mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-27 09:04:53 +08:00
Compare commits
1 Commits
DynamoFixG
...
profiler-e
| Author | SHA1 | Date | |
|---|---|---|---|
| 937ffabfe8 |
@ -37,9 +37,9 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
rocm*)
|
||||
BASE_TARGET=rocm
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
|
||||
;;
|
||||
|
||||
@ -344,7 +344,7 @@ docker build \
|
||||
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
|
||||
--build-arg "KATEX=${KATEX:-}" \
|
||||
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942;gfx1100}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942}" \
|
||||
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
|
||||
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
|
||||
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
|
||||
|
||||
@ -1 +1 @@
|
||||
deb42f2a8e48f5032b4a98ee781a15fa87a157cf
|
||||
e0dda9059d082537cee36be6c5e4fe3b18c880c0
|
||||
|
||||
@ -1 +1 @@
|
||||
7416ffcb92cdbe98d9f97e4e6f95247e46dfc9fd
|
||||
27664085f804afc83df26f740bb46c365854f2c4
|
||||
|
||||
@ -19,8 +19,8 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.23.0
|
||||
pip_install onnxscript==0.5.3
|
||||
pip_install onnxruntime==1.22.1
|
||||
pip_install onnxscript==0.4.0
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/
|
||||
|
||||
@ -46,9 +46,9 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
|
||||
;;
|
||||
|
||||
@ -115,9 +115,6 @@ RUN env GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=True pip3 install grpcio
|
||||
# cmake-3.28.0 from pip for onnxruntime
|
||||
RUN python3 -mpip install cmake==3.28.0
|
||||
|
||||
ADD ./common/patch_libstdc.sh patch_libstdc.sh
|
||||
RUN bash ./patch_libstdc.sh && rm patch_libstdc.sh
|
||||
|
||||
# build onnxruntime 1.21.0 from sources.
|
||||
# it is not possible to build it from sources using pip,
|
||||
# so just build it from upstream repository.
|
||||
|
||||
@ -84,9 +84,9 @@ case ${image} in
|
||||
DEVTOOLSET_VERSION="11"
|
||||
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
|
||||
# add gfx950, gfx115x conditionally starting in ROCm 7.0
|
||||
# add gfx950 conditionally starting in ROCm 7.0
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950;gfx1150;gfx1151"
|
||||
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
|
||||
;;
|
||||
|
||||
@ -120,8 +120,9 @@ ninja==1.11.1.4
|
||||
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
|
||||
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
|
||||
#Description: Just-In-Time Compiler for Numerical Functions
|
||||
#Pinned versions: 0.55.2, 0.60.0
|
||||
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
|
||||
#test that import: test_numba_integration.py
|
||||
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
|
||||
#Need release > 0.61.2 for s390x due to https://github.com/numba/numba/pull/10073
|
||||
|
||||
#numpy
|
||||
@ -241,9 +242,10 @@ pygments==2.15.0
|
||||
#Pinned versions: 14.1.0
|
||||
#test that import:
|
||||
|
||||
scikit-image==0.22.0
|
||||
scikit-image==0.19.3 ; python_version < "3.10"
|
||||
scikit-image==0.22.0 ; python_version >= "3.10"
|
||||
#Description: image processing routines
|
||||
#Pinned versions: 0.22.0
|
||||
#Pinned versions:
|
||||
#test that import: test_nn.py
|
||||
|
||||
#scikit-learn
|
||||
@ -339,7 +341,7 @@ onnx==1.18.0
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.5.3
|
||||
onnxscript==0.4.0
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
@ -5,7 +5,7 @@ DESIRED_ROCM ?= 7.0
|
||||
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
|
||||
PACKAGE_NAME = magma-rocm
|
||||
# inherit this from underlying docker image, do not pass this env var to docker
|
||||
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1150;gfx1151;gfx1200;gfx1201
|
||||
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
|
||||
|
||||
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
|
||||
@ -18,6 +18,7 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
.PHONY: all
|
||||
all: magma-rocm70
|
||||
all: magma-rocm64
|
||||
all: magma-rocm63
|
||||
|
||||
.PHONY:
|
||||
clean:
|
||||
@ -33,3 +34,8 @@ magma-rocm70:
|
||||
magma-rocm64: DESIRED_ROCM := 6.4
|
||||
magma-rocm64:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-rocm63
|
||||
magma-rocm63: DESIRED_ROCM := 6.3
|
||||
magma-rocm63:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
@ -67,7 +67,7 @@ fi
|
||||
# wheels with cxx11-abi
|
||||
|
||||
echo "Checking that the gcc ABI is what we expect"
|
||||
if [[ "$(uname)" != 'Darwin' ]]; then
|
||||
if [[ "$(uname)" != 'Darwin' && "$(uname -m)" != "s390x" ]]; then
|
||||
# We also check that there are cxx11 symbols in libtorch
|
||||
#
|
||||
echo "Checking that symbols in libtorch.so have the right gcc abi"
|
||||
|
||||
@ -256,7 +256,7 @@ test_torchbench_smoketest() {
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
|
||||
for backend in eager inductor; do
|
||||
|
||||
@ -319,7 +319,7 @@ test_aoti_torchbench_smoketest() {
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(llama BERT_pytorch dcgan yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor vgg16)
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
|
||||
echo "Launching torchbench inference performance run for AOT Inductor and dtype ${dtype}"
|
||||
local dtype_arg="--${dtype}"
|
||||
|
||||
@ -34,14 +34,12 @@ fi
|
||||
|
||||
|
||||
# Patch numba to avoid CUDA-13 crash, see https://github.com/pytorch/pytorch/issues/162878
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
|
||||
if [ -n "$NUMBA_CUDA_DIR" ]; then
|
||||
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
|
||||
pushd "$NUMBA_CUDA_DIR"
|
||||
patch -p4 <"$NUMBA_PATCH"
|
||||
popd
|
||||
fi
|
||||
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
|
||||
if [ -n "$NUMBA_CUDA_DIR" ]; then
|
||||
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
|
||||
pushd "$NUMBA_CUDA_DIR"
|
||||
patch -p4 <"$NUMBA_PATCH"
|
||||
popd
|
||||
fi
|
||||
|
||||
echo "Environment variables:"
|
||||
@ -838,7 +836,7 @@ test_dynamo_benchmark() {
|
||||
elif [[ "${suite}" == "timm_models" ]]; then
|
||||
export TORCHBENCH_ONLY_MODELS="inception_v3"
|
||||
elif [[ "${suite}" == "torchbench" ]]; then
|
||||
export TORCHBENCH_ONLY_MODELS="BERT_pytorch"
|
||||
export TORCHBENCH_ONLY_MODELS="hf_Bert"
|
||||
fi
|
||||
fi
|
||||
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
|
||||
@ -869,13 +867,13 @@ test_inductor_torchbench_smoketest_perf() {
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
|
||||
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only BERT_pytorch \
|
||||
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
|
||||
--output "$TEST_REPORTS_DIR/inductor_training_smoketest.csv"
|
||||
# The threshold value needs to be actively maintained to make this check useful
|
||||
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_training_smoketest.csv" -t 1.4
|
||||
|
||||
# Check memory compression ratio for a few models
|
||||
for test in BERT_pytorch yolov3; do
|
||||
for test in hf_Albert timm_vision_transformer; do
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --amp --training \
|
||||
--disable-cudagraphs --batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" \
|
||||
--only $test --output "$TEST_REPORTS_DIR/inductor_training_smoketest_$test.csv"
|
||||
@ -886,7 +884,7 @@ test_inductor_torchbench_smoketest_perf() {
|
||||
done
|
||||
|
||||
# Perform some "warm-start" runs for a few huggingface models.
|
||||
for test in AllenaiLongformerBase DistilBertForMaskedLM DistillGPT2 GoogleFnet YituTechConvBert; do
|
||||
for test in AlbertForQuestionAnswering AllenaiLongformerBase DistilBertForMaskedLM DistillGPT2 GoogleFnet YituTechConvBert; do
|
||||
python benchmarks/dynamo/huggingface.py --accuracy --training --amp --inductor --device cuda --warm-start-latency \
|
||||
--only $test --output "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv"
|
||||
python benchmarks/dynamo/check_accuracy.py \
|
||||
|
||||
@ -38,7 +38,7 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
fi
|
||||
|
||||
# TODO: Move this to .ci/docker/requirements-ci.txt
|
||||
python -m pip install "psutil==5.9.1" nvidia-ml-py "pytest-shard==0.1.2"
|
||||
python -m pip install "psutil==5.9.1" "pynvml==11.4.1" "pytest-shard==0.1.2"
|
||||
|
||||
run_tests() {
|
||||
# Run nvidia-smi if available
|
||||
|
||||
@ -37,10 +37,10 @@ IF "%CUDA_PATH_V128%"=="" (
|
||||
)
|
||||
|
||||
IF "%BUILD_VISION%" == "" (
|
||||
set TORCH_CUDA_ARCH_LIST=7.0;7.5;8.0;8.6;9.0;10.0;12.0
|
||||
set TORCH_CUDA_ARCH_LIST=6.1;7.0;7.5;8.0;8.6;9.0;10.0;12.0
|
||||
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
|
||||
) ELSE (
|
||||
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
|
||||
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
|
||||
)
|
||||
|
||||
set "CUDA_PATH=%CUDA_PATH_V128%"
|
||||
|
||||
@ -71,7 +71,14 @@ export PYTORCH_BUILD_NUMBER=1
|
||||
|
||||
# Set triton version as part of PYTORCH_EXTRA_INSTALL_REQUIREMENTS
|
||||
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
|
||||
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
|
||||
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
|
||||
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
fi
|
||||
|
||||
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" && ! "$PYTORCH_BUILD_VERSION" =~ .*xpu.* ]]; then
|
||||
TRITON_REQUIREMENT="triton==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"
|
||||
|
||||
@ -59,14 +59,13 @@ performance-*,
|
||||
-performance-enum-size,
|
||||
readability-container-size-empty,
|
||||
readability-delete-null-pointer,
|
||||
readability-duplicate-include,
|
||||
readability-duplicate-include
|
||||
readability-misplaced-array-index,
|
||||
readability-redundant*,
|
||||
readability-redundant*
|
||||
readability-simplify-subscript-expr,
|
||||
readability-string-compare,
|
||||
-readability-redundant-access-specifiers,
|
||||
-readability-redundant-control-flow,
|
||||
-readability-redundant-inline-specifier,
|
||||
'
|
||||
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
|
||||
WarningsAsErrors: '*'
|
||||
|
||||
35
.github/actions/setup-linux/action.yml
vendored
35
.github/actions/setup-linux/action.yml
vendored
@ -28,10 +28,6 @@ runs:
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
|
||||
- name: Print GPU info (if present)
|
||||
shell: bash
|
||||
run: if [ -f /usr/bin/nvidia-smi ]; then nvidia-smi; fi
|
||||
|
||||
- name: Check if in a container runner
|
||||
shell: bash
|
||||
id: check_container_runner
|
||||
@ -86,6 +82,37 @@ runs:
|
||||
# Prune all of the docker images
|
||||
docker system prune -af
|
||||
|
||||
- name: Manually resolve download.pytorch.org
|
||||
shell: bash
|
||||
continue-on-error: true
|
||||
run: |
|
||||
set +e
|
||||
set -x
|
||||
|
||||
PT_DOMAIN=download.pytorch.org
|
||||
# TODO: Flaky access to download.pytorch.org https://github.com/pytorch/pytorch/issues/100400,
|
||||
# cleaning this up once the issue is fixed. There are more than one resolved IP here, the last
|
||||
# one is returned at random
|
||||
RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" | tail -n1)
|
||||
|
||||
if [ -z "${RESOLVED_IP}" ]; then
|
||||
echo "Couldn't resolve ${PT_DOMAIN}, retrying with Google DNS..."
|
||||
RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" @8.8.8.8 | tail -n1)
|
||||
|
||||
if [ -z "${RESOLVED_IP}" ]; then
|
||||
echo "Couldn't resolve ${PT_DOMAIN}, exiting..."
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if grep -r "${PT_DOMAIN}" /etc/hosts; then
|
||||
# Clean up any old records first
|
||||
sudo sed -i "/${PT_DOMAIN}/d" /etc/hosts
|
||||
fi
|
||||
|
||||
echo "${RESOLVED_IP} ${PT_DOMAIN}" | sudo tee -a /etc/hosts
|
||||
cat /etc/hosts
|
||||
|
||||
- name: Check that the docker daemon is running
|
||||
shell: bash
|
||||
continue-on-error: true
|
||||
|
||||
2
.github/ci_commit_pins/vllm.txt
vendored
2
.github/ci_commit_pins/vllm.txt
vendored
@ -1 +1 @@
|
||||
0ad9951c416d33c5da4f7a504fb162cbe62386f5
|
||||
78a47f87ce259a48f0391fa9ae15add05ea7432b
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
2a9138a26ee257fef05310ad3fecf7c55fe80d73
|
||||
0fc62aa26a30ed7ca419d285f285cb5ba02c4394
|
||||
|
||||
16
.github/ci_configs/vllm/Dockerfile.tmp_vllm
vendored
16
.github/ci_configs/vllm/Dockerfile.tmp_vllm
vendored
@ -202,7 +202,7 @@ ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
ARG nvcc_threads=4
|
||||
ENV NVCC_THREADS=$nvcc_threads
|
||||
ARG torch_cuda_arch_list='8.0 8.6 8.9 9.0'
|
||||
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
ARG USE_SCCACHE
|
||||
@ -297,28 +297,16 @@ RUN echo "[INFO] Listing current directory before torch install step:" && \
|
||||
echo "[INFO] Showing torch_build_versions.txt content:" && \
|
||||
cat torch_build_versions.txt
|
||||
|
||||
# Install build and runtime dependencies, this is needed for flashinfer install
|
||||
COPY requirements/build.txt requirements/build.txt
|
||||
COPY use_existing_torch.py use_existing_torch.py
|
||||
RUN python3 use_existing_torch.py
|
||||
RUN cat requirements/build.txt
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if ! python3 -m uv --version > /dev/null 2>&1; then \
|
||||
python3 -m pip install uv==0.8.4; \
|
||||
fi
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/build.txt
|
||||
|
||||
|
||||
# Default mount file as placeholder, this just avoid the mount error
|
||||
ARG TORCH_WHEELS_PATH="./requirements"
|
||||
# Install torch, torchaudio and torchvision
|
||||
@ -344,11 +332,13 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
# Install xformers wheel from previous stage
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/xformers/*.whl --verbose
|
||||
|
||||
# Build flashinfer from source.
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
# install package for build flashinfer
|
||||
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
|
||||
|
||||
RUN pip install build==1.3.0
|
||||
RUN pip freeze | grep -E 'setuptools|packaging|build'
|
||||
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
@ -1,14 +1,9 @@
|
||||
import glob
|
||||
import os
|
||||
|
||||
|
||||
requires_files = glob.glob("requirements/*.txt")
|
||||
requires_files += ["pyproject.toml"]
|
||||
|
||||
for file in requires_files:
|
||||
if not os.path.exists(file):
|
||||
print(f"!!! skipping missing {file}")
|
||||
continue
|
||||
print(f">>> cleaning {file}")
|
||||
with open(file) as f:
|
||||
lines = f.readlines()
|
||||
|
||||
BIN
.github/scripts/drci_mocks.json.gz
vendored
BIN
.github/scripts/drci_mocks.json.gz
vendored
Binary file not shown.
1
.github/scripts/github_utils.py
vendored
1
.github/scripts/github_utils.py
vendored
@ -18,7 +18,6 @@ class GitHubComment:
|
||||
body_text: str
|
||||
created_at: str
|
||||
author_login: str
|
||||
author_url: Optional[str]
|
||||
author_association: str
|
||||
editor_login: Optional[str]
|
||||
database_id: int
|
||||
|
||||
BIN
.github/scripts/gql_mocks.json.gz
vendored
BIN
.github/scripts/gql_mocks.json.gz
vendored
Binary file not shown.
