Fixes#155028
This pull request updates the documentation by transitioning from .rst to .md format. It introduces new Markdown files for the documentation of named_tensor, nested, nn.attention.bias, nn.attention.experimental, and nn.attention.flex_attention
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155696
Approved by: https://github.com/svekars
Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
Fixes#155036
This pull request updates the documentation for several modules by transitioning from .rst to .md format, improving readability and usability. It introduces new Markdown files for the documentation of torch.ao.ns._numeric_suite, torch.ao.ns._numeric_suite_fx, AOTInductor, AOTInductor Minifier, and the torch.compiler API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155377
Approved by: https://github.com/svekars
Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
Fixes https://github.com/pytorch/pytorch/issues/155023
Related PR: #155781
Description:
As discussed, this PR is a follow-up update for `jit_language_reference_v2.md` by deleting the code chunk indentation.
Checklist:
- [x] The issue being fixed is referenced above (Fixes https://github.com/pytorch/pytorch/issues/155023)
- [x] Only one issue is addressed in this pull request
- [x] Labels from the issue that this PR is fixing are added to this pull request
- [x] No unnecessary issues are included into this pull request.
@pytorchbot label "topic: docs"
@pytorchbot label "topic: not user facing"
@pytorchbot label docathon-h1-2025
@pytorchbot label "module: docs"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155937
Approved by: https://github.com/jingsh, https://github.com/svekars
Summary: Change HF classes to not have an underscore, there-by making them public, we will add documentation to them following this
Test Plan:
ensure existing tests pass
Rollback Plan:
Differential Revision: D76364024
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155837
Approved by: https://github.com/saumishr
Fixes https://github.com/pytorch/pytorch/issues/155023
Description:
converted `jit_language_reference_v2.rst` to `jit_language_reference_v2.md`
**I indented the code blocks to minimize the file difference to pass the sanity check for no more than 2000 lines of change. I will submit another PR to fix the indentation after this PR is merged.**
Checklist:
- [x] The issue being fixed is referenced above (Fixes https://github.com/pytorch/pytorch/issues/155023)
- [x] Only one issue is addressed in this pull request
- [x] Labels from the issue that this PR is fixing are added to this pull request
- [x] No unnecessary issues are included into this pull request.
@pytorchbot label "topic: docs"
@pytorchbot label "topic: not user facing"
@pytorchbot label docathon-h1-2025
@pytorchbot label module: docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155781
Approved by: https://github.com/svekars
This PR registers the RotaryEmbedding op in the `torch.ops.onnx` name spaces and allows the exporter to recognize and export onnx operators.
## Design
ONNX operators of their respective opset version is implemented in torch/onnx/ops/_impl.py, and are registered in the torch.ops.onnx namespace following the following rule:
`OpType-version => torch.ops.onnx.OpType.opset{version}`
For example, `RotaryEmbedding-23` becomes `torch.ops.onnx.RotaryEmbedding.opset23`
This name is parsed by the exporter to create an onnx node in the graph without having to go through translation.
