mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-12 06:44:55 +08:00
Compare commits
105 Commits
annotate_a
...
gh/mikayla
| Author | SHA1 | Date | |
|---|---|---|---|
| 694592ac1e | |||
| 285748e838 | |||
| 192034c41b | |||
| 5bfce8f345 | |||
| edd611f3b0 | |||
| aded2ebb90 | |||
| 5bda7afa05 | |||
| 341e924981 | |||
| 5a9ae7cefe | |||
| 3d59e8aadf | |||
| 4cf1d1af22 | |||
| 05b8214e6a | |||
| 35d2da32bd | |||
| 0968e74266 | |||
| 57dd6a0656 | |||
| 7318ed627b | |||
| 5b2ad2d5dc | |||
| faba6e205f | |||
| 3261149aa3 | |||
| bd7e18bc57 | |||
| 643b3bc8f3 | |||
| 91b626e2ef | |||
| bf8297afe0 | |||
| 3f03f84ce2 | |||
| 8a72188828 | |||
| d325aa1877 | |||
| 7aedf3a576 | |||
| eaf4815c1f | |||
| a913b2bb93 | |||
| 1632876edf | |||
| 0e1f76f77e | |||
| ae67a5a9d3 | |||
| 292bd62c71 | |||
| 0e512ee9f0 | |||
| 31ac764239 | |||
| b228f6d180 | |||
| e678450a69 | |||
| 552c3f3e18 | |||
| 5b36e4e30f | |||
| cd6d06a22b | |||
| 669cf21a6b | |||
| 9a86ef7632 | |||
| f47cadf75d | |||
| 2923b02c6e | |||
| 4b9ba0fb26 | |||
| 106d34c80a | |||
| 0b06109412 | |||
| 2073af5790 | |||
| 9b4ac45d2f | |||
| a45a17f65e | |||
| c5593e75b3 | |||
| c90a976370 | |||
| d144382dc9 | |||
| 78827c5e00 | |||
| ab1e734cd7 | |||
| 888958ad6c | |||
| d19f36bea1 | |||
| 096c9356de | |||
| 03dea563f4 | |||
| 2e83ae2de7 | |||
| 77b70970f7 | |||
| c9b2db73ca | |||
| ba2e6b0b4f | |||
| 8523a64c4b | |||
| 9fef18e31d | |||
| aaea391b62 | |||
| 7206668f7c | |||
| 7729de07d3 | |||
| 73078f305f | |||
| ea7add4837 | |||
| 0ed4119420 | |||
| 03fd2b796e | |||
| fd7bf9ce10 | |||
| 41c9eeecec | |||
| bfc0ba4af9 | |||
| 3fdc5dbf1d | |||
| cc477f6009 | |||
| 7b055a0103 | |||
| da2eb31b82 | |||
| 2005b5f548 | |||
| b2d72a4008 | |||
| 80ec2ab78e | |||
| c724f0097d | |||
| a51208c656 | |||
| ed4aa449b6 | |||
| 9eebda944d | |||
| 09d8953fb4 | |||
| 8b2365094d | |||
| 7b423c2d21 | |||
| 46b3f913b3 | |||
| f7b7f40a6f | |||
| 91337ae3ff | |||
| eea951758f | |||
| 3feea296a5 | |||
| c3c3653418 | |||
| f72772b184 | |||
| 981dd71893 | |||
| d31599f40b | |||
| 85fab6c9b0 | |||
| c08ce30d18 | |||
| e1a1aeaf5b | |||
| 943227f57b | |||
| 3a2d75a086 | |||
| 69af74972b | |||
| 7432676187 |
@ -168,6 +168,18 @@ case "$tag" in
|
||||
VISION=yes
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-py3.11-clang12)
|
||||
ANACONDA_PYTHON_VERSION=3.11
|
||||
CLANG_VERSION=12
|
||||
VISION=no
|
||||
TRITON=no
|
||||
;;
|
||||
pytorch-linux-jammy-py3.12-clang12)
|
||||
ANACONDA_PYTHON_VERSION=3.12
|
||||
CLANG_VERSION=12
|
||||
VISION=no
|
||||
TRITON=no
|
||||
;;
|
||||
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-jammy-rocm-n-py3-benchmarks | pytorch-linux-noble-rocm-n-py3)
|
||||
if [[ $tag =~ "jammy" ]]; then
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
@ -195,9 +207,9 @@ case "$tag" in
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
|
||||
pytorch-linux-noble-xpu-n-py3 | pytorch-linux-noble-xpu-n-py3-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
GCC_VERSION=13
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.2
|
||||
NINJA_VERSION=1.9.0
|
||||
@ -261,9 +273,9 @@ case "$tag" in
|
||||
PYTHON_VERSION=3.10
|
||||
CUDA_VERSION=12.8.1
|
||||
;;
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc11)
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc13)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
GCC_VERSION=13
|
||||
ACL=yes
|
||||
VISION=yes
|
||||
OPENBLAS=yes
|
||||
@ -281,9 +293,9 @@ case "$tag" in
|
||||
# from pytorch/llvm:9.0.1 is x86 specific
|
||||
SKIP_LLVM_SRC_BUILD_INSTALL=yes
|
||||
;;
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks)
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc13-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
GCC_VERSION=13
|
||||
ACL=yes
|
||||
VISION=yes
|
||||
OPENBLAS=yes
|
||||
|
||||
@ -7,11 +7,11 @@ if [ -n "$GCC_VERSION" ]; then
|
||||
# Need the official toolchain repo to get alternate packages
|
||||
add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
apt-get update
|
||||
apt-get install -y g++-$GCC_VERSION
|
||||
apt-get install -y g++-$GCC_VERSION gfortran-$GCC_VERSION
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
|
||||
|
||||
update-alternatives --install /usr/bin/gfortran gfortran /usr/bin/gfortran-"$GCC_VERSION" 50
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
|
||||
56
.ci/docker/common/install_libgomp.sh
Normal file
56
.ci/docker/common/install_libgomp.sh
Normal file
@ -0,0 +1,56 @@
|
||||
#!/bin/bash
|
||||
# Script used only in CD pipeline
|
||||
|
||||
set -ex
|
||||
|
||||
# install dependencies
|
||||
dnf -y install gmp-devel libmpc-devel texinfo flex bison
|
||||
|
||||
cd /usr/local/src
|
||||
# fetch source for gcc 13
|
||||
git clone --depth 1 --single-branch -b releases/gcc-13.3.0 https://github.com/gcc-mirror/gcc.git gcc-13.3.0
|
||||
|
||||
mkdir -p gcc-13.3.0/build-gomp
|
||||
cd gcc-13.3.0/build-gomp
|
||||
|
||||
# configure gcc build
|
||||
# I got these flags by:
|
||||
# 1. downloading the source rpm for gcc-11 on AlmaLinux 8 container
|
||||
# dnf install -y dnf-plugins-core rpmdevtools
|
||||
# dnf download --source libgomp
|
||||
# 2. extracting the gcc.spec from the source.
|
||||
# rpmdev-extract gcc-xx.src.rpm
|
||||
# 3. extracting optflags and ld_flags from gcc.spec:
|
||||
# rpm --eval '%{optflags}'
|
||||
# rpm --eval '%{build_ldflags}'
|
||||
#
|
||||
# I had to remove the following flags because they didn't compile for this version of libgomp:
|
||||
# -Werror=format-security
|
||||
# -specs=/usr/lib/rpm/redhat/redhat-hardened-cc1
|
||||
# -specs=/usr/lib/rpm/redhat/redhat-annobin-cc1
|
||||
#
|
||||
# I added -march=armv8-a -mtune=generic to make them explicit. I don't think they're strictly needed.
|
||||
|
||||
OPT_FLAGS='-O2 -march=armv8-a -mtune=generic'\
|
||||
' -fexceptions -g -grecord-gcc-switches -pipe -Wall'\
|
||||
' -Wp,-D_FORTIFY_SOURCE=2 -Wp,-D_GLIBCXX_ASSERTIONS'\
|
||||
' -fstack-protector-strong -fasynchronous-unwind-tables'\
|
||||
' -fstack-clash-protection'
|
||||
|
||||
LDFLAGS='-Wl,-z,relro -Wl,--as-needed -Wl,-z,now'
|
||||
|
||||
CFLAGS="$OPT_FLAGS" \
|
||||
CXXFLAGS="$OPT_FLAGS" \
|
||||
LDFLAGS="$LDFLAGS" \
|
||||
../configure \
|
||||
--prefix=/usr \
|
||||
--libdir=/usr/lib64 \
|
||||
--enable-languages=c,c++ \
|
||||
--disable-multilib \
|
||||
--disable-bootstrap \
|
||||
--enable-libgomp
|
||||
|
||||
# only build libgomp
|
||||
make -j$(nproc) all-target-libgomp
|
||||
|
||||
make install-target-libgomp
|
||||
@ -9,7 +9,7 @@ set -xe
|
||||
|
||||
function install_ubuntu() {
|
||||
. /etc/os-release
|
||||
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
|
||||
if [[ ! " jammy noble " =~ " ${VERSION_CODENAME} " ]]; then
|
||||
echo "Ubuntu version ${VERSION_CODENAME} not supported"
|
||||
exit
|
||||
fi
|
||||
@ -35,25 +35,24 @@ function install_ubuntu() {
|
||||
# The xpu-smi packages
|
||||
apt-get install -y flex bison xpu-smi
|
||||
|
||||
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
|
||||
# Compute and Media Runtimes
|
||||
# Compute and Media Runtimes
|
||||
if [[ " ${VERSION_CODENAME} " =~ " noble " ]]; then
|
||||
apt-get install -y \
|
||||
intel-opencl-icd intel-level-zero-gpu level-zero \
|
||||
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
intel-opencl-icd libze-intel-gpu1 libze1 \
|
||||
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
|
||||
# Development Packages
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
|
||||
else # rolling driver
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
|
||||
else # jammy
|
||||
apt-get install -y \
|
||||
intel-opencl-icd libze-intel-gpu1 libze1 \
|
||||
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
|
||||
fi
|
||||
# Development Packages
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
|
||||
|
||||
# Install Intel Support Packages
|
||||
apt-get install -y ${XPU_PACKAGES}
|
||||
@ -66,7 +65,7 @@ function install_ubuntu() {
|
||||
function install_rhel() {
|
||||
. /etc/os-release
|
||||
if [[ "${ID}" == "rhel" ]]; then
|
||||
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
echo "RHEL version ${VERSION_ID} not supported"
|
||||
exit
|
||||
fi
|
||||
@ -147,7 +146,7 @@ function install_sles() {
|
||||
XPU_DRIVER_VERSION=""
|
||||
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
|
||||
# Use GPU driver LTS releases
|
||||
XPU_DRIVER_VERSION="/lts/2350"
|
||||
XPU_DRIVER_VERSION="/lts/2523"
|
||||
fi
|
||||
|
||||
# Default use Intel® oneAPI Deep Learning Essentials 2025.1
|
||||
|
||||
@ -50,6 +50,10 @@ RUN rm install_ninja.sh
|
||||
ENV PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
|
||||
|
||||
# Build a newer version of libgomp than that supported in in Almalinux 8.
|
||||
COPY ./common/install_libgomp.sh install_libgomp.sh
|
||||
RUN bash ./install_libgomp.sh && rm install_libgomp.sh
|
||||
|
||||
# git236+ would refuse to run git commands in repos owned by other users
|
||||
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
|
||||
# Override this behaviour by treating every folder as safe
|
||||
|
||||
@ -1,15 +1,11 @@
|
||||
sphinx==5.3.0
|
||||
sphinx==7.2.6
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 5.3.0
|
||||
#Pinned versions: 7.2.6
|
||||
|
||||
standard-imghdr==3.13.0; python_version >= "3.13"
|
||||
#Description: This is needed by Sphinx, so it needs to be added here.
|
||||
# The reasons are as follows:
|
||||
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
|
||||
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
|
||||
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
|
||||
pytorch_sphinx_theme2==0.2.0
|
||||
#Description: This is needed to generate PyTorch docs
|
||||
#Pinned versions: 0.2.0
|
||||
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2
|
||||
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
|
||||
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
|
||||
# something related to Docker setup. We can investigate this later.
|
||||
@ -36,17 +32,17 @@ tensorboard==2.18.0 ; python_version >= "3.13"
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 2.13.0
|
||||
|
||||
breathe==4.34.0
|
||||
breathe==4.36.0
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
#Pinned versions: 4.34.0
|
||||
#Pinned versions: 4.36.0
|
||||
|
||||
exhale==0.2.3
|
||||
exhale==0.3.7
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
#Pinned versions: 0.2.3
|
||||
#Pinned versions: 0.3.7
|
||||
|
||||
docutils==0.16
|
||||
docutils==0.20
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
#Pinned versions: 0.16
|
||||
#Pinned versions: 0.20
|
||||
|
||||
bs4==0.0.1
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
@ -56,13 +52,13 @@ IPython==8.12.0
|
||||
#Description: This is used to generate PyTorch functorch docs
|
||||
#Pinned versions: 8.12.0
|
||||
|
||||
myst-nb==0.17.2
|
||||
myst-nb==1.3.0
|
||||
#Description: This is used to generate PyTorch functorch and torch.compile docs.
|
||||
#Pinned versions: 0.17.2
|
||||
#Pinned versions: 1.3.0
|
||||
|
||||
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
|
||||
python-etcd==0.4.5
|
||||
sphinx-copybutton==0.5.0
|
||||
sphinx-design==0.4.0
|
||||
sphinx-design==0.6.1
|
||||
sphinxcontrib-mermaid==1.0.0
|
||||
myst-parser==0.18.1
|
||||
myst-parser==4.0.1
|
||||
|
||||
@ -89,23 +89,41 @@ if [ "$is_main_doc" = true ]; then
|
||||
|
||||
make coverage
|
||||
# Now we have the coverage report, we need to make sure it is empty.
|
||||
# Count the number of lines in the file and turn that number into a variable
|
||||
# $lines. The `cut -f1 ...` is to only parse the number, not the filename
|
||||
# Skip the report header by subtracting 2: the header will be output even if
|
||||
# there are no undocumented items.
|
||||
# Sphinx 7.2.6+ format: python.txt contains a statistics table with a TOTAL row
|
||||
# showing the undocumented count in the third column.
|
||||
# Example: | TOTAL | 99.83% | 2 |
|
||||
#
|
||||
# Also: see docs/source/conf.py for "coverage_ignore*" items, which should
|
||||
# be documented then removed from there.
|
||||
lines=$(wc -l build/coverage/python.txt 2>/dev/null |cut -f1 -d' ')
|
||||
undocumented=$((lines - 2))
|
||||
if [ $undocumented -lt 0 ]; then
|
||||
|
||||
# Extract undocumented count from TOTAL row in Sphinx 7.2.6 statistics table
|
||||
# The table format is: | Module | Coverage | Undocumented |
|
||||
# Extract the third column (undocumented count) from the TOTAL row
|
||||
undocumented=$(grep "| TOTAL" build/coverage/python.txt | awk -F'|' '{print $4}' | tr -d ' ')
|
||||
|
||||
if [ -z "$undocumented" ] || ! [[ "$undocumented" =~ ^[0-9]+$ ]]; then
|
||||
echo coverage output not found
|
||||
exit 1
|
||||
elif [ $undocumented -gt 0 ]; then
|
||||
echo undocumented objects found:
|
||||
cat build/coverage/python.txt
|
||||
elif [ "$undocumented" -gt 0 ]; then
|
||||
set +x # Disable command echoing for cleaner output
|
||||
echo ""
|
||||
echo "====================="
|
||||
echo "UNDOCUMENTED OBJECTS:"
|
||||
echo "====================="
|
||||
echo ""
|
||||
# Find the line number of the TOTAL row and print only what comes after it
|
||||
total_line=$(grep -n "| TOTAL" build/coverage/python.txt | cut -d: -f1)
|
||||
if [ -n "$total_line" ]; then
|
||||
# Print only the detailed list (skip the statistics table)
|
||||
tail -n +$((total_line + 2)) build/coverage/python.txt
|
||||
else
|
||||
# Fallback to showing entire file if TOTAL line not found
|
||||
cat build/coverage/python.txt
|
||||
fi
|
||||
echo ""
|
||||
echo "Make sure you've updated relevant .rsts in docs/source!"
|
||||
echo "You can reproduce locally by running 'cd docs && make coverage && cat build/coverage/python.txt'"
|
||||
echo "You can reproduce locally by running 'cd docs && make coverage && tail -n +\$((grep -n \"| TOTAL\" build/coverage/python.txt | cut -d: -f1) + 2)) build/coverage/python.txt'"
|
||||
set -x # Re-enable command echoing
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
|
||||
@ -337,7 +337,7 @@ test_python() {
|
||||
|
||||
test_python_smoke() {
|
||||
# Smoke tests for H100/B200
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune inductor/test_cutedsl_grouped_mm $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
|
||||
@ -70,7 +70,7 @@ sccache --zero-stats
|
||||
sccache --show-stats
|
||||
|
||||
# Build the wheel
|
||||
python -m build --wheel --no-build-isolation
|
||||
python -m build --wheel --no-isolation
|
||||
if ($LASTEXITCODE -ne 0) { exit 1 }
|
||||
|
||||
# Install the wheel locally
|
||||
|
||||
@ -1,11 +1,11 @@
|
||||
name: 🚀 Release highlight for proposed Feature
|
||||
name: 🚀 New Feature for Release
|
||||
description: Submit a Release highlight for proposed Feature
|
||||
labels: ["release-feature-request"]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Release highlight for proposed Feature
|
||||
label: New Feature for Release
|
||||
description: >
|
||||
Example: “A torch.special module, analogous to SciPy's special module.”