2
.github/scripts/test_check_labels.py
vendored
2
.github/scripts/test_check_labels.py
vendored
@ -38,7 +38,6 @@ def mock_get_comments() -> list[GitHubComment]:
|
||||
body_text="mock_body_text",
|
||||
created_at="",
|
||||
author_login="",
|
||||
author_url=None,
|
||||
author_association="",
|
||||
editor_login=None,
|
||||
database_id=1,
|
||||
@ -49,7 +48,6 @@ def mock_get_comments() -> list[GitHubComment]:
|
||||
body_text=" #" + LABEL_ERR_MSG_TITLE.replace("`", ""),
|
||||
created_at="",
|
||||
author_login=BOT_AUTHORS[1],
|
||||
author_url=None,
|
||||
author_association="",
|
||||
editor_login=None,
|
||||
database_id=2,
|
||||
|
||||
18
.github/scripts/test_trymerge.py
vendored
18
.github/scripts/test_trymerge.py
vendored
@ -32,7 +32,6 @@ from trymerge import (
|
||||
main as trymerge_main,
|
||||
MandatoryChecksMissingError,
|
||||
MergeRule,
|
||||
PostCommentError,
|
||||
RE_GHSTACK_DESC,
|
||||
read_merge_rules,
|
||||
remove_job_name_suffix,
|
||||
@ -589,23 +588,6 @@ class TestTryMerge(TestCase):
|
||||
self.assertEqual(mock_merge_base, pr.get_merge_base())
|
||||
mocked_gh_fetch_merge_base.assert_called_once()
|
||||
|
||||
def test_app_can_revert(self, *args: Any) -> None:
|
||||
pr = GitHubPR("pytorch", "pytorch", 164660)
|
||||
repo = DummyGitRepo()
|
||||
app_comment_id, impostor_comment_id = 3375785595, 3377647892
|
||||
# Check that app can revert
|
||||
self.assertIsNotNone(validate_revert(repo, pr, comment_id=app_comment_id))
|
||||
# But impostor can not
|
||||
self.assertRaises(
|
||||
PostCommentError,
|
||||
lambda: validate_revert(repo, pr, comment_id=impostor_comment_id),
|
||||
)
|
||||
# Despite it's name being the name of the bot
|
||||
self.assertEqual(
|
||||
pr.get_comment_by_id(impostor_comment_id).author_login,
|
||||
"pytorch-auto-revert",
|
||||
)
|
||||
|
||||
|
||||
@mock.patch("trymerge.gh_graphql", side_effect=mocked_gh_graphql)
|
||||
@mock.patch("trymerge.gh_fetch_merge_base", return_value="")
|
||||
|
||||
7
.github/scripts/trymerge.py
vendored
7
.github/scripts/trymerge.py
vendored
@ -234,7 +234,6 @@ query ($owner: String!, $name: String!, $number: Int!) {
|
||||
createdAt
|
||||
author {
|
||||
login
|
||||
url
|
||||
}
|
||||
authorAssociation
|
||||
editor {
|
||||
@ -1094,7 +1093,6 @@ class GitHubPR:
|
||||
body_text=node["bodyText"],
|
||||
created_at=node["createdAt"] if "createdAt" in node else "",
|
||||
author_login=node["author"]["login"],
|
||||
author_url=node["author"].get("url", None),
|
||||
author_association=node["authorAssociation"],
|
||||
editor_login=editor["login"] if editor else None,
|
||||
database_id=node["databaseId"],
|
||||
@ -2031,11 +2029,6 @@ def validate_revert(
|
||||
# For some reason, one can not be a member of private repo, only CONTRIBUTOR
|
||||
if pr.is_base_repo_private():
|
||||
allowed_reverters.append("CONTRIBUTOR")
|
||||
# Special case the pytorch-auto-revert app, whose does not have association
|
||||
# But should be able to issue revert command
|
||||
if comment.author_url == "https://github.com/apps/pytorch-auto-revert":
|
||||
allowed_reverters.append("NONE")
|
||||
|
||||
if author_association not in allowed_reverters:
|
||||
raise PostCommentError(
|
||||
f"Will not revert as @{author_login} is not one of "
|
||||
|
||||
9
.github/workflows/_get-changed-files.yml
vendored
9
.github/workflows/_get-changed-files.yml
vendored
@ -40,15 +40,6 @@ jobs:
|
||||
# Use gh CLI to get changed files in the PR with explicit repo
|
||||
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
|
||||
|
||||
# See https://github.com/pytorch/pytorch/pull/134215#issuecomment-2332128790
|
||||
PYI_FILES_TO_ADD=""
|
||||
for file in ${CHANGED_FILES}; do
|
||||
if [[ "${file}" == *".pyi.in" ]]; then
|
||||
PYI_FILES_TO_ADD="${PYI_FILES_TO_ADD} ${file//.in/}"
|
||||
fi
|
||||
done
|
||||
CHANGED_FILES="${CHANGED_FILES}${PYI_FILES_TO_ADD}"
|
||||
|
||||
if [ -z "$CHANGED_FILES" ]; then
|
||||
echo "No changed files found, setting to '*'"
|
||||
CHANGED_FILES="*"
|
||||
|
||||
@ -2,7 +2,7 @@ name: inductor-perf-nightly-h100
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 15 0 * * 1-6
|
||||
- cron: 15 0,12 * * 1-6
|
||||
- cron: 0 7 * * 0
|
||||
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
|
||||
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
|
||||
|
||||
@ -63,7 +63,6 @@ jobs:
|
||||
# Same as the build job
|
||||
python-version: 3.12.7
|
||||
test-matrix: ${{ needs.macos-perf-py3-arm64-build.outputs.test-matrix }}
|
||||
timeout-minutes: 300
|
||||
disable-monitor: false
|
||||
monitor-log-interval: 15
|
||||
monitor-data-collect-interval: 4
|
||||
|
||||
10
.github/workflows/inductor-periodic.yml
vendored
10
.github/workflows/inductor-periodic.yml
vendored
@ -106,16 +106,6 @@ jobs:
|
||||
{ config: "dynamic_aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "dynamic_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "aot_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
54
.github/workflows/operator_microbenchmark.yml
vendored
54
.github/workflows/operator_microbenchmark.yml
vendored
@ -18,7 +18,6 @@ permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
# H100 A100 runners
|
||||
opmicrobenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build
|
||||
@ -45,56 +44,3 @@ jobs:
|
||||
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
# B200 runner
|
||||
opmicrobenchmark-build-b200:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build-b200
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
runner: linux.12xlarge.memory
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
|
||||
cuda-arch-list: '10.0'
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opmicrobenchmark-test-b200:
|
||||
name: opmicrobenchmark-test-b200
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: opmicrobenchmark-build-b200
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
|
||||
docker-image: ${{ needs.opmicrobenchmark-build-b200.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build-b200.outputs.test-matrix }}
|
||||
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
secrets: inherit
|
||||
|
||||
# ROCM MI300 runner
|
||||
opmicrobenchmark-build-rocm:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: opmicrobenchmark-build-rocm
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
opmicrobenchmark-test-rocm:
|
||||
name: opmicrobenchmark-test-rocm
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs: opmicrobenchmark-build-rocm
|
||||
with:
|
||||
timeout-minutes: 500
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image: ${{ needs.opmicrobenchmark-build-rocm.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opmicrobenchmark-build-rocm.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
6
.github/workflows/periodic.yml
vendored
6
.github/workflows/periodic.yml
vendored
@ -213,9 +213,9 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
2
.github/workflows/pull.yml
vendored
2
.github/workflows/pull.yml
vendored
@ -127,6 +127,8 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# More memory is needed to build with asan
|
||||
runner: linux.2xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-clang18-asan
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
|
||||
|
||||
26
.github/workflows/rocm.yml
vendored
26
.github/workflows/rocm.yml
vendored
@ -59,29 +59,3 @@ jobs:
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-gfx1100-test:
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3_10-gfx1100
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
]}
|
||||
tests-to-include: >
|
||||
test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
|
||||
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
|
||||
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
|
||||
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
|
||||
inductor/test_flex_attention inductor/test_max_autotune
|
||||
secrets: inherit
|
||||
|
||||
2
.github/workflows/slow.yml
vendored
2
.github/workflows/slow.yml
vendored
@ -140,6 +140,8 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# More memory is needed to build with asan
|
||||
runner: linux.2xlarge.memory
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py3.10-clang18-asan
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan
|
||||
|
||||
42
.github/workflows/trunk.yml
vendored
42
.github/workflows/trunk.yml
vendored
@ -160,10 +160,9 @@ jobs:
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 2, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 3, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 4, num_shards: 4, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
{ config: "default", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
@ -190,6 +189,41 @@ jobs:
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "distributed", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.4" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor distributed/test_c10d_common distributed/test_c10d_nccl"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
name: inductor-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
||||
2
.github/workflows/vllm.yml
vendored
2
.github/workflows/vllm.yml
vendored
@ -42,7 +42,7 @@ jobs:
|
||||
build-external-packages: "vllm"
|
||||
build-environment: linux-jammy-cuda12.8-py3.12-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm
|
||||
cuda-arch-list: '8.0 8.9 9.0'
|
||||
cuda-arch-list: '8.0;8.9;9.0'
|
||||
runner: linux.24xlarge.memory
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@ -88,7 +88,7 @@ torch_compile_debug/
|
||||
# Listed manually because some files in this directory are not generated
|
||||
torch/testing/_internal/generated/annotated_fn_args.py
|
||||
torch/testing/_internal/data/*.pt
|
||||
torch/headeronly/version.h
|
||||
torch/csrc/api/include/torch/version.h
|
||||
torch/csrc/cudnn/cuDNN.cpp
|
||||
torch/csrc/generated
|
||||
torch/csrc/generic/TensorMethods.cpp
|
||||
|
||||
@ -18,7 +18,6 @@ exclude_patterns = [
|
||||
'torch/_inductor/autoheuristic/artifacts/**',
|
||||
'scripts/**',
|
||||
'test/generated_type_hints_smoketest.py',
|
||||
'test/test_torchfuzz_repros.py',
|
||||
# CPython tests
|
||||
'test/dynamo/cpython/**',
|
||||
# Tests from the NumPy test suite
|
||||
@ -28,7 +27,6 @@ exclude_patterns = [
|
||||
'torch/lib/**',
|
||||
'venv/**',
|
||||
'**/*.pyi',
|
||||
"tools/experimental/torchfuzz/**",
|
||||
'tools/test/test_selective_build.py',
|
||||
]
|
||||
command = [
|
||||
@ -198,7 +196,7 @@ exclude_patterns = [
|
||||
'tools/test/gen_operators_yaml_test.py',
|
||||
'tools/test/gen_oplist_test.py',
|
||||
'tools/test/test_selective_build.py',
|
||||
'tools/experimental/torchfuzz/**',
|
||||
'tools/experimental/dynamic_shapes/torchfuzz/**',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
@ -1573,7 +1571,6 @@ exclude_patterns = [
|
||||
'torch/_inductor/fx_passes/serialized_patterns/**',
|
||||
'torch/_inductor/autoheuristic/artifacts/**',
|
||||
'test/dynamo/cpython/**',
|
||||
'test/test_torchfuzz_repros.py',
|
||||
'scripts/**',
|
||||
'third_party/**',
|
||||
'fb/**',
|
||||
|
||||
@ -13,9 +13,6 @@ load(":build_variables.bzl", "jit_core_sources", "lazy_tensor_ts_sources", "libt
|
||||
load(":ufunc_defs.bzl", "aten_ufunc_generated_cpu_kernel_sources", "aten_ufunc_generated_cpu_sources", "aten_ufunc_generated_cuda_sources")
|
||||
load("//:tools/bazel.bzl", "rules")
|
||||
|
||||
# Export files for use by torch/headeronly (where version.h generation now lives)
|
||||
exports_files(["version.txt"])
|
||||
|
||||
define_targets(rules = rules)
|
||||
|
||||
COMMON_COPTS = [
|
||||
@ -693,9 +690,7 @@ cc_library(
|
||||
"torch/csrc/*/generated/*.h",
|
||||
"torch/csrc/jit/serialization/mobile_bytecode_generated.h",
|
||||
] + torch_cuda_headers,
|
||||
) + GENERATED_AUTOGRAD_CPP + [
|
||||
"//torch/headeronly:version_h",
|
||||
],
|
||||
) + GENERATED_AUTOGRAD_CPP + [":version_h"],
|
||||
includes = [
|
||||
"third_party/kineto/libkineto/include",
|
||||
"torch/csrc",
|
||||
|
||||
18
CODEOWNERS
18
CODEOWNERS
@ -181,15 +181,15 @@ caffe2/utils/hip @jeffdaily @jithunnair-amd
|
||||
/torch/csrc/jit/python/init.cpp @mikaylagawarecki
|
||||
|
||||
# CUDA and CUDA math libraries
|
||||
aten/src/ATen/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/native/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/native/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
c10/cuda @eqy @syed-ahmed @Aidyn-A
|
||||
torch/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
torch/csrc/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
torch/backends/cuda/ @eqy @syed-ahmed @Aidyn-A
|
||||
torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
aten/src/ATen/cuda/ @eqy @syed-ahmed
|
||||
aten/src/ATen/cudnn/ @eqy @syed-ahmed
|
||||
aten/src/ATen/native/cuda/ @eqy @syed-ahmed
|
||||
aten/src/ATen/native/cudnn/ @eqy @syed-ahmed
|
||||
c10/cuda @eqy @syed-ahmed
|
||||
torch/cuda/ @eqy @syed-ahmed
|
||||
torch/csrc/cuda/ @eqy @syed-ahmed
|
||||
torch/backends/cuda/ @eqy @syed-ahmed
|
||||
torch/backends/cudnn/ @eqy @syed-ahmed
|
||||
|
||||
# PyTree utilities
|
||||
/torch/utils/_pytree.py @XuehaiPan
|
||||
|
||||
@ -50,10 +50,11 @@ RUN git submodule update --init --recursive
|
||||
FROM conda as conda-installs
|
||||
ARG PYTHON_VERSION=3.11
|
||||
ARG CUDA_PATH=cu121
|
||||
ARG CUDA_CHANNEL=nvidia
|
||||
ARG INSTALL_CHANNEL=whl/nightly
|
||||
# Automatically set by buildx
|
||||
# pinning version of conda here see: https://github.com/pytorch/pytorch/issues/164574
|
||||
RUN /opt/conda/bin/conda install -y python=${PYTHON_VERSION} conda=25.7.0
|
||||
RUN /opt/conda/bin/conda update -y -n base -c defaults conda
|
||||
RUN /opt/conda/bin/conda install -y python=${PYTHON_VERSION}
|
||||
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
|
||||
17
RELEASE.md
17
RELEASE.md
@ -3,7 +3,6 @@
|
||||
<!-- toc -->
|
||||
|
||||
- [Release Compatibility Matrix](#release-compatibility-matrix)
|
||||
- [PyTorch CUDA Support Matrix](#pytorch-cuda-support-matrix)
|
||||
- [Release Cadence](#release-cadence)
|
||||
- [General Overview](#general-overview)
|
||||
- [Frequently Asked Questions](#frequently-asked-questions)
|
||||
@ -64,22 +63,6 @@ Following is the Release Compatibility Matrix for PyTorch releases:
|
||||
| 1.13 | >=3.7, <=3.10 | C++14 | CUDA 11.6, CUDNN 8.3.2.44 | CUDA 11.7, CUDNN 8.5.0.96 | ROCm 5.2 |
|
||||
| 1.12 | >=3.7, <=3.10 | C++14 | CUDA 11.3, CUDNN 8.3.2.44 | CUDA 11.6, CUDNN 8.3.2.44 | ROCm 5.0 |
|
||||
|
||||
### PyTorch CUDA Support Matrix
|
||||
|
||||
For Release 2.9 PyTorch Supports following CUDA Architectures:
|
||||
|
||||
| CUDA | architectures supported for Linux x86 and Windows builds | notes |
|
||||
| --- | --- | --- |
|
||||
| 12.6.3 | Maxwell(5.0), Pascal(6.0), Volta(7.0), Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0) | |
|
||||
| 12.8.1 | Volta(7.0), Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0), Blackwell(10.0, 12.0) | |
|
||||
| 13.0.0 | Turing(7.5), Ampere(8.0, 8.6), Hopper(9.0), Blackwell(10.0, 12.0+PTX) | +PTX available on linux builds only |
|
||||
|
||||
| CUDA | architectures supported for Linux aarch64 builds |
|
||||
| --- | --- |
|
||||
| 12.6.3 | Ampere(8.0), Hopper(9.0) |
|
||||
| 12.8.1 | Ampere(8.0), Hopper(9.0), Blackwell(10.0, 12.0) |
|
||||
| 13.0.0 | Ampere(8.0), Hopper(9.0), Blackwell(10.0, 11.0, 12.0+PTX) |
|
||||
|
||||
## Release Cadence
|
||||
|
||||
Following is the release cadence. All future dates below are tentative. For latest updates on the release schedule, please follow [dev discuss](https://dev-discuss.pytorch.org/c/release-announcements/27). Please note: Patch Releases are optional.
