mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-26 00:24:53 +08:00
Compare commits
1 Commits
add-pyrefl
...
windows_mm
| Author | SHA1 | Date | |
|---|---|---|---|
| 26f67ef050 |
@ -8,8 +8,6 @@ if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
|
||||
fi
|
||||
|
||||
@ -181,7 +181,7 @@ case "$tag" in
|
||||
KATEX=yes
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950;gfx1100"
|
||||
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
|
||||
if [[ $tag =~ "benchmarks" ]]; then
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
fi
|
||||
@ -344,7 +344,7 @@ docker build \
|
||||
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
|
||||
--build-arg "KATEX=${KATEX:-}" \
|
||||
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942;gfx1100}" \
|
||||
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
|
||||
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
|
||||
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
|
||||
|
||||
@ -10,6 +10,11 @@ BAD_SSL = "https://self-signed.badssl.com"
|
||||
|
||||
print("Testing SSL certificate checking for Python:", sys.version)
|
||||
|
||||
if sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4):
|
||||
print("This version never checks SSL certs; skipping tests")
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
EXC = OSError
|
||||
|
||||
print(f"Connecting to {GOOD_SSL} should work")
|
||||
|
||||
@ -143,7 +143,7 @@ def sample_vllm_test_library():
|
||||
"pytest -v -s compile/test_decorator.py",
|
||||
],
|
||||
},
|
||||
"vllm_language_model_test_extended_generation_28_failure_test": {
|
||||
"vllm_languagde_model_test_extended_generation_28_failure_test": {
|
||||
"title": "Language Models Test (Extended Generation) 2.8 release failure",
|
||||
"id": "vllm_languagde_model_test_extended_generation_28_failure_test",
|
||||
"package_install": [
|
||||
|
||||
@ -63,7 +63,7 @@ class VllmBuildParameters:
|
||||
# DOCKERFILE_PATH: path to Dockerfile used when use_local_dockerfile is True"
|
||||
use_local_dockerfile: bool = env_bool_field("USE_LOCAL_DOCKERFILE", True)
|
||||
dockerfile_path: Path = env_path_field(
|
||||
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile"
|
||||
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile.tmp_vllm"
|
||||
)
|
||||
|
||||
# the cleaning script to remove torch dependencies from pip
|
||||
|
||||
@ -337,13 +337,13 @@ test_python() {
|
||||
|
||||
test_python_smoke() {
|
||||
# Smoke tests for H100/B200
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_python_smoke_b200() {
|
||||
# Targeted smoke tests for B200 - staged approach to avoid too many failures
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
|
||||
2
.flake8
2
.flake8
@ -12,7 +12,7 @@ ignore =
|
||||
# to line this up with executable bit
|
||||
EXE001,
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
|
||||
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907,B908,B910
|
||||
# these ignores are from flake8-comprehensions; please fix!
|
||||
C407,
|
||||
# these ignores are from flake8-logging-format; please fix!
|
||||
|
||||
13
.github/actions/setup-rocm/action.yml
vendored
13
.github/actions/setup-rocm/action.yml
vendored
@ -111,16 +111,3 @@ runs:
|
||||
# This video group ID maps to subgid 1 inside the docker image due to the /etc/subgid entries.
|
||||
# The group name corresponding to group ID 1 can change depending on the OS, so both are necessary.
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd $DEVICE_FLAG --group-add video --group-add $render_gid --group-add daemon --group-add bin --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --network=host" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
8ad2aa5d354d1bf432339113860185d5a5d1abbd
|
||||
87ff22e49ed0e92576c4935ccb8c143daac4a3cd
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
f5c6c2ec6490455e86f67b2a25c10390d60a27f7
|
||||
966da7e46f65d6d49df3e31214470a4fe5cc8e66
|
||||
|
||||
2
.github/ci_commit_pins/vllm.txt
vendored
2
.github/ci_commit_pins/vllm.txt
vendored
@ -1 +1 @@
|
||||
e5192819208c4d68194844b7dfafbc00020d0dea
|
||||
0ad9951c416d33c5da4f7a504fb162cbe62386f5
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
0fa6e3129e61143224663e1ec67980d12b7ec4eb
|
||||
2a9138a26ee257fef05310ad3fecf7c55fe80d73
|
||||
|
||||
@ -1,41 +1,59 @@
|
||||
# TODO(elainwy): remove this file after the torch nightly dockerfile is in sync in vllm repo
|
||||
# The vLLM Dockerfile is used to construct vLLM image against torch nightly and torch main that can be directly used for testing
|
||||
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
|
||||
# BUILD_BASE_IMAGE: used to setup python build xformers, and vllm wheels, It can be replaced with a different base image from local machine,
|
||||
# by default, it uses the torch-nightly-base stage from this docker image
|
||||
ARG BUILD_BASE_IMAGE=torch-nightly-base
|
||||
|
||||
# FINAL_BASE_IMAGE: used to set up vllm-instaled environment and build flashinfer,
|
||||
# by default, it uses devel-ubuntu22.04 official image.
|
||||
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
|
||||
# The logic is copied from https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile
|
||||
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
|
||||
|
||||
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
# A base image for building vLLM with devel ubuntu 22.04, this is mainly used to build vllm in vllm builtkite ci
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Install system dependencies and uv, then create Python virtual environment
|
||||
# Install Python and other dependencies
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl sudo vim python3-pip \
|
||||
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
||||
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
||||
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
||||
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
||||
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
||||
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
|
||||
&& add-apt-repository -y ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
RUN apt-get install -y gcc-10 g++-10
|
||||
RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 110 --slave /usr/bin/g++ g++ /usr/bin/g++-10
|
||||
RUN <<EOF
|
||||
gcc --version
|
||||
EOF
|
||||
# Ensure gcc >= 10 to avoid CUTLASS issues (bug 92519)
|
||||
RUN current_gcc_version=$(gcc -dumpversion | cut -f1 -d.) && \
|
||||
if command -v apt-get >/dev/null; then \
|
||||
if [ "$current_gcc_version" -lt 10 ]; then \
|
||||
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
|
||||
apt-get update \
|
||||
&& apt-get install -y gcc-10 g++-10 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 \
|
||||
&& update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
|
||||
else \
|
||||
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
|
||||
fi \
|
||||
fi \
|
||||
&& gcc --version && g++ --version
|
||||
|
||||
# Install uv for faster pip installs
|
||||
# install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv==0.8.4
|
||||
|
||||
@ -43,32 +61,36 @@ ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
# A base image for building vLLM with torch nightly or torch wheels
|
||||
# prepare basic build environment
|
||||
FROM ${BUILD_BASE_IMAGE} AS base
|
||||
USER root
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
|
||||
# Only work with PyTorch manylinux builder
|
||||
# TODO (huydhn): Only work with PyTorch manylinux builder
|
||||
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
|
||||
|
||||
# Install some system dependencies and double check python version
|
||||
RUN if command -v apt-get >/dev/null; then \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git wget sudo vim; \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim; \
|
||||
else \
|
||||
dnf install -y git wget sudo; \
|
||||
dnf install -y git curl wget sudo; \
|
||||
fi \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv==0.8.4
|
||||
|
||||
if ! python3 -m uv --version >/dev/null 2>&1; then \
|
||||
python3 -m pip install uv==0.8.4; \
|
||||
fi
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
@ -76,15 +98,15 @@ ENV UV_LINK_MODE=copy
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
# Install build and runtime dependencies
|
||||
# install build and runtime dependencies
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
COPY pyproject.toml pyproject.toml
|
||||
|
||||
# Install build and runtime dependencies without stable torch version
|
||||
# install build and runtime dependencies without stable torch version
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
# Default mount file as placeholder, this just avoid the mount error
|
||||
# default mount file as placeholder, this just avoid the mount error
|
||||
# change to a different vllm folder if this does not exist anymore
|
||||
ARG TORCH_WHEELS_PATH="./requirements"
|
||||
ARG PINNED_TORCH_VERSION
|
||||
@ -116,36 +138,56 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
|
||||
# Must put before installing xformers, so it can install the correct version of xfomrers.
|
||||
ARG xformers_cuda_arch_list='7.5;8.0+PTX;9.0a'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${xformers_cuda_arch_list}
|
||||
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
export TORCH_CUDA_ARCH_LIST='7.5 8.0+PTX 9.0a'
|
||||
git clone https://github.com/facebookresearch/xformers.git
|
||||
RUN echo ${TORCH_CUDA_ARCH_LIST}
|
||||
RUN echo ${MAX_JOBS}
|
||||
RUN pip freeze | grep -E 'ninja'
|
||||
|
||||
pushd xformers
|
||||
git checkout v0.0.32.post2
|
||||
git submodule update --init --recursive
|
||||
python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose
|
||||
popd
|
||||
# Build xformers with cuda and torch nightly/wheel
|
||||
# following official xformers guidance: https://github.com/facebookresearch/xformers#build
|
||||
# sha for https://github.com/facebookresearch/xformers/tree/v0.0.32.post2
|
||||
ARG XFORMERS_COMMIT=5d4b92a5e5a9c6c6d4878283f47d82e17995b468
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
rm -rf xformers
|
||||
BASH
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
echo 'git clone xformers...' \
|
||||
&& git clone https://github.com/facebookresearch/xformers.git --recursive \
|
||||
&& cd xformers \
|
||||
&& git checkout ${XFORMERS_COMMIT} \
|
||||
&& git submodule update --init --recursive \
|
||||
&& echo 'finish git clone xformers...' \
|
||||
&& rm -rf build \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose \
|
||||
&& cd .. \
|
||||
&& rm -rf xformers
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system xformers-dist/*.whl
|
||||
uv pip install --system xformers-dist/*.whl --verbose
|
||||
|
||||
# Build can take a long time, and the torch nightly version fetched from url can be different in next docker stage.
|
||||
# track the nightly torch version used in the build, when we set up runtime environment we can make sure the version is the same
|
||||
RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio' > torch_build_versions.txt
|
||||
|
||||
RUN cat torch_build_versions.txt
|
||||
RUN pip freeze | grep -E 'torch|xformers|torchvision|torchaudio'
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
# Image used to build vllm wheel
|
||||
FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
@ -155,17 +197,20 @@ ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != "0" ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Max jobs used by Ninja to build extensions
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
ARG nvcc_threads=8
|
||||
ARG nvcc_threads=4
|
||||
ENV NVCC_THREADS=$nvcc_threads
|
||||
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
ARG USE_SCCACHE
|
||||
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
|
||||
# Use sccache to speed up compilation
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
@ -190,9 +235,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
&& sccache --show-stats; \
|
||||
fi
|
||||
|
||||
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
ARG vllm_target_device="cuda"
|
||||
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
@ -206,10 +248,17 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
export VLLM_DOCKER_BUILD_CONTEXT=1 && \
|
||||
python3 setup.py bdist_wheel --dist-dir=vllm-dist --py-limited-api=cp38; \
|
||||
fi
|
||||
|
||||
RUN echo "[INFO] Listing current directory:" && \
|
||||
ls -al && \
|
||||
echo "[INFO] Showing torch_build_versions.txt content:" && \
|
||||
cat torch_build_versions.txt
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
|
||||
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
# Setup clean environment for vLLM for test and api server using ubuntu22.04 with AOT flashinfer
|
||||
FROM ${FINAL_BASE_IMAGE} AS vllm-base
|
||||
USER root
|
||||
|
||||
@ -217,7 +266,7 @@ ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# Only work with PyTorch manylinux builder
|
||||
# TODO (huydhn): Only work with PyTorch manylinux builder
|
||||
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
|
||||
|
||||
# prepare for environment starts
|
||||
@ -226,19 +275,20 @@ WORKDIR /workspace
|
||||
# Install Python and other dependencies
|
||||
RUN if command -v apt-get >/dev/null; then \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git sudo vim python3-pip; \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
|
||||
&& add-apt-repository -y ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION}; \
|
||||
else \
|
||||
dnf install -y git wget sudo; \
|
||||
dnf install -y git curl wget sudo; \
|
||||
fi \
|
||||
&& curl -LsSf https://astral.sh/uv/install.sh | sh \
|
||||
&& $HOME/.local/bin/uv venv /opt/venv --python ${PYTHON_VERSION} \
|
||||
&& rm -f /usr/bin/python3 /usr/bin/python3-config /usr/bin/pip \
|
||||
&& ln -s /opt/venv/bin/python3 /usr/bin/python3 \
|
||||
&& ln -s /opt/venv/bin/python3-config /usr/bin/python3-config \
|
||||
&& ln -s /opt/venv/bin/pip /usr/bin/pip \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Get the torch versions, and whls used in previous stage
|
||||
# Get the torch versions, and whls used in previous stagtes for consistency
|
||||
COPY --from=base /workspace/torch_build_versions.txt ./torch_build_versions.txt
|
||||
COPY --from=base /workspace/xformers-dist /wheels/xformers
|
||||
COPY --from=build /workspace/vllm-dist /wheels/vllm
|
||||
@ -247,29 +297,33 @@ RUN echo "[INFO] Listing current directory before torch install step:" && \
|
||||
echo "[INFO] Showing torch_build_versions.txt content:" && \
|
||||
cat torch_build_versions.txt
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
python3 -m pip install uv==0.8.4
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
# Install build and runtime dependencies, this is needed for flashinfer install
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
RUN python3 use_existing_torch.py
|
||||
RUN cat requirements/build.txt
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if ! python3 -m uv --version > /dev/null 2>&1; then \
|
||||
python3 -m pip install uv==0.8.4; \
|
||||
fi
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
|
||||
# Default mount file as placeholder, this just avoid the mount error
|
||||
ARG TORCH_WHEELS_PATH="./requirements"
|
||||
# Install torch, torchaudio and torchvision. If TORCH_WHEELS_PATH is default
|
||||
# to ./requirements, it will pull the nightly versions using pip. Otherwise,
|
||||
# it will use the local wheels from TORCH_WHEELS_PATH
|
||||
# Install torch, torchaudio and torchvision
|
||||
# if TORCH_WHEELS_PATH is default "./requirements", it will pull the nightly versions using pip using torch_build_versions.txt
|
||||
# otherwise, it will use the whls from TORCH_WHEELS_PATH from the host machine
|
||||
RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
|
||||
@ -290,14 +344,18 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
# Install xformers wheel from previous stage
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/xformers/*.whl --verbose
|
||||
|
||||
# Build FlashInfer from source
|
||||
# Build flashinfer from source.
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
# install package for build flashinfer
|
||||
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
|
||||
|
||||
RUN pip freeze | grep -E 'setuptools|packaging|build'
|
||||
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
# Build flashinfer for torch nightly from source around 10 mins
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
# Keep this in sync with https://github.com/vllm-project/vllm/blob/main/requirements/cuda.txt
|
||||
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
@ -309,7 +367,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
&& cd .. \
|
||||
&& rm -rf flashinfer
|
||||
|
||||
# Install FlashInfer
|
||||
# install flashinfer python
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system wheels/flashinfer/*.whl --verbose
|
||||
|
||||
@ -319,6 +377,49 @@ RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio\|^xformers\|^vllm
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
FROM vllm-base as test
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
COPY tests/ tests/
|
||||
COPY examples examples
|
||||
COPY benchmarks benchmarks
|
||||
COPY ./vllm/collect_env.py .
