Commit Graph

99 Commits

Author SHA1 Message Date
e15f4248ad Revert "[BE][2/16] fix typos in torch/ (torch/_*/) (#156312)"
This reverts commit 7a92b5119654c07d15f5c0818e6ae804b01e836c.

Reverted https://github.com/pytorch/pytorch/pull/156312 on behalf of https://github.com/XuehaiPan due to landrace ([comment](https://github.com/pytorch/pytorch/pull/156312#issuecomment-3064672250))
2025-07-12 04:40:52 +00:00
7a92b51196 [BE][2/16] fix typos in torch/ (torch/_*/) (#156312)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156312
Approved by: https://github.com/albanD
2025-07-12 01:47:22 +00:00
162ca185ff [BE][PYFMT] migrate PYFMT for torch/_[a-h]*/ to ruff format (#144551)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144551
Approved by: https://github.com/ezyang
ghstack dependencies: #148186
2025-06-25 06:16:06 +00:00
3fe42d4d5d [export] Dynamo symint support (#152677)
Basically adds native _IntWrapper support to dynamo. Here's my process of trying to make symint input support work on dynamo, and how I ended up with this approach [(doc)](https://docs.google.com/document/d/1GvNRQd8BnxlMay_hrEVgEta6VUeUW_hcFeRuB7q1nDY/edit?tab=t.0).

What I did was, before passing inputs to dynamo.export, I first wrap them with a class, `_IntWrapper`. When processing dynamic shapes, I will then add the corresponding dynamic shape specification to the `dynamism` field stored on the `_IntWrapper`. If there is no dynamism specified, then this will get unwrapped back to an integer. When dynamo tracing, when we encounter an `_IntWrapper`, we will convert this to a symint if the dynamism was specified as `Dim.DYNAMIC/AUTO`. Dynamo will then trace a graph that contains symint inputs, which will get passed to AOTAutograd and so on.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152677
Approved by: https://github.com/pianpwk
2025-05-16 07:51:50 +00:00
bea7d428bc [export] Preserve custom metadata for tensor constants (#152241)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/151476
The `custom_meta` collected from `mod` has keys that follow name of nodes in `mod`, which are inconsistent with the node names after the naming pass. For example a constant `b` will become `c_b`.

Test Plan: buck2 run caffe2/test:test_export -- -r test_run_decompositions_keep_tensor_constant_metadata

Differential Revision: D73703068

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152241
Approved by: https://github.com/angelayi
2025-04-30 00:30:35 +00:00
cd1317f92f [export] suggest dynamic re-export in input constraints hook (#151624)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151624
Approved by: https://github.com/angelayi
2025-04-21 22:29:46 +00:00
e6969c1bd8 [export] Symint support (nonstrict, Dim.DYNAMIC) (#150198)
Fixes https://github.com/pytorch/pytorch/issues/113682 only in the non-strict export case. Also we only support Dim.DYNAMIC/AUTO, not named-Dims

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150198
Approved by: https://github.com/pianpwk
2025-04-10 15:06:23 +00:00
90ddb33141 [export] specialize for aten.to (#149235)
Changes decomposition behavior of `aten.to` to respect the aliasing/non-aliasing behavior in eager, and to specialize to the input/conversion dtype & device.

Before change: we always decompose `aten.to` into `_to_copy`, regardless of aliasing behavior. This leads us to ban mutations on the result of `_to_copy` when aliased, since we can't guarantee correct program semantics. This meant users had to explicitly call `.clone()` before mutating. In the special cases where we don’t ban mutations (e.g. dtype conversion), we add runtime assertions on the input & conversion dtype/devices in the decomposed program (see https://github.com/pytorch/pytorch/pull/142420).

After change: we decompose to the aliasing/non-aliasing behavior that matches eager, allowing mutations in all cases. We also add dtype/device assertions for all `aten.to` ops, starting in the pre-dispatch graph, basically specializing the program to the dtype/devices.

Differential Revision: D71229547

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149235
Approved by: https://github.com/tugsbayasgalan
2025-04-03 05:20:10 +00:00
09aa63ea2c preserve custom meta in placeholders (#149661)
Fixes #147338

Differential Revision: [D71573533](https://our.internmc.facebook.com/intern/diff/D71573533/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149661
Approved by: https://github.com/junpeiz, https://github.com/angelayi
2025-03-21 19:09:38 +00:00
80dfce2cc3 [export] Handle non OpNamespace type during decomposition. (#149431)
Summary:
Turns out we can have non OpNamespace object in torch.ops._dir.

