Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.
Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:
`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)
```python
class BooleanOptionalAction(Action):
def __init__(...):
if option_string.startswith('--'):
option_string = '--no-' + option_string[2:]
_option_strings.append(option_string)
```
It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
Changes:
1. `typing_extensions -> typing-extentions` in dependency. Use dash rather than underline to fit the [PEP 503: Normalized Names](https://peps.python.org/pep-0503/#normalized-names) convention.
```python
import re
def normalize(name):
return re.sub(r"[-_.]+", "-", name).lower()
```
2. Import `Literal`, `Protocal`, and `Final` from standard library as of Python 3.8+
3. Replace `Union[Literal[XXX], Literal[YYY]]` to `Literal[XXX, YYY]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94490
Approved by: https://github.com/ezyang, https://github.com/albanD
Retry of #90590, which is a retry of #89594. Original PR reverted due to internal breakage.
This PR fixes the breakage by adding a default value to the new argument.
This PR allows `get_native_function_declarations` API to take a function as argument. This function should take `NativeFunction` as input and emit code for native function declaration. By default it is `dest.compute_native_function_declaration`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90780
Approved by: https://github.com/ezyang
Summary:
Sometimes we want to extend an existing custom namespace library, instead of creating a new one,
but we don't have a namespace config right now, so we hardcode some custom libraries defined
in pytorch today, i.e. quantized and quantized_decomposed
Test Plan:
ci
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88229
Approved by: https://github.com/ezyang
Our prevailing strategy for symbolic shapes in C++ is to only
write the SymInt version of the code, and pay a slight performance
tax from not knowing if it is symbolic or not. However, there are
some fastpath functions where this tax is unacceptable, and we want
to specialize for the int case. Sometimes, it is easy to template
the function; but when the function involves Tensors, it is not,
because the functions you may want to call are not templated,
e.g., t.view vs t.view_symint
This PR adds an at::symint:: namespace which contains templated
functions for all functions in PyTorch which you can use in this
way. To show this works, I refactored sum_to to stop incorrectly
reinterpret casting and instead use a template. Instead of
t.sizes(), we call at::symint::sizes<T>(t), and so forth.
The template functions are SFINAE'd using a template argument that
is not otherwise used. As such, deduction is impossible. Typically, deduction
is hard anyway, because many of the constructors are ambiguous (this
is why we split foo and foo_symint in the first place). So you must pass
a template argument to these functions.
These functions are codegened into Functions.h so they are subject
to per-operator headers. This matters most for methods, which likely
didn't include the per-operator header, so you will have to add an
include in that case. We never generate method variants for these.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86329
Approved by: https://github.com/bdhirsh, https://github.com/voznesenskym
Summary: Context: currently `static_dispatch` assumes that given a native function `f`, we always want to map from its `DispatchSignature` to its `CppSignature`. This assumption may not hold true for some use cases, where the source bindings may not come from its `DispatchSignature`. Here I'm changing the argument `sig: DispatcherSignature` to be `sig: Union[CppSignature, DispatcherSignature]`, also removes unused `f`
Test Plan: Rely on added unit test.
Differential Revision: D39192969
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84384
Approved by: https://github.com/iseeyuan
Something people found confusing was that whether or not a native::
signature would get SymInt or not in its type was based on the dispatch
key. This changes it so that SymInt or not in type is based on whether
or not you have _symint in the name of the kernel or not. This means
that even when we make operators support SymInt, you no longer have to
go and update all the preexisting definitions; instead, you now
selectively write _symint to opt individual kernels into SymInt support.
I then go and update a bunch of kernels that don't have proper SymInt
support to make use of this convention. There is some hacking around
for view generation code.
I also add support for external backends to specify 'symint' operators, for which we generate SymInt signatures instead of regular signatures.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39310060](https://our.internmc.facebook.com/intern/diff/D39310060)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84579
Approved by: https://github.com/wconstab
Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"
Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9
Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159
Also update Metal registrations for C++ registration changes.
Also update NNPI registration to account for tightened schema checking
Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Summary:
We started to see use cases where it involves more than 1 custom namespace to live within the same yaml file. Hence relaxing the restriction that 1 yaml file can only have 1 custom namespace other than `aten`. Updated unit test as well.
Differential Revision: D38775685
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83580
Approved by: https://github.com/JacobSzwejbka
Summary:
Previously we don't generate out variant (both schema and kernel) for an operator with functional variant only. This adds support for that and adds test.
## Changes on `native_function_generation.py`
We are generating out variant for all functional variants if possible. This PR introduces a lot of newly generated out variants and `native_functions.yaml` needs to incorporate the changes by adding `autogen` keywords.