|
||||
- type: input
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
3b0e7a6f192ca2715e7e6cbe5db007aea7165fe2
|
||||
ad5816f0eee1c873df1b7d371c69f1f811a89387
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
cfbc5c2f1c798991715a6b06bb3ce46478c4487c
|
||||
ca2212438fdd8ce29b66999ed70ed54b0f9372d1
|
||||
|
||||
6
.github/pytorch-probot.yml
vendored
6
.github/pytorch-probot.yml
vendored
@ -2,8 +2,8 @@ tracking_issue: 24422
|
||||
ciflow_tracking_issue: 64124
|
||||
ciflow_push_tags:
|
||||
- ciflow/b200
|
||||
- ciflow/b200-symm-mem
|
||||
- ciflow/b200-distributed
|
||||
- ciflow/b200-symm-mem
|
||||
- ciflow/binaries
|
||||
- ciflow/binaries_libtorch
|
||||
- ciflow/binaries_wheel
|
||||
@ -22,6 +22,8 @@ ciflow_push_tags:
|
||||
- ciflow/inductor-perf-test-nightly-xpu
|
||||
- ciflow/inductor-periodic
|
||||
- ciflow/inductor-rocm
|
||||
- ciflow/inductor-rocm-mi200
|
||||
- ciflow/inductor-rocm-mi300
|
||||
- ciflow/linux-aarch64
|
||||
- ciflow/mps
|
||||
- ciflow/nightly
|
||||
@ -33,11 +35,13 @@ ciflow_push_tags:
|
||||
- ciflow/quantization-periodic
|
||||
- ciflow/riscv64
|
||||
- ciflow/rocm
|
||||
- ciflow/rocm-mi200
|
||||
- ciflow/rocm-mi300
|
||||
- ciflow/rocm-mi355
|
||||
- ciflow/rocm-navi31
|
||||
- ciflow/s390
|
||||
- ciflow/slow
|
||||
- ciflow/slow-rocm-mi200
|
||||
- ciflow/torchbench
|
||||
- ciflow/triton_binaries
|
||||
- ciflow/trunk
|
||||
|
||||
10
.github/workflows/docker-builds.yml
vendored
10
.github/workflows/docker-builds.yml
vendored
@ -56,6 +56,8 @@ jobs:
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9,
|
||||
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
|
||||
pytorch-linux-jammy-py3.10-clang12,
|
||||
pytorch-linux-jammy-py3.11-clang12,
|
||||
pytorch-linux-jammy-py3.12-clang12,
|
||||
pytorch-linux-jammy-py3.13-clang12,
|
||||
pytorch-linux-jammy-py3.14-clang12,
|
||||
pytorch-linux-jammy-rocm-n-py3,
|
||||
@ -66,8 +68,8 @@ jobs:
|
||||
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks,
|
||||
pytorch-linux-jammy-py3.12-halide,
|
||||
pytorch-linux-jammy-xpu-n-1-py3,
|
||||
pytorch-linux-jammy-xpu-n-py3,
|
||||
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
|
||||
pytorch-linux-noble-xpu-n-py3,
|
||||
pytorch-linux-noble-xpu-n-py3-inductor-benchmarks,
|
||||
pytorch-linux-jammy-py3-clang18-asan,
|
||||
pytorch-linux-jammy-py3-clang12-onnx,
|
||||
pytorch-linux-jammy-linter,
|
||||
@ -77,11 +79,11 @@ jobs:
|
||||
pytorch-linux-noble-riscv64-py3.12-gcc14
|
||||
]
|
||||
include:
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-gcc11
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-gcc13
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-clang21
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks
|
||||
- docker-image-name: pytorch-linux-jammy-aarch64-py3.10-gcc13-inductor-benchmarks
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
timeout-minutes: 600
|
||||
# Docker uploads fail from LF runners, see https://github.com/pytorch/pytorch/pull/137358
|
||||
|
||||
@ -72,7 +72,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
build-environment: linux-jammy-aarch64-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc13-inductor-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_cpu_aarch64", shard: 1, num_shards: 9, runner: "linux.arm64.m7g.metal" },
|
||||
|
||||
@ -83,8 +83,8 @@ jobs:
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3-inductor-benchmarks
|
||||
runner: linux.c7i.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
@ -117,7 +117,7 @@ jobs:
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: xpu-n-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
|
||||
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
@ -137,7 +137,7 @@ jobs:
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: xpu-n-py3_10-inductor-benchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
|
||||
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
|
||||
|
||||
@ -2,12 +2,12 @@ name: inductor-rocm
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 * * * *
|
||||
- cron: 0 */3 * * *
|
||||
push:
|
||||
branches:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/inductor-rocm/*
|
||||
- ciflow/inductor-rocm-mi200/*
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
1
.github/workflows/inductor-rocm-mi300.yml
vendored
1
.github/workflows/inductor-rocm-mi300.yml
vendored
@ -7,6 +7,7 @@ on:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/inductor-rocm/*
|
||||
- ciflow/inductor-rocm-mi300/*
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
|
||||
2
.github/workflows/linux-aarch64.yml
vendored
2
.github/workflows/linux-aarch64.yml
vendored
@ -33,7 +33,7 @@ jobs:
|
||||
with:
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-aarch64-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc13
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
|
||||
2
.github/workflows/operator_benchmark.yml
vendored
2
.github/workflows/operator_benchmark.yml
vendored
@ -60,7 +60,7 @@ jobs:
|
||||
with:
|
||||
build-environment: linux-jammy-aarch64-py3.10
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc13
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.arm64.m8g.4xlarge" },
|
||||
|
||||
1
.github/workflows/periodic-rocm-mi200.yml
vendored
1
.github/workflows/periodic-rocm-mi200.yml
vendored
@ -11,7 +11,6 @@ on:
|
||||
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
|
||||
push:
|
||||
tags:
|
||||
- ciflow/periodic/*
|
||||
- ciflow/periodic-rocm-mi200/*
|
||||
branches:
|
||||
- release/*
|
||||
|
||||
1
.github/workflows/periodic-rocm-mi300.yml
vendored
1
.github/workflows/periodic-rocm-mi300.yml
vendored
@ -11,6 +11,7 @@ on:
|
||||
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
|
||||
push:
|
||||
tags:
|
||||
- ciflow/periodic/*
|
||||
- ciflow/periodic-rocm-mi300/*
|
||||
branches:
|
||||
- release/*
|
||||
|
||||
8
.github/workflows/pull.yml
vendored
8
.github/workflows/pull.yml
vendored
@ -342,16 +342,16 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-build:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-noble-xpu-n-py3_10-build:
|
||||
name: linux-noble-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# This should sync with the build in xpu.yml but xpu uses a larger runner
|
||||
# sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 4, runner: "linux.idc.xpu" },
|
||||
|
||||
@ -5,11 +5,12 @@ on:
|
||||
branches:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/rocm/*
|
||||
- ciflow/rocm-mi200/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: 29 8 * * * # about 1:29am PDT
|
||||
- cron: 0 * * * *
|
||||
- cron: 0 */3 * * *
|
||||
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
1
.github/workflows/rocm-mi300.yml
vendored
1
.github/workflows/rocm-mi300.yml
vendored
@ -6,6 +6,7 @@ on:
|
||||
- main
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/rocm/*
|
||||
- ciflow/rocm-mi300/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
|
||||
81
.github/workflows/slow-rocm-mi200.yml
vendored
Normal file
81
.github/workflows/slow-rocm-mi200.yml
vendored
Normal file
@ -0,0 +1,81 @@
|
||||
# This workflow is dedicated to host slow jobs that are run only periodically because
|
||||
# they are too slow to run in every commit. The list of slow tests can be found in
|
||||
# https://github.com/pytorch/test-infra/blob/generated-stats/stats/slow-tests.json
|
||||
name: slow-rocm-mi200
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- release/*
|
||||
tags:
|
||||
- ciflow/slow/*
|
||||
- ciflow/slow-rocm-mi200/*
|
||||
schedule:
|
||||
- cron: 0 */3 * * *
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
llm-td:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: before-test
|
||||
uses: ./.github/workflows/llm_td_retrieval.yml
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
target-determination:
|
||||
name: before-test
|
||||
uses: ./.github/workflows/target_determination.yml
|
||||
needs: llm-td
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
30
.github/workflows/slow.yml
vendored
30
.github/workflows/slow.yml
vendored
@ -105,36 +105,6 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-py3_10-clang12-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "slow", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
{ config: "slow", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.2", owners: ["module:rocm"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-py3_10-clang18-asan-build:
|
||||
name: linux-jammy-py3.10-clang18-asan
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
||||
5
.github/workflows/upload-test-stats.yml
vendored
5
.github/workflows/upload-test-stats.yml
vendored
@ -11,15 +11,16 @@ on:
|
||||
- inductor
|
||||
- unstable
|
||||
- slow
|
||||
- slow-rocm-mi200
|
||||
- unstable-periodic
|
||||
- inductor-periodic
|
||||
- rocm
|
||||
- rocm-mi200
|
||||
- rocm-mi300
|
||||
- rocm-mi355
|
||||
- inductor-micro-benchmark
|
||||
- inductor-micro-benchmark-x86
|
||||
- inductor-cu124
|
||||
- inductor-rocm
|
||||
- inductor-rocm-mi200
|
||||
- inductor-rocm-mi300
|
||||
- mac-mps
|
||||
- linux-aarch64
|
||||
|
||||
20
.github/workflows/xpu.yml
vendored
20
.github/workflows/xpu.yml
vendored
@ -47,15 +47,15 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-build:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-noble-xpu-n-py3_10-build:
|
||||
name: linux-noble-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-noble-xpu-n-py3
|
||||
runner: linux.c7i.12xlarge
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
@ -74,17 +74,17 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_10-test:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
linux-noble-xpu-n-py3_10-test:
|
||||
name: linux-noble-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_xpu-test.yml
|
||||
needs: linux-jammy-xpu-n-py3_10-build
|
||||
needs: linux-noble-xpu-n-py3_10-build
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
with:
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-xpu-n-py3_10-build.outputs.test-matrix }}
|
||||
build-environment: linux-noble-xpu-n-py3.10
|
||||
docker-image: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-noble-xpu-n-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
windows-xpu-n-1-build:
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -127,6 +127,7 @@ torch/test/
|
||||
torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h
|
||||
torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h
|
||||
torch/version.py
|
||||
torch/_inductor/kernel/vendored_templates/*
|
||||
minifier_launcher.py
|
||||
aten/src/ATen/native/transformers/hip/flash_attn/ck/fmha_fwd_d*
|
||||
aten/src/ATen/native/transformers/hip/flash_attn/ck/fmha_bwd_d*
|
||||
|
||||
@ -143,7 +143,8 @@ init_command = [
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'numpy==2.1.0 ; python_version >= "3.12" and python_version <= "3.13"',
|
||||
'numpy==2.3.4 ; python_version >= "3.14"',
|
||||
'expecttest==0.3.0',
|
||||
'pyrefly==0.36.2',
|
||||
'sympy==1.13.3',
|
||||
|
||||
@ -174,6 +174,12 @@ class TORCH_API Context {
|
||||
static long versionCuDNN() {
|
||||
return detail::getCUDAHooks().versionCuDNN();
|
||||
}
|
||||
static long versionRuntimeCuDNN() {
|
||||
return detail::getCUDAHooks().versionRuntimeCuDNN();
|
||||
}
|
||||
static long versionCuDNNFrontend() {
|
||||
return detail::getCUDAHooks().versionCuDNNFrontend();
|
||||
}
|
||||
static bool hasCuSOLVER() {
|
||||
return detail::getCUDAHooks().hasCuSOLVER();
|
||||
}
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
#include <c10/util/Half.h>
|
||||
#include <c10/util/Metaprogramming.h>
|
||||
#include <c10/util/complex.h>
|
||||
#include <torch/headeronly/core/Dispatch.h>
|
||||
|
||||
#ifdef __CUDACC__
|
||||
#include <cuda.h> // For CUDA_VERSION
|
||||
@ -61,12 +62,9 @@ TORCH_API void record_kernel_function_dtype(std::string name);
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
|
||||
case enum_type: { \
|
||||
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
|
||||
using HINT [[maybe_unused]] = c10::impl::ScalarTypeToCPPTypeT<enum_type>; \
|
||||
return __VA_ARGS__(); \
|
||||
}
|
||||
#define AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, HINT, ...) \
|
||||
THO_PRIVATE_CASE_TYPE_USING_HINT_TMPL( \
|
||||
AT_PRIVATE_CHECK_SELECTIVE_BUILD, enum_type, HINT, __VA_ARGS__)
|
||||
|
||||
#define AT_DISPATCH_CASE(enum_type, ...) \
|
||||
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
|
||||
@ -95,14 +93,6 @@ TORCH_API void record_kernel_function_dtype(std::string name);
|
||||
return __VA_ARGS__(); \
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
inline at::ScalarType scalar_type(at::ScalarType s) {
|
||||
return s;
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// The AT_DISPATCH_* family of macros provides the ability to
|
||||
// conveniently generate specializations of a kernel over all of the
|
||||
// dtypes we care about in PyTorch. We call it "dispatch" because
|
||||
@ -190,27 +180,13 @@ inline at::ScalarType scalar_type(at::ScalarType s) {
|
||||
// but we're just being safe (and it doesn't hurt.) Note we must
|
||||
// use it to shut up warnings about unused store.
|
||||
|
||||
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
|
||||
[&] { \
|
||||
const auto& the_type = TYPE; \
|
||||
constexpr const char* at_dispatch_name = NAME; \
|
||||
/* don't use TYPE again in case it is an expensive or side-effect op */ \
|
||||
at::ScalarType _st = ::detail::scalar_type(the_type); \
|
||||
RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st); \
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wswitch-enum") \
|
||||
switch (_st) { \
|
||||
__VA_ARGS__ \
|
||||
default: \
|
||||
TORCH_CHECK_NOT_IMPLEMENTED( \
|
||||
false, \
|
||||
'"', \
|
||||
at_dispatch_name, \
|
||||
"\" not implemented for '", \
|
||||
toString(_st), \
|
||||
"'"); \
|
||||
} \
|
||||
C10_DIAGNOSTIC_POP() \
|
||||
}()
|
||||
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...) \
|
||||
THO_DISPATCH_SWITCH_TMPL( \
|
||||
RECORD_KERNEL_FUNCTION_DTYPE, \
|
||||
TORCH_CHECK_NOT_IMPLEMENTED, \
|
||||
TYPE, \
|
||||
NAME, \
|
||||
__VA_ARGS__)
|
||||
|
||||
#define AT_DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
|
||||
|
||||
@ -1,3 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include <torch/headeronly/core/Dispatch_v2.h>
|
||||
|
||||
// Get AT_DISPATCH_SWITCH and AT_DISPATCH_CASE:
|
||||
#include <ATen/Dispatch.h>
|
||||
|
||||
// This is a new implementation of the AT_DISPATCH macro family from
|
||||
@ -74,41 +79,19 @@
|
||||
// macro expansion occurs, mediated with AT_EXPAND and AT_GUARD. I mostly
|
||||
// relied on GPT4 to help me get it right.
|
||||
|
||||
// Public API macros
|
||||
|
||||
// See documentation above
|
||||
#define AT_DISPATCH_V2(TYPE, NAME, BODY, ...) \
|
||||
AT_DISPATCH_SWITCH(TYPE, NAME, AT_AP_VAR(AT_WRAP(BODY), TYPE, __VA_ARGS__))
|
||||
|
||||
// This macro lets you pass an arbitrary expression that may contain internal
|
||||
// commas to another macro without having the commas causing the expression
|
||||
// to be interpreted as being multiple arguments
|
||||
#define AT_WRAP(...) __VA_ARGS__
|
||||
|
||||
#define AT_FLOAT8_TYPES \
|
||||
c10::kFloat8_e5m2, c10::kFloat8_e5m2fnuz, c10::kFloat8_e4m3fn, \
|
||||
c10::kFloat8_e4m3fnuz, c10::kFloat8_e8m0fnu
|
||||
|
||||
#define AT_INTEGRAL_TYPES \
|
||||
c10::kByte, c10::kChar, c10::kInt, c10::kLong, c10::kShort
|
||||
#define AT_FLOATING_TYPES c10::kDouble, c10::kFloat
|
||||
#define AT_BAREBONES_UNSIGNED_TYPES c10::kUInt16, c10::kUInt32, c10::kUInt64
|
||||
#define AT_INTEGRAL_TYPES_V2 \
|
||||
AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)
|
||||
#define AT_COMPLEX_TYPES c10::kComplexDouble, c10::kComplexFloat
|
||||
#define AT_QINT_TYPES c10::kQInt8, c10::kQUInt8, c10::kQInt32
|
||||
// NB: not *actually* all types
|
||||
#define AT_ALL_TYPES AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
|
||||
#define AT_ALL_TYPES_AND_COMPLEX \
|
||||
AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES)
|
||||
|
||||
// Helper macros
|
||||
THO_DISPATCH_V2_TMPL( \
|
||||
AT_DISPATCH_SWITCH, \
|
||||
AT_DISPATCH_CASE, \
|
||||
TYPE, \
|
||||
NAME, \
|
||||
AT_WRAP(BODY), \
|
||||
__VA_ARGS__)
|
||||
|
||||
// Unused helper macros, kept for BC:
|
||||
#define AT_AP_VAR(N, T, ...) \
|
||||
AT_EXPAND(AT_CONCAT(AT_AP, AT_NUM_ARGS(__VA_ARGS__))(AT_WRAP(N), __VA_ARGS__))
|
||||
#define AT_CONCAT(a, b) AT_CONCAT_AUX(a, b)
|
||||
#define AT_CONCAT_AUX(a, b) a##b
|
||||
#define AT_EXPAND(X) X
|
||||
|
||||
// Ensure we never have too many scalar types for the expansion here to
|
||||
// support. To bump this, you must regenerate the macros below.
