Commit Graph

153 Commits

Author SHA1 Message Date
f5165ade5b Revert D14842057: Compiler uses first-class modules**
Differential Revision:
D14842057

Original commit changeset: ca6e7b5a4380

fbshipit-source-id: e8f1862a59bf20d5f78648b2fdc53a8b3750ead3
2019-04-11 06:17:01 -07:00
5e1f0b2a07 Compiler uses first-class modules** (#19043)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19043
ghimport-source-id: 0c9e80d5f35654af6d472abd5643bff3e9eb9ddf

Differential Revision: D14842057

Pulled By: zdevito

fbshipit-source-id: ca6e7b5a43805240f40b84d30e54495061067dc0
2019-04-11 00:00:48 -07:00
13f03a42d2 Create Object that represents a Module (#18469)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18469
ghimport-source-id: 73cb8b58f43f10b1dcfca805fd5b25c4fa977632

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18469 Create Object that represents a Module**
* #18468 slots with explicit value/setValue make more sense in future patches
* #18467 Make Object hold its ClassType
* #18379 Enforce single parent for script submodules
* #18378 Unify namespace of script::Module
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

This changes the underlying storage for script::Module to hold
a ivalue::Object which has slots for all the parameters and attributes.

NamedIValue and Slot are now merged together into one class Slot that stores
the tuple (ivalue::Object, offset) and can be used to read the name, type,
or value of the slot and also to set the value. This cleans up a bunch
of client uses.

This PR does not actually use the module object in any generated code.
A future PR will switch how code is generated to treat modules as
first class.

Differential Revision: D14613508

fbshipit-source-id: d853a7559f58d244de2ef54a781427fcd1060ed0
2019-04-05 18:58:52 -07:00
f6f34b3f4c slots with explicit value/setValue make more sense in future patches (#18468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18468
ghimport-source-id: d4b41c521f2269a695e03c8e7d05d5542731ee48

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18469 Create Object that represents a Module
* **#18468 slots with explicit value/setValue make more sense in future patches**
* #18467 Make Object hold its ClassType
* #18379 Enforce single parent for script submodules
* #18378 Unify namespace of script::Module
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

Reviewed By: suo

Differential Revision: D14613509

fbshipit-source-id: 9f2208d0efd01465c78cebdc3e8365a9e0adf9ff
2019-04-05 13:41:02 -07:00
53458c97dd Enforce single parent for script submodules (#18379) (#18860)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18860
ghimport-source-id: 96305349bf3db564f43df2263b1e5bddcc9e9dae

Reviewed By: suo

Differential Revision: D14780421

Pulled By: zdevito

fbshipit-source-id: 2bdd89b35866ba035ebea0adab037e441c1006e2
2019-04-05 13:40:56 -07:00
5e8a9e8802 Revert D14673459: [pytorch][PR] [jit] Replace Slot on script::Method with NamedIValue
Differential Revision:
D14673459

Original commit changeset: 21200180c47f

fbshipit-source-id: 9c01de4cf5bb7c87ac0c55705b901db990cd917b
2019-04-05 09:57:13 -07:00
8f5e478aa2 Replace Slot on script::Method with NamedIValue (#18252)
Summary:
This refactor lets us track the types of initial values added onto a `Method`. The main motivation for this is the change in `module.cpp`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18252

Differential Revision: D14673459

Pulled By: driazati

fbshipit-source-id: 21200180c47f25bb70898771adfb569856e6c34a
2019-04-04 23:35:56 -07:00
f97eb8d9e4 Revert D14603722: Enforce single parent for script submodules
Differential Revision:
D14603722

Original commit changeset: 63ab5d0cccf7

fbshipit-source-id: 2c4174def102eda4589e08c4dbd67ce8af975199
2019-04-04 10:32:36 -07:00
7e59c60454 Enforce single parent for script submodules (#18379)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18379
ghimport-source-id: 9895ecc1ff7897e98853dc00675341f36726e7c7

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18379 Enforce single parent for script submodules**
* #18378 Unify namespace of script::Module
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

The assumption that a ScriptModule has a single parent is present in
our serialization format, and likely a few other places. It is not
enforced on creation of script module hierarchies though, meaning that
problems associated with (e.g. replicating a module twice in the output
format) will not be caught until much later in the development cycle.

