Commit Graph

71 Commits

Author SHA1 Message Date
e5c7b7b8b5 Automatic update of fbcode/onnx to 04a29addfd5b912812addb8dea5f8763fbfaad01 (#33328)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33328

Previous import was 8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5e

Included changes:
- **[04a29add](https://github.com/onnx/onnx/commit/04a29add)**: Use // instead of # (#2598) <Lu Fang>
- **[f8e140a9](https://github.com/onnx/onnx/commit/f8e140a9)**: Kezhan/function update (#2596) <Ke Zhang>
- **[6185faae](https://github.com/onnx/onnx/commit/6185faae)**: fix the attribute types section in IR.md (#2590) <Ke Zhang>
- **[f254647a](https://github.com/onnx/onnx/commit/f254647a)**: Allow Constant operator to promote scalar and list to tensors. (#2592) <Jeremy Cochoy>
- **[f12ec799](https://github.com/onnx/onnx/commit/f12ec799)**: Add NegativeLogLikelihood(NllLoss) op (#2551) <liqunfu>

Test Plan: ci

Reviewed By: hl475

Differential Revision: D19897554

fbshipit-source-id: d8efb5c5ac8f9d71727de33c67af681ed8ec8123
2020-02-13 21:03:17 -08:00
674dca0831 Automatic update of fbcode/onnx to 8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5e (#33075)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33075

Previous import was 65020daafa9183c769938b4512ce543fd5740f8f

Included changes:
- **[8b3f7e2e](https://github.com/onnx/onnx/commit/8b3f7e2e)**: Update Dropout and  BatchNorm to be Training Friendly (#2568) <Lara Haidar>
- **[61f0bbc5](https://github.com/onnx/onnx/commit/61f0bbc5)**: Fix a bug in ScatterND shape inference (#2577) <Bowen Bao>
- **[05bce9cf](https://github.com/onnx/onnx/commit/05bce9cf)**: add utility function to make reference attribute whose name is not the same as the attribute it refers. (#2583) <Ke Zhang>
- **[71181c83](https://github.com/onnx/onnx/commit/71181c83)**: Clarify spec for constant of shape with dim_n = 0 (#2567) <Negin Raoof>
- **[eadba733](https://github.com/onnx/onnx/commit/eadba733)**: Update sigs.md with link to calendar page (#2579) <Prasanth Pulavarthi>
- **[08562f8e](https://github.com/onnx/onnx/commit/08562f8e)**: Update working-groups.md (#2580) <Prasanth Pulavarthi>
- **[0e718913](https://github.com/onnx/onnx/commit/0e718913)**: Fix Slice op's shape inference logic (#2526) <Hariharan Seshadri>
- **[12111410](https://github.com/onnx/onnx/commit/12111410)**: Add missing spaces to Random*Like doc (#2572) <Takeshi Watanabe>
- **[7e6e61d6](https://github.com/onnx/onnx/commit/7e6e61d6)**: Contributing: fix typos (#2571) <Maher Jendoubi>
- **[bbd604ef](https://github.com/onnx/onnx/commit/bbd604ef)**: Add Einsum op (#2504) <Negin Raoof>
- **[fd3ab73a](https://github.com/onnx/onnx/commit/fd3ab73a)**: Clarify split supports zero length splits (#2544) <Negin Raoof>
- **[6dd73774](https://github.com/onnx/onnx/commit/6dd73774)**: Fix circleci build and drop unsupported Windows builds (#2565) <Wei-Sheng Chin>
- **[b3d201a2](https://github.com/onnx/onnx/commit/b3d201a2)**: Fix the formula of intermediate zero calculation for DynamicQuantizeLinear (#2556) <Yufeng Li>
- **[3613eb25](https://github.com/onnx/onnx/commit/3613eb25)**: Add wording to clarify. (#2555) <Dwayne Robinson>
- **[dfa4384c](https://github.com/onnx/onnx/commit/dfa4384c)**: Fix shape inference for Split with split attribute (#2328) <Shinichiro Hamaji>
- **[684fc1bc](https://github.com/onnx/onnx/commit/684fc1bc)**: Keep symbolic dims in Concat with a single input (#2418) <Shinichiro Hamaji>

Test Plan: ci

Reviewed By: hl475

Differential Revision: D19784487

fbshipit-source-id: 421cdc3394faeff0168853f4ff065fc599ca3967
2020-02-07 02:18:57 -08:00
f6f1e0aef5 Automatic update of fbcode/onnx to 65020daafa9183c769938b4512ce543fd5740f8f (#32125)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32125

Previous import was 57ebc587fcf3913b4be93653b0dd58c686447298

Included changes:
- **[65020daa](https://github.com/onnx/onnx/commit/65020daa)**: better error message for undefined inputs (#2540) <Yuxin Wu>
- **[8afff0e9](https://github.com/onnx/onnx/commit/8afff0e9)**: bump ORT version (#2538) <Lu Fang>
- **[3d9ca57e](https://github.com/onnx/onnx/commit/3d9ca57e)**: fix name of directory (#2537) <Prasanth Pulavarthi>
- **[df8fa2c9](https://github.com/onnx/onnx/commit/df8fa2c9)**: Repository guidelines (#2539) <Prasanth Pulavarthi>
- **[49cc2f02](https://github.com/onnx/onnx/commit/49cc2f02)**: Update CircleCI job to use Python3.6 (#2527) <bddppq>
- **[25ff79a4](https://github.com/onnx/onnx/commit/25ff79a4)**: Fix wrong model version, it's not 12 (the onnx_opset_version()), not 11 (the opset version of the latest stable), but 10 (#2478) <daquexian>
- **[7cebaed5](https://github.com/onnx/onnx/commit/7cebaed5)**: Fix Windows py3.5 CI (#2529) <bddppq>
- **[eddae00e](https://github.com/onnx/onnx/commit/eddae00e)**: Correct the order of arguments of InferShapes (#2500) <Shinichiro Hamaji>
- **[41b5afe6](https://github.com/onnx/onnx/commit/41b5afe6)**: Include <ostream> in common/status.h (#2519) <Casey Carter>
- **[423f1977](https://github.com/onnx/onnx/commit/423f1977)**: add 8 bit support to maxpool op (#2510) <Ashwini Khade>
- **[78593c2f](https://github.com/onnx/onnx/commit/78593c2f)**: add 8 bit support to reducemin and reducemax ops (#2516) <Ashwini Khade>

Test Plan: cont build

Reviewed By: benoitsteiner

Differential Revision: D19380034

fbshipit-source-id: ddce8450864a611773b2a32e2f0254c9bb6b6906
2020-01-14 15:21:37 -08:00
c34ef1aa2e Automatic update of fbcode/onnx to c08a7b76cf7c1555ae37186f12be4d62b2c39b3b (#30619)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30619

Previous import was fea8568cac61a482ed208748fdc0e1a8e47f62f5

Included changes:
- **[c08a7b76](https://github.com/onnx/onnx/commit/c08a7b76)**: doc: fix some typos at ONNXIFI (#2473) <Yorkie Liu>
- **[4be12d46](https://github.com/onnx/onnx/commit/4be12d46)**: remove workshop update since it is done (#2460) <Prasanth Pulavarthi>
- **[86107d1b](https://github.com/onnx/onnx/commit/86107d1b)**: Updated with correct URL to LICENSE (#2468) <Ryan Loney>
- **[9bf6fbb6](https://github.com/onnx/onnx/commit/9bf6fbb6)**: Update Argmin/Argmax (#2461) <Lara Haidar>
- **[748d81b8](https://github.com/onnx/onnx/commit/748d81b8)**: Fix windows conda build (#2452) <Ashwini Khade>
- **[a32db1c5](https://github.com/onnx/onnx/commit/a32db1c5)**: Delete duplicate word in comment (#2439) <Haibo Hao>
- **[e108da9a](https://github.com/onnx/onnx/commit/e108da9a)**: Fix bug in function body verifier (#2390) <G. Ramalingam>
- **[c3d3ef82](https://github.com/onnx/onnx/commit/c3d3ef82)**: docs: fix typo in IR.md (#2441) <Elliot Waite>

Test Plan: ci

Reviewed By: hl475

Differential Revision: D18766132

fbshipit-source-id: 13c04f21399579acb87a8f9fac2e4c329b0720b8
2019-12-10 10:15:08 -08:00
d6ee58494f Automatic update of fbcode/onnx to 23bb6ea1a71f08e200114a153f48bd7adb66d486 (#26441)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26441

Previous import was 1316afc9f972f81340faa05763e2898f38bcc3b0

Included changes:
- **[23bb6ea1](https://github.com/onnx/onnx/commit/23bb6ea1)**: Gemm optional bias (#2330) <James Allingham>
- **[1ac1f219](https://github.com/onnx/onnx/commit/1ac1f219)**: Changes for AIX platform (#1913) <kavanabhat>
- **[13b026f5](https://github.com/onnx/onnx/commit/13b026f5)**: Updated test cases for reshape (#2127) <James Allingham>
- **[97fcfe30](https://github.com/onnx/onnx/commit/97fcfe30)**: Replace is by == (#2326) <G. Ramalingam>
- **[3b5601e6](https://github.com/onnx/onnx/commit/3b5601e6)**: Updated docs for strides and dilations attributes  (#2291) <James Allingham>
- **[d0c697b1](https://github.com/onnx/onnx/commit/d0c697b1)**: Revamped test cases for Gemm (#2060) <James Allingham>
- **[a3955c3c](https://github.com/onnx/onnx/commit/a3955c3c)**: Add more shape inference tests for Logical operators to improve coverage (#2133) <Hariharan Seshadri>
- **[e2e12d97](https://github.com/onnx/onnx/commit/e2e12d97)**: Change incorrect use of ValueError to TypeError (#2304) <prcvih>
- **[1f4b5f8c](https://github.com/onnx/onnx/commit/1f4b5f8c)**: Support dynamic 'pads' and 'value' in Pad operator (#2031) <Hariharan Seshadri>

