Summary:
# Context
See the first PR https://github.com/pytorch/pytorch/pull/153670
# This PR
1. Migrate 3 clamp ops from out-of-tree to in-tree(had to migrate the 3 ops altogether, because clamp.out calls all 3 stubs, which are also called by the other 2 ops):
- clamp.out
- clamp_min.out
- clamp_max.out
2. Also enabled structured kernel codegen for MTIA, which is needed by clamp
3. Also introduced the `--mtia` flag to torchgen to prevent OSS from gencoding MTIA code.(Otherwise we got such link error `lib/libtorch_cpu.so: undefined reference to at::detail::empty_mtia`)
Differential Revision: D74674418
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154015
Approved by: https://github.com/albanD, https://github.com/nautsimon
Summary:
# Context
The MTIA New Aten Backend work is essentially to move MTIA operators from pytorch out-of-tree to in-tree, with following benefits:
1. Avoid duplicate code copied from pytorch, e.g. view ops implementation, util functions.
2. Utilize TensorIterator and structured kernel codegen, avoid manual implementation of broadcasting, dtype casting, asserting, etc.
3. Eliminate MTIA's own codegen flow, which is unnecessary complexity.
4. Overall make MTIA's aten backend more pytorch native.
Differential Revision: D74672464
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153670
Approved by: https://github.com/albanD, https://github.com/nautsimon
Fix: #141974
This PR makes `ViewMeta` sequence, present in functional tensors,
serializable with pickle. In order to accomplish that, it makes
`ViewMeta` an abstract class with overridable `forward` and `reverse`
functions. In this context, each operation that once instanciated
`ViewMeta`, should now create a new specialized class that inherits from
`ViewMeta. Therefore, this PR also uses codegen for creating these
specializations.
In summary, these are the changes this PR introduces:
- `ViewMeta` is turned into an abstract class (see
_FunctionalStorageImpl.cpp_). `forward` and `reverse` are pure virtual
functions that need to be implemented. `to_out_index` should be
implemented by operations that might return more than 1 output.
- New `ViewMeta` specializations for `resize_` and `_unsafe_view` are
created (see _FunctionalizeFallbackKernel.h_).
- New templates _ViewMetaClasses.{cpp,h}_ are created. They hold the
declaration and definition of the `ViewMeta` specializations, which
are automatically generated in the ATen codegen (see _gen.py_).
- New `_functionalization` Python sub-module is created (see
_Module.cpp_). It serves as namespace for the `ViewMeta`
specializations and `InverseReturnMode` enum.
- New template _ViewMetaClassesPythonBinding.cpp_ is created. It holds
the automatically generated Python bindings for the `ViewMeta`
specialization, which are generated in the torch codegen (see
_generate_code.py_).
Note that this PR makes use of codegen at 2 different moments:
- ATen codegen (_gen.py_): generates the `ViewMeta` specialized classes.
- Torch codegen (_generate_code.py_): generated the Python bindings for
them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143712
Approved by: https://github.com/bdhirsh
Summary: The default c_shim version was switched to 2 for HIP in D60674018. This results in some linking errors where shim function symbols are missing from the compiled .so file (eg. P1551186492) when building lowering benchmark scripts since the required files aren't included. Hipify the shim v2 generated header files as well since they're needed during codegen when the buck binaries are executed.
Reviewed By: frank-wei, zoranzhao, henryoier
Differential Revision: D61865202
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134689
Approved by: https://github.com/zoranzhao
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.
```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
virtual ~ViewFunc() {}
/// Returns any SymInts in the saved state.
virtual std::vector<c10::SymInt> get_symints() const { return {}; }
/// Returns the number of SymInts in the saved state.
virtual size_t num_symints() const { return 0; }
/// Returns any tensors in the saved state.
virtual std::vector<at::Tensor> get_tensors() const { return {}; }
/// Returns the number of tensors in the saved state.
virtual size_t num_tensors() const { return 0; }
/// Reapplies the view on the given base using the saved state.
virtual at::Tensor operator()(const at::Tensor&) const = 0;
/// Returns a clone of this ViewFunc, optionally with the specified saved state.