|
||||
@ -119,12 +102,6 @@ static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 60);
|
||||
|
||||
num_args = 60
|
||||
|
||||
nums = ', '.join(str(i) for i in reversed(range(num_args+1)))
|
||||
args = ', '.join(f'_{i}' for i in range(1, num_args+1))
|
||||
|
||||
print(f'#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, {nums}))')
|
||||
print(f'#define AT_NUM_ARGS_AUX({args}, N, ...) N')
|
||||
|
||||
for i in range(1, num_args+1):
|
||||
args = ', '.join(f'_{i}' for i in range(1, i+1))
|
||||
cases = ' '.join([f'AT_DISPATCH_CASE(_{j}, N)' for j in range(1, i+1)])
|
||||
@ -135,8 +112,6 @@ for i in range(1, num_args+1):
|
||||
// Begin generated code
|
||||
// clang-format off
|
||||
|
||||
#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
|
||||
#define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, N, ...) N
|
||||
#define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
|
||||
#define AT_AP2(N, _1, _2) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N)
|
||||
#define AT_AP3(N, _1, _2, _3) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N)
|
||||
|
||||
@ -1597,7 +1597,7 @@ bool gemm_and_bias(
|
||||
}
|
||||
|
||||
using opmath_t = at::opmath_type<Dtype>;
|
||||
opmath_t beta_val = 0; // bias is added in epilogue
|
||||
opmath_t beta_val = bias ? 0 : 1; // bias is added in epilogue unless nullptr
|
||||
|
||||
cudaDataType_t abType = CUDA_R_32F;
|
||||
cudaDataType_t cType = CUDA_R_32F;
|
||||
@ -1686,15 +1686,22 @@ bool gemm_and_bias(
|
||||
_syncCurrentWithCarveoutStream(stream, true);
|
||||
}
|
||||
#endif
|
||||
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_BIAS;
|
||||
if (activation == GEMMAndBiasActivationEpilogue::RELU) {
|
||||
epilogue = CUBLASLT_EPILOGUE_RELU_BIAS;
|
||||
} else if (activation == GEMMAndBiasActivationEpilogue::GELU) {
|
||||
epilogue = CUBLASLT_EPILOGUE_GELU_BIAS;
|
||||
}
|
||||
const auto epilogue = [&]() -> cublasLtEpilogue_t {
|
||||
// The cuBLAS documentation indicates that
|
||||
// *_<ACTIVATION>_BIAS = *_<ACTIVATION>,
|
||||
// but we keep it verbose here for clarity.
|
||||
switch (activation) {
|
||||
case GEMMAndBiasActivationEpilogue::RELU:
|
||||
return bias ? CUBLASLT_EPILOGUE_RELU_BIAS : CUBLASLT_EPILOGUE_RELU;
|
||||
case GEMMAndBiasActivationEpilogue::GELU:
|
||||
return bias ? CUBLASLT_EPILOGUE_GELU_BIAS : CUBLASLT_EPILOGUE_GELU;
|
||||
default:
|
||||
return bias ? CUBLASLT_EPILOGUE_BIAS : CUBLASLT_EPILOGUE_DEFAULT;
|
||||
}
|
||||
}();
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, epilogue);
|
||||
|
||||
if (bias != nullptr) {
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, epilogue);
|
||||
if (bias) {
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_BIAS_POINTER, bias);
|
||||
}
|
||||
|
||||
|
||||
@ -21,6 +21,7 @@
|
||||
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#include <ATen/cudnn/cudnn-wrapper.h>
|
||||
#include <cudnn_frontend.h>
|
||||
#endif
|
||||
|
||||
#if AT_MAGMA_ENABLED()
|
||||
@ -351,6 +352,26 @@ long CUDAHooks::versionCuDNN() const {
|
||||
#endif
|
||||
}
|
||||
|
||||
long CUDAHooks::versionRuntimeCuDNN() const {
|
||||
#if AT_CUDNN_ENABLED()
|
||||
#ifndef USE_STATIC_CUDNN
|
||||
return cudnnGetVersion();
|
||||
#else
|
||||
return CUDNN_VERSION;
|
||||
#endif
|
||||
#else
|
||||
TORCH_CHECK(false, "Cannot query CuDNN version if ATen_cuda is not built with CuDNN");
|
||||
#endif
|
||||
}
|
||||
|
||||
long CUDAHooks::versionCuDNNFrontend() const {
|
||||
#if AT_CUDNN_ENABLED()
|
||||
return CUDNN_FRONTEND_VERSION;
|
||||
#else
|
||||
TORCH_CHECK(false, "Cannot query CuDNN Frontend version if ATen_cuda is not built with CuDNN");
|
||||
#endif
|
||||
}
|
||||
|
||||
long CUDAHooks::versionMIOpen() const {
|
||||
#if AT_ROCM_ENABLED()
|
||||
return MIOPEN_VERSION_MAJOR * 10000 +
|
||||
|
||||
@ -49,6 +49,8 @@ struct CUDAHooks : public at::CUDAHooksInterface {
|
||||
bool hasCUDART() const override;
|
||||
long versionCUDART() const override;
|
||||
long versionCuDNN() const override;
|
||||
long versionRuntimeCuDNN() const override;
|
||||
long versionCuDNNFrontend() const override;
|
||||
long versionMIOpen() const override;
|
||||
std::string showConfig() const override;
|
||||
double batchnormMinEpsilonCuDNN() const override;
|
||||
|
||||
@ -174,6 +174,14 @@ struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
|
||||
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
|
||||
}
|
||||
|
||||
virtual long versionRuntimeCuDNN() const {
|
||||
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
|
||||
}
|
||||
|
||||
virtual long versionCuDNNFrontend() const {
|
||||
TORCH_CHECK(false, "Cannot query cuDNN Frontend version without ATen_cuda library. ", CUDA_HELP);
|
||||
}
|
||||
|
||||
virtual long versionMIOpen() const {
|
||||
TORCH_CHECK(false, "Cannot query MIOpen version without ATen_cuda library. ", CUDA_HELP);
|
||||
}
|
||||
|
||||
@ -1009,12 +1009,25 @@ static Device correct_out_device(const Tensor& self, const Tensor& other) {
|
||||
}
|
||||
}
|
||||
|
||||
static Tensor send_to_meta(const Tensor& self, const Device& device) {
|
||||
Tensor out_meta;
|
||||
if (self._is_zerotensor() && self.unsafeGetTensorImpl()->is_wrapped_number()) {
|
||||
out_meta = at::_efficientzerotensor(self.sizes(), self.options().device(device));
|
||||
out_meta.unsafeGetTensorImpl()->set_wrapped_number(true);
|
||||
} else {
|
||||
out_meta = self.to(device);
|
||||
}
|
||||
return out_meta;
|
||||
}
|
||||
|
||||
Tensor mul_zerotensor(const Tensor& self, const Tensor& other) {
|
||||
auto out_device = correct_out_device(self, other);
|
||||
// hack to use the TensorIterator to get the correct broadcasting and type promotion logic
|
||||
auto device_ = Device(DeviceType::Meta);
|
||||
constexpr c10::DispatchKeySet meta_dks(at::DispatchKey::Meta);
|
||||
auto meta_out = at::_ops::mul_Tensor::redispatch(meta_dks, self.to(device_), other.to(device_));
|
||||
auto self_meta = send_to_meta(self, device_);
|
||||
auto other_meta = send_to_meta(other, device_);
|
||||
auto meta_out = at::_ops::mul_Tensor::redispatch(meta_dks, self_meta, other_meta);
|
||||
return at::_efficientzerotensor(meta_out.sizes(), meta_out.options().device(out_device));
|
||||
}
|
||||
|
||||
@ -1023,7 +1036,9 @@ Tensor div_zerotensor(const Tensor& self, const Tensor& other) {
|
||||
// hack to use the TensorIterator to get the correct broadcasting and type promotion logic
|
||||
auto device_ = Device(DeviceType::Meta);
|
||||
constexpr c10::DispatchKeySet meta_dks(at::DispatchKey::Meta);
|
||||
auto meta_out = at::_ops::div_Tensor::redispatch(meta_dks, self.to(device_), other.to(device_));
|
||||
auto self_meta = send_to_meta(self, device_);
|
||||
auto other_meta = send_to_meta(other, device_);
|
||||
auto meta_out = at::_ops::div_Tensor::redispatch(meta_dks, self_meta, other_meta);
|
||||
|
||||
if (self._is_zerotensor()) {
|
||||
if (other._is_zerotensor()) {
|
||||
@ -1052,8 +1067,9 @@ static Tensor maybe_add_maybe_sub(const Tensor& self, const Tensor& other, const
|
||||
// hack to use the TensorIterator to get the correct broadcasting and type promotion logic
|
||||
auto device_ = Device(DeviceType::Meta);
|
||||
constexpr c10::DispatchKeySet meta_dks(at::DispatchKey::Meta);
|
||||
auto meta_out = at::_ops::add_Tensor::redispatch(
|
||||
meta_dks, self.to(device_), other.to(device_), alpha);
|
||||
auto self_meta = send_to_meta(self, device_);
|
||||
auto other_meta = send_to_meta(other, device_);
|
||||
auto meta_out = at::_ops::add_Tensor::redispatch(meta_dks, self_meta, other_meta, alpha);
|
||||
|
||||
auto get_out_like = [&] (const Tensor& tensor)
|
||||
{
|
||||
|
||||
@ -409,7 +409,7 @@ struct ConvParams {
|
||||
if (!detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda() || !cudnn_enabled) {
|
||||
return false;
|
||||
}
|
||||
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
|
||||
static long cudnn_version = detail::getCUDAHooks().versionRuntimeCuDNN();
|
||||
// broken on cuDNN 9.8 - 9.14
|
||||
if (cudnn_version >= 90800 && cudnn_version < 91500) {
|
||||
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
|
||||
@ -453,7 +453,7 @@ struct ConvParams {
|
||||
}
|
||||
// native kernel doesn't support 64-bit non-splittable case
|
||||
if (!(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
|
||||
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionCuDNN() : -1;
|
||||
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionRuntimeCuDNN() : -1;
|
||||
// TODO(eqy): remove this once cuDNN fixes 64-bit depthwise support, first broken in 9.11x
|
||||
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
|
||||
if (cudnn_version < 0 || cudnn_version > 91000) {
|
||||
|
||||
@ -50,18 +50,35 @@ static inline bool parseLinearFlatten3d() {
|
||||
// `_flatten_nd_linear` flattens all but the last dimension of the input tensor
|
||||
// before passing it to linear operation
|
||||
static inline Tensor _flatten_nd_linear(const Tensor& input, const Tensor& weight, const Tensor& bias) {
|
||||
const auto input_sizes = input.sym_sizes();
|
||||
// can't use -1 in reshape because it errors when a dimension is 0
|
||||
c10::SymInt flattened_dim = 1;
|
||||
for (int64_t i = 0, ndim = input_sizes.size(); i < ndim - 1; ++i) {
|
||||
flattened_dim = flattened_dim * input_sizes[i];
|
||||
const auto input_sizes = input.sym_sizes();
|
||||
|
||||
const auto result_flattened = [&]() -> Tensor {
|
||||
const auto input_ncols = input_sizes.back();
|
||||
const auto input_flattened_nrows = [&]() -> c10::SymInt {
|
||||
// can't use -1 in reshape because it errors when a dimension is 0
|
||||
auto flattened_nrows = c10::SymInt{1};
|
||||
for (const auto& size : input_sizes.slice(0, input_sizes.size() - 1)) {
|
||||
flattened_nrows *= size;
|
||||
}
|
||||
return flattened_nrows;
|
||||
}();
|
||||
|
||||
const auto input_flattened = input.view_symint({input_flattened_nrows, input_ncols});
|
||||
if (weight.layout() == c10::kStrided) {
|
||||
return at::addmm(bias, input_flattened, weight.t());
|
||||
} else {
|
||||
// weight is sparse, and addmm for sparse expects matmul lhs to be sparse,
|
||||
// so we transpose the problem.
|
||||
// NOTE: at::matmul handles (dense @ sparse) similarly.
|
||||
const auto bias_t = (bias.dim() >= 2) ? bias.mT() : bias.unsqueeze(-1);
|
||||
return at::addmm(bias_t, weight, input_flattened.t()).t();
|
||||
}
|
||||
auto inp_reshape = input.reshape_symint({flattened_dim, input_sizes.at(input_sizes.size() -1)});
|
||||
const auto result = at::addmm(bias, inp_reshape, weight.t());
|
||||
auto new_size = input_sizes.slice(0, input_sizes.size() - 1);
|
||||
c10::SymDimVector sizes_vec(new_size.begin(), new_size.end());
|
||||
sizes_vec.push_back(result.sym_size(1));
|
||||
return result.view_symint(sizes_vec);
|
||||
}();
|
||||
|
||||
// Unflatten flattened row dims
|
||||
auto result_sizes = c10::SymDimVector{input_sizes.begin(), input_sizes.end()};
|
||||
result_sizes.back() = result_flattened.sym_size(1);
|
||||
return result_flattened.view_symint(result_sizes);
|
||||
}
|
||||
|
||||
|
||||
@ -90,15 +107,23 @@ Tensor linear(const Tensor& input, const Tensor& weight, const std::optional<Ten
|
||||
// Fused op is marginally faster.
|
||||
return at::addmm(*bias, input, weight.t());
|
||||
}
|
||||
if (bias->defined() && !input.is_xla()) {
|
||||
// Also hit the fused path for contiguous 3D input, if not using xla
|
||||
|
||||
const auto is_bias_likely_fusable = (
|
||||
bias->defined() &&
|
||||
// cuBLASLt: will fuse in the epilogue without copies
|
||||
// when input/weight/bias are all strided.
|
||||
// When weight is not strided, bias will not be fused,
|
||||
// but we can still dispatch here to avoid at::matmul
|
||||
// path which will probably use a very similar
|
||||
// flattening optimization.
|
||||
((bias->dim() == 1 || bias->squeeze().dim() == 1) && bias->is_contiguous_or_false())
|
||||
);
|
||||
if (is_bias_likely_fusable && !input.is_xla()) {
|
||||
// Also hit the fused path for contiguous nD input, if not using xla
|
||||
// backend. Reshaping/flattening has some performance implications on xla.
|
||||
bool is_contiguous = input.is_contiguous_or_false();
|
||||
if (is_contiguous && input_dim == 3) {
|
||||
if (input.is_contiguous_or_false()) {
|
||||
return _flatten_nd_linear(input, weight, *bias);
|
||||
} else if (is_contiguous && input.layout() == c10::kStrided && weight.layout() == c10::kStrided && bias->dim() == 1) {
|
||||
return _flatten_nd_linear(input, weight, *bias);
|
||||
} else if (parseLinearFlatten3d() && input_dim == 3) {
|
||||
} else if (parseLinearFlatten3d()) {
|
||||
// If user forces flattening via env var
|
||||
const Tensor input_cont = input.contiguous();
|
||||
return _flatten_nd_linear(input_cont, weight, *bias);
|
||||
|
||||
@ -1784,8 +1784,8 @@ Tensor narrow_tensor_symint(
|
||||
start.dim() == 0 &&
|
||||
isIntegralType(start.scalar_type(), /*includeBool=*/false),
|
||||
"start must be an 0-dim integral Tensor.");
|
||||
int64_t st = start.item<int64_t>();
|
||||
return at::narrow_symint(self, dim, c10::SymInt(st), std::move(length));
|
||||
c10::SymInt st = start.item().toSymInt();
|
||||
return at::narrow_symint(self, dim, std::move(st), std::move(length));
|
||||
}
|
||||
|
||||
std::
|
||||
|
||||
@ -247,8 +247,8 @@ void binary_kernel_reduce(TensorIteratorBase& iter, ops_t ops, init_t init) {
|
||||
});
|
||||
}
|
||||
|
||||
template <typename func_t, typename vec_func_t, typename ident_t = double>
|
||||
void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, ident_t ident = static_cast<ident_t>(0)) {
|
||||
template <typename func_t, typename vec_func_t>
|
||||
void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, double ident = 0) {
|
||||
using traits = binary_function_traits<func_t>;
|
||||
static_assert(
|
||||
all_same<
|
||||
|
||||
@ -339,13 +339,33 @@ void or_kernel_impl(TensorIterator& iter) {
|
||||
}
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
struct MinValuesOps: public at::native::MinOps<scalar_t> {
|
||||
using arg_t = typename MinOps<scalar_t>::arg_t;
|
||||
static scalar_t project(arg_t arg) {
|
||||
return arg.first;
|
||||
}
|
||||
};
|
||||
|
||||
void min_values_kernel_impl(TensorIterator& iter) {
|
||||
// This case is special because of Vectorized<int64_t> does not
|
||||
// handle upper_bound<int64_t>().
|
||||
// See: https://github.com/pytorch/pytorch/issues/43254
|
||||
if (iter.dtype() == kLong || iter.dtype() == kUInt64) {
|
||||
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
|
||||
binary_kernel_reduce(
|
||||
iter,
|
||||
MinValuesOps<scalar_t>{},
|
||||
std::pair<scalar_t, int64_t>(upper_bound<scalar_t>(), -1));
|
||||
}), kLong, kUInt64);
|
||||
return;
|
||||
}
|
||||
AT_DISPATCH_V2(iter.dtype(), "min_values_cpu", AT_WRAP([&iter] {
|
||||
binary_kernel_reduce_vec(
|
||||
iter,
|
||||
[](scalar_t a, scalar_t b) -> scalar_t { return min_impl(a, b); },
|
||||
[](Vectorized<scalar_t> a, Vectorized<scalar_t> b) { return minimum(a, b); },
|
||||
upper_bound<scalar_t>());
|
||||
static_cast<double>(upper_bound<scalar_t>()));
|
||||
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf, kBool);
|
||||
}
|
||||
|
||||
|
||||
@ -147,14 +147,24 @@ static bool isGloballyDisabledAddmmCudaLt(const at::Device& device) {
|
||||
/*
|
||||
* Check whether for the given input we want to enable the Lt interface
|
||||
*/
|
||||
static bool isInputCompliesAddmmCudaLt(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha) {
|
||||
static bool isInputCompliesAddmmCudaLt(
|
||||
Tensor& result,
|
||||
const Tensor& self,
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Scalar& beta,
|
||||
const Scalar& alpha,
|
||||
Activation activation
|
||||
) {
|
||||
#ifdef USE_ROCM
|
||||
// Implies 2D bias which we currently not send through Lt.