This patch enforces the property when a submodule is registered.
It also removes NamedModule since it is no longer necessary in this regime.
This will also allow the easy discover of a modules fully-qualified name
without needing to traverse the Module hierarchy.

Differential Revision: D14603722

fbshipit-source-id: 63ab5d0cccf7d66c7833e0adf9023024ca9607cb
2019-04-03 20:26:58 -07:00
0512e4e323 Unify namespace of script::Module (#18378)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18378
ghimport-source-id: 55c29bb436a2153d29ff2f4488d99d8863c187b1

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18379 Enforce single parent for script submodules
* **#18378 Unify namespace of script::Module**
* #18314 Add ability to specialize class types to ArgumentSpec
* #18226 Add Slot type to abstract the raw pointers being used for slots.

This removes individual OrderedDicts in favor of a single unified
namespace for all things in a script::Module. This removes a whole
class of bugs where both a method and an parameter could get the
same name, for instance.

Since we no longer have to expose OrderedDict::Item objects, a lot of
downstream code can be simplified.

We no longer now double-store names (both in the key of the dictionary,
and in the object itself).

Differential Revision: D14603723

fbshipit-source-id: b5f7551b3074679623edd6ea70269830353b4d4c
2019-04-03 16:04:17 -07:00
af9335436d Re-land Parsing file check (#18570)
Summary:
The last time I tried to land it there was a merge race with the docs coverage test lol. Re-landing with the fix.

Re-land of https://github.com/pytorch/pytorch/pull/18304
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18570

Reviewed By: driazati

Differential Revision: D14707285

Pulled By: eellison

fbshipit-source-id: 3a0265928aa8cad78961723d8bf0fbf871fdb71d
2019-04-01 11:56:32 -07:00
24db1667da Attribute serialization improvements (#18188)
Summary:
* adds attributes to `ScriptModule.__getattr__` so they can be accessed in Python after re-importing
* full support for all the possible values for an `int64_t`
    * this necessitated a bunch more `pushWhatever` functions, so re-introduced a templated version to cut down on duplicate code
* tests to validate references / value sharing works
* adds `torch.jit.Unpickler` which people can use to de-serialize the pickle files into Python / have a quick reference on how to do this without PyTorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18188

Differential Revision: D14527490

Pulled By: driazati

fbshipit-source-id: efd15579cc04aa2e28c4b2c9490d82d849dee559
2019-03-29 19:10:12 -07:00
85f36014e2 Experimental logging/counters API (#18235)
Summary:
This defines a generic counters API that users can utilize to provide monitoring functionality in e.g. a production service. We expose both counters for runtime internals as well as a TorchScript API to create user-defined counters. Synopsis of the API:

- `torch/csrc/jit/script/logging.h` specifies the externally-facing API in C++
- `torch/jit/_logging.py` specifies the Python API

We use an interface, `LoggerBase`, to define the interactions between users and a logging backend. Implementing a subclass of `LoggerBase` allows the user to handle these events in a custom way, such as logging into a DB or calling into an infra-specific counters API.

From the frontend perspective, we can create log events in two ways:
1. We provide an `add_stat_value(name, val)` function. This calls into the Logger backend with a key/value pair. For example, we might call `add_stat_value('foo', 1)` to bump an event counter.
2. We provide a `time_point()` function to record a timestamp in nanoseconds. This can be used in conjunction with `add_stat_value` to record runtime wall clock durations.

Examples of frontend usage can be found in `test_jit.py TestLogging`.