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;
protected:
/// Sets the values of any SymInts in the saved state. The input vector size must
/// match the number of SymInts in the saved state (i.e. the size of the list
/// returned by get_symints()).
virtual void set_symints(std::vector<c10::SymInt>) {}
/// Sets the values of any Tensors in the saved state. The input vector size must
/// match the number of Tensors in the saved state (i.e. the size of the list
/// returned by get_tensors()).
virtual void set_tensors(std::vector<at::Tensor>) {}
};
```
New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`
The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.
Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
{};
virtual ~SliceTensorViewFunc() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
int64_t dim;
c10::optional<c10::SymInt> start;
c10::optional<c10::SymInt> end;
c10::SymInt step;
};
...
// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
::std::vector<c10::SymInt> symints;
symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
if(start.has_value()) symints.insert(symints.end(), *(start));
if(end.has_value()) symints.insert(symints.end(), *(end));
symints.push_back(step);
return symints;
}
size_t SliceTensorViewFunc::num_symints() const {
return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}
void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
auto i = 0;
if(start.has_value()) start = symints[i];
i += (start.has_value() ? 1 : 0);
if(end.has_value()) end = symints[i];
i += (end.has_value() ? 1 : 0);
step = symints[i];
}
std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
::std::vector<at::Tensor> tensors;
return tensors;
}
size_t SliceTensorViewFunc::num_tensors() const {
return static_cast<size_t>(0);
}
void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());
}
at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}
std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
std::optional<std::vector<c10::SymInt>> symints,
std::optional<std::vector<at::Tensor>> tensors) const {
auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
if (symints.has_value()) {
output->set_symints(std::move(*(symints)));
}
if (tensors.has_value()) {
output->set_tensors(std::move(*(tensors)));
}
return output;
}
```
The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.
For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.
```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
virtual ~ViewFunc() {}
/// Returns any SymInts in the saved state.
virtual std::vector<c10::SymInt> get_symints() const { return {}; }
/// Returns the number of SymInts in the saved state.
virtual size_t num_symints() const { return 0; }
/// Returns any tensors in the saved state.
virtual std::vector<at::Tensor> get_tensors() const { return {}; }
/// Returns the number of tensors in the saved state.
virtual size_t num_tensors() const { return 0; }
/// Reapplies the view on the given base using the saved state.
virtual at::Tensor operator()(const at::Tensor&) const = 0;
/// Returns a clone of this ViewFunc, optionally with the specified saved state.
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;
protected:
/// Sets the values of any SymInts in the saved state. The input vector size must
/// match the number of SymInts in the saved state (i.e. the size of the list
/// returned by get_symints()).
virtual void set_symints(std::vector<c10::SymInt>) {}
/// Sets the values of any Tensors in the saved state. The input vector size must
/// match the number of Tensors in the saved state (i.e. the size of the list
/// returned by get_tensors()).
virtual void set_tensors(std::vector<at::Tensor>) {}
};
```
New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`
The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.
Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
{};
virtual ~SliceTensorViewFunc() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
int64_t dim;
c10::optional<c10::SymInt> start;
c10::optional<c10::SymInt> end;
c10::SymInt step;
};
...
// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
::std::vector<c10::SymInt> symints;
symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
if(start.has_value()) symints.insert(symints.end(), *(start));
if(end.has_value()) symints.insert(symints.end(), *(end));
symints.push_back(step);
return symints;
}
size_t SliceTensorViewFunc::num_symints() const {
return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}
void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
auto i = 0;
if(start.has_value()) start = symints[i];
i += (start.has_value() ? 1 : 0);
if(end.has_value()) end = symints[i];
i += (end.has_value() ? 1 : 0);
step = symints[i];
}
std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
::std::vector<at::Tensor> tensors;
return tensors;
}
size_t SliceTensorViewFunc::num_tensors() const {
return static_cast<size_t>(0);
}
void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());
}
at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}
std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
std::optional<std::vector<c10::SymInt>> symints,
std::optional<std::vector<at::Tensor>> tensors) const {
auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
if (symints.has_value()) {
output->set_symints(std::move(*(symints)));
}
if (tensors.has_value()) {
output->set_tensors(std::move(*(tensors)));
}
return output;
}
```
The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.
For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
Related to #103973#110532#108404#94891
**Context:**
As commented in 6ae0554d11/cmake/Dependencies.cmake (L1198)
Kernel asserts are enabled by default for CUDA and disabled for ROCm.
