numeric_limits<float>::max();
const auto double_lowest = std::numeric_limits<double>::lowest();
const auto double_min = std::numeric_limits<double>::min();
const auto double_max = std::numeric_limits<double>::max();
constexpr auto int_min = std::numeric_limits<int>::min();
constexpr auto int_max = std::numeric_limits<int>::max();
constexpr auto long_min = std::numeric_limits<int64_t>::min();
constexpr auto long_max = std::numeric_limits<int64_t>::max();
constexpr auto float_lowest = std::numeric_limits<float>::lowest();
constexpr auto float_min = std::numeric_limits<float>::min();
constexpr auto float_max = std::numeric_limits<float>::max();
constexpr auto double_lowest = std::numeric_limits<double>::lowest();
constexpr auto double_min = std::numeric_limits<double>::min();
constexpr auto double_max = std::numeric_limits<double>::max();
const std::vector<int> ints {
int_min,

View File

@ -146,9 +146,9 @@ uint64_t XPUGeneratorImpl::seed() {
c10::intrusive_ptr<c10::TensorImpl> XPUGeneratorImpl::get_state() const {
// The RNG state comprises the seed, and an offset used for Philox.
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(uint64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(uint64_t);
constexpr size_t total_size = seed_size + offset_size;
// The internal state is returned as a CPU byte tensor.
auto state_tensor = at::detail::empty_cpu(
@ -170,9 +170,9 @@ c10::intrusive_ptr<c10::TensorImpl> XPUGeneratorImpl::get_state() const {
void XPUGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
at::xpu::assertNotCapturing(
"Please ensure to utilize the XPUGeneratorImpl::set_state_index method during capturing.");
static const size_t seed_size = sizeof(uint64_t);
static const size_t offset_size = sizeof(uint64_t);
static const size_t total_size = seed_size + offset_size;
constexpr size_t seed_size = sizeof(uint64_t);
constexpr size_t offset_size = sizeof(uint64_t);
constexpr size_t total_size = seed_size + offset_size;
at::detail::check_rng_state(new_state);

View File

@ -6,7 +6,7 @@ import os
import subprocess
import sys
import tempfile
from typing import Callable
from collections.abc import Callable
from torch._inductor.utils import fresh_cache

View File

@ -2284,9 +2284,11 @@ class BenchmarkRunner:
)
):
is_same = False
except Exception:
except Exception as e:
# Sometimes torch.allclose may throw RuntimeError
is_same = False
exception_string = str(e)
accuracy_status = f"fail_exception: {exception_string}"
return record_status(accuracy_status, dynamo_start_stats=start_stats)
if not is_same:
accuracy_status = "eager_two_runs_differ"
@ -2403,9 +2405,11 @@ class BenchmarkRunner:
force_max_multiplier=force_max_multiplier,
):
is_same = False
except Exception:
except Exception as e:
# Sometimes torch.allclose may throw RuntimeError
is_same = False
exception_string = str(e)
accuracy_status = f"fail_exception: {exception_string}"
return record_status(accuracy_status, dynamo_start_stats=start_stats)
if not is_same:
if self.args.skip_accuracy_check:
@ -4060,7 +4064,7 @@ def run(runner, args, original_dir=None):
else:
optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython)
experiment = (
speedup_experiment if not args.backend == "torchao" else latency_experiment
speedup_experiment if args.backend != "torchao" else latency_experiment
)
if args.accuracy:
output_filename = f"accuracy_{args.backend}.csv"

View File

@ -1,7 +1,8 @@
import os
from collections import defaultdict
from collections.abc import Callable
from dataclasses import dataclass
from typing import Any, Callable, Optional
from typing import Any, Optional
import matplotlib.pyplot as plt

View File

@ -1,4 +1,5 @@
from typing import Any, Callable
from collections.abc import Callable
from typing import Any
import torch

View File

@ -1,7 +1,8 @@
import time
from argparse import ArgumentParser
from collections import defaultdict
from typing import Any, Callable, NamedTuple
from collections.abc import Callable
from typing import Any, NamedTuple
import torch
from torch.autograd import functional

View File

@ -1,5 +1,6 @@
from collections import defaultdict
from typing import Callable, Optional, Union
from collections.abc import Callable
from typing import Optional, Union
import torch
from torch import nn, Tensor

View File

@ -1,5 +1,6 @@
import dataclasses
from typing import Callable, Optional
from collections.abc import Callable
from typing import Optional
all_experiments: dict[str, Callable] = {}