|
||||
// TODO: this check is done pre col-major input preparation,
|
||||
// so, this condition can be ralexed in cases when a col-major
|
||||
// copy of result is needed.
|
||||
if (result.is_same(self)) {
|
||||
if (self.is_same(result) || self.dim() == 2) {
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(USE_ROCM) && ROCM_VERSION == 60400
|
||||
// hipblaslt TT fp32 regression on ROCm 6.4, cannot use
|
||||
@ -169,13 +179,33 @@ static bool isInputCompliesAddmmCudaLt(Tensor& result, const Tensor& self, const
|
||||
#if defined(CUDA_VERSION) || defined(USE_ROCM)
|
||||
const auto scalar_type = mat1.scalar_type();
|
||||
return (beta.toComplexDouble() == 1.0
|
||||
// NOTE: row-major result is important when bias is 1D.
|
||||
// This is because Lt broadcasts 1D bias over the columns
|
||||
// while the aten::addmm API broadcasts it over the rows,
|
||||
// and this is in conjuction with the data preparation
|
||||
// procedure that does not transpose arguments with
|
||||
// col-major result. For col-major result we need
|
||||
// to explicitly transpose the problem so that bias is
|
||||
// correctly applied.
|
||||
// TODO: enable col-major result if needed.
|
||||
// TODO: no need to check result's layout when
|
||||
// !result.is_same(self) and self.dim() == 2, because
|
||||
// self needs to be copied into result and the bias ptr
|
||||
// will be ignored.
|
||||
&& result.dim() == 2 && result.is_contiguous()
|
||||
// Conditions for bias to be fusable
|
||||
&& (
|
||||
self.is_contiguous() &&
|
||||
// NOTE: fine to have 1-len dims to the left from the right-most one
|
||||
(self.dim() == 1 || self.squeeze().dim() == 1) &&
|
||||
self.sizes().back() == mat2_sizes[1]
|
||||
( // Conditions for bias to be fusable -- implies direct Lt path without copies.
|
||||
self.is_contiguous() &&
|
||||
// NOTE: fine to have 1-len dims to the left from the right-most one
|
||||
(self.dim() == 1 || self.squeeze().dim() == 1) &&
|
||||
self.sizes().back() == mat2_sizes[1]
|
||||
)
|
||||
|| ( // 2D bias restrictions. self.is_contiguous() is implicit when result.is_same(self),
|
||||
// and we need to copy self into result otherwise, so the self's layout becomes irrelevant.
|
||||
// See also TODO from above.
|
||||
activation != Activation::None && // Lt is faster when activation is fused
|
||||
(self.dim() == 2 && at::is_expandable_to(self.sizes(), {mat1_sizes[0], mat2_sizes[1]}))
|
||||
)
|
||||
)
|
||||
&& ( // some dtype restrictions
|
||||
#ifndef USE_ROCM
|
||||
@ -270,7 +300,16 @@ bool launchGemmAndBiasCublasLt(
|
||||
const Scalar& alpha,
|
||||
Activation activation = Activation::None
|
||||
) {
|
||||
const auto* self_ptr = self.const_data_ptr<scalar_t>();
|
||||
// We apply bias in the epilogue only when it is 1D,
|
||||
// or when it can be squeezed to 1D.
|
||||
// self_ptr == nullptr implies ignore bias epilogue
|
||||
// and use standard gemm-like API.
|
||||
const auto* self_ptr = [&]() -> auto {
|
||||
if (self.dim() == 1 || self.squeeze().dim() == 1) {
|
||||
return self.const_data_ptr<scalar_t>();
|
||||
}
|
||||
return static_cast<const scalar_t*>(nullptr);
|
||||
}();
|
||||
|
||||
const auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
@ -356,7 +395,7 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
disable_addmm_cuda_lt = isGloballyDisabledAddmmCudaLt(self.device()) || disable_addmm_cuda_lt;
|
||||
#endif
|
||||
// Condition on the input
|
||||
disable_addmm_cuda_lt = !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha) || disable_addmm_cuda_lt;
|
||||
disable_addmm_cuda_lt = !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha, activation) || disable_addmm_cuda_lt;
|
||||
// }
|
||||
|
||||
at::ScalarType scalar_type = mat1.scalar_type();
|
||||
@ -366,19 +405,20 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
if (!result.is_same(self)) {
|
||||
at::native::resize_output(result, {mat1.sizes()[0], mat2.sizes()[1]});
|
||||
|
||||
// We use bias ptr in the Lt path only when bias is 1D
|
||||
const auto use_bias_ptr_lt = (self.dim() == 1) && !disable_addmm_cuda_lt;
|
||||
const auto self_maybe_expanded = [&]() -> c10::MaybeOwned<Tensor> {
|
||||
if (disable_addmm_cuda_lt) {
|
||||
// When in non-Lt path we do expand self even before
|
||||
if (!use_bias_ptr_lt) {
|
||||
// We do expand self even before
|
||||
// check for beta != 0.0 to make sure that
|
||||
// test_sparse_csr.py::TestSparseCSRCUDA::test_addmm_errors_*
|
||||
// runs green.
|
||||
return expand_size(self, result.sizes(), "addmm");
|
||||
}
|
||||
// copy next, should broadcast
|
||||
return c10::MaybeOwned<Tensor>::borrowed(self);
|
||||
}();
|
||||
// We copy bias when in the non-Lt path
|
||||
if (beta.toComplexDouble() != 0.0 && disable_addmm_cuda_lt) {
|
||||
// We do not copy bias only when we need the bias ptr
|
||||
if (beta.toComplexDouble() != 0.0 && !use_bias_ptr_lt) {
|
||||
// NOTE: self should broadcast over result
|
||||
at::native::copy_(result, *self_maybe_expanded);
|
||||
}
|
||||
|
||||
@ -884,6 +884,69 @@ struct type_specialized_kernel_launcher {
|
||||
}
|
||||
};
|
||||
|
||||
template <int arg_index>
|
||||
struct type_specialized_broadcast_kernel_launcher {
|
||||
template <
|
||||
typename func_t,
|
||||
typename array_t,
|
||||
typename dtypes_t,
|
||||
typename calc_t>
|
||||
static void apply(
|
||||
int64_t numel,
|
||||
func_t f,
|
||||
array_t data,
|
||||
dtypes_t dtypes,
|
||||
calc_t offset_calc) {
|
||||
using traits = function_traits<func_t>;
|
||||
using ret_t = typename traits::result_type;
|
||||
using arg0_t = typename traits::template arg<0>::type;
|
||||
using arg1_t = typename traits::template arg<1>::type;
|
||||
if (dtypes[0] == rt_binary_specializations[arg_index][0] &&
|
||||
dtypes[1] == rt_binary_specializations[arg_index][1] &&
|
||||
dtypes[2] == rt_binary_specializations[arg_index][2]) {
|
||||
using ret_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][0]>;
|
||||
using arg0_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][1]>;
|
||||
using arg1_cpp_t = c10::impl::ScalarTypeToCPPTypeT<rt_binary_specializations[arg_index][2]>;
|
||||
constexpr int grp_sz = 128;
|
||||
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
|
||||
if (unrl) {
|
||||
auto offsets0 = offset_calc.get(idx);
|
||||
auto offsets1 = offset_calc.get(idx + grp_sz);
|
||||
auto offsets2 = offset_calc.get(idx + grp_sz * 2);
|
||||
auto offsets3 = offset_calc.get(idx + grp_sz * 3);
|
||||
void* out0 = data[0] + offsets0[0];
|
||||
void* out1 = data[0] + offsets1[0];
|
||||
void* out2 = data[0] + offsets2[0];
|
||||
void* out3 = data[0] + offsets3[0];
|
||||
auto u = c10::load<arg0_cpp_t>(data[1] + offsets0[1]);
|
||||
auto v = c10::load<arg1_cpp_t>(data[2] + offsets0[2]);
|
||||
ret_t result0 = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
|
||||
auto u1 = c10::load<arg0_cpp_t>(data[1] + offsets1[1]);
|
||||
auto v1 = c10::load<arg1_cpp_t>(data[2]+ offsets1[2]);
|
||||
ret_t result1 = f(c10::convert<arg0_t>(u1), c10::convert<arg1_t>(v1));
|
||||
auto u2 = c10::load<arg0_cpp_t>(data[1] + offsets2[1]);
|
||||
auto v2 = c10::load<arg1_cpp_t>(data[2] + offsets2[2]);
|
||||
ret_t result2 = f(c10::convert<arg0_t>(u2), c10::convert<arg1_t>(v2));
|
||||
auto u3 = c10::load<arg0_cpp_t>(data[1] + offsets3[1]);
|
||||
auto v3 = c10::load<arg1_cpp_t>(data[2] + offsets3[2]);
|
||||
ret_t result3 = f(c10::convert<arg0_t>(u3), c10::convert<arg1_t>(v3));
|
||||
*(ret_cpp_t*)out0 = c10::convert<ret_cpp_t>(result0);
|
||||
*(ret_cpp_t*)out1 = c10::convert<ret_cpp_t>(result1);
|
||||
*(ret_cpp_t*)out2 = c10::convert<ret_cpp_t>(result2);
|
||||
*(ret_cpp_t*)out3 = c10::convert<ret_cpp_t>(result3);
|
||||
} else {
|
||||
auto offsets = offset_calc.get(idx);
|
||||
void* out = data[0] + offsets[0];
|
||||
auto u = c10::load<arg0_cpp_t>(data[1] + offsets[1]);
|
||||
auto v = c10::load<arg1_cpp_t>(data[2] + offsets[2]);
|
||||
ret_t result = f(c10::convert<arg0_t>(u), c10::convert<arg1_t>(v));
|
||||
*(ret_cpp_t*)out = c10::convert<ret_cpp_t>(result);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
#endif
|
||||
|
||||
@ -1002,6 +1065,32 @@ void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
|
||||
}
|
||||
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
|
||||
#ifdef USE_ROCM
|
||||
if (check_binary_rt_types_for_specialization(iter)) {
|
||||
// constexpr to reduce the amount of kernels generated for
|
||||
// broadcast elementwise with mexed dtypes and limit which functors are actually
|
||||
// applied to the load and store at compile time.
|
||||
using func_tuple = typename traits::ArgsTuple;
|
||||
if constexpr (
|
||||
std::is_same_v<float, arg0_t> && traits::arity == 2 &&
|
||||
check_binary_functor_types_for_specialization<
|
||||
func_tuple,
|
||||
float,
|
||||
float,
|
||||
traits::arity,
|
||||
/*arg_num=*/0>::check()) {
|
||||
memory::detail::static_unroll<
|
||||
type_specialized_broadcast_kernel_launcher,
|
||||
rt_binary_specializations.size()>::with_args(
|
||||
numel,
|
||||
f,
|
||||
data,
|
||||
dtypes,
|
||||
offset_calc
|
||||
);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int grp_sz = 128;
|
||||
launch_legacy_kernel_manual_unroll<grp_sz, 4>(numel, [=] GPU_LAMBDA(int idx, bool unrl) {
|
||||
if (unrl) {
|
||||
|
||||
@ -133,7 +133,7 @@ at::Tensor quantized_convolution(
|
||||
// supported in conv.
|
||||
mask_weight = weight_zero_points.numel() > 1 ? 1 : 0;
|
||||
if (groups > 1 && weight_zero_points.numel() > 1)
|
||||
mask_weight = (2 ^ 0) | (2 ^ 1); // 2^0 (group) | 2^1 (output channel)
|
||||
mask_weight = (1 << 0) | (1 << 1); // 2^0 (group) | 2^1 (output channel)
|
||||
dnnl::primitive_attr pattr;
|
||||
|
||||
bool src_need_zp = (act_zero_point != 0);
|
||||
|
||||
@ -212,17 +212,12 @@ static Tensor& bce_loss_out_impl(const Tensor& input,
|
||||
loss.resize_((reduction == Reduction::None || grad_output.defined()) ? target.sizes() : IntArrayRef({}));
|
||||
TORCH_CHECK(loss.is_mps());
|
||||
|
||||
Tensor loss_squeezed = loss.squeeze();
|
||||
Tensor input_squeezed = input.squeeze();
|
||||
Tensor target_squeezed = target.squeeze();
|
||||
|
||||
@autoreleasepool {
|
||||
std::string key =
|
||||
op_name + reductionToString(reduction) + getTensorsStringKey({input_squeezed, target_squeezed, weight});
|
||||
std::string key = op_name + reductionToString(reduction) + getTensorsStringKey({input, target, weight});
|
||||
|
||||
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
|
||||
newCachedGraph->inputTensor = mpsGraphRankedPlaceHolder(mpsGraph, input_squeezed);
|
||||
newCachedGraph->targetTensor = mpsGraphRankedPlaceHolder(mpsGraph, target_squeezed);
|
||||
newCachedGraph->inputTensor = mpsGraphRankedPlaceHolder(mpsGraph, input);
|
||||
newCachedGraph->targetTensor = mpsGraphRankedPlaceHolder(mpsGraph, target);
|
||||
|
||||
MPSGraphTensor* bceLossUnweighted = nil;
|
||||
// if grad_output is defined, then it's a backward pass
|
||||
@ -252,12 +247,12 @@ static Tensor& bce_loss_out_impl(const Tensor& input,
|
||||
newCachedGraph->gradInputTensor = bceLoss;
|
||||
}
|
||||
} else {
|
||||
newCachedGraph->lossTensor = reduceTensor(bceLoss, reduction, mpsGraph, input_squeezed.sizes().size());
|
||||
newCachedGraph->lossTensor = reduceTensor(bceLoss, reduction, mpsGraph, input.sizes().size());
|
||||
}
|
||||
});
|
||||
Placeholder inputPlaceholder = Placeholder(cachedGraph->inputTensor, input_squeezed);
|
||||
Placeholder targetPlaceholder = Placeholder(cachedGraph->targetTensor, target_squeezed);
|
||||
Placeholder lossPlaceholder = Placeholder(cachedGraph->lossTensor, loss_squeezed);
|
||||
Placeholder inputPlaceholder = Placeholder(cachedGraph->inputTensor, input);
|
||||
Placeholder targetPlaceholder = Placeholder(cachedGraph->targetTensor, target);
|
||||
Placeholder lossPlaceholder = Placeholder(cachedGraph->lossTensor, loss);
|
||||
|
||||
NSMutableDictionary* feeds = [[NSMutableDictionary new] autorelease];
|
||||
|
||||
|
||||
@ -478,7 +478,7 @@ bool check_cudnn_tensor_shapes(sdp_params const& params, bool debug) {
|
||||
const auto s_k = params.key.sym_size(2);
|
||||
const auto d_qk = params.query.sym_size(3);
|
||||
const auto d_v = params.value.sym_size(3);
|
||||
long cudnn_version = at::detail::getCUDAHooks().versionCuDNN();
|
||||
long cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
|
||||
if (cudnn_version < 8903) {
|
||||
if (debug) {
|
||||
TORCH_WARN("SDPA fprop requires cudnn 8.9.3 or higher");
|
||||
@ -709,7 +709,7 @@ bool can_use_cudnn_attention(const sdp_params& params, bool debug) {
|
||||
return false;
|
||||
#endif
|
||||
#if defined(CUDNN_VERSION)
|
||||
static auto cudnn_version = cudnnGetVersion();
|
||||
static auto cudnn_version = at::detail::getCUDAHooks().versionRuntimeCuDNN();
|
||||
if (params.dropout > 0.0 && cudnn_version > 91100 && cudnn_version < 91400) {
|
||||
if (debug) {
|
||||
TORCH_WARN(CUDNN_VERSION, " cuDNN version does not support droppout in SDPA (9.11 - 9.13).");
|
||||
|
||||
@ -53,10 +53,8 @@ class AddmmBenchmark(op_bench.TorchBenchmarkBase):
|
||||
return torch.addmm(input_one, mat1, mat2)
|
||||
|
||||
|
||||
op_bench.generate_pt_test(addmm_long_configs + addmm_long_configs, AddmmBenchmark)
|
||||
op_bench.generate_pt_gradient_test(
|
||||
addmm_long_configs + addmm_long_configs, AddmmBenchmark
|
||||
)
|
||||
op_bench.generate_pt_test(addmm_short_configs + addmm_long_configs, AddmmBenchmark)
|
||||
op_bench.generate_pt_gradient_test(addmm_long_configs, AddmmBenchmark)
|
||||
|
||||
"""Mircobenchmark for addbmm operator."""