|
||||
|
||||
@ -605,11 +605,6 @@ if(UNIX)
|
||||
if(HAVE_MALLOC_USABLE_SIZE)
|
||||
add_definitions(-DHAVE_MALLOC_USABLE_SIZE=1)
|
||||
endif(HAVE_MALLOC_USABLE_SIZE)
|
||||
set(CMAKE_EXTRA_INCLUDE_FILES "fcntl.h")
|
||||
CHECK_FUNCTION_EXISTS(posix_fallocate HAVE_POSIX_FALLOCATE)
|
||||
if(HAVE_POSIX_FALLOCATE)
|
||||
add_definitions(-DHAVE_POSIX_FALLOCATE=1)
|
||||
endif(HAVE_POSIX_FALLOCATE)
|
||||
endif(UNIX)
|
||||
|
||||
ADD_DEFINITIONS(-DUSE_EXTERNAL_MZCRC)
|
||||
|
||||
@ -144,7 +144,8 @@ inline std::string _all_equal_numel_error(at::ArrayRef<Tensor> tensors) {
|
||||
inline bool _apply_preamble(ArrayRef<Tensor> tensors) {
|
||||
checkDeviceType("CPU_tensor_apply", tensors, kCPU);
|
||||
checkLayout("CPU_tensor_apply", tensors, kStrided);
|
||||
TORCH_CHECK(_all_equal_numel(tensors), _all_equal_numel_error(tensors));
|
||||
if (!_all_equal_numel(tensors))
|
||||
TORCH_CHECK(false, _all_equal_numel_error(tensors));
|
||||
// An empty tensor has no elements
|
||||
for (auto& t : tensors)
|
||||
if (t.numel() == 0)
|
||||
|
||||
@ -40,6 +40,41 @@ namespace {
|
||||
->conv
|
||||
->rnn
|
||||
*/
|
||||
const std::map<std::string, std::vector<std::string>> _fp32_precisions = {
|
||||
{"generic", {{"ieee", "tf32", "bf16", "none"}}},
|
||||
{"mkldnn", {{"ieee", "tf32", "bf16", "none"}}},
|
||||
{"cuda", {{"ieee", "tf32", "none"}}}};
|
||||
|
||||
// Check whether the backend and op are legal
|
||||
void check_fp32_prec_backend_and_op(
|
||||
const std::string& backend,
|
||||
const std::string& op) {
|
||||
static std::vector<std::string> backends = {"generic", "mkldnn", "cuda"};
|
||||
static std::vector<std::string> operators = {"conv", "matmul", "rnn", "all"};
|
||||
TORCH_CHECK(
|
||||
std::find(backends.begin(), backends.end(), backend) != backends.end(),
|
||||
"Invalid backend: ",
|
||||
backend);
|
||||
TORCH_CHECK(
|
||||
std::find(operators.begin(), operators.end(), op) != operators.end(),
|
||||
"Invalid operator: ",
|
||||
op);
|
||||
if (backend == "generic") {
|
||||
TORCH_CHECK(op == "all", "Invalid operation for generic backend: ", op);
|
||||
}
|
||||
}
|
||||
|
||||
// Return whether the precision is supported by backends
|
||||
bool validate_fp32_prec(
|
||||
const std::string& backend,
|
||||
const std::string& precision) {
|
||||
auto iterp = _fp32_precisions.find(backend);
|
||||
TORCH_CHECK(iterp != _fp32_precisions.end());
|
||||
auto precisions = iterp->second;
|
||||
bool valid = std::find(precisions.begin(), precisions.end(), precision) !=
|
||||
precisions.end();
|
||||
return valid;
|
||||
}
|
||||
|
||||
C10_ALWAYS_INLINE void warn_deprecated_fp32_precision_api(){
|
||||
TORCH_WARN_ONCE(
|
||||
@ -51,54 +86,6 @@ namespace {
|
||||
}
|
||||
} // namespace
|
||||
|
||||
Float32Backend str2backend(const std::string& name) {
|
||||
if (name == "generic")
|
||||
return Float32Backend::GENERIC;
|
||||
else if (name == "cuda")
|
||||
return Float32Backend::CUDA;
|
||||
else if (name == "mkldnn")
|
||||
return Float32Backend::MKLDNN;
|
||||
TORCH_CHECK(false, "Unknown backend: ", name);
|
||||
}
|
||||
|
||||
Float32Op str2op(const std::string& name) {
|
||||
if (name == "all")
|
||||
return Float32Op::ALL;
|
||||
else if (name == "conv")
|
||||
return Float32Op::CONV;
|
||||
else if (name == "rnn")
|
||||
return Float32Op::RNN;
|
||||
else if (name == "matmul")
|
||||
return Float32Op::MATMUL;
|
||||
TORCH_CHECK(false, "Unknown op: ", name);
|
||||
}
|
||||
|
||||
Float32Precision str2precision(const std::string& name) {
|
||||
if (name == "none")
|
||||
return Float32Precision::NONE;
|
||||
else if (name == "ieee")
|
||||
return Float32Precision::IEEE;
|
||||
else if (name == "tf32")
|
||||
return Float32Precision::TF32;
|
||||
else if (name == "bf16")
|
||||
return Float32Precision::BF16;
|
||||
TORCH_CHECK(false, "Unknown precision: ", name);
|
||||
}
|
||||
|
||||
std::string precision2str(Float32Precision prec) {
|
||||
switch (prec) {
|
||||
case Float32Precision::NONE:
|
||||
return "none";
|
||||
case Float32Precision::IEEE:
|
||||
return "ieee";
|
||||
case Float32Precision::TF32:
|
||||
return "tf32";
|
||||
case Float32Precision::BF16:
|
||||
return "bf16";
|
||||
}
|
||||
TORCH_CHECK(false, "Invalid enum Float32Precision(", static_cast<int>(prec), ")");
|
||||
}
|
||||
|
||||
Context::Context() = default;
|
||||
|
||||
// TODO: This could be bad juju if someone calls globalContext() in the
|
||||
@ -192,10 +179,10 @@ void Context::setUserEnabledNNPACK(bool e) {
|
||||
enabled_nnpack = e;
|
||||
}
|
||||
|
||||
bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
|
||||
if (!op.has_value()) {
|
||||
bool allow_tf32_rnn = float32Precision(Float32Backend::CUDA, Float32Op::RNN) == Float32Precision::TF32;
|
||||
bool allow_tf32_conv = float32Precision(Float32Backend::CUDA, Float32Op::CONV) == Float32Precision::TF32;
|
||||
bool Context::allowTF32CuDNN(const std::string& op) const {
|
||||
if (op.empty()){
|
||||
bool allow_tf32_rnn = float32Precision("cuda", "rnn") == "tf32";
|
||||
bool allow_tf32_conv = float32Precision("cuda", "conv") == "tf32";
|
||||
TORCH_CHECK(
|
||||
allow_tf32_rnn == allow_tf32_conv && allow_tf32_rnn == allow_tf32_cudnn,
|
||||
"PyTorch is checking whether allow_tf32 is enabled for cuDNN without a specific operator name,",
|
||||
@ -204,15 +191,15 @@ bool Context::allowTF32CuDNN(std::optional<Float32Op> op) const {
|
||||
"We suggest only using the new API to set the TF32 flag(s). See also: ",
|
||||
"https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices");
|
||||
} else {
|
||||
return float32Precision(Float32Backend::CUDA, op.value()) == Float32Precision::TF32;
|
||||
return float32Precision("cuda", op) == "tf32";
|
||||
}
|
||||
warn_deprecated_fp32_precision_api();
|
||||
return allow_tf32_cudnn;
|
||||
}
|
||||
|
||||
void Context::setAllowTF32CuDNN(bool b) {
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::RNN, b ? Float32Precision::TF32 : Float32Precision::NONE);
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::CONV, b ? Float32Precision::TF32 : Float32Precision::NONE);
|
||||
setFloat32Precision("cuda", "rnn", b ? "tf32" : "none");
|
||||
setFloat32Precision("cuda", "conv", b ? "tf32" : "none");
|
||||
allow_tf32_cudnn = b;
|
||||
warn_deprecated_fp32_precision_api();
|
||||
}
|
||||
@ -292,6 +279,42 @@ bool Context::userEnabledOverrideableSDP() const {
|
||||
return enabled_overrideable;
|
||||
}
|
||||
|
||||
static constexpr const auto cublas_config_var_name = "CUBLAS_WORKSPACE_CONFIG";
|
||||
static constexpr const std::array<const char*, 2> cublas_deterministic_configs = {":4096:8", ":16:8"};
|
||||
|
||||
bool Context::checkCuBLASConfigDeterministic() {
|
||||
// If using CUDA 10.2 or greater, need to make sure CuBLAS workspace config
|
||||
// is set to deterministic setting
|
||||
if (hasCUDART()) {
|
||||
const auto workspace_config = c10::utils::get_env(cublas_config_var_name);
|
||||
return (workspace_config == cublas_deterministic_configs[0] || workspace_config == cublas_deterministic_configs[1]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void Context::alertCuBLASConfigNotDeterministic() const {
|
||||
static const bool cublas_config_deterministic = checkCuBLASConfigDeterministic();
|
||||
if (C10_LIKELY(!deterministicAlgorithms() || cublas_config_deterministic)) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto msg = c10::str(
|
||||
"Deterministic behavior was enabled with either `torch.use_deterministic_algorithms(True)` or ",
|
||||
"`at::Context::setDeterministicAlgorithms(true)`, but this operation is not deterministic because ",
|
||||
"it uses CuBLAS and you have CUDA >= 10.2. To enable deterministic behavior in this ",
|
||||
"case, you must set an environment variable before running your PyTorch application: ",
|
||||
cublas_config_var_name, "=", cublas_deterministic_configs[0], " or ",
|
||||
cublas_config_var_name, "=", cublas_deterministic_configs[1], ". For more information, go to ",
|
||||
"https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility"
|
||||
);
|
||||
|
||||
if (deterministicAlgorithmsWarnOnly()) {
|
||||
TORCH_WARN(msg);
|
||||
} else {
|
||||
TORCH_CHECK(false, msg);
|
||||
}
|
||||
}
|
||||
|
||||
bool Context::benchmarkCuDNN() const {
|
||||
return benchmark_cudnn;
|
||||
}
|
||||
@ -318,7 +341,7 @@ void Context::setImmediateMiopen(bool b) {
|
||||
|
||||
bool Context::allowTF32CuBLAS() const {
|
||||
bool legacy_allow_tf32 = float32_matmul_precision != at::Float32MatmulPrecision::HIGHEST;
|
||||
bool allow_tf32_new = float32Precision(Float32Backend::CUDA, Float32Op::MATMUL) == Float32Precision::TF32;
|
||||
bool allow_tf32_new = float32Precision("cuda", "matmul") == "tf32";
|
||||
TORCH_CHECK(
|
||||
legacy_allow_tf32 == allow_tf32_new,
|
||||
"PyTorch is checking whether allow_tf32_new is enabled for cuBlas matmul,",
|
||||
@ -331,17 +354,17 @@ bool Context::allowTF32CuBLAS() const {
|
||||
|
||||
void Context::setAllowTF32CuBLAS(bool b) {
|
||||
float32_matmul_precision = b ? at::Float32MatmulPrecision::HIGH : at::Float32MatmulPrecision::HIGHEST;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, b ? Float32Precision::TF32 : Float32Precision::IEEE);
|
||||
setFloat32Precision("cuda", "matmul", b ? "tf32" : "ieee");
|
||||
}
|
||||
|
||||
Float32MatmulPrecision Context::float32MatmulPrecision() const {
|
||||
bool invalid = float32Precision(Float32Backend::CUDA, Float32Op::MATMUL) == Float32Precision::TF32 &&
|
||||
bool invalid = float32Precision("cuda", "matmul") == "tf32" &&
|
||||
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST;
|
||||
invalid = invalid ||
|
||||
(float32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL) == Float32Precision::BF16 &&
|
||||
(float32Precision("mkldnn", "matmul") == "bf16" &&
|
||||
float32_matmul_precision != at::Float32MatmulPrecision::MEDIUM);
|
||||
invalid = invalid ||
|
||||
(float32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL) == Float32Precision::TF32 &&
|
||||
(float32Precision("mkldnn", "matmul") == "tf32" &&
|
||||
float32_matmul_precision != at::Float32MatmulPrecision::HIGH);
|
||||
TORCH_CHECK(
|
||||
!invalid,
|
||||
@ -353,26 +376,15 @@ Float32MatmulPrecision Context::float32MatmulPrecision() const {
|
||||
return float32_matmul_precision;
|
||||
}
|
||||
|
||||
Float32Precision Context::float32Precision(Float32Backend backend, Float32Op op) const {
|
||||
std::pair<Float32Backend, Float32Op> key{backend, op};
|
||||
auto it = fp32_precision.find(key);
|
||||
TORCH_CHECK(it != fp32_precision.end(), "Invalid (backend, op) pair: (", backend, ", ", op, ")");
|
||||
|
||||
Float32Precision precision = it->second;
|
||||
if (precision == Float32Precision::NONE) {
|
||||
key.second = Float32Op::ALL;
|
||||
precision = fp32_precision.find(key)->second;
|
||||
}
|
||||
if (precision == Float32Precision::NONE) {
|
||||
key.first = Float32Backend::GENERIC;
|
||||
precision = fp32_precision.find(key)->second;
|
||||
}
|
||||
|
||||
// "cuda" does not support "bf16"
|
||||
if (backend == Float32Backend::CUDA && precision == Float32Precision::BF16) {
|
||||
return Float32Precision::NONE;
|
||||
}
|
||||
return precision;
|
||||
std::string Context::float32Precision(const std::string& backend, const std::string& op) const {
|
||||
check_fp32_prec_backend_and_op(backend, op);
|
||||
auto precision = fp32_precision.find(backend)->second.find(op)->second;
|
||||
if (precision == "none")
|
||||
precision = fp32_precision.find(backend)->second.find("all")->second;
|
||||
if (precision == "none")
|
||||
precision = fp32_precision.find("generic")->second.find("all")->second;
|
||||
bool valid_prec = validate_fp32_prec(backend, precision);
|
||||
return valid_prec ? precision : "none";
|
||||
}
|
||||
|
||||
void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
@ -381,18 +393,18 @@ void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
// TODO: consider if CuDNN field needs to also be set for potential future CuDNN ops like multi-headed attention
|
||||
if (s_ == "highest") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::HIGHEST;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::IEEE);
|
||||
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::IEEE);
|
||||
setFloat32Precision("cuda", "matmul", "ieee");
|
||||
setFloat32Precision("mkldnn", "matmul", "ieee");
|
||||
return true;
|
||||
} else if (s_ == "high") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::HIGH;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::TF32);
|
||||
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::TF32);
|
||||
setFloat32Precision("cuda", "matmul", "tf32");
|
||||
setFloat32Precision("mkldnn", "matmul", "tf32");
|
||||
return true;
|
||||
} else if (s_ == "medium") {
|
||||
float32_matmul_precision = at::Float32MatmulPrecision::MEDIUM;
|
||||
setFloat32Precision(Float32Backend::CUDA, Float32Op::MATMUL, Float32Precision::TF32);
|
||||
setFloat32Precision(Float32Backend::MKLDNN, Float32Op::MATMUL, Float32Precision::BF16);
|
||||
setFloat32Precision("cuda", "matmul", "tf32");
|
||||
setFloat32Precision("mkldnn", "matmul", "bf16");
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -406,16 +418,25 @@ void Context::setFloat32MatmulPrecision(const std::string &s) {
|
||||
"setFloat32MatmulPrecision call has no effect.");
|
||||
}
|
||||
|
||||
void Context::setFloat32Precision(Float32Backend backend, Float32Op op, Float32Precision p) {
|
||||
auto it = fp32_precision.find(std::make_pair(backend, op));
|
||||
TORCH_CHECK(
|
||||
it != fp32_precision.end(),
|
||||
"Invalid (backend, op) pair: (", backend, ", ", op, ")");
|
||||
TORCH_CHECK(
|
||||
!(backend == Float32Backend::CUDA && p == Float32Precision::BF16),
|
||||
"backend 'cuda' does not support precision 'bf16'");
|
||||
|
||||
it->second = p;
|
||||
void Context::setFloat32Precision(const std::string& backend, const std::string& op, const std::string& p) {
|
||||
check_fp32_prec_backend_and_op(backend, op);
|
||||
if (validate_fp32_prec(backend, p)) {
|
||||
fp32_precision[backend][op] = p;
|
||||
} else {
|
||||
std::string msg;
|
||||
auto iterp = _fp32_precisions.find(backend);
|
||||
TORCH_CHECK(iterp != _fp32_precisions.end());
|
||||
for (const auto& p : iterp->second) {
|
||||
msg += p;
|
||||
msg += " ";
|
||||
}
|
||||
TORCH_WARN(
|
||||
"you have set wrong precision for backend:",
|
||||
backend,
|
||||
" setFloat32Precision call has no effect.",
|
||||
"Please choose precision from: ",
|
||||
msg);
|
||||
}
|
||||
}
|
||||
|
||||
at::LinalgBackend Context::linalgPreferredBackend() const {
|
||||
@ -483,8 +504,8 @@ at::BlasBackend Context::blasPreferredBackend() {
|
||||
#if ROCM_VERSION >= 60300
|
||||
"gfx1100", "gfx1101", "gfx1200", "gfx1201", "gfx908",
|
||||
#endif
|
||||
#if ROCM_VERSION >= 70000
|
||||
"gfx950", "gfx1150", "gfx1151"
|
||||
#if ROCM_VERSION >= 60500
|
||||
"gfx950"
|
||||
#endif
|
||||
};
|
||||
for (auto index: c10::irange(detail::getCUDAHooks().deviceCount())) {
|
||||
@ -587,33 +608,20 @@ void Context::setROCmFAPreferredBackend(at::ROCmFABackend b) {
|
||||
rocm_fa_preferred_backend = b;
|
||||
}
|
||||
|
||||
CuBLASReductionOption Context::allowFP16ReductionCuBLAS() const {
|
||||
bool Context::allowFP16ReductionCuBLAS() const {
|
||||
return allow_fp16_reduction_cublas;
|
||||
}
|
||||
|
||||
CuBLASReductionOption inline get_reduction_option(bool allow_reduced_precision, bool allow_splitk) {
|
||||
TORCH_CHECK(
|
||||
!(allow_reduced_precision && !allow_splitk),
|
||||
"allow_splitk=False is not supported when reduced precision reductions are enabled");
|
||||
if (allow_reduced_precision) {
|
||||
return CuBLASReductionOption::AllowReducedPrecisionWithSplitK;
|
||||
} else if (allow_splitk) {
|
||||
return CuBLASReductionOption::DisallowReducedPrecisionAllowSplitK;
|
||||
} else {
|
||||
return CuBLASReductionOption::DisallowReducedPrecisionDisallowSplitK;
|
||||
}
|
||||
void Context::setAllowFP16ReductionCuBLAS(bool b) {
|
||||
allow_fp16_reduction_cublas = b;
|
||||
}
|
||||
|
||||
void Context::setAllowFP16ReductionCuBLAS(bool allow_reduced_precision, bool allow_splitk) {
|
||||
allow_fp16_reduction_cublas = get_reduction_option(allow_reduced_precision, allow_splitk);
|
||||
}
|
||||
|
||||
CuBLASReductionOption Context::allowBF16ReductionCuBLAS() const {
|
||||
bool Context::allowBF16ReductionCuBLAS() const {
|
||||
return allow_bf16_reduction_cublas;
|
||||
}
|
||||
|
||||
void Context::setAllowBF16ReductionCuBLAS(bool allow_reduced_precision, bool allow_splitk) {
|
||||
allow_bf16_reduction_cublas = get_reduction_option(allow_reduced_precision, allow_splitk);
|
||||
void Context::setAllowBF16ReductionCuBLAS(bool b) {
|
||||
allow_bf16_reduction_cublas = b;
|
||||
}
|
||||
|
||||
bool Context::allowFP16AccumulationCuBLAS() const {
|
||||
|
||||
@ -25,13 +25,11 @@
|
||||
#include <c10/util/CallOnce.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/hash.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <mutex>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace at {
|
||||
|
||||
@ -39,20 +37,6 @@ class Tensor;
|
||||
|
||||
enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM };
|
||||
|
||||
enum class CuBLASReductionOption : uint8_t {
|
||||
AllowReducedPrecisionWithSplitK = 0,
|
||||
DisallowReducedPrecisionAllowSplitK = 1,
|
||||
DisallowReducedPrecisionDisallowSplitK = 2,
|
||||
};
|
||||
enum class TORCH_API Float32Backend { GENERIC, CUDA, MKLDNN };
|
||||
enum class TORCH_API Float32Op { ALL, CONV, RNN, MATMUL };
|
||||
enum class TORCH_API Float32Precision { NONE, IEEE, TF32, BF16 };
|
||||
|
||||
TORCH_API Float32Backend str2backend(const std::string& name);
|
||||
TORCH_API Float32Op str2op(const std::string& name);
|
||||
TORCH_API Float32Precision str2precision(const std::string& name);
|
||||
TORCH_API std::string precision2str(Float32Precision prec);
|
||||
|
||||
class TORCH_API Context {
|
||||
public:
|
||||
Context();
|
||||
@ -326,7 +310,13 @@ class TORCH_API Context {
|
||||
//
|
||||
// * Throw an error when `Context::deterministicAlgorithms()` is true. Most
|
||||
// of the time, this should be accomplished by calling
|
||||
// `at::globalContext().alertNotDeterminstic().