|
||||
COPY requirements/common.txt requirements/common.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
COPY pyproject.toml pyproject.toml
|
||||
# Install build and runtime dependencies without stable torch version
|
||||
COPY requirements/nightly_torch_test.txt requirements/nightly_torch_test.txt
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
|
||||
# install packages
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
# enable fast downloads from hf (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system hf_transfer
|
||||
ENV HF_HUB_ENABLE_HF_TRANSFER 1
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -e tests/vllm_test_utils
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/nightly_torch_test.txt
|
||||
|
||||
# Logging to confirm the torch versions
|
||||
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
|
||||
|
||||
# Logging to confirm all the packages are installed
|
||||
RUN pip freeze
|
||||
|
||||
#################### UNITTEST IMAGE #############################
|
||||
|
||||
#################### EXPORT STAGE ####################
|
||||
FROM scratch as export-wheels
|
||||
|
||||
2
.github/scripts/filter_test_configs.py
vendored
2
.github/scripts/filter_test_configs.py
vendored
@ -512,8 +512,6 @@ def perform_misc_tasks(
|
||||
"keep-going",
|
||||
branch == MAIN_BRANCH
|
||||
or bool(tag and re.match(r"^trunk/[a-f0-9]{40}$", tag))
|
||||
# Pattern for tags created via manual run on HUD
|
||||
or bool(tag and re.match(r"^ciflow/[^/]+/[a-f0-9]{40}$", tag))
|
||||
or check_for_setting(labels, pr_body, "keep-going"),
|
||||
)
|
||||
set_output(
|
||||
|
||||
26
.github/scripts/generate_binary_build_matrix.py
vendored
26
.github/scripts/generate_binary_build_matrix.py
vendored
@ -16,18 +16,16 @@ from typing import Optional
|
||||
|
||||
|
||||
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
|
||||
CUDA_ARCHES = ["12.6", "12.8", "13.0"]
|
||||
CUDA_STABLE = "12.8"
|
||||
CUDA_ARCHES_FULL_VERSION = {
|
||||
"12.6": "12.6.3",
|
||||
"12.8": "12.8.1",
|
||||
"12.9": "12.9.1",
|
||||
"13.0": "13.0.0",
|
||||
}
|
||||
CUDA_ARCHES_CUDNN_VERSION = {
|
||||
"12.6": "9",
|
||||
"12.8": "9",
|
||||
"12.9": "9",
|
||||
"13.0": "9",
|
||||
}
|
||||
|
||||
@ -40,7 +38,7 @@ CPU_AARCH64_ARCH = ["cpu-aarch64"]
|
||||
|
||||
CPU_S390X_ARCH = ["cpu-s390x"]
|
||||
|
||||
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "12.9-aarch64", "13.0-aarch64"]
|
||||
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "13.0-aarch64"]
|
||||
|
||||
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
@ -78,23 +76,6 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
|
||||
),
|
||||
"12.9": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"13.0": (
|
||||
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | "
|
||||
@ -341,7 +322,7 @@ def generate_wheels_matrix(
|
||||
# cuda linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
|
||||
|
||||
if (
|
||||
arch_version in ["13.0", "12.9", "12.8", "12.6"]
|
||||
arch_version in ["13.0", "12.8", "12.6"]
|
||||
and os == "linux"
|
||||
or arch_version in CUDA_AARCH64_ARCHES
|
||||
):
|
||||
@ -405,6 +386,5 @@ def generate_wheels_matrix(
|
||||
|
||||
|
||||
validate_nccl_dep_consistency("13.0")
|
||||
validate_nccl_dep_consistency("12.9")
|
||||
validate_nccl_dep_consistency("12.8")
|
||||
validate_nccl_dep_consistency("12.6")
|
||||
|
||||
@ -177,9 +177,6 @@ jobs:
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: !{{ common.timeout_minutes }}
|
||||
!{{ upload.binary_env(config) }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
|
||||
2
.github/workflows/_docs.yml
vendored
2
.github/workflows/_docs.yml
vendored
@ -72,7 +72,7 @@ jobs:
|
||||
# Let's try to figure out how this can be improved
|
||||
timeout-minutes: 360
|
||||
- docs_type: python
|
||||
runner: ${{ inputs.runner_prefix }}linux.c7i.2xlarge
|
||||
runner: ${{ inputs.runner_prefix }}linux.2xlarge
|
||||
# It takes less than 30m to finish python docs unless there are issues
|
||||
timeout-minutes: 30
|
||||
# Set a fixed name for this job instead of using the current matrix-generated name, i.e. build-docs (cpp, linux.12xlarge, 180)
|
||||
|
||||
13
.github/workflows/_rocm-test.yml
vendored
13
.github/workflows/_rocm-test.yml
vendored
@ -102,6 +102,19 @@ jobs:
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
|
||||
- name: Login to Amazon ECR
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
|
||||
4
.github/workflows/build-manywheel-images.yml
vendored
4
.github/workflows/build-manywheel-images.yml
vendored
@ -46,12 +46,10 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include: [
|
||||
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda13.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda12.8", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda12.9", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cuda12.6", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
|
||||
|
||||
322
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
322
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -204,52 +204,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_10-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -453,52 +407,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_11-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -702,52 +610,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_12-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -951,52 +813,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1200,52 +1016,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13t-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1449,52 +1219,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1698,52 +1422,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda-aarch64-12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.arm64.r7g.12xlarge.memory
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda-aarch64-12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14t-cuda-aarch64-12_9-build
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9-aarch64"
|
||||
GPU_ARCH_TYPE: cuda-aarch64
|
||||
DOCKER_IMAGE: manylinuxaarch64-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda-aarch64-13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
|
||||
74
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
74
.github/workflows/generated-linux-binary-libtorch-nightly.yml
generated
vendored
@ -248,74 +248,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
libtorch-cuda13_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -426,9 +358,6 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -544,9 +473,6 @@ jobs:
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
|
||||
504
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
504
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
@ -241,72 +241,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_10-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_10-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_10-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -413,9 +347,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.10"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -528,9 +459,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.10"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -907,72 +835,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_11-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_11-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.11"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_11-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1079,9 +941,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.11"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -1194,9 +1053,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.11"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -1573,72 +1429,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_12-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_12-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_12-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -1745,9 +1535,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.12"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -1860,9 +1647,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.12"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -2239,72 +2023,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_13-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -2411,9 +2129,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.13"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -2526,9 +2241,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.13"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -2905,72 +2617,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_13t-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_13t-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_13t-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -3077,9 +2723,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -3192,9 +2835,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.13t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -3571,72 +3211,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_14-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -3743,9 +3317,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.14"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -3858,9 +3429,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.14"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -4237,72 +3805,6 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda12_9-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_14t-cuda12_9-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: manywheel-py3_14t-cuda12_9-test
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
|
||||
manywheel-py3_14t-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
@ -4409,9 +3911,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
@ -4524,9 +4023,6 @@ jobs:
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
|
||||
DESIRED_PYTHON: "3.14t"
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
|
||||
250
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
250
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
@ -788,256 +788,6 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda12_9-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-debug-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-debug-test
|
||||
with:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda13_0-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
|
||||
250
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
250
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
@ -788,256 +788,6 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda12_9-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-release
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-release
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda13_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
|
||||
1666
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
1666
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
File diff suppressed because it is too large
Load Diff
@ -130,7 +130,7 @@ jobs:
|
||||
name: test-periodically
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: build
|
||||
if: github.event.schedule == '15 0 * * 1-6'
|
||||
if: github.event.schedule == '15 0,12 * * 1-6'
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm90
|
||||
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
|
||||
|
||||
7
.github/workflows/lint.yml
vendored
7
.github/workflows/lint.yml
vendored
@ -12,7 +12,6 @@ on:
|
||||
- landchecks/*
|
||||
tags:
|
||||
- ciflow/pull/*
|
||||
- ciflow/trunk/*
|
||||
workflow_dispatch:
|
||||
|
||||
permissions: read-all
|
||||
@ -33,12 +32,10 @@ jobs:
|
||||
name: Get changed files
|
||||
uses: ./.github/workflows/_get-changed-files.yml
|
||||
with:
|
||||
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') || github.event_name == 'push' }}
|
||||
all_files: ${{ contains(github.event.pull_request.labels.*.name, 'lint-all-files') || contains(github.event.pull_request.labels.*.name, 'Reverted') }}
|
||||
|
||||
lintrunner-clang:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
# Needed to prevent deduping on HUD
|
||||
name: lintrunner-clang-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
# Only run if there are changed files relevant to clangtidy / clangformat
|
||||
if: |
|
||||
@ -78,7 +75,6 @@ jobs:
|
||||
# fails to find types when it should
|
||||
lintrunner-mypy:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
name: lintrunner-mypy-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
# Only run if there are changed files relevant to mypy
|
||||
if: |
|
||||
@ -103,7 +99,6 @@ jobs:
|
||||
|
||||
lintrunner-noclang:
|
||||
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
|
||||
name: lintrunner-noclang-${{ needs.get-changed-files.outputs.changed-files == '*' && 'all' || 'partial' }}
|
||||
needs: [get-label-type, get-changed-files]
|
||||
with:
|
||||
timeout: 120
|
||||
|
||||
10
.github/workflows/periodic.yml
vendored
10
.github/workflows/periodic.yml
vendored
@ -182,11 +182,11 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "nogpu_AVX512", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_AVX512", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_AVX512", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge" },
|
||||
{ config: "nogpu_AVX512", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_AVX512", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_AVX512", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "nogpu_NO_AVX2", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "jit_legacy", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
1
.github/workflows/pull.yml
vendored
1
.github/workflows/pull.yml
vendored
@ -127,7 +127,6 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner: linux.2xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-clang18-asan
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
|
||||
|
||||
1
.github/workflows/slow.yml
vendored
1
.github/workflows/slow.yml
vendored
@ -140,7 +140,6 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner: linux.2xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-clang18-asan
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
|
||||
|
||||
2
.github/workflows/trunk.yml
vendored
2
.github/workflows/trunk.yml
vendored
@ -56,7 +56,7 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
build-generates-artifacts: false
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runner: "linux.c7i.4xlarge"
|
||||
runner: "linux.4xlarge"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 1 },
|
||||
|
||||
4
.github/workflows/vllm.yml
vendored
4
.github/workflows/vllm.yml
vendored
@ -46,7 +46,7 @@ jobs:
|
||||
runner: linux.24xlarge.memory
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_basic_correctness_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_basic_models_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_entrypoints_test", shard: 1, num_shards: 1,runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_regression_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
@ -54,7 +54,7 @@ jobs:
|
||||
{ config: "vllm_pytorch_compilation_unit_tests", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_lora_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_multi_model_test_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
|
||||
{ config: "vllm_language_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
|
||||
{ config: "vllm_languagde_model_test_extended_generation_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu"},
|
||||
{ config: "vllm_distributed_test_2_gpu_28_failure_test", shard: 1, num_shards: 1, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_lora_test", shard: 0, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
{ config: "vllm_lora_test", shard: 1, num_shards: 4, runner: "linux.g6.4xlarge.experimental.nvidia.gpu" },
|
||||
|
||||
@ -209,46 +209,6 @@ command = [
|
||||
'@{{PATHSFILE}}'
|
||||
]
|
||||
|
||||
|
||||
[[linter]]
|
||||
code = 'PYREFLY'
|
||||
include_patterns = [
|
||||
'torch/**/*.py',
|
||||
'torch/**/*.pyi',
|
||||
'torchgen/**/*.py',
|
||||
'torchgen/**/*.pyi',
|
||||
'functorch/**/*.py',
|
||||
'functorch/**/*.pyi',
|
||||
]
|
||||
exclude_patterns = []
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pyrefly_linter.py',
|
||||
]
|
||||
init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'pyrefly==0.36.2',
|
||||
'sympy==1.13.3',
|
||||
'types-requests==2.27.25',
|
||||
'types-pyyaml==6.0.2',
|
||||
'types-tabulate==0.8.8',
|
||||
'types-protobuf==5.29.1.20250403',
|
||||
'types-setuptools==79.0.0.20250422',
|
||||
'types-jinja2==2.11.9',
|
||||
'types-colorama==0.4.6',
|
||||
'filelock==3.18.0',
|
||||
'junitparser==2.1.1',
|
||||
'rich==14.1.0',
|
||||
'optree==0.17.0',
|
||||
'types-openpyxl==3.1.5.20250919',
|
||||
'types-python-dateutil==2.9.0.20251008'
|
||||
]
|
||||
|
||||
[[linter]]
|
||||
code = 'CLANGTIDY'
|
||||
include_patterns = [
|
||||
|
||||
@ -16,8 +16,8 @@ inline void check_size_nonnegative(ArrayRef<int64_t> size) {
|
||||
|
||||
inline void check_size_nonnegative(ArrayRef<c10::SymInt> size) {
|
||||
for (const auto& x : size) {
|
||||
TORCH_SYM_CHECK(
|
||||
x.sym_ge(0),
|
||||
TORCH_CHECK(
|
||||
x.expect_size(__FILE__, __LINE__),
|
||||
"Trying to create tensor with negative dimension ",
|
||||
x,
|
||||
": ",
|
||||
|
||||
@ -4,7 +4,6 @@
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/core/SymIntArrayRef.h>
|
||||
#include <c10/util/DimVector.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
@ -27,7 +26,9 @@ inline void infer_size_impl(
|
||||
std::optional<int64_t> infer_dim;
|
||||
for (int64_t dim = 0, ndim = shape.size(); dim != ndim; dim++) {
|
||||
if (TORCH_GUARD_OR_FALSE(sym_eq(shape[dim], -1))) {
|
||||
TORCH_CHECK(!infer_dim, "only one dimension can be inferred");
|
||||
if (infer_dim) {
|
||||
throw std::runtime_error("only one dimension can be inferred");
|
||||
}
|
||||
infer_dim = dim;
|
||||
} else {
|
||||
// in case of unbacked shape[dim] we assume it's not -1 and add a runtime
|
||||
|
||||
@ -58,7 +58,7 @@ namespace at {
|
||||
namespace{
|
||||
|
||||
// PyTorch allows operations to specify dim 0 and dim -1 on a scalar tensor.