The logic for determining what operators we should generate an out variant for is the following:
1. No existing out variant for this `NativeFunction`
2. Contains an existing in place, mutable or functional variant
3. Contains at least 1 tensor like return(s)
For operators matching the first two conditions but failing the third, I listed them in `FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT`.
## Special handling
The following operators satisfy all 3 criteria above but we chose to not autogen them, with some reasons.
* `mkldnn_adaptive_avg_pool2d`, the generated out variant `mkldnn_adaptive_avg_pool2d.out` is colliding with the `mkldnn_adaptive_avg_pool2d_out` kernel in `adaptive_avg_pool2d.out` operator. I manually created `mkldnn_adaptive_avg_pool2d.out` and renamed `mkldnn_adaptive_avg_pool2d_out` to `mkldnn_adaptive_avg_pool2d_out_stub`.
* `min`, `max` and `mean`. There already exist `min.out`, `max.out` and `mean.out` but they are having different semantics with the functional ones. I manually created `min.unary_out`, `max.unary_out` and `mean.dtype_out` to disambiguate.
## Autograd Changes
We introduced a logic to not match derivatives info in `derivatives.yaml` to out variant, since we are generating `NOT_IMPLEMENTED` kernels for those out variants anyway. The issue we are seeing with the original logic is that it doesn't handle `TensorOption` arguments really well. For example we have these two operators:
* `_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor`
* `_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)`
If we uses `_to_copy` derivative info, there will be compilation error since `dtype` is missing from `_to_copy.out` signature.
Test Plan: Rely on unit test
Differential Revision: D37832342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81437
Approved by: https://github.com/iseeyuan, https://github.com/bdhirsh
Summary:
A follow up of #81581. Before these 2 PRs, if an operator with custom kernel namespace is added to `native_functions.yaml` (or any other yaml consumed by `torchgen`), although we are able to recognize the custom kernel in files such as `NativeFunctions.h` and `RegisterCPU.cpp`, we still generate backend specific wrappers under the hardcoded `at` namespace. This changes the behavior, by generating wrapper functions under custom namespaces.
For example, if the entries in yaml file looks like:
```
- func: op_1(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: at::op_1_kernel # ATen kernel
- func: op_2(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: custom::op_2_kernel # custom kernel
```
We generate the following code for `CPUFunctions_inl.h` and `RegisterCPU.cpp`:
`CPUFunctions_inl.h`:
```
namespace at {
namespace cpu {
TORCH_API at::Tensor & op_1(const at::Tensor & self);
} // namespace cpu
} // namespace at
namespace custom {
namespace cpu {
TORCH_API at::Tensor & op_2(const at::Tensor & self);
} // namespace cpu
} // namespace custom
```
Notice the difference between `at::cpu` and `custom::cpu`.
Then the definition for these can be found in `RegisterCPU.cpp`.
`RegisterCPU.cpp`:
```
#include "CPUFunctions.h"
namespace at {
namespace {
at::Tensor & wrapper_op_1(const at::Tensor & self) {
// No device check
// DeviceGuard omitted
return at::native::op_1_kernel(self);
}
} // anonymous namespace
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_1", TORCH_FN(wrapper_op_1));
}
namespace cpu {
at::Tensor & op_1(at::Tensor & self) {
return wrapper_op_1(self);
}
} // namespace cpu
} // namespace at
namespace custom {
namespace {
at::Tensor & wrapper_op_2(const at::Tensor & self) {
// No device check
// DeviceGuard omitted
return at::native::op_2_kernel(self);
}
} // anonymous namespace
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_2", TORCH_FN(wrapper_op_2));
}
namespace cpu {
at::Tensor & op_2(at::Tensor & self) {
return wrapper_op_2(self);
}
} // namespace cpu
} // namespace custom
```
The benefit for this change is that it unifies all the namespaces derived from custom ops. In the example above, there are:
1. `custom::native` for kernels
2. `custom::<dispatch_key>` e.g., `custom::cpu` for wrappers
This customized operator will have nothing to do with `at::native`, `at::cpu` etc.
Test Plan: This is very hard to test. I will refactor this logic, abstract out some layers so it's testable. Will do it in coming PRs
Differential Revision: D37972772
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81744
Approved by: https://github.com/bdhirsh
`resize_()` is annoying because it needs special casing for functionalization. It's technically an inplace-view op, but it can't really have a pure view variant, since calling resize_() might bust the old storage. I gave it an `inplace_view` tag so that stuff like `FakeTensor` that relies on tags will pick it up properly, which required jumping through some codegen hoops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82667
Approved by: https://github.com/eellison
Closes#82320
The iteration order of a `set` can change from run to run, resulting
in real content changes to generated files and therefore unnecessary
rebuilding.