We should just throw away those during iteration.

Test Plan: eyes

Differential Revision: D71417992

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149431
Approved by: https://github.com/tugsbayasgalan
2025-03-20 15:36:15 +00:00
f30776c37a [BE] Upgrade to mypy 1.14 (#145966)
Upgrade mypy version

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145966
Approved by: https://github.com/Skylion007
2025-03-04 20:58:26 +00:00
8d921eb97f export method (#147573)
The `export` API takes a `nn.Module` and traces its `forward` method. However sometimes it is useful to export different methods of a `nn.Module`, either as a one-off for debugging or as a set of methods that are called in some sequence outside `export` (e.g., `encode` / `decode`). When multiple methods of the same module instance are exported, they should share the same of the common module instance.

This PR adds a couple of utils in `torch._export.utils` for this workflow.

The `wrap_method` util wraps a method as a `nn.Module` that can then be exported. See included test. We recommend using the same module instance to export multiple methods on that instance, in which case they are guaranteed to share  state. On serde, this state sharing is lost, so we provide another util, `sync_state`, to re-sync the state.

These utils are meant to be eventually replaced by API-level changes, but for now this can unblock users who need this workflow. In particular, in the future we can accept one or multiple method entrypoints, with their own args / kwargs / dynamic shape specifications, which can create a variant of `ExportedProgram` with multiple graphs that share state; then we can automatically ensure that the state sharing is preserved through serde.

Differential Revision: [D69960801](https://our.internmc.facebook.com/intern/diff/D69960801/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147573
Approved by: https://github.com/tugsbayasgalan
2025-02-25 20:58:54 +00:00
d2a2b9f8a7 Fix constants with non-functional operators (#145593)
Previously, in non-strict path, we always error when trying to inplace update a constant tensor because those constant tensors are not actually wrapped by functional tensors. This is correct behaviour in torch.compile, because dynamo makes all constant tensors into buffers and AOTDispatcher just lifts them and wraps them in functional tensors. However, in non-strict, there is no such step that registers constants as buffers so AOTDispatcher panics when it sees these dangling constant tensors when functioanalizing.

Due to recent change in the IR, this is no longer an issue in non-strict path because we don't call AOTDispatcher at training IR level, but now it is a problem for both strict and non-strict when we lower to inference. (lowering to inference is very similar to non-strict tracing) As a result, we have at least one external (https://github.com/pytorch/pytorch/issues/141336) and internal issues reported due to this difference.

To fix this, there are two ways:
1. Make functionalization be aware of constant tensors and map them to functional tensors on the fly. This makes functionalization invariant uglier and could potentially open up a gate for more nasty bugs.
2. Special handle this in export. This seems more aligned with what dynamo does today so i think we should do it this way. I think the current state could benefit from more refactors to make the run_deocmpositions to be more similar to strict export (because both of them now handle this constant registerinig logic) but it is bit complicated to do it now because strict export version of this logic is also not complete because it doesn't take into account of export graph renaming pass etc). I will follow up with more refactors after this PR (T213466691) to unblock users faster.

For future reference:

Why are we not doing "turning constants into non-persistent buffers and never de-register"? The reason is because in some internal models, they rely on module.to to reliably work to move params/buffers to correct device. As a result, buffers are moved while constants are not. In composibility meeting, we agreed that export won't do device agnostic tracing going forward (it will provide a way to specify FakeTensor in CPU that can be configured to be run on GPU), so after that is done, we can always turn constants into non-persistent buffers which will simplify export's constant handling.

Differential Revision: [D68610739](https://our.internmc.facebook.com/intern/diff/D68610739)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145593
Approved by: https://github.com/avikchaudhuri
2025-02-05 17:44:19 +00:00
97d4d3c40a PEP585 update - torch/_export (#145138)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145138
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #145154
2025-01-19 18:48:35 +00:00
53256edff9 [export] Support module inputs for non strict mode. (#143925)
Summary:
Add experimental support for torch.nn.Module as input types.

Before this change, we don't support module inputs but recently we saw some interesting use cases like gpt-fast https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py#L68 where we directly pass in a module input for different variants of the same models.