However it is somewhat broken, and Kernel assert was still enabled for ROCm.
Disabling kernel assert is also needed for users who do not have PCIe atomics support. These community users have verified that disabling the kernel assert in PyTorch/ROCm platform fixed their pytorch workflow, like torch.sum script, stable-diffusion. (see the related issues)
**Changes:**
This pull request serves the following purposes:
* Refactor and clean up the logic, make it simpler for ROCm to enable and disable Kernel Asserts
* Fix the bug that Kernel Asserts for ROCm was not disabled by default.
Specifically,
- Renamed `TORCH_DISABLE_GPU_ASSERTS` to `C10_USE_ROCM_KERNEL_ASSERT` for the following reasons:
(1) This variable only applies to ROCm.
(2) The new name is more align with #define CUDA_KERNEL_ASSERT function.
(3) With USE_ in front of the name, we can easily control it with environment variable to turn on and off this feature during build (e.g. `USE_ROCM_KERNEL_ASSERT=1 python setup.py develop` will enable kernel assert for ROCm build).
- Get rid of the `ROCM_FORCE_ENABLE_GPU_ASSERTS' to simplify the logic and make it easier to understand and maintain
- Added `#cmakedefine` to carry over the CMake variable to C++
**Tests:**
(1) build with default mode and verify that USE_ROCM_KERNEL_ASSERT is OFF(0), and kernel assert is disabled:
```
python setup.py develop
```
Verify CMakeCache.txt has correct value.
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=0
```
Tested the following code in ROCm build and CUDA build, and expected the return code differently.
```
subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
```
This piece of code is adapted from below unit test to get around the limitation that this unit test now was skipped for ROCm. (We will check to enable this unit test in the future)
```
python test/test_cuda_expandable_segments.py -k test_fixed_cuda_assert_async
```
Ran the following script, expecting r ==0 since the CUDA_KERNEL_ASSERT is defined as nothing:
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>> r
0
```
(2) Enable the kernel assert by building with USE_ROCM_KERNEL_ASSERT=1, or USE_ROCM_KERNEL_ASSERT=ON
```
USE_ROCM_KERNEL_ASSERT=1 python setup.py develop
```
Verify `USE_ROCM_KERNEL_ASSERT` is `1`
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=1
```
Run the assert test, and expected return code not equal to 0.
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>>/xxxx/pytorch/aten/src/ATen/native/hip/TensorCompare.hip:108: _assert_async_cuda_kernel: Device-side assertion `input[0] != 0' failed.
:0:rocdevice.cpp :2690: 2435301199202 us: [pid:206019 tid:0x7f6cf0a77700] Callback: Queue 0x7f64e8400000 aborting with error : HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception. code: 0x1016
>>> r
-6
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114660
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/jithunnair-amd
Summary:
A follow up of #81581. Before these 2 PRs, if an operator with custom kernel namespace is added to `native_functions.yaml` (or any other yaml consumed by `torchgen`), although we are able to recognize the custom kernel in files such as `NativeFunctions.h` and `RegisterCPU.cpp`, we still generate backend specific wrappers under the hardcoded `at` namespace. This changes the behavior, by generating wrapper functions under custom namespaces.
For example, if the entries in yaml file looks like:
```
- func: op_1(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: at::op_1_kernel # ATen kernel
- func: op_2(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: custom::op_2_kernel # custom kernel
```
We generate the following code for `CPUFunctions_inl.h` and `RegisterCPU.cpp`:
`CPUFunctions_inl.h`:
```
namespace at {
namespace cpu {
TORCH_API at::Tensor & op_1(const at::Tensor & self);
} // namespace cpu
} // namespace at
namespace custom {
namespace cpu {
TORCH_API at::Tensor & op_2(const at::Tensor & self);
} // namespace cpu
} // namespace custom
```
Notice the difference between `at::cpu` and `custom::cpu`.
Then the definition for these can be found in `RegisterCPU.cpp`.