|
||||
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
return dim == 0 || dim == -1;
|
||||
}
|
||||
|
||||
@ -365,7 +365,7 @@ Tensor select_batching_rule(const Tensor& self, int64_t dim, int64_t index) {
|
||||
return self_physical.getPhysicalToLogicalMap().apply(result);
|
||||
}
|
||||
|
||||
int64_t getGradInputPhysicalDim(int64_t dim, IntArrayRef input_sizes, int64_t num_batch_dims) {
|
||||
static int64_t getGradInputPhysicalDim(int64_t dim, IntArrayRef input_sizes, int64_t num_batch_dims) {
|
||||
return maybe_wrap_dim(dim, static_cast<int64_t>(input_sizes.size())) + num_batch_dims;
|
||||
}
|
||||
|
||||
@ -488,7 +488,7 @@ Tensor view_as_complex_batching_rule(const Tensor& self) {
|
||||
// Checks that the smallest batch stride is greater than the largest example
|
||||
// stride. This is something we can support but we choose not to because it's
|
||||
// potentially error prone.
|
||||
void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_batch_dims) {
|
||||
static void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_batch_dims) {
|
||||
auto smallest_batch_stride = std::min_element(
|
||||
physical_strides.begin(), physical_strides.begin() + num_batch_dims);
|
||||
auto largest_example_stride = std::max_element(
|
||||
@ -508,7 +508,7 @@ void checkBatchDimsAtFrontInLayout(IntArrayRef physical_strides, int64_t num_bat
|
||||
// given (sizes, strides, storage_offset) returns the maximum location that
|
||||
// can be indexed (or nullopt if such a location doesn't exist, e.g., tensors
|
||||
// with zero-size dims).
|
||||
std::optional<int64_t> maximum_indexable_location(
|
||||
static std::optional<int64_t> maximum_indexable_location(
|
||||
IntArrayRef sizes, IntArrayRef strides, int64_t storage_offset) {
|
||||
auto result = native::storage_size_for(sizes, strides);
|
||||
if (result == 0) {
|
||||
@ -521,7 +521,7 @@ std::optional<int64_t> maximum_indexable_location(
|
||||
// This checks that the range of possible memory locations accessible by
|
||||
// x.as_strided(sizes, strides, maybe_storage_offset)
|
||||
// are within the bounds of possible memory locations accessible by x.
|
||||
void checkBasicAsStridedValidForSlice(
|
||||
static void checkBasicAsStridedValidForSlice(
|
||||
const Tensor& physical_tensor,
|
||||
int64_t num_batch_dims,
|
||||
IntArrayRef sizes,
|
||||
|
||||
@ -13,7 +13,7 @@ namespace {
|
||||
// and left at true for the rest of the execution.
|
||||
// It's an optimization so that users who never use default hooks don't need to
|
||||
// read the thread_local variables pack_hook_ and unpack_hook_.
|
||||
bool is_initialized(false);
|
||||
static bool is_initialized(false);
|
||||
}
|
||||
|
||||
static void assertSavedTensorHooksNotDisabled() {
|
||||
|
||||
@ -56,7 +56,7 @@ inline void get_strides(int64_t* strides, ArrayRef<OperandInfo> operands, int64_
|
||||
}
|
||||
}
|
||||
|
||||
OptionalTensorRef make_otr(const TensorBase &tensor) {
|
||||
static OptionalTensorRef make_otr(const TensorBase &tensor) {
|
||||
if (tensor.defined()) {
|
||||
return OptionalTensorRef(tensor);
|
||||
} else {
|
||||
|
||||
@ -103,7 +103,9 @@ std::string get_cpu_capability() {
|
||||
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
|
||||
case native::CPUCapability::ZVECTOR:
|
||||
return "Z VECTOR";
|
||||
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
case native::CPUCapability::SVE128:
|
||||
return "SVE128";
|
||||
case native::CPUCapability::SVE256:
|
||||
return "SVE256";
|
||||
#else
|
||||
|
||||
@ -36,7 +36,7 @@ namespace {
|
||||
using weakref_type = c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl>;
|
||||
using val_type = std::tuple<weakref_type, Tensor>;
|
||||
|
||||
ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
|
||||
static ska::flat_hash_map<TensorImpl*, val_type>& get_cached_casts() {
|
||||
static ska::flat_hash_map<TensorImpl*, val_type> cached_casts;
|
||||
return cached_casts;
|
||||
}
|
||||
|
||||
@ -6,9 +6,9 @@ namespace at {
|
||||
|
||||
namespace {
|
||||
|
||||
std::array<HostAllocator*, at::COMPILE_TIME_MAX_DEVICE_TYPES>
|
||||
static std::array<HostAllocator*, at::COMPILE_TIME_MAX_DEVICE_TYPES>
|
||||
allocator_array{};
|
||||
std::array<uint8_t, at::COMPILE_TIME_MAX_DEVICE_TYPES>
|
||||
static std::array<uint8_t, at::COMPILE_TIME_MAX_DEVICE_TYPES>
|
||||
allocator_priority{};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
@ -102,8 +102,31 @@ struct VecReduceAllSIMD<float, Op> {
|
||||
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) &&
|
||||
// !defined(C10_MOBILE)
|
||||
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE)
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
#if defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
const Op& vec_fun,
|
||||
const Vectorized<float>& acc_vec) {
|
||||
using Vec = Vectorized<float>;
|
||||
Vec v = acc_vec;
|
||||
// 128-bit shuffle
|
||||
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
|
||||
Vec v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 64-bit shuffle
|
||||
ind = svdupq_n_u32(2, 3, 0, 1);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 32-bit shuffle
|
||||
ind = svdupq_n_u32(1, 0, 2, 3);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
return svlasta(svpfalse(), v);
|
||||
}
|
||||
};
|
||||
#else
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
@ -140,35 +163,8 @@ struct VecReduceAllSIMD<float, std::plus<Vectorized<float>>> {
|
||||
return vaddvq_f32(acc_vec);
|
||||
}
|
||||
};
|
||||
#endif // defined(CPU_CAPABILITY_SVE256)
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
// && !defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
const Op& vec_fun,
|
||||
const Vectorized<float>& acc_vec) {
|
||||
using Vec = Vectorized<float>;
|
||||
Vec v = acc_vec;
|
||||
// 128-bit shuffle
|
||||
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
|
||||
Vec v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 64-bit shuffle
|
||||
ind = svdupq_n_u32(2, 3, 0, 1);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 32-bit shuffle
|
||||
ind = svdupq_n_u32(1, 0, 2, 3);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
return svlasta(svpfalse(), v);
|
||||
}
|
||||
};
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
// && defined(CPU_CAPABILITY_SVE256)
|
||||
|
||||
template <typename scalar_t, typename Op>
|
||||
inline scalar_t vec_reduce_all(
|
||||
|
||||
@ -1,9 +1,21 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <cstdint>
|
||||
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#if defined(__aarch64__) && \
|
||||
(defined(AT_BUILD_ARM_VEC256_WITH_SLEEF) || \
|
||||
defined(AT_BUILD_ARM_VECSVE_WITH_SLEEF))
|
||||
#define SLEEF_STATIC_LIBS
|
||||
#include <sleef.h>
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
||||
#else
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
||||
#endif
|
||||
|
||||
#if defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
// Define the data type of VLS(vector-length specific).
|
||||
|
||||
@ -2,7 +2,6 @@
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/sve/vec_common_sve.h>
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/util/bit_cast.h>
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
#if defined(__aarch64__)
|
||||
#include <ATen/cpu/vec/vec_common_aarch64.h>
|
||||
#elif defined(CPU_CAPABILITY_AVX512)
|
||||
#include <ATen/cpu/vec/vec512/vec512.h>
|
||||
#else
|
||||
#include <ATen/cpu/vec/vec128/vec128.h>
|
||||
@ -11,6 +13,34 @@ namespace at::vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
|
||||
__at_align__ bool buffer[x.size()];
|
||||
x.ne(Vectorized<int8_t>(0)).store(buffer);
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
|
||||
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
@ -262,6 +263,13 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
c10::bit_cast<at_bfloat16_t>(val6.x),
|
||||
c10::bit_cast<at_bfloat16_t>(val7.x)}) {}
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
Vectorized(svbfloat16_t v) : Vectorized16(svget_neonq(v)) {}
|
||||
operator svbfloat16_t() const {
|
||||
return svset_neonq(svundef_bf16(), values);
|
||||
}
|
||||
#endif
|
||||
|
||||
static Vectorized<c10::BFloat16> blendv(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
@ -374,6 +382,23 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
Vectorized ge(const Vectorized& other) const;
|
||||
Vectorized lt(const Vectorized& other) const;
|
||||
Vectorized le(const Vectorized& other) const;
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
|
||||
template <typename step_t>
|
||||
static Vectorized<BFloat16> arange(
|
||||
BFloat16 base = 0.f,
|
||||
step_t step = static_cast<step_t>(1)) {
|
||||
__at_align__ BFloat16 buffer[size()];
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
buffer[i] = base + i * step;
|
||||
}
|
||||
return svget_neonq(
|
||||
svld1_bf16(ptrue, reinterpret_cast<bfloat16_t*>(buffer)));
|
||||
}
|
||||
|
||||
#endif // CPU_CAPABILITY_SVE128
|
||||
|
||||
}; // Vectorized<c10::BFloat16>
|
||||
|
||||
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
|
||||
@ -397,6 +422,24 @@ inline Vectorized<c10::BFloat16> convert_float_bfloat16(
|
||||
return Vectorized<c10::BFloat16>(at_vcombine_bf16(x1, x2));
|
||||
}
|
||||
|
||||
inline void load_fp32_from_bf16(const BFloat16* data, Vectorized<float>& out) {
|
||||
__at_align__ float values[Vectorized<float>::size()];
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
||||
values[k] = data[k];
|
||||
}
|
||||
out = Vectorized<float>::loadu(values);
|
||||
}
|
||||
|
||||
inline void load_fp32_from_bf16(
|
||||
const BFloat16* data,
|
||||
Vectorized<float>& out1,
|
||||
Vectorized<float>& out2) {
|
||||
Vectorized<BFloat16> bf16_vec = Vectorized<BFloat16>::loadu(data);
|
||||
auto floats = convert_bfloat16_float(bf16_vec);
|
||||
out1 = std::get<0>(floats);
|
||||
out2 = std::get<1>(floats);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
Vectorized<c10::BFloat16> binary_operator_via_float(
|
||||
Op op,
|
||||
@ -579,6 +622,12 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
return -a * b - c;
|
||||
}
|
||||
|
||||
#else //
|
||||
|
||||
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
|
||||
|
||||
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16)
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
#if defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
@ -60,6 +60,7 @@ struct VecConvert<float, 1, BFloat16, 1> {
|
||||
}
|
||||
};
|
||||
|
||||
#endif // defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
|
||||
#endif // defined(__aarch64__) && (!defined(CPU_CAPABILITY_SVE) ||
|
||||
// defined(CPU_CAPABILITY_SVE128))
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
||||
@ -4,13 +4,10 @@
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
||||
#include <sleef.h>
|
||||
#endif
|
||||
|
||||
// Sleef offers vectorized versions of some transcedentals
|
||||
// such as sin, cos, tan etc..
|
||||
// However for now opting for STL, since we are not building
|
||||
@ -35,12 +32,6 @@ inline namespace CPU_CAPABILITY {
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
|
||||
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
||||
#else
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
||||
#endif
|
||||
|
||||
template <int index, bool mask_val>
|
||||
struct BlendRegs {
|
||||
static float32x4_t impl(
|
||||
@ -94,6 +85,12 @@ class Vectorized<float> {
|
||||
operator float32x4_t() const {
|
||||
return values;
|
||||
}
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
Vectorized(svfloat32_t v) : values(svget_neonq(v)) {}
|
||||
operator svfloat32_t() const {
|
||||
return svset_neonq(svundef_f32(), values);
|
||||
}
|
||||
#endif
|
||||
template <int64_t mask>
|
||||
static Vectorized<float> blend(
|
||||
const Vectorized<float>& a,
|
||||
|
||||
@ -4,7 +4,6 @@
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
@ -25,7 +24,6 @@ inline namespace CPU_CAPABILITY {
|
||||
// https://bugs.llvm.org/show_bug.cgi?id=45824
|
||||
// Most likely we will do aarch32 support with inline asm.
