Commit Graph

861 Commits

Author SHA1 Message Date
c96ed7e6f5 [BE]: No include left behind - recursive glob setuptools support (#148258)
Fixes #148256
TestPlan check the printout from the setup.py build and verify the files are still included.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148258
Approved by: https://github.com/malfet, https://github.com/benjaminglass1
2025-03-14 19:39:21 +00:00
971606befa Add a stable TORCH_LIBRARY to C shim (#148124)
This PR adds two main parts:
- shim.h stable C APIs into torch::Library APIs
- a higher level API in torch/csrc/stable/library.h that calls into this shim.h + otherwise is self contained

Goal: custom kernel writers should be able to call the apis in the directories above in order to register their library in a way that allows their custom extension to run with a different libtorch version than it was built with.

Subplots resolved:

- Do we want a whole separate StableLibrary or do we want to freeze torch::Library and add `m.stable_impl(cstring, void (*fn)(void **, int64_t, int64_t)` into it
    - Yes, we want a separate StableLibrary. We cannot freeze Library and it is NOT header only.
- Should I use unint64_t as the common denominator instead of void* to support 32bit architectures better?
    -  Yes, and done
- Should I add a stable `def` and `fragment` when those can be done in python?
    - I think we do want these --- and now they're done
- Where should library_stable_impl.cpp live? -- no longer relevant
- I need some solid test cases to make sure everything's going ok. I've intentionally thrown in a bunch of random dtypes into the signature, but I still haven't tested returning multiple things, returning nothing, complex dtypes, etc.
    - Have since tested all the torch library endpoints. the others can be tested in a followup to separate components that need to be in shim.h vs can be added later

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148124
Approved by: https://github.com/albanD, https://github.com/zou3519, https://github.com/atalman
2025-03-11 19:12:46 +00:00
275a7c5dbb Revert "Add a stable TORCH_LIBRARY to C shim (#148124)"
This reverts commit 327e07ac1dc3351bb5f0ad436760b83590c400aa.

Reverted https://github.com/pytorch/pytorch/pull/148124 on behalf of https://github.com/malfet due to Sorry for reverting your PR, but somehow it caused test failures in newly introduced tests, see https://hud.pytorch.org/hud/pytorch/pytorch/main/1?per_page=50&name_filter=pull%20%2F%20linux-focal-cuda12.6-py3.10-gcc11-sm89%20%2F%20test%20(default%2C%201&mergeLF=true ([comment](https://github.com/pytorch/pytorch/pull/148124#issuecomment-2709057833))
2025-03-09 20:44:56 +00:00
bb9c426024 Typo Errors fixed in multiple files (#148262)
# Fix typo errors across PyTorch codebase

This PR fixes various spelling errors throughout the PyTorch codebase to improve documentation quality and code readability.

## Changes Made

### Documentation Fixes
- Changed "seperate" to "separate" in multiple files:
  - `setup.py`: Build system documentation
  - `torch/_library/triton.py`: AOT compilation comments
  - `torch/csrc/dynamo/compiled_autograd.h`: Node compilation documentation
  - `torch/export/_unlift.py`: Pass population comments
  - `torch/export/exported_program.py`: Decomposition table notes

### Code Comments and Error Messages
- Changed "occured" to "occurred" in:
  - `test/mobile/test_lite_script_module.py`: Exception handling comments
  - `torch/export/_draft_export.py`: Error message text
  - `aten/src/ATen/native/cuda/linalg/BatchLinearAlgebra.cpp`: MAGMA bug comment
  - `torch/csrc/utils/python_numbers.h`: Overflow handling comment
  - `torch/csrc/jit/OVERVIEW.md`: Graph compilation documentation
  - `torch/_dynamo/symbolic_convert.py`: Error explanation

### API Documentation
- Changed "fullfill" to "fulfill" in `torch/distributed/checkpoint/state_dict_loader.py`
- Changed "accross" to "across" in:
  - `torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp`
  - `torch/distributed/distributed_c10d.py`

## Motivation
These changes improve code readability and maintain consistent spelling throughout the codebase. No functional changes were made; this is purely a documentation and comment improvement PR.