Since we don't really care about non-param or non-buffer states in non strict mode, we don't care about those either and pretend they are like plain constants during tracing. We treat any module input like a nested container of tensor, and each time we will automatically register a pytree handler for these module types to flatten its state dict into a group of tensors. We will just inline any module method call during tracing like we did for `self` module in export_for_training. This will make input modules' behavior very similar to the training module in typical case, except that we don't record the inputs as parameter or buffers but rather just plain user inputs.

Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_module_input

Differential Revision: D67680827

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143925
Approved by: https://github.com/tugsbayasgalan
2025-01-16 17:30:36 +00:00
12fdb93ebd fix non-strict placeholder naming with kwargs (#144278)
Fixes https://github.com/pytorch/pytorch/issues/143732

Differential Revision: [D67872055](https://our.internmc.facebook.com/intern/diff/D67872055/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144278
Approved by: https://github.com/yushangdi, https://github.com/pianpwk
2025-01-07 11:22:09 +00:00
d75ffccd0a Migrate from Tuple -> tuple in torch/_export (#144262)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144262
Approved by: https://github.com/avikchaudhuri
2025-01-06 22:20:26 +00:00
1e201422ed [export] add is_exporting flag (#142425)
We added an is_export flag under torch.compiler.is_exporting. This comes handy when we try to do some special logic in user-level and system-level (e.g. in upper of the stack).

In increasing-scope:
- `_is_fx_tracing` is set to True when we use under symbolic_trace or make_fx.
- `is_exporting` is set to True when we're doing strict or non-strict export, which internally has a step that calls make_fx and set _is_fx_tracing to be True.
- `is_compiling` is set to True when we're either doing strict, non-strict export or torch.compile.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142425
Approved by: https://github.com/avikchaudhuri
2024-12-18 21:36:28 +00:00
bceedeec2b fix checking non-trivial input constraints (#143442)
A bunch of auto dynamic shape tests would fail non-strict retraceability because when checking input constraints, we'd compare non-trivial expressions, which would require / affect shape env.
```
... is not tracked with proxy for <torch.fx.experimental.proxy_tensor._ModuleStackTracer object ...
```

I've also observed this bug internally.

This PR does an early check on whether args passed have concrete shapes, and only then proceeds: as before, we
1. try to unify / solve with the arg dim when the corresponding placeholder node dim is symbolic in one symbol
2. check directly if the placeholder node dim is concrete
3. otherwise defer to run time.

Differential Revision: [D67359596](https://our.internmc.facebook.com/intern/diff/D67359596/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143442
Approved by: https://github.com/tugsbayasgalan
2024-12-18 07:29:08 +00:00
dc23f1944a Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-12 17:39:14 +00:00
5c97ac9721 Revert "Remove unused Python variables in torch/[_-a]* (#133492)"
This reverts commit fda975a7b3071a20dab8fc2c4e453479e1bb7cf2.

Reverted https://github.com/pytorch/pytorch/pull/133492 on behalf of https://github.com/clee2000 due to Sorry, I need to revert this in order to revert something else.  The only thing you need to do is rebase and remerge ([comment](https://github.com/pytorch/pytorch/pull/133492#issuecomment-2536635516))
2024-12-11 17:29:12 +00:00
fda975a7b3 Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-10 21:48:44 +00:00
5e8e1d725a Remove some unused type ignores (round 1) (#142325)
Over time, a large number of the existing type ignores have become irrelevant/unused/dead as a result of improvements in annotations and type checking.

Having these `# type: ignore` linger around is not ideal for two reasons:

- They are verbose/ugly syntatically.
- They could hide genuine bugs in the future, if a refactoring would actually introduce a bug but it gets hidden by the ignore.

I'm counting over 1500 unused ignores already. This is a first PR that removes some of them. Note that I haven't touched type ignores that looked "conditional" like the import challenge mentioned in https://github.com/pytorch/pytorch/pull/60006#issuecomment-2480604728. I will address these at a later point, and eventually would enable `warn_unused_ignores = True` in the mypy configuration as discussed in that comment to prevent accumulating more dead ignores going forward.

This PR should have no effect on runtime at all.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142325
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
2024-12-09 18:23:46 +00:00
f472b3aee1 improve typings around torch.export (#141829)
This is another follow-up to https://github.com/pytorch/pytorch/pull/115074 / https://github.com/pytorch/pytorch/pull/141240 following the strategy discussed there (https://github.com/pytorch/pytorch/pull/115074#issuecomment-2480992230).