The fix is to use a sort to give a repeatable iteration order.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82536
Approved by: https://github.com/ezyang
Summary:
Some quantized operators needs `QuantizedCPU` backend, due to an issue in namespace checking, currently if we have two backends as well as a custom namespaces in native function, codegen will hit assertion error. This PR fixes this issue
The root cause is that codegen right now asserts that a native function should only have one namespace. The current behavior is that If a native function is not found in a `BackendIndex`, we will use default namespace for that backend, for fallback kernels. However that default namespace may not be listed in the yaml file and it should not be counted when checking if we have two different namespaces for that backend. In our error case, we have 2 `BackendIndex`, one for `QuantizedCPU` and one for `CPU`. The native function doesn't have a kernel in `QuantizedCPU` but we still use a default namespace (`at::native`) for it. Since we have a custom namespace for dispatch key `CPU`, we ran into the assertion error.
This PR changes the assertion criteria. We only error out if a namespace has two or more kernels and they have two or more different namespaces.
Test Plan: rely on newly added unit test
Differential Revision: D38101345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82133
Approved by: https://github.com/iseeyuan
This also makes them not decompose when we switch Python key.
Note that CompositeExplicitAutogradNonFunctional maybe be overly
conservative for some implementations (which actually call into
other functional ops), but for now I just uniformly apply this
everywhere to avoid errors.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82251
Approved by: https://github.com/bdhirsh, https://github.com/zou3519
This PR changes VmapGeneratedPlumbing.h to be generated by torchgen. The
output file is ATen/VmapGeneratedPlumbing.h.
Why generate this file inside PyTorch codegen instead of a separate step
in functorch?
- I can't figure out how to get functorch's fbcode target to generate
- functorch's build system will, in the mid-term, be absorbed into
pytorch's build system, so I don't want to do the extra work of adding
a step to the functorch build process.
Test Plan:
- build pytorch, build functorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82351
Approved by: https://github.com/ezyang
Summary:
In #77710 I introduces some hack to allow static dispatch to take namespaces. After we introduced namespace into ops and kernels, we don't have to pass namespace into `static_dispatch()`; instead we will generate ops with the kernel namespace for `Functions.h`. After this diff:
If we have a yaml file looking like this:
```
- func: op_1(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: at::op_1_kernel # ATen kernel
- func: op_2(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: custom::op_2_kernel # custom kernel
```
`Functions.h` will contain the following C++ APIs:
```
TORCH_API inline at::Tensor & op_1(at::Tensor & self) {
return at::cpu::op_1_kernel(self);
}
TORCH_API inline at::Tensor & op_2(at::Tensor & self) {
return custom::cpu::op_2_kernel(self);
}
```
Test Plan: Rely on CI
Differential Revision: D37900753
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81581
Approved by: https://github.com/iseeyuan
There are small typos in:
- caffe2/python/recurrent.py
- test/distributed/test_c10d_nccl.py
- test/test_fx.py
- torch/csrc/jit/runtime/autodiff.cpp
- torchgen/gen.py
Fixes:
- Should read `propagation` rather than `propogation`.
- Should read `multiplied` rather than `multuplied`.
- Should read `eliminate` rather than `elminate`.
- Should read `dispatcher` rather than `disaptcher`.
Semi-automated pull request generated by
https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81435
Approved by: https://github.com/ngimel
Summary:
A followup to #78015 and #79733. In those PRs I introduced custom namespace support into:
* `Register<DispatchKey>.cpp`
* `RegisterSchema.cpp`
* `NativeFunctions.h`
This PR extracts out logic that generates schema registration code (used in `RegisterSchema.cpp`) into a function so that it can be easily tested and reused. Added unit test to cover the logic as well.
Test Plan: Rely on newly added unit tests.
Differential Revision: D37581186
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80780
Approved by: https://github.com/iseeyuan
Which is, in essence is composite of `eq`->`all`->`item`
`native/mps/operators/Equal.cpp` is an almost verbatim copy of `native/cuda/Equal.cpp`
Fix codegen by generating MPSFunctions headers
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80195
Approved by: https://github.com/albanD
Summary:
Adding a feature to allow user to specify namespaces for operator and kernels.
# Feature
There's a feature request to allow DSL to:
1. take in an operator namespace other than `aten`.
2. take in a kernel that is in a different namespace than `at::native`.