Test Plan: ci

Reviewed By: hl475

Differential Revision: D17466717

fbshipit-source-id: 0f89a7a5a821d2c693492c99b4bebd5966e21d9f
2019-09-24 05:38:52 -07:00
bebc3d6aad Automatic update of fbcode/onnx to 1316afc9f972f81340faa05763e2898f38bcc3b0 (#26309)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26309

Previous import was 95252c2adec185e305e34486c6756ece9aa8f57f

Included changes:
- **[1316afc9](https://github.com/onnx/onnx/commit/1316afc9)**: Update IR doc to clarify initializers are permitted as node inputs (#2320) <G. Ramalingam>
- **[5e920d0c](https://github.com/onnx/onnx/commit/5e920d0c)**: Avoid uses of special chars (#2315) <Wei-Sheng Chin>
- **[2fa08b0f](https://github.com/onnx/onnx/commit/2fa08b0f)**: Regenerate ONNX proto and add release date to ver 6 IR (#2316) <Wei-Sheng Chin>
- **[adf9c7a3](https://github.com/onnx/onnx/commit/adf9c7a3)**: Add description of default type about y_zero_point (#2110) <Takeshi Watanabe>
- **[ee7072c7](https://github.com/onnx/onnx/commit/ee7072c7)**: Support make_attribute empty string (#2129) <shjwudp>
- **[f913b6e7](https://github.com/onnx/onnx/commit/f913b6e7)**: More unsqueeze tests (#2200) <James Allingham>
- **[57b51937](https://github.com/onnx/onnx/commit/57b51937)**: Fix resize shape inference issue in opset10 (#2294) <Bowen Bao>
- **[d7595f34](https://github.com/onnx/onnx/commit/d7595f34)**: Sequence related ops (#2249) <Bowen Bao>
- **[599f3da9](https://github.com/onnx/onnx/commit/599f3da9)**: Add helper function update_inputs_outputs_dims to tools (#2148) <Bowen Bao>
- **[3e6382bc](https://github.com/onnx/onnx/commit/3e6382bc)**: Update documentation about required input output types (#2310) <G. Ramalingam>
- **[0c765d9b](https://github.com/onnx/onnx/commit/0c765d9b)**: Shape inference for NMS (#2269) <Hariharan Seshadri>
- **[89266710](https://github.com/onnx/onnx/commit/89266710)**: Fix extra collect_snippets warning (#2277) (#2307) <Lutz Roeder>

Test Plan: ci

Reviewed By: hl475

Differential Revision: D17403954

fbshipit-source-id: 78a9c3ecf5aa7f7a0ba8ea30286eab61ee903772
2019-09-17 06:46:59 -07:00
7e4ac8b851 Automatic update of fbcode/onnx to 7988d8360b11e6003560076e9b1d4aa426db3244 (#25959)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25959

Previous import was 28ca699b69b5a31892619defca2391044a9a6052

Included changes:
- **[7988d836](https://github.com/onnx/onnx/commit/7988d836)**: Supporting negative axes for all existing onnx ops (#2281) <Negin Raoof>
- **[5ca0a09e](https://github.com/onnx/onnx/commit/5ca0a09e)**: Update managingexperimentalops.md (#1981) <Joseph Spisak>
- **[bc0495c1](https://github.com/onnx/onnx/commit/bc0495c1)**: Fix link to community docs in readme (#2261) <Prasanth Pulavarthi>
- **[2fdb3ef6](https://github.com/onnx/onnx/commit/2fdb3ef6)**: move map and sequence types to onnx domain, (#2244) <Ke Zhang>
- **[568b65aa](https://github.com/onnx/onnx/commit/568b65aa)**: Improve compatiblity with proto3 and enable reading attributes (#2288) <Dmitri Smirnov>
- **[1f350f2c](https://github.com/onnx/onnx/commit/1f350f2c)**: Remove type info for loop variadic input in Loop op used to compose the Range op (#2287) <Hariharan Seshadri>
- **[eb139446](https://github.com/onnx/onnx/commit/eb139446)**: Add Foundation WG to working-groups.md (#2276) <Ryan Loney>
- **[4eabc4b3](https://github.com/onnx/onnx/commit/4eabc4b3)**: Fix testdata model for CumSum. Add exclusive attribute. (#2271) <jignparm>
- **[1a62afdb](https://github.com/onnx/onnx/commit/1a62afdb)**: Support GatherND operator in ONNX (#2106) <Hariharan Seshadri>
- **[0e330e9d](https://github.com/onnx/onnx/commit/0e330e9d)**: Support ScatterND operator in ONNX (#2220) <Bowen Bao>
- **[733f7a6a](https://github.com/onnx/onnx/commit/733f7a6a)**: Add Det to ONNX (#2233) <Bowen Bao>
- **[52187738](https://github.com/onnx/onnx/commit/52187738)**: Update the description of nearest_mode of resize op (#2257) <daquexian>
- **[64b4b686](https://github.com/onnx/onnx/commit/64b4b686)**: Adding sparse tensor to ONNX (#2019) <G. Ramalingam>
- **[c8a8b7cc](https://github.com/onnx/onnx/commit/c8a8b7cc)**: Support Range operator in ONNX (#2242) <Hariharan Seshadri>
- **[44b0d6d5](https://github.com/onnx/onnx/commit/44b0d6d5)**: Update resize op (#2057) <daquexian>
- **[7d907964](https://github.com/onnx/onnx/commit/7d907964)**: Add function to fuse dynamic quantization graph into 1 node (#2187) <Ashwini Khade>
- **[36f8e6d9](https://github.com/onnx/onnx/commit/36f8e6d9)**: Update logo_request.md (#2231) <Prasanth Pulavarthi>
- **[4eb737c8](https://github.com/onnx/onnx/commit/4eb737c8)**: Update Clip in opset 11 to support min/max as inputs instead of attributes (#2096) <Bowen Bao>
- **[a25e1388](https://github.com/onnx/onnx/commit/a25e1388)**: Fix segfault in tile shape inference (#2221) <daquexian>
- **[2dc273c7](https://github.com/onnx/onnx/commit/2dc273c7)**: update onehot shape inference to reflect the spec for depth input (#2224) <Ashwini Khade>
- **[665211c1](https://github.com/onnx/onnx/commit/665211c1)**: Add GatherElements Op and Rename ScatterElements (#2143) <Lara Haidar>
- **[3ba2e31a](https://github.com/onnx/onnx/commit/3ba2e31a)**: Unique (#2141) <liqunfu>
- **[5a5588ad](https://github.com/onnx/onnx/commit/5a5588ad)**: Clarify dimension variable scoping (#2211) <G. Ramalingam>
- **[fabe39d5](https://github.com/onnx/onnx/commit/fabe39d5)**: Liqun/topk sort (#2126) <liqunfu>
- **[453aa644](https://github.com/onnx/onnx/commit/453aa644)**: Update document for NMS (#2193) <Hector Li>
- **[34e28ec2](https://github.com/onnx/onnx/commit/34e28ec2)**: Handle negative 'axis' value in Split type and shape inferencing (#2177) <Scott McKay>
- **[28ec4583](https://github.com/onnx/onnx/commit/28ec4583)**: depth to space shuffle order (#2163) <Negin Raoof>
- **[98f72629](https://github.com/onnx/onnx/commit/98f72629)**: minor updates to fix links in readme (#2189) <Prasanth Pulavarthi>
- **[321d1467](https://github.com/onnx/onnx/commit/321d1467)**: Add check to disallow squeezing input axes which are not 1 (#2204) <Ashwini Khade>
- **[573f0dc9](https://github.com/onnx/onnx/commit/573f0dc9)**: fix a bug in fun shape inference (#2188) <Tang, Cheng>
- **[36dc7110](https://github.com/onnx/onnx/commit/36dc7110)**: Clarify ambiguity in gather spec regarding indices expectation (#2202) <Ashwini Khade>
- **[a2449673](https://github.com/onnx/onnx/commit/a2449673)**: Fix some minor issues in IR.md and Versioning.md (#2108) <edgchen1>
- **[349aff69](https://github.com/onnx/onnx/commit/349aff69)**: Skip install typing package for python >=3.5 (#2199) <bddppq>

Test Plan: ci

Reviewed By: bddppq, benoitsteiner

Differential Revision: D17296390

fbshipit-source-id: 9f9f5ce85d9694128008d756c2ea393bd4e0cb71
2019-09-12 12:15:03 -07:00
3574d9ff70 updated pixel_shuffle in opset 11 to use depthToSpace
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23739