This PR improves the type annotations around `torch._export`. Even though the PR introduces a few runtime type asserts, the runtime behavior should stay equivalent, because the failed assertions should have been immediate crashes anyway.

CC @Skylion007 @ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141829
Approved by: https://github.com/ezyang
2024-12-03 19:57:21 +00:00
11c786dcb5 [BE] Make maybe_aliasing_or_mutating proper tag (#131990)
For better tracking, we need to make maybe aliasing/mutating ops with proper tag. We need to special case native_batch_norm because it is not a CIA but has a wrong schema. I guess native_batch_norm will be removed at some point, so until then we just keep it around.

D60347117
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131990
Approved by: https://github.com/bdhirsh
2024-11-24 00:12:49 +00:00
0155a112fd [export] avoid name collision when inlining node (#141169)
Summary:
When we have both `set_grad` and `autocast` HOP, name collision might happen when we try to inline a node.

For exmaple, for a GraphModule like this:

```
GraphModule(
  (submod_0): GraphModule(
    (submod_1): GraphModule()
  )
  (submod_1): GraphModule()
  (submod_2): GraphModule()
)

```

when we inline `submod_0`, we might accidentally overwrite `submod_1`.

In this PR, we fix this by check if the graph module already has an attribute with the same name, if so, we use the next "submod_{i}", until no name collision.

Partially fixes https://github.com/pytorch/pytorch/issues/140589.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r  test_predispatch_autocast_and_set_grad
```

Differential Revision: D66200994

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141169
Approved by: https://github.com/angelayi
2024-11-22 01:08:22 +00:00
612122af8f Fix type-safety of torch.nn.Module instances (#141240)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141240
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-11-22 00:05:05 +00:00
cb71bcc542 Replace clone.detach with detach.clone (#140264)
Fixes #64532

As state in issue, replace `clone.detach` by `detach.clone`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140264
Approved by: https://github.com/soulitzer
2024-11-13 07:01:02 +00:00
0af38b1034 Remove temp table to post autograd IR (#140085)
This table is not needed

Differential Revision: [D64553397](https://our.internmc.facebook.com/intern/diff/D64553397/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140085
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-11-11 23:59:09 +00:00
ae0e7042f6 Fix custom obj being input (#139209)
Differential Revision: [D65158939](https://our.internmc.facebook.com/intern/diff/D65158939)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139209
Approved by: https://github.com/ydwu4
ghstack dependencies: #138658
2024-11-04 18:24:29 +00:00
392221b390 Made DDPOptimizer work with HOPs (#138787)
Fixes https://github.com/pytorch/pytorch/issues/137481

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138787
Approved by: https://github.com/yf225
ghstack dependencies: #138733, #138794, #138881
2024-10-25 18:59:01 +00:00
9f7c26bef3 Fix training IR bug by changing passes order (#138292)
Inserting runtime_assertions cause gm to have different names but the graph signature was populated earlier. To avoid this kind of errors in the future, I refactored these steps into a helper function.

Differential Revision: [D64576251](https://our.internmc.facebook.com/intern/diff/D64576251)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138292
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #138266
2024-10-22 01:24:14 +00:00
5adc33d3b8 Training IR should preserve custom metadata (#138266)
Differential Revision: [D64576252](https://our.internmc.facebook.com/intern/diff/D64576252)

@diff-train-skip-merge
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138266
Approved by: https://github.com/yushangdi
2024-10-22 01:09:56 +00:00
1f32a1fb80 Replace torch.export default decomp table to be lazily populated (#137650)