## Test Plan
No testing required as these changes only affect comments and documentation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148262
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-03-09 12:21:40 +00:00
327e07ac1d Add a stable TORCH_LIBRARY to C shim (#148124)
This PR adds two main parts:
- shim.h stable C APIs into torch::Library APIs
- a higher level API in torch/csrc/stable/library.h that calls into this shim.h + otherwise is self contained

Goal: custom kernel writers should be able to call the apis in the directories above in order to register their library in a way that allows their custom extension to run with a different libtorch version than it was built with.

Subplots resolved:

- Do we want a whole separate StableLibrary or do we want to freeze torch::Library and add `m.stable_impl(cstring, void (*fn)(void **, int64_t, int64_t)` into it
    - Yes, we want a separate StableLibrary. We cannot freeze Library and it is NOT header only.
- Should I use unint64_t as the common denominator instead of void* to support 32bit architectures better?
    -  Yes, and done
- Should I add a stable `def` and `fragment` when those can be done in python?
    - I think we do want these --- and now they're done
- Where should library_stable_impl.cpp live? -- no longer relevant
- I need some solid test cases to make sure everything's going ok. I've intentionally thrown in a bunch of random dtypes into the signature, but I still haven't tested returning multiple things, returning nothing, complex dtypes, etc.
    - Have since tested all the torch library endpoints. the others can be tested in a followup to separate components that need to be in shim.h vs can be added later

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148124
Approved by: https://github.com/albanD, https://github.com/zou3519
2025-03-09 10:07:25 +00:00
dd6ec8706e [BE] Relax sympy dependency to 1.13.3 or newer (#148575)
Fixes https://github.com/pytorch/pytorch/issues/145225

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148575
Approved by: https://github.com/ZainRizvi, https://github.com/atalman
2025-03-05 20:51:16 +00:00
df7e43e5d4 [AOTI] Fix aot_inductor_package test errors (#148279)
Summary: Fix fbcode test failures introduced by https://github.com/pytorch/pytorch/pull/147975. Make sure script.ld is copied to the build-time directory.

Differential Revision: D70454149

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148279
Approved by: https://github.com/zoranzhao
2025-03-05 05:22:48 +00:00
754fb834db [BE][CI] bump ruff to 0.9.0: string quote styles (#144569)
Reference: https://docs.astral.sh/ruff/formatter/#f-string-formatting

- Change the outer quotes to double quotes for nested f-strings

```diff
- f'{", ".join(args)}'
+ f"{', '.join(args)}"
```

- Change the inner quotes to double quotes for triple f-strings

```diff
  string = """
-     {', '.join(args)}
+     {", ".join(args)}
  """
```