Differential Revision: D16800355

Pulled By: bddppq

fbshipit-source-id: 1502c5b7ec1495286bad17b6ffa359cf995f78fb
2019-08-15 11:37:44 -07:00
796a39ba85 Automatic update of fbcode/onnx to 707064980b9825b8705b9d1c9aad34d8b022d5dd (#22981)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22981

Previous import was 806aa863020fa180e57f576cb032ec44ce8ddcca

Included changes:
- **[70706498](https://github.com/onnx/onnx/commit/70706498)**: TensorProto::INT8 & INT16 were missed here (#2164) <ZINEKS>
- **[8218a4ea](https://github.com/onnx/onnx/commit/8218a4ea)**: Fix LabelEncoder's shape inference (#2170) <Wei-Sheng Chin>
- **[0f1a9a1c](https://github.com/onnx/onnx/commit/0f1a9a1c)**: Fixing a unit test in Cumsum Operator (#2157) <Jeff Saremi>
- **[2c03cff0](https://github.com/onnx/onnx/commit/2c03cff0)**: [New Operator] CumSum (#2030) <Jeff Saremi>
- **[220b8300](https://github.com/onnx/onnx/commit/220b8300)**: Fix globalpool output shape (#2147) <daquexian>

Reviewed By: benoitsteiner

Differential Revision: D16341736

fbshipit-source-id: 7e7a2684d8c821991231bfd6558f9f6cb4fb05fb
2019-07-17 14:05:14 -07:00
c2a08d339b Automatic update of fbcode/onnx to dd599b05f424eb161a31f3e059566a33310dbe5e (#21641)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21641

Previous import was 5160f3ac3380302224998f1c95e111cd961c4bc5

Included changes:
- **[dd599b05](https://github.com/onnx/onnx/commit/dd599b05)**: Fix type s/depracted/deprecated/ (#2092) <Takeshi Watanabe>
- **[abb1702a](https://github.com/onnx/onnx/commit/abb1702a)**: Add shape inference for Tile op (#2076) <Hariharan Seshadri>
- **[67638d9c](https://github.com/onnx/onnx/commit/67638d9c)**: [New Operator] Round (#2053) <Jeff Saremi>
- **[584e4477](https://github.com/onnx/onnx/commit/584e4477)**: Add dilations support in ConvTranspose shape inference and update docs (#2068) <daquexian>

Reviewed By: zrphercule

Differential Revision: D15762382

fbshipit-source-id: 590f25fb733e1565eb90fcdeb797b0ba34e2d2c3
2019-06-11 16:54:47 -07:00
07ac00d21a Automatic update of fbcode/onnx to 9005291283e943f1a91da5f0acf218bc4e8eb2ca (#21057)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21057

Previous import was cc2333a3f929caca7223b98699237f19388dd585

Included changes:
- **[90052912](https://github.com/onnx/onnx/commit/90052912)**: Fix wrong condition and add --user in update_doc.sh (#2050) <daquexian>
- **[a4f44a20](https://github.com/onnx/onnx/commit/a4f44a20)**: Add bit-shift operators for supporting hashing (#1931) <Wei-Sheng Chin>
- **[0098752c](https://github.com/onnx/onnx/commit/0098752c)**: Add shape inference logic for Expand op (#2041) <Hariharan Seshadri>
- **[fbe8addb](https://github.com/onnx/onnx/commit/fbe8addb)**: update qops tests (#2040) <Ashwini Khade>
- **[874fb37c](https://github.com/onnx/onnx/commit/874fb37c)**: Fix torchvision installation (#2054) <bddppq>
- **[1f5f6582](https://github.com/onnx/onnx/commit/1f5f6582)**: Fix bug that kernel_shape rather than effective_kernel_shape is used in dilated conv (#2043) <daquexian>
- **[38b6c44e](https://github.com/onnx/onnx/commit/38b6c44e)**: Changes done internally at Facebook (#2035) <Lu Fang>
- **[5c51f0db](https://github.com/onnx/onnx/commit/5c51f0db)**: Explicitly specify type of integers in the input tensor. (#2034) <Dmitri Smirnov>

Reviewed By: benoitsteiner

Differential Revision: D15534241

fbshipit-source-id: 8d2b78a986e5b7fbeb248f2d7b80c1a07230654e
2019-05-30 17:33:18 -07:00
8defcbfcf4 Enable caffe2 softmax tests with ROCm 2.4 (#20280)
Summary:
cc xw285cornell petrex
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20280

Reviewed By: xw285cornell

Differential Revision: D15262695

Pulled By: bddppq

fbshipit-source-id: d72490ff599cdab0331230bc9b12075085386319
2019-05-08 13:29:11 -07:00
5025d1d5e4 Automatic update of fbcode/onnx to 27d4b617e7097cda7d0d4c45ff2b09d248f33179 (#19718)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19718

Previous import was 0e8d2bc5e51455c70ef790b9f65aa632ed9bc8a7

Included changes:
- **[27d4b617](https://github.com/onnx/onnx/commit/27d4b617)**: Adding RoIAlign operator (#1869) <Sam Pepose>
- **[70c9026c](https://github.com/onnx/onnx/commit/70c9026c)**: add ReverseSequence op (#1927) <Guoliang Hua>
- **[ed2db02a](https://github.com/onnx/onnx/commit/ed2db02a)**: README.md: Update badge style for build status (#1942) <Yulong Wang>
- **[e36d3b54](https://github.com/onnx/onnx/commit/e36d3b54)**: Enable python 3.7 in CI for Windows (#1943) <Raymond Yang>

Differential Revision: D15077516

fbshipit-source-id: c8c6935381ff5a96ab9a4ee519685814f4ea6e59
2019-04-25 10:54:15 -07:00
5a796d15be Automatic update of fbcode/onnx to 0e8d2bc5e51455c70ef790b9f65aa632ed9bc8a7 (#19568)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19568

Previous import was 83dd62659fc07d5b7fa93b5d1c1879f93509c7db

Included changes:
- **[0e8d2bc5](https://github.com/onnx/onnx/commit/0e8d2bc5)**: [Minor need to be in 1.5]Fix an issue in NMS test data which introduce wrong shape. (#1953) <Hector Li>
- **[9346dd5d](https://github.com/onnx/onnx/commit/9346dd5d)**: adding modulus operator (#1874) <Jeff Saremi>
- **[414dbc73](https://github.com/onnx/onnx/commit/414dbc73)**: Fix shape inference for slice (#1950) <Hariharan Seshadri>
- **[6fb0775d](https://github.com/onnx/onnx/commit/6fb0775d)**: Fix shape inference for ConstantOfShape op (#1951) <Ashwini Khade>

Reviewed By: bddppq, zrphercule, benoitsteiner

Differential Revision: D15033070

fbshipit-source-id: f7eb90b142cbdc9bf1600cfd33e5a8df709045fb
2019-04-22 17:36:36 -07:00
e714429bf4 Automatic update of fbcode/onnx to 83dd62659fc07d5b7fa93b5d1c1879f93509c7db (#19454)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19454

Previous import was ad7313470a9119d7e1afda7edf1d654497ee80ab

Included changes:
- **[83dd6265](https://github.com/onnx/onnx/commit/83dd6265)**: Add NonMaxSuppression operator (#1703) <Hector Li>
- **[31ca5d6f](https://github.com/onnx/onnx/commit/31ca5d6f)**: add node tests for quantized ops (#1944) <Ashwini Khade>
- **[e6076c1d](https://github.com/onnx/onnx/commit/e6076c1d)**: Fix test stat coverage script (#1948) <Raymond Yang>
- **[ad036405](https://github.com/onnx/onnx/commit/ad036405)**: Add IsInf to detect infinity values (#1884) <Wei-Sheng Chin>

Reviewed By: benoitsteiner

Differential Revision: D15010015

fbshipit-source-id: 4b29de21de60f8e6a2db75309809a4e619c92532
2019-04-22 10:46:08 -07:00
a5a1c9a171 Automatic update of fbcode/onnx to fb1a80692c1ab0bd27b1072f2e7bffacba336777 (#18585)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18585

Previous import was b29e78a4efb8e5d8995f576bbf19a846807829b6

Included changes:
- **[fb1a8069](https://github.com/onnx/onnx/commit/fb1a8069)**: Fix wrongly handled attribute in MVN and test generating scripts (#1877) <Raymond Yang>
- **[b22041c3](https://github.com/onnx/onnx/commit/b22041c3)**: Add dilation attribute to MaxPool (#1864) <karljang>

Reviewed By: zrphercule, benoitsteiner

Differential Revision: D14668623

fbshipit-source-id: fa7f44b1ecc949d8dd654939d20b1e93db98b1d2
2019-03-28 23:47:10 -07:00
1989716ae5 Resubmit PR-18512: Improved onnx export for 3 onnx ops (#18571)
Summary:
Fix ROCm CI failure
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18571

Differential Revision: D14669323

Pulled By: bddppq

fbshipit-source-id: 022afe5c20e680295c9cfdfe1ec14650305955a8
2019-03-28 18:12:49 -07:00
77280b11e3 Revert D14635130: Improved onnx export for 3 onnx ops.
Differential Revision:
D14635130

Original commit changeset: d54a2b6e2950

fbshipit-source-id: f624e2befdde245cb88435a95508b2a8e6b12e61
2019-03-28 10:26:34 -07:00
eee760dbd3 Improved onnx export for 3 onnx ops. (#18512)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18512

Ceil and Floor have been supported since version 6 of ONNX: export them using the native onnx ops instead of an Aten op.
Similarly, support for the Where op has been added in version 9, so we don't need to wrap these op in an Aten op.

