## Before
Previously, CA will always unpack all saved variables stored in the autograd graph before executing it. This meant that we can't capture unpack hooks as part of the CA graph, and they would fire out of order wrt to other backward hooks. For memory saving APIs built on top of saved tensor hooks like non-reentrant checkpointing and offloading, we couldn't achieve any savings because all activations would be recomputed/loaded and active at the same time, resulting in no-op.
## After
We add unpack hooks into the CA graph so that they can be executed progressively. The python hook and hook input themselves are wrapped by non-traceable code, so CA polyfills the wrapping as:
```python
# pseudocode
class SavedVariable:
def unpack(self):
if self.hook:
return self.hook(self.packed_data)
else:
return self.packed_data
# This approach won't directly work when we add support for Forward AD or double-backward.
```
Directly executing the CA graph (without torch.compiling it) under checkpointing/offloading, memory profile is expected to stay the same as when using the eager autograd engine. If AOT backward is in the autograd graph, memory profile is expected to be better than the eager autograd engine, since we can now delay saved activations unpacking into the AOT backward's execution.
All tests pass when running the CA graph directly, the remaining issues are in Dynamo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147242
Approved by: https://github.com/jansel
## Before
Previously, CA will always unpack all saved variables stored in the autograd graph before executing it. This meant that we can't capture unpack hooks as part of the CA graph, and they would fire out of order wrt to other backward hooks. For memory saving APIs built on top of saved tensor hooks like non-reentrant checkpointing and offloading, we couldn't achieve any savings because all activations would be recomputed/loaded and active at the same time, resulting in no-op.
## After
We add unpack hooks into the CA graph so that they can be executed progressively. The python hook and hook input themselves are wrapped by non-traceable code, so CA polyfills the wrapping as:
```python
# pseudocode
class SavedVariable:
def unpack(self):
if self.hook:
return self.hook(self.packed_data)
else:
return self.packed_data
# This approach won't directly work when we add support for Forward AD or double-backward.
```
Directly executing the CA graph (without torch.compiling it) under checkpointing/offloading, memory profile is expected to stay the same as when using the eager autograd engine. If AOT backward is in the autograd graph, memory profile is expected to be better than the eager autograd engine, since we can now delay saved activations unpacking into the AOT backward's execution.
All tests pass when running the CA graph directly, the remaining issues are in Dynamo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147242
Approved by: https://github.com/jansel
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.
The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.
The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features. I'm open to suggestions
for how to structure the features better. The main changes:
- Added an --allowlist-pattern flag, which turns off the grep lint
if some other line exists. This is used to stop the grep
lint from complaining about pybind11 includes if the util
include already exists.
- Added --match-first-only flag, which lets grep only match against
the first matching line. This is because, even if there are multiple
includes that are problematic, I only need to fix one of them.
We don't /really/ need this, but when I was running lintrunner -a
to fixup the preexisting codebase it was annoying without this,
as the lintrunner overall driver fails if there are multiple edits
on the same file.
I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.
Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.
See also https://github.com/pybind/pybind11/issues/4099
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
Summary:
When default hooks are set, they are pushed onto a stack.
When nesting context-manager, only the inner-most hooks will
be applied.
There is special care needed to update the TLS code. See also https://github.com/pytorch/pytorch/issues/70940 (i.e. do we need to be storing the enabled flag as well?)
Fixes https://github.com/pytorch/pytorch/issues/70134
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70932
Reviewed By: mruberry
Differential Revision: D33530370
Pulled By: albanD
fbshipit-source-id: 3197d585d77563f36c175d3949115a0776b309f4
Summary:
This renames `WindowsTorchApiMacro.h` to `Export.h` to mirror the c10 header `c10/macros/Export.h` and also updates it to use `C10_EXPORT`/`C10_IMPORT`. This also removes the `THP_API` macro from `THP_export.h` which appears to serve the same purpose.
cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68095
Reviewed By: jbschlosser
Differential Revision: D32810881
Pulled By: albanD
fbshipit-source-id: d6949ccd0d80d6c3e5ec1264207611fcfe2503e3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62909
This PR makes saved tensors default hooks thread local.
This allows using default hooks in a multithreaded context.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D30165416
Pulled By: Varal7
fbshipit-source-id: 10a7d580661d3d94bdaf398c4e076b7bea11c16b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61927
This is a refactor of `SavedVariable.cpp` to prevent ever defining the `data_` tensor if default hooks are set.