View File

@ -9,8 +9,9 @@ import logging
import time
from abc import abstractmethod
from collections import defaultdict
from collections.abc import Callable
from dataclasses import asdict, dataclass, field
from typing import Any, Callable, Optional
from typing import Any, Optional
from tabulate import tabulate
from tqdm import tqdm

View File

@ -7,6 +7,7 @@ from pt import ( # noqa: F401
binary_inplace_test,
binary_test,
bmm_test,
boolean_test,
cat_test,
channel_shuffle_test,
chunk_test,

View File

@ -56,6 +56,9 @@ binary_ops_list = op_bench.op_list(
["sub", torch.sub],
["div", torch.div],
["mul", torch.mul],
["asr", torch.bitwise_right_shift],
["lsl", torch.bitwise_left_shift],
["xor", torch.bitwise_xor],
],
)

View File

@ -0,0 +1,73 @@
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for boolean operators. Supports both Caffe2/PyTorch."""
# Configs for PT all operator
all_long_configs = op_bench.cross_product_configs(
M=[8, 128], N=[32, 64], K=[256, 512], device=["cpu", "cuda"], tags=["long"]
)
all_short_configs = op_bench.config_list(
attr_names=["M", "N", "K"],
attrs=[
[1, 1, 1],
[64, 64, 64],
[64, 64, 128],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
class AllBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K, device):
self.inputs = {
"input_one": torch.randint(0, 2, (M, N, K), device=device, dtype=torch.bool)
}
self.set_module_name("all")
def forward(self, input_one):
return torch.all(input_one)
# The generated test names based on all_short_configs will be in the following pattern:
# all_M8_N16_K32_devicecpu
# all_M8_N16_K32_devicecpu_bwdall
# all_M8_N16_K32_devicecpu_bwd1
# all_M8_N16_K32_devicecpu_bwd2
# ...
# Those names can be used to filter tests.
op_bench.generate_pt_test(all_long_configs + all_short_configs, AllBenchmark)
"""Mircobenchmark for any operator."""
class AnyBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device):
self.inputs = {
"input_one": torch.randint(0, 2, (M, N), device=device, dtype=torch.bool)
}
self.set_module_name("any")
def forward(self, input_one):
return torch.any(input_one)
any_configs = op_bench.cross_product_configs(
M=[8, 256],
N=[256, 16],
device=["cpu", "cuda"],
tags=["any"],
)
op_bench.generate_pt_test(any_configs, AnyBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()

View File

@ -38,12 +38,16 @@ class ConvTranspose1dBenchmark(op_bench.TorchBenchmarkBase):
op_bench.generate_pt_test(
configs.conv_1d_configs_short + configs.conv_1d_configs_long, Conv1dBenchmark
)
op_bench.generate_pt_test(
configs.convtranspose_1d_configs_short
+ configs.conv_1d_configs_short
+ configs.conv_1d_configs_long,
ConvTranspose1dBenchmark,
)
if not torch.backends.mkldnn.is_acl_available():
# convtranpose1d crashes with ACL, see https://github.com/pytorch/pytorch/issues/165654
op_bench.generate_pt_test(
configs.convtranspose_1d_configs_short
+ configs.conv_1d_configs_short
+ configs.conv_1d_configs_long,
ConvTranspose1dBenchmark,
)
"""

View File

@ -1,7 +1,8 @@
import itertools
from collections.abc import Callable
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, Union
from typing import Union
import numpy as np
from tabulate import tabulate

View File

@ -3,10 +3,11 @@ import csv
import itertools
import random
from collections import defaultdict
from collections.abc import Callable
from contextlib import nullcontext
from dataclasses import asdict, dataclass
from functools import partial
from typing import Callable, Optional, Union
from typing import Optional, Union
import numpy as np
from tabulate import tabulate
@ -270,7 +271,7 @@ def run_single_backend_sdpa(
if config.calculate_bwd_time:
# TODO: debug backward pass for njt
if eager_sdpa and not config.attn_type == "document_mask":
if eager_sdpa and config.attn_type != "document_mask":
d_out = torch.randn_like(out_eager.transpose(1, 2)).transpose(1, 2)
backward_eager_time = benchmark_torch_function_in_microseconds(
out_eager.backward, d_out, retain_graph=True

View File

@ -1,8 +1,8 @@
import itertools
from collections import defaultdict
from collections.abc import Callable
from contextlib import nullcontext
from dataclasses import asdict, dataclass
from typing import Callable
from tabulate import tabulate
from tqdm import tqdm