Reviewed By: houseroad

Differential Revision: D14635130

fbshipit-source-id: d54a2b6e295074a6214b5939b21051a6735c9958
2019-03-28 08:55:21 -07:00
afc7574aed Automatic update of fbcode/onnx to c05f2ae412daf8fd64136ca354b97ccf73e0ea6c (#18285)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18285

Previous import was 96c58ceeacf0f2b73d752e413e4fd78787a12da3

Included changes:
- **[c05f2ae4](https://github.com/onnx/onnx/commit/c05f2ae4)**: update both core and ml docs (#1879) <Lu Fang>
- **[f895279b](https://github.com/onnx/onnx/commit/f895279b)**: fix the problems introduced in previous PRs in operator registration (#1878) <Lu Fang>
- **[f6f80657](https://github.com/onnx/onnx/commit/f6f80657)**: Skip the schema check on ops in non-standard domain (#1876) <Lu Fang>
- **[8c8be722](https://github.com/onnx/onnx/commit/8c8be722)**: Introduce Function Body Helper  (#1868) <Sherlock>
- **[b605eafb](https://github.com/onnx/onnx/commit/b605eafb)**: Support down sampling for Upsample with scales < 1. (#1773) <Ke Zhang>
- **[47f7aa71](https://github.com/onnx/onnx/commit/47f7aa71)**: Remove scaledtanh (#1866) <Ashwini Khade>
- **[4dfc56de](https://github.com/onnx/onnx/commit/4dfc56de)**: Add Ceil support for Max and Average Pooling (#1860) <Lara Haidar>
- **[552a8efc](https://github.com/onnx/onnx/commit/552a8efc)**: Add testcase generator for functions (#1862) <Raymond Yang>
- **[fdb978a5](https://github.com/onnx/onnx/commit/fdb978a5)**: Promote Thresholded Relu Op (#1856) <Ashwini Khade>
- **[ce332628](https://github.com/onnx/onnx/commit/ce332628)**: Update Slice with dynamic input & optional input steps (#1836) <Bowen Bao>
- **[3a9a8787](https://github.com/onnx/onnx/commit/3a9a8787)**: Merge function into opschema (#1834) <Raymond Yang>
- **[3dbf8fe9](https://github.com/onnx/onnx/commit/3dbf8fe9)**: Handle string comparision represented as np.objects (#1851) <Dmitri Smirnov>
- **[3b0d3bb2](https://github.com/onnx/onnx/commit/3b0d3bb2)**: remove global variable in header file (#1850) <Lu Fang>
- **[1cca8733](https://github.com/onnx/onnx/commit/1cca8733)**: bump the version for drop out - fix the issue that the version was not bumped when changing its type constraint declaration. (#1848) <Ke Zhang>
- **[1ec81bc6](https://github.com/onnx/onnx/commit/1ec81bc6)**: Change TopK operator to allow dynamic 'k' (#1829) <Hariharan Seshadri>
- **[a89a4a16](https://github.com/onnx/onnx/commit/a89a4a16)**: Remove exp op: Affine, ImageScaler,ParametricSoftplus, Crop. (#1832) <Ke Zhang>

Reviewed By: yinghai

Differential Revision: D14566202

fbshipit-source-id: b1e5912ae6887e2865fc628363071e2b9938dfa4
2019-03-22 00:13:42 -07:00
29c27d7b99 Automatic update of fbcode/onnx to e18bb41d255a23daf368ffd62a2645db55db4c72 (#17460)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17460

Previous import was 4c091e048ca42682d63ccd3c1811560bc12b732d

Included changes:
- **[e18bb41](https://github.com/onnx/onnx/commit/e18bb41)**: Infer shape of the second output of Dropout op (#1822) <Shinichiro Hamaji>
- **[cb544d0](https://github.com/onnx/onnx/commit/cb544d0)**: Clarify dtype of Dropout's mask output (#1826) <Shinichiro Hamaji>
- **[b60f693](https://github.com/onnx/onnx/commit/b60f693)**: Fix shape inference when auto_pad  is notset (#1824) <Li-Wen Chang>
- **[80346bd](https://github.com/onnx/onnx/commit/80346bd)**: update test datat (#1825) <Rui Zhu>
- **[b37fc6d](https://github.com/onnx/onnx/commit/b37fc6d)**: Add stringnormalizer operator to ONNX (#1745) <Dmitri Smirnov>

Reviewed By: zrphercule

Differential Revision: D14206264

fbshipit-source-id: 0575fa3374ff2b93b2ecee9989cfa4793c599117
2019-02-25 11:09:08 -08:00
bf16a6bc3c Skip onnx logsoftmax tests in rocm (#17170)
Summary:
similar to softmax there are issues of getting nan randomly
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17170

Differential Revision: D14110515

Pulled By: bddppq

fbshipit-source-id: 5c97661184d45a02122fd69d35a839fdf4520c8c
2019-02-16 18:06:04 -08:00
ac00e85e36 Remove undefined tensor in jit script (#16379)
Summary:
This PR is a follow up of #15460, it did the following things:

* remove the undefined tensor semantic in jit script/tracing mode
* change ATen/JIT schema for at::index and other index related ops with `Tensor?[]` to align with what at::index is really doing and to adopt `optional[tensor]` in JIT
* change python_print to correctly print the exported script
* register both TensorList and ListOfOptionalTensor in JIT ATen ops to support both
* Backward compatibility for `torch.jit.annotate(Tensor, None)`

List of follow ups:

* remove the undefined tensor semantic in jit autograd, autodiff and grad_of
* remove prim::Undefined fully

For easy reviews, please turn on `hide white space changes` in diff settings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16379

Differential Revision: D13855677

Pulled By: wanchaol

fbshipit-source-id: 0e21c14d7de250c62731227c81bfbfb7b7da20ab
2019-02-07 11:02:14 -08:00
719134f3c3 Automatic update of fbcode/onnx to 15c33c945851907411619f599900c3852108e7e3 (#16493)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16493

Previous import was dc75285d4a1cff9618400164dfdb26c5a1bab70a

Included changes:
- **[15c33c9](https://github.com/onnx/onnx/commit/15c33c9)**: Add ppc64le build (#1768) <Chin Huang>
- **[198f840](https://github.com/onnx/onnx/commit/198f840)**: Update Broadcasting.md (#1769) <Verma-Rajat>
- **[60ac95f](https://github.com/onnx/onnx/commit/60ac95f)**: Merge back from release 1.4.1 (#1767) <Raymond Yang>
- **[a683372](https://github.com/onnx/onnx/commit/a683372)**: Bump up version number for v1.4.0 (#1761) (#1763) <Raymond Yang>
- **[dbf3581](https://github.com/onnx/onnx/commit/dbf3581)**: Add TfIdfVectorizer operator to ONNX (#1721) <Dmitri Smirnov>

Reviewed By: zrphercule

Differential Revision: D13858840

fbshipit-source-id: 1d00f63f265cc6deed965b92ed00c44f547ff03e
2019-01-29 13:48:49 -08:00
c33512bdfc Automatic update of fbcode/onnx to c553fb32a0902ce5dd42e1b40123e9e9b38bdbe7 (#16190)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16190

Previous import was fd60104394fa353e1762f44ecad1b2166e33deef

Included changes:
- **[c553fb3](https://github.com/onnx/onnx/commit/c553fb3)**: Handle negative axis in scan shape inference (#1748) <G. Ramalingam>
- **[51b6ecc](https://github.com/onnx/onnx/commit/51b6ecc)**: external_data: Store large tensor values in separate files (#678) <Michał Karzyński>
- **[ba05f26](https://github.com/onnx/onnx/commit/ba05f26)**: Scan output axes (#1737) <G. Ramalingam>
- **[90920c0](https://github.com/onnx/onnx/commit/90920c0)**: Add NonZero op. (#1714) <Sergii Dymchenko>
- **[c4cf112](https://github.com/onnx/onnx/commit/c4cf112)**: fix the test cases for constantofshape (#1746) <Lu Fang>
- **[d902349](https://github.com/onnx/onnx/commit/d902349)**: Add sample implementation support (#1712) <Lu Fang>

Differential Revision: D13745693

fbshipit-source-id: 05e2cce9ae1dfa2865db83840df64673d55cea57
2019-01-21 09:46:29 -08:00
daedec2350 Support ConstantOfShape in Caffe2 ONNX Backend (#16108)
Summary:
This PR is the prerequisite to land https://github.com/pytorch/pytorch/pull/16095
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16108

Reviewed By: BIT-silence

Differential Revision: D13725722

Pulled By: houseroad

fbshipit-source-id: 28c0fb72f075cd04f9db44dfab0163844c20c620
2019-01-18 22:58:23 -08:00
1a09a2a27f Export PyTorch erf to ONNX Erf and add Caffe2 Erf operator
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16106