|
||||
// `at::globalContext().alertNotDeterminstic()`. However, if the
|
||||
// nondeterministic behavior is caused by the CuBLAS workspace
|
||||
// configuration in CUDA >= 10.2,
|
||||
// `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
|
||||
// called instead (in this case, a comment explaining why the operation is
|
||||
// nondeterministic is not necessary). See below for details on these
|
||||
// methods.
|
||||
//
|
||||
// * Have an entry in the list of nondeterministic PyTorch operations in the
|
||||
// docstring of `use_deterministic_algorithms()` in torch/__init__.py
|
||||
@ -350,27 +340,31 @@ class TORCH_API Context {
|
||||
// Throws an error if `Context::deterministicAlgorithms()` is true
|
||||
static void alertNotDeterministic(std::string_view const& caller);
|
||||
|
||||
// Throws an error if `Context::deterministicAlgorithms()` is true, CUDA
|
||||
// >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or
|
||||
// ":4096:8". For more details:
|
||||
// https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility
|
||||
void alertCuBLASConfigNotDeterministic() const;
|
||||
|
||||
void setFloat32MatmulPrecision(const std::string& s);
|
||||
void setFloat32Precision(
|
||||
Float32Backend backend,
|
||||
Float32Op op,
|
||||
Float32Precision p);
|
||||
bool allowTF32CuDNN(std::optional<Float32Op> op = std::nullopt) const;
|
||||
const std::string& backend,
|
||||
const std::string& op,
|
||||
const std::string& s);
|
||||
bool allowTF32CuDNN(const std::string& op = std::string()) const;
|
||||
void setAllowTF32CuDNN(bool);
|
||||
bool allowTF32OneDNN() const;
|
||||
void setAllowTF32OneDNN(bool);
|
||||
bool allowTF32CuBLAS() const;
|
||||
void setAllowTF32CuBLAS(bool);
|
||||
Float32MatmulPrecision float32MatmulPrecision() const;
|
||||
Float32Precision float32Precision(Float32Backend backend, Float32Op op) const;
|
||||
CuBLASReductionOption allowFP16ReductionCuBLAS() const;
|
||||
void setAllowFP16ReductionCuBLAS(
|
||||
bool allow_reduced_precision,
|
||||
bool allow_splitk = true);
|
||||
CuBLASReductionOption allowBF16ReductionCuBLAS() const;
|
||||
void setAllowBF16ReductionCuBLAS(
|
||||
bool allow_reduced_precision,
|
||||
bool allow_splitk = true);
|
||||
std::string float32Precision(
|
||||
const std::string& backend,
|
||||
const std::string& op) const;
|
||||
bool allowFP16ReductionCuBLAS() const;
|
||||
void setAllowFP16ReductionCuBLAS(bool);
|
||||
bool allowBF16ReductionCuBLAS() const;
|
||||
void setAllowBF16ReductionCuBLAS(bool);
|
||||
bool allowFP16AccumulationCuBLAS() const;
|
||||
void setAllowFP16AccumulationCuBLAS(bool);
|
||||
|
||||
@ -435,6 +429,7 @@ class TORCH_API Context {
|
||||
}
|
||||
|
||||
private:
|
||||
static bool checkCuBLASConfigDeterministic();
|
||||
std::array<c10::once_flag, at::COMPILE_TIME_MAX_DEVICE_TYPES> init_;
|
||||
bool enabled_cudnn = true;
|
||||
bool deterministic_cudnn = false;
|
||||
@ -462,10 +457,8 @@ class TORCH_API Context {
|
||||
: at::Float32MatmulPrecision::HIGHEST;
|
||||
int benchmark_limit_cudnn = 10;
|
||||
bool allow_tf32_cudnn = true;
|
||||
CuBLASReductionOption allow_fp16_reduction_cublas =
|
||||
CuBLASReductionOption::AllowReducedPrecisionWithSplitK;
|
||||
CuBLASReductionOption allow_bf16_reduction_cublas =
|
||||
CuBLASReductionOption::AllowReducedPrecisionWithSplitK;
|
||||
bool allow_fp16_reduction_cublas = true;
|
||||
bool allow_bf16_reduction_cublas = true;
|
||||
bool allow_fp16_accumulation_cublas = false;
|
||||
std::optional<int32_t> sm_carveout = std::nullopt;
|
||||
bool enabled_mkldnn = true;
|
||||
@ -495,20 +488,21 @@ class TORCH_API Context {
|
||||
bool enable_sparse_tensor_invariant_checks = false;
|
||||
bool allow_fp16_reduction_cpu = false;
|
||||
|
||||
using Key = std::pair<Float32Backend, Float32Op>;
|
||||
std::unordered_map<Key, Float32Precision, c10::hash<Key>> fp32_precision = {
|
||||
{{Float32Backend::GENERIC, Float32Op::ALL}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::ALL}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::CONV}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::RNN}, Float32Precision::NONE},
|
||||
{{Float32Backend::MKLDNN, Float32Op::MATMUL}, Float32Precision::NONE},
|
||||
{{Float32Backend::CUDA, Float32Op::ALL}, Float32Precision::NONE},
|
||||
{{Float32Backend::CUDA, Float32Op::CONV}, Float32Precision::TF32},
|
||||
{{Float32Backend::CUDA, Float32Op::RNN}, Float32Precision::TF32},
|
||||
{{Float32Backend::CUDA, Float32Op::MATMUL},
|
||||
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST
|
||||
? Float32Precision::NONE
|
||||
: Float32Precision::TF32},
|
||||
std::map<std::string, std::map<std::string, std::string>> fp32_precision = {
|
||||
{"generic", {{"all", "none"}}},
|
||||
{"mkldnn",
|
||||
{{"matmul", "none"},
|
||||
{"conv", "none"},
|
||||
{"rnn", "none"},
|
||||
{"all", "none"}}},
|
||||
{"cuda",
|
||||
{{"matmul",
|
||||
float32_matmul_precision == at::Float32MatmulPrecision::HIGHEST
|
||||
? "none"
|
||||
: "tf32"},
|
||||
{"conv", "tf32"},
|
||||
{"rnn", "tf32"},
|
||||
{"all", "none"}}},
|
||||
};
|
||||
|
||||
Allocator* prev_allocator_ptr_{nullptr};
|
||||
@ -690,4 +684,5 @@ struct TORCH_API ROCmBackwardPassGuard {
|
||||
~ROCmBackwardPassGuard();
|
||||
static bool is_backward_pass();
|
||||
};
|
||||
|
||||
} // namespace at
|
||||
|
||||
@ -292,28 +292,6 @@ MapAllocator::MapAllocator(WithFd, std::string_view filename, int fd, int flags,
|
||||
if (ftruncate(fd, static_cast<off_t>(size)) == -1) {
|
||||
TORCH_CHECK(false, "unable to resize file <", filename_, "> to the right size: ", c10::utils::str_error(errno), " (", errno, ")");
|
||||
}
|
||||
|
||||
#ifdef HAVE_POSIX_FALLOCATE
|
||||
if (flags_ & ALLOCATOR_MAPPED_SHAREDMEM) {
|
||||
for (;;) {
|
||||
if (posix_fallocate(fd, 0, static_cast<off_t>(size)) == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (errno == EINTR) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (errno == EINVAL || errno == EOPNOTSUPP) {
|
||||
// the underlying filesystem does not support the operation
|
||||
break;
|
||||
}
|
||||
|
||||
TORCH_CHECK(false, "unable to allocate shared memory(shm) for file <", filename_, ">: ", c10::utils::str_error(errno), " (", errno, ")");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (fstat(fd, &file_stat) == -1 || file_stat.st_size < static_cast<int64_t>(size)) {
|
||||
#ifndef STRIP_ERROR_MESSAGES
|
||||
int last_err = errno;
|
||||
|
||||
@ -179,7 +179,7 @@ void propagate_names_except(const Tensor& result, const Tensor& src, IntArrayRef
|
||||
return;
|
||||
}
|
||||
const auto src_names = src.names();
|
||||
const auto result_dim = result.dim();
|
||||
const auto result_dim = static_cast<int64_t>(result.dim());
|
||||
const auto src_dim = static_cast<int64_t>(src_names.size());
|
||||
const auto excluded_dim = static_cast<int64_t>(excluded_idxs.size());
|
||||
TORCH_INTERNAL_ASSERT(src_dim - excluded_dim == result_dim);
|
||||
|
||||
@ -229,14 +229,14 @@ struct TORCH_API SparseTensorImpl : public TensorImpl {
|
||||
}
|
||||
|
||||
void resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<int64_t> size) {
|
||||
_resize_(sparse_dim, dense_dim, size);
|
||||
return _resize_(sparse_dim, dense_dim, size);
|
||||
}
|
||||
|
||||
void resize_(
|
||||
int64_t sparse_dim,
|
||||
int64_t dense_dim,
|
||||
ArrayRef<c10::SymInt> size) {
|
||||
_resize_(sparse_dim, dense_dim, size);
|
||||
return _resize_(sparse_dim, dense_dim, size);
|
||||
}
|
||||
|
||||
// NOTE: this function will resize the sparse tensor and also set `indices`
|
||||
|
||||
@ -59,7 +59,7 @@ static inline void set_item(const Tensor& self, ArrayRef<TensorIndex> indices, c
|
||||
}
|
||||
}
|
||||
|
||||
set_item(self, indices, value);
|
||||
return set_item(self, indices, value);
|
||||
}
|
||||
|
||||
} // namespace indexing
|
||||
|
||||
@ -214,7 +214,7 @@ inline Tensor applySlice(
|
||||
"step must be greater than zero");
|
||||
|
||||
// See NOTE [nested tensor size for indexing]
|
||||
if (self_sizes.has_value() && !self_sizes.value().empty()) {
|
||||
if (self_sizes.has_value() && self_sizes.value().size() > 0) {
|
||||
// Skip this optimization if we are tracing, as the trace may be polymorphic
|
||||
// over the shape of the `self` tensor, and we still want to record
|
||||
// the slice.
|
||||
|
||||
@ -765,8 +765,7 @@ void TensorIteratorBase::for_each(loop2d_t loop, int64_t grain_size) {
|
||||
if (numel == 0) {
|
||||
return;
|
||||
} else if (numel < grain_size || at::get_num_threads() == 1) {
|
||||
serial_for_each(loop, {0, numel});
|
||||
return;
|
||||
return serial_for_each(loop, {0, numel});
|
||||
} else {
|
||||
at::parallel_for(0, numel, grain_size, [&](int64_t begin, int64_t end) {
|
||||
serial_for_each(loop, {begin, end});
|
||||
|
||||
@ -273,11 +273,11 @@ void checkLayout(CheckedFrom c, at::ArrayRef<Tensor> tensors, at::Layout layout)
|
||||
}
|
||||
|
||||
void * maybe_data_ptr(const Tensor& tensor) {
|
||||
return tensor.defined() ? tensor.data_ptr() : nullptr;
|
||||
return tensor.defined() ? (void *)tensor.data_ptr() : nullptr;
|
||||
}
|
||||
|
||||
void * maybe_data_ptr(const TensorArg& tensor) {
|
||||
return tensor->defined() ? tensor->data_ptr() : nullptr;
|
||||
return tensor->defined() ? (void *)tensor->data_ptr() : nullptr;
|
||||
}
|
||||
|
||||
void check_dim_size(
|
||||
|
||||
@ -50,57 +50,19 @@ namespace {
|
||||
constexpr size_t MAX_SIZE_INDEX = 64;
|
||||
}
|
||||
|
||||
// A large reserved pinned memory segment that is created in advance which is used
|
||||
// to allocate small pinned memory requests to avoid calling into expensive APIs.
|
||||
// We never free this memory and move up the pointer as we allocate new blocks
|
||||
// and when blocks are freed, they are cached in the free lists.
|
||||
struct PinnedReserveSegment {
|
||||
PinnedReserveSegment(void *start, size_t size) : start_(start), size_(size),
|
||||
current_ptr_(start_), initialized_(true) {}
|
||||
|
||||
PinnedReserveSegment() : start_(nullptr), size_(0), current_ptr_(nullptr), initialized_(false) {}
|
||||
|
||||
bool initialized() {
|
||||
return initialized_;
|
||||
}
|
||||
|
||||
void* allocate(size_t bytes) {
|
||||
std::lock_guard<std::mutex> guard(mutex_);
|
||||
|
||||
// Round up the requested size to 4KB boundary for all including the small ones.
|
||||
size_t rounded_bytes = (bytes + 4096 - 1) & ~(4096 - 1);
|
||||
|
||||
if (((uint8_t*)current_ptr_ + rounded_bytes) > ((uint8_t*)start_ + size_)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void* ptr = current_ptr_;
|
||||
current_ptr_ = (uint8_t*)current_ptr_ + rounded_bytes;
|
||||
return ptr;
|
||||
}
|
||||
|
||||
bool owns(void* ptr) {
|
||||
return ptr >= start_ && ptr < (uint8_t*)start_ + size_;
|
||||
}
|
||||
|
||||
std::mutex mutex_;
|
||||
void* start_;
|
||||
size_t size_;
|
||||
void* current_ptr_;
|
||||
bool initialized_;
|
||||
};
|
||||
|
||||
// Struct containing memory allocator summary statistics for host.
|
||||
struct TORCH_API HostStats {
|
||||
// COUNT: total allocations (active)
|
||||
Stat active_requests;
|
||||
// SUM: bytes allocated/reserved by this memory alocator. (active)
|
||||
Stat active_bytes;
|
||||
// COUNT: total allocations (active + free)
|
||||
Stat allocations;
|
||||
// SUM: bytes allocated/reserved by this memory alocator. This accounts
|
||||
// for both free and in-use blocks.
|
||||
// COUNT: allocations requested by client code. Note that active
|
||||
// count can be extracted by looking at current allocations
|
||||
Stat allocation;
|
||||
// COUNT: number of allocated segments from host memory allocation.
|
||||
Stat segment;
|
||||
|
||||
// SUM: bytes allocated by this memory alocator. Note that active bytes
|
||||
// can be extracted by looking at current bytes allocated
|
||||
Stat allocated_bytes;
|
||||
// SUM: bytes reserved by this memory allocator (both free and used)
|
||||
Stat reserved_bytes;
|
||||
|
||||
// SUM: time spent in cudaHostAlloc/cudaHostRegister in microseconds
|
||||
DurationStat host_alloc_time;
|
||||
@ -115,7 +77,7 @@ struct TORCH_API HostStats {
|
||||
// COUNT: number of times cudaHostFree/cudaHostUnregister was called.
|
||||
int64_t num_host_free = 0; // This is derived from segment or timing
|
||||
|
||||
// Count of cudaHostAlloc/cudaHostRegister per bucket
|
||||
// Count of cudaHostFree/cudaHostUnregister per bucket
|
||||
std::vector<int64_t> bucket_allocation = std::vector<int64_t>(MAX_SIZE_INDEX);
|
||||
};
|
||||
|
||||
@ -124,22 +86,17 @@ struct TORCH_API HostStats {
|
||||
// avoid locking the allocator while collecting stats.
|
||||
struct alignas(64) HostStatsStaged {
|
||||
std::mutex timing_mutex_;
|
||||
// COUNT: total allocations (active + free)
|
||||
// COUNT: allocations requested by client code resulting in a new segment/block allocation
|
||||
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
|
||||
Stat allocation;
|
||||
// SUM: bytes within active memory blocks, including blocks that are
|
||||
// currently in the free list.
|
||||
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
|
||||
Stat allocations;
|
||||
// SUM: bytes allocated/reserved by this memory alocator. This accounts
|
||||
// for both free and in-use blocks.