|
||||
|
||||
@ -107,9 +105,7 @@ addbmm_short_configs = op_bench.cross_product_configs(
|
||||
)
|
||||
|
||||
op_bench.generate_pt_test(addbmm_long_configs + addbmm_short_configs, AddbmmBenchmark)
|
||||
op_bench.generate_pt_gradient_test(
|
||||
addbmm_long_configs + addbmm_short_configs, AddbmmBenchmark
|
||||
)
|
||||
op_bench.generate_pt_gradient_test(addbmm_long_configs, AddbmmBenchmark)
|
||||
|
||||
if __name__ == "__main__":
|
||||
op_bench.benchmark_runner.main()
|
||||
|
||||
@ -106,6 +106,9 @@ void CUDAAllocatorConfig::parseArgs(const std::string& env) {
|
||||
} else if (key == "graph_capture_record_stream_reuse") {
|
||||
i = parseGraphCaptureRecordStreamReuse(tokenizer, i);
|
||||
used_native_specific_option = true;
|
||||
} else if (key == "per_process_memory_fraction") {
|
||||
i = parsePerProcessMemoryFraction(tokenizer, i);
|
||||
used_native_specific_option = true;
|
||||
} else {
|
||||
const auto& keys =
|
||||
c10::CachingAllocator::AcceleratorAllocatorConfig::getKeys();
|
||||
@ -146,6 +149,18 @@ size_t CUDAAllocatorConfig::parseGraphCaptureRecordStreamReuse(
|
||||
return i;
|
||||
}
|
||||
|
||||
double CUDAAllocatorConfig::parsePerProcessMemoryFraction(
|
||||
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
|
||||
size_t i) {
|
||||
tokenizer.checkToken(++i, ":");
|
||||
double val_env = tokenizer.toDouble(++i);
|
||||
TORCH_CHECK_VALUE(
|
||||
val_env >= 0.0 && val_env <= 1.0,
|
||||
"per_process_memory_fraction is invalid, set it in [0.0, 1.0]");
|
||||
m_per_process_memory_fraction = val_env;
|
||||
return i;
|
||||
}
|
||||
|
||||
size_t CUDAAllocatorConfig::parsePinnedNumRegisterThreads(
|
||||
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
|
||||
size_t i) {
|
||||
|
||||
@ -61,6 +61,10 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
return instance().m_graph_capture_record_stream_reuse;
|
||||
}
|
||||
|
||||
static double per_process_memory_fraction() {
|
||||
return instance().m_per_process_memory_fraction;
|
||||
}
|
||||
|
||||
/** Pinned memory allocator settings */
|
||||
static bool pinned_use_cuda_host_register() {
|
||||
return instance().m_pinned_use_cuda_host_register;
|
||||
@ -152,7 +156,8 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
"pinned_use_hip_host_register",
|
||||
"graph_capture_record_stream_reuse",
|
||||
"pinned_reserve_segment_size_mb",
|
||||
"pinned_num_register_threads"};
|
||||
"pinned_num_register_threads",
|
||||
"per_process_memory_fraction"};
|
||||
return keys;
|
||||
}
|
||||
|
||||
@ -177,6 +182,9 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
size_t parseGraphCaptureRecordStreamReuse(
|
||||
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
|
||||
size_t i);
|
||||
double parsePerProcessMemoryFraction(
|
||||
const c10::CachingAllocator::ConfigTokenizer& tokenizer,
|
||||
size_t i);
|
||||
|
||||
std::atomic<size_t> m_pinned_num_register_threads{1};
|
||||
std::atomic<size_t> m_pinned_reserve_segment_size_mb{0};
|
||||
@ -189,6 +197,7 @@ class C10_CUDA_API CUDAAllocatorConfig {
|
||||
std::atomic<bool> m_release_lock_on_cudamalloc{false};
|
||||
std::atomic<bool> m_pinned_use_cuda_host_register{false};
|
||||
std::atomic<bool> m_graph_capture_record_stream_reuse{false};
|
||||
std::atomic<double> m_per_process_memory_fraction{1.0};
|
||||
};
|
||||
|
||||
// Keep this for backwards compatibility
|
||||
|
||||
@ -1100,7 +1100,7 @@ class RingBuffer {
|
||||
} // anonymous namespace
|
||||
} // namespace Native
|
||||
|
||||
static std::string reportProcessMemoryInfo(c10::DeviceIndex device) {
|
||||
static std::string reportProcessMemoryInfo(const cudaDeviceProp& prop) {
|
||||
#ifdef PYTORCH_C10_DRIVER_API_SUPPORTED
|
||||
void* nvml_handle = DriverAPI::get_nvml_handle();
|
||||
if (!nvml_handle) {
|
||||
@ -1111,9 +1111,6 @@ static std::string reportProcessMemoryInfo(c10::DeviceIndex device) {
|
||||
return true;
|
||||
}();
|
||||
|
||||
cudaDeviceProp prop{};
|
||||
C10_CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
||||
|
||||
// NOLINTNEXTLINE(*-c-arrays)
|
||||
char pci_id[80];
|
||||
snprintf(
|
||||
@ -1215,14 +1212,16 @@ class DeviceCachingAllocator {
|
||||
// record used memory.
|
||||
size_t total_allocated_memory = 0;
|
||||
|
||||
size_t allowed_memory_maximum = 0;
|
||||
cudaDeviceProp device_prop;
|
||||
|
||||
// maximum amount of memory that device is allowed to
|
||||
// allocate. This is set iff memory fraction is less than 1
|
||||
std::optional<size_t> allowed_memory_maximum{std::nullopt};
|
||||
|
||||
// all live expandable segments
|
||||
std::vector<ExpandableSegment*> expandable_segments_;
|
||||
std::vector<c10::DeviceIndex> devices_with_peer_access_;
|
||||
|
||||
bool set_fraction = false;
|
||||
|
||||
bool record_history = false;
|
||||
|
||||
std::atomic<CreateContextFn> context_recorder_;
|
||||
@ -1264,6 +1263,9 @@ class DeviceCachingAllocator {
|
||||
: device_id(id),
|
||||
large_blocks(/*small=*/false),
|
||||
small_blocks(/*small=*/true) {
|
||||
C10_CUDA_CHECK(cudaGetDeviceProperties(&device_prop, id));
|
||||
|
||||
setMemoryFraction(CUDAAllocatorConfig::per_process_memory_fraction());
|
||||
stats.max_split_size =
|
||||
static_cast<int64_t>(AcceleratorAllocatorConfig::max_split_size());
|
||||
context_recorder_.store(nullptr);
|
||||
@ -1399,7 +1401,7 @@ class DeviceCachingAllocator {
|
||||
if (!block_found) {
|
||||
// Do garbage collection if the flag is set.
|
||||
if (C10_UNLIKELY(
|
||||
set_fraction &&
|
||||
allowed_memory_maximum.has_value() &&
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold() >
|
||||
0.0)) {
|
||||
garbage_collect_cached_blocks(context);
|
||||
@ -1456,11 +1458,12 @@ class DeviceCachingAllocator {
|
||||
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
||||
std::string allowed_info;
|
||||
|
||||
if (set_fraction) {
|
||||
allowed_info = format_size(allowed_memory_maximum) + " allowed; ";
|
||||
if (allowed_memory_maximum.has_value()) {
|
||||
allowed_info =
|
||||
format_size(allowed_memory_maximum.value()) + " allowed; ";
|
||||
}
|
||||
|
||||
std::string proc_info = reportProcessMemoryInfo(device_id);
|
||||
std::string proc_info = reportProcessMemoryInfo(device_prop);
|
||||
|
||||
record_trace(
|
||||
TraceEntry::OOM,
|
||||
@ -1518,7 +1521,7 @@ class DeviceCachingAllocator {
|
||||
for (const auto& obs : observers_local) {
|
||||
obs(device_id,
|
||||
alloc_size,
|
||||
set_fraction ? allowed_memory_maximum : device_total,
|
||||
allowed_memory_maximum.value_or(device_total),
|
||||
device_free);
|
||||
}
|
||||
|
||||
@ -2015,25 +2018,26 @@ class DeviceCachingAllocator {
|
||||
|
||||
/** get memory fraction limiting maximum allocated memory **/
|
||||
double getMemoryFraction() {
|
||||
if (!set_fraction) {
|
||||
if (!allowed_memory_maximum.has_value()) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
size_t device_free = 0;
|
||||
size_t device_total = 0;
|
||||
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
||||
return static_cast<double>(allowed_memory_maximum) /
|
||||
static_cast<double>(device_total);
|
||||
return static_cast<double>(allowed_memory_maximum.value()) /
|
||||
static_cast<double>(device_prop.totalGlobalMem);
|
||||
}
|
||||
|
||||
/** set memory fraction to limit maximum allocated memory **/
|
||||
void setMemoryFraction(double fraction) {
|
||||
size_t device_free = 0;
|
||||
size_t device_total = 0;
|
||||
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
||||
allowed_memory_maximum =
|
||||
static_cast<size_t>(fraction * static_cast<double>(device_total));
|
||||
set_fraction = true;
|
||||
TORCH_CHECK(
|
||||
0 <= fraction && fraction <= 1,
|
||||
"invalid fraction:",
|
||||
fraction,
|
||||
". Please set within [0, 1].");
|
||||
allowed_memory_maximum = std::nullopt;
|
||||
if (fraction < 1.0) {
|
||||
allowed_memory_maximum = static_cast<size_t>(
|
||||
fraction * static_cast<double>(device_prop.totalGlobalMem));
|
||||
}
|
||||
}
|
||||
|
||||
/** get expandable segment size for all the streams on device **/
|
||||
@ -3010,7 +3014,7 @@ class DeviceCachingAllocator {
|
||||
BlockPool& pool = *p.pool;
|
||||
|
||||
if (C10_UNLIKELY(
|
||||
set_fraction &&
|
||||
allowed_memory_maximum.has_value() &&
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold() > 0.0)) {
|
||||
// Track block reuse interval only when garbage collection is enabled.
|
||||
++pool.get_free_blocks_call_count;
|
||||
@ -3083,7 +3087,7 @@ class DeviceCachingAllocator {
|
||||
|
||||
size_t gc_threshold = static_cast<size_t>(
|
||||
AcceleratorAllocatorConfig::garbage_collection_threshold() *
|
||||
static_cast<double>(allowed_memory_maximum));
|
||||
static_cast<double>(allowed_memory_maximum.value()));
|
||||
// No need to trigger GC yet
|
||||
if (total_allocated_memory <= gc_threshold) {
|
||||
return;
|
||||
@ -3161,8 +3165,8 @@ class DeviceCachingAllocator {
|
||||
|
||||
bool active_pool =
|
||||
p.pool->owner_PrivatePool && p.pool->owner_PrivatePool->allocator();
|
||||
if (set_fraction &&
|
||||
total_allocated_memory + size > allowed_memory_maximum) {
|
||||
if (allowed_memory_maximum.has_value() &&
|
||||
total_allocated_memory + size > allowed_memory_maximum.value()) {
|
||||
p.err = cudaErrorMemoryAllocation;
|
||||
return false;
|
||||
// Temporarily disable checkpointing & cudagraphs internally
|
||||
@ -3859,7 +3863,6 @@ class NativeCachingAllocator : public CUDAAllocator {
|
||||
"Allocator not initialized for device ",
|
||||
device,
|
||||
": did you call init?");
|
||||
C10_CUDA_CHECK(c10::cuda::SetDevice(device));
|
||||
return device_allocator[device]->getMemoryFraction();
|
||||
}
|
||||
|
||||
@ -3869,12 +3872,6 @@ class NativeCachingAllocator : public CUDAAllocator {
|
||||
"Allocator not initialized for device ",
|
||||
device,
|
||||
": did you call init?");
|
||||
TORCH_CHECK(
|
||||
0 <= fraction && fraction <= 1,
|
||||
"invalid fraction:",
|
||||
fraction,
|
||||
". Please set within [0, 1].");
|
||||
C10_CUDA_CHECK(c10::cuda::SetDevice(device));
|
||||
device_allocator[device]->setMemoryFraction(fraction);
|
||||
}
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
|
||||
#include <c10/core/AllocatorConfig.h>
|
||||
#include <c10/core/CachingDeviceAllocator.h>
|
||||
#include <c10/cuda/CUDAAllocatorConfig.h>
|
||||
#include <c10/cuda/CUDAGraphsC10Utils.h>
|
||||
#include <c10/cuda/CUDAMacros.h>
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
|
||||
@ -427,7 +427,6 @@ struct CudaMallocAsyncAllocator : public CUDAAllocator {
|
||||
// on the current device each later call sees.
|
||||
void init(int dev_count) override {
|
||||
static bool called = [](int dev_count) {
|
||||
;
|
||||
// Are there external guarantees init will be called before
|
||||
// any of the allocator's other functions?
|
||||
// std::lock_guard<std::mutex> lk(general_mutex);
|
||||
|
||||
@ -1941,6 +1941,7 @@ if(BUILD_TEST)
|
||||
foreach(test_src ${Caffe2_XPU_TEST_SRCS})
|
||||
get_filename_component(test_name ${test_src} NAME_WE)
|
||||
add_executable(${test_name} "${test_src}")
|
||||
torch_compile_options(${test_name})
|
||||
target_link_libraries(${test_name} torch_library gtest_main)
|
||||
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
|
||||
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
|
||||
|
||||
@ -73,6 +73,19 @@ void box_cox_zero_lambda(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
at::vec::Vectorized<T> box_cox_nonzero_lambda_impl(
|
||||
at::vec::Vectorized<T> data,
|
||||
at::vec::Vectorized<T> lambda1,
|
||||
at::vec::Vectorized<T> lambda2,
|
||||
at::vec::Vectorized<T> k_eps) {
|
||||
auto sum = data + lambda2;
|
||||
auto max = at::vec::max(sum, k_eps);
|
||||
auto lambda_over_1 = at::vec::fast_recieprocal(lambda1);
|
||||
auto pow = max.pow(lambda1);
|
||||
return at::vec::fmsub(pow, lambda_over_1, lambda_over_1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void box_cox_nonzero_lambda(
|
||||
int64_t D,
|
||||
@ -88,21 +101,18 @@ void box_cox_nonzero_lambda(
|
||||
auto k_eps_vec = Vec(k_eps);
|
||||
for(; j + VLEN < D; j += VLEN) {
|
||||
auto data = Vec::loadu(data_ptr + j);
|
||||
auto lambda2 = Vec::loadu(lambda2_ptr + j);
|
||||
auto sum = data + lambda2;
|
||||
auto max = at::vec::max(sum, k_eps_vec);
|
||||
auto lambda1 = Vec::loadu(lambda1_ptr + j);
|
||||
auto lambda_over_1 = at::vec::fast_recieprocal(lambda1);
|
||||
auto pow = max.pow(lambda1);
|
||||
auto res = at::vec::fmsub(pow, lambda_over_1, lambda_over_1);
|
||||
auto lambda2 = Vec::loadu(lambda2_ptr + j);
|
||||
auto res = box_cox_nonzero_lambda_impl(data, lambda1, lambda2, k_eps_vec);
|
||||
res.store(out + j);
|
||||
}
|
||||
for ( ;j < D; ++j) {
|
||||
auto sum = data_ptr[j] + lambda2_ptr[j];
|
||||
auto max = std::max(sum, k_eps);
|
||||
auto lambda_over_1 = at::vec::fast_recieprocal(lambda1_ptr[j]);
|
||||
auto pow = std::pow(max, lambda1_ptr[j]);
|
||||
out[j] = pow * lambda_over_1 - lambda_over_1;
|
||||
if (j < D) {
|
||||
auto remaining = D - j;
|
||||
auto data = Vec::loadu(data_ptr + j, remaining);
|
||||
auto lambda1 = Vec::loadu(lambda1_ptr + j, remaining);
|
||||
auto lambda2 = Vec::loadu(lambda2_ptr + j, remaining);
|
||||
auto res = box_cox_nonzero_lambda_impl(data, lambda1, lambda2, k_eps_vec);
|
||||
res.store(out + j, remaining);
|
||||
}
|
||||
}
|
||||
#else
|
||||
|
||||
@ -206,6 +206,41 @@ templates_path = [
|
||||
os.path.join(os.path.dirname(pytorch_sphinx_theme2.__file__), "templates"),
|
||||
]
|
||||
# TODO: document these and remove them from here.
|
||||
# Fixes the duplicated
|
||||
autosummary_filename_map = {
|
||||
"torch.nn.utils.prune.identity": "torch.nn.utils.prune.identity_function",
|
||||
"torch.nn.utils.prune.Identity": "torch.nn.utils.prune.Identity_class",
|
||||
"torch.optim.adamw.adamw": "torch.optim.adamw.adamw_function",
|
||||
"torch.optim.adamw.AdamW": "torch.optim.adamw.AdamW_class",
|
||||
"torch.optim.asgd.asgd": "torch.optim.asgd.asgd_function",
|
||||
"torch.optim.asgd.ASGD": "torch.optim.asgd.ASGD_class",
|
||||
"torch.optim.nadam.nadam": "torch.optim.nadam.nadam_function",
|
||||
"torch.optim.nadam.NAdam": "torch.optim.nadam.NAdam_class",
|
||||
"torch.optim.radam.radam": "torch.optim.radam.radam_function",
|
||||
"torch.optim.radam.RAdam": "torch.optim.radam.RAdam_class",
|
||||
"torch.optim.rmsprop.rmsprop": "torch.optim.rmsprop.rmsprop_function",
|
||||
"torch.optim.rmsprop.RMSprop": "torch.optim.rmsprop.RMSprop_class",
|
||||
"torch.optim.rprop.rprop": "torch.optim.rprop.rprop_function",
|
||||
"torch.optim.rprop.Rprop": "torch.optim.rprop.Rprop_class",
|
||||
"torch.optim.sgd.sgd": "torch.optim.sgd.sgd_function",
|
||||
"torch.optim.sgd.SGD": "torch.optim.sgd.SGD_class",
|
||||
"torch.optim.adadelta.adadelta": "torch.optim.adadelta.adadelta_function",
|
||||
"torch.optim.adadelta.Adadelta": "torch.optim.adadelta.Adadelta_class",
|
||||
"torch.optim.adagrad.adagrad": "torch.optim.adagrad.adagrad_function",
|
||||
"torch.optim.adagrad.Adagrad": "torch.optim.adagrad.Adagrad_class",
|
||||
"torch.optim.adam.adam": "torch.optim.adam.adam_function",
|
||||
"torch.optim.adam.Adam": "torch.optim.adam.Adam_class",
|
||||
"torch.optim.adamax.adamax": "torch.optim.adamax.adamax_function",
|
||||
"torch.optim.adamax.Adamax": "torch.optim.adamax.Adamax_class",
|
||||
"torch.mtia.stream": "torch.mtia.stream_function",
|
||||
"torch.mtia.Stream": "torch.mtia.Stream_class",
|
||||
"torch.cpu.stream": "torch.cpu.stream_function",
|
||||
"torch.cpu.Stream": "torch.cpu.Stream_class",
|
||||
"torch.cuda.stream": "torch.cuda.stream_function",
|
||||
"torch.cuda.Stream": "torch.cuda.Stream_class",
|
||||
"torch.xpu.stream": "torch.xpu.stream_function",
|
||||
"torch.xpu.Stream": "torch.xpu.Stream_class",
|
||||
}
|
||||
|
||||
coverage_ignore_functions = [
|
||||
# torch
|
||||
@ -3195,6 +3230,11 @@ autodoc_type_aliases = {
|
||||
# Enable overriding of function signatures in the first line of the docstring.
|
||||
autodoc_docstring_signature = True
|
||||
|
||||
# Exclude inherited IntEnum methods that have RST formatting issues in their docstrings
|
||||
autodoc_default_options = {
|
||||
"exclude-members": "from_bytes, to_bytes",
|
||||
}
|
||||
|
||||
# -- katex javascript in header
|
||||
#
|
||||
# def setup(app):
|
||||
|
||||
@ -619,6 +619,10 @@ Available options:
|
||||
and reallocate buffers across multiple streams, especially when the capture DAG frequently
|
||||
reaches joined frontiers.