We provide a trivial `LockingLogger` implementation as an example and for testing purposes. It is likely not ready for production usage. It demonstrates that a backend implementing the API can do things like specify aggregation types and report these aggregate stats via the `get_counters()` API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18235

Differential Revision: D14545060

Pulled By: jamesr66a

fbshipit-source-id: 04099543a1898cfdd411511e46e03d5dce9b4881
2019-03-29 17:14:03 -07:00
e2fd1d966f Revert D14668859: [pytorch][PR] Re-land Parsing file check
Differential Revision:
D14668859

Original commit changeset: 3825a35ddc61

fbshipit-source-id: f3343ec6b63fe8f1f04959adfac4331865990047
2019-03-29 17:14:00 -07:00
393731ab24 Re-land Parsing file check (#18570)
Summary:
The last time I tried to land it there was a merge race with the docs coverage test lol. Re-landing with the fix.

Re-land of https://github.com/pytorch/pytorch/pull/18304
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18570

Differential Revision: D14668859

Pulled By: eellison

fbshipit-source-id: 3825a35ddc6179a0d433d70d22b5c1a96c20b21a
2019-03-29 15:46:59 -07:00
ff4b6d1a49 Delete batch tensor (#18575)
Summary:
Deleting batch tensor since we are no longer maintaining the project and keeping it functional is blocking other improvements.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18575

Differential Revision: D14671126

Pulled By: eellison

fbshipit-source-id: b42d5b699c4d12171ed95e6d3a977532167f0d2c
2019-03-28 23:13:27 -07:00
aa20591baa Add Slot type to abstract the raw pointers being used for slots. (#18226)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18226
ghimport-source-id: b9ec8651212875b30971cc6859d2ddec6559ae3a

If modules become first-class IValues, then the slots will no longer be raw pointers but (IValue, index) pairs. This commit inserts the Slot abstraction so that this change can be made in later patches.

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18226 Add Slot type to abstract the raw pointers being used for slots.**

Differential Revision: D14542022

fbshipit-source-id: b81d7f4334c983d663e7551bda82df43680d7c5f
2019-03-28 10:35:36 -07:00
ffc7158bf2 Revert D14652372: [pytorch][PR] Add parsing to file check
Differential Revision:
D14652372

Original commit changeset: 7430b9d1dc2b

fbshipit-source-id: fa3d0f68515fe53447746469844d2db20c1292e0
2019-03-28 00:12:47 -07:00
0daafe0209 Add parsing to file check (#18304)
Summary:
This allows you to embed checks in IR, making the test more readable.