|
||||
Stat allocated_bytes;
|
||||
// COUNT: number of allocations per bucket (active)
|
||||
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
|
||||
std::vector<Stat> active_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
|
||||
// SUM: bytes of allocation per bucket (active)
|
||||
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
|
||||
std::vector<Stat> active_bytes_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
|
||||
// COUNT: number of allocations per bucket (active + free)
|
||||
// COUNT: number of allocations per bucket
|
||||
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
|
||||
std::vector<Stat> allocation_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
|
||||
// SUM: bytes of allocation per bucket (active + free)
|
||||
// SUM: bytes of allocation per bucket
|
||||
// LOCK: access to this stat is protected by the per bucket free_list_[index].mutex_
|
||||
std::vector<Stat> allocated_bytes_bucket_stats = std::vector<Stat>(MAX_SIZE_INDEX);
|
||||
// SUM: time spent in cudaHostAlloc/cudaHostRegister
|
||||
@ -243,21 +200,7 @@ struct CachingHostAllocatorImpl {
|
||||
// background.
|
||||
if (!pinned_use_background_threads()) {
|
||||
process_events();
|
||||
}
|
||||
|
||||
// Round up the allocation to the nearest power of two to improve reuse.
|
||||
// These power of two sizes are also used to index into the free list.
|
||||
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
|
||||
|
||||
// First, try to allocate from the free list
|
||||
auto* block = get_free_block(roundSize);
|
||||
if (block) {
|
||||
return {block->ptr_, reinterpret_cast<void*>(block)};
|
||||
}
|
||||
|
||||
// Check in the recently freed blocks with pending events to see if we
|
||||
// can reuse them. Call get_free_block again after processing events
|
||||
if (pinned_use_background_threads()) {
|
||||
} else {
|
||||
// Launch the background thread and process events in a loop.
|
||||
static bool background_thread_flag [[maybe_unused]] = [this] {
|
||||
getBackgroundThreadPool()->run([&]() {
|
||||
@ -270,6 +213,16 @@ struct CachingHostAllocatorImpl {
|
||||
}();
|
||||
}
|
||||
|
||||
// Round up the allocation to the nearest power of two to improve reuse.
|
||||
// These power of two sizes are also used to index into the free list.
|
||||
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
|
||||
|
||||
// First, try to allocate from the free list
|
||||
auto* block = get_free_block(roundSize);
|
||||
if (block) {
|
||||
return {block->ptr_, reinterpret_cast<void*>(block)};
|
||||
}
|
||||
|
||||
// Slow path: if we can't allocate from the cached free list, we need
|
||||
// to create a new block.
|
||||
void* ptr = nullptr;
|
||||
@ -380,7 +333,7 @@ struct CachingHostAllocatorImpl {
|
||||
ptr_to_block_.erase(block->ptr_);
|
||||
auto index = size_index(block->size_);
|
||||
free_block(block);
|
||||
stats_.allocations.decrease(1);
|
||||
stats_.allocation.decrease(1);
|
||||
stats_.allocated_bytes.decrease(block->size_);
|
||||
stats_.allocation_bucket_stats[index].decrease(1);
|
||||
stats_.allocated_bytes_bucket_stats[index].decrease(block->size_);
|
||||
@ -430,16 +383,16 @@ struct CachingHostAllocatorImpl {
|
||||
// per bucket (we pick index 0 arbitrarily). These are also all the host
|
||||
// allocations, not taking into account caching and free lists.
|
||||
if (i == 0) {
|
||||
stats.allocations = stats_.allocations;
|
||||
stats.allocated_bytes = stats_.allocated_bytes;
|
||||
stats.num_host_alloc = stats.allocations.allocated;
|
||||
stats.num_host_free = stats.allocations.freed;
|
||||
stats.segment = stats_.allocation;
|
||||
stats.reserved_bytes = stats_.allocated_bytes;
|
||||
stats.num_host_alloc = stats.segment.allocated;
|
||||
stats.num_host_free = stats.segment.freed;
|
||||
}
|
||||
|
||||
// Bucket stats need to be merged with the slow-path stats. We do this in
|
||||
// a best effort manner, since we can't really replay the cached events per bucket.
|
||||
add_bucket_stats(stats.active_requests, stats_.active_bucket_stats[i]);
|
||||
add_bucket_stats(stats.active_bytes, stats_.active_bytes_bucket_stats[i]);
|
||||
add_bucket_stats(stats.allocation, stats_.allocation_bucket_stats[i]);
|
||||
add_bucket_stats(stats.allocated_bytes, stats_.allocated_bytes_bucket_stats[i]);
|
||||
stats.bucket_allocation[i] = stats_.allocation_bucket_stats[i].allocated;
|
||||
}
|
||||
|
||||
@ -464,11 +417,9 @@ struct CachingHostAllocatorImpl {
|
||||
std::lock_guard<std::mutex> gb(blocks_mutex_, std::adopt_lock);
|
||||
|
||||
if (i == 0) {
|
||||
stats_.allocations.reset_accumulated();
|
||||
stats_.allocation.reset_accumulated();
|
||||
stats_.allocated_bytes.reset_accumulated();
|
||||
}
|
||||
stats_.active_bucket_stats[i].reset_accumulated();
|
||||
stats_.active_bytes_bucket_stats[i].reset_accumulated();
|
||||
stats_.allocation_bucket_stats[i].reset_accumulated();
|
||||
stats_.allocated_bytes_bucket_stats[i].reset_accumulated();
|
||||
}
|
||||
@ -491,11 +442,9 @@ struct CachingHostAllocatorImpl {
|
||||
std::lock_guard<std::mutex> gb(blocks_mutex_, std::adopt_lock);
|
||||
|
||||
if (i == 0) {
|
||||
stats_.allocations.reset_peak();
|
||||
stats_.allocation.reset_peak();
|
||||
stats_.allocated_bytes.reset_peak();
|
||||
}
|
||||
stats_.active_bucket_stats[i].reset_peak();
|
||||
stats_.active_bytes_bucket_stats[i].reset_peak();
|
||||
stats_.allocation_bucket_stats[i].reset_peak();
|
||||
stats_.allocated_bytes_bucket_stats[i].reset_peak();
|
||||
}
|
||||
@ -512,7 +461,7 @@ struct CachingHostAllocatorImpl {
|
||||
virtual void add_allocated_block(B* block) {
|
||||
std::lock_guard<std::mutex> g(blocks_mutex_);
|
||||
blocks_.insert(block);
|
||||
stats_.allocations.increase(1);
|
||||
stats_.allocation.increase(1);
|
||||
stats_.allocated_bytes.increase(block->size_);
|
||||
ptr_to_block_.insert({block->ptr_, block});
|
||||
|
||||
@ -525,8 +474,6 @@ struct CachingHostAllocatorImpl {
|
||||
std::lock_guard<std::mutex> g(free_list_[index].mutex_);
|
||||
stats_.allocation_bucket_stats[index].increase(1);
|
||||
stats_.allocated_bytes_bucket_stats[index].increase(size);
|
||||
stats_.active_bucket_stats[index].increase(1);
|
||||
stats_.active_bytes_bucket_stats[index].increase(size);
|
||||
}
|
||||
}
|
||||
|
||||
@ -537,8 +484,6 @@ struct CachingHostAllocatorImpl {
|
||||
B* block = free_list_[index].list_.back();
|
||||
free_list_[index].list_.pop_back();
|
||||
block->allocated_ = true;
|
||||
stats_.active_bucket_stats[index].increase(1);
|
||||
stats_.active_bytes_bucket_stats[index].increase(size);
|
||||
return block;
|
||||
}
|
||||
return nullptr;
|
||||
@ -632,8 +577,6 @@ struct CachingHostAllocatorImpl {
|
||||
auto index = size_index(block->size_);
|
||||
std::lock_guard<std::mutex> g(free_list_[index].mutex_);
|
||||
free_list_[index].list_.push_back(block);
|
||||
stats_.active_bucket_stats[index].decrease(1);
|
||||
stats_.active_bytes_bucket_stats[index].decrease(size);
|
||||
if (size != -1) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -49,7 +49,7 @@ static void check_unique_names(DimnameList names) {
|
||||
}
|
||||
|
||||
void check_names_valid_for(const TensorBase& tensor, DimnameList names) {
|
||||
impl::check_names_valid_for(tensor.unsafeGetTensorImpl(), names);
|
||||
return impl::check_names_valid_for(tensor.unsafeGetTensorImpl(), names);
|
||||
}
|
||||
|
||||
void check_names_valid_for(size_t tensor_dim, DimnameList names) {
|
||||
|
||||
@ -138,7 +138,7 @@ void Tensor::_backward(TensorList inputs,
|
||||
const std::optional<Tensor>& gradient,
|
||||
std::optional<bool> keep_graph,
|
||||
bool create_graph) const {
|
||||
impl::GetVariableHooks()->_backward(*this, inputs, gradient, keep_graph, create_graph);
|
||||
return impl::GetVariableHooks()->_backward(*this, inputs, gradient, keep_graph, create_graph);
|
||||
}
|
||||
|
||||
const TensorBase& TensorBase::requires_grad_(bool _requires_grad) const {
|
||||
@ -173,12 +173,4 @@ unsigned TensorBase::_register_hook(std::function<TensorBase(const TensorBase&)>
|
||||
return impl::GetVariableHooks()->_register_hook(*this, std::move(hook));
|
||||
}
|
||||
|
||||
std::optional<ScalarType> TensorBase::grad_dtype() const {
|
||||
return impl::GetVariableHooks()->grad_dtype(*this);
|
||||
}
|
||||
|
||||
void TensorBase::set_grad_dtype(const std::optional<ScalarType>& grad_dtype) const {
|
||||
return impl::GetVariableHooks()->set_grad_dtype(*this, grad_dtype);
|
||||
}
|
||||
|
||||
} // namespace at
|
||||
|
||||
@ -930,10 +930,6 @@ public:
|
||||
|
||||
const TensorBase& requires_grad_(bool _requires_grad=true) const;
|
||||
|
||||
std::optional<ScalarType> grad_dtype() const;
|
||||
|
||||
void set_grad_dtype(const std::optional<ScalarType>& grad_dtype) const;
|
||||
|
||||
// View Variables
|
||||
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
||||
@ -117,7 +117,7 @@ C10_HOST_DEVICE inline T cauchy(T val, T median, T sigma) {
|
||||
template <>
|
||||
C10_HOST_DEVICE inline double cauchy(double val, double median, double sigma) {
|
||||
// https://en.wikipedia.org/wiki/Cauchy_distribution#Cumulative_distribution_function
|
||||
return median + sigma * at::tan(c10::pi<double> * (val - 0.5));
|
||||
return median + sigma * at::tan(c10::pi<double> * (val - static_cast<double>(0.5)));
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@ -68,8 +68,6 @@ struct TORCH_API VariableHooksInterface {
|
||||
const c10::OperatorHandle& op,
|
||||
c10::DispatchKeySet dispatch_keys,
|
||||
torch::jit::Stack* stack) const = 0;
|
||||
virtual std::optional<c10::ScalarType> grad_dtype(const TensorBase&) const = 0;
|
||||
virtual void set_grad_dtype(const TensorBase&, const std::optional<c10::ScalarType>&) const = 0;
|
||||
};
|
||||
|
||||
TORCH_API void SetVariableHooks(VariableHooksInterface* hooks);
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
namespace c10 {
|
||||
|
||||
inline BoxedKernel::BoxedKernel() : boxed_kernel_func_(nullptr) {}
|
||||
inline BoxedKernel::BoxedKernel() : functor_(), boxed_kernel_func_(nullptr) {}
|
||||
|
||||
inline BoxedKernel::BoxedKernel(
|
||||
std::unique_ptr<OperatorKernel> functor,
|
||||
|
||||
@ -20,7 +20,9 @@ make_unique_base(Args&&... args) {
|
||||
} // namespace detail
|
||||
|
||||
inline KernelFunction::KernelFunction()
|
||||
: unboxed_kernel_func_(nullptr), sym_unboxed_kernel_func_(nullptr) {}
|
||||
: boxed_kernel_func_(),
|
||||
unboxed_kernel_func_(nullptr),
|
||||
sym_unboxed_kernel_func_(nullptr) {}
|
||||
|
||||
inline KernelFunction::~KernelFunction() {
|
||||
if (tokens_) {
|
||||
|
||||
@ -76,7 +76,13 @@ void _print_dispatch_trace(const std::string& label, const std::string& op_name,
|
||||
|
||||
OpRegistrationListener::~OpRegistrationListener()= default;
|
||||
|
||||
Dispatcher::Dispatcher(): backendFallbackKernels_(), listeners_(std::make_unique<detail::RegistrationListenerList>()), guard_(std::make_shared<Guard>())
|
||||
Dispatcher::Dispatcher()
|
||||
: operators_()
|
||||
, operatorLookupTable_()
|
||||
, backendFallbackKernels_()
|
||||
, listeners_(std::make_unique<detail::RegistrationListenerList>())
|
||||
, cond_var_()
|
||||
, guard_(std::make_shared<Guard>())
|
||||
{}
|
||||
|
||||
Dispatcher::~Dispatcher() {
|
||||
|
||||
@ -96,7 +96,7 @@ class TORCH_API Dispatcher final {
|
||||
friend class TypedOperatorHandle;
|
||||
|
||||
struct Guard final {
|
||||
Guard() : alive(true) {}
|
||||
Guard() : alive(true), mutex() {}
|
||||
std::atomic<bool> alive;
|
||||
std::mutex mutex;
|
||||
};
|
||||
@ -496,7 +496,7 @@ class TORCH_API OperatorHandle {
|
||||
}
|
||||
|
||||
void checkInvariants() const {
|
||||
operatorDef_->op.checkInvariants();
|
||||
return operatorDef_->op.checkInvariants();
|
||||
}
|
||||
|
||||
c10::ArrayRef<at::Tag> getTags() const {
|
||||
@ -932,7 +932,7 @@ inline void Dispatcher::redispatchBoxed(
|
||||
}
|
||||
#endif
|
||||
const auto& kernel = entry.lookup(dispatchKeySet);
|
||||
kernel.callBoxed(op, dispatchKeySet, stack);
|
||||
return kernel.callBoxed(op, dispatchKeySet, stack);
|
||||
}
|
||||
|
||||
} // namespace c10
|
||||
|
||||
@ -62,7 +62,17 @@ static const auto& getDispatchTableIndexToKey() {
|
||||
}
|
||||
|
||||
OperatorEntry::OperatorEntry(OperatorName&& operator_name)
|
||||
: name_(std::move(operator_name)), dispatchTable_(), dispatchKeyExtractor_(DispatchKeyExtractor::makeUninitialized()), is_observed_(ObservedOperators::isObserved(name_))
|
||||
: name_(std::move(operator_name))
|
||||
, schema_()
|
||||
#ifndef C10_MOBILE
|
||||
, tags_()
|
||||
#endif
|
||||
, dispatchTable_()
|
||||
, dispatchKeyExtractor_(DispatchKeyExtractor::makeUninitialized())
|
||||
, kernels_()
|
||||
, cpp_signature_()
|
||||
, sym_cpp_signature_()
|
||||
, is_observed_(ObservedOperators::isObserved(name_))
|
||||
{
|
||||
// Pick up any backend fallbacks that were registered prior to this
|
||||
// OperatorEntry being created.
|
||||
|
||||
@ -357,7 +357,7 @@ IValue IValue::equals(const IValue& rhs) const {
|
||||
case Tag::Enum:
|
||||
return lhs.toEnumHolder()->is(*rhs.toEnumHolder());
|
||||
case Tag::Uninitialized:
|
||||
// Uninitialized ivalues show up in no-ops when the compiler can prove a
|
||||
// Unitialized ivalues show up in no-ops when the compiler can prove a
|
||||
// value will never be used. Just return false on any equality comparison.