- Join implicitly concatenated strings

```diff
- string = "short string " "short string " f"{var}"
+ string = f"short string short string {var}"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144569
Approved by: https://github.com/Skylion007
ghstack dependencies: #146509
2025-02-24 19:56:09 +00:00
4ece056791 Nccl update to 2.25.1 for cuda 12.4-12.8 (#146073)
Should resolve: https://github.com/pytorch/pytorch/issues/144768
We use one common nccl version for cuda builds 12.4-12.8 : ``NCCL_VERSION=v2.25.1-1``
For CUDA 11.8 we use legacy ``NCCL_VERSION=v2.21.1-1``
We use pinned version of NCCL rather then submodule.
Move nccl location from ``third_party/nccl/nccl`` to ``third_party/nccl``

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146073
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/kwen2501, https://github.com/fduwjj
2025-02-19 03:52:26 +00:00
7622e29a37 Revert "Nccl update to 2.25.1 for cuda 12.4-12.8 (#146073)"
This reverts commit eecee5863e698d19458b33df7bfecbda0a04557a.

Reverted https://github.com/pytorch/pytorch/pull/146073 on behalf of https://github.com/atalman due to breaks Locally building benchmarks ([comment](https://github.com/pytorch/pytorch/pull/146073#issuecomment-2667054179))
2025-02-18 22:23:35 +00:00
b10ba0a46c Unify all sympy versions to avoid conflicts within PyTorch (#147197)
As the title stated.

There are some tiny diffrences between 1.13.1 and 1.13.3:
1.13.1:
2e489cf4b1/sympy/core/numbers.py (L1591)

1.13.3:
b4ce69ad5d/sympy/core/numbers.py (L1591)

**Previous PR:**
https://github.com/pytorch/pytorch/pull/143908

**ISSUE Related:**
https://github.com/pytorch/pytorch/issues/147144
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147197
Approved by: https://github.com/malfet
2025-02-18 10:51:43 +00:00
eecee5863e Nccl update to 2.25.1 for cuda 12.4-12.8 (#146073)
Should resolve: https://github.com/pytorch/pytorch/issues/144768
We use one common nccl version for cuda builds 12.4-12.8 : ``NCCL_VERSION=v2.25.1-1``
For CUDA 11.8 we use legacy ``NCCL_VERSION=v2.21.1-1``
We use pinned version of NCCL rather then submodule.
Move nccl location from ``third_party/nccl/nccl`` to ``third_party/nccl``

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146073
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/kwen2501, https://github.com/fduwjj
2025-02-14 21:23:19 +00:00
e06ee4aa9f Revert "Nccl update to 2.25.1 for cuda 12.4-12.8 (#146073)"
This reverts commit 06f4a5c0e578d7da10ebdf14edcd24e5dcef78d6.

Reverted https://github.com/pytorch/pytorch/pull/146073 on behalf of https://github.com/atalman due to breaks macos builds: ModuleNotFoundError: No module named 'torch._C._distributed_c10d'; 'torch._C' is not a package ([comment](https://github.com/pytorch/pytorch/pull/146073#issuecomment-2659802389))
2025-02-14 16:44:46 +00:00
06f4a5c0e5 Nccl update to 2.25.1 for cuda 12.4-12.8 (#146073)
Should resolve: https://github.com/pytorch/pytorch/issues/144768
We use one common nccl version for cuda builds 12.4-12.8 : ``NCCL_VERSION=v2.25.1-1``
For CUDA 11.8 we use legacy ``NCCL_VERSION=v2.21.1-1``
We use pinned version of NCCL rather then submodule.
Move nccl location from ``third_party/nccl/nccl`` to ``third_party/nccl``

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146073
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/kwen2501, https://github.com/fduwjj
2025-02-14 15:29:59 +00:00
0d5f0a81c5 [CMake] Find HomeBrew OpenMP on MacOS (#145870)
Either via `OMP_PREFIX` envvar or by searching in `/opt/homebrew/opt/libomp` folder

Modify libomp bundling logic in setup.py to change absolute path to libomp.dylib to a relative one if necessary
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145870
Approved by: https://github.com/Skylion007, https://github.com/atalman
ghstack dependencies: #145871
2025-01-30 03:19:51 +00:00
40ccb7a86d cpp_wrapper: Move #includes to per-device header files (#145932)
Summary:
This prepares us for the next PR in the stack, where we introduce pre-compiled per-device header files to save compilation time.

Reland https://github.com/pytorch/pytorch/pull/143909 after merge conflicts.

Co-authored-by: Benjamin Glass <[bglass@quansight.com](mailto:bglass@quansight.com)>

Differential Revision: D68656960

Pulled By: benjaminglass1

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145932
Approved by: https://github.com/yushangdi, https://github.com/benjaminglass1

Co-authored-by: bglass@quansight.com <bglass@quansight.com>
2025-01-29 21:08:45 +00:00
29ddf9a63e Document dispatch trace build flag (#145517)
Ok, the build flag seems to have been broken for a while since the function it calls doesn't exist anymore.
Repurposed it to enable dispatcher printing (which requires a full (and slow) debug build otherwise).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145517
Approved by: https://github.com/bdhirsh
2025-01-24 03:19:39 +00:00
41b38f755c Revert "Reverting the PR adding Kleidiai-based int4 kernels (#145392)" (#145505)
https://github.com/pytorch/pytorch/pull/134124 was reverted by https://github.com/pytorch/pytorch/pull/145392 due to KleidiAI clone issue.

1. This reverts commit 0940eb6d44f3cf69dd840db990245cbe1f78e770 (https://github.com/pytorch/pytorch/pull/145392 )and Fixes KleidiAI mirror issue.
2. KleidiAI is now cloned from github mirror instead of arm gitlab

Change-Id: I7d6eee7214cd117d3057d615936fcc3ee6052fa2

Fixes https://github.com/pytorch/pytorch/issues/145273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145505
Approved by: https://github.com/malfet
2025-01-23 18:50:59 +00:00
0940eb6d44 Reverting the PR adding Kleidiai-based int4 kernels (#145392)
Mitigation for https://github.com/pytorch/pytorch/issues/145273
Reverting https://github.com/pytorch/pytorch/pull/134124 and https://github.com/pytorch/pytorch/pull/144074

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145392
Approved by: https://github.com/ZainRizvi, https://github.com/malfet, https://github.com/atalman, https://github.com/digantdesai
2025-01-22 20:11:49 +00:00
dc9b77cc55 [MPS] Support includes in metal objects (#145087)
Useful for code reuse for Metal shader build both for eager mode and MPSInductor, but it requires one to implement `_cpp_embed_headers` tool that, as name suggests, would preprocess and embeds the for shader to be used in dynamic compilation.
Test using:
 -  `TestMetalLibrary.test_metal_include`
 - Moving `i0`/`i1` implementation to `c10/util/metal_special_math.h` and call it from `SpecialOps.metal` shader, which now looks much more compact:
 ```metal
template <typename T, typename Tout = T>
void kernel
i0(constant T* input,
   device Tout* output,
   uint index [[thread_position_in_grid]]) {
  output[index] = c10::i0(static_cast<Tout>(input[index]));
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145087
Approved by: https://github.com/dcci
ghstack dependencies: #145023
2025-01-18 05:35:22 +00:00
a215e174a1 [BE] Remove conda from scripts and build files Part 2 (#145015)
Continuation of https://github.com/pytorch/pytorch/pull/144870