|
||||
|
||||
* ``per_process_memory_fraction`` option limits the amount of memory that can be allocated
|
||||
on all the CUDA devices to a specified fraction of the available memory. This is a value
|
||||
between 0 and 1. Attempting to allocate more memory will raise an out of memory error.
|
||||
|
||||
.. note::
|
||||
|
||||
Some stats reported by the
|
||||
|
||||
@ -46,6 +46,108 @@ These headers are promised to be ABI stable across releases and adhere to a stro
|
||||
Unless absolutely necessary, we recommend the high-level C++ API in `torch/csrc/stable`
|
||||
which will handle all the rough edges of the C API for the user.
|
||||
|
||||
## Migrating your kernel to the LibTorch stable ABI
|
||||
|
||||
If you'd like your kernel to be ABI stable with LibTorch, meaning you'd the ability to build for one version and run on another, your kernel must only use the limited stable ABI. This following section goes through some steps of migrating an existing kernel and APIs we imagine you would need to swap over.
|
||||
|
||||
Firstly, instead of registering kernels through `TORCH_LIBRARY`, LibTorch ABI stable kernels must be registered via `STABLE_TORCH_LIBRARY`. Note that, for the time being, implementations registered via `STABLE_TORCH_LIBRARY` must be boxed unlike `TORCH_LIBRARY`. See the simple example below or our docs on [Stack-based APIs](stack-based-apis) for more details. For kernels that are registered via `pybind`, before using the stable ABI, it would be useful to migrate to register them via `TORCH_LIBRARY`.
|
||||
|
||||
While previously your kernels might have included APIs from `<torch/*.h>` (for example, `<torch/all.h>`), they are now limited to including from the 3 categories of headers mentioned above (`torch/csrc/stable/*.h`, `torch/headeronly/*.h` and the stable C headers). This means that your extension should no longer use any utilities from the `at::` or `c10::` namespaces but instead use their replacements in `torch::stable` and `torch::headeronly`. To provide a couple examples of the necessary migrations:
|
||||
- all uses of `at::Tensor` must be replaced with `torch::stable::Tensor`
|
||||
- all uses of `TORCH_CHECK` must be replaced with `STD_TORCH_CHECK`
|
||||
- all uses of `at::kCUDA` must be replaced with `torch::headeronly::kCUDA` etc.
|
||||
- native functions such as `at::pad` must be replaced with `torch::stable::pad`
|
||||
- native functions that are called as Tensor methods (e.g., `Tensor.pad`) must be replaced with the ATen variant through `torch::stable::pad`.
|
||||
|
||||
As mentioned above, the LibTorch stable ABI is still under development. If there is any API or feature you would like to see added to the stable ABI/`torch::headeronly`/`torch::stable`, please file a request through a [new issue on the PyTorch repo](https://github.com/pytorch/pytorch/issues).
|
||||
|
||||
Below is a simple example of migrating an existing kernel that uses `TORCH_LIBRARY` to the stable ABI (`TORCH_STABLE_LIBRARY`). For a larger end to end example you can take a look at the FA3 repository. Specifically the diff between [`flash_api.cpp`](https://github.com/Dao-AILab/flash-attention/blob/ad70a007e6287d4f7e766f94bcf2f9a813f20f6b/hopper/flash_api.cpp#L1) and the stable variant [`flash_api_stable.cpp`](https://github.com/Dao-AILab/flash-attention/blob/ad70a007e6287d4f7e766f94bcf2f9a813f20f6b/hopper/flash_api_stable.cpp#L1).
|
||||
|
||||
|
||||
### Original Version with `TORCH_LIBRARY`
|
||||
|
||||
```cpp
|
||||
// original_kernel.cpp - Using TORCH_LIBRARY (not stable ABI)
|
||||
#include <torch/torch.h>
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
namespace myops {
|
||||
|
||||
// Simple kernel that adds a scalar value to each element of a tensor
|
||||
at::Tensor add_scalar(const at::Tensor& input, double scalar) {
|
||||
TORCH_CHECK(input.scalar_type() == at::kFloat, "Input must be float32");
|
||||
|
||||
return input.add(scalar);
|
||||
}
|
||||
|
||||
// Register the operator
|
||||
TORCH_LIBRARY(myops, m) {
|
||||
m.def("add_scalar(Tensor input, float scalar) -> Tensor", &add_scalar);
|
||||
}
|
||||
|
||||
// Register the implementation
|
||||
TORCH_LIBRARY_IMPL(myops, CompositeExplicitAutograd, m) {
|
||||
m.impl("add_scalar", &add_scalar);
|
||||
}
|
||||
|
||||
} // namespace myops
|
||||
```
|
||||
|
||||
### Migrated Version with `STABLE_TORCH_LIBRARY`
|
||||
|
||||
```cpp
|
||||
// stable_kernel.cpp - Using STABLE_TORCH_LIBRARY (stable ABI)
|
||||
|
||||
// (1) Don't include <torch/torch.h> <ATen/ATen.h>
|
||||
// only include APIs from torch/csrc/stable, torch/headeronly and C-shims
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor_struct.h>
|
||||
#include <torch/csrc/stable/ops.h>
|
||||
#include <torch/csrc/stable/stableivalue_conversions.h>
|
||||
#include <torch/headeronly/core/ScalarType.h>
|
||||
#include <torch/headeronly/macros/Macros.h>
|
||||
|
||||
namespace myops {
|
||||
|
||||
// Simple kernel that adds a scalar value to each element of a tensor
|
||||
torch::stable::Tensor add_scalar(const torch::stable::Tensor& input, double scalar) {
|
||||
// (2) use STD_TORCH_CHECK instead of TORCH_CHECK
|
||||
STD_TORCH_CHECK(
|
||||
// (3) use torch::headeronly::kFloat instead of at:kFloat
|
||||
input.scalar_type() == torch::headeronly::kFloat,
|
||||
"Input must be float32");
|
||||
|
||||
// (4) Use stable ops namespace instead of input.add
|
||||
return torch::stable::add(input, scalar);
|
||||
}
|
||||
|
||||
// (5) Add Boxed wrapper required for STABLE_TORCH_LIBRARY
|
||||
void boxed_add_scalar(StableIValue* stack, uint64_t num_args, uint64_t num_outputs) {
|
||||
// Extract arguments from stack using `to<T>`
|
||||
auto input = to<torch::stable::Tensor>(stack[0]);
|
||||
auto scalar = to<double>(stack[1]);
|
||||
|
||||
// Call the actual kernel
|
||||
auto result = add_scalar(input, scalar);
|
||||
|
||||
// Put result back on stack using `from()`
|
||||
// Stack slot 0 now holds the return value
|
||||
stack[0] = from(result);
|
||||
}
|
||||
|
||||
// (6) Register the operator using STABLE_TORCH_LIBRARY
|
||||
STABLE_TORCH_LIBRARY(myops, m) {
|
||||
m.def("add_scalar(Tensor input, float scalar) -> Tensor", &boxed_add_scalar);
|
||||
}
|
||||
|
||||
// (7) Register the implementation using STABLE_TORCH_LIBRARY_IMPL
|
||||
STABLE_TORCH_LIBRARY_IMPL(myops, CompositeExplicitAutograd, m) {
|
||||
m.impl("add_scalar", &boxed_add_scalar);
|
||||
}
|
||||
|
||||
} // namespace myops
|
||||
```
|
||||
|
||||
|
||||
## How are objects passed across the ABI boundary when interacting with the dispatcher?
|
||||
|
||||
@ -109,6 +211,7 @@ There are two invariants for the stack:
|
||||
a. When calling a stack-based API, you must give owning references to the calling stack and steal references from the returned stack.
|
||||
b. When registering your function to be called with a stack, you must steal references from your argument stack and push onto the stack new references.
|
||||
|
||||
(stack-based-apis)=
|
||||
### Stack-based APIs
|
||||
|
||||
The above is relevant in two places:
|
||||
|
||||
@ -253,7 +253,6 @@ regular full-precision tensor.
|
||||
.. autosummary::
|
||||
:toctree: generated
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
view
|
||||
as_strided
|
||||
|
||||
34
setup.py
34
setup.py
@ -630,6 +630,37 @@ def mirror_files_into_torchgen() -> None:
|
||||
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
|
||||
|
||||
|
||||
def mirror_inductor_external_kernels() -> None:
|
||||
"""
|
||||
Copy external kernels into Inductor so they are importable.
|
||||
"""
|
||||
paths = [
|
||||
(
|
||||
CWD / "torch/_inductor/kernel/vendored_templates/cutedsl_grouped_gemm.py",
|
||||
CWD
|
||||
/ "third_party/cutlass/examples/python/CuTeDSL/blackwell/grouped_gemm.py",
|
||||
),
|
||||
]
|
||||
for new_path, orig_path in paths:
|
||||
# Create the dirs involved in new_path if they don't exist
|
||||
if not new_path.exists():
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Copy the files from the orig location to the new location
|
||||
if orig_path.is_file():
|
||||
shutil.copyfile(orig_path, new_path)
|
||||
continue
|
||||
if orig_path.is_dir():
|
||||
if new_path.exists():
|
||||
# copytree fails if the tree exists already, so remove it.
|
||||
shutil.rmtree(new_path)
|
||||
shutil.copytree(orig_path, new_path)
|
||||
continue
|
||||
raise RuntimeError(
|
||||
"Check the file paths in `mirror_inductor_external_kernels()`"
|
||||
)
|
||||
|
||||
|
||||
# ATTENTION: THIS IS AI SLOP
|
||||
def extract_variant_from_version(version: str) -> str:
|
||||
"""Extract variant from version string, defaulting to 'cpu'."""
|
||||
@ -1616,6 +1647,8 @@ def main() -> None:
|
||||
if RUN_BUILD_DEPS:
|
||||
build_deps()
|
||||
|
||||
mirror_inductor_external_kernels()
|
||||
|
||||
(
|
||||
ext_modules,
|
||||
cmdclass,
|
||||
@ -1649,6 +1682,7 @@ def main() -> None:
|
||||
"_inductor/codegen/aoti_runtime/*.cpp",
|
||||
"_inductor/script.ld",
|
||||
"_inductor/kernel/flex/templates/*.jinja",
|
||||
"_inductor/kernel/templates/*.jinja",
|
||||
"_export/serde/*.yaml",
|
||||
"_export/serde/*.thrift",
|
||||
"share/cmake/ATen/*.cmake",
|
||||
|
||||
@ -75,6 +75,7 @@ class TestScheduler(TestCase):
|
||||
|
||||
class TestCubicScheduler(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.model_sparse_config = [
|
||||
{"tensor_fqn": "0.weight", "sparsity_level": 0.8},
|
||||
{"tensor_fqn": "2.weight", "sparsity_level": 0.4},
|
||||
|
||||
@ -11,6 +11,7 @@ from torch.testing._internal.common_utils import IS_LINUX, run_tests, TestCase
|
||||
@unittest.skipIf(not IS_LINUX, "Only works on linux")
|
||||
class TestTorchrun(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self._test_dir = tempfile.mkdtemp(prefix=self.__class__.__name__)
|
||||
|
||||
def tearDown(self):
|
||||
|
||||
@ -10,6 +10,8 @@ set(AOTI_ABI_CHECK_TEST_SRCS
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/main.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_cast.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_devicetype.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_dispatch.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_dispatch_v2.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_dtype.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_exception.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_headeronlyarrayref.cpp
|
||||
@ -45,6 +47,10 @@ endif()
|
||||
# Disable unused-variable warnings for variables that are only used to test compilation
|
||||
target_compile_options_if_supported(test_aoti_abi_check -Wno-unused-variable)
|
||||
target_compile_options_if_supported(test_aoti_abi_check -Wno-unused-but-set-variable)
|
||||
# Add -Wno-dangling-pointer for GCC 13
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 13)
|
||||
target_compile_options_if_supported(test_aoti_abi_check -Wno-dangling-pointer)
|
||||
endif()
|
||||
|
||||
foreach(test_src ${AOTI_ABI_CHECK_VEC_TEST_SRCS})
|
||||
foreach(i RANGE ${NUM_CPU_CAPABILITY_NAMES})
|
||||
|
||||
82
test/cpp/aoti_abi_check/test_dispatch.cpp
Normal file
82
test/cpp/aoti_abi_check/test_dispatch.cpp
Normal file
@ -0,0 +1,82 @@
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <torch/headeronly/core/Dispatch.h>
|
||||
#include <torch/headeronly/core/Dispatch_v2.h>
|
||||
|
||||
// MY_PRIVATE_CHECK_SELECTIVE_BUILD is a prelude to case block. For
|
||||
// testing, we do nothing:
|
||||
#define MY_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type) /* empty */
|
||||
|
||||
#define MY_PRIVATE_CASE_TYPE_USING_HINT(...) \
|
||||
THO_PRIVATE_CASE_TYPE_USING_HINT_TMPL( \
|
||||
MY_PRIVATE_CHECK_SELECTIVE_BUILD, __VA_ARGS__)
|
||||
|
||||
#define MY_DISPATCH_CASE(...) \
|
||||
THO_DISPATCH_CASE_TMPL(MY_PRIVATE_CASE_TYPE_USING_HINT, __VA_ARGS__)
|
||||
|
||||
// MY_RECORD_KERNEL_FUNCTION_DTYPE is a prelude to switch
|
||||
// statement. For testing, we just avoid unused variable warning:
|
||||
#define MY_RECORD_KERNEL_FUNCTION_DTYPE(DISPATCHNAME, ENUMTYPE) \
|
||||
(void)DISPATCHNAME
|
||||
|
||||
// MY_CHECK_NOT_IMPLEMENTED is called in switch default block. For
|
||||
// testing, we count case mismatches:
|
||||
#define MY_CHECK_NOT_IMPLEMENTED(...) default_count++
|
||||
|
||||
#define MY_DISPATCH_SWITCH(...) \
|
||||
THO_DISPATCH_SWITCH_TMPL( \
|
||||
MY_RECORD_KERNEL_FUNCTION_DTYPE, MY_CHECK_NOT_IMPLEMENTED, __VA_ARGS__)
|
||||
|
||||
// MY_CASE_FUNCTION is called in a case block. For testing, we count
|
||||
// case matches and ensure that scalar_t/index_t type is defined:
|
||||
#define MY_CASE_FUNCTION \
|
||||
[&] { \
|
||||
count++; \
|
||||
scalar_t tmp; \
|
||||
(void)tmp; \
|
||||
}
|
||||
#define MY_INDEX_CASE_FUNCTION \
|
||||
[&] { \
|
||||
count++; \
|
||||
index_t tmp; \
|
||||
(void)tmp; \
|
||||
}
|
||||
|
||||
#define DEFINE_ITEM(TYPE, SCALARTYPE) ScalarType::SCALARTYPE,
|
||||
|
||||
#define MY_DISPATCH_V2(TYPE, NAME, BODY, ...) \
|
||||
THO_DISPATCH_V2_TMPL( \
|
||||
MY_DISPATCH_SWITCH, \
|
||||
MY_DISPATCH_CASE, \
|
||||
TYPE, \
|
||||
NAME, \
|
||||
AT_WRAP(BODY), \
|
||||
__VA_ARGS__)
|
||||
|
||||
#define TEST_DISPATCH_V2(NAME, EXPECTEDCOUNT, ...) \
|
||||
TEST(TestDispatchV2, NAME) { \
|
||||
using torch::headeronly::ScalarType; \
|
||||
using torch::headeronly::impl::ScalarTypeToCPPTypeT; \
|
||||
int8_t total_count = 0; \
|
||||
int8_t count = 0; \
|
||||
int8_t default_count = 0; \
|
||||
for (ScalarType t : \
|
||||
{AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_ITEM)}) { \
|
||||
total_count++; \
|
||||
MY_DISPATCH_V2(t, "test_my_dispatch_v2", MY_CASE_FUNCTION, __VA_ARGS__); \
|
||||
} \
|
||||
EXPECT_EQ(count, EXPECTEDCOUNT); \
|
||||
EXPECT_EQ(default_count + count, total_count); \
|
||||
}
|
||||
|
||||
TEST_DISPATCH_V2(AT_FLOAT8_TYPES_, 5, AT_FLOAT8_TYPES);
|
||||
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_, 5, AT_INTEGRAL_TYPES);
|
||||
TEST_DISPATCH_V2(AT_FLOATING_TYPES_, 2, AT_FLOATING_TYPES);
|
||||
TEST_DISPATCH_V2(AT_BAREBONES_UNSIGNED_TYPES_, 3, AT_BAREBONES_UNSIGNED_TYPES);
|
||||
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_V2_, 8, AT_INTEGRAL_TYPES_V2);
|
||||
TEST_DISPATCH_V2(AT_COMPLEX_TYPES_, 2, AT_COMPLEX_TYPES);
|
||||
TEST_DISPATCH_V2(AT_QINT_TYPES_, 3, AT_QINT_TYPES);
|
||||
TEST_DISPATCH_V2(AT_ALL_TYPES_, 7, AT_ALL_TYPES);
|
||||
TEST_DISPATCH_V2(AT_ALL_TYPES_AND_COMPLEX_, 9, AT_ALL_TYPES_AND_COMPLEX);
|
||||
|
||||
#undef DEFINE_ITEM
|
||||
45
test/cpp/aoti_abi_check/test_dispatch_v2.cpp
Normal file
45
test/cpp/aoti_abi_check/test_dispatch_v2.cpp
Normal file
@ -0,0 +1,45 @@
|
||||
#include <gtest/gtest.h>
|
||||
#include <torch/headeronly/core/Dispatch_v2.h>
|
||||
#include <torch/headeronly/util/Exception.h>
|
||||
|
||||
#define DEFINE_ITEM(TYPE, SCALARTYPE) ScalarType::SCALARTYPE,
|
||||
|
||||
#define TEST_DISPATCH_V2(NAME, EXPECTEDCOUNT, ...) \
|
||||
TEST(TestThoDispatchV2, NAME) { \
|
||||
using torch::headeronly::ScalarType; \
|
||||
using torch::headeronly::impl::ScalarTypeToCPPTypeT; \
|
||||
int8_t total_count = 0; \
|
||||
int8_t count = 0; \
|
||||
int8_t default_count = 0; \
|
||||
for (ScalarType t : \
|
||||
{AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_ITEM)}) { \
|
||||
total_count++; \
|
||||
try { \
|
||||
THO_DISPATCH_V2( \
|
||||
t, \
|
||||
"test_tho_dispatch_v2", \
|
||||
[&] { \
|
||||
count++; \
|
||||
scalar_t tmp; \
|
||||
(void)tmp; \
|
||||
}, \
|
||||
__VA_ARGS__); \
|
||||
} catch (...) { \
|
||||
default_count++; /* counts mismatches */ \
|
||||
} \
|
||||
} \
|
||||
EXPECT_EQ(count, EXPECTEDCOUNT); \
|
||||
EXPECT_EQ(default_count + count, total_count); \
|
||||
}
|
||||
|
||||
TEST_DISPATCH_V2(AT_FLOAT8_TYPES_, 5, AT_FLOAT8_TYPES);
|
||||
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_, 5, AT_INTEGRAL_TYPES);
|
||||
TEST_DISPATCH_V2(AT_FLOATING_TYPES_, 2, AT_FLOATING_TYPES);
|
||||
TEST_DISPATCH_V2(AT_BAREBONES_UNSIGNED_TYPES_, 3, AT_BAREBONES_UNSIGNED_TYPES);
|
||||
TEST_DISPATCH_V2(AT_INTEGRAL_TYPES_V2_, 8, AT_INTEGRAL_TYPES_V2);
|
||||
TEST_DISPATCH_V2(AT_COMPLEX_TYPES_, 2, AT_COMPLEX_TYPES);
|
||||
TEST_DISPATCH_V2(AT_QINT_TYPES_, 3, AT_QINT_TYPES);
|
||||
TEST_DISPATCH_V2(AT_ALL_TYPES_, 7, AT_ALL_TYPES);
|
||||
TEST_DISPATCH_V2(AT_ALL_TYPES_AND_COMPLEX_, 9, AT_ALL_TYPES_AND_COMPLEX);
|
||||
|
||||
#undef DEFINE_ITEM
|
||||
@ -70,6 +70,13 @@ if(NOT MSVC)
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 12)
|
||||
target_compile_options_if_supported(test_api "-Wno-error=nonnull")
|
||||
endif()
|
||||
|
||||
# Add -Wno-error=array-bounds for GCC 13+
|
||||
# See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=113239
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 13)
|
||||
target_compile_options_if_supported(test_api "-Wno-error=array-bounds")
|
||||
endif()
|
||||
|
||||
endif()
|
||||
|
||||
if(INSTALL_TEST)
|
||||
|
||||
@ -64,7 +64,7 @@ def run(initializer):
|
||||
|
||||
def main():
|
||||
initializer_parameter_map = {}
|
||||
for initializer in INITIALIZERS.keys():
|
||||
for initializer in INITIALIZERS:
|
||||
sys.stderr.write(f"Evaluating {initializer} ...\n")
|
||||
initializer_parameter_map[initializer] = run(initializer)
|
||||
|
||||
|
||||
@ -130,7 +130,7 @@ def main():
|
||||
options = parser.parse_args()
|
||||
|
||||
optimizer_parameter_map = {}
|
||||
for optimizer in OPTIMIZERS.keys():
|
||||
for optimizer in OPTIMIZERS:
|
||||
sys.stderr.write(f"Evaluating {optimizer} ...\n")
|
||||
optimizer_parameter_map[optimizer] = run(
|
||||
optimizer, options.iterations, options.sample_every
|
||||
|
||||
@ -11,6 +11,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class TestCustomBackend(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Load the library containing the custom backend.