In this PR, we implement lazy dictionary for export decomp behaviour for following reasons:
1. Custom op loading can happen after import time, as a result, the decomp table might not be able to pick up the decomp. Therefore we try to delay materialization as late as possible.

I intentionally seperated out the core_aten_decomp to not have any custom CIA ops in this PR to mitigate the risk of getting reverted but in the future, core_aten_decomp under torch/_decomp will exist as an alias to official export table (torch.export.default_decompositions)

Differential Revision: [D64140807](https://our.internmc.facebook.com/intern/diff/D64140807)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137650
Approved by: https://github.com/justinchuby, https://github.com/bdhirsh
2024-10-18 19:28:52 +00:00
9d4cb0d3eb Fix param and buffer mapping for state_dict when there are state_dict hooks (#137609)
Resolve #137540

Summary:

We might get different state_dict and named_parameters result when the module has registered custom state_dict_hooks.
For exported_program's state_dict, we want the state_dict to reflect the actual module hierarchy at runtime, and it might be different from the model's state_dict() output if the model has state_dict hooks.
To do weight swapping, one needs to either re-export or turn-off the hooks when saving model's state_dict().
Previously, ExportedProgram uses nn.Module's state_dict() method to populate its own state_dict, but it doesn't work for some models (e.g. llama3_3_vision) because ExportedProgram's state_dict and an nn.Module's state_dict have some subtle differences semantically.

nn.Module's state_dict is about how the state should be serialized, and it reflects the structure of the original user model code. In contrast, export specializes on a “run” of a model, and its state_dict needs to reflect the runtime module hierarchy.

One example where these two are different is TorchTune's Llama3_2_vision text decoder. Here, a FusionLayer is added as a local optimization and it is not part of the "static model definition".  In runtime, we have mod.layers[3].layer.sa_norm.scale.

But in nn.Module's state_dict, the authors of the model added a state_dict hook to remove the "layer" in mod.state_dict() to reflect the static model definition, so we have mod.state_dict()["layers.3.sa_norm.scale"].
In this Diff, we change ExportedProgram to populate its state_dict using named_parameters() and named_buffers() instead. So in ExportedProgram's state_dict, we have "layers.3.layer.sa_norm.scale", which reflects the runtime module hierarchy.

Now one problem this presents is weight swapping. Since ExportedProgram's state and the model's state is not the same anymore, weight swapping procedure also needs to change slightly.

In internal Ads and RecSys models deployment, weight swapping is where they have one model that is currently being being deployed and serving traffic, and they want to swap out the weights with newly trained model weights without having to redo the whole exporting/lowering process and create a new artifact. So they would move the deployed model’s pointer to the state dict over to the new state dict. Because of this, it’s previously a requirement that the FQNs are matching between the exported and the eager model’s state dict.

The new ExportedProgram's state dict still supports weight swapping, but the state_dict to be swapped needs to be obtained from torch.export.exported_program instead of model.state_dict() if the model has state_dict hooks.
The new requirement is that the FQNs are matching between the exported’s state dict and the state_dict obtained from `_disabled_load_state_dict_hooks(M)` context manager. One benefit of having this new API is that we are now in full control within export of gathering and updating the model state.
If a model doesn't have any state_dict hooks, one can still use model.state_dict() for weight swapping, so it's BC.

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export  -- -r  test_export_for_training_with_state_dict_hooks
```