|
||||
#if !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
#ifdef __BIG_ENDIAN__
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
@ -421,6 +419,24 @@ Vectorized<c10::Half> inline operator+(
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void load_fp32_from_fp16(const c10::Half* data, Vectorized<float>& out) {
|
||||
__at_align__ float values[Vectorized<float>::size()];
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
||||
values[k] = data[k];
|
||||
}
|
||||
out = Vectorized<float>::loadu(values);
|
||||
}
|
||||
|
||||
inline void load_fp32_from_fp16(
|
||||
const c10::Half* data,
|
||||
Vectorized<float>& out1,
|
||||
Vectorized<float>& out2) {
|
||||
Vectorized<c10::Half> f16_vec = Vectorized<c10::Half>::loadu(data);
|
||||
auto floats = convert_half_float(f16_vec);
|
||||
out1 = std::get<0>(floats);
|
||||
out2 = std::get<1>(floats);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::Half> inline operator-(
|
||||
const Vectorized<c10::Half>& a,
|
||||
@ -656,6 +672,53 @@ Vectorized<c10::Half> inline fnmsub(
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
|
||||
inline std::tuple<Vectorized<float>, Vectorized<float>> \
|
||||
convert_##name##_float(const Vectorized<type>& a) { \
|
||||
constexpr int64_t K = Vectorized<type>::size(); \
|
||||
__at_align__ float arr[K]; \
|
||||
__at_align__ type arr2[K]; \
|
||||
a.store(arr2); \
|
||||
convert(arr2, arr, K); \
|
||||
return std::make_tuple( \
|
||||
Vectorized<float>::loadu(arr), \
|
||||
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
|
||||
} \
|
||||
inline Vectorized<type> convert_float_##name( \
|
||||
const Vectorized<float>& a, const Vectorized<float>& b) { \
|
||||
constexpr int64_t K = Vectorized<type>::size(); \
|
||||
__at_align__ float arr[K]; \
|
||||
__at_align__ type arr2[K]; \
|
||||
a.store(arr); \
|
||||
b.store(arr + Vectorized<float>::size()); \
|
||||
convert(arr, arr2, K); \
|
||||
return Vectorized<type>::loadu(arr2); \
|
||||
}
|
||||
|
||||
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
|
||||
inline void load_fp32_from_##name( \
|
||||
const type* data, Vectorized<float>& out) { \
|
||||
__at_align__ float values[Vectorized<float>::size()]; \
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) { \
|
||||
values[k] = data[k]; \
|
||||
} \
|
||||
out = Vectorized<float>::loadu(values); \
|
||||
} \
|
||||
\
|
||||
inline void load_fp32_from_##name( \
|
||||
const type* data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
||||
load_fp32_from_##name(data, out1); \
|
||||
data += Vectorized<float>::size(); \
|
||||
load_fp32_from_##name(data, out2); \
|
||||
}
|
||||
|
||||
CONVERT_NON_VECTORIZED_INIT(Half, half)
|
||||
|
||||
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16)
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
|
||||
@ -9,21 +9,16 @@
|
||||
#if !( \
|
||||
defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || \
|
||||
defined(CPU_CAPABILITY_ZVECTOR))
|
||||
#if defined(CPU_CAPABILITY_SVE256)
|
||||
#include <ATen/cpu/vec/sve/vec_common_sve.h>
|
||||
#else
|
||||
// clang-format off
|
||||
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_int.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
||||
#endif
|
||||
#if !defined(CPU_CAPABILITY_SVE256) || !defined(__ARM_FEATURE_BF16)
|
||||
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
||||
#endif
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
// clang-format on
|
||||
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
|
||||
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
|
||||
@ -56,34 +51,6 @@ namespace at::vec {
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@ -268,9 +268,7 @@ LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16)
|
||||
|
||||
#else // defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if !( \
|
||||
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE256))
|
||||
#if !(defined(__aarch64__))
|
||||
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
|
||||
#endif
|
||||
|
||||
|
||||
@ -268,9 +268,7 @@ LOAD_FP32_VECTORIZED_INIT(Half, fp16)
|
||||
|
||||
#else // defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if !( \
|
||||
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE256))
|
||||
#if !defined(__aarch64__) || defined(CPU_CAPABILITY_SVE256)
|
||||
CONVERT_NON_VECTORIZED_INIT(Half, half)
|
||||
#endif
|
||||
|
||||
|
||||
@ -5,6 +5,13 @@
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#ifdef __aarch64__
|
||||
#if defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
||||
|
||||
#include <c10/util/irange.h>
|
||||
@ -915,7 +922,7 @@ Vectorized<c10::quint8> inline maximum(
|
||||
return a.maximum(b);
|
||||
}
|
||||
|
||||
#elif !defined(CPU_CAPABILITY_SVE256)
|
||||
#else
|
||||
|
||||
// NOTE: These are low-performance implementations that we fall back on
|
||||
// if we are not building with AVX2. This may not be an issue, because
|
||||
@ -1372,12 +1379,18 @@ Vectorized<c10::quint8> inline maximum(
|
||||
return a.maximum(b);
|
||||
}
|
||||
|
||||
#endif // if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
#if defined(__aarch64__) && \
|
||||
(defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE))
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE
|
||||
svint8_t x = src;
|
||||
auto s8x8 = vget_low_s8(svget_neonq(x));
|
||||
#else
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
#endif
|
||||
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
|
||||
@ -1402,7 +1415,14 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE
|
||||
svint8_t x = src;
|
||||
auto s8x8 = vget_low_s8(svget_neonq(x));
|
||||
#else
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
#endif
|
||||
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
|
||||
@ -1420,5 +1440,8 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
||||
@ -31,34 +31,6 @@ namespace vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX512)
|
||||
|
||||
@ -67,18 +67,7 @@ Windows llvm will not have this definition.
|
||||
#endif
|
||||
#define VECTOR_WIDTH 64
|
||||
#define int_vector __m512i
|
||||
#elif defined(__aarch64__) && \
|
||||
!defined(CPU_CAPABILITY_SVE) // CPU_CAPABILITY_AVX512
|
||||
// SVE code expects 256-vectors; leave that set for SVE?
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(16)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(16))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 16
|
||||
#else // CPU_CAPABILITY_AVX512
|
||||
#elif defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_SVE256)
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(32)))
|
||||
#elif defined(_WIN32)
|
||||
@ -88,7 +77,27 @@ Windows llvm will not have this definition.
|
||||
#endif
|
||||
#define VECTOR_WIDTH 32
|
||||
#define int_vector __m256i
|
||||
#endif // CPU_CAPABILITY_AVX512
|
||||
#elif defined(__aarch64__)
|
||||
// Define alignment and vector width for SVE128/Default (e.g., NEON)
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(16)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(16))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 16
|
||||
#else
|
||||
// Fallback: define default alignment and vector width
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(32)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(32))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 32
|
||||
#endif
|
||||
|
||||
namespace at::vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
|
||||
@ -8,13 +8,48 @@
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#if defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
|
||||
#include <ATen/cpu/vec/sve/vec_double.h>
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
#include <ATen/cpu/vec/sve/vec_int.h>
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_qint.h>
|
||||
#endif
|
||||
|
||||
#elif defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_double.h>
|
||||
#include <ATen/cpu/vec/sve/vec_int.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_qint.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_convert.h>
|
||||
|
||||
#else // NEON
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
||||
|
||||
#endif // defined(CPU_CAPABILITY_SVE128)
|
||||
|
||||
#include <ATen/cpu/vec/functional.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
@ -48,12 +83,6 @@ DEFINE_SVE_CAST(int32_t, s32, float, f32)
|
||||
DEFINE_SVE_CAST(int16_t, s16, float, f32)
|
||||
DEFINE_SVE_CAST(float, f32, double, f64)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
DEFINE_SVE_CAST(int64_t, s64, c10::BFloat16, bf16)
|
||||
DEFINE_SVE_CAST(int32_t, s32, c10::BFloat16, bf16)
|
||||
DEFINE_SVE_CAST(int16_t, s16, c10::BFloat16, bf16)
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
template <int64_t scale = 1>
|
||||
@ -173,9 +202,11 @@ std::pair<
|
||||
// group cols crossing lanes:
|
||||
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
||||
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
||||
return std::make_pair(
|
||||
Vectorized<c10::BFloat16>(svzip1_bf16(a, b)),
|
||||
Vectorized<c10::BFloat16>(svzip2_bf16(a, b)));
|
||||
svbfloat16_t aReg = a;
|
||||
svbfloat16_t bReg = b;
|
||||
Vectorized<c10::BFloat16> c = svzip1_bf16(aReg, bReg);
|
||||
Vectorized<c10::BFloat16> d = svzip2_bf16(aReg, bReg);
|
||||
return std::make_pair(c, d);
|
||||
}
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
@ -224,12 +255,27 @@ std::pair<
|
||||
// swap lanes:
|
||||
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
||||
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
||||
return std::make_pair(
|
||||
Vectorized<c10::BFloat16>(svuzp1_bf16((svbfloat16_t)a, (svbfloat16_t)b)),
|
||||
Vectorized<c10::BFloat16>(svuzp2_bf16((svbfloat16_t)a, (svbfloat16_t)b)));
|
||||
svbfloat16_t aReg = a;
|
||||
svbfloat16_t bReg = b;
|
||||
Vectorized<c10::BFloat16> c = svuzp1_bf16(aReg, bReg);
|
||||
Vectorized<c10::BFloat16> d = svuzp2_bf16(aReg, bReg);
|
||||
return std::make_pair(c, d);
|
||||
}
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
#define DEFINE_FLIP_FUNC(type, sve_func) \
|
||||
inline Vectorized<type> flip(const Vectorized<type>& v) { \
|
||||
return Vectorized<type>(sve_func(v)); \
|
||||
}
|
||||
// Use the macro to define the flip functions
|
||||
DEFINE_FLIP_FUNC(float, svrev_f32)
|
||||
DEFINE_FLIP_FUNC(double, svrev_f64)
|
||||
DEFINE_FLIP_FUNC(int64_t, svrev_s64)
|
||||
DEFINE_FLIP_FUNC(int32_t, svrev_s32)
|
||||
DEFINE_FLIP_FUNC(int16_t, svrev_s16)
|
||||
DEFINE_FLIP_FUNC(int8_t, svrev_s8)
|
||||
|
||||
#endif // defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
@ -108,7 +108,7 @@ static hipblasStatus_t rocBLASStatusToHIPStatus(rocblas_status error)
|
||||
|
||||
namespace {
|
||||
|
||||
cublasOperation_t _cublasOpFromChar(char op) {
|
||||
static cublasOperation_t _cublasOpFromChar(char op) {
|
||||
// NOLINTNEXTLINE(bugprone-switch-missing-default-case)
|
||||
switch (op) {
|
||||
case 'n':
|
||||
@ -128,7 +128,7 @@ cublasOperation_t _cublasOpFromChar(char op) {
|
||||
"_cublasOpFromChar input should be 't', 'n' or 'c' but got `", op, "`");
|
||||
}
|
||||
|
||||
void _cublasAdjustLdLevel2(int64_t m, int64_t n, int64_t* lda) {
|
||||
static void _cublasAdjustLdLevel2(int64_t m, int64_t n, int64_t* lda) {
|
||||
// Note: leading dimensions generally are checked that they are > 0
|
||||
// and at least as big the result requires (even if the value won't
|
||||
// be used).
|
||||
@ -142,7 +142,7 @@ void _cublasAdjustLdLevel2(int64_t m, int64_t n, int64_t* lda) {
|
||||
*lda = std::max<int64_t>(m, 1);
|
||||
}
|
||||
|
||||
void _cublasAdjustLdLevel3(
|
||||
static void _cublasAdjustLdLevel3(
|
||||
char transa,
|
||||
char transb,
|
||||
int64_t m,
|
||||
|
||||
@ -15,19 +15,19 @@ namespace cuda::detail {
|
||||
namespace {
|
||||
|
||||
// Total number of gpus in the system.
|
||||
int64_t num_gpus;
|
||||
static int64_t num_gpus;
|
||||
|
||||
// Ensures default_gens_cuda is initialized once.
|
||||
std::deque<c10::once_flag> cuda_gens_init_flag;
|
||||
static std::deque<c10::once_flag> cuda_gens_init_flag;
|
||||
|
||||
// Default, global CUDA generators, one per GPU.
|
||||
std::vector<Generator> default_gens_cuda;
|
||||
static std::vector<Generator> default_gens_cuda;
|
||||
|
||||
/*
|
||||
* Populates the global variables related to CUDA generators
|
||||
* Warning: this function must only be called once!
|
||||
*/
|
||||
void initCUDAGenVector() {
|
||||
static void initCUDAGenVector() {
|
||||
// Ensures we only call cudaGetDeviceCount only once.
|
||||
static bool num_gpu_init_flag [[maybe_unused]] = []() {
|
||||
num_gpus = static_cast<int32_t>(c10::cuda::device_count());
|
||||
|
||||
@ -2,8 +2,6 @@
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
#include <c10/util/Exception.h>
|
||||
|
||||
namespace at::native {
|
||||
|
||||
cudnnDataType_t getCudnnDataTypeFromScalarType(const at::ScalarType dtype) {
|
||||
@ -22,10 +20,9 @@ cudnnDataType_t getCudnnDataTypeFromScalarType(const at::ScalarType dtype) {
|
||||
} else if (dtype == at::kByte) {
|
||||
return CUDNN_DATA_UINT8;
|
||||
}
|
||||
TORCH_CHECK(false,
|
||||
"getCudnnDataTypeFromScalarType() not supported for ",
|
||||
toString(dtype)
|
||||
);
|
||||
std::string msg("getCudnnDataTypeFromScalarType() not supported for ");
|
||||
msg += toString(dtype);
|
||||
throw std::runtime_error(msg);
|
||||
}
|
||||
|
||||
cudnnDataType_t getCudnnDataType(const at::Tensor& tensor) {
|
||||
|
||||
@ -39,7 +39,7 @@ Tensor vdot_decomp(const Tensor& A, const Tensor& B) {
|
||||
// NB: I wrote this like this because we *might* want its for a future matmul
|
||||
// batch rule that isn't decomposed...