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -114,7 +114,7 @@ constexpr bool allowlist_contains(std::string_view allowlist, std::string_view i
|
||||
}
|
||||
next++;
|
||||
} else {
|
||||
if (allowlist.substr(cur) == item) {
|
||||
if (allowlist.substr(cur).compare(item) == 0) {
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
|
||||
@ -73,7 +73,7 @@ c10::FunctionSchema RegisterOperators::inferSchemaFromKernels_(
|
||||
|
||||
std::optional<FunctionSchema> inferred_schema = std::nullopt;
|
||||
for (const auto& kernel : options.kernels) {
|
||||
if (nullptr != kernel.inferred_function_schema) {
|
||||
if (nullptr != kernel.inferred_function_schema.get()) {
|
||||
if (!inferred_schema.has_value()) {
|
||||
inferred_schema = *kernel.inferred_function_schema;
|
||||
break;
|
||||
|
||||
@ -411,6 +411,7 @@ public:
|
||||
|
||||
Options()
|
||||
: schemaOrName_(std::nullopt)
|
||||
, kernels()
|
||||
, aliasAnalysisKind_(std::nullopt)
|
||||
{}
|
||||
|
||||
@ -419,6 +420,7 @@ public:
|
||||
struct KernelRegistrationConfig final {
|
||||
KernelRegistrationConfig()
|
||||
: dispatch_key(std::nullopt)
|
||||
, func()
|
||||
, cpp_signature(std::nullopt)
|
||||
, inferred_function_schema(nullptr)
|
||||
{}
|
||||
|
||||
@ -905,7 +905,7 @@ class Vectorized8 : public Vectorizedi {
|
||||
// Because loadu(const void* ptr, T count) requires zero initialization for
|
||||
// upper 128 bits. However, by using _mm256_castsi128_si256, the upper 128
|
||||
// bits of the result are undefined.
|
||||
// TODO<leslie> We can use _mm256_zextsi128_si256 in the future,
|
||||
// TODO<leslie> We can use _mm256_zextsi128_si256 in the furture,
|
||||
// since gcc 9.3 doesn't support it now.
|
||||
__m128i input_128 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr));
|
||||
return _mm256_castsi128_si256(input_128);
|
||||
@ -1844,7 +1844,7 @@ Vectorized<int16_t> inline shift_256_16(
|
||||
c0 = _mm256_srav_epi32(a0, b0);
|
||||
c0 = _mm256_shuffle_epi8(c0, ctl_1_0);
|
||||
|
||||
// Perform shifting the same way for input array elements with
|
||||
// Peform shifting the same way for input array elements with
|
||||
// idx%2==1.
|
||||
__m256i a1 = _mm256_and_si256(a, keep_1);
|
||||
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
||||
@ -2180,7 +2180,7 @@ Vectorized<T> inline shift_256_8(
|
||||
c0 = _mm256_srlv_epi32(a0, b0);
|
||||
c0 = _mm256_shuffle_epi8(c0, ctl_3_0);
|
||||
|
||||
// Perform shifting the same way for input array elements with
|
||||
// Peform shifting the same way for input array elements with
|
||||
// idx%4==1.
|
||||
__m256i a1 = _mm256_shuffle_epi8(a, ctl_1_3);
|
||||
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
||||
@ -2193,7 +2193,7 @@ Vectorized<T> inline shift_256_8(
|
||||
c1 = _mm256_srlv_epi32(a1, b1);
|
||||
c1 = _mm256_shuffle_epi8(c1, ctl_3_1);
|
||||
|
||||
// Perform shifting the same way for input array elements with
|
||||
// Peform shifting the same way for input array elements with
|
||||
// idx%4==2.
|
||||
__m256i a2 = _mm256_shuffle_epi8(a, ctl_2_3);
|
||||
__m256i b2 = _mm256_shuffle_epi8(b, ctl_2_0);
|
||||
@ -2206,7 +2206,7 @@ Vectorized<T> inline shift_256_8(
|
||||
c2 = _mm256_srlv_epi32(a2, b2);
|
||||
c2 = _mm256_shuffle_epi8(c2, ctl_3_2);
|
||||
|
||||
// Perform shifting the same way for input array elements with
|
||||
// Peform shifting the same way for input array elements with
|
||||
// idx%4==3.
|
||||
__m256i a3 = _mm256_and_si256(a, keep_3);
|
||||
__m256i b3 = _mm256_shuffle_epi8(b, ctl_3_0);
|
||||
|
||||
@ -1088,7 +1088,7 @@ class Vectorized8 : public Vectorizedi {
|
||||
// Because loadu(const void* ptr, T count) requires zero initialization for
|
||||
// upper 384 bits. However, by using _mm512_castsi128_si512, the upper 384
|
||||
// bits of the result are undefined.
|
||||
// TODO<leslie> We can use _mm512_zextsi128_si512 in the future,
|
||||
// TODO<leslie> We can use _mm512_zextsi128_si512 in the furture,
|
||||
// since gcc 9.3 doesn't support it now.
|
||||
__m128i input_128 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(ptr));
|
||||
return _mm512_castsi128_si512(input_128);
|
||||
@ -2022,7 +2022,7 @@ Vectorized<T> inline shift_512_8(
|
||||
c0 = _mm512_srlv_epi16(a0, b0);
|
||||
c0 = _mm512_shuffle_epi8(c0, ctl_1_0);
|
||||
|
||||
// Perform shifting the same way for input array elements with
|
||||
// Peform shifting the same way for input array elements with
|
||||
// idx%2==1.
|
||||
__m512i a1 = _mm512_and_si512(a, keep_1);
|
||||
__m512i b1 = _mm512_shuffle_epi8(b, ctl_1_0);
|
||||
|
||||
@ -323,7 +323,7 @@ class CuBlasLtMatmulDescriptor : public CuBlasLtDescriptor<
|
||||
descriptor_.reset(raw_descriptor);
|
||||
}
|
||||
template <typename T>
|
||||
void setAttribute(cublasLtMatmulDescAttributes_t attr, const T value) {
|
||||
inline void setAttribute(cublasLtMatmulDescAttributes_t attr, const T value) {
|
||||
// NOLINTNEXTLINE(bugprone-sizeof-expression)
|
||||
TORCH_CUDABLAS_CHECK(::cublasLtMatmulDescSetAttribute(descriptor(), attr, &value, sizeof(value)));
|
||||
}
|
||||
@ -345,7 +345,7 @@ class CuBlasLtMatrixLayout : public CuBlasLtDescriptor<
|
||||
descriptor_.reset(raw_descriptor);
|
||||
}
|
||||
template <typename T>
|
||||
void setAttribute(cublasLtMatrixLayoutAttribute_t attr, const T value) {
|
||||
inline void setAttribute(cublasLtMatrixLayoutAttribute_t attr, const T value) {
|
||||
TORCH_CUDABLAS_CHECK(::cublasLtMatrixLayoutSetAttribute(descriptor(), attr, &value, sizeof(T)));
|
||||
}
|
||||
};
|
||||
@ -360,7 +360,7 @@ class CuBlasLtMatmulPreference : public CuBlasLtDescriptor<
|
||||
descriptor_.reset(raw_descriptor);
|
||||
}
|
||||
template <typename T>
|
||||
void setAttribute(cublasLtMatmulPreferenceAttributes_t attr, const T value) {
|
||||
inline void setAttribute(cublasLtMatmulPreferenceAttributes_t attr, const T value) {
|
||||
TORCH_CUDABLAS_CHECK(::cublasLtMatmulPreferenceSetAttribute(descriptor(), attr, &value, sizeof(T)));
|
||||
}
|
||||
};
|
||||
@ -395,7 +395,7 @@ static inline bool bgemm_internal_cublaslt(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(D
|
||||
computeType = CUBLAS_COMPUTE_64F;
|
||||
scaleType = CUDA_R_64F;
|
||||
} else if constexpr (std::is_same_v<Dtype, float>) {
|
||||
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
|
||||
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
|
||||
computeType = CUBLAS_COMPUTE_32F_FAST_TF32;
|
||||
}
|
||||
} else if constexpr (std::is_same_v<Dtype, c10::complex<double>>) {
|
||||
@ -422,40 +422,25 @@ static inline bool bgemm_internal_cublaslt(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(D
|
||||
abType = CUDA_R_16F;
|
||||
cType = (std::is_same_v<C_Dtype, float>) ? CUDA_R_32F : CUDA_R_16F;
|
||||
#ifndef USE_ROCM
|
||||
auto fp16_reduction = at::globalContext().allowFP16ReductionCuBLAS();
|
||||
if (fp16_reduction !=
|
||||
at::CuBLASReductionOption::AllowReducedPrecisionWithSplitK) {
|
||||
uint32_t mask =
|
||||
fp16_reduction ==
|
||||
at::CuBLASReductionOption::DisallowReducedPrecisionAllowSplitK
|
||||
? (CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE |
|
||||
CUBLASLT_REDUCTION_SCHEME_NONE)
|
||||
: CUBLASLT_REDUCTION_SCHEME_NONE;
|
||||
preference.setAttribute(
|
||||
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK, mask);
|
||||
if (!at::globalContext().allowFP16ReductionCuBLAS()) {
|
||||
preference.setAttribute(CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK,
|
||||
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE | CUBLASLT_REDUCTION_SCHEME_NONE);
|
||||
}
|
||||
#endif
|
||||
} else if constexpr (std::is_same_v<Dtype, at::BFloat16>) {
|
||||
abType = CUDA_R_16BF;
|
||||
cType = (std::is_same_v<C_Dtype, float>) ? CUDA_R_32F : CUDA_R_16BF;
|
||||
#ifndef USE_ROCM
|
||||
auto bf16_reduction = at::globalContext().allowBF16ReductionCuBLAS();
|
||||
if (bf16_reduction !=
|
||||
at::CuBLASReductionOption::AllowReducedPrecisionWithSplitK) {
|
||||
uint32_t mask =
|
||||
bf16_reduction ==
|
||||
at::CuBLASReductionOption::DisallowReducedPrecisionAllowSplitK
|
||||
? (CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE |
|
||||
CUBLASLT_REDUCTION_SCHEME_NONE)
|
||||
: CUBLASLT_REDUCTION_SCHEME_NONE;
|
||||
preference.setAttribute(
|
||||
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK, mask);
|
||||
if (!at::globalContext().allowBF16ReductionCuBLAS()) {
|
||||
preference.setAttribute(CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK,
|
||||
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE | CUBLASLT_REDUCTION_SCHEME_NONE);
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
static_assert(false && sizeof(Dtype), "at::cuda::blas::bgemm_internal_cublaslt: not implemented");
|
||||
}
|
||||
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -589,6 +574,8 @@ inline void bgemm_internal_cublas(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, C_D
|
||||
|
||||
template <>
|
||||
void bgemm_internal_cublas<double>(CUDABLAS_BGEMM_ARGTYPES(double)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -600,6 +587,8 @@ void bgemm_internal_cublas<double>(CUDABLAS_BGEMM_ARGTYPES(double)) {
|
||||
|
||||
template <>
|
||||
void bgemm_internal_cublas<float>(CUDABLAS_BGEMM_ARGTYPES(float)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -611,6 +600,8 @@ void bgemm_internal_cublas<float>(CUDABLAS_BGEMM_ARGTYPES(float)) {
|
||||
|
||||
template <>
|
||||
void bgemm_internal_cublas<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<double>)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -624,6 +615,8 @@ void bgemm_internal_cublas<c10::complex<double>>(CUDABLAS_BGEMM_ARGTYPES(c10::co
|
||||
|
||||
template <>
|
||||
void bgemm_internal_cublas<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::complex<float>)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -637,6 +630,8 @@ void bgemm_internal_cublas<c10::complex<float>>(CUDABLAS_BGEMM_ARGTYPES(c10::com
|
||||
|
||||
template <typename C_Dtype>
|
||||
inline void bgemm_internal_cublas_half_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::Half, C_Dtype)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -708,6 +703,8 @@ inline void bgemm_internal_cublas_half_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYP
|
||||
|
||||
template <typename C_Dtype>
|
||||
inline void bgemm_internal_cublas_bfloat16_helper(CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(at::BFloat16, C_Dtype)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
BGEMM_CHECK_ARGVALUES(at::BFloat16);
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
@ -1031,6 +1028,8 @@ inline void gemm_internal_cublas(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(Dtype, C_Dty
|
||||
|
||||
template <>
|
||||
void gemm_internal_cublas<double>(CUDABLAS_GEMM_ARGTYPES(double)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -1042,6 +1041,8 @@ void gemm_internal_cublas<double>(CUDABLAS_GEMM_ARGTYPES(double)) {
|
||||
|
||||
template <>
|
||||
void gemm_internal_cublas<float>(CUDABLAS_GEMM_ARGTYPES(float)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -1053,6 +1054,8 @@ void gemm_internal_cublas<float>(CUDABLAS_GEMM_ARGTYPES(float)) {
|
||||
|
||||
template <>
|
||||
void gemm_internal_cublas<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<double>)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -1066,6 +1069,8 @@ void gemm_internal_cublas<c10::complex<double>>(CUDABLAS_GEMM_ARGTYPES(c10::comp
|
||||
|
||||
template <>
|
||||
void gemm_internal_cublas<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::complex<float>)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -1079,6 +1084,8 @@ void gemm_internal_cublas<c10::complex<float>>(CUDABLAS_GEMM_ARGTYPES(c10::compl
|
||||
|
||||
template <typename C_Dtype>
|
||||
inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::Half, C_Dtype)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -1136,15 +1143,8 @@ inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(
|
||||
}
|
||||
if (prop->major >= 5) {
|
||||
cublasMath_t cublas_flags = CUBLAS_DEFAULT_MATH;
|
||||
auto fp16_reduction = at::globalContext().allowFP16ReductionCuBLAS();
|
||||
TORCH_CHECK(fp16_reduction !=
|
||||
at::CuBLASReductionOption::DisallowReducedPrecisionDisallowSplitK,
|
||||
"torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction("
|
||||
"..., allow_splitk=False) requires the cuBLASLt backend");
|
||||
if (fp16_reduction !=
|
||||
at::CuBLASReductionOption::AllowReducedPrecisionWithSplitK) {
|
||||
cublas_flags = static_cast<cublasMath_t>(
|
||||
cublas_flags | CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION);
|
||||
if (!at::globalContext().allowFP16ReductionCuBLAS()) {
|
||||
cublas_flags = static_cast<cublasMath_t>(cublas_flags | CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION);
|
||||
}
|
||||
// Disallow fp16 reductions that could lead to unexpected overflow issues.
|
||||
TORCH_CUDABLAS_CHECK(cublasSetMathMode(handle, cublas_flags));
|
||||
@ -1194,6 +1194,7 @@ inline void gemm_internal_cublas_half_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(
|
||||
|
||||
template <typename C_Dtype>
|
||||
inline void gemm_internal_cublas_bfloat16_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DTYPE(at::BFloat16, C_Dtype)) {
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t opa = _cublasOpFromChar(transa);
|
||||
cublasOperation_t opb = _cublasOpFromChar(transb);
|
||||
@ -1203,15 +1204,8 @@ inline void gemm_internal_cublas_bfloat16_helper(CUDABLAS_GEMM_ARGTYPES_AND_C_DT
|
||||
GEMM_CHECK_ARGVALUES(at::BFloat16);
|
||||
#ifndef USE_ROCM
|
||||
cublasMath_t cublas_flags = CUBLAS_DEFAULT_MATH;
|
||||
auto bf16_reduction = at::globalContext().allowBF16ReductionCuBLAS();
|
||||
TORCH_CHECK(bf16_reduction !=
|
||||
at::CuBLASReductionOption::DisallowReducedPrecisionDisallowSplitK,
|
||||
"torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction("
|
||||
"..., allow_splitk=False) requires the cuBLASLt backend");
|
||||
if (bf16_reduction !=
|
||||
at::CuBLASReductionOption::AllowReducedPrecisionWithSplitK) {
|
||||
cublas_flags = static_cast<cublasMath_t>(
|
||||
cublas_flags | CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION);
|
||||
if (!at::globalContext().allowBF16ReductionCuBLAS()) {
|
||||
cublas_flags = static_cast<cublasMath_t>(cublas_flags | CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION);
|
||||
}
|
||||
#endif
|
||||
#if defined(USE_ROCM)
|
||||
@ -1300,7 +1294,7 @@ void gemm_internal<float>(CUDABLAS_GEMM_ARGTYPES(float))
|
||||
}
|
||||
#if defined(USE_ROCM) && defined(USE_ROCM_CK_GEMM)
|
||||
else if (at::globalContext().blasPreferredBackend() == BlasBackend::Ck) {
|
||||
if (at::detail::getCUDAHooks().isGPUArch({"gfx11", "gfx12"})) { //no CK GEMM version
|
||||
if (at::detail::getCUDAHooks().isGPUArch({"gfx1100"})) { //no CK GEMM version for gfx1100
|
||||
gemm_internal_cublaslt<float>(CUDABLAS_GEMM_ARGS(float));
|
||||
} else{
|
||||
at::native::gemm_internal_ck<float>(CUDABLAS_GEMM_ARGS(float));
|
||||
@ -1589,7 +1583,7 @@ bool gemm_and_bias(
|
||||
computeType = CUBLAS_COMPUTE_64F;
|
||||
scaleType = CUDA_R_64F;
|
||||
} else if constexpr (std::is_same_v<Dtype, float>) {
|
||||
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
|
||||
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
|
||||
computeType = CUBLAS_COMPUTE_32F_FAST_TF32;
|
||||
}
|
||||
} else if constexpr (std::is_same_v<Dtype, at::Half>) {
|
||||
@ -1607,34 +1601,18 @@ bool gemm_and_bias(
|
||||
abType = CUDA_R_16F;
|
||||
cType = (std::is_same_v<C_Dtype, float>) ? CUDA_R_32F : CUDA_R_16F;
|
||||
#ifndef USE_ROCM
|
||||
auto fp16_reduction = at::globalContext().allowFP16ReductionCuBLAS();
|
||||
if (fp16_reduction !=
|
||||
at::CuBLASReductionOption::AllowReducedPrecisionWithSplitK) {
|
||||
uint32_t mask =
|
||||
fp16_reduction ==
|
||||
at::CuBLASReductionOption::DisallowReducedPrecisionAllowSplitK
|
||||
? (CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE |
|
||||
CUBLASLT_REDUCTION_SCHEME_NONE)
|
||||
: CUBLASLT_REDUCTION_SCHEME_NONE;
|
||||
preference.setAttribute(
|
||||
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK, mask);
|
||||
if (!at::globalContext().allowFP16ReductionCuBLAS()) {
|
||||
preference.setAttribute(CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK,
|
||||
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE | CUBLASLT_REDUCTION_SCHEME_NONE);
|
||||
}
|
||||
#endif
|
||||
} else if constexpr (std::is_same_v<Dtype, at::BFloat16>) {
|
||||
abType = CUDA_R_16BF;
|
||||
cType = (std::is_same_v<C_Dtype, float>) ? CUDA_R_32F : CUDA_R_16BF;
|
||||
#ifndef USE_ROCM
|
||||
auto bf16_reduction = at::globalContext().allowBF16ReductionCuBLAS();
|
||||
if (bf16_reduction !=
|
||||
at::CuBLASReductionOption::AllowReducedPrecisionWithSplitK) {
|
||||
uint32_t mask =
|
||||
bf16_reduction ==
|
||||
at::CuBLASReductionOption::DisallowReducedPrecisionAllowSplitK
|
||||
? (CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE |
|
||||
CUBLASLT_REDUCTION_SCHEME_NONE)
|
||||
: CUBLASLT_REDUCTION_SCHEME_NONE;
|
||||
preference.setAttribute(
|
||||
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK, mask);
|
||||
if (!at::globalContext().allowBF16ReductionCuBLAS()) {
|
||||
preference.setAttribute(CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK,
|
||||
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE | CUBLASLT_REDUCTION_SCHEME_NONE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -2430,6 +2408,8 @@ void trsmBatched<c10::complex<double>>(
|
||||
|
||||
template <>
|
||||
void gemv<c10::complex<double>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<double>)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t op = _cublasOpFromChar(trans);
|
||||
_cublasAdjustLdLevel2(m, n, &lda);
|
||||
@ -2445,6 +2425,8 @@ void gemv<c10::complex<float>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<float>)) {
|
||||
// gemv is bw bound, and does not benefit from TF32. But the precision
|
||||
// loss still happens on TF32. So we disable it here.
|
||||
NoTF32Guard disable_tf32;
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t op = _cublasOpFromChar(trans);
|
||||
_cublasAdjustLdLevel2(m, n, &lda);
|
||||
@ -2457,6 +2439,8 @@ void gemv<c10::complex<float>>(CUDABLAS_GEMV_ARGTYPES(c10::complex<float>)) {
|
||||
|
||||
template <>
|
||||
void gemv<double>(CUDABLAS_GEMV_ARGTYPES(double)) {
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t op = _cublasOpFromChar(trans);
|
||||
_cublasAdjustLdLevel2(m, n, &lda);
|
||||
@ -2470,6 +2454,8 @@ void gemv<float>(CUDABLAS_GEMV_ARGTYPES(float)) {
|
||||
// gemv is bw bound, and does not benefit from TF32. But the precision
|
||||
// loss still happens on TF32. So we disable it here.
|
||||
NoTF32Guard disable_tf32;
|
||||
// See Note [Writing Nondeterministic Operations]
|
||||
globalContext().alertCuBLASConfigNotDeterministic();
|
||||
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
cublasOperation_t op = _cublasOpFromChar(trans);
|
||||
_cublasAdjustLdLevel2(m, n, &lda);
|
||||
|
||||
@ -109,7 +109,7 @@ void CUDAGeneratorState::increase(uint64_t increment) {
|
||||
offset_intragraph_ % 4 == 0, "RNG offset must be a multiple of 4.");
|
||||
// Ensures the increment does not cause overflow.