Differential Revision: D64080561

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137609
Approved by: https://github.com/angelayi, https://github.com/pianpwk
2024-10-11 01:33:50 +00:00
fa9cd46d12 [export] Update swap's forward function (#137102)
Downstream APS code was failing to run the previously swapped module because of some fx.GraphModule forward function weirdness (P1594789677). So to fix this, I just attached a custom forward function which matches the unflattened module's forward function.

Differential Revision: [D63683422](https://our.internmc.facebook.com/intern/diff/D63683422/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137102
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #136191
2024-10-06 04:25:36 +00:00
4312794b92 [reland][export] fix re-export custom metadata (#135720)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/134778

The previous D62304294 broke some executorch tests. It has already been reverted.

In this diff, `_collect_param_buffer_metadata()` is modified in a way that when a `call_function` node is encountered and its input nodes include `get_attr`. We skip the fields that have been collected previously and only collect rest of the fields. This prevents over-writing.

Test Plan:
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//executorch/backends/xnnpack/test:test_xnnpack_ops

buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_re_export_preserve_handle

buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_run_decompositions_preserve_handle
```

Differential Revision: D62514208

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135720
Approved by: https://github.com/zhxchen17, https://github.com/jerryzh168
2024-09-13 20:15:15 +00:00
4ae6d7c18f Back out "[pytorch][PR] [export] fix re-export custom metadata" (#135634)
Summary: Broke some tests. Revert this diff

Test Plan: CI

Differential Revision: D62474337

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135634
Approved by: https://github.com/tugsbayasgalan
2024-09-11 06:16:26 +00:00
66c45f3ed9 [export] fix re-export custom metadata (#135282)
Fixes #134778

When a model is exported and debug handles are added to the "custom" field of non-placeholder and non-output nodes in the graph, re-exporting it will change the metadata of placeholder nodes (the "custom" field will be added or copied to these nodes, depending whether `ExportedProgram` or `ExportedProgram.module()` is passed to `generate_numeric_debug_handle()`).

This occurs because when we re-export the model, `placeholder` nodes are unlifted to `get_attr` nodes. These nodes remain as `get_attr` after being exported to `gm_torch_level`.  Their metadata are modified [here](https://github.com/pytorch/pytorch/blob/main/torch/export/_trace.py#L1347) based on `params_buffers_to_node_meta` which is collected [here](https://github.com/pytorch/pytorch/blob/main/torch/export/_trace.py#L1312).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135282
Approved by: https://github.com/jerryzh168, https://github.com/zhxchen17, https://github.com/tugsbayasgalan
2024-09-10 20:15:02 +00:00
9d705605dd Fix decomp behaviour in export training IR (#134801)
Subset of changes in https://github.com/pytorch/pytorch/pull/132901, can't land the previous one because it is too complicated. Rest of the change will be implemented as follow up after export design meeting. This part just makes the training IR -> inference IR decomp to have the same path as normal export.

Differential Revision: [D62000525](https://our.internmc.facebook.com/intern/diff/D62000525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134801
Approved by: https://github.com/avikchaudhuri, https://github.com/angelayi
2024-09-05 06:37:44 +00:00
8ff3a5be1b [export] basic auto dynamic shapes (#133620)
Starter version of automatic dynamic shapes for export.

Creates enums `DIM.AUTO`, `DIM.STATIC`, allowing user to specify `AUTO` for dims in dynamic_shapes specs, meaning that corresponding dims are treated as dynamic, and relevant guards will do what's necessary (e.g. refine ValueRanges, set replacements based on equality, or even set static) without raising ConstraintViolationErrors. Basically allows the user to say, "a bunch of these dims can be dynamic, let export do model analysis and return the program with maximum possible dynamism, without complaining".

The usage for specifying `dynamic_shapes` is now:
```
AUTO -> dynamic by default, return whatever produce_guards() says, even if it's static
None/int/STATIC -> static
Dim/DerivedDim -> same as before - will complain if the min/max range is invalid, or if dims related to this are unspecified.
```

Caveat 1: specifying `AUTO` for a dim won't guarantee it'll be dynamic:

- specifying `AUTO` for a dim will return the maximum possible dynamism given your program and other specified constraints, but this can still mean you'll get a static program. For example, with the program below, x is specified dynamic, but it's equal to y, which is specified static, and with how we currently do things we won't promote y to dynamic, but will demote(?) x to static. So this can be surprising if you don't fully know your model, and/or missed one of your other inputs when specifying auto-dynamic shapes.
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": None})
```

Caveat 2: specifying `AUTO` and Dims in the same spec is still problematic:

- The way Dims/DerivedDims are currently handled is very strict. A Dim represents a symbol, and we require a user to specify the symbol for all dims governed by the symbol - that's why we've seen errors in the past like `The values of x must always be related to y by ...`, asking the user to specify the exact relation as in the program. We also require the specified min/max range to be a subset of the valid range from model analysis. All this doesn't compose well with specifying `AUTO` just yet - for example in the program below, ideal behavior could be to return a dynamic program, where `dx = x.size(0) = y.size(0)` has range (3,6). Unfortunately this crashes, and correct behavior is to specify `dx` for both inputs. So currently we raise a UserError and crash if both Dims + `AUTO` are present in the spec.
```
class Foo(torch.nn.Module):
    def forward(self, x, y):
        return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": {0: Dim("dx", min=3, max=6)}})  # this doesn't work, because x & y and related
```

Implementation details:

This is done by setting `assume_static_by_default=False`, and doing a transform on the `dynamic_shapes` spec to preserve semantics. `assume_static_by_default=False` will treat unspecified dims or Nones as dynamic. This is the opposite of what `export.export()` currently does - unspecified Dims/Nones are treated as static. Historically this static-by-default behavior, where the user deals with fewer guards, has been desirable, and we would like to respect that in this implementation. So this internal spec transformation is added, `_transform_shapes_for_default_dynamic()`, does the spec conversion necessary to be compatbile with dynamic by default. Specifically, AUTOs are converted into Nones, and Nones/unspecified dims are filled in with explicitly static constraints.