|
||||
// "tv" = tensor @ vector
|
||||
std::tuple<Tensor, std::optional<int64_t>> tv_batch_rule(
|
||||
static std::tuple<Tensor, std::optional<int64_t>> tv_batch_rule(
|
||||
const Tensor& self, std::optional<int64_t> self_bdim,
|
||||
const Tensor& other, std::optional<int64_t> other_bdim) {
|
||||
if (self_bdim && other_bdim) {
|
||||
@ -66,7 +66,7 @@ std::tuple<Tensor, std::optional<int64_t>> tv_batch_rule(
|
||||
TORCH_INTERNAL_ASSERT(false, "can't get here");
|
||||
}
|
||||
|
||||
std::tuple<Tensor, std::optional<int64_t>> mv_batch_rule(
|
||||
static std::tuple<Tensor, std::optional<int64_t>> mv_batch_rule(
|
||||
const Tensor& self, std::optional<int64_t> self_bdim,
|
||||
const Tensor& other, std::optional<int64_t> other_bdim) {
|
||||
auto self_logical_rank = rankWithoutBatchDim(self, self_bdim);
|
||||
@ -79,7 +79,7 @@ std::tuple<Tensor, std::optional<int64_t>> mv_batch_rule(
|
||||
return tv_batch_rule(self, self_bdim, other, other_bdim);
|
||||
}
|
||||
|
||||
std::tuple<Tensor, std::optional<int64_t>> mm_batch_rule(
|
||||
static std::tuple<Tensor, std::optional<int64_t>> mm_batch_rule(
|
||||
const Tensor& self, std::optional<int64_t> self_bdim,
|
||||
const Tensor& other, std::optional<int64_t> other_bdim) {
|
||||
auto self_logical_rank = rankWithoutBatchDim(self, self_bdim);
|
||||
@ -94,7 +94,7 @@ std::tuple<Tensor, std::optional<int64_t>> mm_batch_rule(
|
||||
return std::make_tuple( at::matmul(self_, other_), 0 );
|
||||
}
|
||||
|
||||
std::tuple<Tensor, std::optional<int64_t>> bmm_batch_rule(
|
||||
static std::tuple<Tensor, std::optional<int64_t>> bmm_batch_rule(
|
||||
const Tensor& self, std::optional<int64_t> self_bdim,
|
||||
const Tensor& other, std::optional<int64_t> other_bdim) {
|
||||
auto self_logical_rank = rankWithoutBatchDim(self, self_bdim);
|
||||
@ -250,7 +250,7 @@ struct LinalgCheckMatrixBinaryRuleHelper<op_name, F, Func, typelist<A, B, T...>>
|
||||
}
|
||||
};
|
||||
|
||||
void expect_at_least_rank(
|
||||
static void expect_at_least_rank(
|
||||
const Tensor& tensor,
|
||||
std::optional<int64_t> tensor_bdim,
|
||||
int64_t expected_rank,
|
||||
@ -472,7 +472,7 @@ atol_rtol_tensor_batch_rule(
|
||||
return std::make_tuple(Func(input_, atol_, rtol_, hermitian), 0);
|
||||
}
|
||||
|
||||
std::tuple<Tensor, std::optional<int64_t>>
|
||||
static std::tuple<Tensor, std::optional<int64_t>>
|
||||
pinv_batch_rule(
|
||||
const Tensor& input, std::optional<int64_t> input_bdim, const std::optional<Tensor>& atol,
|
||||
const std::optional<int64_t> atol_bdim, const std::optional<Tensor>& rtol,
|
||||
|
||||
@ -12,14 +12,13 @@
|
||||
#include <ATen/native/IndexKernel.h>
|
||||
#include <ATen/native/IndexingUtils.h>
|
||||
#include <torch/library.h>
|
||||
#include <c10/util/Exception.h>
|
||||
|
||||
|
||||
// NOLINTBEGIN(bugprone-unchecked-optional-access)
|
||||
namespace at::functorch {
|
||||
|
||||
namespace {
|
||||
bool any_has_value(ArrayRef<std::optional<int64_t>> bdims) {
|
||||
static bool any_has_value(ArrayRef<std::optional<int64_t>> bdims) {
|
||||
for (const auto& bdim : bdims) {
|
||||
if (bdim.has_value()) {
|
||||
return true;
|
||||
@ -28,7 +27,7 @@ bool any_has_value(ArrayRef<std::optional<int64_t>> bdims) {
|
||||
return false;
|
||||
}
|
||||
|
||||
int64_t get_num_leading_nones(ArrayRef<std::optional<Tensor>> indices) {
|
||||
static int64_t get_num_leading_nones(ArrayRef<std::optional<Tensor>> indices) {
|
||||
int64_t result = 0;
|
||||
for (const auto& idx : indices) {
|
||||
if (!idx.has_value() || !idx->defined()) {
|
||||
@ -40,7 +39,7 @@ int64_t get_num_leading_nones(ArrayRef<std::optional<Tensor>> indices) {
|
||||
return result;
|
||||
}
|
||||
|
||||
int64_t get_max_index_logical_dim(
|
||||
static int64_t get_max_index_logical_dim(
|
||||
ArrayRef<std::optional<Tensor>> indices,
|
||||
ArrayRef<std::optional<int64_t>> indices_bdims) {
|
||||
int64_t max_logical_dim = -1;
|
||||
@ -57,7 +56,7 @@ int64_t get_max_index_logical_dim(
|
||||
return max_logical_dim;
|
||||
}
|
||||
|
||||
std::vector<std::optional<Tensor>> batchIndices(
|
||||
static std::vector<std::optional<Tensor>> batchIndices(
|
||||
at::TensorOptions options,
|
||||
ArrayRef<std::optional<Tensor>> indices,
|
||||
ArrayRef<std::optional<int64_t>> indices_bdims,
|
||||
@ -95,10 +94,9 @@ std::vector<std::optional<Tensor>> batchIndices(
|
||||
if (index.has_value() && index->sym_numel() != 0) {
|
||||
const auto idx_bdim = indices_bdims[i];
|
||||
indices_.emplace_back(maybePadToLogicalRank(moveBatchDimToFront(index.value(), idx_bdim), idx_bdim, maxLogicalRank));
|
||||
TORCH_CHECK(
|
||||
!(index.value().dtype() == kBool) || !indices_bdims[i].has_value(),
|
||||
"vmap: We do not support batching operators that can support dynamic shape. Attempting to batch over indexing with a boolean mask."
|
||||
);
|
||||
if (index.value().dtype() == kBool && indices_bdims[i].has_value()) {
|
||||
throw std::runtime_error("vmap: We do not support batching operators that can support dynamic shape. Attempting to batch over indexing with a boolean mask.");
|
||||
}
|
||||
} else {
|
||||
indices_.push_back(index);
|
||||
}
|
||||
@ -126,7 +124,7 @@ std::vector<std::optional<Tensor>> batchIndices(
|
||||
|
||||
// Define an "advanced index" to be a selection object that is
|
||||
// a non-trivial Tensor (i.e. it does not represent :).
|
||||
bool is_advanced_index(const std::optional<Tensor>& idx) {
|
||||
static bool is_advanced_index(const std::optional<Tensor>& idx) {
|
||||
if (!idx.has_value()) {
|
||||
return false;
|
||||
}
|
||||
@ -137,7 +135,7 @@ bool is_advanced_index(const std::optional<Tensor>& idx) {
|
||||
}
|
||||
|
||||
// See NOTE: [advanced indices adjacent] for definition
|
||||
bool are_advanced_indices_adjacent(ArrayRef<std::optional<Tensor>> indices) {
|
||||
static bool are_advanced_indices_adjacent(ArrayRef<std::optional<Tensor>> indices) {
|
||||
int64_t num_advanced_indices_regions = 0;
|
||||
bool in_advanced_indices_region = false;
|
||||
for (const auto& idx : indices) {
|
||||
@ -165,7 +163,7 @@ bool are_advanced_indices_adjacent(ArrayRef<std::optional<Tensor>> indices) {
|
||||
// - result: Tensor[B, 4, 5, 6, 2, 3, 7, 8]
|
||||
// ------- ----
|
||||
// region2 region1
|
||||
Tensor swap_regions(const Tensor& tensor, int64_t first_region_size, int64_t second_region_size) {
|
||||
static Tensor swap_regions(const Tensor& tensor, int64_t first_region_size, int64_t second_region_size) {
|
||||
VmapDimVector permutation(tensor.dim(), 0);
|
||||
std::iota(permutation.begin(), permutation.end(), 0);
|
||||
std::rotate(
|
||||
@ -553,7 +551,7 @@ Tensor &_index_put_impl__plumbing(Tensor &self, const List<std::optional<Tensor>
|
||||
return self;
|
||||
}
|
||||
|
||||
Tensor maybe_permute_values(
|
||||
static Tensor maybe_permute_values(
|
||||
const Tensor& values,
|
||||
ArrayRef<std::optional<Tensor>> orig_indices,
|
||||
ArrayRef<std::optional<int64_t>> orig_indices_bdims) {
|
||||
@ -1052,7 +1050,7 @@ std::tuple<Tensor, std::optional<int64_t>> index_add_batch_rule(
|
||||
other, other_bdim, alpha, false);
|
||||
}
|
||||
|
||||
std::tuple<Tensor,Tensor> binary_pointwise_align(
|
||||
static std::tuple<Tensor,Tensor> binary_pointwise_align(
|
||||
const Tensor & self,
|
||||
std::optional<int64_t> self_bdim,
|
||||
const Tensor & mask,
|
||||
|
||||
@ -346,7 +346,7 @@ std::tuple<Tensor, std::optional<int64_t>> slice_batch_rule(
|
||||
return std::make_tuple(std::move(result), 0);
|
||||
}
|
||||
|
||||
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
return dim == 0 || dim == -1;
|
||||
}
|
||||
|
||||
|
||||
@ -3,7 +3,6 @@
|
||||
#include <ATen/functorch/Macros.h>
|
||||
#include <ATen/core/dispatch/Dispatcher.h>
|
||||
#include <c10/core/impl/LocalDispatchKeySet.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <bitset>
|
||||
#include <utility>
|
||||
@ -107,10 +106,9 @@ struct VmapInterpreterMeta {
|
||||
|
||||
template <typename T>
|
||||
friend void to_json(T& json_j, const VmapInterpreterMeta& json_t) {
|
||||
TORCH_CHECK(
|
||||
!json_t.batchSize_.is_heap_allocated(),
|
||||
"Serialization for heap-allocated SymInt is not implemented yet"
|
||||
);
|
||||
if (json_t.batchSize_.is_heap_allocated()) {
|
||||
throw std::runtime_error("Serialization for heap-allocated SymInt is not implemented yet");
|
||||
}
|
||||
json_j["batchSize"] = json_t.batchSize_.as_int_unchecked();
|
||||
json_j["randomness"] = static_cast<int64_t>(json_t.randomness_);
|
||||
}
|
||||
@ -304,7 +302,7 @@ struct Interpreter {
|
||||
} else if (meta.contains("Functionalize")) {
|
||||
json_t.meta_.emplace<FunctionalizeInterpreterMeta>(meta["Functionalize"].template get<FunctionalizeInterpreterMeta>());
|
||||
} else {
|
||||
TORCH_CHECK(false, "unknown interpreter metadata type");
|
||||
throw std::runtime_error("unknown interpreter metadata type");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -68,18 +68,18 @@ namespace at::functorch {
|
||||
|
||||
namespace{
|
||||
// PyTorch allows operations to specify dim 0 and dim -1 on a scalar tensor.
|
||||
bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
static bool is_allowed_dim_on_scalar_tensor(int64_t dim) {
|
||||
return dim == 0 || dim == -1;
|
||||
}
|
||||
|
||||
int64_t get_current_level() {
|
||||
static int64_t get_current_level() {
|
||||
auto maybe_level = maybeCurrentDynamicLayer();
|
||||
TORCH_INTERNAL_ASSERT(maybe_level.has_value());
|
||||
return maybe_level->layerId();
|
||||
}
|
||||
|
||||
// This check should probably go into the dispatcher...
|
||||
bool participatesInCurrentLevel(const Tensor& self) {
|
||||
static bool participatesInCurrentLevel(const Tensor& self) {
|
||||
auto current_level = get_current_level();
|
||||
auto* maybe_batched_impl = maybeGetBatchedImpl(self);
|
||||
if (!maybe_batched_impl) {
|
||||
@ -90,7 +90,7 @@ bool participatesInCurrentLevel(const Tensor& self) {
|
||||
return self_level == current_level;
|
||||
}
|
||||
|
||||
bool participatesInCurrentLevel(ITensorListRef self) {
|
||||
static bool participatesInCurrentLevel(ITensorListRef self) {
|
||||
for (const Tensor& tensor : self) {
|
||||
if (participatesInCurrentLevel(tensor)) {
|
||||
return true;
|
||||
@ -285,7 +285,7 @@ std::vector<Tensor> unbind_batching_rule(const Tensor& self, int64_t dim) {
|
||||
// given (sizes, strides, storage_offset) returns the maximum location that
|
||||
// can be indexed (or nullopt if such a location doesn't exist, e.g., tensors
|
||||
// with zero-size dims).
|
||||
std::optional<c10::SymInt> maximum_indexable_location(
|
||||
static std::optional<c10::SymInt> maximum_indexable_location(
|
||||
c10::SymIntArrayRef sizes, c10::SymIntArrayRef strides, const c10::SymInt& storage_offset) {
|
||||
auto result = native::storage_size_for(sizes, strides);
|
||||
if (result == 0) {
|
||||
@ -298,7 +298,7 @@ std::optional<c10::SymInt> maximum_indexable_location(
|
||||
// This checks that the range of possible memory locations accessible by
|
||||
// x.as_strided(sizes, strides, maybe_storage_offset)
|
||||
// are within the bounds of possible memory locations accessible by x.
