Commit Graph

4 Commits

Author SHA1 Message Date
f20e4eab7b Fix ITT unit-tests if PyTorch is compiled with USE_ITT=OFF (#86199)
Fixes https://github.com/pytorch/pytorch/pull/84848#discussion_r986329680

@malfet @slgong-fb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86199
Approved by: https://github.com/malfet
2022-10-04 21:57:05 +00:00
3c7044728b Enable Intel® VTune™ Profiler's Instrumentation and Tracing Technology APIs (ITT) to PyTorch (#63289)
More detailed description of benefits can be found at #41001. This is Intel's counterpart of NVidia’s NVTX (https://pytorch.org/docs/stable/autograd.html#torch.autograd.profiler.emit_nvtx).

ITT is a functionality for labeling trace data during application execution across different Intel tools.
For integrating Intel(R) VTune Profiler into Kineto, ITT needs to be integrated into PyTorch first. It works with both standalone VTune Profiler [(https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html](https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html)) and Kineto-integrated VTune functionality in the future.
It works for both Intel CPU and Intel XPU devices.

Pitch
Add VTune Profiler's ITT API function calls to annotate PyTorch ops, as well as developer customized code scopes on CPU, like NVTX for NVidia GPU.

This PR rebases the code changes at https://github.com/pytorch/pytorch/pull/61335 to the latest master branch.

Usage example:
```
with torch.autograd.profiler.emit_itt():
    for i in range(10):
        torch.itt.range_push('step_{}'.format(i))
        model(input)
        torch.itt.range_pop()
```

cc @ilia-cher @robieta @chaekit @gdankel @bitfort @ngimel @orionr @nbcsm @guotuofeng @guyang3532 @gaoteng-git
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63289
Approved by: https://github.com/malfet
2022-07-13 13:50:15 +00:00
1454515253 Revert "Enable Intel® VTune™ Profiler's Instrumentation and Tracing Technology APIs (ITT) to PyTorch (#63289)"
This reverts commit f988aa2b3ff77d5aa010bdaae4e52c6ee345c04d.

Reverted https://github.com/pytorch/pytorch/pull/63289 on behalf of https://github.com/malfet due to broke trunk, see f988aa2b3f
2022-06-30 12:49:41 +00:00
f988aa2b3f Enable Intel® VTune™ Profiler's Instrumentation and Tracing Technology APIs (ITT) to PyTorch (#63289)
More detailed description of benefits can be found at #41001. This is Intel's counterpart of NVidia’s NVTX (https://pytorch.org/docs/stable/autograd.html#torch.autograd.profiler.emit_nvtx).

ITT is a functionality for labeling trace data during application execution across different Intel tools.
For integrating Intel(R) VTune Profiler into Kineto, ITT needs to be integrated into PyTorch first. It works with both standalone VTune Profiler [(https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html](https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html)) and Kineto-integrated VTune functionality in the future.
It works for both Intel CPU and Intel XPU devices.

Pitch
Add VTune Profiler's ITT API function calls to annotate PyTorch ops, as well as developer customized code scopes on CPU, like NVTX for NVidia GPU.

This PR rebases the code changes at https://github.com/pytorch/pytorch/pull/61335 to the latest master branch.

Usage example:
```
with torch.autograd.profiler.emit_itt():
    for i in range(10):
        torch.itt.range_push('step_{}'.format(i))
        model(input)
        torch.itt.range_pop()
```

cc @ilia-cher @robieta @chaekit @gdankel @bitfort @ngimel @orionr @nbcsm @guotuofeng @guyang3532 @gaoteng-git
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63289
Approved by: https://github.com/malfet
2022-06-30 05:14:03 +00:00