Before the refactor:
```c++
data_ = variable.tensor_data(); // this is wasteful if hooks are defined
register_hooks(Engine::get_default_engine().get_default_saved_variable_hooks());
```
After the refactor:
```c++
if (get_default_hooks_()) {
save_metadata_(variable);
register_hooks_(get_default_hooks_(), variable);
return;
}
save_metadata_(variable);
data_ = variable.tensor_data(); // only needed if hooks are not defined
```
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D29848524
Pulled By: Varal7
fbshipit-source-id: abca1eee37a17b47841e28d8a576490913fce1ce
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62564
If the user runs code that registers default saved tensor hooks from
multiple threads, it will fail with a nice error message most of the
time. This commit handles the very rare case where a race condition
would have made it fail silently.
Relanding previous PR #61957
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D30045406
Pulled By: Varal7
fbshipit-source-id: d04f74c99affbbf655e53cfc2acd42f7c5b4e6eb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62563
Expose a pair of functions to Python users: torch.autograd.graph.set_saved_tensors_default_hooks(pack, unpack) and torch.autograd.graph.reset_saved_tensors_default_hooks().
These functions control the hooks applied to saved tensors: all tensors saved in that context will be packed using the pack function, then unpacked accordingly when needed.
Currently, this works by simply calling register_hooks (cf #60975) directly at the end of the constructor of a SavedVariable. This could be optimized further by not performing the copy before registering default hooks, but this would require a small refactor. Edit: the refactor is done in #61927.
A current limitation is that if users create tensors in this context, they will not be able to register additional hooks on the saved tensor.
For instance, to perform something like #28997, one could define a pack function that saves to disk whenever the tensor size is too big and returns a filename, then unpack simply reads the content of the file and outputs a tensor, e.g.:
```
def pack(x):
name = os.path.join(tmp_dir, str(uuid.uuid4()))
torch.save(x, name)
return name
def unpack(name):
return torch.load(name)
```
Relanding previous PR: https://github.com/pytorch/pytorch/pull/61834
Original PR led to timeout error in: https://www.internalfb.com/mast/job/yuguo-release_canary_offline_training-inlinecvrp_a-canary_offline_train_28a7ecfc
Now passing: https://www.internalfb.com/mast/job/quach-release_canary_offline_training-inlinecvrp_a-canary_offline_train_9bb57e98
The difference with the new version is we don't need to acquire the GIL when calling `PyDefaultSavedVariableHooks::get_hooks`.
Test Plan: Imported from OSS
Reviewed By: iramazanli
Differential Revision: D30045405
Pulled By: Varal7
fbshipit-source-id: 7f6c07af3a56fe8835d5edcc815c15ea4fb4e332
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61957
If the user runs code that registers default saved tensor hooks from
multiple threads, it will fail with a nice error message most of the
time. This commit handles the very rare case where a race condition
would have made it fail silently.
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D29848525
Pulled By: Varal7
fbshipit-source-id: eb9bdcfbeed857a988834651246390ea14eedd33
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61834
Expose a pair of functions to Python users: torch.autograd.graph.set_saved_tensors_default_hooks(pack, unpack) and torch.autograd.graph.reset_saved_tensors_default_hooks().
These functions control the hooks applied to saved tensors: all tensors saved in that context will be packed using the pack function, then unpacked accordingly when needed.
Currently, this works by simply calling register_hooks (cf #60975) directly at the end of the constructor of a SavedVariable. This could be optimized further by not performing the copy before registering default hooks, but this would require a small refactor. Edit: the refactor is done in #61927.
A current limitation is that if users create tensors in this context, they will not be able to register additional hooks on the saved tensor.
For instance, to perform something like #28997, one could define a pack function that saves to disk whenever the tensor size is too big and returns a filename, then unpack simply reads the content of the file and outputs a tensor, e.g.:
```
def pack(x):
name = os.path.join(tmp_dir, str(uuid.uuid4()))
torch.save(x, name)
return name
def unpack(name):
return torch.load(name)
```
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D29792193
Pulled By: Varal7
fbshipit-source-id: 33e931230ef59faa3ec8b5d11ef7c05539bce77c