View File

@ -1729,8 +1729,10 @@ def define_buck_targets(
"torch/csrc/jit/backends/backend_debug_info.cpp",
"torch/csrc/jit/backends/backend_interface.cpp",
],
compiler_flags = get_pt_compiler_flags(),
fbandroid_compiler_flags = c2_fbandroid_xplat_compiler_flags,
compiler_flags = get_pt_compiler_flags() + select({
"DEFAULT": [],
"ovr_config//os:android": c2_fbandroid_xplat_compiler_flags
}),
# @lint-ignore BUCKLINT link_whole
link_whole = True,
linker_flags = get_no_as_needed_linker_flag(),
@ -2023,6 +2025,9 @@ def define_buck_targets(
"ovr_config//os:android-x86_64": [
"-mssse3",
],
}) + select({
"DEFAULT": [],
"ovr_config//os:android": c2_fbandroid_xplat_compiler_flags,
}),
exported_preprocessor_flags = get_aten_preprocessor_flags(),
exported_deps = [

View File

@ -18,6 +18,7 @@
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/SmallVector.h>
#include <torch/headeronly/util/HeaderOnlyArrayRef.h>
#include <array>
#include <cstddef>
@ -40,200 +41,106 @@ namespace c10 {
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
///
/// NOTE: We have refactored out the headeronly parts of the ArrayRef struct
/// into HeaderOnlyArrayRef. As adding `virtual` would change the performance of
/// the underlying constexpr calls, we rely on apparent-type dispatch for
/// inheritance. This should be fine because their memory format is the same,
/// and it is never incorrect for ArrayRef to call HeaderOnlyArrayRef methods.
/// However, you should prefer to use ArrayRef when possible, because its use
/// of TORCH_CHECK will lead to better user-facing error messages.
template <typename T>
class ArrayRef final {
class ArrayRef final : public HeaderOnlyArrayRef<T> {
public:
using iterator = const T*;
using const_iterator = const T*;
using size_type = size_t;
using value_type = T;
using reverse_iterator = std::reverse_iterator<iterator>;
private:
/// The start of the array, in an external buffer.
const T* Data;
/// The number of elements.
size_type Length;
void debugCheckNullptrInvariant() {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
Data != nullptr || Length == 0,
"created ArrayRef with nullptr and non-zero length! std::optional relies on this being illegal");
}
public:
/// @name Constructors
/// @name Constructors, all inherited from HeaderOnlyArrayRef except for
/// SmallVector.
/// @{
/// Construct an empty ArrayRef.
/* implicit */ constexpr ArrayRef() : Data(nullptr), Length(0) {}
using HeaderOnlyArrayRef<T>::HeaderOnlyArrayRef;
/// Construct an ArrayRef from a single element.
// TODO Make this explicit
constexpr ArrayRef(const T& OneElt) : Data(&OneElt), Length(1) {}
/// Construct an ArrayRef from a pointer and length.
constexpr ArrayRef(const T* data, size_t length)
: Data(data), Length(length) {
debugCheckNullptrInvariant();
}
/// Construct an ArrayRef from a range.
constexpr ArrayRef(const T* begin, const T* end)
: Data(begin), Length(end - begin) {
debugCheckNullptrInvariant();
}
/// Construct an ArrayRef from a std::vector.
/// This constructor is identical to the one in HeaderOnlyArrayRef, but we
/// include it to help with Class Template Argument Deduction (CTAD).
/// Without it, CTAD can fail sometimes due to the indirect constructor
/// inheritance. So we explicitly include this constructor.
template <typename A>
/* implicit */ ArrayRef(const std::vector<T, A>& Vec)
: HeaderOnlyArrayRef<T>(Vec.data(), Vec.size()) {}
/// Construct an ArrayRef from a SmallVector. This is templated in order to
/// avoid instantiating SmallVectorTemplateCommon<T> whenever we
/// copy-construct an ArrayRef.
/// NOTE: this is the only constructor that is not inherited from
/// HeaderOnlyArrayRef.
template <typename U>
/* implicit */ ArrayRef(const SmallVectorTemplateCommon<T, U>& Vec)
: Data(Vec.data()), Length(Vec.size()) {
debugCheckNullptrInvariant();
}
template <
typename Container,
typename U = decltype(std::declval<Container>().data()),
typename = std::enable_if_t<
(std::is_same_v<U, T*> || std::is_same_v<U, T const*>)>>
/* implicit */ ArrayRef(const Container& container)
: Data(container.data()), Length(container.size()) {
debugCheckNullptrInvariant();
}
/// Construct an ArrayRef from a std::vector.
// The enable_if stuff here makes sure that this isn't used for
// std::vector<bool>, because ArrayRef can't work on a std::vector<bool>
// bitfield.
template <typename A>
/* implicit */ ArrayRef(const std::vector<T, A>& Vec)