E.g.
```
graph_str = 'graph(%0 : Double(5, 5)):
          # CHECK: aten::relu
          %1 : Double(5, 5) = aten::relu(%0)
          return (%1)'
FileCheck().run(graph_str, parseIR(graph_str))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18304

Differential Revision: D14652372

Pulled By: eellison

fbshipit-source-id: 7430b9d1dc2b7584704375aac02d7392ecec76a0
2019-03-27 18:16:05 -07:00
f447b63ed0 Add section about .code to docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18493

Differential Revision: D14634677

Pulled By: jamesr66a

fbshipit-source-id: 9ee065f6ce4218f725b93deb4c64b4ef55926145
2019-03-26 20:52:31 -07:00
7c2290e7ce Better error when module attr is used (#18164)
Summary:
Adds a suggestion to add to __constants__ when a torch.nn.Module attr is accessed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18164

Differential Revision: D14580060

Pulled By: eellison

fbshipit-source-id: 0c5adc21d7341a5691d4b45930947cb1ba84c8e8
2019-03-22 20:22:27 -07:00
10751d5fb4 python interop for script classes (#18148)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18148
ghimport-source-id: 40a9d745dc9aeba53d098743323fcbd50ca65137

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18148 py interop**

Support for converting classes between the Python–TorchScript boundary. Like other TorchScript values, ScriptClasses are native Python values when used in Python and IValues when used in TorchScript.

Notably, there is a copy across this boundary, which will be surprising to users who will expect standard Python reference semantics. I have some ideas for fixing that, but it's a more involved process.

Reviewed By: jamesr66a

Differential Revision: D14526259

fbshipit-source-id: 5916e3032488a42dc7da756c1826d7c040a21ebd
2019-03-22 16:30:04 -07:00
be364ac8d7 Specify overload name in function schema (#18037)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18037

The FunctionSchema can now store an overload name and the parser knows how to parse it. Specify like this:

    my_func.overload1(arg1: Tensor) -> Tensor
    my_func.overload2(arg1: Tensor, arg2: Tensor) -> Tensor

Reviewed By: zdevito

Differential Revision: D14467497

fbshipit-source-id: 8832b32f07351bb61090357b17b77a6a2fed3650
2019-03-15 16:58:13 -07:00
18f721fb9a support serialization of classes (#17856)
Summary:
Stack:
      **#17856 [jit] support serialization of classes**  [💛](https://our.intern.facebook.com/intern/diff/D14402599/)

Add support for saving/loading TorchScript modules that depend on user-defned classes.

We track class dependencies the same we track tensor constants, then write them
all out such that we can just compile them in order before compiling the module
hierarchy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17856

Reviewed By: shannonzhu

Differential Revision: D14461599

Pulled By: suo

fbshipit-source-id: 7115f87e069fd00dc8381d7de9997864fef7ea9f
2019-03-15 12:06:23 -07:00
4d2f6f1bbe Remove remaining test jit expects redux (#17924)
Summary:
Trying to reland https://github.com/pytorch/pytorch/pull/17886 since it broke a build and I reverted it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17924

Differential Revision: D14423842

Pulled By: eellison

fbshipit-source-id: f219e786bd07f7da3b7f9e866981199f5ccf6318
2019-03-12 11:33:34 -07:00
f9820e55af initializing class value (#17585)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17585

Create a sugared value that represents a class during initialization. This is
so that assignments to attributes correctly define attributes in __init__ but
raise an error elsewhere.

Reviewed By: shannonzhu

Differential Revision: D14263403

fbshipit-source-id: 09b2feeb272302f00a79c2a0302fbdf5483aed6a
2019-03-11 19:13:52 -07:00
f540536dfd Revert D14414435: [pytorch][PR] Remove remaining IR Expect files
Differential Revision:
D14414435

Original commit changeset: 0bfd7ce66ac2

fbshipit-source-id: 02de1814f3c4e581d3798059cee752517b176ed9
2019-03-11 17:36:44 -07:00
fd67f6b463 Remove remaining IR Expect files (#17886)
Summary:
Last batch of IR expect files removed. Includes some removal of expect files that are no longer used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17886

Differential Revision: D14414435

Pulled By: eellison

fbshipit-source-id: 0bfd7ce66ac2f72a57f15f45ebd60b95e80b6c16
2019-03-11 17:32:19 -07:00
a2381fa346 Add module attributes (#17309)
Summary:
Similar to `nn.Parameter`s, this PR lets you store any `IValue` on a module as an attribute on a `ScriptModule` (only from the Python front-end currently). To mark something as an attribute, it should wrapped in `jit.Attribute(value, type)` (ex. `self.table = torch.jit.Attribute(table, Dict[str, torch.Tensor])`)

Followup Work:
* (de)serializing for use in C++
* change `self.training` to be a `bool` attribute instead of a buffer
* mutable attributes
* string frontend support
* documentation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17309

Differential Revision: D14354316

Pulled By: driazati

fbshipit-source-id: 67e08ab5229366b67fbc837e67b58831a4fb3318
2019-03-07 10:44:10 -08:00
e6a9062335 usertype -> class (#17528)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17528

as title. register_prim_ops is messy because someone ruined clang-format, but I figured it's okay to include here since this is such a mechanical change

Reviewed By: driazati

Differential Revision: D14236943

fbshipit-source-id: c2b22845837b7f830015510e48ec2ee5202fa407
2019-03-01 10:08:23 -08:00
2cdbb140e6 user defined types (#17314)
Summary:
First pass at user defined types. The following is contained in this PR:
- `UserType` type, which contains a reference to a module with all methods for the type, and a separate namespace for data attributes (map of name -> TypePtr).
- `UserTypeRegistry`, similar to the operator registry
- `UserObject` which is the runtime representation of the user type (just a map of names -> IValues)
- `UserTypeValue` SugaredValue, to manage getattr and setattr while generating IR, plus compiler.cpp changes to make that work.
- Frontend changes to get `torch.jit.script` to work as a class decorator
- `ClassDef` node in our AST.
- primitive ops for object creation, setattr, and getattr, plus alias analysis changes to make mutation safe.

Things that definitely need to get done:
- Import/export, python_print support
- String frontend doesn't understand class definitions yet
- Python interop (using a user-defined type outside TorchScript) is completely broken
- Static methods (without `self`) don't work

Things that are nice but not essential:
- Method definition shouldn't matter (right now you can only reference a method that's already been defined)
- Class definitions can only contain defs, no other expressions are supported.

Things I definitely won't do initially:
- Polymorphism/inheritance
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17314

Differential Revision: D14194065

Pulled By: suo

fbshipit-source-id: c5434afdb9b39f84b7c85a9fdc2891f8250b5025
2019-02-26 01:34:07 -08:00
3de67cd63d Fix remaining -Wreturn-std-move violations in fbcode (#17308)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17308

In some cases there is still no RVO/NRVO and std::move is still needed. Latest
Clang gained -Wreturn-std-move warning to detect cases like this (see
https://reviews.llvm.org/D43322).

Reviewed By: igorsugak

Differential Revision: D14150915

fbshipit-source-id: 0df158f0b2874f1e16f45ba9cf91c56e9cb25066
2019-02-25 07:29:16 -08:00
d8d8371bd3 Batch of Expect Files removal (#17414)
Summary:
Batch of removing expect files, and some tests that no longer test anything.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17414

Differential Revision: D14196342

Pulled By: eellison

fbshipit-source-id: 75c45649d1dd1ce39958fb02f5b7a2622c1d1d01
2019-02-22 18:11:51 -08:00
2370c989d8 Add LSTM to standard library (#15744)
Summary:
**WIP**

Attempt 2 at #14831

This adds `nn.LSTM` to the jit standard library. Necessary changes to the module itself are detailed in comments. The main limitation is the lack of a true `PackedSequence`, instead this PR uses an ordinary `tuple` to stand in for `PackedSequence`.

Most of the new code in `rnn.py` is copied to `nn.LSTM` from `nn.RNNBase` to specialize it for LSTM since `hx` is a `Tuple[Tensor, Tensor]` (rather than just a `Tensor` as in the other RNN modules) for LSTM.

As a hack it adds an internal annotation `@_parameter_list` to mark that a function returns all the parameters of a module. The weights for `RNN` modules are passed to the corresponding op as a `List[Tensor]`. In Python this has to be gathered dynamically since Parameters could be moved from CPU to GPU or be deleted and replaced (i.e. if someone calls `weight_norm` on their module, #15766), but in the JIT parameter lists are immutable, hence a builtin to handle this differently in Python/JIT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15744

Differential Revision: D14173198

Pulled By: driazati

fbshipit-source-id: 4ee8113159b3a8f29a9f56fe661cfbb6b30dffcd
2019-02-21 16:24:19 -08:00