For example, this would look like, for a 3-d tensor: `{0: DIM.AUTO, 1: None, 2: Dim("dx")} -> {0: None, 1: 32, 2: Dim("dx")}`

This does seem overly complicated, but it's done to preserve dynamic shapes semantics for `torch._dynamo.export()`, which already uses `assume_static_by_default=False`, and follows the same process for generating shape constraints , via `_process_dynamic_shapes`. There the semantics are:
```
None/unspecified: dynamic by default
Dim/DerivedDim: also a strict assertion
```

If we don't care about BC for `_dynamo.export(dynamic_shapes)`, then we can just modify semantics for `_process_dynamic_shapes()` and change all the relevant tests in `test/dynamo/test_export.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133620
Approved by: https://github.com/avikchaudhuri
2024-08-23 22:56:39 +00:00
4671e98656 [export] fix node.users when inlining HOOs (#133144)
The process of inlining HOO subgraphs (e.g. set_grad_enabled) seems to break node.users when a node is present in multiple subgraphs, for example:
```
class SetGradCase(torch.nn.Module):
    def forward(self, x):
        _x = x.shape[0] + 2
        _xx = _x + 2
        with torch.no_grad():
            y = _x * 4
        return _xx, y
```

The `_x` node contains 2 users (_xx and y) after being inlined, but with inspection it seems to only contain y as a user.

Previously we were completely clearing node.users for output nodes in HOO subgraphs before inlining them - we should just be deleting the subgraph output nodes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133144
Approved by: https://github.com/larryliu0820, https://github.com/ydwu4
2024-08-13 03:21:42 +00:00
3899465268 relax unification checks when size-like symbols can be 0 (#133112)
Test Plan: Fixes test failure in https://www.internalfb.com/diff/D51127481

Differential Revision: D61031307

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133112
Approved by: https://github.com/angelayi
2024-08-10 00:57:49 +00:00
3c5b246d3c [export] Remove Proxy from exported programs and modules (#132956)
Summary: Remove Proxy from exported programs and modules because they cannot be deepcopied or pickeled.

Test Plan:
CI

```
buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test/quantization:test_quantization -- -r  qat_conv2d
buck2 run 'fbcode//mode/dev-nosan' fbcode//modai/test:test_modai -- -r test_qat_stinson_htp_export
buck2 run 'fbcode//mode/dev-nosan' fbcode//vizard_projects/ml_depth/tests:test_model -- -r test_qat_model_et
buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=False,use_3d_input=False
buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=True,use_3d_input=False
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r  test_fold_bn_erases_bn_node
```

Differential Revision: D60940832

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132956
Approved by: https://github.com/angelayi
2024-08-09 00:00:20 +00:00
bbf568aac8 Split of "[reland] [export] fix zero arg export in training_ir and constant tensor handling" (#132307)
Summary:
A re-land of D60006710.
Fixed TrainingIRToRunDecomp failures for test_tensor_attribute_zero_args and also a few re-tracability failures because run_decomposition does a retracing.

edit: also remove the eliminate_dead_code() in _unlift because of one onnx test failure:
a constant tensor attr was lifted as constant_tensor input but it's not used in the graph after aot_autograd due to a short cut in its decomposition. This causes the setattr to be removed by eliminate_dead_code but the graph signature still contains the name of that buffer, which causes an inconsitency between the transformed graph and ep's original signature after _unlift. And it seems that this has happened a few times where some nodes are accidentally removed and we're in an inconsistent state.
The alternative of removing it would be: every time we call elimiate_dead_code, we verify the consistency of the graph with 1. the graph before transformation and 2. all the meta datas but i think this deserves a complete design

edit 2: Also fix the inconsistency of graph signatures when param_constant is marked as lifted_tensor_constants but it's registered as parameters in the output of ep.module().

Differential Revision: D60532628

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132307
Approved by: https://github.com/zhxchen17
2024-08-08 01:36:16 +00:00
825002c9c6 [export][fx] More robust DCE pass (#132764)
Summary:
- make default DCE pass check schema,
- need to rebase onto https://github.com/pytorch/pytorch/pull/131651 after it's in phabricator (for now the change is manually added).

- mark Proxy dump as NotImplemented for better error msg

- Remove Proxy from tensors when dumping models, as Proxy cannot be dumped.