: Data(Vec.data()), Length(Vec.size()) {
static_assert(
!std::is_same_v<T, bool>,
"ArrayRef<bool> cannot be constructed from a std::vector<bool> bitfield.");
}
/// Construct an ArrayRef from a std::array
template <size_t N>
/* implicit */ constexpr ArrayRef(const std::array<T, N>& Arr)
: Data(Arr.data()), Length(N) {}
/// Construct an ArrayRef from a C array.
template <size_t N>
// NOLINTNEXTLINE(*c-arrays*)
/* implicit */ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
/// Construct an ArrayRef from a std::initializer_list.
/* implicit */ constexpr ArrayRef(const std::initializer_list<T>& Vec)
: Data(
std::begin(Vec) == std::end(Vec) ? static_cast<T*>(nullptr)
: std::begin(Vec)),
Length(Vec.size()) {}
: HeaderOnlyArrayRef<T>(Vec.data(), Vec.size()) {}
/// @}
/// @name Simple Operations
/// @name Simple Operations, mostly inherited from HeaderOnlyArrayRef
/// @{
constexpr iterator begin() const {
return Data;
}
constexpr iterator end() const {
return Data + Length;
}
// These are actually the same as iterator, since ArrayRef only
// gives you const iterators.
constexpr const_iterator cbegin() const {
return Data;
}
constexpr const_iterator cend() const {
return Data + Length;
}
constexpr reverse_iterator rbegin() const {
return reverse_iterator(end());
}
constexpr reverse_iterator rend() const {
return reverse_iterator(begin());
}
/// Check if all elements in the array satisfy the given expression
constexpr bool allMatch(const std::function<bool(const T&)>& pred) const {
return std::all_of(cbegin(), cend(), pred);
}
/// empty - Check if the array is empty.
constexpr bool empty() const {
return Length == 0;
}
constexpr const T* data() const {
return Data;
}
/// size - Get the array size.
constexpr size_t size() const {
return Length;
}
/// front - Get the first element.
/// We deviate from HeaderOnlyArrayRef by using TORCH_CHECK instead of
/// STD_TORCH_CHECK
constexpr const T& front() const {
TORCH_CHECK(
!empty(), "ArrayRef: attempted to access front() of empty list");
return Data[0];
!this->empty(), "ArrayRef: attempted to access front() of empty list");
return this->Data[0];
}
/// back - Get the last element.
/// We deviate from HeaderOnlyArrayRef by using TORCH_CHECK instead of
/// STD_TORCH_CHECK
constexpr const T& back() const {
TORCH_CHECK(!empty(), "ArrayRef: attempted to access back() of empty list");
return Data[Length - 1];
}
/// equals - Check for element-wise equality.
constexpr bool equals(ArrayRef RHS) const {
return Length == RHS.Length && std::equal(begin(), end(), RHS.begin());
TORCH_CHECK(
!this->empty(), "ArrayRef: attempted to access back() of empty list");
return this->Data[this->Length - 1];
}
/// slice(n, m) - Take M elements of the array starting at element N
/// We deviate from HeaderOnlyArrayRef by using TORCH_CHECK instead of
/// STD_TORCH_CHECK
constexpr ArrayRef<T> slice(size_t N, size_t M) const {
TORCH_CHECK(
N + M <= size(),
N + M <= this->size(),
"ArrayRef: invalid slice, N = ",
N,
"; M = ",
M,
"; size = ",
size());
return ArrayRef<T>(data() + N, M);
this->size());
return ArrayRef<T>(this->data() + N, M);
}
/// slice(n) - Chop off the first N elements of the array.
/// We deviate from HeaderOnlyArrayRef by using TORCH_CHECK instead of
/// STD_TORCH_CHECK
constexpr ArrayRef<T> slice(size_t N) const {
TORCH_CHECK(
N <= size(), "ArrayRef: invalid slice, N = ", N, "; size = ", size());
return slice(N, size() - N);
N <= this->size(),
"ArrayRef: invalid slice, N = ",
N,
"; size = ",
this->size());
return slice(N, this->size() - N); // should this slice be this->slice?
}
/// @}
/// @name Operator Overloads
/// @{
constexpr const T& operator[](size_t Index) const {
return Data[Index];
}
/// Vector compatibility
/// We deviate from HeaderOnlyArrayRef by using TORCH_CHECK instead of
/// STD_TORCH_CHECK
constexpr const T& at(size_t Index) const {
TORCH_CHECK(
Index < Length,
Index < this->Length,
"ArrayRef: invalid index Index = ",
Index,
"; Length = ",
Length);
return Data[Index];
this->Length);
return this->Data[Index];
}
/// Disallow accidental assignment from a temporary.
@ -253,13 +160,6 @@ class ArrayRef final {
std::enable_if_t<std::is_same_v<U, T>, ArrayRef<T>>& operator=(
std::initializer_list<U>) = delete;
/// @}
/// @name Expensive Operations
/// @{
std::vector<T> vec() const {
return std::vector<T>(Data, Data + Length);
}
/// @}
};