Differential Revision: D13709490

Pulled By: bddppq

fbshipit-source-id: 1b5b32261f06543371f7bd7ac9b11957a5eb4ad0
2019-01-17 09:18:08 -08:00
8f11df3cb7 Automatic update of fbcode/onnx to 84a0441ae28795a928005863dc142bee81827566 (#16046)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16046

Previous import was 7abd834091f1024c11749dcfd25126802db9fdd5

Included changes:
- **[84a0441](https://github.com/onnx/onnx/commit/84a0441)**: Clarify namescopes in the presence of nested subgraphs (#1665) <G. Ramalingam>
- **[118fec5](https://github.com/onnx/onnx/commit/118fec5)**: Add Where op. (#1569) <Sergii Dymchenko>
- **[beefa15](https://github.com/onnx/onnx/commit/beefa15)**: Use strings directly for casing as np.object w/o redundant StringHolder. (#1736) <Dmitri Smirnov>
- **[4023bae](https://github.com/onnx/onnx/commit/4023bae)**: Add a capability to input/output unicode strings (#1734) <Dmitri Smirnov>
- **[1a8a7fc](https://github.com/onnx/onnx/commit/1a8a7fc)**: typos fixed: iutput -> input (#1726) <Beomsoo Kim>
- **[0128478](https://github.com/onnx/onnx/commit/0128478)**: Scan test update (#1732) <G. Ramalingam>
- **[c6a24fd](https://github.com/onnx/onnx/commit/c6a24fd)**: turn rtol to 0.002 on densenet121, since AMD and Nvidia GPU's precion difference (#1733) <Lu Fang>
- **[5b7ac72](https://github.com/onnx/onnx/commit/5b7ac72)**: Add Shrink operator (#1622) <Rui Zhu>

Reviewed By: yinghai

Differential Revision: D13676711

fbshipit-source-id: 513cc137223469b47af48919432aaecf58006012
2019-01-15 17:17:31 -08:00
12e6c1ceeb Automatic update of fbcode/onnx to 8384c788939bc65463f9754b6a7a00b212b18ba1 (#15739)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15739

Previous import was 765f5ee823a67a866f4bd28a9860e81f3c811ce8

Included changes:
- **[8384c78](https://github.com/onnx/onnx/commit/8384c78)**: add constantofshape (#1582) <Rui Zhu>
- **[9afc06c](https://github.com/onnx/onnx/commit/9afc06c)**: Set symbol visibility to hidden for non-Windows (#1707) <Paul Jesse Hellemn>
- **[6f8a9f0](https://github.com/onnx/onnx/commit/6f8a9f0)**: Revert "Add NonMaxSupression operator (#1695)" (#1702) <Lu Fang>
- **[8b89544](https://github.com/onnx/onnx/commit/8b89544)**: Add NonMaxSupression operator (#1695) <Hector Li>
- **[0a7cc48](https://github.com/onnx/onnx/commit/0a7cc48)**: Add bfloat16 support. (#1699) <Dmitri Smirnov>
- **[da7c50c](https://github.com/onnx/onnx/commit/da7c50c)**: ONNX does not maintain versions for experimental ops (#1696) <Ke Zhang>
- **[0c8d857](https://github.com/onnx/onnx/commit/0c8d857)**: Correct type of value_info in Graph (#1694) <Maik Riechert>
- **[f612532](https://github.com/onnx/onnx/commit/f612532)**: Fix typos (#1686) <Eundoo Song>

Reviewed By: zrphercule

Differential Revision: D13581674

fbshipit-source-id: 8f8ee86a05a86fe99bf94509148c559ea3df1464
2019-01-04 15:56:55 -08:00
855d9e1f19 Run ONNX cuda backend test cases via ROCm
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15069

Differential Revision: D13427757

Pulled By: bddppq

fbshipit-source-id: ba0273d75986cd5b146f7041a83c63ddf9c6c0cf
2018-12-13 15:10:00 -08:00
5e06fa0baf ONNX changes to use int32_t (instead of enum) to store data type
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14926

Reviewed By: houseroad

Differential Revision: D13390642

Pulled By: bddppq

fbshipit-source-id: c2314b24d9384f188fda2b9a5cc16465ad39581e
2018-12-08 01:06:08 -08:00
5be28ade66 Automatic update of fbcode/onnx to aca8473a40cf43f01958c81b648efcee7f3a755a (#14865)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14865

Previous import was 42804705bdbf179d1a98394008417e1392013547

Included changes:
- **[aca8473](https://github.com/onnx/onnx/commit/aca8473)**: Add Erf operator for computing error function (#1675) <bddppq>
- **[3fc82ca](https://github.com/onnx/onnx/commit/3fc82ca)**: Add IsNaN operator. (#1656) <Pranav Sharma>
- **[0685f01](https://github.com/onnx/onnx/commit/0685f01)**: Add Sign Op (#1658) <Rui Zhu>
- **[2a8fae8](https://github.com/onnx/onnx/commit/2a8fae8)**: Fix unused var warning (#1669) <Yinghai Lu>
- **[e212833](https://github.com/onnx/onnx/commit/e212833)**: Update scan (#1653) <G. Ramalingam>

Reviewed By: zrphercule

Differential Revision: D13370727

fbshipit-source-id: 13a93d5acc8d4758f682278ea162ec9124ced22d
2018-12-07 17:37:42 -08:00
44894915d6 Automatic update of fbcode/onnx to 6b34743d2e361bbc0acb29dd73536478cb92562e (#14637)
Summary:
Previous import was f461f7aad9987635b4aff108620ed7918f002d19

Included changes:
- **[6b34743](https://github.com/onnx/onnx/commit/6b34743)**: fix the const map initializatoin (#1662) <Lu Fang>
- **[ae80999](https://github.com/onnx/onnx/commit/ae80999)**: Fuse Pad into Conv optimizer (#1580) <vloncar>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14637

Differential Revision: D13281338

Pulled By: houseroad

fbshipit-source-id: c31429914bf5954fdc85e0c02168836ef47d635c
2018-12-03 20:11:17 -08:00
2752ad8045 Automatic update of fbcode/onnx to f461f7aad9987635b4aff108620ed7918f002d19 (#14568)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14568

Previous import was 882c5283c54345d131e8fe5c859e4844dcf7ca8e

Included changes:
- **[f461f7a](https://github.com/onnx/onnx/commit/f461f7a)**: Show the op's type and name when the shape inference is failed. (#1623) <Jerry>
- **[ab8aaf9](https://github.com/onnx/onnx/commit/ab8aaf9)**: Add scan test case (#1586) <G. Ramalingam>
- **[c95357e](https://github.com/onnx/onnx/commit/c95357e)**: link the tutorial (#1650) <Lu Fang>
- **[d7e2420](https://github.com/onnx/onnx/commit/d7e2420)**: Upgrade label encoder to support more input types (#1596) <Wei-Sheng Chin>
- **[6425108](https://github.com/onnx/onnx/commit/6425108)**: Add Doc about Adding New Operator into ONNX (#1647) <Lu Fang>
- **[295889c](https://github.com/onnx/onnx/commit/295889c)**: use an empty initializer to create map (#1643) <Lu Fang>
- **[e38f3ec](https://github.com/onnx/onnx/commit/e38f3ec)**: Remove redundant const (#1639) <daquexian>
- **[ea694bf](https://github.com/onnx/onnx/commit/ea694bf)**: implement fuse reduce->unsqueeze + fix assumption in nop_dropout pass (#1565) <Armen>
- **[6db386e](https://github.com/onnx/onnx/commit/6db386e)**: make output shape clear enough for Softmax family (#1634) <Lu Fang>
- **[2b67c6e](https://github.com/onnx/onnx/commit/2b67c6e)**: fix batchnorm doc (#1633) <Lu Fang>
- **[c901784](https://github.com/onnx/onnx/commit/c901784)**: remove inappropriate consts (#1632) <Lu Fang>
- **[de82119](https://github.com/onnx/onnx/commit/de82119)**: Shape inference fix for broadcast, concat and scan (#1594) <KeDengMS>
- **[d7ffe3b](https://github.com/onnx/onnx/commit/d7ffe3b)**: Update Optimizer Docs (#1607) <Armen>
- **[d09d139](https://github.com/onnx/onnx/commit/d09d139)**: mark PROTOBUF_INCLUDE_DIRS as BUILD_INTERFACE (#1466) <Yuta Okamoto>
- **[eb4b7c2](https://github.com/onnx/onnx/commit/eb4b7c2)**: allow variadic parameters of different types (#1615) <G. Ramalingam>
- **[4166246](https://github.com/onnx/onnx/commit/4166246)**: Fix onnxifi test (#1617) <Yinghai Lu>
- **[6706a4d](https://github.com/onnx/onnx/commit/6706a4d)**: Fix a bug in vector address access (#1598) <Raymond Yang>
- **[ae39866](https://github.com/onnx/onnx/commit/ae39866)**: Separate types of inputs 1 and 2 in OneHot op. (#1610) <Spandan Tiwari>
- **[45ba661](https://github.com/onnx/onnx/commit/45ba661)**: Handle new types in the switch. (#1608) <Dmitri Smirnov>
- **[14853b6](https://github.com/onnx/onnx/commit/14853b6)**: Bump docker image version to 230 used in CircleCI (#1606) <bddppq>
- **[e0993b8](https://github.com/onnx/onnx/commit/e0993b8)**: [onnxifi] Make sure that backend handles run async. (#1599) <Roman Dzhabarov>
- **[e6965cc](https://github.com/onnx/onnx/commit/e6965cc)**: Introduce SparseTensor ML proto (#1554) <Dmitri Smirnov>
- **[75b782f](https://github.com/onnx/onnx/commit/75b782f)**: In driver test check the return status of onnxGetBackendIDs (#1597) <bddppq>
- **[c05b364](https://github.com/onnx/onnx/commit/c05b364)**: Make CI log less verbose (#1595) <bddppq>
- **[fa568e4](https://github.com/onnx/onnx/commit/fa568e4)**: Loop type shape inferencing (#1591) <Scott McKay>
- **[937e64c](https://github.com/onnx/onnx/commit/937e64c)**: add uint8 (#1590) <Lu Fang>
- **[f86e951](https://github.com/onnx/onnx/commit/f86e951)**: Add domain as an optional parameter for make_node function (#1588) <Young Kim>
- **[ff45588](https://github.com/onnx/onnx/commit/ff45588)**: Remove unreachable code in shape_inference.h (#1585) <Changming Sun>
- **[f7dcad0](https://github.com/onnx/onnx/commit/f7dcad0)**: Add several hyperbolic function ops. (#1499) <Sergii Dymchenko>
- **[a60ac7d](https://github.com/onnx/onnx/commit/a60ac7d)**: Add OneHot op to ONNX. (#1567) <Spandan Tiwari>
- **[f6c3a7e](https://github.com/onnx/onnx/commit/f6c3a7e)**: [compiler flag] Issue a warning if class has virtual method but missing virtual dtor. (#1583) <Roman Dzhabarov>
- **[88d1784](https://github.com/onnx/onnx/commit/88d1784)**: Fix MaxUnpool shape inference when output_shape is provided as input (#1578) <Spandan Tiwari>
- **[20041b7](https://github.com/onnx/onnx/commit/20041b7)**: Add type shape inferencing for the If operator (#1571) <Scott McKay>
- **[d6c4c75](https://github.com/onnx/onnx/commit/d6c4c75)**: Add a virtual destructor to GraphInferencer (#1574) <Changming Sun>
- **[a339598](https://github.com/onnx/onnx/commit/a339598)**: fix ConvTranspose spec (#1566) <Wenhao Hu>