|
||||
self.library_path = get_custom_backend_library_path()
|
||||
torch.ops.load_library(self.library_path)
|
||||
|
||||
@ -18,6 +18,7 @@ torch.ops.import_module("pointwise")
|
||||
|
||||
class TestCustomOperators(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.library_path = get_custom_op_library_path()
|
||||
ops.load_library(self.library_path)
|
||||
|
||||
|
||||
@ -22,6 +22,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class TestMakeCheckpointer(TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
# Create a temporary directory for checkpoints
|
||||
self.temp_dir = tempfile.mkdtemp()
|
||||
|
||||
|
||||
@ -161,6 +161,7 @@ class TestCheckpointProcessConfig(TestCase):
|
||||
|
||||
class TestCheckpointProcess(TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
"""Set up common test fixtures."""
|
||||
self.rank_info = RankInfo(
|
||||
global_world_size=1,
|
||||
|
||||
@ -14,6 +14,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class TestCheckpointReader(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Create a temporary directory for test checkpoints
|
||||
self.temp_dir = tempfile.mkdtemp()
|
||||
|
||||
|
||||
@ -52,6 +52,7 @@ class TestCheckpointWriterConfig(TestCase):
|
||||
|
||||
class TestCheckpointWriter(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Create a temporary directory for test checkpoints
|
||||
self.temp_dir = tempfile.mkdtemp()
|
||||
|
||||
|
||||
@ -52,6 +52,7 @@ class TestCheckpointer(TestCase):
|
||||
"""Parameterized tests that work with both sync and async checkpointers."""
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Create a temporary directory for checkpoints
|
||||
self.temp_dir = tempfile.mkdtemp()
|
||||
|
||||
@ -397,6 +398,7 @@ class TestAsyncCheckpointerSpecific(TestCase):
|
||||
"""Tests specific to AsyncCheckpointer functionality."""
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Create a temporary directory for checkpoints
|
||||
self.temp_dir = tempfile.mkdtemp()
|
||||
|
||||
|
||||
@ -12,6 +12,7 @@ from torch.testing._internal.common_utils import requires_cuda, run_tests, TestC
|
||||
|
||||
class TestDefaultStager(TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
# Create a test state dictionary with various data types
|
||||
self.state_dict = {
|
||||
"model": torch.nn.Linear(10, 5).state_dict(),
|
||||
|
||||
@ -208,7 +208,7 @@ class TestSingleRankSaveLoad(TestCase):
|
||||
|
||||
# Create model.safetensors.index.json with weight mapping
|
||||
weight_map = {}
|
||||
for key in quantized_checkpoint.keys():
|
||||
for key in quantized_checkpoint:
|
||||
weight_map[key] = "model.safetensors"
|
||||
|
||||
index_data = {
|
||||
@ -245,7 +245,7 @@ class TestSingleRankSaveLoad(TestCase):
|
||||
sorted(original_tensors.keys()), sorted(state_dict_to_load.keys())
|
||||
)
|
||||
|
||||
for tensor_name in original_tensors.keys():
|
||||
for tensor_name in original_tensors:
|
||||
original = original_tensors[tensor_name]
|
||||
loaded = state_dict_to_load[tensor_name]
|
||||
|
||||
|
||||
@ -15,6 +15,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class TestQuantizedHfStorage(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
"""Set up common test fixtures."""
|
||||
self.temp_dir = tempfile.TemporaryDirectory()
|
||||
self.path = self.temp_dir.name
|
||||
|
||||
@ -21,6 +21,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class SignalHandlingTest(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Save original environment variable if it exists
|
||||
self.original_signals_env = os.environ.get(
|
||||
"TORCHELASTIC_SIGNALS_TO_HANDLE", None
|
||||
|
||||
@ -479,6 +479,7 @@ class TestFSDPMiscMultiProcess(FSDPTest):
|
||||
for (n, p), (n_prev, p_prev) in zip(
|
||||
fsdp_overlap.named_parameters(), fsdp_overlap_prev_params
|
||||
):
|
||||
self.assertEqual(n, n_prev)
|
||||
self.assertNotEqual(
|
||||
p,
|
||||
p_prev,
|
||||
|
||||
@ -498,7 +498,7 @@ class TestFSDPMixedPrecision(FSDPTest):
|
||||
for name, tensor in state_dict.items():
|
||||
# Parameters and buffers are checkpointed in their
|
||||
# original dtypes, which may be different.
|
||||
if name in named_buffers.keys():
|
||||
if name in named_buffers:
|
||||
self.assertEqual(tensor.dtype, _BUFFER_ORIG_DTYPE)
|
||||
else:
|
||||
self.assertEqual(
|
||||
|
||||
@ -16,6 +16,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class LauncherApiTest(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Save original environment variable if it exists
|
||||
self.original_signals_env = os.environ.get(
|
||||
"TORCHELASTIC_SIGNALS_TO_HANDLE", None
|
||||
|
||||
@ -21,6 +21,7 @@ from torch.distributed.pipelining import (
|
||||
from torch.distributed.pipelining._utils import generate_stage_to_rank_mapping
|
||||
from torch.distributed.pipelining.schedules import (
|
||||
_Action,
|
||||
_add_reduce_grad,
|
||||
_add_send_recv,
|
||||
_add_unshard_reshard,
|
||||
_format_pipeline_order,
|
||||
@ -574,6 +575,45 @@ class TestScheduleLowering(TestCase):
|
||||
),
|
||||
)
|
||||
|
||||
@parametrize(
|
||||
"test_info",
|
||||
[
|
||||
{
|
||||
"compute": ["0F0", "0F1", " ", "0B0", "0B1"],
|
||||
"comms": ["0F0", "0F1", "0B0", "0B1", "0REDUCE_GRAD"],
|
||||
},
|
||||
{
|
||||
"compute": ["0F0", "0F1", "1F0", "1F1", "1B0", "1B1", "0B0", "0B1"],
|
||||
"comms": [
|
||||
"0F0",
|
||||
"0F1",
|
||||
"1F0",
|
||||
"1F1",
|
||||
"1B0",
|
||||
"1B1",
|
||||
"1REDUCE_GRAD",
|
||||
"0B0",
|
||||
"0B1",
|
||||
"0REDUCE_GRAD",
|
||||
],
|
||||
},
|
||||
],
|
||||
)
|
||||
def test_reduce_grad(self, test_info):
|
||||
compute_sch = self._parse_actions(test_info["compute"])
|
||||
expected_comms_sch = self._parse_actions(test_info["comms"])
|
||||
|
||||
comms_sch = _add_reduce_grad(compute_sch, 2)
|
||||
for expected, actual in zip(expected_comms_sch, comms_sch, strict=True):
|
||||
self.assertEqual(
|
||||
expected,
|
||||
actual,
|
||||
(
|
||||
f"Mismatch: expected action {expected} but found {actual}."
|
||||
f"\nWhole Schedule: {comms_sch}"
|
||||
),
|
||||
)
|
||||
|
||||
@parametrize(
|
||||
"test_info",
|
||||
[
|
||||
|
||||
@ -46,6 +46,7 @@ from torch.testing._internal.common_utils import (
|
||||
parametrize,
|
||||
run_tests,
|
||||
skip_but_pass_in_sandcastle_if,
|
||||
TEST_MULTIACCELERATOR,
|
||||
)
|
||||
|
||||
|
||||
@ -56,7 +57,6 @@ batch_size = 64
|
||||
torch.manual_seed(0)
|
||||
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
|
||||
backend = dist.get_default_backend_for_device(device_type)
|
||||
TEST_MULTIACCELERATOR = torch.accelerator.device_count() >= 2
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@ -24,6 +24,7 @@ from torch.testing._internal.common_utils import (
|
||||
parametrize,
|
||||
run_tests,
|
||||
skip_but_pass_in_sandcastle_if,
|
||||
TEST_MULTIACCELERATOR,
|
||||
)
|
||||
from torch.utils._pytree import tree_map_only
|
||||
|
||||
@ -34,7 +35,6 @@ chunks = 8
|
||||
|
||||
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
|
||||
backend = dist.get_default_backend_for_device(device_type)
|
||||
TEST_MULTIACCELERATOR = torch.accelerator.device_count() >= 2
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
|
||||
@ -1,11 +1,18 @@
|
||||
# Owner(s): ["oncall: distributed"]
|
||||
|
||||
import itertools
|
||||
from contextlib import nullcontext
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed._local_tensor import (
|
||||
local_tensor_mode,
|
||||
LocalTensor,
|
||||
LocalTensorMode,
|
||||
)
|
||||
from torch.distributed.device_mesh import init_device_mesh
|
||||
from torch.distributed.tensor import distribute_tensor, DTensor
|
||||
from torch.distributed.tensor import DeviceMesh, distribute_tensor, DTensor
|
||||
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
|
||||
from torch.distributed.tensor._utils import (
|
||||
_compute_local_shape_and_global_offset,
|
||||
@ -14,6 +21,7 @@ from torch.distributed.tensor._utils import (
|
||||
compute_global_tensor_shape,
|
||||
compute_local_shape_and_global_offset,
|
||||
compute_local_tensor_info,
|
||||
ExplicitRedistributionContext,
|
||||
)
|
||||
from torch.distributed.tensor.debug import CommDebugMode
|
||||
from torch.distributed.tensor.placement_types import (
|
||||
@ -851,5 +859,93 @@ class Test2DStridedLocalShard(DTensorTestBase):
|
||||
self.assertEqual(global_tensor, dtensor_2d.full_tensor())
|
||||
|
||||
|
||||
class LocalTensorTestBase(TestCase):
|
||||
def assertEqual(self, lhs, rhs, **kwargs):
|
||||
mode = local_tensor_mode()
|
||||
with nullcontext() if mode is None else mode.disable():
|
||||
if isinstance(lhs, LocalTensor) and isinstance(rhs, LocalTensor):
|
||||
assert isinstance(lhs, LocalTensor) and isinstance(rhs, LocalTensor)
|
||||
super().assertEqual(lhs._ranks, rhs._ranks)
|
||||
for r in lhs._ranks:
|
||||
super().assertEqual(
|
||||
lhs._local_tensors[r],
|
||||
rhs._local_tensors[r],
|
||||
lambda m: f"rank {r}: {m}",
|
||||
)
|
||||
elif isinstance(lhs, LocalTensor) or isinstance(rhs, LocalTensor):
|
||||
lhs, rhs = (lhs, rhs) if isinstance(lhs, LocalTensor) else (rhs, lhs)
|
||||
for r in lhs._ranks:
|
||||
super().assertEqual(
|
||||
lhs._local_tensors[r], rhs, lambda m: f"rank {r}: {m}"
|
||||
)
|
||||
else:
|
||||
return super().assertEqual(lhs, rhs, **kwargs)
|
||||
|
||||
@property
|
||||
def world_size(self):
|
||||
raise NotImplementedError("override world-size in your subclass")
|
||||
|
||||
def build_device_mesh(self) -> DeviceMesh:
|
||||
return init_device_mesh("cpu", (self.world_size,))
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
torch.distributed.init_process_group(
|
||||
# TODO: test other ranks too
|
||||
"fake",
|
||||
rank=0,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
try:
|
||||
dist.destroy_process_group()
|
||||
except AssertionError:
|
||||
pass
|
||||
|
||||
|
||||
class TestExplicitRedistribute(LocalTensorTestBase):
|
||||
@property
|
||||
def world_size(self):
|
||||
return 4
|
||||
|
||||
def test_explicit_matmul(self):
|
||||
with LocalTensorMode(self.world_size):
|
||||
device_mesh = self.build_device_mesh()
|
||||
dim = 128
|
||||
x = torch.randn(8, dim, requires_grad=True)
|
||||
A = torch.randn(dim, dim, requires_grad=True)
|
||||
|
||||
# Prepare DTensors
|
||||
dx = distribute_tensor(x, device_mesh, [Shard(0)])
|
||||
dA = distribute_tensor(A, device_mesh, [Shard(0)])
|
||||
|
||||
# implicit redistribute works as usual by default
|
||||
with CommDebugMode() as comm_mode:
|
||||
torch.matmul(dx, dA)
|
||||
self.assertEqual(comm_mode.get_total_counts(), 1)
|
||||
|
||||
# explicit redistribute works too
|
||||
with ExplicitRedistributionContext():
|
||||
with self.assertRaisesRegex(RuntimeError, "Implicit redistribution"):
|
||||
torch.matmul(dx, dA)
|
||||
|
||||
# explicit redistribute allows manual redistribute
|
||||
with ExplicitRedistributionContext():
|
||||
dA_repl = dA.redistribute(device_mesh, [Replicate()])
|
||||
torch.matmul(dx, dA_repl)
|
||||
|
||||
dx = distribute_tensor(x, device_mesh, [Shard(0)])
|
||||
dA = distribute_tensor(A, device_mesh, [Replicate()])
|
||||
with ExplicitRedistributionContext():
|
||||
dY = torch.matmul(dx, dA_repl)
|
||||
loss = dY.sum()
|
||||
|
||||
# we now see the error during backwards
|
||||
with self.assertRaisesRegex(RuntimeError, "Implicit redistribution"):
|
||||
loss.backward()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
||||
@ -1189,9 +1189,7 @@ class AbstractCommTest:
|
||||
self.assertEqual(len(set(rank_to_seq_num.values())), 2)
|
||||
self.assertEqual(rank_to_seq_num[0], rank_to_seq_num[2])
|
||||
expected_same = {
|
||||
rank_to_seq_num[i]
|
||||
for i in rank_to_seq_num.keys()
|
||||
if i not in [0, 2]
|
||||
rank_to_seq_num[i] for i in rank_to_seq_num if i not in [0, 2]
|
||||
}
|
||||
self.assertEqual(len(expected_same), 1)
|
||||
self.assertEqual(rank_to_seq_num[0] + 1, rank_to_seq_num[1])
|
||||
@ -1558,7 +1556,7 @@ class CommTest(AbstractCommTest, MultiProcessTestCase):
|
||||
}
|
||||
invalid_debug_modes = ["foo", 0, 1, -1]
|
||||
|
||||
for mode in mapping.keys():
|
||||
for mode in mapping:
|
||||
os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
|
||||
dist.set_debug_level_from_env()
|
||||
set_debug_mode = dist.get_debug_level()
|
||||
|
||||
@ -2357,6 +2357,7 @@ class ReducerModule(nn.Module):
|
||||
|
||||
class ReducerTest(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.file = tempfile.NamedTemporaryFile(delete=False)
|
||||
world_size = 1
|
||||
self.store = c10d.FileStore(self.file.name, world_size)
|
||||
|
||||
@ -252,6 +252,7 @@ class ProcessGroupNCCLNoGPUTest(TestCase):
|
||||
MAIN_PROCESS_RANK = 0
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.rank = self.MAIN_PROCESS_RANK
|
||||
self.world_size = 1
|
||||
self.file = tempfile.NamedTemporaryFile(delete=False)
|
||||
@ -6343,6 +6344,14 @@ class ProcessGroupNCCLLargerScaleTest(MultiProcessTestCase):
|
||||
if self.rank == 6 or self.rank == 7:
|
||||
dist.broadcast(tensor2, 6, group=ng2)
|
||||
self.assertEqual(tensor2, torch.full((1,), 6))