View File

@ -120,17 +120,23 @@ inline void initGlobalDevicePoolState() {
TORCH_CHECK(
gDevicePool.devices.size() <= std::numeric_limits<DeviceIndex>::max(),
"Too many XPU devices, DeviceIndex overflowed!");
#if defined(_WIN32) && SYCL_COMPILER_VERSION < 20250000
// The default context feature is disabled by default on Windows for SYCL
// compiler versions earlier than 2025.0.0.
std::vector<sycl::device> deviceList;
for (auto it = gDevicePool.devices.begin(); it != gDevicePool.devices.end();
++it) {
deviceList.push_back(*(*it));
// Check each device's architecture and issue a warning if it is older than
// the officially supported range (Intel GPUs starting from Arc (Alchemist)
// series).
namespace syclex = sycl::ext::oneapi::experimental;
for (const auto& device : gDevicePool.devices) {
auto architecture = device->get_info<syclex::info::device::architecture>();
if (architecture < syclex::architecture::intel_gpu_acm_g10) {
TORCH_WARN(
"The detected GPU (",
device->get_info<sycl::info::device::name>(),
") is not officially supported by PyTorch XPU. Running workloads on this device may result in unexpected behavior.\n",
"For stable and fully supported execution, please use GPUs based on Intel Arc (Alchemist) series or newer.\n",
"Refer to the hardware prerequisites for more information: ",
"https://github.com/pytorch/pytorch/blob/main/docs/source/notes/get_start_xpu.rst#hardware-prerequisite");
}
}
gDevicePool.context = std::make_unique<sycl::context>(deviceList);
#else
// The default context is utilized for each Intel GPU device, allowing the
// retrieval of the context from any GPU device.
const auto& platform = gDevicePool.devices[0]->get_platform();
@ -140,7 +146,6 @@ inline void initGlobalDevicePoolState() {
#else
platform.ext_oneapi_get_default_context());
#endif
#endif
}
inline void initDevicePoolCallOnce() {
@ -165,9 +170,9 @@ void initDeviceProperties(DeviceProp* device_prop, DeviceIndex device) {
#define ASSIGN_DEVICE_ASPECT(member) \
device_prop->has_##member = raw_device.has(sycl::aspect::member);
#define ASSIGN_EXP_CL_ASPECT(member) \
device_prop->has_##member = raw_device.ext_oneapi_supports_cl_extension( \
"cl_intel_" #member, &cl_version);
#define ASSIGN_EXP_CL_ASPECT(member) \
device_prop->has_##member = \
raw_device.ext_oneapi_supports_cl_extension("cl_intel_" #member);
#define ASSIGN_EXP_DEVICE_PROP(property) \
device_prop->property = \
@ -182,8 +187,6 @@ void initDeviceProperties(DeviceProp* device_prop, DeviceIndex device) {
AT_FORALL_XPU_DEVICE_ASPECT(ASSIGN_DEVICE_ASPECT);
// TODO: Remove cl_version since it is unnecessary.
sycl::ext::oneapi::experimental::cl_version cl_version;
AT_FORALL_XPU_EXP_CL_ASPECT(ASSIGN_EXP_CL_ASPECT);
#if SYCL_COMPILER_VERSION >= 20250000

View File

@ -1044,6 +1044,17 @@ if(USE_ROCM)
list(APPEND HIP_HIPCC_FLAGS -fdebug-info-for-profiling)
endif(CMAKE_BUILD_TYPE MATCHES Debug)
# Get EnVar 'USE_LAYERNORM_FAST_RECIPROCAL' (or default to on).
if(DEFINED ENV{USE_LAYERNORM_FAST_RECIPROCAL})
set(USE_LAYERNORM_FAST_RECIPROCAL $ENV{USE_LAYERNORM_FAST_RECIPROCAL})
else()
set(USE_LAYERNORM_FAST_RECIPROCAL ON)
endif()
if(USE_LAYERNORM_FAST_RECIPROCAL)
add_definitions(-DUSE_LAYERNORM_FAST_RECIPROCAL)
endif()
# needed for compat with newer versions of hip-clang that introduced C++20 mangling rules
list(APPEND HIP_HIPCC_FLAGS -fclang-abi-compat=17)