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
offset_intragraph_ <= std::numeric_limits<uint64_t>::max() - increment,
|
||||
offset_intragraph_ <= std::numeric_limits<uint32_t>::max() - increment,
|
||||
"Increment causes overflow in the offset value.");
|
||||
offset_intragraph_ += increment;
|
||||
} else {
|
||||
@ -461,7 +461,7 @@ void CUDAGeneratorImpl::unregister_graph(cuda::CUDAGraph* graph) {
|
||||
*/
|
||||
PhiloxCudaState CUDAGeneratorImpl::philox_cuda_state(uint64_t increment) {
|
||||
if (at::cuda::currentStreamCaptureStatus() != at::cuda::CaptureStatus::None) {
|
||||
uint64_t offset = state_->offset_intragraph_;
|
||||
uint32_t offset = state_->offset_intragraph_;
|
||||
state_->increase(increment);
|
||||
return PhiloxCudaState(
|
||||
state_->seed_extragraph_.data_ptr<int64_t>(),
|
||||
|
||||
@ -96,16 +96,16 @@ struct CUDAGraph;
|
||||
struct CUDAGeneratorState : public c10::intrusive_ptr_target {
|
||||
uint64_t seed_;
|
||||
uint64_t philox_offset_per_thread_;
|
||||
uint64_t offset_intragraph_;
|
||||
uint32_t offset_intragraph_;
|
||||
bool capturing_{};
|
||||
std::unordered_set<cuda::CUDAGraph*> registered_graphs_;
|
||||
at::TensorBase seed_extragraph_;
|
||||
at::TensorBase offset_extragraph_;
|
||||
at::TensorBase seed_extragraph_{};
|
||||
at::TensorBase offset_extragraph_{};
|
||||
|
||||
CUDAGeneratorState(
|
||||
uint64_t seed = default_rng_seed_val,
|
||||
uint64_t philox_offset_per_thread = 0,
|
||||
uint64_t offset_intragraph = 0)
|
||||
uint32_t offset_intragraph = 0)
|
||||
: seed_(seed),
|
||||
philox_offset_per_thread_(philox_offset_per_thread),
|
||||
offset_intragraph_(offset_intragraph) {}
|
||||
@ -167,7 +167,7 @@ struct TORCH_CUDA_CPP_API CUDAGeneratorImpl : public c10::GeneratorImpl {
|
||||
CUDAGeneratorImpl* clone_impl() const override;
|
||||
|
||||
c10::intrusive_ptr<CUDAGeneratorState> state_;
|
||||
std::atomic_flag no_reset_rnn_state_;
|
||||
std::atomic_flag no_reset_rnn_state_{};
|
||||
};
|
||||
|
||||
namespace cuda::detail {
|
||||
|
||||
@ -56,7 +56,7 @@ struct TORCH_CUDA_CPP_API CUDAGraph {
|
||||
|
||||
// the ID assigned by cuda during graph capture,
|
||||
// used to identify when a stream is participating in capture
|
||||
CaptureId_t capture_id_ = 0;
|
||||
CaptureId_t capture_id_ = -1;
|
||||
|
||||
// uuid used to request a particular private mempool from CUDACachingAllocator.
|
||||
// By default, this will be set to {id_, 0}.
|
||||
|
||||
@ -6,15 +6,43 @@
|
||||
#define HIPSPARSE_VERSION ((hipsparseVersionMajor*100000) + (hipsparseVersionMinor*100) + hipsparseVersionPatch)
|
||||
#endif
|
||||
|
||||
// cuSparse Generic API added in CUDA 10.1
|
||||
// Windows support added in CUDA 11.0
|
||||
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && ((CUSPARSE_VERSION >= 10300) || (CUSPARSE_VERSION >= 11000 && defined(_WIN32)))
|
||||
#define AT_USE_CUSPARSE_GENERIC_API() 1
|
||||
#else
|
||||
#define AT_USE_CUSPARSE_GENERIC_API() 0
|
||||
#endif
|
||||
|
||||
// cuSparse Generic API descriptor pointers were changed to const in CUDA 12.0
|
||||
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && \
|
||||
(CUSPARSE_VERSION < 12000)
|
||||
#define AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() 1
|
||||
#else
|
||||
#define AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() 0
|
||||
#endif
|
||||
|
||||
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && \
|
||||
(CUSPARSE_VERSION >= 12000)
|
||||
#define AT_USE_CUSPARSE_CONST_DESCRIPTORS() 1
|
||||
#else
|
||||
#define AT_USE_CUSPARSE_CONST_DESCRIPTORS() 0
|
||||
#endif
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
// hipSparse const API added in v2.4.0
|
||||
#if HIPSPARSE_VERSION >= 200400
|
||||
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 1
|
||||
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 0
|
||||
#define AT_USE_HIPSPARSE_GENERIC_API() 1
|
||||
#else
|
||||
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 0
|
||||
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 1
|
||||
#define AT_USE_HIPSPARSE_GENERIC_API() 1
|
||||
#endif
|
||||
#else // USE_ROCM
|
||||
#define AT_USE_HIPSPARSE_CONST_DESCRIPTORS() 0
|
||||
#define AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS() 0
|
||||
#define AT_USE_HIPSPARSE_GENERIC_API() 0
|
||||
#endif // USE_ROCM
|
||||
|
||||
|
||||
@ -12,6 +12,8 @@ cusparseStatus_t destroyConstDnMat(const cusparseDnMatDescr* dnMatDescr) {
|
||||
return cusparseDestroyDnMat(const_cast<cusparseDnMatDescr*>(dnMatDescr));
|
||||
}
|
||||
|
||||
#if AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
|
||||
|
||||
namespace {
|
||||
|
||||
// If a specific GPU model does not provide native support for a given data
|
||||
@ -208,4 +210,6 @@ CuSparseSpMatCsrDescriptor::CuSparseSpMatCsrDescriptor(const Tensor& input, int6
|
||||
descriptor_.reset(raw_descriptor);
|
||||
}
|
||||
|
||||
#endif // AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
|
||||
|
||||
} // namespace at::cuda::sparse
|
||||
|
||||
@ -35,6 +35,7 @@ class CuSparseDescriptor {
|
||||
std::unique_ptr<T, CuSparseDescriptorDeleter<T, destructor>> descriptor_;
|
||||
};
|
||||
|
||||
#if AT_USE_CUSPARSE_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_CONST_DESCRIPTORS()
|
||||
template <typename T, cusparseStatus_t (*destructor)(const T*)>
|
||||
struct ConstCuSparseDescriptorDeleter {
|
||||
void operator()(T* x) {
|
||||
@ -57,6 +58,7 @@ class ConstCuSparseDescriptor {
|
||||
protected:
|
||||
std::unique_ptr<T, ConstCuSparseDescriptorDeleter<T, destructor>> descriptor_;
|
||||
};
|
||||
#endif // AT_USE_CUSPARSE_CONST_DESCRIPTORS || AT_USE_HIPSPARSE_CONST_DESCRIPTORS
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
using cusparseMatDescr = std::remove_pointer_t<hipsparseMatDescr_t>;
|
||||
@ -121,8 +123,39 @@ class TORCH_CUDA_CPP_API CuSparseBsrsm2Info
|
||||
|
||||
#endif // AT_USE_HIPSPARSE_TRIANGULAR_SOLVE
|
||||
|
||||
#if AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
|
||||
|
||||
cusparseIndexType_t getCuSparseIndexType(const c10::ScalarType& scalar_type);
|
||||
|
||||
#if AT_USE_CUSPARSE_NON_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_NON_CONST_DESCRIPTORS()
|
||||
class TORCH_CUDA_CPP_API CuSparseDnMatDescriptor
|
||||
: public CuSparseDescriptor<cusparseDnMatDescr, &cusparseDestroyDnMat> {
|
||||
public:
|
||||
explicit CuSparseDnMatDescriptor(const Tensor& input, int64_t batch_offset = -1);
|
||||
};
|
||||
|
||||
class TORCH_CUDA_CPP_API CuSparseConstDnMatDescriptor
|
||||
: public CuSparseDescriptor<const cusparseDnMatDescr, &destroyConstDnMat> {
|
||||
public:
|
||||
explicit CuSparseConstDnMatDescriptor(const Tensor& input, int64_t batch_offset = -1);
|
||||
cusparseDnMatDescr* unsafe_mutable_descriptor() const {
|
||||
return const_cast<cusparseDnMatDescr*>(descriptor());
|
||||
}
|
||||
cusparseDnMatDescr* unsafe_mutable_descriptor() {
|
||||
return const_cast<cusparseDnMatDescr*>(descriptor());
|
||||
}
|
||||
};
|
||||
|
||||
class TORCH_CUDA_CPP_API CuSparseDnVecDescriptor
|
||||
: public CuSparseDescriptor<cusparseDnVecDescr, &cusparseDestroyDnVec> {
|
||||
public:
|
||||
explicit CuSparseDnVecDescriptor(const Tensor& input);
|
||||
};
|
||||
|
||||
class TORCH_CUDA_CPP_API CuSparseSpMatDescriptor
|
||||
: public CuSparseDescriptor<cusparseSpMatDescr, &cusparseDestroySpMat> {};
|
||||
|
||||
#elif AT_USE_CUSPARSE_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_CONST_DESCRIPTORS()
|
||||
class TORCH_CUDA_CPP_API CuSparseDnMatDescriptor
|
||||
: public ConstCuSparseDescriptor<
|
||||
cusparseDnMatDescr,
|
||||
@ -161,6 +194,7 @@ cusparseIndexType_t getCuSparseIndexType(const c10::ScalarType& scalar_type);
|
||||
: public ConstCuSparseDescriptor<
|
||||
cusparseSpMatDescr,
|
||||
&cusparseDestroySpMat> {};
|
||||
#endif // AT_USE_CUSPARSE_CONST_DESCRIPTORS() || AT_USE_HIPSPARSE_CONST_DESCRIPTORS()
|
||||
|
||||
class TORCH_CUDA_CPP_API CuSparseSpMatCsrDescriptor
|
||||
: public CuSparseSpMatDescriptor {
|
||||
@ -249,4 +283,6 @@ class TORCH_CUDA_CPP_API CuSparseSpGEMMDescriptor
|
||||
}
|
||||
};
|
||||
|
||||
#endif // AT_USE_CUSPARSE_GENERIC_API() || AT_USE_HIPSPARSE_GENERIC_API()
|
||||
|
||||
} // namespace at::cuda::sparse
|
||||
|
||||
@ -9,6 +9,7 @@
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <future>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace at::cuda {
|
||||
namespace {
|
||||
@ -71,20 +72,9 @@ using Block = HostBlock<CUDAStream>;
|
||||
struct CUDACachingHostAllocatorImpl
|
||||
: public CachingHostAllocatorImpl<CUDAStream, EventPool::Event> {
|
||||
private:
|
||||
ska::flat_hash_map<void*, bool> use_host_register;
|
||||
std::unordered_map<void*, bool> use_host_register;
|
||||
|
||||
void allocate_host_memory(size_t size, void** ptr) override {
|
||||
// try allocating from reserve segment first before calling into expensive APIs
|
||||
if (get_reserve_segment().initialized()) {
|
||||
*ptr = get_reserve_segment().allocate(size);
|
||||
if (*ptr != nullptr) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
allocate_host_memory_slowpath(size, ptr);
|
||||
}
|
||||
|
||||
void allocate_host_memory_slowpath(size_t size, void** ptr) {
|
||||
// Pinned memory pointers allocated by any device can be directly used by
|
||||
// any other device, regardless of the current device at the time of
|
||||
// allocation, since we assume unified addressing. So we grab any existing
|
||||
@ -123,18 +113,6 @@ struct CUDACachingHostAllocatorImpl
|
||||
}
|
||||
|
||||
void free_block(Block* block) override {
|
||||
// We never free blocks from the reserve segment
|
||||
if (get_reserve_segment().initialized()) {
|
||||
// Check if the block is from the reserve segment
|
||||
if (get_reserve_segment().owns(block->ptr_)) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
free_block_slowpath(block);
|
||||
}
|
||||
|
||||
void free_block_slowpath(Block* block) {
|
||||
auto start = std::chrono::steady_clock::now();
|
||||
// Users may change the allocator config at will. torch unit tests do this.
|
||||
// However, allocations using cudaHostRegister should use corresonding
|
||||
@ -194,20 +172,6 @@ struct CUDACachingHostAllocatorImpl
|
||||
return event_pool->get(idx);
|
||||
}
|
||||
|
||||
PinnedReserveSegment& get_reserve_segment() {
|
||||
static auto reserve_segment = [&]() {
|
||||
if (c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::pinned_reserve_segment_size_mb() > 0) {
|
||||
void *ptr;
|
||||
size_t sz = c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::pinned_reserve_segment_size_mb() * 1024 * 1024;
|
||||
allocate_host_memory_slowpath(sz, &ptr);
|
||||
return PinnedReserveSegment(ptr, sz);
|
||||
} else {
|
||||
return PinnedReserveSegment();
|
||||
}
|
||||
} ();
|
||||
return reserve_segment;
|
||||
}
|
||||
|
||||
TaskThreadPool* getThreadPool() {
|
||||
static TaskThreadPool* pool = new TaskThreadPool(
|
||||
static_cast<int>(c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
|
||||
@ -222,15 +186,15 @@ struct CUDACachingHostAllocatorImpl
|
||||
size_t numThreads,
|
||||
size_t pageSize) {
|
||||
uintptr_t start = (uintptr_t)ptr + (size * i / numThreads);
|
||||
uintptr_t end = start + (size / numThreads);
|
||||
uintptr_t end = (uintptr_t)start + (size / numThreads);
|
||||
if (i == (numThreads - 1)) {
|
||||
end = (uintptr_t)ptr + size;
|
||||
}
|
||||
|
||||
// pre-fault/map the pages by setting the first byte of the page
|
||||
uintptr_t alignedStart =
|
||||
((start + pageSize - 1) & ~(pageSize - 1));
|
||||
for (uintptr_t p = alignedStart; p < (end); p += pageSize) {
|
||||
(((uintptr_t)start + pageSize - 1) & ~(pageSize - 1));
|
||||
for (uintptr_t p = alignedStart; p < ((uintptr_t)end); p += pageSize) {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
memset((void*)p, 0, 1);
|
||||
}
|
||||
|
||||
@ -310,7 +310,7 @@ cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
// FP32 data type calculations based on the value of the allow_tf32 flag.
|
||||
// To enable TF32, set the math mode of the handle to CUBLAS_TF32_TENSOR_OP_MATH.
|
||||
if (!NoTF32Guard::should_disable_tf32() &&
|
||||
at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
|
||||
at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
|
||||
TORCH_CUDABLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TF32_TENSOR_OP_MATH));
|
||||
} else {
|
||||
TORCH_CUDABLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
|
||||
|
||||
@ -326,23 +326,6 @@ bool CUDAHooks::supportsBFloat16ConvolutionWithCuDNNv8() const {
|
||||
#endif
|
||||
}
|
||||
|
||||
bool CUDAHooks::supportsBFloat16RNNWithCuDNN() const {
|
||||
#if AT_CUDNN_ENABLED() && (CUDNN_VERSION >= 91300)
|
||||
if (!hasCUDA()) {
|
||||
return false;
|
||||
}
|
||||
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
||||
// Check for Volta cores
|
||||
if (prop->major >= 8) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
long CUDAHooks::versionCuDNN() const {
|
||||
#if AT_CUDNN_ENABLED()
|
||||
return CUDNN_VERSION;
|
||||
|
||||
@ -45,7 +45,6 @@ struct CUDAHooks : public at::CUDAHooksInterface {
|
||||
bool supportsDilatedConvolutionWithCuDNN() const override;
|
||||
bool supportsDepthwiseConvolutionWithCuDNN() const override;
|
||||
bool supportsBFloat16ConvolutionWithCuDNNv8() const override;
|
||||
bool supportsBFloat16RNNWithCuDNN() const override;
|
||||
bool hasCUDART() const override;
|
||||
long versionCUDART() const override;
|
||||
long versionCuDNN() const override;
|
||||
|
||||
@ -122,7 +122,7 @@ struct DeviceThreadHandlePool : public std::enable_shared_from_this<DeviceThread
|
||||
|
||||
// Called by the destructor. Releases this thread's handles back into the pool.