Reviewed By: zrphercule

Differential Revision: D13263831

fbshipit-source-id: a2ff22c6454e2430429e5a7d18d21661a7ffb0cb
2018-11-29 16:31:56 -08:00
02d3787a19 Support new upsample in symbolic, caffe2 backend & caffe2 frontend (#13272)
Summary:
We updated the description of upsample_op in onnx: https://github.com/onnx/onnx/pull/1467
Therefore, we need to support the new upsample_op in caffe2-onnx backend as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13272

Reviewed By: houseroad

Differential Revision: D12833656

Pulled By: zrphercule

fbshipit-source-id: 21af5282abaae12d2d044e4018a2b152aff79917
2018-11-05 19:13:57 -08:00
5cbb33f939 Disable upsample optest (#13135)
Summary:
Temporarily disable upsample tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13135

Reviewed By: bddppq

Differential Revision: D10859926

Pulled By: houseroad

fbshipit-source-id: 9eb068198d43ba0939d81a9e41eb6f24ff19cb6d
2018-10-25 20:37:09 -07:00
f9d1b63d18 Automatic update of fbcode/onnx to f8828e532da4795e8ea15f5850a37c5179917b9b (#12823)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12823

Previous import was 1cbe2743cda739ff752d6ce79553b0ef8ad49783

Included changes:
- **[f8828e5](https://github.com/onnx/onnx/commit/f8828e5)**: Use vector instead of set to keep the order of the opt passes (#1524) <Lu Fang>
- **[b5a37c4](https://github.com/onnx/onnx/commit/b5a37c4)**: Pin awscli to last known good version (#1518) <bddppq>
- **[3e219f6](https://github.com/onnx/onnx/commit/3e219f6)**: ONNX Optimization Rewrite (#1452) <Armen>
- **[96758c9](https://github.com/onnx/onnx/commit/96758c9)**: Add MaxUnpool op to ONNX. (#1494) <Spandan Tiwari>
- **[c4f7043](https://github.com/onnx/onnx/commit/c4f7043)**: Update docker image version used in CircleCI (#1511) <bddppq>

Differential Revision: D10447573

fbshipit-source-id: 8748ba6e3be322a26a9a360ff7f2babd54fd581f
2018-10-18 16:17:25 -07:00
cdead5ace1 Enable CircleCI for Linux jobs (#12389)
Summary:
Changes in this PR:
1. Intermediate Docker image is shared from build stage to test stage through ECR, in order to fix the Caffe2 flaky CUDA tests.
2. There are ~7 Caffe2 operator tests that are only flaky in `caffe2_py2_gcc4_8_ubuntu14_04_test` on CPU. Disabling those tests on that config only, which is okay to do because we are still running those tests in other test jobs.

After this PR is merged, CircleCI will be running on master automatically, and will be running on PRs if the author rebased their PR onto the newest master (which we will ask all the authors to do when we switch off Jenkins for Linux).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12389

Differential Revision: D10224267

Pulled By: yf225

fbshipit-source-id: dd1a90a425c3d13b870d3d328cb301eee2e6e2cd
2018-10-08 17:09:37 -07:00
035d04299c Update onnx to onnx/onnx@ddf8eb6 (#12267)
Summary:
ddf8eb6aa0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12267

Reviewed By: yinghai

Differential Revision: D10151536

Pulled By: bddppq

fbshipit-source-id: 4cb04fcc0377c6c39fb318c5fc7043e67c400866
2018-10-02 15:57:43 -07:00
7122f8b3bb Disable more flaky tests on CircleCI (#11399)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/11362.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11399

Differential Revision: D9736673

Pulled By: yf225

fbshipit-source-id: cad8c0e86a70a01b047e648975ca5b9926e4acb3
2018-09-25 10:25:30 -07:00
7517e53468 Update onnx submodule to onnx/onnx@c4734c6 (#11958)
Summary:
c4734c6200
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11958

Differential Revision: D10002779

Pulled By: bddppq

fbshipit-source-id: 8bd7dfc8fdaf0b699a61f5b228f7102a16b92258
2018-09-22 01:40:31 -07:00
c39216f8c4 Automatic update of fbcode/onnx to bff0b8835870c7df7762ef43498d000d2d8ffb52 (#11346)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11346

Previous import was 1b09eb14c2c781fae078fa6b1c0390ba6fc0898c

Included changes:
- **[bff0b88](https://github.com/onnx/onnx/commit/bff0b88)**: Add DynamicSlice experimental op (#1377) <James Reed>
- **[91a7b8e](https://github.com/onnx/onnx/commit/91a7b8e)**: statCoverage(model) (#1246) <Akshay Chalana>
- **[36643c6](https://github.com/onnx/onnx/commit/36643c6)**: fix the doc for softmax (#1374) <Lu Fang>
- **[8c64acd](https://github.com/onnx/onnx/commit/8c64acd)**: Silence usused result warning in ONNXIFI wrapper cleanup. Fix #1344 (#1371) <Marat Dukhan>
- **[53b20f6](https://github.com/onnx/onnx/commit/53b20f6)**: Add the ability to deprecate an OpSchema (#1317) <Ryan Hill>
- **[8aec4e2](https://github.com/onnx/onnx/commit/8aec4e2)**: [Anderspapitto patch] fix the shape inference for broadcasting (#1368) <Lu Fang>

Reviewed By: jamesr66a

Differential Revision: D9691533

fbshipit-source-id: 6aff6ce04ade37182e2ffe9bc83eb86846bc722d
2018-09-06 17:39:57 -07:00
302e9cb815 Update onnx submodule to onnx/onnx@bae6333 (#10961)
Summary:
ONNX v1.3.0 release

Pull Request resolved: https://github.com/pytorch/pytorch/pull/10961

Reviewed By: houseroad

Differential Revision: D9543998

Pulled By: bddppq

fbshipit-source-id: b7f0a0553d832d609d3b7613a608f7bf4a2582ef
2018-08-30 15:25:57 -07:00
adda789770 Skip maxpool_with_indices onnx tests (#9751)
Summary:
Not in the same format. Skip at the moment.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9751

Reviewed By: yinghai

Differential Revision: D8965636

Pulled By: houseroad

fbshipit-source-id: 81d39c2f5625c14c0e1ee11408b5f7267b53798f
2018-07-24 10:23:43 -07:00
13e0c9295d Add Support for count_include_pad in AveragePool in Caffe2 ONNX Backend (#9458)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9458

The goal is to support count_include_pad in Caffe2 ONNX backend. This commit contains the first step - support 4-D tensor cases.
AveragePool with count_include_pad can be expressed as PadImage + AveragePool.