View File

@ -128,11 +128,12 @@ function(caffe2_print_configuration_summary)
endif()
message(STATUS " USE_ROCM : ${USE_ROCM}")
if(${USE_ROCM})
message(STATUS " ROCM_VERSION : ${ROCM_VERSION}")
message(STATUS " USE_FLASH_ATTENTION : ${USE_FLASH_ATTENTION}")
message(STATUS " USE_MEM_EFF_ATTENTION : ${USE_MEM_EFF_ATTENTION}")
message(STATUS " USE_ROCM_CK_SDPA : ${USE_ROCM_CK_SDPA}")
message(STATUS " USE_ROCM_CK_GEMM : ${USE_ROCM_CK_GEMM}")
message(STATUS " ROCM_VERSION : ${ROCM_VERSION}")
message(STATUS " USE_FLASH_ATTENTION : ${USE_FLASH_ATTENTION}")
message(STATUS " USE_MEM_EFF_ATTENTION : ${USE_MEM_EFF_ATTENTION}")
message(STATUS " USE_ROCM_CK_SDPA : ${USE_ROCM_CK_SDPA}")
message(STATUS " USE_ROCM_CK_GEMM : ${USE_ROCM_CK_GEMM}")
message(STATUS " USE_LAYERNORM_FAST_RECIPROCAL : ${USE_LAYERNORM_FAST_RECIPROCAL}")
endif()
message(STATUS " BUILD_NVFUSER : ${BUILD_NVFUSER}")
message(STATUS " USE_EIGEN_FOR_BLAS : ${CAFFE2_USE_EIGEN_FOR_BLAS}")

View File

@ -3,11 +3,11 @@ from __future__ import annotations
import dis
import inspect
import sys
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
from typing import Any, Optional, TYPE_CHECKING, Union
if TYPE_CHECKING:
from collections.abc import Sequence
from collections.abc import Callable, Sequence
import torch
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten

View File

@ -5,7 +5,7 @@ Python implementation of function wrapping functionality for functorch.dim.
from __future__ import annotations
import functools
from typing import Any, Callable, Optional
from typing import Any, Optional, TYPE_CHECKING
import torch
from torch.utils._pytree import tree_map
@ -15,6 +15,10 @@ from ._enable_all_layers import EnableAllLayers
from ._tensor_info import TensorInfo
if TYPE_CHECKING:
from collections.abc import Callable
def handle_from_tensor(tensor: torch.Tensor) -> torch.Tensor:
"""Handle tensor conversion for torch function integration."""
return tensor

View File

@ -5,6 +5,7 @@
# LICENSE file in the root directory of this source tree.
import functools
from collections.abc import Callable
from types import (
BuiltinMethodType,
FunctionType,
@ -12,7 +13,7 @@ from types import (
MethodDescriptorType,
WrapperDescriptorType,
)
from typing import Any, Callable
from typing import Any
FUNC_TYPES = (

View File

@ -1,7 +1,7 @@
from __future__ import annotations
import functools
from typing import Callable, TYPE_CHECKING, Union
from typing import TYPE_CHECKING, Union
import torch
from functorch.dim import dims # noqa: F401
@ -16,7 +16,7 @@ from ._parsing import (
if TYPE_CHECKING:
from collections.abc import Sequence
from collections.abc import Callable, Sequence
__all__ = ["rearrange"]

View File

@ -180,6 +180,7 @@ ignore = [
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
"SIM300", # Yoda condition detected
"UP007", # keep-runtime-typing
"UP045", # keep-runtime-typing
"TC006",
@ -195,8 +196,7 @@ select = [
"E",
"EXE",
"F",
"SIM1",
"SIM911",
"SIM",
"W",
# Not included in flake8
"FURB",

View File

@ -23,7 +23,7 @@ project-excludes = [
# ==== below will be enabled directory by directory ====
# ==== to test Pyrefly on a specific directory, simply comment it out ====
"torch/_inductor/runtime",
"torch/_inductor/codegen",
"torch/_inductor/codegen/triton.py",
# formatting issues, will turn on after adjusting where suppressions can be
# in import statements
"torch/linalg/__init__.py",