For both features, we only allow user to have a single layer of namespace for the sake of simplicity. If user specify `custom::function` as kernel, the codegen will depend on `custom::native::function` where `native` is hardcoded.
# Proposal
For feature 1, add a `namespace` attribute to data class `NativeFunction`. The namespace will be extract out by matching pattern "::" on the `func` variable. For `NativeFunctionsGroup` there's an assumption that all variants (function, inplace, out) will have the same namespace. By default (if not specified) the namespace will be "aten".
For feature 2, add a `namespace` attribute to `BackendMetadata` class, similarly match pattern "::" on the kernel field. Remove the `cpp_namespace` field from `register_dispatch_key` data class. By default (if not specified) the namespace for a kernel would be "at::native".
Test Plan:
Example yaml entries:
```
- func: custom::gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
CPU: custom::gelu_out_cpu
CUDA: custom::gelu_out_cuda
MPS: custom::gelu_out_mps
- func: custom::gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)
structured_delegate: gelu.out
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
NestedTensorCPU, NestedTensorCUDA: custom::NestedTensor_gelu_
- func: custom::gelu(Tensor self, *, str approximate='none') -> Tensor
structured_delegate: gelu.out
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
MkldnnCPU: custom::mkldnn_gelu
QuantizedCPU: custom::gelu_quantized_cpu
NestedTensorCPU, NestedTensorCUDA: custom::NestedTensor_gelu
```
see generated code:
`RegisterCPU.cpp`:
```
TORCH_LIBRARY_IMPL(aten, CPU, m) {
...
}
TORCH_LIBRARY_IMPL(custom, CPU, m) {
m.impl("gelu", TORCH_FN(wrapper_gelu));
m.impl("gelu.out", TORCH_FN(wrapper_gelu_out_out));
m.impl("gelu_", TORCH_FN(wrapper_gelu_));
};
```
```
struct structured_gelu_out_cpu_inplace final : public custom::native::structured_gelu_out_cpu {
structured_gelu_out_cpu_inplace(Tensor& self) : outputs_{std::ref(self)} {}
void set_output_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
const auto& out = outputs_[output_idx].get();
check_inplace(out, sizes, options);
auto maybe_proxy = maybe_create_proxy(out, sizes, strides, options);
if (C10_UNLIKELY(maybe_proxy.has_value())) {
proxy_outputs_[output_idx] = c10::ExclusivelyOwned<Tensor>(std::move(maybe_proxy).value());
}
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
custom::native::structured_gelu_out_cpu::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
void set_output_raw_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
const auto& out = outputs_[output_idx].get();
check_inplace(out, sizes, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
custom::native::structured_gelu_out_cpu::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
const Tensor& maybe_get_output(int64_t output_idx) override {
return proxy_outputs_[output_idx].has_value() ? **proxy_outputs_[output_idx] : outputs_[output_idx].get();
}
std::array<std::reference_wrapper<Tensor>, 1> outputs_;
std::array<c10::optional<c10::ExclusivelyOwned<Tensor>>, 1> proxy_outputs_;
};
```
`RegisterSchema.cpp`
```
TORCH_LIBRARY(aten, m) {
...
}
TORCH_LIBRARY(custom, m) {
m.def("gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)");
m.def("gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)");
m.def("gelu(Tensor self, *, str approximate='none') -> Tensor");
};
```
Differential Revision: D36558459
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78015
Approved by: https://github.com/bdhirsh
Package config/template files with torchgen
This PR packages native_functions.yaml, tags.yaml and ATen/templates
with torchgen.
This PR:
- adds a step to setup.py to copy the relevant files over into torchgen
- adds a docstring for torchgen (so `import torchgen; help(torchgen)`
says something)
- adds a helper function in torchgen so you can get the torchgen root
directory (and figure out where the packaged files are)
- changes some scripts to explicitly pass the location of torchgen,
which will be helpful for the first item in the Future section.
Future
======
- torchgen, when invoked from the command line, should use sources
in torchgen/packaged instead of aten/src. I'm unable to do this because
people (aka PyTorch CI) invokes `python -m torchgen.gen` without
installing torchgen.
- the source of truth for all of these files should be in torchgen.
This is a bit annoying to execute on due to potential merge conflicts
and dealing with merge systems
- CI and testing. The way things are set up right now is really fragile,
we should have a CI job for torchgen.
Test Plan
=========
I ran the following locally:
```
python -m torchgen.gen -s torchgen/packaged
```
and verified that it outputted files.
Furthermore, I did a setup.py install and checked that the files are
actually being packaged with torchgen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78942
Approved by: https://github.com/ezyang