Reviewed By: houseroad

Differential Revision: D8852180

fbshipit-source-id: 4db00e9771be7a000a2d92850dfd066d9c9c38bf
2018-07-17 17:41:52 -07:00
1a8e826ed4 Skip the count_include_pad in average pool for now (#9365)
Summary:
Will create a bootcamp task.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9365

Reviewed By: bddppq

Differential Revision: D8813889

Pulled By: houseroad

fbshipit-source-id: bce1eaafd0efb3c27c0f71fcc40a8313e2b1c7b8
2018-07-11 18:09:50 -07:00
5b86c3af4a Update from facebook (#8384)
* [fix] fixup the bias multiplier data access issue

Hotfix for failues in conv_transpose

* [D2][Easy]: lint regularizer

lint with black

* [GanH]: Split mu in adaptive weight for diagnose

* [Dper] Add the ability to split FC weights into multiple smaller ones

* fix SumReduceLikeOp for empty blob

as desc.

* add ctc_greedy_decoder for caffe2

ctc_greedy_decoder same as tf's

* Update event callback handling

Allow multiple callbacks per event

* Add WeightedSum layer

The motivation is to do weighted sum in HoNet/crossnet, in the next diff, I'll replace model.Add with model.WeightedSum in
honet: https://fburl.com/f4rmolg2
crossnet: https://fburl.com/v7awn8se, https://fburl.com/63filbnm

* Replicate DAG's behavior

Some callers expect RunAsync to block, replicate that behavior in case of
explicit 'dag' net type

* [dper] layernorm layer

as title

* Override dag, async_dag, async_polling

Overriding dag, async_dag and async_polling with async_scheduling

* Name the thread pools

Caffe thread pools currently inherit the thread names from the thread that starts them, which can be misleading. Give them an explicit name instead.

* [Caffe2] FilleOp should support int64_t dimensions

Change argument type to int64_t for shape argument of FillerOp (used in ConstantFill, XavierFill, etc)

* Remove caffe2/caffe2/contrib/torch/

It's not used anywhere and depends on old lua torch that conflicts with Aten. Given PT1 it's not relevant any more (though it was nice and clever code!)

#accept2ship

* Fix linearWarmup multiplier check

The multiplier needs to be non-negative, not strictly positive.

* Revert D3314316

This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.

* Speedup generate proposals by partial_sort.

Speedup generate proposals by partial_sort.

FACEBOOK:
- Saw speed improvement for training with this op.
- Yanghan benchmarked the op on a small dataset and see consistent 100% improvement on speed (6ms -> 3ms) on 420 input resolution. See next diff for details.

* More parallel processing friendly for CPP version of GenerateProposals.

More parallel processing friendly for CPP version of GenerateProposals.

* [DT] [43/n] Lift stop conditions inside reader code back to flow control

1. Split multi_reader function into local_reader and remote_reader
2. Lifted stop conditions inside Limiter back to flow control
3. Split epoch flow building logic into 3 cases:
  - single machine (1 reader, 1 trainer on trainer0 node, no PS)
  - (1 reader + 1 trainer) on trainer0 node, has PS
  - multiple readers, readers do not share nodes with trainers, might have PS or not

* Resolve conflicts for torch/_thnn/utils.py

* [Caffe2] Handle image decoding errors

Image decoding errors can make the whole training fail. This diff is to handle them
1.Catch imdecode exceptions and check if decoded image has zero columns or rows. This is counted as decoding errors.
2.Replace the image with empty in case of error
3.Count the number of errors and throw runtime exception if the rate reaches given number

The empty image data is kept. It might introduce noise in the training data.

* Update MKL exporter to IDEEP ops

TSIA

* [Caffe2] GlobalInit is thread safe, fixing the comment

With the mutex and lock, GlobalInit is thread safe.
Update the comments.

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* [DT]: fix predictor save

similar to D6610058, here we add the fix for distributed online training

* Remove net_singlethread_async_gpu.cc

Closes https://github.com/caffe2/caffe2/pull/2528

This removes net_singlethread_async_gpu.cc as part of our effort to clean
CUDAContext and the net executors.

* Inline DFS task execution

Add a DFS inline task execution mode in executor

* Add c10 folder to fbcode

This adds the c10 folder and its test cases to fbcode. Build flags are mostly taken from aten.

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* [Fix] sparse regularization in distributed training

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* Improve shard logging in net tracing code

Make it handle arbitrary shard ids instead of just one digit ids.

* [Caffe2] Call GlobalInit in predictor only in mobile

FACEBOOK:
Calling GlobalInit long after the program starts may not be safe. There are issues if the following happens:

User does not call GlobalInit and initFacebook after program starts
User sets a flag manually: https://fburl.com/mcsumw7d
User calls OSS predictor.
OSS predictor calls GlobalInit
GlobalInit calls initFacebook
initFacebook resets all flags: https://fburl.com/tolszha1
Thus, the user manually set flags are overwritten

This would happen anytime GlobalInit is called long after the program starts.
I suppose the intention of the user in this case is not to call GlobalInit throughout the program,
but use Caffe2 regardless (is that desired?)
But adding GlobalInit in the OSS predictor would automatically call GlobalInit when using Caffe2.

This issue doesn't exist in mobile, since initFacebook is not called on mobile.

For now, guard the GlobalInit in predictor for mobile only.
May want to ensure the GlobalInit is always called at the start of the program. @[3501714:kutta] has seen weird issues when not calling GlobalInit at the start of the program on server side. He has made some progress on this.

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Add empty fix for SumLikeReduceOp

Add empty fix for SumLikeReduceOp

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* Add thread_name.cc to the CMake file

* No need to subtract 1. Fix test segfaults

* Fix NetTest, ObserverTest

Fix tests

(cherry picked from commit 3767e66c3f365596cba3d46d3e7322c933a0ab41)

* CTCGreedyDecoderOp only has CPU implementation, test should only run on CPU

* Add a variable to avoid conversion resizing issue

* [fix] fixup the bias multiplier data access issue

Hotfix for failues in conv_transpose

* [D2][Easy]: lint regularizer

lint with black

* [GanH]: Split mu in adaptive weight for diagnose

* [Dper] Add the ability to split FC weights into multiple smaller ones

* fix SumReduceLikeOp for empty blob

as desc.

* add ctc_greedy_decoder for caffe2

ctc_greedy_decoder same as tf's

* Update event callback handling

Allow multiple callbacks per event

* Add WeightedSum layer

The motivation is to do weighted sum in HoNet/crossnet, in the next diff, I'll replace model.Add with model.WeightedSum in
honet: https://fburl.com/f4rmolg2
crossnet: https://fburl.com/v7awn8se, https://fburl.com/63filbnm

* Replicate DAG's behavior

Some callers expect RunAsync to block, replicate that behavior in case of
explicit 'dag' net type

* [dper] layernorm layer

as title

* Override dag, async_dag, async_polling

Overriding dag, async_dag and async_polling with async_scheduling

* Name the thread pools

Caffe thread pools currently inherit the thread names from the thread that starts them, which can be misleading. Give them an explicit name instead.

* [Caffe2] FilleOp should support int64_t dimensions

Change argument type to int64_t for shape argument of FillerOp (used in ConstantFill, XavierFill, etc)

* Remove caffe2/caffe2/contrib/torch/

It's not used anywhere and depends on old lua torch that conflicts with Aten. Given PT1 it's not relevant any more (though it was nice and clever code!)

#accept2ship

* Fix linearWarmup multiplier check

The multiplier needs to be non-negative, not strictly positive.

* Revert D3314316

This is after 2 years and we do not seem to have a use case for this one, so
for the sake of clean API design we should potentially remove this. This would
allow us to potentially pass in arguments to optionally construct an object,
although it is indeed a little bit unclear how we can reuse existing objects if
constructor arguments are passed in. In any case, we may want to remove this
dangling feature.

* Speedup generate proposals by partial_sort.

Speedup generate proposals by partial_sort.

FACEBOOK:
- Saw speed improvement for training with this op.
- Yanghan benchmarked the op on a small dataset and see consistent 100% improvement on speed (6ms -> 3ms) on 420 input resolution. See next diff for details.

* More parallel processing friendly for CPP version of GenerateProposals.

More parallel processing friendly for CPP version of GenerateProposals.

* [DT] [43/n] Lift stop conditions inside reader code back to flow control

1. Split multi_reader function into local_reader and remote_reader
2. Lifted stop conditions inside Limiter back to flow control
3. Split epoch flow building logic into 3 cases:
  - single machine (1 reader, 1 trainer on trainer0 node, no PS)
  - (1 reader + 1 trainer) on trainer0 node, has PS
  - multiple readers, readers do not share nodes with trainers, might have PS or not

* Resolve conflicts for torch/_thnn/utils.py

* [Caffe2] Handle image decoding errors

Image decoding errors can make the whole training fail. This diff is to handle them
1.Catch imdecode exceptions and check if decoded image has zero columns or rows. This is counted as decoding errors.
2.Replace the image with empty in case of error
3.Count the number of errors and throw runtime exception if the rate reaches given number

The empty image data is kept. It might introduce noise in the training data.

* Update MKL exporter to IDEEP ops

TSIA

* [Caffe2] GlobalInit is thread safe, fixing the comment

With the mutex and lock, GlobalInit is thread safe.
Update the comments.

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* [DT]: fix predictor save

similar to D6610058, here we add the fix for distributed online training

* Remove net_singlethread_async_gpu.cc

Closes https://github.com/caffe2/caffe2/pull/2528

This removes net_singlethread_async_gpu.cc as part of our effort to clean
CUDAContext and the net executors.