View File

@ -156,6 +156,10 @@
# USE_ROCM_KERNEL_ASSERT=1
# Enable kernel assert in ROCm platform
#
# USE_LAYERNORM_FAST_RECIPROCAL
# If set, enables the use of builtin functions for fast reciprocals (1/x) w.r.t.
# layer normalization. Default: enabled.
#
# USE_ROCM_CK_GEMM=1
# Enable building CK GEMM backend in ROCm platform
#

View File

@ -55,7 +55,7 @@ class TestActivationSparsifier(TestCase):
for key, config in sparsifier_defaults.items():
# all the keys in combined_defaults should be present in sparsifier defaults
assert config == combined_defaults.get(key, None)
assert config == combined_defaults.get(key)
def _check_register_layer(
self, activation_sparsifier, defaults, sparse_config, layer_args_list

View File

@ -7,6 +7,7 @@ set(AOTI_ABI_CHECK_TEST_SRCS
${AOTI_ABI_CHECK_TEST_ROOT}/test_devicetype.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_dtype.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_exception.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_headeronlyarrayref.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_macros.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_math.cpp
${AOTI_ABI_CHECK_TEST_ROOT}/test_rand.cpp

View File

@ -0,0 +1,52 @@
#include <gtest/gtest.h>
#include <torch/headeronly/util/HeaderOnlyArrayRef.h>
#include <vector>
using torch::headeronly::HeaderOnlyArrayRef;
TEST(TestHeaderOnlyArrayRef, TestEmpty) {
HeaderOnlyArrayRef<float> arr;
ASSERT_TRUE(arr.empty());
}
TEST(TestHeaderOnlyArrayRef, TestSingleton) {
float val = 5.0f;
HeaderOnlyArrayRef<float> arr(val);
ASSERT_FALSE(arr.empty());
EXPECT_EQ(arr.size(), 1);
EXPECT_EQ(arr[0], val);
}
TEST(TestHeaderOnlyArrayRef, TestAPIs) {
std::vector<int> vec = {1, 2, 3, 4, 5, 6, 7};
HeaderOnlyArrayRef<int> arr(vec);
ASSERT_FALSE(arr.empty());
EXPECT_EQ(arr.size(), 7);
for (size_t i = 0; i < arr.size(); i++) {
EXPECT_EQ(arr[i], i + 1);
EXPECT_EQ(arr.at(i), i + 1);
}
EXPECT_EQ(arr.front(), 1);
EXPECT_EQ(arr.back(), 7);
ASSERT_TRUE(arr.slice(3, 4).equals(arr.slice(3)));
}
TEST(TestHeaderOnlyArrayRef, TestFromInitializerList) {
std::vector<int> vec = {1, 2, 3, 4, 5, 6, 7};
HeaderOnlyArrayRef<int> arr({1, 2, 3, 4, 5, 6, 7});
auto res_vec = arr.vec();
for (size_t i = 0; i < vec.size(); i++) {
EXPECT_EQ(vec[i], res_vec[i]);
}
}
TEST(TestHeaderOnlyArrayRef, TestFromRange) {
std::vector<int> vec = {1, 2, 3, 4, 5, 6, 7};
HeaderOnlyArrayRef<int> arr(vec.data() + 3, vec.data() + 7);
auto res_vec = arr.vec();
for (size_t i = 0; i < res_vec.size(); i++) {
EXPECT_EQ(vec[i + 3], res_vec[i]);
}
}

View File

@ -311,10 +311,9 @@ void boxed_fill_infinity(
}
Tensor my_pad(Tensor t) {
std::vector<int64_t> padding = {1, 2, 2, 1};
std::string mode = "constant";
double value = 0.0;
return pad(t, padding, mode, value);
return pad(t, {1, 2, 2, 1}, mode, value);
}
void boxed_my_pad(
@ -342,6 +341,9 @@ void boxed_my_narrow(
}
Tensor my_new_empty_dtype_variant(Tensor t) {
// Still using a std::vector below even though people can just pass in an
// initializer list (which will be implicitly converted to an HeaderOnlyArrayRef)
// directly.
std::vector<int64_t> sizes = {2, 5};
auto dtype = std::make_optional(torch::headeronly::ScalarType::BFloat16);
return new_empty(t, sizes, dtype);
@ -353,9 +355,8 @@ void boxed_my_new_empty_dtype_variant(StableIValue* stack, uint64_t num_args, ui
}
Tensor my_new_zeros_dtype_variant(Tensor t) {
std::vector<int64_t> sizes = {2, 5};
auto dtype = std::make_optional(at::ScalarType::Float);
return new_zeros(t, sizes, dtype);
return new_zeros(t, {2, 5}, dtype);
}
void boxed_my_new_zeros_dtype_variant(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
@ -429,8 +430,7 @@ void boxed_my_amax(StableIValue* stack, uint64_t num_args, uint64_t num_outputs)
}
Tensor my_amax_vec(Tensor t) {
std::vector<int64_t> v = {0,1};
return amax(t, v, false);
return amax(t, {0,1}, false);
}
void boxed_my_amax_vec(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {

View File

@ -164,6 +164,9 @@ class TestIntTuple(TestCase):
crd2idx(4, ((2, 2, 2), (2, 2, 2)), ((1, 16, 4), (8, 2, 32))), 8
) # 4 -> (1,0,0) -> 1*8 = 8
# Test with zero-length shape and strides
self.assertEqual(crd2idx(0, (), ()), 0) # 0 -> () -> sum([]) = 0
def test_idx2crd_basic(self):
# Test basic int/int case
self.assertEqual(idx2crd(2, 5, 1), 2)

View File

@ -3074,7 +3074,7 @@ class TestShardedTensorFromLocalShards(ShardedTensorTestBase):
wrong_dtype_shards, [10, 10], init_rrefs=True
)
tensor_requires_grad = True if self.rank == 0 else False
tensor_requires_grad = self.rank == 0
wrong_requires_grad_shards = [
sharded_tensor.Shard(
torch.randn(
@ -3121,7 +3121,7 @@ class TestShardedTensorFromLocalShards(ShardedTensorTestBase):
wrong_pin_memory_local_shards, [10, 10], init_rrefs=True
)
tensor_pin_memory = True if self.rank == 0 else False
tensor_pin_memory = self.rank == 0
wrong_pin_memory_shards_cross_ranks = [
sharded_tensor.Shard(
torch.randn(5, 5, pin_memory=tensor_pin_memory), local_shard_metadata

View File

@ -152,7 +152,7 @@ class TestStorageBase:
self.rank = 0 if not dist.is_initialized() else dist.get_rank()
def _get_ranks(self, name):
return self.fail_conf[name] if name in self.fail_conf else None
return self.fail_conf.get(name, None)
def _fail_rank(self, name):
ranks = self._get_ranks(name)

View File

@ -155,7 +155,7 @@ class TestFreezingWeights(FSDPTest):
ddp_kwargs = {
"device_ids": [self.rank],
"find_unused_parameters": True if disable_autograd else False,
"find_unused_parameters": bool(disable_autograd),
}
model = self._create_model(

View File

@ -66,7 +66,7 @@ class MockPipelineStage(_PipelineStageBase):
self.num_stages = kwargs.get("num_stages", 1)
self.group_size = kwargs.get("group_size", 1)
self.group_rank = kwargs.get("group_rank", 0)
self.group = kwargs.get("group", None)
self.group = kwargs.get("group")
def _create_grad_recv_info(self, *args, **kwargs):
return None

View File

@ -1023,7 +1023,7 @@ class DTensorMeshTest(DTensorTestBase):
DTensorMeshTestWithLocalTensor = create_local_tensor_test_class(
DTensorMeshTest,
skipped_tests=[
# Submeshes are not supported by local tensor mode
# Test asserts must be rewritten for local tensor
"test_from_local_sub_mesh",
"test_default_value_sub_mesh",
"test_redistribute_sub_mesh",
@ -1066,7 +1066,7 @@ class TestDTensorPlacementTypes(DTensorTestBase):
assert_array_equal(expected_pad_sizes, pad_sizes)
is_tensor_empty = [
False if splitted_tensor.numel() > 0 else True
not splitted_tensor.numel() > 0
for splitted_tensor in splitted_tensor_list
]
expected_is_tensor_empty = [True] * self.world_size
@ -1089,12 +1089,10 @@ class TestDTensorPlacementTypes(DTensorTestBase):
for i, tensor in enumerate(splitted_tensor_list)
]
expected_is_tensor_empty = [
False if idx < size else True
for idx, _ in enumerate(range(self.world_size))
not idx < size for idx, _ in enumerate(range(self.world_size))
]
is_tensor_empty = [
False if unpadded_tensor.numel() > 0 else True
for unpadded_tensor in unpadded_list
not unpadded_tensor.numel() > 0 for unpadded_tensor in unpadded_list
]
assert_array_equal(expected_is_tensor_empty, is_tensor_empty)

Some files were not shown because too many files have changed in this diff Show More