|
||||
void checkBasicAsStridedValidForSlice(
|
||||
static void checkBasicAsStridedValidForSlice(
|
||||
const Tensor& physical_tensor,
|
||||
int64_t num_batch_dims,
|
||||
c10::SymIntArrayRef sizes,
|
||||
|
||||
@ -6,7 +6,6 @@
|
||||
#include <ATen/functorch/BatchedTensorImpl.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <ATen/NamedTensorUtils.h>
|
||||
#include <ATen/native/LinearAlgebraUtils.h>
|
||||
#include <ATen/native/xnnpack/Engine.h>
|
||||
@ -71,7 +70,7 @@ Tensor linear_hack(const Tensor& input, const Tensor& weight, const std::optiona
|
||||
return output;
|
||||
}
|
||||
|
||||
inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
|
||||
static inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
|
||||
if (reduction == at::Reduction::Mean) {
|
||||
return unreduced.mean();
|
||||
} else if (reduction == at::Reduction::Sum) {
|
||||
@ -109,7 +108,9 @@ Tensor binary_cross_entropy_with_logits_hack(
|
||||
}
|
||||
|
||||
Tensor trace_backward_decomp(const Tensor& grad, IntArrayRef sizes) {
|
||||
TORCH_CHECK(sizes.size() == 2, "expected matrix input");
|
||||
if (sizes.size() != 2) {
|
||||
throw std::runtime_error("expected matrix input");
|
||||
}
|
||||
auto grad_input = at::zeros(sizes[0] * sizes[1], grad.options());
|
||||
auto indices = at::arange(0, grad_input.numel(), sizes[1] + 1, grad.options().dtype(at::kLong));
|
||||
// Workaround using index_put instead of yet unsupported index_fill_
|
||||
@ -127,7 +128,7 @@ namespace {
|
||||
template<bool inplace>
|
||||
using Ctype = std::conditional_t<inplace, Tensor&, Tensor>;
|
||||
|
||||
Tensor make_feature_noise(const Tensor& input) {
|
||||
static Tensor make_feature_noise(const Tensor& input) {
|
||||
auto input_sizes = input.sizes();
|
||||
TORCH_CHECK(input.dim() >= 2, "Feature dropout requires at least 2 dimensions in the input");
|
||||
std::vector<int64_t> sizes;
|
||||
@ -141,7 +142,7 @@ Tensor make_feature_noise(const Tensor& input) {
|
||||
return at::empty(sizes, input.options());
|
||||
}
|
||||
|
||||
bool is_fused_kernel_acceptable(const Tensor& input, double p) {
|
||||
static bool is_fused_kernel_acceptable(const Tensor& input, double p) {
|
||||
return (input.is_cuda() || input.is_xpu() || input.is_lazy() || input.is_privateuseone()) && p > 0 && p < 1 && input.numel() > 0;
|
||||
}
|
||||
|
||||
@ -210,7 +211,7 @@ ALIAS_SPECIALIZATION(_feature_dropout, true, false)
|
||||
ALIAS_SPECIALIZATION(_alpha_dropout, false, true )
|
||||
ALIAS_SPECIALIZATION(_feature_alpha_dropout, true, true )
|
||||
|
||||
Tensor dropout(const Tensor& input, double p, bool train) {
|
||||
static Tensor dropout(const Tensor& input, double p, bool train) {
|
||||
auto result = [&]() {
|
||||
NoNamesGuard guard;
|
||||
if (train && is_fused_kernel_acceptable(input, p)) {
|
||||
|
||||
@ -24,7 +24,7 @@ namespace at::native {
|
||||
namespace {
|
||||
|
||||
template <typename scalar_t>
|
||||
void adaptive_avg_pool3d_out_frame(
|
||||
static void adaptive_avg_pool3d_out_frame(
|
||||
const scalar_t* input_p,
|
||||
scalar_t* output_p,
|
||||
int64_t sizeD,
|
||||
@ -176,7 +176,7 @@ void adaptive_avg_pool3d_out_cpu_template(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void adaptive_avg_pool3d_backward_out_frame(
|
||||
static void adaptive_avg_pool3d_backward_out_frame(
|
||||
scalar_t* gradInput_p,
|
||||
const scalar_t* gradOutput_p,
|
||||
int64_t sizeD,
|
||||
|
||||
@ -93,7 +93,7 @@ namespace {
|
||||
// 5d tensor B x D x T x H x W
|
||||
|
||||
template <typename scalar_t>
|
||||
void adaptive_max_pool3d_single_out_frame(
|
||||
static void adaptive_max_pool3d_single_out_frame(
|
||||
const scalar_t *input_p,
|
||||
scalar_t *output_p,
|
||||
int64_t *ind_p,
|
||||
@ -170,7 +170,7 @@ void adaptive_max_pool3d_single_out_frame(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void adaptive_max_pool3d_out_frame(
|
||||
static void adaptive_max_pool3d_out_frame(
|
||||
const scalar_t *input_data,
|
||||
scalar_t *output_data,
|
||||
int64_t *indices_data,
|
||||
@ -202,7 +202,7 @@ void adaptive_max_pool3d_out_frame(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void adaptive_max_pool3d_backward_single_out_frame(
|
||||
static void adaptive_max_pool3d_backward_single_out_frame(
|
||||
scalar_t *gradInput_p,
|
||||
const scalar_t *gradOutput_p,
|
||||
const int64_t *ind_p,
|
||||
@ -241,7 +241,7 @@ void adaptive_max_pool3d_backward_single_out_frame(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void adaptive_max_pool3d_backward_out_frame(
|
||||
static void adaptive_max_pool3d_backward_out_frame(
|
||||
scalar_t *gradInput_data,
|
||||
const scalar_t *gradOutput_data,
|
||||
const int64_t *indices_data,
|
||||
|
||||
@ -153,7 +153,7 @@ namespace at::native {
|
||||
namespace {
|
||||
|
||||
template <typename scalar_t>
|
||||
void avg_pool3d_out_frame(
|
||||
static void avg_pool3d_out_frame(
|
||||
const scalar_t *input_p,
|
||||
scalar_t *output_p,
|
||||
int64_t nslices,
|
||||
@ -333,7 +333,7 @@ TORCH_IMPL_FUNC(avg_pool3d_out_cpu) (
|
||||
namespace {
|
||||
|
||||
template <typename scalar_t>
|
||||
void avg_pool3d_backward_out_frame(
|
||||
static void avg_pool3d_backward_out_frame(
|
||||
scalar_t *gradInput_p,
|
||||
const scalar_t *gradOutput_p,
|
||||
int64_t nslices,
|
||||
|
||||
@ -143,13 +143,13 @@ Tensor& cholesky_inverse_kernel_impl(Tensor& result, Tensor& infos, bool upper)
|
||||
For more info see https://github.com/pytorch/pytorch/issues/145801#issuecomment-2631781776
|
||||
*/
|
||||
template <typename T>
|
||||
inline
|
||||
static inline
|
||||
std::enable_if_t<std::is_floating_point_v<T>, int> lapack_work_to_int(const T val) {
|
||||
const auto next_after = std::nextafter(val, std::numeric_limits<T>::infinity());
|
||||
return std::max<int>(1, std::ceil(next_after));
|
||||
}
|
||||
template <typename T>
|
||||
inline
|
||||
static inline
|
||||
std::enable_if_t<c10::is_complex<T>::value, int> lapack_work_to_int(const T val) {
|
||||
return lapack_work_to_int(val.real());
|
||||
}
|
||||
@ -343,7 +343,7 @@ void linalg_eigh_kernel(const Tensor& eigenvalues, const Tensor& eigenvectors, c
|
||||
For further details, please see the LAPACK documentation for GEQRF.
|
||||
*/
|
||||
template <typename scalar_t>
|
||||
void apply_geqrf(const Tensor& input, const Tensor& tau) {
|
||||
static void apply_geqrf(const Tensor& input, const Tensor& tau) {
|
||||
#if !AT_BUILD_WITH_LAPACK()
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
@ -1039,7 +1039,7 @@ void lu_solve_kernel(const Tensor& LU, const Tensor& pivots, const Tensor& B, Tr
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void apply_svd(const Tensor& A,
|
||||
static void apply_svd(const Tensor& A,
|
||||
const bool full_matrices,
|
||||
const bool compute_uv,
|
||||
const Tensor& U,
|
||||
@ -1157,103 +1157,103 @@ REGISTER_AVX512_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_AVX2_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_VSX_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_SVE256_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_SVE_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_AVX512_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_AVX2_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_VSX_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_ZVECTOR_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_SVE256_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_SVE_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(linalg_eig_stub, DEFAULT, &linalg_eig_kernel)
|
||||
REGISTER_AVX512_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_AVX2_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_VSX_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_SVE256_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_SVE_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(linalg_eigh_stub, DEFAULT, &linalg_eigh_kernel)
|
||||
REGISTER_AVX512_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_AVX2_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_VSX_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_SVE256_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_SVE_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(geqrf_stub, DEFAULT, &geqrf_kernel)
|
||||
REGISTER_AVX512_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_AVX2_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_VSX_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_SVE256_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_SVE_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(orgqr_stub, DEFAULT, &orgqr_kernel_impl)
|
||||
REGISTER_AVX512_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_AVX2_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_VSX_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_ZVECTOR_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_SVE256_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_SVE_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(ormqr_stub, DEFAULT, &ormqr_kernel)
|
||||
REGISTER_AVX512_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_AVX2_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_VSX_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_SVE256_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_SVE_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(lstsq_stub, DEFAULT, &lstsq_kernel)
|
||||
REGISTER_AVX512_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_AVX2_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_VSX_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_SVE256_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_SVE_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(triangular_solve_stub, DEFAULT, &triangular_solve_kernel)
|
||||
REGISTER_AVX512_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_AVX2_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_VSX_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_SVE256_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_SVE_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(lu_factor_stub, DEFAULT, &lu_factor_kernel)
|
||||
REGISTER_AVX512_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_AVX2_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_VSX_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_SVE256_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_SVE_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(ldl_factor_stub, DEFAULT, &ldl_factor_kernel)
|
||||
REGISTER_AVX512_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_AVX2_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_VSX_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_SVE256_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_SVE_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(ldl_solve_stub, DEFAULT, &ldl_solve_kernel)
|
||||
REGISTER_AVX512_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_AVX2_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_VSX_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_SVE256_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_SVE_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(lu_solve_stub, DEFAULT, &lu_solve_kernel)
|
||||
REGISTER_AVX512_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_AVX2_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_VSX_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_SVE256_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_SVE_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(svd_stub, DEFAULT, &svd_kernel)
|
||||
REGISTER_AVX512_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_AVX2_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_VSX_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_SVE256_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_SVE_DISPATCH(svd_stub, &svd_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(unpack_pivots_stub, DEFAULT, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_AVX512_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_AVX2_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_VSX_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_SVE256_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_SVE_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
} // namespace at::native
|
||||
|
||||
@ -71,7 +71,7 @@
|
||||
namespace at::native {
|
||||
namespace {
|
||||
|
||||
void col2im_out_cpu_template(
|
||||
static void col2im_out_cpu_template(
|
||||
Tensor& output,
|
||||
const Tensor& input_,
|
||||
IntArrayRef output_size,
|
||||
|
||||
@ -25,7 +25,7 @@ namespace at::native {
|
||||
|
||||
namespace {
|
||||
|
||||
Tensor compute_columns2d(
|
||||
static Tensor compute_columns2d(
|
||||
const Tensor& input,
|
||||
IntArrayRef padding,
|
||||
IntArrayRef stride,
|
||||
@ -93,7 +93,7 @@ Tensor compute_columns2d(
|
||||
return columns.contiguous();
|
||||
}
|
||||
|
||||
inline void slow_conv2d_shape_check(
|
||||
static inline void slow_conv2d_shape_check(
|
||||
const Tensor& input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& weight,
|
||||
@ -205,7 +205,7 @@ inline void slow_conv2d_shape_check(
|
||||
}
|
||||
}
|
||||
|
||||
inline Tensor view_weight_2d(const Tensor& weight_,
|
||||
static inline Tensor view_weight_2d(const Tensor& weight_,
|
||||
at::MemoryFormat memory_format = at::MemoryFormat::Contiguous) {
|
||||
Tensor weight = weight_.contiguous(memory_format);
|
||||
if (weight.dim() == 4) {
|
||||
@ -220,7 +220,7 @@ inline Tensor view_weight_2d(const Tensor& weight_,
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void slow_conv2d_update_output_frame(
|
||||
static void slow_conv2d_update_output_frame(
|
||||
TensorAccessor<const scalar_t, 3> input,
|
||||
TensorAccessor<scalar_t, 3> output,
|
||||
TensorAccessor<const scalar_t, 2> weight,
|
||||
@ -480,7 +480,7 @@ void slow_conv2d_backward_weight_frame(
|
||||
}
|
||||
}
|
||||
|
||||
void slow_conv2d_backward_weight_out_cpu_template(
|
||||
static void slow_conv2d_backward_weight_out_cpu_template(
|
||||
Tensor& grad_weight,
|
||||
const Tensor& input,
|
||||
const Tensor& grad_output_,
|
||||
|
||||
@ -28,7 +28,7 @@ namespace at::native {
|
||||
|
||||
namespace {
|
||||
|
||||
Tensor compute_columns3d(
|
||||
static Tensor compute_columns3d(
|
||||
const Tensor& input_,
|
||||
IntArrayRef stride,
|
||||
IntArrayRef padding,
|
||||
@ -108,7 +108,7 @@ Tensor compute_columns3d(
|
||||
return columns;
|
||||
}
|
||||
|
||||
inline void slow_conv3d_shape_check(
|
||||
static inline void slow_conv3d_shape_check(
|
||||
const Tensor& input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& weight,
|
||||
@ -273,7 +273,7 @@ inline void slow_conv3d_shape_check(
|
||||
}
|
||||
}
|
||||
|
||||
Tensor view_weight_2d(const Tensor& weight_) {
|
||||
static Tensor view_weight_2d(const Tensor& weight_) {
|
||||
Tensor weight = weight_.contiguous();
|
||||
if (weight.dim() == 5) {
|
||||
const int64_t s1 = weight.size(0);
|
||||
@ -286,7 +286,7 @@ Tensor view_weight_2d(const Tensor& weight_) {
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void slow_conv3d_update_output_frame(
|
||||
static void slow_conv3d_update_output_frame(
|
||||
TensorAccessor<const scalar_t, 4> input,
|
||||
TensorAccessor<scalar_t, 4> output,
|
||||
TensorAccessor<const scalar_t, 2> weight,
|
||||
@ -515,7 +515,7 @@ void slow_conv3d_backward_weight_frame(
|
||||
grad_weight.data(), ldc, grad_weight.stride(0) * n);
|
||||
}
|
||||
|
||||
void slow_conv3d_backward_parameters_out_cpu_template(
|
||||
static void slow_conv3d_backward_parameters_out_cpu_template(
|
||||
Tensor& grad_weight,
|
||||
const Tensor& input,
|
||||
const Tensor& grad_output,
|
||||
|
||||
@ -39,19 +39,21 @@ static CPUCapability compute_cpu_capability() {
|
||||
}
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION)
|
||||
int sve_vl = cpuinfo_get_max_arm_sve_length(); //Returns maximum SVE VL supported by your HW.
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
if (envar == "sve256") {
|
||||
if (envar == "sve") {
|
||||
// Select SVE capability based on the maximum SVE VL supported by the HW.
|
||||
if (sve_vl == 256) {
|
||||
#ifdef HAVE_ARM_BF16_CPU_DEFINITION
|
||||
if (cpuinfo_has_arm_bf16()) {
|
||||
return CPUCapability::SVE256;
|
||||
}
|
||||
#endif
|
||||
} else if (sve_vl == 128) {
|
||||
if (cpuinfo_has_arm_bf16()) {
|
||||
return CPUCapability::SVE128;
|
||||
}
|
||||
} else {
|
||||
TORCH_WARN("SVE capability not available on hardware. Falling back to DEFAULT");
|
||||
return CPUCapability::DEFAULT;
|
||||
}
|
||||
TORCH_WARN("SVE256 capability not available on hardware. Falling back to DEFAULT");
|
||||
return CPUCapability::DEFAULT;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
#ifdef HAVE_AVX512_CPU_DEFINITION
|
||||
if (envar == "avx512") {
|
||||
@ -113,6 +115,11 @@ static CPUCapability compute_cpu_capability() {
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
if (sve_vl == 128) { // Check for SVE128
|
||||
return CPUCapability::SVE128;
|
||||
}
|
||||
#endif
|
||||
// Return the default CPU capability.