|
||||
|
||||
# Test the case when the split changes the pg option of split group
|
||||
# while the parent pg option is not changed.
|
||||
new_pg = c10d.new_group([0, 1, 2, 3, 4, 5, 6, 7], device_id=device)
|
||||
backend_new_pg = new_pg._get_backend(torch.device(device))
|
||||
self.assertEqual(len(backend_new_pg.options.global_ranks_in_group), 8)
|
||||
c10d.split_group(new_pg, [[0, 2, 4, 6], [1, 3, 5, 7]])
|
||||
self.assertEqual(len(backend_new_pg.options.global_ranks_in_group), 8)
|
||||
# a barrier and a cuda sync before destroying all pgs.
|
||||
dist.barrier(pg)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
@ -499,6 +499,7 @@ class ComposabilityTest(MultiProcContinuousTest):
|
||||
[
|
||||
_ComputationType.UNSHARD,
|
||||
_ComputationType.FORWARD,
|
||||
_ComputationType.REDUCE_GRAD, # Contains final fsdp post_backward
|
||||
],
|
||||
microbatch_index=0,
|
||||
)
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
import contextlib
|
||||
import copy
|
||||
import functools
|
||||
import logging
|
||||
import random
|
||||
import unittest
|
||||
from contextlib import contextmanager
|
||||
@ -51,6 +52,9 @@ from torch.testing._internal.inductor_utils import HAS_GPU
|
||||
from torch.testing._internal.triton_utils import requires_cuda_and_triton
|
||||
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def reset_rng_state():
|
||||
torch.manual_seed(1337)
|
||||
random.seed(1337)
|
||||
@ -1200,6 +1204,116 @@ class TestMultiProc(DynamoDistributedMultiProcTestCase):
|
||||
for r in res[1:]:
|
||||
self.assertEqual(res[0], r)
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
@patch.object(torch._dynamo.config, "enable_compiler_collectives", True)
|
||||
@patch.object(torch._inductor.config, "max_autotune_gemm", True)
|
||||
@patch.object(torch._inductor.config, "distributed_max_autotune_gemm", True)
|
||||
def test_multiproc_autotune(self):
|
||||
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
|
||||
torch._dynamo.utils.clear_compilation_metrics()
|
||||
|
||||
@torch.compile()
|
||||
def f(a, b, c):
|
||||
res = (
|
||||
torch.sum((a @ b) + 1.0)
|
||||
+ torch.sum(torch.relu(b @ c))
|
||||
+ torch.sum(c @ a)
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
a = torch.randn(1024, 1024, device=self.rank, dtype=torch.bfloat16)
|
||||
b = torch.randn(1024, 2048, device=self.rank, dtype=torch.bfloat16)
|
||||
c = torch.randn(2048, 1024, device=self.rank, dtype=torch.bfloat16)
|
||||
|
||||
try:
|
||||
f(a, b, c)
|
||||
except Exception:
|
||||
log.exception("Caught exception running f")
|
||||
raise
|
||||
|
||||
metrics = torch._dynamo.utils.get_compilation_metrics()
|
||||
res = [None] * self.world_size
|
||||
torch.distributed.all_gather_object(res, len(metrics))
|
||||
for r in res[1:]:
|
||||
self.assertEqual(res[0], r)
|
||||
|
||||
print(f"Result from {self.rank} is {f(a, b, c)}")
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
@patch.object(torch._dynamo.config, "enable_compiler_collectives", True)
|
||||
@patch.object(torch._inductor.config, "max_autotune_gemm", True)
|
||||
@patch.object(torch._inductor.config, "distributed_max_autotune_gemm", True)
|
||||
def test_multiproc_autotune_dynamic_shapes(self):
|
||||
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
|
||||
torch._dynamo.utils.clear_compilation_metrics()
|
||||
|
||||
@torch.compile()
|
||||
def f(a, b, c):
|
||||
res = (
|
||||
torch.sum((a @ b) + 1.0)
|
||||
+ torch.sum(torch.relu(b @ c))
|
||||
+ torch.sum(c @ a)
|
||||
)
|
||||
|
||||
return res
|
||||
|
||||
a = torch.randn(1024, 1024, device=self.rank, dtype=torch.bfloat16)
|
||||
b = torch.randn(1024, 2048, device=self.rank, dtype=torch.bfloat16)
|
||||
c = torch.randn(2048, 1024, device=self.rank, dtype=torch.bfloat16)
|
||||
|
||||
# Mark tensors as dynamic on dimension 0
|
||||
torch._dynamo.mark_dynamic(a, 0)
|
||||
torch._dynamo.mark_dynamic(a, 1)
|
||||
torch._dynamo.mark_dynamic(b, 0)
|
||||
torch._dynamo.mark_dynamic(b, 1)
|
||||
torch._dynamo.mark_dynamic(c, 0)
|
||||
torch._dynamo.mark_dynamic(c, 1)
|
||||
|
||||
try:
|
||||
f(a, b, c)
|
||||
except Exception:
|
||||
log.exception("Caught exception running f")
|
||||
raise
|
||||
|
||||
metrics = torch._dynamo.utils.get_compilation_metrics()
|
||||
res = [None] * self.world_size
|
||||
torch.distributed.all_gather_object(res, len(metrics))
|
||||
for r in res[1:]:
|
||||
self.assertEqual(res[0], r)
|
||||
|
||||
print(f"Result from {self.rank} is {f(a, b, c)}")
|
||||
|
||||
# Store the initial compilation count
|
||||
initial_compile_count = len(metrics)
|
||||
|
||||
# # Test with different sizes to ensure dynamic shapes work without recompilation
|
||||
a2 = torch.randn(512, 512, device=self.rank, dtype=torch.bfloat16)
|
||||
b2 = torch.randn(512, 2048, device=self.rank, dtype=torch.bfloat16)
|
||||
c2 = torch.randn(2048, 512, device=self.rank, dtype=torch.bfloat16)
|
||||
|
||||
try:
|
||||
result2 = f(a2, b2, c2)
|
||||
print(f"Result2 from {self.rank} is {result2}")
|
||||
except Exception:
|
||||
log.exception("Caught exception running f with different sizes")
|
||||
raise
|
||||
|
||||
# Verify no recompilation occurred
|
||||
metrics_after = torch._dynamo.utils.get_compilation_metrics()
|
||||
final_compile_count = len(metrics_after)
|
||||
self.assertEqual(
|
||||
initial_compile_count,
|
||||
final_compile_count,
|
||||
"Expected no recompilation with dynamic shapes",
|
||||
)
|
||||
|
||||
# Verify all ranks have the same compilation count
|
||||
res_after = [None] * self.world_size
|
||||
torch.distributed.all_gather_object(res_after, final_compile_count)
|
||||
for r in res_after[1:]:
|
||||
self.assertEqual(res_after[0], r)
|
||||
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
def test_get_pg_attr(self):
|
||||
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
|
||||
|
||||
@ -1985,6 +1985,7 @@ class TestCollectivesInductor(DynamoDistributedSingleProcTestCase):
|
||||
"bucket_reduce_scatters_fx_bucket_size_determinator": lambda _: 2,
|
||||
"reorder_for_compute_comm_overlap": True,
|
||||
"reorder_for_compute_comm_overlap_passes": [
|
||||
_reorder_communication_preserving_peak_memory,
|
||||
sink_waits_iterative,
|
||||
_reorder_communication_preserving_peak_memory,
|
||||
],
|
||||
@ -2046,11 +2047,6 @@ class TestCollectivesInductor(DynamoDistributedSingleProcTestCase):
|
||||
assert node_stats is not None
|
||||
self.assertTrue(isinstance(node_stats, dict))
|
||||
self.assertEqual(len(node_stats), 4)
|
||||
it = iter(node_stats.values())
|
||||
node_stat0 = next(it)
|
||||
self.assertTrue(node_stat0.limiting_factor == "None")
|
||||
node_stat1 = next(it)
|
||||
self.assertTrue("collective ordering" in node_stat1.limiting_factor)
|
||||
|
||||
@skipIfXpu # https://github.com/intel/torch-xpu-ops/issues/1581
|
||||
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
|
||||
|
||||
@ -128,14 +128,14 @@ class TestLocalTensorWorld2(LocalTensorTestBase):
|
||||
self.assertEqual(len(result_add._local_tensors), 2)
|
||||
|
||||
# Verify the operation was applied to each local tensor
|
||||
for rank in identical_local_tensors.keys():
|
||||
for rank in identical_local_tensors:
|
||||
expected = identical_local_tensors[rank] + identical_local_tensors[rank]
|
||||
self.assertEqual(result_add._local_tensors[rank], expected)
|
||||
|
||||
# Test multiplication
|
||||
result_mul = lt1 * 2.0
|
||||
self.assertIsInstance(result_mul, LocalTensor)
|
||||
for rank in identical_local_tensors.keys():
|
||||
for rank in identical_local_tensors:
|
||||
expected = identical_local_tensors[rank] * 2.0
|
||||
self.assertEqual(result_mul._local_tensors[rank], expected)
|
||||
|
||||
@ -163,7 +163,7 @@ class TestLocalTensorWorld2(LocalTensorTestBase):
|
||||
result = lt + regular_tensor
|
||||
self.assertIsInstance(result, LocalTensor)
|
||||
|
||||
for rank in identical_local_tensors.keys():
|
||||
for rank in identical_local_tensors:
|
||||
expected = identical_local_tensors[rank] + regular_tensor
|
||||
self.assertEqual(result._local_tensors[rank], expected)
|
||||
|
||||
@ -212,14 +212,14 @@ class TestLocalTensorWorld2(LocalTensorTestBase):
|
||||
dist.all_reduce(lt_sum, group=fake_pg)
|
||||
|
||||
expected_sum = torch.tensor([[6.0, 8.0], [10.0, 12.0]])
|
||||
for rank in test_tensors.keys():
|
||||
for rank in test_tensors:
|
||||
self.assertEqual(lt_sum._local_tensors[rank], expected_sum)
|
||||
|
||||
# Test broadcast within mode
|
||||
lt_broadcast = LocalTensor({k: v.clone() for k, v in test_tensors.items()})
|
||||
dist.broadcast(lt_broadcast, src=0, group=fake_pg)
|
||||
|
||||
for rank in test_tensors.keys():
|
||||
for rank in test_tensors:
|
||||
self.assertEqual(lt_broadcast._local_tensors[rank], test_tensors[0])
|
||||
|
||||
# Test that regular operations still work
|
||||
@ -293,21 +293,21 @@ class TestLocalTensorWorld3(LocalTensorTestBase):
|
||||
lt_sum = LocalTensor({k: v.clone() for k, v in test_tensors.items()})
|
||||
dist.all_reduce(lt_sum, op=dist.ReduceOp.SUM, group=fake_pg)
|
||||
expected_sum = torch.tensor([[6.0, 7.0], [6.0, 15.0]]) # Sum of all tensors
|
||||
for rank in test_tensors.keys():
|
||||
for rank in test_tensors:
|
||||
self.assertEqual(lt_sum._local_tensors[rank], expected_sum)
|
||||
|
||||
# Test MAX reduction
|
||||
lt_max = LocalTensor({k: v.clone() for k, v in test_tensors.items()})
|
||||
dist.all_reduce(lt_max, op=dist.ReduceOp.MAX, group=fake_pg)
|
||||
expected_max = torch.tensor([[3.0, 4.0], [3.0, 6.0]]) # Max across all tensors
|
||||
for rank in test_tensors.keys():
|
||||
for rank in test_tensors:
|
||||
self.assertEqual(lt_max._local_tensors[rank], expected_max)
|
||||
|
||||
# Test MIN reduction
|
||||
lt_min = LocalTensor({k: v.clone() for k, v in test_tensors.items()})
|
||||
dist.all_reduce(lt_min, op=dist.ReduceOp.MIN, group=fake_pg)
|
||||
expected_min = torch.tensor([[1.0, 1.0], [1.0, 4.0]]) # Min across all tensors
|
||||
for rank in test_tensors.keys():
|
||||
for rank in test_tensors:
|
||||
self.assertEqual(lt_min._local_tensors[rank], expected_min)
|
||||
|
||||
def test_all_reduce_collective(self):
|
||||
@ -328,7 +328,7 @@ class TestLocalTensorWorld3(LocalTensorTestBase):
|
||||
|
||||
# Verify all ranks have the sum of all tensors (after adding 1 to each)
|
||||
expected_sum = torch.tensor([[114.0, 225.0, 336.0], [447.0, 558.0, 669.0]])
|
||||
for rank in different_tensors.keys():
|
||||
for rank in different_tensors:
|
||||
self.assertEqual(lt_sum._local_tensors[rank], expected_sum)
|
||||
|
||||
def test_broadcast_collective(self):
|
||||
@ -348,7 +348,7 @@ class TestLocalTensorWorld3(LocalTensorTestBase):
|
||||
|
||||
# Verify all ranks have rank 1's original tensor
|
||||
expected_broadcast = different_tensors[1]
|
||||
for rank in different_tensors.keys():
|
||||
for rank in different_tensors:
|
||||
self.assertEqual(lt_broadcast._local_tensors[rank], expected_broadcast)
|
||||
|
||||
def test_all_gather_collective(self):
|
||||
|
||||
@ -17,6 +17,7 @@ from torch.testing._internal.common_utils import run_tests, TestCase
|
||||
|
||||
class RunTest(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# Save original environment variable if it exists
|
||||
self.original_signals_env = os.environ.get(
|
||||
"TORCHELASTIC_SIGNALS_TO_HANDLE", None
|
||||
|
||||
@ -25,6 +25,7 @@ class MyClass:
|
||||
|
||||
class TestSerialization(TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
# disable debug asserts
|
||||
self._old_debug = os.environ.get(DEBUG_ENV)
|
||||
os.environ[DEBUG_ENV] = "0"
|
||||
|
||||
@ -317,6 +317,7 @@ class HashStoreTest(TestCase, StoreTestBase):
|
||||
|
||||
class PrefixStoreTest(TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
# delete is false as FileStore will automatically clean up the file
|
||||
self.file = tempfile.NamedTemporaryFile(delete=False)
|
||||
|
||||
|
||||
@ -283,7 +283,7 @@ class TestCompilerBisector(TestCase):
|
||||
)
|
||||
def test_bisect_pre_grad_graph(self):
|
||||
def f(x):
|
||||
for i in range(5):
|
||||
for _ in range(5):
|
||||
x = x + 1
|
||||
return x.relu()
|
||||
|
||||
|
||||
@ -408,6 +408,9 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
self.assertEqual(ref0, res0)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_reconstruct(self):
|
||||
def fn(x):
|
||||
e = torch.cuda.Event()
|
||||
@ -425,6 +428,9 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
self.assertEqual(cnts.op_count, 3)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_across_graph_break(self):
|
||||
def fn(x):
|
||||
e = torch.cuda.Event()
|
||||
@ -446,9 +452,12 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
res = opt_fn(x)
|
||||
self.assertEqual(ref[0], res[0])
|
||||
self.assertEqual(cnts.frame_count, 2)
|
||||
self.assertEqual(cnts.op_count, 9)
|
||||
self.assertEqual(cnts.op_count, 10)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_created_outside_of_graph(self):
|
||||
user_stream = torch.cuda.Stream()
|
||||
event = torch.cuda.Event()
|
||||
@ -478,9 +487,12 @@ class CtxManagerTests(torch._dynamo.test_case.TestCaseWithNestedGraphBreaks):
|
||||
res = run_iters(func, compile=True)
|
||||
self.assertEqual(ref, res)
|
||||
self.assertEqual(cnts.frame_count, 1)
|
||||
self.assertEqual(cnts.op_count, 3)
|
||||
self.assertEqual(cnts.op_count, 4)
|
||||
|
||||
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
|
||||
@unittest.skip(
|
||||
"Will not support external events for now: https://github.com/pytorch/pytorch/issues/167257"
|
||||
)
|
||||
def test_cuda_event_method_create_stream_outside_of_compile(self):
|
||||
def fn(x, cur_stream, new_stream):
|
||||
x = torch.mul(x, 1)
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user