Remove conda logic from scripts:

1. Remove conda build from triton build script
2. Remove conda checks from setup.py
3. Remove conda from release scripts
4. Script read_conda_versions.sh is not used (checked via git grep)

Related to: https://github.com/pytorch/pytorch/issues/138506
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145015
Approved by: https://github.com/malfet, https://github.com/Skylion007
2025-01-17 16:26:24 +00:00
94c0f15302 Revert "cpp_wrapper: Move #includes to per-device header files (#143909)"
This reverts commit d62b3979dadfa4928ec1c76e850f874d49803125.

Reverted https://github.com/pytorch/pytorch/pull/143909 on behalf of https://github.com/kit1980 due to breaking internal builds because of removal of torch‎/_inductor‎/codegen‎/aoti_runtime‎/implementation.cpp‎ ([comment](https://github.com/pytorch/pytorch/pull/143909#issuecomment-2597188669))
2025-01-17 00:36:38 +00:00
d62b3979da cpp_wrapper: Move #includes to per-device header files (#143909)
This prepares us for the next PR in the stack, where we introduce pre-compiled per-device header files to save compilation time.

Differential Revision: [D67938955](https://our.internmc.facebook.com/intern/diff/D67938955)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143909
Approved by: https://github.com/desertfire
2025-01-15 21:14:02 +00:00
e14c36d3f4 Set maximum supported version of Python as 3.13 (#144396)
Same as https://github.com/pytorch/pytorch/pull/119743 Required for Release 2.6.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144396
Approved by: https://github.com/Skylion007, https://github.com/albanD, https://github.com/malfet
2025-01-08 16:16:10 +00:00
94737e8a2a [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-20 19:32:03 +00:00
8136daff5a Revert "[ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)"
This reverts commit 4b82251011f85f9d1395b451d61e976af844d9b1.

Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks lots of internal build ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2555953189))
2024-12-19 23:33:17 +00:00
4b82251011 [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-19 18:51:26 +00:00
14fe1f7190 Revert "[ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)"
This reverts commit d3ff2d42c28a2c187cbedfd8f60b84a4dfa2d6bf.

Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/malfet due to This broke S390 builds, includes cpuinfo unconditionally ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2552560208))
2024-12-19 01:05:11 +00:00
d3ff2d42c2 [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-18 22:30:07 +00:00
424156c26c [ROCm] Update to AOTriton 0.8b (#140172)
Notable new features for SDPA operators on AMD systems from AOTriton 0.8b:

1. Nestedtensor support;
2. MQA/GQA support;
3. Restore Efficient attention support for causal=True and seqlen_q != seqlen_k cases;
    + The kernel should use top-left alignment, bottom right alignment will be added later
4. Move gfx1100 (RX7900/W7800/W7900) out of experimental support status.
   However, users are strongly recommended to update to ROCM 6.2.4, notably for
   its firmware updates.

Related unit tests are enabled as well.

Notable related changes from AOTriton 0.8b:

1. AOTriton 0.8b moves the GPU kernel out of libaotriton.so to a separate directory `aotriton.images`;
2. LZMA replaces ZSTD as GPU kernel compression algorithm for better compression ratio: aotriton0.8b (.so + aotriton.images take 350MB) compared to aotriton0.7b .so: 800MB
3. The compression cannot be disabled now, and `liblzma` is hard run-time dependency.
    + Should not be a problem, since `lzma` is part of Python Standard Library

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140172
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily

Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
2024-12-06 21:45:18 +00:00
1a7da6e7e9 [export] Add test to enforce consistency between synced thrift and generated thrift from schema.py (#141989)
Summary:
In this diff we implement a way to ensure the internal thrift schema from cfgr (configerator/structs/caffe2/torch/export/schema.thrift) and the schema in OSS (torch/_export/serde/schema.thrift) are in sync, by adding a unittest to reflect on the type names and fields from each schema and compare them field by field.

When we detect new fields/types from torch/_export/serde/schema.thrift, there'll be a test failure on the trunk and the error message hints people to add the missing field/type to the thrift schema from cfgr, so that they are always in sync in practice.

Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_thrift_schema_in_sync

Differential Revision: D66716834

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141989
Approved by: https://github.com/yiming0416
2024-12-06 18:42:20 +00:00
4742080ed9 [AOTI XPU] Enable Cpp wraper for Intel GPU. (#135318)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135318
Approved by: https://github.com/jgong5, https://github.com/EikanWang, https://github.com/guangyey, https://github.com/desertfire
2024-11-26 11:51:32 +00:00
a2ac96cae0 [BE] Rectify some references to caffe2 (#140204)
- Rename `tools.build_pytorch_libs.build_caffe2` to `tools.build_pytorch_libs.build_pytorch`
- Delete number of `if BUILD_CAFFE2` conditions

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140204
Approved by: https://github.com/huydhn, https://github.com/r-barnes, https://github.com/atalman
2024-11-09 14:14:20 +00:00
46bca8a4b6 Export XPU oneDNN header to the public (#139177)
# Motivation
Export oneDNN header to the public, for example, the third-party extension now could use `GpuStreamManager` to manage `dnnl::stream` to submit oneDNN kernel.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139177
Approved by: https://github.com/gujinghui, https://github.com/EikanWang, https://github.com/malfet
2024-11-01 02:36:16 +00:00
bd88d40e5f [Submodule] update submodule onnx==1.17.0 (#139128)
Follow-up PR of: https://github.com/pytorch/pytorch/pull/138719

CC @malfet @ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139128
Approved by: https://github.com/malfet
2024-10-31 02:50:00 +00:00
5c49db98b4 [EZ] Update minversion to 3.9.0 (#139085)
Fixes https://github.com/pytorch/pytorch/issues/138979

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139085
Approved by: https://github.com/kit1980, https://github.com/huydhn, https://github.com/seemethere, https://github.com/Skylion007
2024-10-28 18:04:29 +00:00
49ed365b22 [BE]: Update Typeguard to TypeIs for better type inference (#133814)
Uses TypeIs instead of TypeGuard for better inference. See https://peps.python.org/pep-0742/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133814
Approved by: https://github.com/ezyang
2024-10-26 15:07:13 +00:00
a3de067975 [PyTorch] Use 128-bit vectors for ARM64 (#137426)
The correct vector length for ARM64 is 128 bits (16
bytes). We were previously using double this, apparently just because
that would be the same length as AVX2.