|
||||
return CPUCapability::DEFAULT;
|
||||
}
|
||||
@ -147,6 +154,9 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
) {
|
||||
constexpr auto supported_devices = c10::array_of<c10::DeviceType>(
|
||||
c10::DeviceType::CPU,
|
||||
@ -184,6 +194,9 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, SVE128
|
||||
#endif
|
||||
);
|
||||
if (!std::holds_alternative<ErrorType>(result)) {
|
||||
@ -242,6 +255,9 @@ void* DispatchStubImpl::get_call_ptr(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
) {
|
||||
|
||||
auto result = try_get_call_ptr(
|
||||
@ -266,6 +282,10 @@ void* DispatchStubImpl::get_call_ptr(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
,
|
||||
SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
,
|
||||
SVE128
|
||||
#endif
|
||||
);
|
||||
if (std::holds_alternative<ErrorType>(result)) {
|
||||
@ -300,6 +320,9 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
){
|
||||
|
||||
@ -342,6 +365,16 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
|
||||
return DispatchResult(SVE256);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
|
||||
if (C10_UNLIKELY(!SVE128)) {
|
||||
// dispatch to DEFAULT, since the SVE kernel is missing
|
||||
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
|
||||
} else {
|
||||
return DispatchResult(SVE128);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
|
||||
}
|
||||
@ -363,6 +396,9 @@ void* DispatchStubImpl::choose_cpu_impl(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
) {
|
||||
auto capability = static_cast<int>(get_cpu_capability());
|
||||
(void)capability;
|
||||
@ -408,6 +444,17 @@ void* DispatchStubImpl::choose_cpu_impl(
|
||||
return SVE256;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
|
||||
if (C10_UNLIKELY(!SVE128)) {
|
||||
// dispatch to DEFAULT, since the SVE kernel is missing
|
||||
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
|
||||
return DEFAULT;
|
||||
} else {
|
||||
return SVE128;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
|
||||
return DEFAULT;
|
||||
|
||||
@ -64,8 +64,9 @@ enum class CPUCapability {
|
||||
VSX = 1,
|
||||
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
|
||||
ZVECTOR = 1,
|
||||
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
SVE256 = 1,
|
||||
SVE128 = 2,
|
||||
#else
|
||||
AVX2 = 1,
|
||||
AVX512 = 2,
|
||||
@ -117,6 +118,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -138,6 +142,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -159,6 +166,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -183,6 +193,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -240,6 +253,9 @@ private:
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE256)
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE128)
|
||||
#endif
|
||||
)
|
||||
);
|
||||
@ -301,6 +317,9 @@ public:
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE256)
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE128)
|
||||
#endif
|
||||
);
|
||||
if (std::holds_alternative<ErrorType>(result)){
|
||||
@ -325,6 +344,9 @@ public:
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
static TORCH_API FnPtr SVE256;
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
static TORCH_API FnPtr SVE128;
|
||||
#endif
|
||||
private:
|
||||
DispatchStubImpl impl;
|
||||
};
|
||||
@ -432,6 +454,12 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
#define REGISTER_SVE256_DISPATCH(name, fn)
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
#define REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, SVE128, fn)
|
||||
#else
|
||||
#define REGISTER_SVE128_DISPATCH(name, fn)
|
||||
#endif
|
||||
|
||||
// Macro to register the same kernel for all CPU arch types. This is useful
|
||||
// if a kernel does not benefit from being recompiled across different arch types.
|
||||
#define REGISTER_ALL_CPU_DISPATCH(name, fn) \
|
||||
@ -440,6 +468,11 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
REGISTER_AVX2_DISPATCH(name, fn) \
|
||||
REGISTER_VSX_DISPATCH(name, fn) \
|
||||
REGISTER_ZVECTOR_DISPATCH(name, fn) \
|
||||
REGISTER_SVE256_DISPATCH(name, fn) \
|
||||
REGISTER_SVE128_DISPATCH(name, fn)
|
||||
|
||||
#define REGISTER_SVE_DISPATCH(name, fn) \
|
||||
REGISTER_SVE128_DISPATCH(name, fn) \
|
||||
REGISTER_SVE256_DISPATCH(name, fn)
|
||||
|
||||
#define REGISTER_NO_CPU_DISPATCH(name) \
|
||||
@ -482,6 +515,7 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
// REGISTER_DISPATCH now dispatches an AVX512 kernel to nullptr but registers other dispatches.
|
||||
// ALSO_REGISTER_AVX512_DISPATCH should be used for ensuring AVX512 dispatch, among others.
|
||||
// ALSO_REGISTER_SVE256_DISPATCH should be used for ensuring SVE256 dispatch, among others.
|
||||
// ALSO_REGISTER_SVE128_DISPATCH should be used for ensuring SVE128 dispatch, among others.
|
||||
#ifdef CPU_CAPABILITY_AVX512
|
||||
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, ((void*)(fn) ? nullptr : nullptr))
|
||||
#else
|
||||
@ -489,6 +523,7 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
#endif
|
||||
#define ALSO_REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
||||
#define ALSO_REGISTER_SVE256_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
||||
#define ALSO_REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
||||
#endif
|
||||
} // namespace at::native
|
||||
|
||||
|
||||
@ -108,7 +108,7 @@ bool is_fast_path(const Tensor& src, const std::optional<Tensor>& scale, Tensor&
|
||||
// index_add (using add_indices as the index), without creating an intermediary
|
||||
// tensor to hold the selected embeddings
|
||||
template <typename data_t, typename index_t>
|
||||
std::enable_if_t<std::is_same_v<data_t, double>, void>
|
||||
static std::enable_if_t<std::is_same_v<data_t, double>, void>
|
||||
index_select_add(
|
||||
const Tensor& select_indices,
|
||||
const Tensor& add_indices,
|
||||
@ -494,7 +494,7 @@ index_select_add(const Tensor &select_indices,
|
||||
// mul (scaling by per_sample_weights)
|
||||
// index_add (using add_indices as the index)
|
||||
template <typename data_t, typename index_t>
|
||||
std::enable_if_t<std::is_same_v<data_t, double>, void>
|
||||
static std::enable_if_t<std::is_same_v<data_t, double>, void>
|
||||
index_select_scale_add(
|
||||
const Tensor& select_indices,
|
||||
const Tensor& add_indices,
|
||||
|
||||
@ -130,7 +130,7 @@ namespace native {
|
||||
namespace {
|
||||
|
||||
template <typename scalar_t>
|
||||
void fractional_max_pool2d_out_single_batch_frame(
|
||||
static void fractional_max_pool2d_out_single_batch_frame(
|
||||
const scalar_t* input,
|
||||
scalar_t* output,
|
||||
int64_t* indices,
|
||||
@ -188,7 +188,7 @@ void fractional_max_pool2d_out_single_batch_frame(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void fractional_max_pool2d_out_frame(
|
||||
static void fractional_max_pool2d_out_frame(
|
||||
const scalar_t* input,
|
||||
scalar_t* output,
|
||||
int64_t* indices,
|
||||
@ -220,7 +220,7 @@ void fractional_max_pool2d_out_frame(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void fractional_max_pool2d_backward_out_single_batch_frame(
|
||||
static void fractional_max_pool2d_backward_out_single_batch_frame(
|
||||
scalar_t* gradInput,
|
||||
const scalar_t* gradOutput,
|
||||
const int64_t* indices,
|
||||
@ -247,7 +247,7 @@ void fractional_max_pool2d_backward_out_single_batch_frame(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void fractional_max_pool2d_backward_out_frame(
|
||||
static void fractional_max_pool2d_backward_out_frame(
|
||||
scalar_t* gradInput,
|
||||
const scalar_t* gradOutput,
|
||||
const int64_t* indices,
|
||||
|
||||
@ -99,7 +99,7 @@ namespace at::native {
|
||||
namespace {
|
||||
|
||||
template<typename scalar_t>
|
||||
void fractional_max_pool3d_out_single_batch_frame(
|
||||
static void fractional_max_pool3d_out_single_batch_frame(
|
||||
const scalar_t* input,
|
||||
scalar_t* output,
|
||||
int64_t* indices,
|
||||
@ -169,7 +169,7 @@ void fractional_max_pool3d_out_single_batch_frame(
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
void fractional_max_pool3d_out_frame(
|
||||
static void fractional_max_pool3d_out_frame(
|
||||
const scalar_t* input,
|
||||
scalar_t* output,
|
||||
int64_t* indices,
|
||||
@ -257,7 +257,7 @@ TORCH_IMPL_FUNC(fractional_max_pool3d_out_cpu)(
|
||||
namespace {
|
||||
|
||||
template<typename scalar_t>
|
||||
void fractional_max_pool3d_backward_out_single_batch_frame(
|
||||
static void fractional_max_pool3d_backward_out_single_batch_frame(
|
||||
scalar_t* gradInput,
|
||||
const scalar_t* gradOutput,
|
||||
const int64_t* indices,
|
||||
@ -287,7 +287,7 @@ void fractional_max_pool3d_backward_out_single_batch_frame(
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
void fractional_max_pool3d_backward_out_frame(
|
||||
static void fractional_max_pool3d_backward_out_frame(
|
||||
scalar_t* gradInput,
|
||||
const scalar_t* gradOutput,
|
||||
const int64_t* indices,
|
||||
|
||||
@ -19,7 +19,7 @@
|
||||
namespace at::native {
|
||||
namespace {
|
||||
|
||||
void im2col_out_cpu_template(
|
||||
static void im2col_out_cpu_template(
|
||||
Tensor& output,
|
||||
const Tensor& input_,
|
||||
IntArrayRef kernel_size,
|
||||
|
||||
@ -61,7 +61,7 @@
|
||||
constexpr float EPSILON = 1e-12;
|
||||
|
||||
namespace {
|
||||
inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
|
||||
static inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
|
||||
if (reduction == at::Reduction::Mean) {
|
||||
return unreduced.mean();
|
||||
} else if (reduction == at::Reduction::Sum) {
|
||||
|
||||
@ -44,7 +44,7 @@ namespace {
|
||||
|
||||
// this ad-hoc converts from targets (l in [1]) to augmented targets (l' in [1]) note that no bound-checking is done
|
||||
template<typename target_t>
|
||||
inline int64_t get_target_prime(target_t* target, int64_t offset, int64_t stride, int64_t idx, int64_t BLANK) {
|
||||
static inline int64_t get_target_prime(target_t* target, int64_t offset, int64_t stride, int64_t idx, int64_t BLANK) {
|
||||
if (idx % 2 == 0) {
|
||||
return BLANK;
|
||||
} else {
|
||||
|
||||
@ -58,7 +58,7 @@ inline scalar_t multilabel_margin_loss_forward_inner_sum_cpu(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void multilabel_margin_loss_forward_out_frame(
|
||||
static void multilabel_margin_loss_forward_out_frame(
|
||||
const Tensor& input_contiguous,
|
||||
const Tensor& target_contiguous,
|
||||
Tensor& output,
|
||||
@ -108,7 +108,7 @@ void multilabel_margin_loss_forward_out_frame(
|
||||
}
|
||||
}
|
||||
|
||||
void multilabel_margin_loss_forward_out_cpu_template(
|
||||
static void multilabel_margin_loss_forward_out_cpu_template(
|
||||
const Tensor& input,
|
||||
const Tensor& target,
|
||||
Tensor& output,
|
||||
@ -153,7 +153,7 @@ void multilabel_margin_loss_forward_out_cpu_template(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void multilabel_margin_loss_backward_out_frame(
|
||||
static void multilabel_margin_loss_backward_out_frame(
|
||||
Tensor& grad_input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& input_contiguous,
|
||||
@ -222,7 +222,7 @@ void multilabel_margin_loss_backward_out_frame(
|
||||
}
|
||||
}
|
||||
|
||||
void multilabel_margin_loss_backward_out_cpu_template(
|
||||
static void multilabel_margin_loss_backward_out_cpu_template(
|
||||
Tensor& grad_input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& input,
|
||||
|
||||
@ -57,7 +57,7 @@ inline int64_t target_index_checked(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
inline void multi_margin_loss_cpu_kernel(
|
||||
static inline void multi_margin_loss_cpu_kernel(
|
||||
Tensor& output,
|
||||
const scalar_t* input_data,
|
||||
const int64_t* target_data,
|
||||
@ -148,7 +148,7 @@ void multi_margin_loss_out_cpu_template(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void multi_margin_loss_backward_cpu_kernel(
|
||||
static void multi_margin_loss_backward_cpu_kernel(
|
||||
scalar_t* grad_input_data,
|
||||
const Tensor& grad_output,
|
||||
const scalar_t* input_data,
|
||||
|
||||
@ -159,7 +159,7 @@ inline scalar_t* optional_data(const Tensor& source) {
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename target_t>
|
||||
void nll_loss_out_frame(
|
||||
static void nll_loss_out_frame(
|
||||
const Tensor& output,
|
||||
const Tensor& total_weight,
|
||||
const Tensor& input,
|
||||
@ -338,7 +338,7 @@ void nll_loss_forward_out_cpu_template(
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename target_t>
|
||||
void nll_loss_backward_out_frame(
|
||||
static void nll_loss_backward_out_frame(
|
||||
const Tensor& grad_input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& input,
|
||||
|
||||
@ -99,7 +99,7 @@ inline void check_gradout_shape_nll_loss2d(
|
||||
|
||||
|
||||
template <typename scalar_t>
|
||||
void nll_loss2d_forward_out_frame(
|
||||
static void nll_loss2d_forward_out_frame(
|
||||
Tensor& output,
|
||||
Tensor& total_weight,
|
||||
const Tensor& input,
|
||||
@ -280,7 +280,7 @@ void nll_loss2d_forward_out_cpu_template(
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
void nll_loss2d_backward_out_frame(
|
||||
static void nll_loss2d_backward_out_frame(
|
||||
Tensor& grad_input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& input,
|
||||
|
||||
@ -24,7 +24,7 @@
|
||||
|
||||
namespace at {
|
||||
namespace {
|
||||
inline void slow_conv_transpose2d_shape_check(
|
||||
static inline void slow_conv_transpose2d_shape_check(
|
||||
const Tensor& input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& weight,
|
||||
@ -386,7 +386,7 @@ void slow_conv_transpose2d_out_cpu_template(
|
||||
}
|
||||
}
|
||||
|
||||
void slow_conv_transpose2d_backward_out_cpu_template(
|
||||
static void slow_conv_transpose2d_backward_out_cpu_template(
|
||||
const Tensor& input_,
|
||||
const Tensor& grad_output_,
|
||||
Tensor& grad_input,
|
||||
|
||||
@ -22,7 +22,7 @@ namespace at::native {
|
||||
|
||||
namespace {
|
||||
|
||||
inline void slow_conv_transpose3d_shape_check(
|
||||
static inline void slow_conv_transpose3d_shape_check(
|
||||
const Tensor& input,
|
||||
const Tensor& grad_output,
|
||||
const Tensor& weight,
|
||||
|
||||
@ -92,7 +92,7 @@ namespace {
|
||||
arg_name, " should contain ", expected, " elements not ", actual);
|
||||
}
|
||||
|
||||
inline Tensor repeat_if_defined(const Tensor& t, const SymInt& repeat) {
|
||||
static inline Tensor repeat_if_defined(const Tensor& t, const SymInt& repeat) {
|
||||
if (t.defined()) {
|
||||
return t.repeat_symint(repeat);
|
||||
}
|
||||
|
||||
@ -538,7 +538,7 @@ c10::intrusive_ptr<CellParamsBase> make_quantized_cell_params_fp16(
|
||||
std::move(w_ih_packed), std::move(w_hh_packed));
|
||||
}
|
||||
|
||||
std::unordered_map<
|
||||
static std::unordered_map<
|
||||
std::string,
|
||||
c10::intrusive_ptr<CellParamsBase> (*)(CellParamsSerializationType)>
|
||||
cell_params_deserializers = {
|
||||
@ -578,7 +578,7 @@ struct QRNNCellParamsWrapper {
|
||||
|
||||
// Gathers every two elements of a vector in a vector of pairs
|
||||
template<typename T>
|
||||
std::vector<pair_of<T>> pair_vec(const std::vector<T>& vals) {
|
||||
static std::vector<pair_of<T>> pair_vec(const std::vector<T>& vals) {
|
||||
TORCH_CHECK(vals.size() % 2 == 0, "Odd number of params or hiddens given to a bidirectional RNN");
|
||||
std::vector<pair_of<T>> result;
|
||||
result.reserve(vals.size() / 2);
|
||||
@ -590,7 +590,7 @@ std::vector<pair_of<T>> pair_vec(const std::vector<T>& vals) {
|
||||
|
||||
// Flattens a vector of pairs
|
||||
template<typename T>
|
||||
std::vector<T> unpair_vec(std::vector<pair_of<T>>&& vals) {
|
||||
static std::vector<T> unpair_vec(std::vector<pair_of<T>>&& vals) {
|
||||
std::vector<T> result;
|
||||
result.reserve(vals.size() * 2);
|
||||
for (const auto i : c10::irange(vals.size())) {
|
||||
@ -601,7 +601,7 @@ std::vector<T> unpair_vec(std::vector<pair_of<T>>&& vals) {
|
||||
}
|
||||
|
||||
// Parses a flat list of parameter tensors into a list of CellParams
|
||||
std::vector<CellParams> gather_params(TensorList params, bool has_biases, bool has_projections = false) {
|
||||
static std::vector<CellParams> gather_params(TensorList params, bool has_biases, bool has_projections = false) {
|
||||
static at::Tensor undefined;
|
||||
std::vector<CellParams> result;
|
||||
if (has_biases) {
|
||||
@ -1894,10 +1894,10 @@ static DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(quantized_rnn_tanh_cell_dynamic, simple
|
||||
|
||||
namespace {
|
||||
|
||||
[[maybe_unused]] auto ensure_linear_params_registered =
|
||||
[[maybe_unused]] static auto ensure_linear_params_registered =
|
||||
register_linear_params();
|
||||
|
||||
auto cell_params_base_registry =
|
||||
static auto cell_params_base_registry =
|
||||
torch::selective_class_<CellParamsBase>("rnn", TORCH_SELECTIVE_CLASS("CellParamsBase"))
|
||||
.def_pickle(
|
||||
[](const c10::intrusive_ptr<CellParamsBase>& self)
|
||||
|
||||
@ -466,7 +466,7 @@ REGISTER_AVX2_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cp
|
||||
REGISTER_AVX512_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_VSX_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_SVE256_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_SVE_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
|
||||
// offsets dispatches
|
||||
REGISTER_ARCH_DISPATCH(
|
||||
@ -477,7 +477,7 @@ REGISTER_AVX2_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cp
|
||||
REGISTER_AVX512_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_VSX_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_SVE256_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_SVE_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
|
||||
// Currently some computation is being duplicated across forward and backward.