`RegisterCPU.cpp`:
```
#include "CPUFunctions.h"
namespace at {
namespace {
at::Tensor & wrapper_op_1(const at::Tensor & self) {
// No device check
// DeviceGuard omitted
return at::native::op_1_kernel(self);
}
} // anonymous namespace
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_1", TORCH_FN(wrapper_op_1));
}
namespace cpu {
at::Tensor & op_1(at::Tensor & self) {
return wrapper_op_1(self);
}
} // namespace cpu
} // namespace at
namespace custom {
namespace {
at::Tensor & wrapper_op_2(const at::Tensor & self) {
// No device check
// DeviceGuard omitted
return at::native::op_2_kernel(self);
}
} // anonymous namespace
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_2", TORCH_FN(wrapper_op_2));
}
namespace cpu {
at::Tensor & op_2(at::Tensor & self) {
return wrapper_op_2(self);
}
} // namespace cpu
} // namespace custom
```
The benefit for this change is that it unifies all the namespaces derived from custom ops. In the example above, there are:
1. `custom::native` for kernels
2. `custom::<dispatch_key>` e.g., `custom::cpu` for wrappers
This customized operator will have nothing to do with `at::native`, `at::cpu` etc.
Test Plan: This is very hard to test. I will refactor this logic, abstract out some layers so it's testable. Will do it in coming PRs
Differential Revision: D37972772
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81744
Approved by: https://github.com/bdhirsh
This PR changes VmapGeneratedPlumbing.h to be generated by torchgen. The
output file is ATen/VmapGeneratedPlumbing.h.
Why generate this file inside PyTorch codegen instead of a separate step
in functorch?
- I can't figure out how to get functorch's fbcode target to generate
- functorch's build system will, in the mid-term, be absorbed into
pytorch's build system, so I don't want to do the extra work of adding
a step to the functorch build process.
Test Plan:
- build pytorch, build functorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82351
Approved by: https://github.com/ezyang
Summary:
Add missing `-fexceptions` flags that are currently being passed through `exported_preprocessor_flags`. The exported preprocessor flags will be removed in a subsequent diff.
This is a rediff of D37386802 (3e1ac21c3b) with the changes split out to avoid reverts.
Test Plan:
Check flag is present:
```
$ buck uquery xplat/caffe2:common_core -a 'compiler_flags'
{
"//xplat/caffe2:common_core" : {
"compiler_flags" : [
"-fexceptions",
"-frtti",
"-Os",
"-Wno-unknown-pragmas",
"-Wno-write-strings",
"-Wno-unused-variable",
"-Wno-unused-function",
"-Wno-deprecated-declarations",
"-Wno-shadow",
"-Wno-global-constructors",
"-Wno-missing-prototypes",
"-std=gnu++17",
"/EHsc",
"/GR",
"/O1",
"/wd4101"
]
}
}
```
Differential Revision: D37813869
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81394
Approved by: https://github.com/linbinyu
Summary: Move `-fexceptions` out of the exported preprocessor flags and in to the libraries compiler flags. Apply the same changes to all rdeps of this library in the caffe2 subtree.
Test Plan:
Verify no rdeps are missing `-fexceptions` that have cpp sources:
```
% buck uquery 'kind(cxx*, rdeps(//xplat/caffe2/..., //xplat/caffe2/c10:c10, 1))' > /tmp/rdeps
% buck uquery '%Ss - attrfilter(preprocessor_flags, "-fexceptions", %Ss) - attrfilter(compiler_flags, "-fexceptions", %Ss)' @/tmp/rdeps
//xplat/pytorch_models/build/pytorch_dev_mobilenetv3/v1/nnc:asm
//xplat/pytorch_models/build/aot_test_model/v1/nnc:asm
//xplat/pytorch_models/build/pytorch_dev_linear/v1/nnc:asm
//xplat/pytorch_models/build/bi_bytedoc_nnc/v1/nnc:asm
//xplat/pytorch_models/build/bi_bytedoc_nnc/v2/nnc:asm
```
Differential Revision: D37386802
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80387
Approved by: https://github.com/linbinyu
Add codegen infrastructure to generate IR nodes for non-native ops.
The proposed change is to add a `non_native` key to the `{backend}_native_functions.yaml` file that contains schema definitions similar to what is found in `native_functions.yaml`. e.g.
```
non_native:
...
- func: expand(Tensor input, int[] size, bool is_scalar_expand) -> Tensor
...
```
these definitions are parsed into a `LazyIrSchema` that can be used for generating IR nodes using `GenLazyIR`.
Fixes#74628
CC: @wconstab @desertfire @henrytwo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76535
Approved by: https://github.com/wconstab