501d346da8 batched cleanups (#17288)
Summary:
Bunch of random stuff I came across while doing UDT stuff. Putting in a separate PR to avoid noise
- fix up the alias analysis list ops to include fork/wait
- improve dump() for aliasDb to print writes
- Move BuiltinFunction::call() to sugaredvalue with the rest of the methods
- formatting and includes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17288

Differential Revision: D14147105

Pulled By: suo

fbshipit-source-id: 62e2a922a1726b684347365dc42c72188f154e9c
2019-02-20 18:31:53 -08:00
89df22e57b Lightweight String check Utility (#16858)
Summary:
light weight implementation of LLVM filecheck utility. Currently only handles string matching - regexes & saving a regex to a variable name can be added as needed.

Current intended usage is through FileCheckBuilder python handle, and is shown in the tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16858

Differential Revision: D14096244

Pulled By: eellison

fbshipit-source-id: c7c8d1457691c105e6ccbb3c1a378d96baac2569
2019-02-19 12:31:57 -08:00
82aa511146 move prim::None to prim::Constant (again) (#17186)
Summary:
Trying to land again, make prim::None into a case of prim::Constant. Reverted the previous landing because it broke an important onnx export test.

https://github.com/pytorch/pytorch/pull/16160
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17186

Differential Revision: D14115304

Pulled By: eellison

fbshipit-source-id: 161435fc30460b4e116cdd62c7b2e5b94581dcb7
2019-02-19 11:45:50 -08:00
91c1d728ac Revert D14109636: [pytorch][PR] move prim::None to a case in prim::Constant
Differential Revision:
D14109636

Original commit changeset: d26fd3839761

fbshipit-source-id: c8c8113e2bff49ea93235732603e6ebc89356533
2019-02-15 16:38:12 -08:00
7caa21f5ca move prim::None to a case in prim::Constant (#16160)
Summary:
This change simplifies analysis done on constants since prim::None does not need to be handled separately now.  To check if a constant node is None, use node->isNone().

Next step will be to remove prim::Undefined.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16160

Differential Revision: D14109636

Pulled By: eellison

fbshipit-source-id: d26fd383976163a2ddd4c24984bd672a541cc876
2019-02-15 16:27:57 -08:00
21696502ff improve error msg when module list isn't added to __constants__ (#17167)
Summary:
Add suggestion to add to __constants__ when a ModuleList of Sequential module is used as a tuple

Addresses https://github.com/pytorch/pytorch/issues/13899
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17167

Differential Revision: D14107688

Pulled By: eellison

fbshipit-source-id: 8c07d1f3e25a9c6bdcfd96dbf6b72c2130838278
2019-02-15 15:03:50 -08:00
678a472ee5 Script module data parallel (#16891)
Summary:
support data parallel for ScriptModule.

see unit tests for testing done for this PR. I also tried traced version of resnet18 from torchvision.

I'm yet to try a complete end-to-end data parallel training. This will be next steps.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16891

Differential Revision: D14002222

Pulled By: gqchen

fbshipit-source-id: fce3598169113215599815c6978e66d3c3a8c282
2019-02-14 22:52:19 -08:00
c3f5ba9460 PyTorch model metadata. (#16275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16275

Adding a generic string `metadata` field as part of the model to capture additional metadata with the model.

Reviewed By: dzhulgakov

Differential Revision: D13579029

fbshipit-source-id: 7456ef2edbe73bb70bbb31889cecd94e0db329a2
2019-02-13 19:48:11 -08:00
decc0893f2 Remove IgnoredPythonOp sugared value
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17042

Differential Revision: D14072497

Pulled By: driazati

fbshipit-source-id: 68fe3fa89c22e60142d758c8cbe0e6e258e7d5c2
2019-02-13 17:59:56 -08:00
44d98c30a3 Better error when using a constant tensor (#16724)
Summary:
Fixes #16284
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16724

Differential Revision: D13990531

Pulled By: driazati

fbshipit-source-id: adbf47a07eddb3813fbe1322944abfe5fcff89fa
2019-02-07 12:28:28 -08:00
f34192db0f Rename DynamicType -> TensorType (#16787)
Summary:
```
import json
from subprocess import check_call
from pprint import pprint
renames = {
    'c10::TensorType': 'DimentionedTensorType',
    'c10::DynamicType': 'TensorType',
    'c10::TensorTypePtr': 'DimentionedTensorTypePtr',
    'c10::DynamicTypePtr': 'TensorTypePtr',
    'c10::TypeKind::DynamicType': 'TensorType',
    'c10::TypeKind::TensorType': 'DimentionedTensorType',
}