More details in https://docs.google.com/document/d/1G5vmTXjzxoyVGRI2kpA1gQukK_Glyg2NrE0Oh6Nlg9A/edit?usp=sharing.

Test Plan:
CI
```
- buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test/quantization:test_quantization -- -r  qat_conv2d
- test_export.py
- buck2 run 'fbcode//mode/dev-nosan' fbcode//modai/test:test_modai -- -r test_qat_stinson_htp_export
- buck2 run 'fbcode//mode/dev-nosan' fbcode//vizard_projects/ml_depth/tests:test_model -- -r test_qat_model_et
- buck2 run 'fbcode//mode/dev-nosan'  fbcode//caffe2/test:fx -- -r dce
- buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=False,use_3d_input=False
- buck2 run 'fbcode//mode/dev-nosan' fbcode//bolt/nn/executorch/backends/tests:qnn_test -- -r test_qat_bias=True,use_3d_input=False
- buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r  test_fold_bn_erases_bn_node
```

Reviewed By: angelayi

Differential Revision: D60319175

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132764
Approved by: https://github.com/angelayi
2024-08-06 22:27:22 +00:00
4a2cf50edf [export][reland] Convert autocast to HOO (#132677)
Summary:
Reland of D60206382.

Suggested in https://github.com/pytorch/pytorch/issues/128394.

If there's an autocast context manager, the predispatch (strict) graph can look something like:

```
class <lambda>(torch.nn.Module):
    def forward(self, x: "f32[1]"):
        ...
        _enter_autocast = torch.amp.autocast_mode._enter_autocast('cuda', torch.bfloat16, True, None)
        mm: "f32[8, 8]" = torch.ops.aten.mm.default(rand, rand_1);  rand = rand_1 = None
        _exit_autocast = torch.amp.autocast_mode._exit_autocast(_enter_autocast);  _enter_autocast = None
        return (mm_1,)
```

But the operator `torch.amp.autocast_mode._enter_autocast` is not a valid ATen op. We remove these nodes by turning autocast into a higher order operator and make a submodule for the blocks between `_enter_autocast` and `_exit_autocast`.

Some potential followup improvement:
1) Merge some of the duplicated logic with `replace_set_grad_with_hop_pass.py`
2) Check the current autocast status (any enabled? dtype?) and not create a submodule if the autocast args matches current autocast status.

Test Plan:
CI

```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r "test_predispatch_autocast"
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r "test_predispatch_set_grad"
```

Verified that now we can export the llama model in  gh issue 128394 and the gemma model in  gh issue 131829 without error.

Differential Revision: D60770038

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132677
Approved by: https://github.com/angelayi
2024-08-05 22:34:52 +00:00
e7eeee473c [BE][Easy][14/19] enforce style for empty lines in import segments in torch/_[a-c]*/ and torch/_[e-h]*/ and torch/_[j-z]*/ (#129765)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129765
Approved by: https://github.com/ezyang
2024-07-31 10:42:50 +00:00
b9912f31ef Revert "[export] fix zero arg export in training_ir (#130990)"
This reverts commit 50436d5bdb5d2e29307a0c0bcfcce8d7e2da82c0.

Reverted https://github.com/pytorch/pytorch/pull/130990 on behalf of https://github.com/clee2000 due to failing some executorch and torchrec tests internally D60006710 ([comment](https://github.com/pytorch/pytorch/pull/130990#issuecomment-2243395316))
2024-07-22 16:49:25 +00:00
50436d5bdb [export] fix zero arg export in training_ir (#130990)
Fixed TrainingIRToRunDecomp failures for test_tensor_attribute_zero_args and also a few re-tracability failures because run_decomposition does a retracing.

**edit:** also remove the eliminate_dead_code() in _unlift because of one onnx test failure:
a constant tensor attr was lifted as constant_tensor input but it's not used in the graph after aot_autograd due to a short cut in its decomposition. This causes the setattr to be removed by eliminate_dead_code but the graph signature still contains the name of that buffer, which causes an inconsitency between the transformed graph and ep's original signature after _unlift. And it seems that this has happened a few times where some nodes are accidentally removed and we're in an inconsistent state.

The alternative of removing it would be: every time we call elimiate_dead_code, we verify the consistency of the graph with 1. the graph before transformation and 2. all the meta datas but i think this deserves a complete design.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130990
Approved by: https://github.com/pianpwk
2024-07-20 02:35:13 +00:00