|
||||
// TODO: Cache indices in forward pass to reuse in backward
|
||||
@ -548,7 +548,7 @@ REGISTER_VSX_DISPATCH(
|
||||
REGISTER_ZVECTOR_DISPATCH(
|
||||
_segment_reduce_lengths_backward_stub,
|
||||
&_segment_reduce_cpu_lengths_backward_kernel)
|
||||
REGISTER_SVE256_DISPATCH(
|
||||
REGISTER_SVE_DISPATCH(
|
||||
_segment_reduce_lengths_backward_stub,
|
||||
&_segment_reduce_cpu_lengths_backward_kernel)
|
||||
|
||||
@ -568,7 +568,7 @@ REGISTER_VSX_DISPATCH(
|
||||
REGISTER_ZVECTOR_DISPATCH(
|
||||
_segment_reduce_offsets_backward_stub,
|
||||
&_segment_reduce_cpu_offsets_backward_kernel)
|
||||
REGISTER_SVE256_DISPATCH(
|
||||
REGISTER_SVE_DISPATCH(
|
||||
_segment_reduce_offsets_backward_stub,
|
||||
&_segment_reduce_cpu_offsets_backward_kernel)
|
||||
|
||||
|
||||
@ -2676,7 +2676,7 @@ inline std::tuple<Tensor, Tensor, int64_t> _take_along_dim_helper(
|
||||
std::move(dim));
|
||||
}
|
||||
|
||||
inline void checkDevice(CheckedFrom c, const Tensor& t, Device device) {
|
||||
static inline void checkDevice(CheckedFrom c, const Tensor& t, Device device) {
|
||||
TORCH_CHECK(
|
||||
!t.defined() || t.device() == device,
|
||||
"Expected tensor to have ",
|
||||
@ -2689,7 +2689,7 @@ inline void checkDevice(CheckedFrom c, const Tensor& t, Device device) {
|
||||
")");
|
||||
}
|
||||
|
||||
inline void checkDevice(
|
||||
static inline void checkDevice(
|
||||
CheckedFrom c,
|
||||
at::ArrayRef<Tensor> tensors,
|
||||
Device device) {
|
||||
|
||||
@ -3641,7 +3641,7 @@ Tensor& transpose_(Tensor& self, int64_t dim0, int64_t dim1) {
|
||||
namespace {
|
||||
// Transpose implementation for sparse compressed layouts
|
||||
// NB: We assume that dim1,dim0 have already been wrapped
|
||||
inline Tensor sparse_compressed_transpose(
|
||||
static inline Tensor sparse_compressed_transpose(
|
||||
const Tensor& self,
|
||||
int64_t dim0,
|
||||
int64_t dim1) {
|
||||
|
||||
@ -29,7 +29,7 @@ namespace {
|
||||
// grad_in does not mean that it is a gradient wrt to input,
|
||||
// grad_in/grad_out is just an input/output of unfold_backward kernel.
|
||||
|
||||
[[maybe_unused]] TensorIterator _make_unfold_backward_iter_over_grad_out(
|
||||
[[maybe_unused]] static TensorIterator _make_unfold_backward_iter_over_grad_out(
|
||||
Tensor& grad_out,
|
||||
const Tensor& grad_in,
|
||||
int64_t dim,
|
||||
|
||||
@ -406,7 +406,7 @@ scalar_t cubic_convolution2(scalar_t x, scalar_t A) {
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
static inline void get_cubic_upsample_coefficients(
|
||||
void get_cubic_upsample_coefficients(
|
||||
scalar_t coeffs[4],
|
||||
scalar_t t) {
|
||||
scalar_t A = -0.75;
|
||||
|
||||
@ -105,7 +105,7 @@ namespace at::native {
|
||||
namespace {
|
||||
|
||||
template <typename scalar_t>
|
||||
void upsample_bicubic2d_backward_out_frame(
|
||||
static void upsample_bicubic2d_backward_out_frame(
|
||||
const scalar_t* odata,
|
||||
scalar_t* idata,
|
||||
int64_t input_height,
|
||||
@ -177,7 +177,7 @@ void upsample_bicubic2d_backward_out_frame(
|
||||
});
|
||||
}
|
||||
|
||||
void upsample_bicubic2d_backward_kernel(
|
||||
static void upsample_bicubic2d_backward_kernel(
|
||||
const Tensor& grad_input,
|
||||
const Tensor& grad_output_,
|
||||
IntArrayRef output_size,
|
||||
|
||||
@ -39,6 +39,6 @@ int register_linear_params() {
|
||||
}
|
||||
|
||||
namespace {
|
||||
[[maybe_unused]] auto linear_params = register_linear_params();
|
||||
[[maybe_unused]] static auto linear_params = register_linear_params();
|
||||
} // namespace
|
||||
} // namespace ao::sparse
|
||||
|
||||
@ -30,7 +30,7 @@ namespace {
|
||||
// Workaround for gcc-14.2.0 ICE during RTL pass: expand when compiling for NEON
|
||||
__attribute__((optimize("no-tree-vectorize")))
|
||||
#endif
|
||||
void log_sigmoid_cpu_kernel(TensorBase &output, TensorBase &buffer, const TensorBase &input) {
|
||||
static void log_sigmoid_cpu_kernel(TensorBase &output, TensorBase &buffer, const TensorBase &input) {
|
||||
if (at::isReducedFloatingType(input.scalar_type())) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(input.scalar_type(), "log_sigmoid_cpu", [&]() {
|
||||
using Vec = Vectorized<scalar_t>;
|
||||
@ -96,7 +96,7 @@ void log_sigmoid_cpu_kernel(TensorBase &output, TensorBase &buffer, const Tensor
|
||||
}
|
||||
}
|
||||
|
||||
void log_sigmoid_backward_cpu_kernel(TensorIterator& iter) {
|
||||
static void log_sigmoid_backward_cpu_kernel(TensorIterator& iter) {
|
||||
if (at::isReducedFloatingType(iter.dtype())) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(iter.dtype(), "log_sigmoid_backward_cpu", [&]() {
|
||||
using Vec = Vectorized<scalar_t>;
|
||||
@ -150,7 +150,7 @@ void log_sigmoid_backward_cpu_kernel(TensorIterator& iter) {
|
||||
}
|
||||
}
|
||||
|
||||
void threshold_kernel(
|
||||
static void threshold_kernel(
|
||||
TensorIteratorBase& iter,
|
||||
const Scalar& threshold_scalar,
|
||||
const Scalar& value_scalar) {
|
||||
@ -868,7 +868,7 @@ void hardswish_backward_kernel(TensorIterator& iter) {
|
||||
}
|
||||
}
|
||||
|
||||
void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
||||
static void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
||||
if (at::isReducedFloatingType(iter.dtype())) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(iter.dtype(), "leaky_relu_cpu", [&]() {
|
||||
auto zero_vec = Vectorized<float>((float)(0));
|
||||
@ -907,7 +907,7 @@ void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
||||
}
|
||||
}
|
||||
|
||||
void leaky_relu_backward_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
||||
static void leaky_relu_backward_kernel(TensorIteratorBase& iter, const Scalar& negval_) {
|
||||
if (at::isReducedFloatingType(iter.dtype())) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(iter.dtype(), "leaky_relu_backward_cpu", [&]() {
|
||||
auto zero_vec = Vectorized<float>((float)(0));
|
||||
|
||||
@ -369,7 +369,7 @@ void gemm_notrans_(
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE)
|
||||
|
||||
#if !defined(C10_MOBILE)
|
||||
float compute_dot(const at::Half* a, const at::Half* b, int64_t len) {
|
||||
static float compute_dot(const at::Half* a, const at::Half* b, int64_t len) {
|
||||
return at::native::CPU_CAPABILITY::fp16_dot_with_fp32_arith(
|
||||
a, b, len);
|
||||
}
|
||||
@ -406,7 +406,7 @@ void gemm_transa_(
|
||||
});
|
||||
}
|
||||
|
||||
float compute_dot(const at::BFloat16* a, const at::BFloat16* b, int64_t len) {
|
||||
static float compute_dot(const at::BFloat16* a, const at::BFloat16* b, int64_t len) {
|
||||
return at::native::CPU_CAPABILITY::bf16_dot_with_fp32_arith(a, b, len);
|
||||
}
|
||||
|
||||
|
||||
@ -15,12 +15,12 @@ namespace at::native {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
namespace {
|
||||
bool reduced_input(ScalarType input_t, ScalarType output_t) {
|
||||
static bool reduced_input(ScalarType input_t, ScalarType output_t) {
|
||||
return !at::isFloat8Type(input_t) && at::isReducedFloatingType(input_t) &&
|
||||
output_t == kFloat;
|
||||
}
|
||||
|
||||
bool reduced_output(ScalarType input_t, ScalarType output_t) {
|
||||
static bool reduced_output(ScalarType input_t, ScalarType output_t) {
|
||||
return !at::isFloat8Type(output_t) && at::isReducedFloatingType(output_t) &&
|
||||
input_t == kFloat;
|
||||
}
|
||||
|
||||
@ -15,7 +15,7 @@ namespace at::native {
|
||||
namespace {
|
||||
|
||||
template<typename scalar_t>
|
||||
void apply_cross(const Tensor& result, const Tensor& a, const Tensor& b, const int64_t dim) {
|
||||
static void apply_cross(const Tensor& result, const Tensor& a, const Tensor& b, const int64_t dim) {
|
||||
int64_t total = a.numel() / 3;
|
||||
int64_t a_stride = a.stride(dim);
|
||||
int64_t b_stride = b.stride(dim);
|
||||
@ -68,7 +68,7 @@ void apply_cross(const Tensor& result, const Tensor& a, const Tensor& b, const i
|
||||
});
|
||||
}
|
||||
|
||||
void cross_kernel_impl(const Tensor& result, const Tensor& a, const Tensor& b, const int64_t dim) {
|
||||
static void cross_kernel_impl(const Tensor& result, const Tensor& a, const Tensor& b, const int64_t dim) {
|
||||
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kBFloat16, kHalf, result.scalar_type(), "cross", [&]() {
|
||||
apply_cross<scalar_t>(result, a, b, dim);
|
||||
});
|
||||
|
||||
@ -422,19 +422,19 @@ void pdist_forward_kernel_impl(Tensor& result, const Tensor& self, const double
|
||||
});
|
||||
}
|
||||
|
||||
void pdist_backward_kernel_impl(Tensor& result, const Tensor& grad, const Tensor& self, const double p, const Tensor& dist) {
|
||||
static void pdist_backward_kernel_impl(Tensor& result, const Tensor& grad, const Tensor& self, const double p, const Tensor& dist) {
|
||||
AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "pdist_backward", [&] {
|
||||
Dist<scalar_t>::apply_backward_pdist(result, grad, self, p, dist);
|
||||
});
|
||||
}
|
||||
|
||||
void cdist_kernel_impl(Tensor& result, const Tensor& x1, const Tensor& x2, const double p) {
|
||||
static void cdist_kernel_impl(Tensor& result, const Tensor& x1, const Tensor& x2, const double p) {
|
||||
AT_DISPATCH_FLOATING_TYPES(result.scalar_type(), "cdist", [&] {
|
||||
Dist<scalar_t>::apply_cdist(result, x1, x2, p);
|
||||
});
|
||||
}
|
||||
|
||||
void cdist_backward_kernel_impl(Tensor& result, const Tensor& grad, const Tensor& x1, const Tensor& x2, const double p, const Tensor& dist) {
|
||||
static void cdist_backward_kernel_impl(Tensor& result, const Tensor& grad, const Tensor& x1, const Tensor& x2, const double p, const Tensor& dist) {
|
||||
AT_DISPATCH_FLOATING_TYPES(result.scalar_type(), "cdist_backward", [&] {
|
||||
Dist<scalar_t>::apply_backward_cdist(result, grad, x1, x2, p, dist);
|
||||
});
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user