|
||||
void release() {
|
||||
if(!my_handles.empty()) {
|
||||
if(my_handles.size() > 0) {
|
||||
auto parent = weak_parent.lock();
|
||||
if (!parent) {
|
||||
// If this thread exits after atexit handlers have completed, the
|
||||
|
||||
@ -19,7 +19,7 @@ struct PhiloxCudaState {
|
||||
// Called if graph capture is underway
|
||||
PhiloxCudaState(int64_t* seed,
|
||||
int64_t* offset_extragraph,
|
||||
uint64_t offset_intragraph) {
|
||||
uint32_t offset_intragraph) {
|
||||
seed_.ptr = seed;
|
||||
offset_.ptr = offset_extragraph;
|
||||
offset_intragraph_ = offset_intragraph;
|
||||
@ -36,7 +36,7 @@ struct PhiloxCudaState {
|
||||
|
||||
Payload seed_{};
|
||||
Payload offset_{};
|
||||
uint64_t offset_intragraph_ = 0;
|
||||
uint32_t offset_intragraph_ = 0;
|
||||
bool captured_ = false;
|
||||
};
|
||||
|
||||
|
||||
@ -162,7 +162,7 @@ inline std::string ComputeTypeFor() {
|
||||
// ROCBLAS and hipBLASLt.
|
||||
template <>
|
||||
inline std::string ComputeTypeFor<float>() {
|
||||
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) != at::Float32Precision::TF32) {
|
||||
if (at::globalContext().float32Precision("cuda", "matmul") != "tf32") {
|
||||
return "f32_r";
|
||||
} else {
|
||||
return "xf32_r";
|
||||
|
||||
@ -506,7 +506,7 @@ class HipblasltGemmOp : public Callable<ParamsT> {
|
||||
}
|
||||
|
||||
hipblasComputeType_t computeType = HIPBLAS_COMPUTE_32F;
|
||||
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32) {
|
||||
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32") {
|
||||
computeType = HIPBLAS_COMPUTE_32F_FAST_TF32;
|
||||
}
|
||||
HipBlasLtMatmulDescriptor matmul(computeType, HIP_R_32F);
|
||||
|
||||
@ -141,7 +141,7 @@ class RocblasGemmOp : public Callable<GemmParams<T>> {
|
||||
|
||||
TuningStatus Call(const GemmParams<T>* params) override {
|
||||
auto input_output_type = RocBlasDataTypeFor<T>();
|
||||
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32 && input_output_type == rocblas_datatype_f32_r)
|
||||
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32" && input_output_type == rocblas_datatype_f32_r)
|
||||
return FAIL; // no support for TF32 in rocBLAS
|
||||
auto compute_type = RocBlasComputeTypeFor<T>();
|
||||
auto h_a = DoCastForHalfOrBfloat16(params->alpha);
|
||||
@ -209,7 +209,7 @@ class RocblasGemmStridedBatchedOp : public Callable<GemmStridedBatchedParams<T>>
|
||||
|
||||
TuningStatus Call(const GemmStridedBatchedParams<T>* params) override {
|
||||
auto input_output_type = RocBlasDataTypeFor<T>();
|
||||
if (at::globalContext().float32Precision(at::Float32Backend::CUDA, at::Float32Op::MATMUL) == at::Float32Precision::TF32 && input_output_type == rocblas_datatype_f32_r)
|
||||
if (at::globalContext().float32Precision("cuda", "matmul") == "tf32" && input_output_type == rocblas_datatype_f32_r)
|
||||
return FAIL; // no support for TF32 in rocBLAS
|
||||
auto compute_type = RocBlasComputeTypeFor<T>();
|
||||
auto h_a = DoCastForHalfOrBfloat16(params->alpha);
|
||||
|
||||
@ -404,6 +404,8 @@ TuningContext::TuningContext() :
|
||||
max_warmup_iterations_{0},
|
||||
icache_flush_{true},
|
||||
rotating_buffer_size_{-1},
|
||||
filename_{},
|
||||
untuned_file_{},
|
||||
results_count_from_input_file_{0},
|
||||
is_shutting_down_{false}
|
||||
{
|
||||
|
||||
@ -141,7 +141,7 @@ void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_fo
|
||||
size[i] = (int) t.size(i);
|
||||
}
|
||||
for (const auto i : c10::irange(dim, pad)) {
|
||||
size[i] = 1;
|
||||
size[i] = (int) 1;
|
||||
}
|
||||
dim = std::max(dim, pad);
|
||||
cudnnTensorFormat_t filter_format{};
|
||||
|
||||
@ -166,10 +166,6 @@ struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual bool supportsBFloat16RNNWithCuDNN() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual long versionCuDNN() const {
|
||||
TORCH_CHECK(false, "Cannot query cuDNN version without ATen_cuda library. ", CUDA_HELP);
|
||||
}
|
||||
|
||||
@ -176,7 +176,7 @@ struct LinalgCheckMatrixUnaryRuleHelper;
|
||||
|
||||
template <char const *op_name, typename F, F Func, typename A, typename... T>
|
||||
struct LinalgCheckMatrixUnaryRuleHelper<op_name, F, Func, typelist<A, T...>> {
|
||||
static Tensor check_and_reshape_input(const Tensor& tensor, std::optional<int64_t> batch_dim) {
|
||||
static inline Tensor check_and_reshape_input(const Tensor& tensor, std::optional<int64_t> batch_dim) {
|
||||
TORCH_CHECK(rankWithoutBatchDim(tensor, batch_dim) >= 2, op_name, ": The input tensor A must have at least 2 dimensions.");
|
||||
return moveBatchDimToFront(tensor, batch_dim);
|
||||
}
|
||||
@ -222,7 +222,7 @@ struct LinalgCheckMatrixBinaryRuleHelper;
|
||||
|
||||
template <char const *op_name, typename F, F Func, typename A, typename B, typename... T>
|
||||
struct LinalgCheckMatrixBinaryRuleHelper<op_name, F, Func, typelist<A, B, T...>> {
|
||||
static std::tuple<Tensor, Tensor> check_inputs_and_reshape_inputs(
|
||||
static inline std::tuple<Tensor, Tensor> check_inputs_and_reshape_inputs(
|
||||
const Tensor& first, std::optional<int64_t> first_bdim,
|
||||
const Tensor& second, std::optional<int64_t> second_bdim) {
|
||||
TORCH_CHECK(rankWithoutBatchDim(first, first_bdim) >= 2,
|
||||
|
||||
@ -465,11 +465,11 @@ static void dynamicLayerBack(const c10::OperatorHandle& op, torch::jit::Stack* s
|
||||
|
||||
// used for functions that have aliasing operations but should be treated like they're out of place (i.e. lift_fresh)
|
||||
static void dynamicLayerBackGradSpecialCase(const c10::OperatorHandle& op, torch::jit::Stack* stack) {
|
||||
dynamicLayerBack(op, stack, true);
|
||||
return dynamicLayerBack(op, stack, true);
|
||||
}
|
||||
|
||||
static void dynamicLayerBackFallback(const c10::OperatorHandle& op, torch::jit::Stack* stack) {
|
||||
dynamicLayerBack(op, stack, false);
|
||||
return dynamicLayerBack(op, stack, false);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL(_, FuncTorchDynamicLayerFrontMode, m) {
|
||||
|
||||
@ -12,7 +12,7 @@
|
||||
|
||||
#define MPS_ERROR_NOT_COMPILED "PyTorch code is not compiled with MPS enabled"
|
||||
#define MPS_ERROR_RUNTIME_TOO_LOW \
|
||||
"The MPS backend is supported on MacOS 14.0+. ", \
|
||||
"The MPS backend is supported on MacOS 13.0+.", \
|
||||
"Current OS version can be queried using `sw_vers`"
|
||||
#define MPS_ERROR_DOUBLE_NOT_SUPPORTED "Cannot convert a MPS Tensor to float64 dtype " \
|
||||
"as the MPS framework doesn't support float64. Please use float32 instead."
|
||||
|
||||
@ -58,7 +58,7 @@ scalar_t dot_impl(int64_t n, const scalar_t *x, int64_t incx, const scalar_t *y,
|
||||
template<typename scalar_t>
|
||||
scalar_t vdot_impl(int64_t n, const scalar_t *x, int64_t incx, const scalar_t *y, int64_t incy);
|
||||
|
||||
static constexpr bool lda_cond(int64_t m, int64_t n, int64_t lda) {
|
||||
static constexpr inline bool lda_cond(int64_t m, int64_t n, int64_t lda) {
|
||||
return n == 1 || lda >= std::max<int64_t>(1L, m);
|
||||
}
|
||||
|
||||
|
||||
@ -375,7 +375,7 @@ static void bf16_gemv_trans(
|
||||
const at::BFloat16 beta,
|
||||
at::BFloat16* y,
|
||||
const int incy) {
|
||||
bf16_gemv_trans_stub(kCPU, m, n, alpha, a, lda, x, incx, beta, y, incy);
|
||||
return bf16_gemv_trans_stub(kCPU, m, n, alpha, a, lda, x, incx, beta, y, incy);
|
||||
}
|
||||
|
||||
template <>
|
||||
|
||||
@ -70,7 +70,7 @@ inline void searchsorted_maybe_trim_input_tensors(
|
||||
const Tensor& raw_boundaries) {
|
||||
Tensor trimmed_sorter;
|
||||
Tensor raw_sorter;
|
||||
searchsorted_maybe_trim_input_tensors(
|
||||
return searchsorted_maybe_trim_input_tensors(
|
||||
trimmed_input,
|
||||
trimmed_boundaries,
|
||||
trimmed_sorter,
|
||||
|
||||
@ -991,7 +991,7 @@ std::size_t UnsafeUkernelKeyHasher<PackKey>::operator()(const PackKey& key) cons
|
||||
template <typename key_t, typename value_t>
|
||||
struct KernelCache {
|
||||
using kstore_t = std::unordered_map<key_t, std::shared_ptr<value_t>, UnsafeUkernelKeyHasher<key_t>>;
|
||||
static std::shared_ptr<value_t>&& fetch_or_create(
|
||||
static inline std::shared_ptr<value_t>&& fetch_or_create(
|
||||
const key_t& key,
|
||||
const std::function<std::shared_ptr<value_t>()>& callback) {
|
||||
auto&& search = get_store().find(key);
|
||||
@ -1003,7 +1003,7 @@ struct KernelCache {
|
||||
}
|
||||
}
|
||||
|
||||
static kstore_t& get_store() {
|
||||
static inline kstore_t& get_store() {
|
||||
static thread_local kstore_t cache_kernels;
|
||||
return cache_kernels;
|
||||
}
|
||||
@ -1067,7 +1067,7 @@ struct GemmHelper {
|
||||
struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
|
||||
// Fetch/create GemmHelper object and execute brgemm with batch size = 1
|
||||
template <typename scalar_t_a, typename scalar_t_b, typename scalar_t_c>
|
||||
static void call(
|
||||
static inline void call(
|
||||
int64_t M,
|
||||
int64_t N,
|
||||
int64_t K,
|
||||
@ -1118,12 +1118,12 @@ struct Brgemm : public KernelCache <BrgemmKey, GemmHelper> {
|
||||
.execute(A, B, (*value).A_B_offsets, C, (*value).scratchpad.data());
|
||||
}
|
||||
|
||||
static std::shared_ptr<GemmHelper>& get_current() {
|
||||
static inline std::shared_ptr<GemmHelper>& get_current() {
|
||||
static thread_local std::shared_ptr<GemmHelper> current;
|
||||
return current;
|
||||
}
|
||||
|
||||
static bool device_check(ScalarType dtype) {
|
||||
static inline bool device_check(ScalarType dtype) {
|
||||
if (!at::globalContext().userEnabledMkldnn()) {
|
||||
return false;
|
||||
}
|
||||
@ -1153,7 +1153,7 @@ using pack_t = dnnl::ukernel::brgemm_pack_B;
|
||||
using pack_t = dnnl::ukernel::transform;
|
||||
#endif
|
||||
struct Pack : public KernelCache <PackKey, pack_t> {
|
||||
static void call(
|
||||
static inline void call(
|
||||
int64_t K,
|
||||
int64_t N,
|
||||
int64_t ld_in,
|
||||
@ -1182,7 +1182,7 @@ struct Pack : public KernelCache <PackKey, pack_t> {
|
||||
}
|
||||
}
|
||||
|
||||
static bool could_pack(ScalarType dtype) {
|
||||
static inline bool could_pack(ScalarType dtype) {
|
||||
if (!at::globalContext().userEnabledMkldnn()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -702,7 +702,7 @@ static void check_shape_forward(const at::Tensor& input,
|
||||
// If kernel size is incorrect
|
||||
std::ostringstream input_ss;
|
||||
std::ostringstream kernel_ss;
|
||||
std::string separator;
|
||||
std::string separator = "";
|
||||
|
||||
for (int i = 0, len = input_shape.size(); i < len; ++i) {
|
||||
input_ss << separator << input_shape[i];
|
||||
@ -1019,7 +1019,7 @@ static Tensor convolution_same(
|
||||
|
||||
if (symmetric_padding) {
|
||||
// All backends handle symmetric padding natively
|
||||
SymDimVector output_padding(dim);
|
||||
SymDimVector output_padding(static_cast<size_t>(dim));
|
||||
return at::convolution_symint(input, weight, bias, stride, padding_l, dilation,
|
||||
false, output_padding, groups);
|
||||
}
|
||||
@ -1039,7 +1039,7 @@ static Tensor convolution_same(
|
||||
}
|
||||
}
|
||||
auto padded_input = at::constant_pad_nd_symint(input, pad_nd, 0);
|
||||
SymDimVector output_padding(dim);
|
||||
SymDimVector output_padding(static_cast<size_t>(dim));
|
||||
return at::convolution_symint(padded_input, weight, bias, stride, padding_l,
|
||||
dilation, false, output_padding, groups);
|
||||
}
|
||||
@ -1174,7 +1174,7 @@ at::Tensor convolution(
|
||||
bool deterministic = ctx.deterministicCuDNN() || ctx.deterministicAlgorithms();
|
||||
return at::_convolution(input, weight, bias, stride, padding, dilation,
|
||||
transposed, output_padding, groups,
|
||||
ctx.benchmarkCuDNN(), deterministic, ctx.userEnabledCuDNN(), ctx.allowTF32CuDNN(at::Float32Op::CONV));
|
||||
ctx.benchmarkCuDNN(), deterministic, ctx.userEnabledCuDNN(), ctx.allowTF32CuDNN("conv"));
|
||||
}
|
||||
|
||||
at::Tensor convolution_overrideable(
|
||||
@ -1319,7 +1319,7 @@ ConvBackend select_conv_backend(
|
||||
params.benchmark = ctx.benchmarkCuDNN();
|
||||
params.deterministic = ctx.deterministicCuDNN() || ctx.deterministicAlgorithms();
|
||||
params.cudnn_enabled = ctx.userEnabledCuDNN();
|
||||
params.allow_tf32 = ctx.allowTF32CuDNN(at::Float32Op::CONV);
|
||||
params.allow_tf32 = ctx.allowTF32CuDNN("conv");
|
||||
|
||||
auto input = input_r;
|
||||
auto weight = weight_r;
|
||||
@ -1699,7 +1699,7 @@ at::Tensor _convolution(
|
||||
c10::MaybeOwned<Tensor> bias_r_maybe_owned = at::borrow_from_optional_tensor(bias_r_opt);
|
||||
const Tensor& bias_r = *bias_r_maybe_owned;
|
||||
|
||||
return at::_convolution(input_r, weight_r, bias_r, stride_, padding_, dilation_, transposed_, output_padding_, groups_, benchmark, deterministic, cudnn_enabled, at::globalContext().allowTF32CuDNN(at::Float32Op::CONV));
|
||||
return at::_convolution(input_r, weight_r, bias_r, stride_, padding_, dilation_, transposed_, output_padding_, groups_, benchmark, deterministic, cudnn_enabled, at::globalContext().allowTF32CuDNN("conv"));
|
||||
}
|
||||
|
||||
std::tuple<Tensor, Tensor, Tensor> convolution_backward_overrideable(
|
||||
@ -1997,7 +1997,7 @@ std::tuple<Tensor, Tensor, Tensor> convolution_backward(
|
||||
params.benchmark = ctx.benchmarkCuDNN();
|
||||
params.deterministic = ctx.deterministicCuDNN() || ctx.deterministicAlgorithms();
|
||||
params.cudnn_enabled = ctx.userEnabledCuDNN();
|
||||
params.allow_tf32 = ctx.allowTF32CuDNN(at::Float32Op::CONV);
|
||||
params.allow_tf32 = ctx.allowTF32CuDNN("conv");
|
||||
|
||||
// Validate inputs.
|
||||
check_shape_backward(input, weight.sizes(), params);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user