When users use the ops in the model, we provide more convenient, unversioned functions under `torch.onnx.ops` that will dispatch to the implementations based on user input (type and provided attributes). For example, users can directly call `torch.onnx.ops.rotary_embedding()` to use the op natively in their pytorch models. I chose snake case naming to make the functions more pythonic and aligned with other torch apis.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154745
Approved by: https://github.com/titaiwangms
Which inherits from `RuntimeError` and contains `error_code`, which in case of CUDA should contain error returned by `cudaGetLastError`
`torch::detail::_new_accelerator_error_object(c10::AcceleratorError&)` follows the pattern of CPython's [`PyErr_SetString`](cb8a72b301/Python/errors.c (L282)), namely
- Convert cstr into Python string with `PyUnicode_FromString`
- Create new exception object using `PyObject_CallOneArg` just like it's done in [`_PyErr_CreateException`](cb8a72b301/Python/errors.c (L32))
- Set `error_code` property using `PyObject_SetAttrString`
- decref all temporary references
Test that it works and captures CPP backtrace (in addition to CI) by running
```python
import os
os.environ['TORCH_SHOW_CPP_STACKTRACES'] = '1'
import torch
x = torch.rand(10, device="cuda")
y = torch.arange(20, device="cuda")
try:
x[y] = 2
print(x)
except torch.AcceleratorError as e:
print("Exception was raised", e.args[0])
print("Captured error code is ", e.error_code)
```
which produces following output
```
Exception was raised CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
Exception raised from c10_cuda_check_implementation at /home/ubuntu/pytorch/c10/cuda/CUDAException.cpp:41 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) [clone .cold] from CUDAException.cpp:0
#7 void at::native::gpu_kernel_impl<at::native::AbsFunctor<float> >(at::TensorIteratorBase&, at::native::AbsFunctor<float> const&) [clone .isra.0] from tmpxft_000191fc_00000000-6_AbsKernel.cudafe1.cpp:0
#8 at::native::abs_kernel_cuda(at::TensorIteratorBase&) from ??:0
#9 at::Tensor& at::native::unary_op_impl_with_complex_to_float_out<at::native::abs_stub_DECLARE_DISPATCH_type>(at::Tensor&, at::Tensor const&, at::native::abs_stub_DECLARE_DISPATCH_type&, bool) [clone .constprop.0] from UnaryOps.cpp:0
#10 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA_out_abs_out(at::Tensor const&, at::Tensor&) from RegisterCUDA_0.cpp:0
#11 at::_ops::abs_out::call(at::Tensor const&, at::Tensor&) from ??:0
#12 at::native::abs(at::Tensor const&) from ??:0
#13 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeExplicitAutograd__abs>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeExplicitAutograd_0.cpp:0
#14 at::_ops::abs::redispatch(c10::DispatchKeySet, at::Tensor const&) from ??:0
#15 torch::autograd::VariableType::(anonymous namespace)::abs(c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#16 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&), &torch::autograd::VariableType::(anonymous namespace)::abs>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&> >, at::Tensor (c10::DispatchKeySet, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#17 at::_ops::abs::call(at::Tensor const&) from ??:0
#18 at::native::isfinite(at::Tensor const&) from ??:0
#19 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__isfinite>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeImplicitAutograd_0.cpp:0
#20 at::_ops::isfinite::call(at::Tensor const&) from ??:0
#21 torch::autograd::THPVariable_isfinite(_object*, _object*, _object*) from python_torch_functions_2.cpp:0
#22 PyObject_CallFunctionObjArgs from ??:0
#23 _PyObject_MakeTpCall from ??:0
#24 _PyEval_EvalFrameDefault from ??:0
#25 _PyObject_FastCallDictTstate from ??:0
#26 _PyStack_AsDict from ??:0
#27 _PyObject_MakeTpCall from ??:0
#28 _PyEval_EvalFrameDefault from ??:0
#29 _PyFunction_Vectorcall from ??:0
#30 _PyEval_EvalFrameDefault from ??:0
#31 _PyFunction_Vectorcall from ??:0
#32 _PyEval_EvalFrameDefault from ??:0
#33 _PyFunction_Vectorcall from ??:0
#34 _PyEval_EvalFrameDefault from ??:0
#35 PyFrame_GetCode from ??:0
#36 PyNumber_Xor from ??:0
#37 PyObject_Str from ??:0
#38 PyFile_WriteObject from ??:0
#39 _PyWideStringList_AsList from ??:0
#40 _PyDict_NewPresized from ??:0
#41 _PyEval_EvalFrameDefault from ??:0
#42 PyEval_EvalCode from ??:0
#43 PyEval_EvalCode from ??:0
#44 PyUnicode_Tailmatch from ??:0
#45 PyInit__collections from ??:0
#46 PyUnicode_Tailmatch from ??:0
#47 _PyRun_SimpleFileObject from ??:0
#48 _PyRun_AnyFileObject from ??:0
#49 Py_RunMain from ??:0
#50 Py_BytesMain from ??:0
#51 __libc_init_first from ??:0
#52 __libc_start_main from ??:0
#53 _start from ??:0
Captured error code is 710
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152023
Approved by: https://github.com/eqy, https://github.com/mradmila, https://github.com/ngimel
ghstack dependencies: #154436