Differential Revision: [D63984039](https://our.internmc.facebook.com/intern/diff/D63984039/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137426
Approved by: https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #138486, #138542, #138655, #138716, #138744
2024-10-26 00:20:35 +00:00
32d4582e02 Revert "[BE]: Update Typeguard to TypeIs for better type inference (#133814)"
This reverts commit 16caa8c1b3a02e47b5f52d3c2d40d7931cc427dc.

Reverted https://github.com/pytorch/pytorch/pull/133814 on behalf of https://github.com/jeanschmidt due to checking if this will solve inductor errors ([comment](https://github.com/pytorch/pytorch/pull/133814#issuecomment-2427565425))
2024-10-21 19:40:58 +00:00
16caa8c1b3 [BE]: Update Typeguard to TypeIs for better type inference (#133814)
Uses TypeIs instead of TypeGuard for better inference. See https://peps.python.org/pep-0742/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133814
Approved by: https://github.com/ezyang
2024-10-21 17:20:06 +00:00
d1027c2be6 Revert "Update sympy version constraint to 1.13.3 (#138338)"
This reverts commit d8279ad9d162b5ce71699f462d3664c3745b14f5.

Reverted https://github.com/pytorch/pytorch/pull/138338 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but I think a bunch of inductor tests and test_dynamic_shapes are failing in trunk after this lands d8279ad9d1 ([comment](https://github.com/pytorch/pytorch/pull/138338#issuecomment-2424487225))
2024-10-20 03:19:02 +00:00
d8279ad9d1 Update sympy version constraint to 1.13.3 (#138338)
`simpy` was pinned to version 1.13.1 due to test failures with version 1.13.2 on Windows and mac, as reported in https://github.com/pytorch/pytorch/pull/133235. Now that a newer version, 1.13.3, has been released, this PR aims to verify if the test failure has been resolved and also allow building with newer versions for packaging purposes (e.g., https://github.com/conda-forge/pytorch-cpu-feedstock/pull/277#discussion_r1806721862).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138338
Approved by: https://github.com/Skylion007, https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-10-20 00:20:02 +00:00
3cfd244495 Add USE_SYSTEM_NVTX option (#138287)
## Summary

We are currently [updating](https://github.com/conda-forge/pytorch-cpu-feedstock/pull/277) the [`conda-forge::pytorch`](https://anaconda.org/conda-forge/pytorch) package to version 2.5.0. This update includes a new dependency, the third_party/NVTX submodule. However, like other package management frameworks (e.g., apt), conda-forge prefers using system-installed packages instead of vendor-provided third-party packages.

This pull request aims to add an option, `USE_SYSTEM_NVTX`, to select whether to use the vendored nvtx or the system-installed one, with the default being the vendored one (which is the current behavior).

## Test Plan

The `USE_SYSTEM_NVTX` option is tested by building the `conda-forge::pytorch` package with the change applied as a [patch](cd1d2464dd/recipe/patches/0005-Use-system-nvtx3.patch).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138287
Approved by: https://github.com/albanD
2024-10-19 04:26:01 +00:00
8cda774a03 Add torch.xpu.get_arch_list and torch.xpu.get_gencode_flags for XPU (#137773)
# Motivation
Add `torch.xpu.get_arch_list()` and `torch.xpu.get_gencode_flags()` methods that return architecture list and AOT flags to preserve what flags PyTorch XPU was built with.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137773
Approved by: https://github.com/EikanWang, https://github.com/albanD
2024-10-18 02:28:08 +00:00
6016b8a9be Remove CI/CD python 3.8 requirements (#137893)
Python 3.8 is deprecated from CI/CD. No reason have these pins
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137893
Approved by: https://github.com/Skylion007, https://github.com/huydhn, https://github.com/albanD, https://github.com/kit1980
2024-10-14 20:28:48 +00:00
59cdd8ddf1 Bump optree version to 0.13.0 to enable Python 3.13 and Python 3.13t support (#137396)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137396
Approved by: https://github.com/albanD
2024-10-08 06:49:04 +00:00
5a6ddbcc3b Extending the Pytorch vec backend for SVE (ARM) (#119571)
**Motivation:**
In Pytorch, Aten vectorization supports multiple platforms, including x86 and Arm, as well as multiple data types. It provides a generic implementation of Vector (Vec) type that allows the programmer to write code packing various primitives (such as floats) within 256bit & 512bits registers. It can be extended to support other ISAs easily by adding more VecISA sub-classes.