* Inline DFS task execution

Add a DFS inline task execution mode in executor

* Add c10 folder to fbcode

This adds the c10 folder and its test cases to fbcode. Build flags are mostly taken from aten.

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* [Fix] sparse regularization in distributed training

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* Improve shard logging in net tracing code

Make it handle arbitrary shard ids instead of just one digit ids.

* [Caffe2] Call GlobalInit in predictor only in mobile

FACEBOOK:
Calling GlobalInit long after the program starts may not be safe. There are issues if the following happens:

User does not call GlobalInit and initFacebook after program starts
User sets a flag manually: https://fburl.com/mcsumw7d
User calls OSS predictor.
OSS predictor calls GlobalInit
GlobalInit calls initFacebook
initFacebook resets all flags: https://fburl.com/tolszha1
Thus, the user manually set flags are overwritten

This would happen anytime GlobalInit is called long after the program starts.
I suppose the intention of the user in this case is not to call GlobalInit throughout the program,
but use Caffe2 regardless (is that desired?)
But adding GlobalInit in the OSS predictor would automatically call GlobalInit when using Caffe2.

This issue doesn't exist in mobile, since initFacebook is not called on mobile.

For now, guard the GlobalInit in predictor for mobile only.
May want to ensure the GlobalInit is always called at the start of the program. @[3501714:kutta] has seen weird issues when not calling GlobalInit at the start of the program on server side. He has made some progress on this.

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Add empty fix for SumLikeReduceOp

Add empty fix for SumLikeReduceOp

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* Add thread_name.cc to the CMake file

* No need to subtract 1. Fix test segfaults

* Fix NetTest, ObserverTest

Fix tests

(cherry picked from commit 3767e66c3f365596cba3d46d3e7322c933a0ab41)

* CTCGreedyDecoderOp only has CPU implementation, test should only run on CPU

* Add a variable to avoid conversion resizing issue

* Remove the code per soumith's comments

* Remove the code per soumith's comments

* Remove blank lines in the end of file

* Resolve conflicts for torch/_thnn/utils.py

* Update MKL exporter to IDEEP ops

TSIA

* Back out "Add support for generating ATen files during fbcode build"

Original commit changeset: 28970ddba353

@override-unit-failures
(Note: this ignores all push blocking failures!)

* add dependencies for online trainer

Add some dependencies so that the online model can use DataPipeline and PredictionTransform operators

Relevent post: https://fb.intern.facebook.com/groups/1324375037655677/permalink/1740993462660497/

* Resolve conflicts for tools/jit/gen_jit_dispatch.py

* Support advanced pooling options in sum processor

* support advanced pooling options in sum processor
* remove redundant code
* support attention in sum processor

* resolve conflicts for caffe2/core/logging_is_google_glog.h and test/test_torch.py

* Revert D7962948: [caffe2][nomnigraph] Concat elim for sparseNN

This reverts commit f7f434dc5c34ca6058b9765d2ef615453d2276a9

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Remove Declarations.yaml

* Include common.h

* Change std::stoi to caffe2::stoi

* [caffe2] uprade IDEEP and hotfix for conv op accuracy issue (#8364)

* [IDEEP] Upgrade IDEEP version

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* [IDEEP] Fix accuracy issue in conv op

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* Fix build error due to lack of src in CMakeLists

Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>

* Remove the code per soumith's comments

* [ONNX] Add an ATen fallback pathway for ONNX export (#8273)

* ATen fallback for ONNX export

* Move to enum

* Fix model test

* Add comment

* Address comments

BC interface

* Remove imaginary file (#8415)

* [Caffe2] Enable AMD/MIOPEN ops for Caffe2  (#8306)

* Add hip support for caffe2 core

* Add MIOPEN header/wrapper to caffe2 core

* Add HIP device into caffe2 PB

* top level makefile change for rocm/hip

* makefile scaffolding for AMD/RocM/HIP

* Makefile scafodding for AMD/RocM/HIP; add makefile/utility for HIP files

* caffe2 PB update for AMD/ROCM HIP device

* Add AMD/RocM/Thrust dependency

* HIP threadpool update

* Fix makefile macro

* makefile fix: duplicate test/binary name

* makefile clean-up

* makefile clean-up

* add HIP operator registry

* add utilities for hip device

* Add USE_HIP to config summary

* makefile fix for BUILD_TEST

* merge latest

* Fix indentation

* code clean-up

* Guard builds without HIP and use the same cmake script as PyTorch to find HIP

* Setup rocm environment variables in build.sh (ideally should be done in the docker images)

* setup locale

* set HIP_PLATFORM

* Revert "set HIP_PLATFORM"

This reverts commit 8ec58db2b390c9259220c49fa34cd403568300ad.

* continue the build script environment variables mess

* HCC_AMDGPU_TARGET

* Cleanup the mess, has been fixed in the lastest docker images

* Assign protobuf field hip_gpu_id a new field number for backward compatibility

* change name to avoid conflict

* Fix duplicated thread pool flag

* Refactor cmake files to not add hip includes and libs globally

* Fix the wrong usage of environment variables detection in cmake

* Add MIOPEN CNN operators

* Revert "Add MIOPEN CNN operators"

This reverts commit 6e89ad4385b5b8967a7854c4adda52c012cee42a.

* Add MIOPEN pooling operator

* Add MIOPEN activation operator

* Add MIOPEN softmax operator

* Add MIOPEN spatial batch norm operator

* Add MIOPEN loacl response normalization operator

* Add MIOPEN conv operator

* Clean-up LRN ops

* enable fp16 in MIOPEN pool ops

* Enable fp16 for MIOPEN relu op

* Enable fp16 for MIOPEN spatial batch norm op

* code clean-up

* revert float16 support

* Create Caffe2 python binding for AMD/ROCM/HIP

* Add op fallback for HIP operator

* add hip src/test files in cmake

* exclude hip src/test files

* fix python binding for hip backend

* fix MIOPEN pooling op workspace

* hack to compile miopen operators

* fix include path for MIOPEN ops

* Fix include path

* Add HIP math utilities

* Fix path for HIP math utils

* cmake fix

* Cmake fix / hipcc for hip files

* suppress hipcc warning

* cmake fix /replcae USE_HIP with USE_ROCM

* revert LoadHIP.cmake change

* fix include for thrust/cub-hip

* include path fix for conversion.h

* Updated with latest upstream changes

* clang format fixes

* Context_hip updates

* Fixed typo in rocblas handle get function

* Updated hipified math utils

* Updated math hip test util

* Updated context hip test

* Updated common_hip

* Updated net async dag for HIP

* Added MIOPEN in operator hip test

* fix

* C2 dependencies clean-up

* fix include path for building custom protobuf

* Decouple miopen pool op and conv_pool_op base

* cmake refactor

* fix operator_hip_test

* move all hip/miopen ops files into caffe2/operators/hip

* sanitize cmake

* permission issue

* remove extra parenthesis

* remove artifact from resolving merge conflict

* cont. sanitize cmake files

* fix syntax error

* sanitize conversion.h

* .

* Revert "."

This reverts commit 56020cb0e996a31ae27bf1f8f491955ed0b121b9.

* clang-format

* Enable some reduce operators' ONNX backend tests (#8418)

* fix old comment to point to the right file (#8416)

* Stop pinning nccl version. (#8421)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Expose logsumexp docs and mark log_sum_exp in distributions for internal use (#8428)

* Enable some of the ONNX backend test on broadcasting (#8423)

* Enable some of the ONNX backend test on broadcasting

* enable gemm broadcast

* Expose proto utils and ONNX (#8073)

* Expose proto utils and ONNX from PyTorch libcaffe2.so

* Try to use protobuf from _C.so

* Fix ONNX proto header include

* Adjust order of imports for ONNX until nanopb goes away

* Set and use ONNX_NAMESPACE for PyTorch builds

* Show protobuf summary for all builds

* Add ONNX_NAMESPACE for cpp_build

* Statically link libprotobuf.a into libtorch.so

* Set ONNX_NAMESPACE on Windows build

* Move core/dispatch up as well

* Add /MD flag for Windows build of _C

* Potential Windows fix for ONNX and protobuf

* Add direct linkage from _C to ONNX on Windows

* Only include protobuf wrapper for PyTorch

* Pass extra_compile_args to _nvrtc ext build

* Remove installation of .a files

* Rebase creates some weird situations, revert them manually

* Remove more weird changes due to rebase

* Need to add thread_name.cc after merge
2018-06-13 13:10:45 -07:00
7543d0f794 Enable some of the ONNX backend test on broadcasting (#8423)
* Enable some of the ONNX backend test on broadcasting

* enable gemm broadcast
2018-06-13 10:15:56 -07:00
a42c12bb11 Enable some reduce operators' ONNX backend tests (#8418) 2018-06-13 21:32:50 +08:00
ec4a0f332e Add back lrn test (#8134)
* Revert "Skip OnnxBackendNodeModelTest::test_lrn_default_cuda that causes segfault (#8127)"

This reverts commit 410191c4175eaae141306cdb3c3c1c1e8a495225.

* Fix mismatched default values
2018-06-04 15:06:40 -07:00