Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72009
This simplifies the Stats interface by merging IntervalStat and FixedCountStat into a single Stat w/ a specific window size duration and an optional max samples per window. This allows for the original intention of having comparably sized windows (for statistical purposes) while also having a consistent output bandwidth.
Test Plan:
```
buck test //caffe2/test:monitor //caffe2/test/cpp/monitor:monitor
```
Reviewed By: kiukchung
Differential Revision: D33822956
fbshipit-source-id: a74782492421be613a1a8b14341b6fb2e8eeb8b4
(cherry picked from commit 293b94e0b4646521ffe047e5222c4bba7e688464)
Summary:
This adds argument names and docstrings so the docs are a lot more understandable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71481
Test Plan:
docs/tests CI should suffice

Reviewed By: edward-io
Differential Revision: D33661255
Pulled By: d4l3k
fbshipit-source-id: 686835dfe331b92a51f4409ec37f8ee6211e49d3
(cherry picked from commit 0a6accda1bec839bbc9387d80caa51194e81d828)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69567
This exposes torch.monitor events and stats via pybind11 to the underlying C++ implementation.
* The registration interface is a tad different since it takes a lambda function in Python where as in C++ it's a full class.
* This has a small amount of changes to the counter interfaces since there's no way to create an initializer list at runtime so they now also take a vector.
* Only double based stats are provided in Python since it's intended more for high level stats where float imprecision shouldn't be an issue. This can be changed down the line if need arises.
```
events = []
def handler(event):
events.append(event)
handle = register_event_handler(handler)
log_event(Event(type="torch.monitor.TestEvent", timestamp=datetime.now(), metadata={"foo": 1.0}))
```
D32969391 is now included in this diff.
This cleans up the naming for events. type is now name, message is gone, and metadata is renamed data.
Test Plan: buck test //caffe2/test:monitor //caffe2/test/cpp/monitor:monitor
Reviewed By: kiukchung
Differential Revision: D32924141
fbshipit-source-id: 563304c2e3261a4754e40cca39fc64c5a04b43e8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69923
Original commit changeset: fbaf2cc06ad4
Original Phabricator Diff: D32606547 (e61fc1c03b)
This is the same thing as the original diff but just using a normal std::mutex instead of std::shared_timed_mutex which is not available on OSX 10.11. The performance difference should be negligible and easy to change down the line if it does become a bottleneck.
Old failing build: https://github.com/pytorch/pytorch/runs/4495465412?check_suite_focus=true
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68783
Test Plan:
buck test //caffe2/test/cpp/monitor:monitor
will add ciflow tags to ensure mac builds are fine
Reviewed By: aivanou
Differential Revision: D33102715
fbshipit-source-id: 3816ff01c578d8e844d303d881a63cf5c3817bdb
Summary:
This adds a C++ event handler corresponding to the Python one mentioned in the RFC.
This changes the counters a bit to all be push driven instead of being polled. The two window types are "fixed count" and "interval". One is based off the number of logged events and the other is based off of time windows. There's currently no active ticker for interval so it needs a regular stream of events to ensure events are produced. A follow up diff can add support for things like HHWheel / simple ticker.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68783
Test Plan: buck test //caffe2/test/cpp/monitor:monitor
Reviewed By: kiukchung
Differential Revision: D32606547
fbshipit-source-id: a00d0364092d7d8a98e0b18e503c0ca8ede2bead
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68074
This is the first step of many PRs towards implementing the `torch.monitor` RFC https://github.com/pytorch/rfcs/pull/30
This defines the aggregation types, the `Stat` class and provides some simple collection of the stats.
This doesn't match the RFC exactly as it incorporates some of the comments on the RFC as well as a few changes for performance.
Changes:
* added window_size to the stats. If specified it will always compute the stat using the `window_size` number of values. If there aren't enough values within that window it reports the previous stats.
* This doesn't include the push metrics yet (will be coming).
After more discussion it looks like the best way to handle this is to support a hybrid where the metric can set how frequently it'll be logged. For fixed window_size metrics it'll be logged each time it hits the window size. This will allow performant counters as well as lower frequency push counters (window_size=1).
Performance considerations:
* Updating the stats acquires a lock on that Stat object. This should be performant unless there's many-many threads writing to the same stat. Single thread will typically use futex so should be quite fast.
* Adding/removing/fetching all stats sets a global lock on the stat list -- this shouldn't be an issue since these events happen infrequently.
* Fetching stats accesses one stat at a time instead of a global lock. This means the exported values are linearizable but not serializable across multiple stats but I don't expect this to be an issue.
Next steps:
1. Add StatCollector interface for push style metrics
1. Add pybind interfaces to expose to Python
1. Add default metric providers
1. Integrate into Kineto trace view
Test Plan:
buck test //caffe2/test/cpp/monitor:monitor
CI
Reviewed By: kiukchung
Differential Revision: D32266032
fbshipit-source-id: dab8747b4712f5dba5644387817a3a0fda18b66a