**Reference Link:** https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cpu/vec

**This PR:**

* Our goal with this contribution is to add support for SVE backend for Vec in the Aten vectorization for CPU backend which can be benefitted by any ARM architecture supported CPU's that supports SVE.

* More about SVE ISA for ARM: [https://developer.arm.com/Architectures/Scalable Vector Extensions](https://developer.arm.com/Architectures/Scalable%20Vector%20Extensions)

* We are using the ARM C Language Extensions for SVE (https://developer.arm.com/documentation/102699/0100/Optimizing-with-intrinsics ) to accelerate performance for various operators in the SVE backend for Vec.

* Currently we are adding support only for SVE ISA with the vector length of 256 bits (SVE 256). In future, we plan to extend this SVE support for other vector lengths as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119571
Approved by: https://github.com/malfet, https://github.com/snadampal

Co-authored-by: Divya Kotadiya <divya.kotadiya@fujitsu.com>
2024-09-18 18:59:10 +00:00
cd9ee49a69 [aoti] Add cpp loader (#135374)
* Added a cpp loader, AOTIModelPackageLoader, which can load the .pt2, build the .so, and create a runner. The python-facing API is that users can directly call the `run` function, whereas in cpp users can directly access the `runner_` if they are more familiar with that. I couldn't figure out how to bind the `get_runner()` function to python...
* Added a new config, `aot_inductor.package_cpp_only` which will **not** package the so. This means that whenever the package is loaded, we will need to build the so. This is turned off by default so that new environments do not need to rebuild their so. The `package_cpp_only` is a feature which torchchat intends to use to provide flexibility to users.
* Added a new config, `aot_inductor.metadata` which stores user-provided metadata, serialized to the pt2 as a json file. It also stores the device used when exporting, "cuda" or "cpu", so that during load time, we can use that data to determine which AOTIModelContainerRunner to use. The metadata can be accessed through `loader.get_metadata()`. TODO is to move this metadata to the toplevel `package_aoti` function so that we can remove the metadata as a config.
* Separated out `package_aoti` as a standalone function, instead of it automatically being called in inductor. This is to prepare for the case where users will compile multiple models, and want to bundle it in one package. The specific use case is in torchchat, where we want to package the separately-exported encoder and decoder layers. An example of how to use this is in `test_multiple_methods`.
* `load_package` will load a singular model, given the model name.
* The loader doesn't support windows for now, I think I need to add some more casing to make the build commands work on windows?

Differential Revision: [D62329906](https://our.internmc.facebook.com/intern/diff/D62329906)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135374
Approved by: https://github.com/desertfire, https://github.com/malfet
2024-09-11 03:00:01 +00:00
e000cf0ad9 Fix license metadata in setup.py (#129219)
Package metadata in setup.py lists license as BSD-3 which is not a valid SPDX id. The correct id would be BSD-3-Clause.

Specifying an SPDX id is beneficial to license compliance scanning.

*Taking up #129123 from my personal account.*
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129219
Approved by: https://github.com/malfet, https://github.com/kit1980
2024-09-04 00:21:22 +00:00
bdfa94b787 [RFC] Make fr trace script a console scripts (#134729)
We want to make fr analyzer script a command after users `pip install torch`, that's why we want to mimic what torchrun is doing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134729
Approved by: https://github.com/c-p-i-o, https://github.com/malfet
ghstack dependencies: #134528, #134780
2024-08-30 18:17:06 +00:00