entries = json.loads(open('compile_commands.json', 'r').read())

build = None
sources = []

for e in entries:
    name = e['file']
    if not ('jit' in name or 'ATen/core' in name):
        continue
    build = e['directory']
    sources.append(name)

args = ['clang-rename', '-i', '-force', '-pl']
for name in sorted(renames.keys()):
    args += ['-qualified-name={}'.format(name), '-new-name={}'.format(renames[name])]

for source in sources:
    cmd = args + [source]
    pprint(args)
    check_call(cmd, cwd=build)
    check_call(['git', 'stash', 'push', '-m', 'rename'])
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16787

Differential Revision: D13974132

Pulled By: zdevito

fbshipit-source-id: 8368fd53e17cff83707bbe77f2d7aad74f8ce60e
2019-02-06 17:31:07 -08:00
c865d46736 Add @ignore annotation (#16055)
Summary:
Adds a decorator `torch.jit.ignore` for Python functions that tells the compiler to skip over these Python values, putting a `prim::Error` in their place which always throws an exception when run.

This lets you have Python-only code in your model in an explicit way, which is useful for debugging, and still be able to save/load the model.

Fixes #15815
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16055

Differential Revision: D13797286

Pulled By: driazati

fbshipit-source-id: 29d36776608ec101649a702952fc6ff3c27655b1
2019-02-01 16:46:12 -08:00
47bf30661f Directly include headers from ATen.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16287

Differential Revision: D13792949

Pulled By: ZolotukhinM

fbshipit-source-id: d627d8dc469df048063c70d0b5b8d33fede809a3
2019-01-24 11:22:27 -08:00
31de19f210 Add support for overloaded functions (#15556)
Summary:
This PR adds support for overloaded functions as a step toward adding rnn modules to the JIT standard library.

Possible overloads must be manually specified, and when resolving the overload it chooses by the first one that passes the schema matching logic. The structure is very similar to boolean dispatch in #14425. The overload will only work on weak modules.

In order to avoid supporting overloaded methods in Python to match the JIT execution, the current setup offloads that work to the user. In the test added in `test_jit.py`, two methods are used to overload the `forward` method. In order to call `forward` outside the JIT, a Python-only `forward` that does the right argument type switching must also be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15556

Differential Revision: D13576348

Pulled By: driazati

fbshipit-source-id: 7d3bdd4ee5a6088cc20c92f26a696d1ee5b9204b
2019-01-23 18:16:01 -08:00
f636dc9276 clang format world (#15524)
Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.

Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524

Differential Revision: D13547989

Pulled By: suo

fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
2018-12-26 06:55:01 -08:00
0368054a6d Split up compiler.cpp (#15355)
Summary:
This separates the different parts of compiler.cpp to make their relationship more clear. In particular it adds:

* sugared_value.{h,cpp} - all the public SugaredValues that the compiler defines and a few that were inside compiler.cpp
* type_parser.{h, cpp} - Turns TreeRef's defining types into TypePtr
* schema_matching.{h, cpp} - infrastructure for matching arguments against overloaded schema and emitting builtin operators with a particular schema.
Retains:
* compiler.{h, cpp} - now responsible simply for the `defineMethodsInModule` infra structure.

Some utility functions like inlineCallTo have moved to ir.h.

Only thing that is not a move is some changes in module.h/cpp that remove multiple returns from `Method::emit_call_to`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15355

Reviewed By: suo, wanchaol

Differential Revision: D13507524

Pulled By: zdevito

fbshipit-source-id: 69ec936a9ff1a383c12a883616346b219c72e393
2018-12-18 19:43:35 -08:00